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ÚVODEM 
 

Učebnice Elektronické obvody I je vytvořena jako jednotný text pro bakalářské i magisterské 
studijní obory Fakulty Vojenských technologií Univerzity Obrany v Brně. V učebnici jsou jednak 
základní partie textu určené pro bakalářské studium a dále doplňující části určené pro magisterskou 
nadstavbu. K tomuto řešení jsme přistoupili ze dvou důvodů. Jednak nelze jednoduše rozdělit celou 
problematiku do dvou nezávislých publikací, aniž by se neztrácely souvislosti jednotlivých témat a 
kapitol. Dále je vhodné, když se student bakalářského studia může podívat informativně na navazující 
hlubší souvislosti a student magisterského studia si může rychle zrekapitulovat požadované znalosti 
z bakalářského studia.  

Tématicky učebnice pokrývá látku z oblasti elektrických signálů a jejich analogového 
zpracování lineárními obvody, vyučovanou na elektrotechnických fakultách škol v ČR a SR. Učebnice 
tedy může být využita i studenty těchto škol. 

Všude tam, kde to bylo účelné a vhodné, je výklad teoretických partií doplněn řešenými 
příklady. Poznatky z těchto příkladů jsou zobecňovány a jsou z nich formulovány shrnující závěry. 
V první kapitole o elektrických signálech a místy i v dalších částech učebnice je výklad podpořen 
výstupy programu MATLAB. Popisované příklady z oblasti elektrických obvodů je možné jednoduše 
ověřovat počítačovými programy SNAP a Micro-Cap a některé výsledky z kapitoly Kmitočtové filtry 
programem NAF. Učebnice se přitom nezabývá popisem těchto programů ani návody na jejich ovládání. 
Všechny tyto programy jsou však podrobně popsány v samostatných monografiích, které autoři 
učebnice napsali zejména pro potřeby studentů a které jsou uvedeny v seznamu literatury pod položkami 
[2], [13] a [41]. Programy jsou volně dostupné na Internetu prostřednictvím odkazů [I1], [I5] a [I10] a 
studenti s nimi pracují jak v organizovaných formách výuky, tak i samostatně na svých počítačích. 

Učebnice reaguje na současnou realitu, kdy pracovníci z oboru jsou nuceni pracovat 
s informačními zdroji nejrůznější povahy, zejména s katalogovými listy moderních součástek, 
stahovanými z Internetu. Za této situace je problematické striktně dodržovat například zásady používání 
jednotných schématických značek. Studenty by například nemělo překvapit, že kromě v Evropě 
používané schématické značky rezistoru   se asi častěji budou setkávat se značkou  , 
běžně používanou v katalogových listech, odborných zahraničních článcích a počítačových simulačních 
programech. Schématické značky tranzistorů mohou, ale nemusí být doplněny obvodovým 
kruhem.Nepřehledná situace panuje i v označování zdrojů. Proto v učebnici naleznete nejčastější 
způsoby kreslení schématických značek pro zdroje napětí a pro zdroje proudu 

. 

Rozšiřující texty pro magisterské studium jsou v učebnici vyznačeny svislým pruhem 
podél vnějšího okraje.  

Tato učebnice je součástí výukových textů, dalších studijních materiálů a software pro 
podporu výuky předmětů Katedry elektrotechniky FVT UO v Brně. Zájemce odkazujeme na www 
stránky http://user.unob.cz/K217. 

 
 
V Brně, září 2006. Autoři 
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1 ÚVOD DO TEORIE ELEKTRICKÝCH OBVODŮ  
A SIGNÁLŮ 

 
1.1 ELEKTRICKÉ SIGNÁLY 
 

Komunikace mezi lidmi - ať už přímá nebo zprostředkovaná stroji - je založena na přenosu 
informace. Informace je produkována zdrojem obvykle v neelektrické podobě, které se říká zpráva 
nebo sdělení (řeč, hudba, obraz, text ...). Zpráva se pro účely přenosu na dálku, uchovávání, 
zabezpečení atd. převádí na signál, což je fyzikální vyjádření zprávy. Často se signálem zúženě chápe 
časový průběh fyzikální veličiny, nesoucí informaci. Je-li fyzikální veličinou napětí nebo proud, 
hovoříme o elektrických signálech.  

Každý pokus o popis skutečně existujícího signálu v matematické nebo grafické formě vede na 
tvorbu jeho modelu. Analýzou modelu pak zjišťujeme vlastnosti skutečného signálu více či méně přesně 
podle toho, s jak přesným modelem pracujeme. 

Dělení signálů a jejich modelů: 
 

1)  signály se souvislým časem 
 (continuous-time) 
 
 
 
 signály s diskrétním časem - 
 - diskrétní signály 
 (discrete-time) 

analogové (analog) 
 
 
 
 
 
 

číslicové (digital)  
 

 signály souvislé v hodnotách 
  
 
 
 
 signály diskrétní v hodnotách - 
 - kvantované 
 (quantized) 
 

2) signály s nekonečnou dobou 
trvání 

 
 
 
 
 
 
  
 signály s konečnou dobou trvání 

(jednorázové) 
 

  periodické  
  harmonické 
  jiné 

 neperiodické 
  kvaziperiodické 
  nezanikající 
  impulsy 
  jiné 
 impulsy 
  aperiodické 

3) signály deterministické (určené) 
 signály stochastické (náhodné) 

  

 
Výše uvedené kategorie signálů nejlépe objasníme na příkladech.  
Napětí snímané z mikrofonu je signálem souvislým v čase i v hodnotách: v průběhu doby trvání je 

tento signál definován pro všechny časové okamžiky a v rozsahu hodnot tohoto signálu jsou všechny 
úrovně „povoleny“ (signál může nabýt libovolné hodnoty z intervalu hodnot). Jedná se tedy o signál 
analogový. 

Záznam o teplotě motoru, snímané v minutových intervalech, je možno považovat za signál 
diskrétní v čase: signál existuje pouze v izolovaných (diskrétních) okamžicích odečítání. Pokud je 
velikost teploty vyjádřená s konečnou přesností na určitý počet desetinných míst, znamená to, že 
v daném signálovém rozsahu může signál nabývat pouze omezený počet diskrétních hodnot. Pak se 
jedná o signál diskrétní v hodnotách (kvantovaný). Signál diskrétní v čase i v hodnotách se nazývá 
číslicový. 
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Signály diskrétní v čase se často získávají ze signálů analogových tzv. vzorkováním. 
Kvantováním hodnot těchto vzorků a jejich převodem do určitého kódu pak získáme signál číslicový. 

Důležitým modelem reálných signálů je signál periodický, který je tvořen opakováním určitého 
signálového segmentu. Speciálním periodickým signálem velkého významu je signál harmonický, který 
je matematicky popsán funkcemi typu sinus a kosinus.  

Při modelování přechodových dějů nebo dějů s časově omezeným působením jsou užitečné 
některé neperiodické signály, například různé impulsy. 

Často vystačíme s deterministickými modely signálů, které nám umožňují přesně popsat budoucí 
průběh signálu již v přítomnosti. Signál, jehož průběh v budoucnu lze předpovědět jen s určitou (ne 
stoprocentní) pravděpodobností, je signál náhodný (stochastický).  

Reálné signály jsou většinou náhodné, protože parametry technicky generovaných signálů jsou 
náhodně ovlivňovány prostředím. S velkou přesností je však mnohdy můžeme nahradit 
deterministickými modely, např. modely periodických signálů. Stochastickým modelům se nevyhneme 
například při rozboru šumových vlastností systémů.  
 
1.2 ELEKTRICKÉ SYSTÉMY A OBVODY 
 

Signál nemůže existovat bez prostředí, v němž vzniká, šíří se, je uchováván nebo se přeměňuje na 
jiný typ signálu. Takovému prostředí se říká systém. 

Systémy mohou být nejrůznější povahy – mechanické, elektrické, informační, sociální. 
Speciálním systémem je elektrický obvod, složený z vzájemně propojených podsystémů – součástek, a 
komunikující s okolím pomocí vstupů a výstupů. 

Dělení systémů a jejich modelů: 
 

1) systémy pracující souvisle v čase 
 (continuous-time) 
 
 
 
 systémy pracující diskrétně  

v čase - diskrétní systémy 
 (discrete-time) 

analogové (analog) 
 
 
 
 
 
 

číslicové (digital) 
 
 

 systémy se signály souvislými 
v hodnotách 

  
 
 
 
 systémy se signály diskrétními 
v hodnotách (kvantovanými) 

 (quantized) 
 

 hybridní - smíšené - systémy 
2) lineární systémy 
 (linear) 
 
 
 
 nelineární systémy 
 (nonlinear) 
 

  stacionární systémy (s neproměnnými 
parametry) 

 (stationary) 
 
 nestacionární systémy (s časově 
proměnnými parametry) 

 (nonstationary, time varying) 

3) systémy statické (nesetrvačné, bez paměti, bez akumulačních prvků), popsané algebraickými rovnicemi 
 systémy dynamické (setrvačné, s pamětí, s akumulačními prvky), popsané diferenciálními rovnicemi 
 

První rovina klasifikace se odvíjí od typů signálů, které v systému působí. Příklady typických 
systémů: Analogový – tranzistorový zesilovač, číslicový – číslicový filtr. Křížové kombinace (souvislý 
čas-diskrétní hodnoty a diskrétní čas-souvislé hodnoty) se používají zejména k modelování etap 
analogově↔číslicového převodu (vzorkování, kvantování). Této klasifikaci se vymykají smíšené – 
hybridní systémy, které pracují jak s analogovými, tak i s číslicovými signály. 
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Druhá klasifikační rovina dělí všechny systémy na lineární a nelineární, stacionární a 
nestacionární. Systém se chová jako lineární, jestliže mezi jeho výstupem a vstupem platí 
proporcionální závislost (zdvojnásobením vstupního signálu dojde k zdvojnásobení výstupního signálu) 
a princip superpozice (odezva na součet dvou signálů je rovna součtu odezev na tyto signály, působící 
samostatně). Ostatní systémy jsou nelineární. Typickým představitelem lineárního systému je 
stejnosměrný zesilovač, jehož výstupní napětí je 10x větší než napětí vstupní. Nelineárním systémem je 
například diodový usměrňovač. 

V praxi se často vyskytují systémy, fungující na principu linearizace. Typickým představitelem 
je tranzistorový zesilovač pracující ve třídě A. Vstupně-výstupní charakteristika zesilovače je sice 
nelineární, vstupní signál je však natolik slabý, že využíváme jen jejího úseku, který je prakticky 
přímkový. Podrobnosti budou vysvětleny v části 3.1. 

Stacionární systémy (s neproměnnými parametry) zachovávají své systémové parametry 
konstantní v čase. Například výše uvedený zesilovač je stacionární systém, protože jeho systémový 
parametr – zesílení, je neměnný (např. 10). Budeme-li mít možnost zesílení elektronicky nastavovat a 
budeme-li jej v průběhu zesilování měnit (např. za účelem modulace), stane se ze zesilovače 
nestacionární systém (s proměnným parametrem). Je zřejmé, že oba druhy klasifikace (lineární-
nelineární, stacionární-nestacionární) dávají čtyři typy systémů. V tomto předmětu se budeme zabývat 
zejména lineárními stacionárními a nelineárními stacionárními obvody. 

Třetí klasifikační rovina rozlišuje systémy, které nemají vnitřní paměť, a proto se vstup přímo 
kopíruje na výstup přes příslušnou lineární či nelineární charakteristiku (systémy statické, nesetrvačné), 
a systémy s pamětí, kde výstup v daném okamžiku je odvozen nejen bezprostředně ze vstupu, ale bude 
záviset i na stavu paměti, a ta je dána chováním systému v minulosti (systémy dynamické, setrvačné). 
V analogových elektrických obvodech zastávají úlohu pamětí akumulační prvky typu kapacitor a 
induktor, v číslicových obvodech jsou to paměťové registry, v magnetických obvodech jsou to jádra 
z magneticky tvrdých materiálů apod.  

Obecně vzato většina existujících systémů patří do kategorie systémů nelineárních, 
nestacionárních dynamických. V řadě případů jsou však některé projevy, např. nelinearita či 
nestacionarita, tak slabé, že je možné od nich abstrahovat a modelovat zkoumaný systém v rámci 
jednoduchého modelu, např. lineárního stacionárního. 
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2 ELEKTRICKÉ SIGNÁLY 
 
2.1 PERIODICKÉ SIGNÁLY 
 

Signál s(t) je periodický, jestliže pro každý čas t platí vzorec 

 ( ) ( )s t s t T= + 1 . (2.1) 

Nejmenší kladné číslo T1 [s], splňující vzorec (2.1), je opakovací perioda signálu. Reciproká 
hodnota  

 F
T1

1

1
= [Hz] (2.2) 

je opakovací kmitočet, tj počet period za sekundu. 

 
1

1
1 22 F

T
π

π
==Ω [rad/s] (2.3) 

je kruhový opakovací kmitočet, tj počet period 2π radiánů za sekundu. 
Periodický signál můžeme popsat buď přesně pomocí jeho časového průběhu v rámci jedné 

periody (vzorcem nebo obrázkem), nebo přibližně pomocí jeho některých tzv. globálních 
charakteristik. V některých aplikacích totiž není podstatné, „jak signál vypadá“, nýbrž jakou má 
například střední nebo efektivní hodnotu. Pak postačí k stanovení účinků signálu na spotřebič zjistit 
příslušnou globální charakteristiku namísto detailního popisu celého časového průběhu. 

Globální charakteristiky periodických signálů - energie, výkon, střední hodnota, efektivní 
hodnota 

Vyčíslují se integrálem signálu přes jednu opakovací periodu, přičemž je lhostejné, kde zvolíme 
počáteční bod integrace. 

Okamžitý výkon signálu (normovaný) 

 ( ) ( )p t s t= 2 . (2.4) 

Je to výkon na normované zátěži R = 1Ω, působí-li na tuto zátěž signál s(t) ve formě napětí nebo 
proudu. Pak totiž p(t) = R i2(t) = u2(t)/R = i2(t) = u2(t). 

Energie v jedné periodě signálu (normovaná) je časovým integrálem okamžitého výkonu: 

 ( ) ( )W p t dt s t dt
T T

= =∫ ∫
1 1

2 . (2.5) 

Střední výkon za jednu periodu signálu (normovaný) 

 ( ) ( )P
T

p t dt W
T T

s t dt
T T

= = =∫ ∫
1 1

1 1 1

2

1 1

. (2.6) 

Střední hodnota za jednu periodu (stejnosměrná složka) 

 ( )S
T

s t dt
T

0
1

1

1

= ∫  [jednotka signálu]. (2.7) 

Střední hodnota části signálu (ze signálu je uvažována jen jeho část délky Tc, která je současně 
považována za opakovací periodu) 

 ( )dtts
T

S
cTc

c ∫=
1  [jednotka signálu]. (2.8) 
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Efektivní hodnota (druhá odmocnina ze středního výkonu) 

 ( )S P
T

s t dtef
T

= = ∫
1

1

2

1

 [jednotka signálu]. (2.9) 

Vzájemná energie dvou periodických signálů s1 a s2 se soudělnými periodami (T1 je větší 
z obou period) 

 ( ) ( )W W s t s t dt
T

12 21 1 2

1

= = ∫ . (2.10) 

Vzájemný střední výkon dvou periodických signálů s1 a s2 se soudělnými periodami 

 ( ) ( )P P
T

s t s t dt
T

12 21
1

1 2
1

1

= = ∫ . (2.11) 

Jsou-li vzájemné energie (výkony) nulové, pak jsou signály s1 a s2 vůči sobě ortogonální. Tak 
se například vůči sobě chovají signály typu sinus a kosinus. Ortogonální signály jsou zajímavé m.j. 
tím, že po jejich smíchání je lze jednoznačně opět od sebe oddělit. Toho lze využít k přenosu většího 
počtu signálů jediným sdělovacím kanálem. Na teorii ortogonálních signálů je založena i myšlenka 
spektrální (Fourierovy) analýzy signálů. 
 

& Shrnutí a zobecnění: 
a) Signály různých tvarů mohou mít stejné střední nebo efektivní hodnoty. 

b) Efektivní hodnota signálu je vždy o něco větší než jeho střední hodnota; výjimku tvoří stejnosměrný 
signál, u něhož jsou obě veličiny stejné. 

c) Střední ani efektivní hodnota periodického signálu nezávisí na časovém posunutí signálu (t.j. 
nezávisí na volbě počátku času) a dokonce ani na opakovací periodě (t.j. nezávisí na časové 
expanzi a kompresi). 

d) Efektivní hodnota signálu nezávisí na znaménku signálu. 

e) Střední hodnota součtu dvou periodických signálů se stejnou opakovací periodou je rovna součtu 
jejich středních hodnot. 

f) Výkon součtu dvou periodických signálů se stejnou opakovací periodou za tuto periodu (t.j. kvadrát 
efektivní hodnoty) je větší než součet výkonů (t.j. kvadrátu efektivních hodnot) obou signálů. 
K rovnosti dochází pouze u ortogonálních signálů, t.j. u signálů s nulovým vzájemným výkonem. 
Nejjednodušší ortogonální signály jsou ty, které se vzájemně nepřekrývají v rámci opakovací 
periody. 

 
 
2.1.1 Harmonický signál 
 

Patří k důležitým periodickým signálům. Časový průběh je matematicky je popsán funkcemi 
typu sinus a kosinus. 

Signál je určen třemi parametry: amplitudou C (C ≥ 0), 
 opakovací frekvencí F [Hz], 
 počáteční fází ϕ [° nebo rad]. 
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0ϕ− t [ ]rad / sα = Ω 1

C

C
0 t, α

0

s t( )

t [ ]sts−

T1

π2

 

Obr.2.1. Harmonický signál a jeho základní parametry. 

Další související parametry:  velikosti kosinové a sinové složky A a B, 
(viz obr. 2.1 a další text) kruhová opakovací frekvence Ω1, 
 opakovací perioda T1, 
 časový posuv tS. 

Z obrázku je zřejmé, že nezávisle proměnnou signálu může být buď úhel α (matematický 
přístup k popisu harmonické funkce), nebo čas t (technický popis signálu, tj. časově závislé funkce). 
Opakovací periodu tedy lze vyjádřit buď v úhlových jednotkách (2π radiánů nebo 360 stupňů), nebo 
v časových jednotkách (T1 sekund). Podle pravidel přímé úměry pak můžeme vzájemně přepočítávat 
souřadnice úhlové a časové osy: 

 tt
T 1

1

2
Ω==

π
α  [rad, s]  (2.12) 

S využitím tohoto vzorce pak můžeme přepočítávat počáteční fázi ϕ na časový posuv tS (viz 
obr. 2.1) a naopak: 

 St1Ω=ϕ , 
1Ω

=
ϕ

St   (2.13) 

 
Matematické modely harmonického signálu: 
 

 ( ) ( )
( ) ( )

4342143421
ts

tB
ts

tAtCts

sc

111 sincoscos

!0

Ω+Ω=+Ω

≥
↑

= ϕ , (2.14) 

kde ( )s tc - kosinová složka, 
 ( )s ts - sinová složka harmonického signálu. 

Z (2.14) vyplývá, že každý harmonický signál o amplitudě C, kmitočtu Ω1 a počáteční fázi ϕ je 
možné rozložit na kosinovou a sinovou složku o stejných kmitočtech Ω1. Naopak součet daných 
signálů typu sinus a kosinus je harmonický signál o amplitudě a počáteční fázi, které závisí na 
velikostech těchto složek A a B. Přepočítávací vztahy (2.15) lze odvodit z goniometrické poučky  

 ( ) βαβαβα sin.sincos.coscos −=+ . 

Přepočítávací vztahy: 
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









<+−

≥−

=
−=

=

+=

==ΩΩ=

0,arctg

0,arctg

sin
cos

22;

22

1
111

A
A
B

A
A
B

CB
CA

BAC

T
Ft s

K

K

π

ϕ
ϕ

ϕ

π
πϕ

 (2.15) 

C

A=C cos
0

ϕ

ϕ
-B=C sin ϕ

 

Komplexní vyjádření harmonického signálu (založeno na identitě ααα jj ee −+=
2
1

2
1cos ) - proti 

sobě rotující fázory: 

 

( ) {

ϕϕ

ϕϕ

==⇒==

+=+= Ω−∗ΩΩ−

∗

∗

−Ω

c
C

cCeCCc

ecece

c

C
Cee

c
C

Cets

j

tjtjtjjtjj

&&&&&

&&

43421

&

321
&321

&

&

arg,
2

,
2
1

2
1

2
1

1111

 (2.16) 

−ϕ

&c

*

ϕ

u( )0  

u t se mění harmonicky v mezích C C( ) ,< − >

0
&c *

Ω1

 
1−Ω

 

Obr.2.2. Vztah rotujících fázorů a okamžité hodnoty. 
 

Z rovnice (2.16) a obr. 2.2 vyplývá, že harmonický signál o amplitudě C, kmitočtu Ω1 a 
počáteční fázi ϕ je možné modelovat jako vektorový součet dvou rotujících fázorů. Výsledný vektor 
leží vždy v reálné ose a jeho velikost je rovna velikosti harmonického signálu. První z vektorů má 
velikost poloviční než je amplituda signálu a v čase t = 0 svírá s kladnou reálnou poloosou úhel ϕ. 
Rotuje kolem počátku souřadnic proti směru pohybu hodinových ručiček úhlovou rychlostí Ω1 radiánů 
za sekundu. Druhý z vektorů má stejnou velikost, ale opačnou počáteční fázi a rotuje v opačném 
smyslu. 
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Stejnosměrný signál jako zvláštní případ harmonického signálu pro Ω1 = 0: 
 

Jak ukazuje obr. 2.3, stejnosměrný signál C > 0 (C < 0) je možné chápat jako zvláštní případ 
harmonického signálu o amplitudě C, počáteční fázi ϕ = 0 (ϕ = 180°) a kmitočtu Ω1 = 0rad/s. 

C

Ω → 0

ϕ = °0
a)

t

C−

0

ϕ = °180
b)

Ω → 0

0 t

1

1  

Obr.2.3. Stejnosměrný signál jako zvláštní případ harmonického signálu pro nulový kmitočet. 

 
Globální charakteristiky harmonického signálu: 
 

Střední hodnota za jednu periodu 

 S0 0= . (2.17) 
Střední hodnota kladné půlvlny 

 S C C+ = =2 0 6366
π

& , . (2.18) 

Efektivní hodnota 

 S C Cef = =1
2

0 7071& , . (2.19) 

Tyto údaje lze ověřit dosazením matematického modelu harmonického signálu do obecných 
vzorců (2.7), (2.8) a (2.9). 

 

& Shrnutí a zobecnění: 

a) Je-li počáteční fáze nulová, harmonický signál je signálem kosinovým. Extrém kosinusovky si 
označíme tečkou. Při následné změně počáteční fáze se tento znak bude posouvat doprava nebo 
doleva. 

b) Při kladné, resp. záporné počáteční fázi se kosinusovka přesouvá doleva, resp. doprava po časové 
ose. 

c) Fázové posuvy +180° a -180° jsou ekvivalentní, znaménko u počáteční fáze 180° tedy nehraje roli. 
Posuv o 180° znamená změnu znaménka (inverzi) harmonického signálu. 
Amplitudu C v (2.14) je vhodné definovat jako nezáporné číslo, aby nedocházelo 
k nejednoznačnosti při určování počáteční fáze. Např. signál s(t) = -5 cos(Ω t-45°) má amplitudu 
+5V (nezáporné číslo) a počáteční fázi -225° (nebo také +135°), neboť 
-5cos(Ω t-45°) = 5 cos(Ω t-45°± 180°) = 5 cos(Ω t-225°) = 5 cos(Ω t+135°). 

d) Dohodnutým základním tvarem pro matematický popis harmonického signálu je tvar kosinový 
(2.14). Proto je-li signál popsán funkcí sinus, je třeba ji za účelem zjištění počáteční fáze převést 
na funkci typu kosinus podle vztahu 

  ( ) ( )sin cosα α= − °90 . 
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a)
s t( )

0 t

s t C t( ) cos( )= =ω ϕ 0

b)

T 4− t

s t( )

0

s t C t C t( ) cos( ) sin( )= + ° = − = °ω ω ϕ90 90

s t( )
c)

tT 40

s t C t C t( ) cos( ) sin( )= − ° = = − °ω ω ϕ90 90

d )

T 20 t

s t( )

s t C t C t( ) cos( ) cos( )= − ° = − = − °ω ω ϕ180 180

t

e)

0T 2−

s t( )

s t C t C t( ) cos( ) cos( )= + ° = − = °ω ω ϕ180 180

"+cos"  ... 0"-cos"

"+sin"

"-sin"

> 0ϕ

< 0ϕ

… ± 180°

°

… 90°

 
… -90°, +270° 

f)

 

Obr.2.4. a) – e) Harmonické signály s různými počátečními fázemi, f) pomůcka k pamatování 
počátečních fází signálů typu „sinus“, „kosinus“ a signálů z nich odvozených. 

Například signál u(t) = -5sin(Ωt-45°) má amplitudu +5V a počáteční fázi +45°, neboť 
-5sin(Ωt-45°) = -5 cos(Ωt-45°-90°) = 5 cos(Ωt-45°-90°±180 ) = 5 cos(Ωt+45°). 

e) Je-li harmonický signál o kmitočtu Ω  posunut o časový úsek tS, odpovídá to úhlovému posunutí 

 StΩ=∆ϕ . (2.20) 

Posunou-li se dva harmonické signály různých kmitočtů o stejný časový úsek, posunou se o různé 
úhly: signál o vyšším kmitočtu bude posunut o větší fázový posuv.  

f) Fázový posuv dvou harmonických signálů s1(t) a s2(t) o stejných kmitočtech a počátečních fázích 
ϕ1 a ϕ2 je 

 ϕ ϕ ϕ12 1 2= − . (2.21) 

Je-li ϕ12 > 0, resp. ϕ12 < 0, říkáme, že signál s1(t) předbíhá, resp. je zpožděn za signálem s2(t).  
 
 
2.1.2 Fourierova řada periodického signálu 
 

Je matematický zápis tvrzení, že periodický signál sp(t) s opakovacím kmitočtem F1 lze složit 
z konstantního signálu a harmonických signálů o kmitočtech k.F1, k = 1, 2 ,3,  ... : 
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( ) ( ) ( ) ( ) =++Ω+++Ω++Ω+= KK kkp tkStStSSts ϕϕϕ 12121110 .cos.2coscos  (2.22) 

( ),cos
1

10 ∑
∞

=

+Ω+=
k

kk tkSS ϕ  

 

kde Sk - amplituda k-té harmonické složky (Sk ≥ 0), 
 kΩ1 – kruhový opakovací kmitočet k-té harmonické složky, 
 ϕk - počáteční fáze k-té harmonické složky. 
 

Z vzorce (2.22) je zřejmé, že každý periodický signál se skládá z tzv. stejnosměrné a střídavé 
složky. Stejnosměrná složka je rovna střední hodnotě signálu za opakovací periodu. Střídavá složka se 
skládá z harmonických signálů o nulových středních hodnotách, je to tedy původní signál zbavený 
stejnosměrné složky. Střídavá složka obsahuje tzv. první harmonickou o kmitočtu, který je stejný 
jako je opakovací kmitočet periodického signálu, a z vyšších harmonických, kterých je obecně 
nekonečný počet a jejichž kmitočet je celočíselným násobkem kmitočtu první harmonické. 

Rozklad (2.22) periodického signálu na dílčí komponenty je jednoznačný a platí, že každé dva 
různé periodické signály o opakovacím kmitočtu Ω1 jsou jednoznačně reprezentovány různými 
dvojicemi množin {S0 S1 S2 .. Sk ..}, {ϕ1 ϕ2 ϕ3 .. ϕk ..}. Grafické znázornění těchto množin ve formě 
spektrálních čar na kmitočtové ose se nazývá spektrum signálu (viz dále).  

Prochází-li signál elektrickým obvodem, můžeme to chápat jako průchod množiny jeho 
harmonických složek. V důsledku rozdílných přenosových schopností obvodu na různých kmitočtech 
dojde k tomu, že na výstupu obvodu budou jednotlivé harmonické složky vzájemně různě utlumeny a 
fázově posunuty, takže výstupní signál sice bude rovněž periodický, ale oproti vstupnímu signálu bude 
zkreslený. Spektrum signálu, resp. rozložení jeho spektrálních čar na kmitočtové ose, tak spolu 
s kmitočtovou charakteristikou obvodu přináší užitečný a názorný nástroj na chápání jevů spojených 
s interakcemi signálů a obvodů. 

Protože harmonický signál je možné zapsat ještě v jiných tvarech, než jak je uvedeno ve vzorci 
(2.22) – konkrétně v rozkladu na sinovou a kosinovou složku a také v komplexním tvaru jako součet 
dvou rotujících fázorů – existují tomu odpovídající tvary Fourierovy řady. Níže je bez odvození 
uveden postup výpočtu množin {S0 S1 S2 .. Sk ..}, {ϕ1 ϕ2 ϕ3 .. ϕk ..} na základě znalosti časového 
průběhu signálu v rámci jedné opakovací periody. Odvození bude provedeno později v souvislosti se 
zobecněnou Fourierovou řadou. 
 
Výpočet Sk a ϕk pomocí Fourierových koeficientů typu Ck, Ak, Bk, kC& , &ck  

(různé tvary Fourierovy řady): 
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321
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 (2.23) 

 
 komplexní kosinový složkový tvar Fourierovy řady 

 první (základní) harmonická  vyšší harmonické 

 střídavá složka  stejnosměrná složka 
(střední hodnota) 
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Výpočet Fourierových koeficientů z časového průběhu signálu během jedné opakovací 
periody 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) .
2

1,................2

, :signály sudé pro 0..........sin2

, :signály liché pro 0..........cos2

1

1

1

1

1

1

11

1
1

1
1

kktjk

T
pkkk

tjk

T
pk

pp
T

pk

pp
T

pk

jBAdtets
T

cjBAdtets
T

C

tstsdttkts
T

B

tstsdttkts
T

A

−
==−==

−==Ω=

−−==Ω=

Ω−Ω− ∫∫

∫

∫

&&

 (2.24) 

 
& Shrnutí a zobecnění – postup výpočtu amplitud a počátečních fází harmonických složek 

signálu z jeho časového průběhu: 

a) Výpočet komplexních Fourierových koeficientů kkk jBAC −=&  pomocí (2.24). Pokud je 
signál sudá, resp.lichá funkce času, postačí vypočítat pouze koeficienty Ak, resp. Bk. 

b) Výpočet amplitud kk CS &= a počátečních fází )( kk C&arg=ϕ pro k=1, 2, 3,… 

c) Výpočet stejnosměrné složky S0 = C0/2. 
 
2.1.3 Spektrum periodického signálu 
 

je tvořeno množinou jeho harmonických složek. Graficky se spektrum znázorňuje spektrálními čarami 
jako amplitudové a fázové spektrum. 

Amplitudové spektrum: na vodorovnou osu se vynáší kmitočet, na svislou osu amplitudy Sk. 
K-té harmonické odpovídá spektrální čára, umístěná na kmitočtovou osu do kmitočtu této harmonické, 
a její délka odpovídá amplitudě Sk. Amplitudové spektrum tedy obsahuje tolik spektrálních čar, kolik 
je harmonických složek periodického signálu. Stejnosměrná složka jako zvláštní případ harmonické 
složky má pozici na kmitočtové ose pro nulový kmitočet (v počátku). Protože amplituda nemůže být 
záporná, vynáší se zde absolutní hodnota stejnosměrné složky. 

Fázové spektrum: na vodorovnou osu se vynáší kmitočet, na svislou osu počáteční fáze ϕk. K-
té harmonické odpovídá spektrální čára, umístěná na kmitočtovou osu do kmitočtu této harmonické, a 
její délka odpovídá počáteční fázi ϕk. Fázové spektrum tedy obsahuje tolik spektrálních čar, kolik je 
harmonických složek periodického signálu. Fáze stejnosměrné složky je buď nula, je-li tato složka 
kladná, nebo ±π radiánů (±180°), je-li záporná. 
 

Příklady spekter vybraných periodických signálů 

Harmonické signály a jednoduché signály z nich odvozené 

- viz obr. 2.5. 

a) Harmonický signál typu „sinus“, což znamená počáteční fázi -90° oproti „referenčnímu 
kosinu“, amplituda 1V a opakovací perioda 1ms. Opakovací frekvence je tedy 1kHz. 
Amplitudové i fázové spektrum je tedy jednočarové – signál obsahuje pouze první 
harmonickou. 

b) Stejnosměrný signál o hodnotě 1V. Signál se skládá pouze ze stejnosměrné složky. Spektrum 
tedy obsahuje jedinou čáru na kmitočtu 0 Hz. Počáteční fáze je nulová, protože stejnosměrná 
složka je kladná. 
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c) Periodický signál, tvořený součtem signálů a) a b). Spektrum vznikne sloučením spekter obou 
signálů. 

d) Harmonický signál typu „kosinus“s nulovou počáteční fází. Amplituda 0,2V, opakovací 
perioda 0,1ms, opakovací frekvence 10kHz. Amplitudové i fázové spektrum je jednočarové 
jako u signálu a). 

e) Signál vznikl sloučením signálů c) a d): má stejnosměrnou složku 1V, harmonickou složku o 
kmitočtu 1kHz a harmonickou složku o kmitočtu 10kHz. Z hlediska spektra je 1. harmonická 
na kmitočtu 1kHz a složka na kmitočtu 10kHz je tedy 10. harmonická. Všechny ostatní 
harmonické jsou nulové. 

f) Harmonický signál typu „sinus“ s počáteční fází -90°, amplituda 1V, opakovací perioda 
0,5ms, opakovací frekvence 2kHz. Spektrum viz signál a), čáry jsou ale na kmitočtu 2kHz. 

g) Totéž co f), ale perioda je 1/3 ms a kmitočet 3kHz. 

h) Součet signálů f) a g). Výsledný signál má opakovací periodu 1ms. Vysvětlení je možné 
hledat ve spektru, které obsahuje pouze 2 nenulové spektrální čáry na kmitočtech 2kHz a 
3kHz. Základní harmonická na kmitočtu 1kHz je nulová. Navzdory tomu její kmitočet určuje 
opakovací kmitočet periodického signálu. 

 

 
& Shrnutí a zobecnění: 
a) Harmonický signál se logicky skládá pouze z jediné harmonické složky (jedna dvojice čar), je tedy 

sám sobě první (a jedinou) harmonickou. 

b) Kmitočet harmonického signálu je zřejmý z polohy spektrálních čar na kmitočtové ose. 
„Pomalejší“, resp. „rychlejší“ signály budou mít spektrální čáry umístěny blíže, resp. dále od 
počátku. 

c) Výška amplitudové spektrální čáry přímo udává velikost amplitudy signálu. 

d) Souřadnice ϕ fázové spektrální čáry přímo udává velikost počáteční fáze signálu. 

e) Spektrální reprezentace signálu je univerzální v tom, že ji lze rozšířit i na neharmonické signály. 
Skládá-li se signál z více harmonických složek, můžeme ze spektra zjistit jejich počet a informace o 
jejich parametrech. 

f) Skládá-li se periodický signál z harmonických složek na kmitočtech F1 a F2, pak opakovací 
kmitočet signálu F musí vyhovovat rovnici 

F1 = k1F, F2 = k2F, k1 a k2 jsou přirozená čísla. 

Opakovací kmitočet se pak určí z dané rovnice pro nejmenší možná čísla k1 a k2, která ještě rovnici 
vyhovují. 
Pokud není možné nalézt číslo F pro žádnou kombinaci přirozených čísel k1 a k2, není výsledný 
signál periodický (je kvaziperiodický). 
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Obr.2.5. Příklady periodických signálů a jejich spekter. 
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Obdélníkový signál 

 

T

t

ti
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ti

20
ti

2
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u t( )
1

 

Obr.2.6. Periodický sled obdélníkových impulsů. 

Spektrum stanovíme ve třech fázích: 
a) Nalezení Fourierových koeficientů. 
b) Výpočet amplitud a fází harmonických složek. 
c) Náčrt spektra. 

 

ad a) Nalezení Fourierových koeficientů 

Signál je sudá funkce času ⇒ bude obsahovat pouze kosinové složky ⇒ Bk = 0 ∀ k, Ak = Ck, kk AC =& . 
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Obecně 
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kde 
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( ) ( )
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 pro 

          pro 
=

≠

=


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
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1 0

  je tzv. vzorkovací funkce. 

 

ad b) Výpočet amplitud a fází harmonických složek 

Stejnosměrná složka  
1
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0 22 T
tUCAU i=== . 

Amplituda k-té harmonické  
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Fáze k-té harmonické  
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ad c) Náčrt spektra - viz obr.2.7. 
 

21,2% z 
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Obr.2.7. Spektrum amplitud a počátečních fází obdélníkového signálu z obr.2.6 pro T1/ti = 5. 

 

& Shrnutí a zobecnění: 
a) Spektrální čáry obdélníkového signálu z obr. 2.6 pro obecný poměr T1/ti získáme takto: 

Amplitudové spektrum 
• Vypočteme 1/ti [Hz] a získáme kmitočet, kdy obálka spektrálních čar typu sinc(x) poprvé 

projde nulou. 
• Vypočteme 2Umax ti /T1 [V] a získáme maximální souřadnici obálky pro kmitočet f = 0. 
• Načrtneme obálku sinc(x)spektrálních složek. Maximum 2. laloku je asi 21% maxima 1.laloku 

(viz obrázek amplitudového spektra). 
• Na kmitočtovou osu vyneseme značky na kmitočtech F1, 2F1, 3F1, .., kde F1 = 1/T1 je kmitočet 

1.harmonické složky. 
• Značky protáhneme až k obálce (výjimka - stejnosměrná složka jde jen do poloviny cesty 

k obálce) a získáme spektrální čáry amplitudového spektra. 

Fázové spektrum 
• Fáze je buď 0 nebo ±π rad (±180°) podle toho, jak se střídají laloky, v nichž se spektrální čáry 

nacházejí. Je-li některá z harmonických nulová, pak nemá smysl hovořit o fázi spektrální složky, 
která neexistuje. Proto ve fázovém spektru použijeme speciální znak, např. x. 
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Uvedený postup náčrtu spektra musí být mírně modifikován, bude-li obdélníkový signál z obr. 2.6 
posunut ze základní polohy v hodnotách nebo v čase. 

b) Je-li poměr opakovací periody a šířky impulsu celé číslo, t.j.  
T
t

n
i

1 = , 

pak ve spektru vymizí každá n-tá harmonická. Toho lze využít k přesnému nastavování šířky 
impulsu pomocí spektrálního analyzátoru. 

 

P2.1 Vypočtěte amplitudy a počáteční fáze prvních 10 harmonických složek signálu na obr.2.8. 

9
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Obr.2.8. Analyzovaný periodický signál. 

þ Řešení: 
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Obr.2.9. Spektrum signálu z obr.2.8. 

 
Jednocestně usměrněný harmonický signál 
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Obr.2.10. Jednocestně usměrněný kosinový signál. 

Stanovení spektra: 

 Bk = 0  (sudý signál); T F= ⇒ =20 50ms Hz,   = 2 .50 rad / sΩ π , 
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Pro k = 1:  
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Počínaje 3. harmonickou složkou jsou všechny liché harmonické složky nulové. 
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Obr.2.11.   Spektrum signálu z obr.2.10. 

 
 
& Shrnutí a zobecnění: 

Jednocestně usměrněný harmonický signál lze poměrně přesně aproximovat stejnosměrnou složkou a 
prvními dvěma harmonickými. Tento signál není zdrojem silných rušivých vyšších harmonických. 
 
 
Oříznutý harmonický signál 
 

Zobecněním jednocestně usměrněného signálu je signál na obr. 2.12. Úroveň ořezání je dána 
tzv. polovičním úhlem otevření Θ. Pro Θ = π/2 radiánů dostáváme jednocestné usměrnění. Tento 
signál se často používá k modelování chování řady zařízení, kde určitý obvodový prvek, např. dioda 
nebo tranzistor, pracují v nelineárním režimu (usměrňovače, rezonanční zesilovače, násobiče kmitočtu 
apod.). Spektrální složení takového signálu bude silně závislé od úhlu otevření. 

V rámci jedné periody lze signál popsat takto: 

)2/,2/( ii ttt −∈ ,  ),( ΘΘ−∈α : 

2/
2/

0
)()cos(

)( max1max

i

im

ttpro
ttproIItI

ti
≥
<−−Ω

=  ,  
Θ≥
Θ<−−

=
α
αα

α
pro
proIII

i m

0
)(cos

)( maxmax , 

kde 11 /2 Tπ=Ω . Z obr. 2.12 dále vyplývá vztah mezi velikostmi Imax a Im: 

 
Θ−

=⇒Θ=−
cos1

cos maxmaxmax
m

m
IIIII   (2.26) 

k Ak [ ]A  Ik [ ]A  ϕk [ ]°  
0 0,6366 0,3183 0 
1 0,5 0,5 0 
2 0,2122 0,2122 0 
3 0 0 x 
4 0,0424 0,0424 180 
5 0 0 x 
6 0,0182 0,0182 0 
7 0 0 x 
8 0,0102 0,0102 180 
9 0 0 x 

10 0,0064 0,0064 0 
M  M  M  M  
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t

i(t)

t /2it /2i

α

Im Imax

ImImax-

T

2π

1

Θ Θ

 

Obr.2.12. Kosinový signál s obecným ořezáním. 

Stanovení spektra: 

 
 Bk = 0  (sudý signál); 

 ( ) ( ) ∫∫
Θ

Θ−

+−=Ω= ααα
π

dkIIIdttkti
T

A m
T

k )cos()cos(1cos2
maxmax

. 

Výpočet integrálu vede na tento výsledek: 

 [ ] [ ]{ })(sinc.cos2)1(sinc)1(sincmax ΘΘ−Θ−+Θ+
Θ

= kkkIAk π
, k = 0, 1, 2,…  (2.27) 

Pro amplitudy harmonických složek tedy platí: 

 max)( II kk Θ= χ ,  (2.28) 

kde )(Θkχ  jsou tzv. Bergovy koeficienty, dané vzorci 

 [ ] [ ]{ })(sinc.cos2)1(sinc)1(sinc)( ΘΘ−Θ−+Θ+
Θ

=Θ kkkk π
χ  pro k>0  (2.29) 

 { }ΘΘ−Θ=Θ cossin1)(0 π
χ .  (2.30) 

Počáteční fáze jednotlivých harmonických jsou buď nulové nebo 180° podle toho, jestli jsou 
příslušné Bergovy koeficienty kladné nebo záporné. 

Někdy je výhodnější počítat spektrum nikoliv pomocí údaje Imax, nýbrž Im. Pak s využitím (2.26) 
můžeme psát: 

 mkk II )(Θ= α ,  (2.31) 

kde )(Θkα  jsou tzv. Schultzovy koeficienty, dané vzorci 

 
Θ−

Θ
=Θ

cos1
)()( k

k
χ

α . (2.32) 

Schultzovy, resp. Bergovy koeficienty je možné získat na základě znalosti polovičního úhlu 
otevření Θ z tzv. Schultzova, resp. Bergova diagramu (viz obr. 2.13 a 2.14). Stanovení spektra 
signálu je pak snadné: zjistíme hodnoty Θ, Im, resp. Imax, z diagramu odečteme příslušné koeficienty a 
jejich vynásobením s Im, resp. Imax (viz (2.28), resp. (2.31)) určíme harmonické složky. 
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Obr.2.13. Schulzův diagram. 
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Obr.2.14. Bergův diagram. 
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2.1.4 Obecné vlastnosti Fourierových koeficientů a spektra periodického 
signálu 

Níže uvedené poučky lze odvodit z definičních integrálů Fourierových koeficientů. 

a)  Linearita (s1(t) a s2(t) musí mít stejnou opakovací periodu):  
 

signál koeficienty &ck   

( )s t1  & ,c k1   
( )s t2  & ,c k2   

( ) ( )a s t a s t1 1 2 2+  a c a ck k1 1 2 2& &, ,+  (2.33) 

Je-li periodický signál tvořen lineární kombinací jiných signálů, pak jeho spektrum je dáno lineární 
kombinací spekter těchto signálů. 

b)  Posun periodického signálu v čase:  
 

signál koeficienty &ck   

( )s t  &ck   
( )s t − τ  &c ek

jk− Ω1τ  (2.34) 

Je-li periodický signál zpožděn o časový úsek τ, pak jeho  

- amplitudové spektrum se tímto zpožděním neovlivní (moduly koeficientů původního a 
posunutého signálu jsou stejné), 

- fázové spektrum se změní tak, že počáteční fáze 1. harmonické se zmenší z původní hodnoty o 
Ω1τ radiánů, počáteční fáze 2. harmonické o 2Ω1τ radiánů, …, počáteční fáze k-té 
harmonické o kΩ1τ radiánů … . 

c)  Posun spektrálních čar:  
 

signál koeficienty &ck   

( )s t  &ck   
( ) tjmets 1Ω , m celé &ck m−  (2.35) 

Násobíme-li periodický signál o kruhovém opakovacím kmitočtu Ω1 danou komplexní exponenciální 
funkcí, posunou se spektrální čáry o m pozic doleva po kmitočtové ose. 

d)  Přesměrování toku času:  
 

signál koeficienty &ck   

( )s t  &ck   
( )ts −  ∗

− = kk cc &&  (2.36) 

Pokud bychom periodický signál vnímali v obráceném toku času (např. přehrávání zvukové nahrávky 
„pozpátku“), pak amplitudové spektrum zůstane nezměněno, ale počáteční fáze všech harmonických 
změní znaménko. 
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e)  Derivace periodického signálu:  
 

signál koeficienty &ck   

( )s t  &ck   

( )d
dt

s t  kcjk &1Ω  (2.37) 

Prochází-li periodický signál derivačním článkem, pak se jeho spektrum změní takto: 

- stejnosměrná složka se vynuluje (k = 0), amplituda 1. harmonické se zvětší Ω1 krát, amplituda 
2. harmonické 2Ω1 krát, .. amplituda k-té harmonické kΩ1 krát, … 

- počáteční fáze všech harmonických se zvětší o π/2 radiánů. 

f)  Integrace periodického signálu, který má nulovou stejnosměrnou složku:  
 

signál koeficienty &ck   

( )s t  &ck   
( )∫ dtts  

1Ωjk
ck&  (2.38) 

Prochází-li periodický signál integračním článkem, pak jeho integrál je opět periodický signál, pokud 
vstupní signál neobsahuje stejnosměrnou složku (pokud ano, reakce integrátoru na tuto složku roste 
lineárně nade všechny meze a výstup již není periodický). Integrování změní spektrum takto: 

- stejnosměrná složka je dána neurčitým výrazem 0/0 a bude záviset na počátečních 
podmínkách integrátoru, amplituda 1. harmonické se zmenší Ω1 krát, amplituda 2. 
harmonické 2Ω1 krát, .. amplituda k-té harmonické kΩ1 krát, … 

- počáteční fáze všech harmonických se zmenší o π/2 radiánů. 

g)  Součin dvou signálů se stejnou opakovací periodou:  
 

signál koeficienty &ck   

( )s t1  & ,c k1   
( )s t2  & ,c k2   

( ) ( )s t s t1 2  & &, ,c cn k n
n

1 2 −
=−∞

+∞

∑  (2.39) 

Je-li periodický signál tvořen součinem dvou jiných signálů s toutéž opakovací periodou, pak výsledné 
spektrum vznikne konvolučním součinem spekter těchto signálů. 

h)  Konvoluční součin dvou periodických signálů v rámci 1 periody:  
 

signál koeficienty &ck   

( )s t1  & ,c k1   
( )s t2  & ,c k2   

( ) ( )s s t d
T

1 2

1

ξ ξ ξ−∫  & &, ,c ck k1 2  (2.40) 
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Je-li periodický signál tvořen konvolučním součinem dvou jiných signálů s toutéž opakovací 
periodou, pak výsledné spektrum vznikne vynásobením odpovídajících si spektrálních čar těchto 
signálů. 
 
2.1.5 Parsevalův teorém pro periodické signály 
 

Odvození teorému bude uvedeno v obecném tvaru v kapitole Zobecněná Fourierova řada 
periodického signálu. 

Kvadrát efektivní hodnoty (= normovaný výkon) periodického signálu se rovná součtu kvadrátů 
efektivních hodnot jeho harmonických složek: 

 
2

1

2
0

22

1 2
)(1

1

∑∫
∞

=








+==
k

k
ef

T

SSSdtts
T

. (2.41) 

Zápis pomocí Fourierových koeficientů: 

 ( )S C C c A A Bef
k

k
k

k
k k

k

2 0
2 2

1

2 0
2

2 2

14 2 4
1
2

= + = = + +
=

∞

=−∞

∞

=

∞

∑ ∑ ∑& .  (2.42) 

Parsevalův teorém tvrdí, že skládá-li se periodický signál z harmonických složek, pak efektivní 
hodnotu celého signálu získáme „sečtením“ efektivních hodnot dílčích harmonických ve smyslu 
zobecněné Pythagorovy věty, tj. jako druhou odmocninu ze součtu kvadrátů efektivních hodnot. 

P2.2 Vypočtěte efektivní hodnotu signálu z obr. 2.8, soustředěnou v kmitočtovém pásmu 
a)  0 ÷ 1kHz, b)  1 ÷ 2kHz, c)  0 ÷ 2kHz, d)  0 ÷ ∞Hz.   

þ Řešení: 
Použijeme Parsevalův teorém. 

a)  U U U U U U
ef , & ,0 1 0

2 1
2

2
2

3
2

4
2

2
0 4249÷ = +

+ + +
= V (95,1% z Uef) 

b)  ) z 2,18%( z 2,28%V09702,0
2 10,

2
8

2
7

2
6

2
5

21, efefef UUUUUUU ÷÷ ≈=
+++

= & , 

c)  V43586,0
2

2
21,

2
10,

9

1

2
2
020, =+=+= ÷÷÷ ∑ &efef

k
ef UUUUU (97,5% z Uef), 

d)  ( )U
T

u t dt dtef
T

= = = =∫ ∫−
−

−

−
−

−

1 1
510

1 10
510

0 44722
3

2

0 10

0 10 3

3
3

3

. .
& ,

,5.

,5.

V,  

Jinak ∑
∞

=

+=
1

2
2
0 2k

k
ef

U
UU , neznáme další harmonické, proto  

n 
 
 
& Shrnutí a zobecnění: 

V 1. laloku spektra, tj. do kmitočtu 1/ti, je soustředěno asi 95% výkonu celého signálu. Chceme-li 
sdělovací soustavou přenést obdélníkový signál bez podstatného zkreslení, musí být soustava 
schopna přenést na svůj výstup co nejvíce spektrálních složek bez útlumu, alespoň do kmitočtu 1/ti. 
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2.1.6 Souvislosti mezi časovým průběhem periodického signálu a jeho 
spektrem 

 

Tyto důležité souvislosti budou ukázány na několika příkladech. Jedná se o konkretizaci a další 
rozšíření obecných vlastností Fourierových koeficientů a spektra periodických signálů z předchozí 
kapitoly. 

P2.3  Co se stane se spektrem signálu z obr.2.15 vlevo, zúží-li se dvakrát šířka impulsu? 

þ Řešení: 
Viz obr.2.15 vpravo. 
 

t [ ]ms

,0 2

0 21 53

0,5ms

1V

4 6

u t( )[ ]V

0,4 1

1

0

k[ ]radϕ

Uk [ ]V

f [ ]kHz

f [ ]kHz

0,1

0

= 0,2

2

2

π

Uk [ ]V

f [ ]kHz

u t( )[ ]V

U t
T

m i2

0

k[ ]radϕ

t [ ]ms1 2 3

0,4

1V

1ms

U t
T

m i2

4 5 6

1

1

0 ,0 2

,0 2

f [ ]kHz,0 20

= 0,4

2

20,4 0,4

π

,0 2

1

1

 

Obr.2.15. Vliv zúžení impulsů na spektrum. 

n 
& Shrnutí a zobecnění: 
a) Při zužování impulsů roste šířka 1.laloku 1/ti, spektrální čáry zanikají pozvolněji. Jsou menší než u 

širších impulsů, protože v užších impulsech je soustředěn menší výkon. 

b) Obvod přenášející úzké impulsy musí být schopen přenášet bez útlumu vyšší spektrální složky než 
při zpracování širších impulsů. 

c) Obecná zákonitost: krátké impulsy ↔ široké spektrum. 

Poznámka: na str. 28 provedeme upřesnění posledního tvrzení. 

 

P2.4 Co se stane se spektrem signálu z obr.2.16 vlevo, dojde-li k zvětšení jeho opakovací 
frekvence z 200Hz na 500Hz? 

þ Řešení: 
Viz obr.2.16 vpravo. 
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Obr.2.16. Vliv opakovací frekvence na spektrum. 
n 

& Shrnutí a zobecnění: 
Při vzrůstu opakovací frekvence impulsů dojde k zředění spektrálních čar a k jejich 
proporcionálnímu zvětšení, protože vzroste i energie signálu (impulsy se častěji opakují). 

P2.5 Co se stane se spektrem signálu z obr.2.17 vlevo, dojde-li k jeho stejnosměrnému 
posunutí podle obr.2.17 vpravo? 

 

ππ
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Obr.2.17. Vliv stejnosměrného posunutí signálu na jeho spektrum. 
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þ Řešení: 
Viz obr.2.17. Tvar signálu se nezměnil, pouze jeho stejnosměrná složka: 

U T U0
3 3 3

0

3

30 5110 0 5410 1510 1510
510

0 3. , . . , . . , . , .
.

,= − = − ⇒ = − = −− − −
−

−
V.  

n 
& Shrnutí a zobecnění: 

Změnou stejnosměrného posuvu se nemění spektrální čáry s výjimkou čáry na kmitočtu 0Hz. 
Posuvem je ovlivněna pouze stejnosměrná složka, vyšší harmonické počínaje první udávají tvar 
signálu. 

P2.6 Porovnejte spektra signálu před a po jeho průchodu invertujícím zesilovačem o přenosu 
U
U

2

1
5= − . 

þ Řešení: 
Všechny harmonické složky včetně stejnosměrné složky budou násobeny číslem -5.  
Vliv na amplitudové spektrum: všechny amplitudové čáry se 5x prodlouží. 
Vliv na fázové spektrum: fáze všech složek se změní o 180°. 

n 

P2.7 Signál je nejprve zaznamenán na médium a pak přehrán dvojnásobnou rychlostí. Jak se 
změní spektrum? 

þ Řešení: 

( ) ( )s t s mt m T T
m T T

m m

m

m m m
m

= = = = =

<

; ; .> 1 komprimace v čase (zrychlení);   

expanze v čase (zpomalení)

L

K

Ω Ω2 2

1

π π
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t

kFTm

s t( )

s tm ( )

S kF&( )

0
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kF0

0 0
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Obr.2.18. Vliv komprimace signálu v čase na jeho spektrum. 
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& Shrnutí a zobecnění: 
Při časové kompresi (expanzi) signálu s faktorem m se kmitočet každé harmonické ve spektru m 
krát zvětšuje (zmenšuje). Dochází tedy k přemísťování harmonických po kmitočtové ose beze změny 
jejich velikostí a fázových posuvů. 

P2.8 Dokažte, že oba signály uvedené na obr. 2.19 mají naprosto stejné spektrum amplitud 
počínaje 1.harmonickou složkou. 

t

u t1( )

t

u t2( )

T

Um

t i2

0T0

Um

t i1 t i1  

Obr.2.19. Analyzované signály. 

þ Řešení: 
Součet obou signálů dává stejnosměrný signál Um: 

( ) ( )
( ) ( )

u t u t U

u t u t U
m

m

1 2

2 1

+ = ⇒

= − + .
 

Signál u2(t) je tedy invertovaný signál u1(t) se změněnou stejnosměrnou složkou. Prostá inverze 
signálu nemá vliv na amplitudové spektrum. Proto rozdíl v amplitudových spektrech obou signálů 
bude jen v stejnosměrné složce. 

n 
 
& Shrnutí a zobecnění: 

Průběh amplitudových spekter je u obou obdélníkových signálů stejný pro k > 0, kde k je pořadí 
harmonické. Pro šířku spektra je tedy rozhodující nejen šířka impulsu, ale stejně tak i šířka mezery 
mezi impulsy (upřesnění tvrzení ze str. 25). 

P2.9 Jak se změní spektrum periodického signálu po průchodu ideálním zpožďovacím 
vedením, jestliže pro vstupní a výstupní signál vedení platí vztah 

( ) ( )s t s t2 1= − τ , 
τ >0  je zpoždění. 

þ Řešení: 
Zpozdíme-li periodický signál o čas τ, posuneme o čas τ všechny jeho harmonické složky, z nichž je 
složen, beze změny amplitud. Amplitudové spektrum se tedy nezmění.  
Zpoždění 1.harmonické složky o čas τ  znamená její fázový posuv o -Ωτ. 
Zpoždění k-té harmonické složky o čas τ  znamená její fázový posuv o -k.Ωτ. 

Matematické odvození: 
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2.1.7 Vztah Fourierovy řady periodického signálu a DFT 
 

Pomocí algoritmu DFT (Diskrétní Fourierovy Transformace) lze s danou přesností vypočítat 
spektrální složky periodického signálu z vzorků tohoto signálu. Podrobnosti budou uvedeny 
v učebním textu věnovanému číslicovému zpracování signálu. 

DFT - předpis pro výpočet N spektrálních čar signálu z N vzorků signálu.  

Děje se nepřímo ve dvou krocích: 

1) Výpočet komplexních koeficientů DFT: 

 

( )

& , , , ,.., ;

...

X s e n N

s s k T N k

n k
jkn N

k

N

k

= = −

=

−

=

−

∑ 2

0

1

1

0 1 2 1π

- tý vzorek signálu v periodě 

 (2.43) 

2) Výpočet harmonických složek z koeficientů DFT: 

stejnosměrná složka: S X N X N0 0 0= =&  
n-tá harmonická:  amplituda S X Nn n= 2 &  (2.44) 

 fáze ( )ϕn nX= arg &  

Koeficienty DFT vykazují komplexně sdruženou symetrii a periodicitu podle vzorce  

 & & *X Xn N n= − , (2.45) 
takže hodláme-li vypočíst m spektrálních čar, musíme zvolit počet bodů N ≥ 2m. 

Poznámka: Výpočet spektrálních čar periodického signálu pomocí DFT není přesný, pokud signál 
nesplňuje vzorkovací podmínku (viz učební texty pro číslicové zpracování signálů). Pak 
chyba výpočtu obecně klesá při růstu počtu bodů N. 

Poznámka: Algoritmus DFT je výpočetně náročný. V praxi se často používá rychlý algoritmus, 
nazývaný FFT (Fast Fourier Transform). Tento algoritmus však vyžaduje, aby počet bodů 
N byl roven celočíselné mocnině čísla 2, tj. N = 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, .. 

P2.10 Signál u(t) = 5cos(Ωt) + 2sin(2Ωt), Ω = 2π/T = 2πF, T = 1ms, F = 1kHz, je periodický 
s opakovací periodou 1ms. Vypočtěte jeho harmonické složky metodou DFT (10-ti 
bodové). 

þ Řešení: 
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Opakovací periodu rozdělíme na 10 dílů po 0,1 ms a vypočteme vzorky signálu u(0), u(T/10), 
u(2T/10), ... , u(9T/10), neboli použijeme vzorce: 

u u k T k kk = 





= 





+ 



10

5
5

2 2
5

cos sinπ π pro k = 0 až 9. 

Z těchto 10 vzorků pak vypočteme 10 koeficientů DFT a z nich amplitudy a počáteční fáze 
harmonických. 

: Řešení můžeme provést například pomocí MATLABu: 

k=0:9;  % definice čísel vzorků 

u=5*cos(k*pi/5)+2*sin(k*2*pi/5) % výpočet 10 vzorků signálu v 1 periodě 

u = 

  Columns 1 through 7  

    5.0000    5.9472    2.7207   -2.7207   -5.9472   -5.0000   -2.1430 

  Columns 8 through 10  

   -0.3695    0.3695    2.1430 

x=fft(u)  % výpočet 10 koeficientů DFT 

x = 

  Columns 1 through 4  

   0.0000            25.0000 - 0.0000i   0.0000 -10.0000i   0.0000 - 0.0000i 

  Columns 5 through 8  

   0.0000 + 0.0000i   0.0000 - 0.0000i   0.0000 - 0.0000i   0.0000 - 0.0000i 

  Columns 9 through 10  

   0.0000 +10.0000i  25.0000 + 0.0000i 

Program provedl výpočet komplexních koeficientů DFT podle (2.43) s následujícími výsledky: 
& ,
& ,
& ,
& ,
& ,
& ,
& ,
& ,
& ,
& .

X
X
X j
X
X
X
X
X
X j
X

0

1

2

3

4

5

6

7

8

9

0
25

10
0
0
0
0
0
10
25

=

=

= −

=

=

=

=

=

=

=

 

Harmonické složky určíme podle (2.44): 

Stejnosměrná složka:  U X
N0

0 0= =
&

V . 

1.harmonická složka: U
N

X1 1
2 0 2 25 5

0

= = =

= °

& , .

.

V,

1ϕ
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2.harmonická složka: U
N

X

x

2 2

2

2 0 2 10 2

90

= = =

= = − °

& , .

arg & .

V,

2ϕ
 

Další harmonické jsou nulové. Nenulové koeficienty č. 8 a 9 neznamenají nenulovou 8. a 
9. harmonickou, jsou nenulové díky periodicitě koeficientů DFT. 

Výsledek analýzy plně odpovídá tomu, že signál má pouze 1. a 2. harmonickou o amplitudách 
5V a 2V a počátečních fázích 0 a -90°. 

n 
& Shrnutí a zobecnění: 

• Spektrální složky vyšly přesně (ale díky tomu, že je splněna podmínka vzorkovacího teorému). 

• Koeficienty DFT vykazují symetrii: 
( )

& & & *x u e u e e u e x xN n k
k

N jk N n
N

k
k

N
jk jkn

N
k

k

N jkn
N

n n−
=

− − −

=

−
−

=

−

−= = = = =∑ ∑ ∑
0

1 2

0

1
2

2

0

1 2π
π

π π

, 

takže pro výpočet spektrálních složek jsou upotřebitelné jen do N/2. 

P2.11 Určete pomocí DFT spektrální složky obdélníkového signálu na obr.2.20. Srovnejte 
výsledky s tabulkou u obr. 2.9, kde jsou výsledky řešení klasickou metodou.  

0,5ms-0,5ms
5 ms
2,5ms 4,5ms

1V

t

u t( )

 
Obr.2.20.  Periodický signál a volba 10 bodů pro výpočet 10-ti bodové DFT. 

þ Řešení: 

: Příklad použití MATLABu: 

s=[1 1 0 0 0 0 0 0 0 1]; 
x=fft(s) 
x = 
  Columns 1 through 4  
   3.0000             2.6180 + 0.0000i   1.6180 + 0.0000i   0.3820 + 0.0000i 
  Columns 5 through 8  
  -0.6180 - 0.0000i  -1.0000 - 0.0000i  -0.6180 - 0.0000i   0.3820 - 0.0000i 
  Columns 9 through 10  
   1.6180 - 0.0000i   2.6180 - 0.0000i 
 

Výsledky jsou zapsány do tabulky na další straně (jsou označeny vlnovkou) spolu se správnými 
hodnotami. 

Vidíme značné rozdíly mezi správnými hodnotami a údaji vypočtenými pomocí DFT. Signál má 
totiž široké spektrum a počet bodů, který jsme zvolili na opakovací periodu, je příliš malý. Při tak 
malém počtu bodů hraje mj. důležitou roli volba velikosti tzv. přechodového vzorku v místě 
nespojitosti signálu, v našem případě jsou to vzorky č. 1 a 9. Nejpřesnějšího výsledku v rámci daného 
počtu bodů dosáhneme volbou přechodových vzorků tak, jak je naznačeno na obrázku 2.21. 
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k  &xk   [ ]~U k V  [ ]~ϕ k rad   [ ]U k V  [ ]ϕ k rad  

0  3  0,3  0  0,2  0 
1  2,618  0,5236  0  0,3742  0 
2  1,618  0,2236  0  0,3027  0 
3  0,382  0,0764  0  0,2018  0 
4  -0,618  0,01236  π  0,0935  0 
5  -1  0,2  π  0  x 
6  -0,618      
7  0,382      
8  1,618      
9  2,618      

 

0,5ms-0,5ms
5 ms
2,5ms 4,5ms

0,5V 0,5V

t

u t( )

 
Obr.2.21.  Optimální volba přechodových vzorků. 

Provedeme-li opět výpočet koeficientů DFT, získáme výsledky z tabulky: 
 

k  &xk   [ ]~U k V  [ ]~ϕ k rad   [ ]U k V  [ ]ϕ k rad  

0  2  0,2  0  0,2  0 
1  1,809  0,3618  0  0,3742  0 
2  1,309  0,2618  0  0,3027  0 
3  0,691  0,1382  0  0,2018  0 
4  0,191  0,0382  0  0,0935  0 
5  0  0  x  0  x 

 

Chyba zejména u vyšších harmonických je však stále velká. Další obrázek ukazuje volbu bodů 
pro 32-bodovou DFT s výsledky v tabulce. 

0,5ms-0,5ms 5ms2,5ms 4,5ms

1V

0 t

u t( )

 
Obr.2.22.  Volba bodů pro 32-bodovou DFT. 

 

k  &xk   [ ]~U k V  [ ]~ϕ k rad   [ ]U k V  [ ]ϕ k rad  

0  7  0,21875  0  0,2  0 
1  6,4723  0,4045  0  0,3742  0 
2  5,0273  0,3142  0  0,3027  0 
3  3,0381  0,18988  0  0,2018  0 
4  1  0,0625  0  0,0935  0 
5  -0,6158  0,03849  π  0  x 
6  -1,4966  0,09354  π  0,06237  π 
7  -1,5687  0,09804  π  0,08649  π 
8  -1  0,0625  π  0,07568  π 
9  -0,1268  0,007925  π  0,04158  π 
10  0,6682  0,04176  0  0  x 
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Výsledky DFT pro N = 50 s optimální volbou přechodových vzorků: 
 

k  &xk   [ ]~U k V  [ ]~ϕ k rad   [ ]U k V  [ ]ϕ k rad  % chyba amplitudy 
0  10  0,2  0  0,2  0  0 
1  9,3426  0,3737  0  0,3742  0  -0,13 
2  7,5284  0,3011  0  0,3027  0  -0,53 
3  4,9856  0,19942  0  0,2018  0  -1,18 
4  2,2893  0,09157  0  0,0935  0  -2,06 
5  0  0  x  0  x  0 
6  -1,4846  0,05938  π  0,06237  π  -4,79 
7  -2,0211  0,08084  π  0,08649  π  -6,53 
8  -1,73  0,0692  π  0,07568  π  -8,56 
9  -0,9262  0,03705  π  0,04158  π  -10,89 
10  0  0  x  0  x  0 

n 
 
& Shrnutí a zobecnění: 
• Při spektrální analýze periodických signálů, které vykazují prudké změny nebo dokonce body 

nespojitosti, má velký význam volba tzv. přechodových vzorků. Tyto vzorky by se měly volit jako 
průměrné hodnoty limit zleva a zprava v bodech nespojitosti. 

• Chybu, kterou jsou zatíženy vypočtené spektrální složky, lze snižovat zvětšováním počtu bodů DFT. 

• Chybou jsou více zatíženy vyšší harmonické než nižší. 
V praxi se volí N jako celočíselná mocnina čísla 2 pro urychlení výpočtů (algoritmus FFT). Běžně 
používané hodnoty N jsou 256, 512 a 1024. 

• K velkým výpočetním chybám může rovněž dojít, není-li perioda signálu rozdělena výpočetními 
body na celistvý počet dílů. 
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2.2 APERIODICKÉ SIGNÁLY 
 

Z aperiodických signálů se budeme zabývat především impulsy (jednorázovými i 
nezanikajícími). 

 

2.2.1 Základní aperiodické signály - jednotkový skok a jednotkový impuls 
 

Slouží například k testování systémů a k modelování takových jevů, jako je připojení obvodu ke 
zdroji, injektování elektrického náboje do kapacitoru apod. Kombinací těchto jednoduchých signálů 
lze modelovat i signály složitějších tvarů. 

Jednotkový (Heavisideův) skok 

Jedna z používaných matematických definic: 

 ( )








>
=
<

=
01
05,0
00

1
t
t
t

t  (2.46) 

Jednotkový (Diracův) impuls 

 ( )δ t
t
t

=
≠

∞ =




0 0
0

  a navíc mohutnost impulsu = 1 neboli  ( )δ t dt =
−∞

+∞

∫ 1 . (2.47) 

0,5

1

0 t

1(t)

a)

1
δ (t)

0 t

b)  

Obr.2.23. a) Jednotkový skok, b) jednotkový impuls. 

 
Z hlediska matematického Diracův impuls není klasickou funkcí, protože není jednoznačně 

definován výčtem hodnot (jednoznačně je dodefinován mohutností, viz rovnice 2.52). Je zobecněnou 
funkcí neboli distribucí a pro práci s ním je třeba dodržovat některá pravidla, např.: 

 ( ) ( ) ( ) ( ) ( ) ( )
( )





=
=
≠∞±

=∞

≠
== 0

00 pro0
00 pro

.0

00
0 t

f
f

f

t
fttft δδ  (2.48) 

a navíc mohutnost výsledného impulsu = f(0) neboli  

 ( ) ( ) ( )δ t f t dt f=
−∞

+∞

∫ 0  (2.49) 

(platí za předpokladu spojitosti signálu f(t) v bodě t = 0). 

Zobecněním (2.49) je pravidlo filtračního účinku Diracova impulsu 

 ( ) ( ) ( ) ( ) ( )δ τ δ τ τt f t dt t f t dt f− = − =
−∞

+∞

−∞

+∞

∫∫  (2.50) 

(platí za předpokladu spojitosti signálu f(t) v bodě t = τ). 
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Vztahy mezi jednotkovým skokem a jednotkovým impulsem: 

 ( ) ( ) ( ) ( )∫
∞−

==
t

dtttt
dt
dt δδ 1,1 . (2.51) 

Derivaci a integrál je třeba chápat v zobecněném distribučním smyslu, nikoliv v klasickém 
významu. 
 

2.2.2 Globální charakteristiky impulsů - mohutnost, energie, střední výkon 

Mohutnost impulsu = plocha ohraničená impulsem a osou času; 
[jednotka mohutnosti] = [jednotka signálu] x [sekunda]: 

 ( )M s t dt=
−∞

+∞

∫ . (2.52) 

Technicky realizovatelné jednorázové impulsy mají vesměs konečnou mohutnost. 

Energie impulsu s(t) (normovaná – [jednotka energie] = [jednotka signálu]2 x [sekunda]): 

 ( )W s t dt=
−∞

+∞

∫ 2 . (2.53) 

Vzájemná energie dvou impulsů s1(t) a s2(t) 

 ( ) ( )W s t s t dt12 1 2=
−∞

+∞

∫ . (2.54) 

P2.12 Určete mohutnost a energii impulsu 

 ( ) ( )i t I e t I
t

= = =
−

max max, ,τ τ1 1 1mA ms . 

t

Imax

i t( )

τ0  

Obr.2.24. Analyzovaný impuls. 

 
þ Řešení: 

Mohutnost impulsu 

( )M i t dt I e dt I
t

= = = = =
−∞

+∞ −∞

∫ ∫ max max
τ τ

0

1 1µ µAs C (mikrocoulomb) . 
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Normovaná energie 

( ) ( )W i t dt I e dt I
t

= = = > = =
−∞

+∞ −∞
−∫ ∫2 2 2

0

2 10 20
2

510max max .τ τ τza předpokladu A s.  

n 

2.2.3 Spektrální funkce a Fourierova transformace 

(spektrální hustota, Fourierova transformace F) signálu;  
[jednotka spektrální funkce] = [jednotka signálu] x [sekunda] = [jednotka signálu] / [Hz] 

 ( ) ( ){ } ( )&S s t s t e dtj tω ω= = −

−∞

+∞

∫F . (2.55) 

Časový průběh signálu zjistíme z jeho spektrální funkce zpětnou Fourierovou transformací  
F-1: 

 ( ) ( )s t S e dj t= +

−∞

+∞

∫
1

2π
ω ωω& . (2.56) 

Ne všechny signály mají svou spektrální funkci. 

Podmínky kladené na signál s(t), zaručující existenci spektrální funkce: 

1.  Přísné matematické podmínky: 

Signál musí být absolutně integrovatelný, t.j. 

 ( )s t dt
−∞

+∞

∫ < ∞ . (2.57) 

Splňuje-li navíc Dirichletovy podmínky (jsou splněny pro všechny technické signály), t.j. má-li na 
každém konečném časovém intervalu konečný počet maxim a minim a nespojitostí 1. druhu, pak 
po aplikaci přímé a zpětné Fourierovy transformace obdržíme původní signál. Vykazuje-li signál 
v určitém bodu nespojitost 1. druhu, pak po zpětné Fourierově transformaci bude mít v bodě 
nespojitosti funkční hodnotu rovnou aritmetickému průměru limity zleva a zprava. 

2.  Volnější technické podmínky: 

(jsou-li splněny, jsme schopni definovat i spektrální funkci signálů, které nejsou absolutně 
integrovatelné) 

Signál musí: buď splňovat přísné matematické podmínky,  

nebo musí být rozložitelný na signál sM(t) s nulovou mohutností a signál sP(t), 
který je buď periodický nebo konstantní: 

 ( ) ( ) ( )s t s t s tM P= + .  (2.58) 

Pak se spektrální funkce takového signálu s(t) určí z vzorce 

 ( ) ( ){ } ( ){ } ( )& &S s t s t c kM k
k

ω π δ ω= = + −
=−∞

+∞

∑F F 2 1Ω . (2.59) 

Zde &ck  jsou koeficienty Fourierovy řady periodického signálu sP(t) a Ω1 je jeho opakovací 
kmitočet. Signál sM(t) sice není absolutně integrovatelný, jeho Fourierovu transformaci však 
dovedeme určit speciálním postupem (viz dále). 
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Spektrem aperiodického signálu se rozumí závislosti modulu (amplitudové spektrum) a 
argumentu (fázové spektrum) spektrální funkce na kmitočtu. 

 
Fyzikální vysvětlení spektrální funkce impulsu a smyslu jejího používání 
 

Uvažujme impuls s(t), který se periodicky opakuje s časovou periodou T1 a tvoří tak periodický 
signál sp(t) na obr. 2.25. Periodickému signálu přísluší jeho komplexní koeficienty Fourierovy řady 

 ∫∫ Ω−Ω− ==
1

11 )(1)(1

11 T

tjk

T

tjk
pk dtets

T
dtets

T
c& , k = …-2, -1, 0, 1, 2, …,  (2.60) 

z nichž lze snadno určit jeho amplitudové a fázové spektrum. 
Naopak, známe-li tyto koeficienty, lze z nich zpětně rekonstruovat původní periodický signál 

z Fourierovy řady: 

 ∑
∞

−∞=

Ω=
k

tjk
kp ects 1)( & .  (2.61) 

Nyní zvětšujme opakovací periodu signálu směrem k nekonečnu. V okolí počátku časové osy 
„zůstává“ původní impuls s(t), zatímco ostatní impulsy se od něj vzdalují. Na jednorázový impuls s(t) 
tak lze pohlížet jako na speciální případ periodického signálu sp(t) pro T1→∞. Spektrum impulsu tak 
lze odvodit z čarového spektra periodického signálu, popsaného koeficienty (2.60), pro T1→∞. 

Z (2.60) vyplývá pro T1→∞ následující: 

1. Ω1 = 2π/T1 → 0, takže vzdálenost sousedních spektrálních čar na kmitočtové ose klesá limitně 
k nule. Hustota spektrálních čar tím roste a čarové spektrum periodického signálu se tak mění 
v spojité spektrum jednorázového impulsu. 

2. Všechny spektrální koeficienty (2.60) se limitně blíží k nule, takže je nelze přímo využít 
k spektrálnímu popisu jednorázového impulsu.  

 
Přestože se koeficienty (2.60) blíží k nule, zachovány jsou jejich poměrné velikosti, které jsou 

dány integrálem na pravé straně (2.60). Jinými slovy, spektrální vlastnosti impulsu lze popsat 
součinem 1Tck& , který pro jednorázový impuls nekonverguje k nule: 

 ∫∫
∞

∞−

−Ω−

∞→∞→
=== )()()(lim)(lim

1

1

11
1 ωω SdtetsdtetsTc tj

T

tjk

TkT
&& .  (2.62) 

Dostáváme spektrální funkci (2.55) jednorázového impulsu. Při odvození se využilo představy, 
že když se opakovací perioda signálu blíží k nekonečnu, kmitočet první harmonické se blíží k nule, 
dochází k zvětšování hustoty spektrálních čar na kmitočtové ose, a kmitočet k-té harmonické k Ω1 
přechází v spojitý kmitočet ω. 

Obdobně komplexní Fourierova řada (2.61) pro periodický signál přejde pro T1→∞ ve vzorec 
pro výpočet časového průběhu jednorázového impulsu z jeho spektrální funkce: 

.)(
2
1

lim
2
12lim

2
1lim)(lim)( 11

1
1

1

1

1

1

1

11

∫

∑∑∑
∞

∞−

∞

−∞=

Ω

∞→

∞

−∞=

Ω

∞→

∞

−∞=

Ω

∞→∞→

=

=Ω====

ωω
π

π
π

π

ω deS

eTc
T

eTcectsts

tj

k

tjk
kTk

tjk
kTk

tjk
kTpT

&

&&&

 (2.63) 

Dostáváme vzorec (2.56) pro zpětnou Fourierovu transformaci. Při odvození bylo využito 
vzorce (2.62) a představy, že při růstu opakovací periody k nekonečnu se kmitočet Ω1 limitně 
zmenšuje k diferenciálu kmitočtu a suma v integrál. 
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Obr.2.25. K vysvětlení spektrální funkce impulsu. 
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P2.13 Vypočítejte spektrální hustotu signálu z obr. 2.30 a nakreslete jeho modulové a fázové 
spektrum. 

þ Řešení: 

( ) ( ){ } ( ) ( )

( )
( ) ( )

( )

( ) ( ) [ ]°−=−=













+

=
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==⇒
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=
+

=

=====

−
−

+∞
−−+∞

∞−

− ∫∫

 nebo rad
1000

,
Hz
A

1000
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0
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ω
ωτωϕ

ωωτ

τ
ωω

ωτ
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τ

τω

ωτ

ωτω
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IIIeI
j

I

dteeIdtetitiI
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tj
t
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(viz obr.2.26). 
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Obr.2.26. Spektrální funkce signálu z obr.2.24. 

n 

P2.14 Určete spektrální funkce obdélníkových signálů na obr.2.27 pro Umax = 5V a ti = 2ms. 

 
þ Řešení: 

a) ( )& ,max maxU U e dt Uj t

t

t

i

i

ω ω ωω= = 





= 











−

−

+

∫
2

2

0 02sinc t
2

sinc
1000

V
Hz

i  (viz obr.2.28a), 

b) ( )& ,max maxU U e dt U e ej t
t

j t ji i

ω ω ωω ω ω

= = 





= 











− − −

∫
0

2 10000 02sinc t
2

sinc
1000

V
Hz

i  (viz obr.2.28b). 
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Obr.2.27. Analyzované signály. 
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Obr.2.28. Spektrální funkce signálů z obr.2.27. 

n 

P2.15 Určete spektrální funkci Diracova impulsu. 

þ Řešení: 
Filtrační účinek Diracova impulsu (vzorec (2.50)) 

 ( ) ( )&S t e dtj tω δ ω= =−

−∞

+∞

∫ 1. 

n 

& Poznatky z příkladu: 
a) Diracův impuls má rovnoměrnou spektrální hustotu na všech kmitočtech. Je to nekonečně úzký 

impuls, má tedy nekonečně široké spektrum. 

b) Platí inverzní Fourierova transformace (2.56): 

 ( )δ
π

ωωt e dj t=
−∞

+∞

∫
1

2
1. . 
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Tento integrál neexistuje v klasickém matematickém smyslu v důsledku nekonvergence integrálu, 
existuje však ve smyslu distribučním. Vzhledem k sudosti integrandu a možnosti záměny 
proměnných ω a t platí rovněž vzorec, který použijeme v dalším příkladu: 

 ( )δ ω
π

ω= ±

−∞

+∞

∫
1

2
e dtj t . (2.64) 

P2.16 Určete spektrální funkci konstantního signálu ( )u t U= . 

þ Řešení: 
Signál není absolutně integrovatelný, neboť nesplňuje podmínku (2.57). Nemá tedy spektrální 

funkci v klasickém smyslu, ve smyslu distribučním však ano: 

 ( ) ( ) ( ).2(2.82) rovnice viz ωδπω ωω UdteUdtUeU tjtj ==== ∫∫
+∞

∞−

−
+∞

∞−

−&  

0

)U(ω

ω

( )ϕ ω

Uπ2

ω0  

Obr.2.29. Spektrální funkce konstantního signálu. 

n 

 

& Poznatky z příkladu: 
Snaha o aplikaci aparátu spektrální analýzy impulsů na signál neohraničený vede na výskyt 
Diracova impulsu na kmitočtu 0Hz. Srovnejte se spektrem konstantního signálu jakožto speciálního 
případu periodického signálu: zde je jediná spektrální čára na kmitočtu 0Hz.  

P2.17 Určete spektrální funkci harmonického signálu 

( ) ( ) ϕϕ jtjtj eUcecectUtu
2

,cos =+=+Ω= Ω−∗Ω &&& . 

þ Řešení: 
Signál není absolutně integrovatelný, neboť nesplňuje podmínku (2.57) - jeho mohutnost není 

v důsledku periodicity signálu definována. Nemá tedy spektrální funkci v klasickém smyslu, ve 
smyslu distribučním však ano: 

( ) ( ) ( )

( ) ( )[ ] ( ) ( ).2

(2.82) rovnice viz

Ω++Ω−=Ω++Ω−=

==+==

−+∗

+∞

∞−

−Ω−∗Ω
+∞
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− ∫∫
ωδπωδπωδωδπ

ω

ϕϕ

ωω
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dteececdtUeU
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&&&
 



_____Elektronické obvody I___________________________________________________________________ 

42 

)U(ω

ω

( )ϕ ω

ω0

0

UπUπ

Ω

− Ω

− Ω

Ω

ϕ

−ϕ  

Obr.2.30. Spektrální funkce harmonického signálu. 

n 
 

& Poznatky z příkladu: 
Snaha o aplikaci aparátu spektrální analýzy impulsů na signál harmonický vede na výskyt 
Diracových impulsů na kmitočtech +Ω a -Ω. Srovnejte s Fourierovými koeficienty harmonického 
signálu jakožto speciálního případu periodického signálu: existují pouze dva nenulové &ck  
koeficienty odpovídající kmitočtům +Ω a -Ω. 

P2.18 Určete spektrální funkci periodického signálu daného komplexní Fourierovou řadou 

( ) ∑
∞

−∞=

Ω=
k

tjk
kp ects 1& . 

þ Řešení: 
Periodický signál není absolutně integrovatelný, skládá se však ze stejnosměrné složky a 

harmonických složek, u nichž existuje spektrální funkce v distribučním smyslu: 

( ) ( ) { } ( )∑∑∑
∞

−∞=

∞

−∞=

Ω
∞

−∞=

Ω Ω−===








=
k

k
k

tjk
k

k

tjk
kp kcececS 12linearityvlastnost 11 ωδπω &&&& FF . 

n 

 

& Poznatky z příkladu: 
Snaha o aplikaci aparátu spektrální analýzy impulsů na signál periodický vede na výskyt 
Diracových impulsů na kmitočtech +kΩ1 a -kΩ1, k = 0, 1, 2, ... . Srovnejte s Fourierovými 
koeficienty periodického signálu. 

Srovnejte výsledek se vzorcem (2.59). 

P2.19 Určete spektrální funkci jednotkového skoku. 

þ Řešení: 
Jednotkový skok není absolutně integrovatelný a má nekonečnou mohutnost. Lze jej však 

rozložit podle (2.58) na signál sM(t) s nulovou mohutností a konstantní signál (viz obr.2.31): 

( ) ( ) 5,01 += tst M . 
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Obr.2.37. Rozklad jednotkového skoku na signál s nulovou mohutností a konstantní složku. 

Signál sM(t) má nulovou mohutnost a jeho derivací je Diracův impuls: 

( ) ( )δ t d
dt

s tM= . 

V souladu s poučkou o Fourierově obrazu derivace (2.73) tedy dostáváme 

( ){ } ( ){ } ( ){ }F F Fδ ω
ω

t j s t s t
jM M= = ⇒ =1 1 . 

Zároveň platí 
{ } ( )F 0 5, = π δ ω . 

Proto 

( ){ } ( )ωδπ
ω

+=
j

t 11F . 
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Obr.2.32. Spektrální funkce jednotkového skoku. 

n 

2.2.4 Vztah spektrální funkce impulsu a Fourierovy řady periodického 
signálu 

 

Bude-li se jednorázový impuls s(t) o spektrální funkci ( )&S ω  periodicky opakovat s periodou T1 
podle vzorce 

 ( ) ( )s t s t kTp
k

= −
=−∞

+∞

∑ 1 , (2.65) 

vznikne periodický signál o následujících koeficientech Fourierovy řady: 
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 ( )& & , .c
T

S
k Tk =

=
=1 2

1
1

1
1

ω
ω

π

Ω
Ω  (2.66) 

Na spektrální funkci jednorázového impulsu je tedy možno pohlížet jako na určitou „obálkovou 
funkci“, která v sobě integruje informaci o spektrálních čarách nekonečně mnoha periodických 
signálů, které mohou vzniknout opakováním impulsu s různými opakovacími periodami. 

P2.20 Určete 3.harmonickou složku periodického signálu, vzniklého opakováním 
obdélníkového impulsu z obr.2.27a) s opakovací periodou 4ms. Využijte k tomu 
spektrální funkci impulsu ze str. 37. 

 
þ Řešení: 

(viz vzorec (2.66)) 

( )& & , ;maxc
T

U
k T

U t k t kk i
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=
= 





= 
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1 1
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2 5
21 1 1

1ω
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Ωsinc sinc  

& , & ,

& , , .

c

U c
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3 3 3

2 5 3
2

0 531

2 1 06 180
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
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= − ⇒

= = = °

sinc V
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π

ϕ

 

n 
2.2.5 Vlastnosti spektrální funkce 
 

a)  Spektrální funkce pro kmitočet 0Hz je reálná a udává mohutnost impulsu: 

 ( ) ( )& .S s t e dt Mj t0 0= =
−∞

+∞

∫  (2.67) 

b)  Modul spektrální funkce je sudou, argument lichou funkcí kmitočtu. 
 
 
2.2.6 Obecné vlastnosti Fourierovy transformace F{s(t)} 
 

a)  Linearita: 

 ( ) ( ){ } ( ) ( )F a s t a s t a S a S1 1 2 2 1 1 2 2+ = +& &ω ω . (2.68) 

b)  Změna časového měřítka (komprese a expanze signálu): 

 ( ){ }F s mt
m

S
m

= 





1 & ω . (2.69) 

c)  Posun signálu v čase: 

 ( ){ } ( )F s t S e j− = −τ ω ωτ& .  (2.70) 

d)  Posun spektra: 

 ( ){ } ( )F s t e Sj tω ω ω0
0= −& . (2.71) 

e)  Přesměrování toku času: 

 ( ){ } ( ) ( )F s t S S− = − = ∗& &ω ω . (2.72) 
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f)  Derivace signálu: 

Když s(t) má konečnou mohutnost, pak 

 ( ) ( )F d
dt

s t j S







= ω ω& . (2.73) 

Má-li s(t) nekonečnou nebo nedefinovatelnou mohutnost a lze-li jej rozložit na signál s nulovou 
mohutností sM(t) a periodický či konstantní signál sP(t) podle rovnice (2.65), pak 

 ( ) ( ) ( ) ( ) ( ).2 11 ∑
+∞

−∞=

Ω−Ω+=






+=









k
kMPM kckjSjts

dt
dSjts

dt
d

ωδπωωωω &&& FF  (2.74) 

Pro jednodušší případ, kdy s(t) se skládá jen ze signálu s nulovou mohutností sM(t) a z konstantní 
složky S0, platí 

 ( ) ( )F d
dt

s t j SM








= ω ω& . (2.75) 

g)  Integrace signálu: 

Když s(t) má nulovou mohutnost, pak 

 ( ) ( )F s t dt
j

S
t

−∞
∫












= 1

ω
ω& . (2.76) 

Má-li s(t) nenulovou mohutnost, pak jeho integrálem je nezanikající impuls sI(t). Lze-li tento 
impuls rozložit na impuls sIM(t) s nulovou mohutností a konstantní složku S0, tedy 

 ( ) ( ) ( )s t s t dt s t SI

t

IM= = +
−∞
∫ 0 . (2.77) 

pak 

 ( ) ( ) ( )F s t dt
j

S S
t

−∞
∫












= +1 2 0ω

ω π δ ω& . (2.78) 

h)  Součin dvou signálů: 

 ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( )F s t s t S S S S d S S d1 2 1 2 1 2 1 2
1

2
1

2
1

2
= ∗ = − = −

−∞

+∞

−∞

+∞

∫ ∫π
ω ω

π
ω ξ ξ ξ

π
ξ ω ξ ξ& & & & & & , (2.79) 

kde symbol * značí tzv. konvoluční součin neboli konvoluci. 

i)  Konvoluční součin dvou signálů: 

 ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( )F F Fs t s t s t s d s s t d S S1 2 1 2 1 2 1 2∗ = −











= −












=

−∞

+∞

−∞

+∞

∫ ∫ξ ξ ξ ξ ξ ξ ω ω& & . (2.80) 

P2.21 Zapište obdélníkový signál z obr.2.27a) pomocí lineárních operací s jednotkovým 
skokem. 

þ Řešení: 

( ) ( ) ( )[ ] [ ]u t U t t t t t ti i= +





− −













 = + − −− −

max 1
2

1
2

100 1 10 1 103 3 V,s . 

n 
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P2.22 Určete spektrální funkci obdélníkového impulsu z obr. 2.27a) na základě znalosti 
spektrální funkce jednotkového skoku a výsledku předchozího příkladu. 

þ Řešení: 
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n 

P2.23 Pomocí pravidel o Fourierově transformaci derivace a integrálu signálu určete 
spektrální funkci trojúhelníkového impulsu u(t) na obr.2.33 pro Umax = 1V a ti = 1ms. 

0-1

ti

Umax

u t( )[ ]V

t[ ]ms

1

1

 

Obr.2.33. Analyzovaný impuls. 

þ Řešení: 

(Viz též obr.2.34). 
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Obr.2.34. Způsob odvození spektrální funkce a výsledný průběh. 
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P2.24 Na základě poučky o spektrální funkci součinu dvou signálů (2.79) určete spektrální 
funkci impulsu na obr. 2.35 pro Umax = 1V a ti = 50ms. 
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u t( )[ ]V

t[ ]ms
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25

 

Obr.2.35. Analyzovaný impuls. 

þ Řešení: 

Signál je součinem kosinového signálu a obdélníkového impulsu uobd(t) o šířce ti a výšce 1V: 

( ) ( ) ( )tutUtu obd.cosmax Ω= . 
Jednotlivé spektrální funkce: 

( ){ } ( ) ( )
( ){ } ( ),2sinc

,cos maxmaxmax

iiobd tttu
UUtU

ω
ωδπωδπ

=
Ω++Ω−=Ω
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S přihlédnutím k tomu, že platí 

Ω t
T

ti i= =
2π

π , 

lze výsledný vzorec podstatně zjednodušit: 
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Obr.2.36. Modul spektrální funkce impulsu z obr.2.35. 

n 
 
2.2.7 Parsevalův teorém pro aperiodické signály 
 

Energie impulsu [jednotka signálu]2 x [sekunda] 

 ( ) ( )W s t dt S d= =
−∞

+∞

−∞

+∞

∫ ∫2 21
2π

ω ω&  (2.81) 

(vyplývá z rovnice (2.79) pro ω = 0 a s1(t) = s2(t) = s(t)). 

Spektrální hustota energie impulsu [jednotka energie/Hz], resp. [jednotka energie /rad s-1] 

l  dvojstranná 

 ( ) ( ) ( )L Sd ω
π

ω ω= ∈ − ∞ +∞1
2

2& , , , (2.82) 

l  jednostranná 

 ( ) ( ) ( ) ( )L L Sj dω ω
π

ω ω= = ∈ +∞2 1 0
2& , , . (2.83) 

 
Jiné vyjádření Parsevalova teorému 
 

Energie impulsu [jednotka signálu]2 x [sekunda] 

 ( ) ( ) ( )W s t dt L d L dd j= = =
−∞

+∞

−∞

+∞ +∞

∫ ∫ ∫2

0

ω ω ω ω  (2.84) 

Vlastnosti spektrálních hustot energie 

( ) ( ) ( )L Sd ω
π

ω ω= ∈ − ∞ +∞1
2

2& , ,  a ( ) ( ) ( ) ( )L L Sj dω ω
π

ω ω= = ∈ +∞2 1 0
2& , , : 

a)  Jsou reálné a nezáporné pro všechny kmitočty. 
b)  Dvoustranná spektrální hustota energie je sudou funkcí kmitočtu. 
c)  Slouží k výpočtu energie impulsu soustředěného v kmitočtovém pásmu ( )ω ω ω∈ 1 2, : 

 ( ) ( ) ( ) ( ) ( )W L d L d L d L dj d d dω ω ω ω ω ω ω ω ω ω
ω

ω

ω

ω

ω

ω

ω

ω

1 2

1

2

2

1

1

2

1

2

2, = = + =∫ ∫ ∫ ∫
−

−

 (2.85) 
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P2.25 Zakreslete kmitočtovou závislost jednostranné spektrální hustoty energie 
obdélníkového impulsu z obr. 2.27a) pro Umax = 1V a ti = 1ms. Vypočtěte energii, 
obsaženou v impulsu v kmitočtových pásmech (0÷1)kHz, (1÷2)kHz a (2÷3)kHz.  

þ Řešení: 

Spektrální hustota signálu 

( ) ( )& . .maxU U t t
i

iω ω ω= 





= 





− −sinc sinc V
Hz2

10 5103 4  

Jednostranná spektrální hustota energie 

( ) ( ) ( )L S U t t
j

i iω
π

ω
π

ω ω= = 





= 





− −1
2

3 18310 510
2 2 2

7 4& & , . . .max sinc sinc J
Hz

2 2  

Celková energie impulsu (nejprve přes spektrální hustotu, pak jednodušší výpočet z definice energie; 
viz Parsevalův teorém) 

( ) ( )W L d U t t d x dx U tj
i i

i= = 
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

= = = =
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Obr.2.37. Jednostranná spektrální hustota energie impulsu z obr.2.27a). 

Energie obsažená v spektrálních pásmech: 
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Integrály byly vyčísleny v MATLABu za použití příkazu 
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 quad(‘lj’,a,b) 

kde lj je název funkce jednostranné spektrální hustoty energie definované v M-souboru a a a b jsou 
dolní a horní integrační mez. 

n 

 

& Poznatek z příkladu: 

V prvním spektrálním laloku obdélníkového impulsu v kmitočtovém pásmu (0÷1/šířka 
impulsu) [Hz] je soustředěno více než 90% veškeré energie impulsu. 

 

2.2.8 Vztah Fourierovy transformace a DFT 

Definice DFT viz kapitola „Vztah Fourierovy řady periodického signálu a DFT“. 

Uvažujme jednorázový signál s(t) s konečnou dobou trvání TS. Rovnoměrným vzorkováním 
získáme N vzorků sk = s(kTS /N), k = 0, 1, 2, .., N-1. Provedeme výpočet N komplexních koeficientů 
DFT podle (2.43). Pak pro spektrální funkci signálu s(t) přibližně platí 

 ( )
2

 zčást  elá ,..,2,1,0, NnX
N
T

n
S n

S

S

c==
Ω=

&&
ω

ω  (2.86) 

a  

 .2

S
S T

π
=Ω  (2.87) 

Výpočet (2.86) je přesný pouze za předpokladu, že spektrální funkce signálu je frekvenčně 
omezená do kmitočtu N/(2TS). Známe-li tento mezní kmitočet a dobu trvání impulsu, přizpůsobíme 
tomu počet bodů N. 

P2.26 Pomocí DFT vypočtěte spektrální funkci impulsu z obr. 2.38a) na kmitočtech (0, 100, 
200, ...., 1000) Hz. 

þ Řešení: 

Doporučujeme prostudovat teoretický souhrn na začátku kapitoly, položku „Vztah Fourierovy 
transformace a DFT“. 

Analytické řešení spektrální funkce převezmeme ze str. 47, kde je proveden výpočet spektrální 
funkce impulsu z obr. 2.33, který je stejného typu, liší se pouze časovým posunem: 

( ) ( )& . , . .max .U U t t e ei i j t jiω ω ωω ω= 





= 





− − − − −

2 4
510 2 5102 4 4 5 10 4

sinc sinc V
Hz

2 2  

Požadujeme numerický výpočet ( )&U f  pomocí DFT na kmitočtech k.FS, FS = 100Hz, k = 0, 1, 
.., 10. Odvozený vzorec pak použijeme k ověření přesnosti numerického výpočtu. 

Kmitočtu FS odpovídá délka segmentu časového průběhu, která vstoupí do algoritmu DFT: 

T FS S= =1 10 ms . 
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Obr.2.38 K výpočtu spektrální funkce impulsu pomocí DFT. 

Signál musíme na tomto úseku navzorkovat. Získáme N vzorků, z nichž vypočteme N 
komplexních koeficientů DFT. Čím větší počet vzorků zvolíme, tím přesnějšího výpočtu dosáhneme. 

Volba N: 
Jestliže existuje kmitočet FMAX takový, že pro všechny kmitočty f > FMAX je spektrální funkce 

signálu již nulová (zanedbatelná), pak zvolíme-li 

 N F
F
MAX

S
> 2 , (2.88) 

výpočet spektrální funkce z DFT bude přesný (zatížený relativně malou chybou). Navíc zvolíme-li N 
rovno celočíselné mocnině dvou, můžeme k výpočtu koeficientů DFT použít algoritmy rychlé 
Fourierovy transformace (FFT). 

Například pro kmitočet 25kHz vychází z analytického vztahu pro spektrální hustotu impulsu 
modul 

( )U f = = −25 3 24 10 7kHz V Hz& , . , 

což je asi 0,065% z maximální hodnoty spektrální hustoty 

( )U 0 510 4= −. V Hz . 

Považujeme-li hodnoty spektrální funkce za zanedbatelné pro f > FMAX = 25kHz, pak zvolíme 

N > =2 25000
100

500 . 

Zvolíme N = 512. 
Časový segment signálu < 0, TS > = < 0, 10ms > rozdělíme na 512 stejných dílů a odečteme 512 

vzorků signálu: 

( ) ( )u u t
t kT N

u t
t k

k Nk
S

=
=

=
=

= −
& . ,

, , , , ..., .
19 5

0 1 2 1
µs
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Vzorky jsou tedy číslovány od 0 do N-1 a N-tý vzorek se již do souboru nezahrnuje. 
Nyní vypočteme N = 512 koeficientů DFT podle (2.43) 

& , , , ,X k Nk = −0 1 1K  

a z jejich první poloviny (t.j. z koeficientů č. 0, 1, 2, .., 255) stanovíme 256 vzorků spektrální funkce 
podle (2.86): 

( )& & , , , ,U f
f nF

T
N

X n N

S

S
n

=
= = 





0 1
2

K , 

neboli 

( )&
.

& , . & , , , , .U f
f n

X nn
=

= =−

100
19 510 0 1 2556

Hz
K  

Můžeme takto vypočíst vzorky spektrální funkce až do kmitočtu 25,5kHz, i když jsme původně 
požadovali výpočet jen do 1kHz. Koeficienty DFT vykazují od n = 256 do 511 symetrii podle (2.45) a 
jsou tedy k výpočtu vyšších harmonických nepoužitelné. 

: Ukázka řešení pomocí MATLABu: 

Rozdělíme-li úsek signálu délky 10ms na 512 výpočetních bodů, pak na vzestupnou část 
pilovitého signálu v intervalu 0-0,5 ms připadají vzorky č. 0 až 25 a na sestupnou část od 0,5 ms do 1 
ms vzorky č. 26 až 51: 

( )u k
k k

k k
=

=

− =









5
128

0 1 2 25

2 5
128

26 27 28 51

pro 

pro 

, , , , ;

, , , , .

K

K

 

Ostatní vzorky jsou nulové. 

k=0:25; % Generování nezávisle proměnné pro 
1. úsek signálu 

s=5*k/128;  % Výpočet vzorků č. 0 až 25 (v MATLABu 
jsou to vzorky č. 1 až 26) 

k=26:51;  % Generování nezávisle proměnné pro 
2. úsek signálu 

s(27:52)=2-5*k/128;  % Výpočet vzorků č. 26 až 51 (v MATLABu 
jsou to vzorky č. 27 až 52) 

x=fft(s,512);  % Výpočet 512- bodové FFT signálu 

x(1:11)  % Zobrazení koeficientů FFT č. 0 až 10 
(v MATLABu č. 1 až 11) 

ans = 

  Columns 1 through 4  

  25.5938            24.1414 - 7.8450i  20.0327 -14.5569i  13.9610 -19.2200i 

  Columns 5 through 8  

   6.9190 -21.3043i  -0.0032 -20.7477i  -5.8313 -17.9372i  -9.8822 -13.5973i 

  Columns 9 through 11  

 -11.8638 - 8.6173i -11.8846 - 3.8605i -10.3758 + 0.0000i 

u=10e-3/512*x(1:11)  % Výpočet 11 vzorků spektrální funkce 
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u = 

  1.0e-003 * 

  Columns 1 through 4  

   0.4999             0.4715 - 0.1532i   0.3913 - 0.2843i   0.2727 - 0.3754i 

  Columns 5 through 8  

   0.1351 - 0.4161i  -0.0001 - 0.4052i  -0.1139 - 0.3503i  -0.1930 - 0.2656i 

  Columns 9 through 11  

  -0.2317 - 0.1683i  -0.2321 - 0.0754i  -0.2027 + 0.0000i 

abs(u)  % Výpočet 11 vzorků modulu spektrální 
funkce 

ans = 

  1.0e-003 * 

  Columns 1 through 7  

    0.4999    0.4958    0.4837    0.4640    0.4375    0.4052    0.3684 

  Columns 8 through 11  

    0.3283    0.2864    0.2441    0.2027 

phase(u)*180/pi % Výpočet 11 vzorků argumentu spektrální 
funkce ve stupních 

ans = 

  Columns 1 through 7  

         0  -18.0022  -36.0043  -54.0062  -72.0077  -90.0087 -108.0091 

  Columns 8 through 11  

 -126.0087 -144.0072 -162.0044 -180.0000 

V tabulce jsou shrnuty výsledky výpočtů na kmitočtech do 1kHz spolu s přesnými hodnotami 
spektrální funkce.  

k &X k  & ( . )
[ ]
U k FS

µV / Hz
 arg & ( . )

[ ]
U k FS

°
 

&( . )
[ ]
S k FS

µV / Hz
 arg &( . )

[ ]
S k FS

°
 

0  25,59375 - j0,00000 499,878 0 500 0 

1  24,14137 - j7,84505 495,782 -18,00 495,901 -18 

2  20,0327 - j14,55694 483,656 -36,00 483,766 -36 

3  13,96099- j19,22002 463,972 -54,01 464,068 -54 

4  6,91901- j21,30426 437,493 -72,01 437,570 -72 

5  -0,00316- j20,74767 405,228 -90,01 405,285 -90 

6  -5,83130- j17,93717 368,383 -108,01 368,420 -108 

7  -9,88215- j13,59728 328,301 -126,01 328,319 -126 

8  -11,86385 - j8,61730 286,390 -144,01 286,393 -144 

9  -11,88458 - j3,86052 244,060 -162,00 244,054 -162 

10  -10,37581 - j0,00000 202,653 -180 202,642 -180 

M  M  M  M  M  M  
n 
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& Poznatky z příkladu: 

• Počet bodů N-bodové DFT (FFT) nemusí souviset s počtem bodů, v nichž chceme určit vzorky 
spektrální funkce. Pro volbu N je důležitá podmínka (2.81). Na jejím dodržení je závislá přesnost 
výpočtu spektra. 

• Je-li doba trvání jednorázového impulsu Ti, pak to nemusí být nutně délka segmentu signálu TS, 
který je vzorkován pro potřeby DFT. Musí platit 

 T TS i≥ , (2.89) 

což vlastně znamená, že k vzorkům impulsu je možno přidávat před aplikací DFT nulové vzorky. 

• Vzorky spektrální funkce vypočtené pomocí DFT leží na kmitočtech 

n F n
T

n
T

n N
S

S i

. , , , ,= ≤ = 





0 1
2

K . 

Znamená to, že s růstem TS klesá rozestup mezi vzorky vypočteného spektra. Spektrum je 
podrobněji vykresleno, roste spektrální rozlišení. Doplňováním vzorků jednorázových impulsů 
nulovými vzorky tedy dosáhneme lepšího spektrálního rozlišení. Nejhorší rozlišení je pro TS = Ti. 

 

0 2 4 6 25,6 f [kHz]

vzorek č.0 10 256 511255

11 počítaných vzorků

vypočitatelné vzorky spektrální funkce zrcadlové složky

 

Obr.2.39. Výsledek spektrální analýzy impulsu z obr.2.38a) pomocí 512-bodové FFT. 
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2.2.9 Vyjádření signálu Laplaceovou transformací 
Laplaceovu transformaci můžeme chápat jako zobecnění Fourierovy transformace signálu, 

vhodné pro teoretické výpočty a analýzy průchodu signálu lineárním elektrickým obvodem. Větší 
význam a užití má tedy Laplaceova transformace při modelování a analýze obvodů. Fourierova 
transformace se zase více používá k praktické spektrální analýze signálů,a to zejména díky existence 
její numerické podoby DFT, resp. rychlejší varianty FFT. 

Podobně jako Fourierova transformace, Laplaceova transformace je předpis, který daný signál – 
funkci času - jednoznačně „překóduje“ do zcela jiné podoby, konkrétně do funkce tzv. Laplaceova 
operátoru p. Výsledek Laplaceovy transformace je tzv. Laplaceův obraz signálu. Smysl tohoto 
„překódování“ je jednoduchý: není snadné popsat, co se děje se signály při jejich zpracování složitými 
analogovými nebo digitálními obvody. Tento popis se však podstatně zjednoduší, pokud dané operace 
nebudeme provádět přímo se signály, nýbrž s jejich Laplaceovými obrazy. Aplikací jednoduchých 
pravidel proto získáme daleko snadněji Laplaceův obraz výstupního signálu nežli časový průběh 
tohoto signálu klasickou analýzou obvodu bez použití Laplaceovy transformace. Tento „nový“ přístup 
k řešení průchodu signálu obvodem tedy znamená převod vstupního signálu Laplaceovou transformací 
na jeho Laplaceův obraz, pak aplikaci výše zmíněných pravidel k získání Laplaceového obrazu 
výstupního signálu, a nakonec převod obrazu na časový průběh zpětnou Laplaceovou transformací. 
Dané převody z časového průběhu na Laplaceův obraz a zpět mohou být usnadněny používáním 
slovníků Laplaceovy transformace a pravidel pro rozklad Laplaceových obrazů na parciální 
zlomky. Podrobnosti jsou uvedeny v příloze „Operátorový počet v elektrotechnice“. 

Definiční vzorec Laplaceovy transformace 

 ∫
∞

−==
0

)()}({)( dtetxtxLpX pt , p=σ+jω .. komplexní číslo  (2.90) 

převádí signál o časovém průběhu x(t) na jeho Laplaceův obraz X(p), kde p je komplexní operátor. 
Srovnání s definicí Fourierovy transformace (2.55) 

 ∫
+∞

∞−

−= dtetxjX tjωω )()(& ,  (2.91) 

vede k závěru, že oba vzorce poskytují formálně stejné výsledky pro signály x(t) = 0 pro t<0 za 
předpokladu  

 p = jω, neboli σ = 0. (2.92) 

Podmínka nulovosti signálu pro záporné časy vyplývá z praktické potřeby řešit technické děje, 
které začínají v konkrétním časovém okamžiku (například připojení spotřebiče ke zdroji signálu).  

V definičním integrálu (2.90) se objevuje funkce času 

tjtpt eetxetx ωσ −−− = )()( . 

V porovnání s Fourierovou transformací je zde navíc člen e-σt, kterým je násoben 
transformovaný signál. Pro σ >0 je signál exponenciálně utlumován, pro σ <0 je „zesilován“. V tomto 
smyslu tedy Laplaceův obraz signálu představuje spektrální funkci signálu, modifikovaného 
exponenciálním členem e-σt. Toho lze využít k práci se signály, které s rostoucím časem nekonvergují 
k nule a tudíž jejichž Fourierova transformace neexistuje, přičemž však existuje jejich Laplaceův 
obraz. 

Podmínka (2.92) se v elektrotechnice běžně používá k přechodu mezi operátorovým a 
„fourierovským“ popisem signálů a obvodů. V příloze „Operátorový počet v elektrotechnice“ jsou 
shrnuty zásady operátorového popisu signálů a zejména modelování a analýzy lineárních obvodů. 
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3 ELEKTRICKÉ OBVODY A JEJICH MODELY 
 
3.1 ZÁKLADNÍ POJMY 
 

V této kapitole ukážeme, že analogové elektrické obvody se obecně skládají z nelineárních 
součástek. Objasníme, co je to stejnosměrný (klidový) pracovní bod a proč se nastavuje. Vysvětlíme 
tzv. malosignálové buzení a linearizovaný model nelineárního obvodu, popisující vlastnosti obvodu 
při tomto buzení. Popíšeme chování obvodu při kombinovaném buzení dvěma signály jako řešení 
linearizovaného parametrického modelu. V závěru ukážeme nelineární chování obvodu při obecném 
buzení. 

 
3.1.1 Stejnosměrný pracovní bod 

 

Obr. 3.1 a) ukazuje typickou nelineární součástku – tranzistor. Je vyznačeno celkem 6 
obvodových veličin – trojice napětí a trojice proudů. Tyto veličiny jsou vzájemně spojeny složitými 
nelineárními závislostmi. Stejnosměrným měřením „bod po bodu“ lze získat známé statické 
charakteristiky tranzistoru (např. síť výstupních charakteristik – závislost IC na UCE při konstantním 
proudu IB). Všechny takovéto nelineární charakteristiky lze chápat jako řezy plochami 
v šestirozměrném prostoru [IC IB IE UCE UBE UBC].  
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Obr. 3.1. a) Tranzistor a soustava jeho napětí a proudů, b) příklad jeho začlenění do obvodu zesilovače. 
 

Začleníme-li tranzistor do složitějšího elektrického obvodu (obr. 3.1 b), který je napájen pouze 
stejnosměrnými zdroji (tj. zpočátku předpokládáme uin = 0), ustálí se napěťové a proudové poměry 
s ohledem na uvedené nelineární vlastnosti tranzistoru. Výsledkem jsou konkrétní stejnosměrné 
hodnoty veličin tranzistoru z vektoru [IC IB IE UCE UBE UBC]. Graficky si lze tento stav představit jako 
konkrétní bod v charakteristikách tranzistoru. Tento bod označme symbolem Q a nazvěme 
stejnosměrný pracovní bod (angl. Operating Point) tranzistoru. Často se rovněž používá termín 
klidový pracovní bod (angl. Bias Point).  

Podívejme se na obr. 3.2. Jde o třírozměrný výřez z výše uvedeného prostoru nelineárních 
závislostí pro konkrétní křemíkový tranzistor. V souvislosti s obr. 3.1 b) si můžeme představit, že 
nastavujeme-li různá napětí baterie (je uváděno 10V), pak bude docházet k změnám napětí a proudů 
v obvodu, tj. k pohybu pracovního bodu Q. Tento bod však nikdy neopustí zobrazenou plochu 
nelineárních vazeb tranzistoru. Průměty pracovního bodu do jednotlivých kvadrantů poskytují číselné 
údaje o obvodových napětích a proudech tranzistoru. Index Q značí souřadnici pracovního bodu. 
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Obr. 3.2. Příklad nelineárních vazeb mezi kolektorovým a bázovým proudem a napětím kolektor-emitor 
tranzistoru. Výsledek počítačové simulace v programu Micro-Cap. 
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Obr. 3.3.  Proces připojení zesilovače z obr. 3.1 b) k napájecímu zdroji. Vstupní signál zatím nepůsobí (uin 
= 0V). Obvod se ustaluje do stejnosměrného ustáleného stavu a vektor obvodových veličin do 
pracovního bodu. Všechna napětí jsou uvažována proti zemi. Výsledek počítačové simulace 
v programu Micro-Cap. 

 
Obr. 3.3 ukazuje situaci po připojení napájecího zdroje k zesilovači, jestliže zatím nepůsobí na 

jeho vstup napětí uin, určené k zesilování. V důsledku působení akumulačních prvků v obvodu dojde 
k přechodnému ději, který se ustálí zhruba po 1s. Výsledkem je stejnosměrný ustálený stav. Přehledné 
znázornění ustálených poměrů je pak uvedeno na obr. 3.4.  
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Obr. 3.4. Znázornění souřadnic stejnosměrného pracovního bodu zesilovače. V kroužku je hodnota napětí 

mezi příslušným uzlem a zemí (ve voltech), v obdélníčku pak hodnota proudu danou větví (v 
ampérech).Výsledek počítačové simulace v programu Micro-Cap. 

 
Jak uvidíme dále, nastavení vhodných hodnot stejnosměrných napětí a proudů v nelineárním 

obvodu, tj. nastavení pracovního bodu, je důležitý předpoklad správné funkce obvodu, v našem 
případě zesilování signálu uin.  

 
& Shrnutí a zobecnění: 

• Po připojení stabilního nelineárního obvodu k stejnosměrným napájecím zdrojům dojde 
k přechodnému ději, jehož výsledkem je stejnosměrný ustálený stav: všechna napětí a všechny 
proudy jsou konstantní. Říkáme, že obvod přešel do stejnosměrného (klidového) pracovního bodu. 
Tento přechod trvá většinou relativně krátkou dobu a pro uživatele zařízení není podstatný. 

• Stejnosměrný pracovní bod obvodu je množina stejnosměrných napětí a proudů v obvodu při 
nepůsobení vstupních signálů, které mají být obvodem zpracovávány. Matematicky je popsán 
vektorem sledovaných napětí a proudů. 

• Stejnosměrný pracovní bod nelineárního prvku obvodu (např. tranzistoru) je množina 
stejnosměrných napětí a proudů tohoto prvku při nepůsobení vstupních signálů, které mají být 
obvodem zpracovávány. Jedná se tedy o podmnožinu pracovního bodu celého obvodu. 

• Stejnosměrný pracovní bod nelineárního prvku je možné nastavovat ostatními prvky obvodu. 
V případě zesilovače z obr. 3.4 lze pracovní bod tranzistoru nastavit volbou odporů R1 až R4 a 
napětím baterie. Akumulační prvky nemají na souřadnice pracovního bodu vliv. Ovlivňují pouze 
přechodný děj náběhu obvodu do pracovního bodu po připojení k napájecím zdrojům.  

• Nastavení vhodného stejnosměrného pracovního bodu je důležité pro správnou činnost obvodu. 

 
3.1.2 Pohyb bodu Q vlivem zpracovávaného signálu 
 

Přivedeme-li na vstup obvodu signál určený k zpracování, budou se napětí a proudy v obvodu 
měnit v závislosti na tomto signálu. Můžeme si představit, že dochází k pohybu bodu Q. Časový 
rozvoj tohoto pohybu do všech souřadnic pak představuje odezvu obvodu na vstupní signál ve formě 
sledovaných napětí a proudů. 

Pro jednoduchost předpokládejme, že vstupní signál uin na obr. 3.1 je harmonický o relativně 
vysokém kmitočtu, takže kapacitory C1 a C2 (10µF a 100µF) pro tento signál představují 
zanedbatelnou reaktanci. Napětí na každém prvku v obvodu je nyní určováno působením dvou zdrojů: 
stejnosměrným napájecím napětím a harmonickým vstupním napětím. Napájecí zdroj vyvolává na C1 
stejnosměrné napětí 4,08V a na C2 3,44V (viz obr. 3.4). Harmonický vstupní signál nevyvolává na 
kapacitorech prakticky žádné napětí v důsledku zanedbatelných reaktancí (kapacitory se chovají pro 
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střídavý signál jako zkraty). Pro účely analýzy si tedy lze představit namísto kapacitorů zdroje 
příslušných stejnosměrných napětí (viz obr. 3.5a). 

Z obr. 3.5 a) je zřejmý význam kapacitoru C1: stejnosměrně odděluje uzel B, kde je nastaveno 
předpětí 4,08V (souřadnice klidového pracovního bodu) od uzlu in, kde je nulová stejnosměrná složka 
zesilovaného signálu. Střídavý signál je však přenesen do uzlu B k dalšímu zpracování bez zeslabení. 

Význam kapacitoru C2 bude objasněn později. Bez něj by zesílení signálu výrazně pokleslo 
v důsledku záporné zpětné vazby, kterou vyvolává rezistor R2. Pro střídavý signál je však R2 
přemostěn kapacitorem C2, který tak působení zpětné vazby zabraňuje. 

Z obr. 3.5b) vyplývají zesilovací schopnosti obvodu: amplituda střídavé složky napětí uout je asi 
0,58V, což je 116x větší hodnota než na vstupu. Patrný je i fázový posun mezi vstupním a výstupním 
střídavým napětím o 180° (inverze fáze). Obr. 3.5c) ukazuje, že při silnějším vstupním signálu již 
dochází k zkreslení tvaru střídavé složky na výstupu (dolní půlvlna je protáhlejší a ostřejší). Ještě 
markantnější zkreslení je patrné na obr. 3.5d). Vysvětlení těchto jevů je možné hledat v následující 
analýze modelu z obr. 3.5a): Budeme „bod po bodu“ nastavovat napětí uin a pro každou hodnotu 
určíme uout. Výsledek počítačové simulace je na obr. 3.6. 
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Obr. 3.5. Zpracování harmonického signálu uin , pro nějž kapacitory C1 a C2 představují zkrat. Na 
kapacitorech jsou pouze stejnosměrná napětí daná klidovým pracovním bodem (a), časové 
průběhy při amplitudě uin 5mV (b) 15mV (c) 25mV (d). 
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Obr. 3.6. Převodní charakteristika Uout = f(Uin) modelu zesilovače z obr. 3.5a). Střídavé „malosignálové“ 

zesílení je dáno strmostí převodní charakteristiky v okolí pracovního bodu Q. Při silnějším 
vstupním signálu již dochází k nelineárnímu zkreslení výstupu. 

 
& Shrnutí a zobecnění: 

• Vztah mezi výstupním a vstupním signálem nelineárního obvodu je popsán nelineární převodní 
charakteristikou. Do této charakteristiky se promítají příslušné souřadnice klidového pracovního 
bodu. 

• Vlivem vstupního signálu dochází k rozmítání bodu Q po převodní charakteristice. Časovým 
rozvojem tohoto pohybu získáme výstupní signál. 

• Je-li současně splněno, že bod Q se pohybuje po části převodní charakteristiky, kterou je možno 
považovat za přímkovou, pak výstupní signál, neuvažujeme-li jeho stejnosměrnou složku, je tvarově 
shodný se vstupním signálem. Dochází pouze k změně jeho velikosti (využíváno např. k zesilování), 
případně k inverzi fáze. Poměr velikostí střídavých složek výstupního a vstupního signálu, tzv. 
střídavé zesílení, je rovno směrnici tečny k převodní charakteristice v klidovém pracovním bodu. 
Nelineární obvod pracuje v tzv. linearizovaném režimu. 

• Nejsou-li splněny výše uvedené podmínky, dochází k tvarovému zkreslení výstupního signálu. 
Hovoříme o nelineárním zkreslení. Obvod pracuje v nelineárním režimu. 

• Podmínky lineárního režimu lze stručně shrnout takto: vhodně nastavený klidový pracovní bod a 
relativně slabý vstupní signál. 

 
3.1.3 Pohyb bodu Q vlivem teplotních a dalších změn 
 

Z obr. 3.6 je zřejmé, že by bylo nežádoucí, kdyby se jednou nastavený klidový pracovní bod Q 
měnil v důsledku takových jevů, jako jsou teplotní změny, stárnutí zařízení, nebo například výměna 
poškozené součástky za stejný typ, ale s částečně odlišnými parametry. Každá změna polohy 
klidového pracovního bodu totiž přináší změnu vlastností obvodu (v našem případě střídavého 
zesílení) a je potenciálním zdrojem nelineárního zkreslení. 
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Proto je vhodné polohu klidového pracovního bodu stabilizovat, tj. učinit taková opatření, aby 
bod Q nebyl ovlivňován výše uvedenými jevy. Používané metody stabilizace budou probrány později. 
U zesilovače na obr. 3.1 b) je stabilizace zajišťována rezistorem R2, který zavádí do obvodu 
stabilizující zápornou zpětnou vazbu. Ta zmenšuje zesílení, tj. citlivost obvodu na relativně pomalé 
změny (např. změny teploty). Pro rychlé změny, tj. změny vyvolávané vstupním signálem, jsou účinky 
zpětné vazby potlačeny kapacitorem C2, který přemosťuje rezistor R2 svou relativně nízkou reaktancí. 
 
3.1.4 Chování nelineárního obvodu při kombinovaném buzení pomalým a 

rychlým signálem 
 

Z obr. 3.6 vyplývá, že střídavé zesílení obvodu, tj. strmost převodní charakteristiky v okolí 
klidového pracovního bodu, lze řídit změnou polohy tohoto bodu. Přičteme-li tedy k vstupnímu 
signálu, který je určen k zesilování, další tzv. řídicí signál, který bude vykazovat podstatně pomalejší 
změny, budeme mít možnost řízení zesílení původního signálu. Chování nelineárního obvodu pak 
můžeme popsat tzv. linearizovaným parametrickým modelem: linearizovaným proto, že „rychlejší“ 
signál nepodléhá nelineárnímu zkreslení, a parametrickým proto, že „pomalý“ signál mění důležitý 
parametr zařízení, v našem případě střídavé zesílení. Uvedeného principu lze využít např. 
v modulačních obvodech. 
 

3.2 OBVOD V NELINEÁRNÍM REŽIMU 
 

V této kapitole bude objasněn pojem tzv. „obohacení spektra“. Ukážeme, jak se obvod chová 
v nelineárním režimu při buzení jedním a dvěma harmonickými signály. Objasníme význam veličiny 
THD. 

Je-li klidový pracovní bod nelineárního obvodu nevhodně nastaven, pak v kombinaci s relativně 
silným vstupním signálem dochází k pohybu bodu Q po nelineárních úsecích převodních 
charakteristik. Důsledkem toho je nelineární zkreslení signálu. Říkáme, že obvod pracuje 
v nelineárním režimu. Rozebereme chování obvodu v případě jeho buzení jedním a více signály. 
Omezíme se na harmonické budicí signály, z nichž je možno ve smyslu Fourierovy řady složit obecný 
periodický budicí signál. 
 
3.2.1 Působení jednoho harmonického signálu 
 

Obr. 3.7 zachycuje situaci, kdy na nelineární obvod (je použit příklad usměrňovače) působí 
harmonický signál o kmitočtu F, jehož spektrum obsahuje jedinou spektrální čáru. Po průchodu 
obvodem s nelineární převodní charakteristikou již signál není harmonický. Nicméně zůstává 
periodický, neboli rozložitelný na jednotlivé harmonické. První harmonická je stejného kmitočtu jako 
je kmitočet vstupního signálu. Navíc se však ve spektru objevuje stejnosměrná složka a vyšší 
harmonické. Tento jev se nazývá obohacení spektra signálu nelineárním obvodem. Je to projev 
nelineárního zkreslení signálu ve frekvenční oblasti. 

t t

f f0 F 0 F 2F ...

s s1 2

 

Obr. 3.7. Zkreslení harmonického signálu nelineárním obvodem je doprovázeno rozšířením spektra 
signálu o harmonické složky, které nejsou obsaženy ve vstupním signálu. 
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V tomto konkrétním případě dochází ke zkreslení harmonického signálu. Pro toto nelineární 
zkreslení se vžil (ne příliš vhodný) název harmonické zkreslení. 

V některých případech je harmonické zkreslení, tj. „odchylka“ tvaru signálu od harmonické 
křivky, ztěží nebo zcela nerozpoznatelné pouhým pohledem na časový průběh. V laboratořích 
používané generátory signálů vyrábějí více či méně „čisté“ harmonické signály. „Harmonickou 
čistotu“ je možné analyzovat právě pomocí spektrálního analyzátoru, který odhalí míru zastoupení 
vyšších harmonických složek v generovaném signálu. Míra zkreslení se pak vyjadřuje činitelem 
harmonického zkreslení (angl. Total Harmonic Distortion) 

 THDTHD
U

UUU
THD 100,

...
%

1

2
4

2
3

2
2 =

+++
= ,  (3.1) 

kde Uk je amplituda k-té harmonické analyzovaného signálu. Je-li činitel THD menší než zhruba 1-
5%, nelze zkreslení rozpoznat pouhým okem. Běžné RC generátory signálů používané pro provozní 
měření mají činitel THD pod 0,5%. Precizní oscilátory lze vyrobit s THD pod 0,01%. 

U zesilovače na obr. 3.5a), při vstupním napětí 5mV je střídavá složka výstupního napětí uout 
nerozeznatelná od harmonického signálu (viz obr. 3.5b). Přitom počítačová simulace ukazuje, že 
činitel harmonického zkreslení je asi 4,39% (první harmonická má velikost 638mV, druhá 28mV, třetí 
705µV, …). 

Nelineární, resp. harmonické zkreslení můžeme vnímat ze dvou hledisek. Podle prvního 
hlediska je to jev, který se snažíme eliminovat. Jedná se zejména o případy nežádoucího zkreslení 
tvaru po průchodu signálu různými obvody typu zesilovač nebo přenosové vedení, nebo o generátory 
„čistých“ harmonických signálů. Druhé hledisko je opačné: existuje řada obvodů, jejichž činnost je 
založena na nelineárním zkreslení a s ním spojeném obohacení spektra: nelineární člen vygeneruje 
harmonické složky na kmitočtech různých od kmitočtu vstupního signálu, a následný filtr vybere 
harmonickou složku (příp. skupinu složek), které potřebujeme. Na tomto principu může pracovat 
například násobič kmitočtu, kdy filtr typu pásmová propust je naladěn na některou z vyšších 
harmonických, případně usměrňovač s vyhlazovacím členem typu dolní propust, na jehož výstupu je 
filtrovaná stejnosměrná složka, zbavená všech harmonických složek. 

P3.1  Uvažujte nelineární obvody se statickými převodními charakteristikami podle obr.3.8. 
Na vstup působí harmonický signál 

( ) ( ) .kHz1,2,V1,cos1 ==Ω=Ω= FFUtUtu π  

Vypočtěte časový průběh výstupního napětí a zjistěte jeho spektrální složky. 

þ Řešení: 

( ) ( ) ( ) ( ) ( )[ ]V2cos5,05,02cos
22

cos)
22

222
12 ttUUtUtutua Ω+=Ω+=Ω== . 

Ve výstupním signálu se objeví stejnosměrná složka a harmonická složka na dvojnásobném kmitočtu 
než je kmitočet buzení. 

( ) ( ) ( ) ( ) ( )

( ) ( )[ ].V3cos25,0cos75,0

3cos
4
1cos

4
3cos) 33333

12

tt

tUtUtUtutub

Ω+Ω=

=Ω+Ω=Ω==  

Ve výstupním signálu se objeví harmonická složka na stejném a harmonická složka na trojnásobném 
kmitočtu než je kmitočet buzení. 

( ) ( ) ( )[ ].1) 112 tututuc =  
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Obr.3.8. Příklady nelineárních převodních charakteristik a jejich obvodových realizací. 

Vstupní signál bude mít ořezané záporné půlvlny, bude jednocestně usměrněn. Fourierova řada 
takového signálu je řešena v příkladu na str. 17 a 18: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ].V...6cos0184,04cos0424,02cos2122,0cos5,03183,0

...6cos
7.5

14cos
5.3

12cos
3.1

12cos
22

−Ω+Ω−Ω+Ω+=

=





 −Ω+Ω−Ω+Ω+=

tttt

tttUtUUtu

&

&
ππ  

Ve výstupním signálu se objeví stejnosměrná složka a nekonečný počet harmonických složek na 
celistvých násobcích kmitočtu budicího signálu. 

n 

& Poznatky z příkladu: 

• Průchodem harmonického signálu nelineárním obvodem došlo k rozšíření původního 
jednočárového spektra o přídavné harmonické složky, které nebyly přítomny ve vstupním signálu. 

• Záleží na typu nelinearity, jaký bude charakter rozšíření spektra: polynomiální hladké závislosti 
výstupu na vstupu vedou na konečný počet spektrálních čar, ostrá ořezání vyvolají větší rozšíření. 

• Systém a) je přímo použitelný v aplikaci zdvojovače kmitočtu. 

P3.2  Na vstup nelineárního obvodu s kubickou převodní charakteristikou z obr. 3.8 b) 
přivádíme harmonický signál 

( ) ( ) kHz.50,2,mV100,cos 111 ==Ω=Ω= FFUtUtu π  

Vypočtěte činitel harmonického zkreslení THD výstupního signálu. 

þ Řešení: 

Výpočet výstupního signálu: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] .mV3cos25,0cos75,03cos
4
1cos

4
3cos 3

1
3
1

33
1

3
12 tttUtUtUtutu Ω+Ω=Ω+Ω=Ω==  

Výstupní signál je zkreslen pouze 3.harmonickou, která je však poměrně výrazná (1/3 první 
harmonické). 

Výpočet THD - vzorec (3.1): 
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n 
3.2.2 Působení dvojice harmonických signálů o různých kmitočtech 
 

Působí-li na vstup nelineárního obvodu dvojice harmonických signálů o kmitočtech f1 a f2, lze 
zobecněním případu jediného harmonického signálu předpokládat, že ve spektru výstupního signálu se 
objeví kromě stejnosměrné složky a originálních složek na kmitočtech f1 a f2 rovněž vyšší harmonické 
na celočíselných násobcích f1 a f2. Obr. 3.9 ukazuje, že tomu tak skutečně je. Kromě toho však ve 
spektru vznikají další, tzv. kombinační složky, např. f2±f1, 2f2±f1 atd. Kmitočty, na nichž se mohou 
objevit spektrální čáry, lze obecně popsat vztahem 
 012 ≥± nfmf ,  (3.2) 

kde m, n jsou přirozená čísla taková, aby výsledný kmitočet vyšel nezáporný. Pro přibližný odhad 
velikostí kombinačních složek lze použít zásadu, že čím je větší součet m+n, tím větší útlum příslušné 
složky můžeme očekávat. 

Uvedený jev může vyvolávat v některých aplikacích nežádoucí účinky. Jde zejména o případy, 
kdy do kmitočtového pásma, v němž pracuje dané zařízení, se dostanou kombinační složky odvozené 
od užitečného i rušivého signálu. Tyto rušivé složky jsou zařízením zpracovány a způsobují tzv. 
intermodulační zkreslení. Podrobnosti budou popsány v příslušné kapitole. 

Daného jevu na druhou stranu využívá řada radioelektronických zařízení. Princip je jednoduchý 
– vhodným filtrem se oddělí z výsledného spektra jen jeho část, která je pro nás důležitá. Například 
vydělením složky o rozdílovém kmitočtu f2-f1 získáme tzv. směšovač, vydělením trojice složek f2-f1, f2,  
f2+f1 amplitudový modulátor apod. 

t t

f f0 f1 0 f1 2f1 ...

s1

s3
+

f0 f2

f0 f2f1

s2

s1+s2

t

t

... ... ...

f2 2f2

f2+f1f2-f1 2f2-f1 2f2+f1

 

Obr. 3.9.  Princip vzniku kombinačních složek ve spektru výstupního signálu. 

P3.3 Uvažujte nelineární obvod s kvadratickou převodní charakteristikou z obr. 3.8a). Na 
vstup působí dvojice harmonických signálů 

( ) ( )
( ) ( ) .kHz1,2,V1,cos

,kHz10,2,V1,cos

2222222

1111111

==Ω=Ω=
==Ω=Ω=

FFUtUtu
FFUtUtu

π
π  

Vypočtěte časový průběh výstupního napětí a zjistěte jeho spektrální složky. 
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þ Řešení: 

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )

( ) ( ) ( )[ ] ( )[ ]
( ) ( ) ( )[ ] ( )[ ] [ ].Vcoscos2cos5,02cos5,01

coscos2cos
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2cos
222

coscos22cos
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212121
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2
2

1
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1

2
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2
1

21212
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2
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1

2
1

2
1

2
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2
12
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tUUtUUtUtUUU

ttUUtUUtUU
tUtUtutu

Ω−Ω+Ω+Ω+Ω+Ω+=

=Ω−Ω+Ω+Ω+Ω+Ω++=

=ΩΩ+Ω++Ω+=

=Ω+Ω==

 

Ve výstupním signálu se objeví stejnosměrná složka, harmonické složky na dvojnásobcích kmitočtu 
vstupních signálů (2kHz a 20kHz) a složky na součtovém a rozdílovém kmitočtu (11kHz a 9kHz). 

n 

P3.4 Na výstup systému z př. P3.3 zapojíme pásmovou propust (PP) naladěnou na 9kHz 
s šířkou pásma 1kHz. Zapište časový průběh výstupního signálu pásmové propusti 
v ustáleném stavu. 

& Řešení: 

Využijeme výsledku př. P3.3. Na výstupu PP mohou být pouze spektrální složky z intervalu 8,5kHz až 
9,5kHz: 

( ) ( )[ ] ( )[ ] [ ]u t U U t tPP = − = −1 2 1 2 1 2cos cos .Ω Ω Ω Ω V  

Na vstupu systému působí dva harmonické signály o kmitočtech 1kHz a 10kHz, z výstupu odebíráme 
harmonický signál o rozdílovém kmitočtu 9kHz. Takovému zařízení se říká směšovač. 

n 

P3.5 Na výstup systému z př. P3.3 zapojíme pásmovou propust naladěnou na 10kHz s šířkou 
pásma 2,2kHz. Zapište časový průběh výstupního signálu pásmové propusti 
v ustáleném stavu. 

þ Řešení: 

Využijeme výsledku př. P3.3. Na výstupu PP mohou být pouze spektrální složky z intervalu od 
8,9kHz do 11,1kHz: 

( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ][ ]u t U U t U U t t tPP = + + − = + + −1 2 1 2 1 2 1 2 1 2 1 2cos cos cos cos .Ω Ω Ω Ω Ω Ω Ω Ω V  

Na vstupu systému působí dva harmonické signály o kmitočtech 1kHz a 10kHz, z výstupu odebíráme 
součet dvou harmonických signálů o součtovém a rozdílovém kmitočtu 11kHz a 9kHz. Na výstupu je 
tedy amplitudově modulovaný signál s potlačenou nosnou na kmitočtu 10kHz a dvěma postranními 
pásmy. Zařízení představuje AM modulátor DSB-SC, signál u1 je nosná, signál u2 je modulační 
signál. 

n 
 
& Shrnutí a zobecnění: 

• Obvod pracující v nelineárním režimu je zdrojem nelineárního zkreslení zpracovávaného signálu. 
V časové oblasti to znamená deformaci jeho tvaru, v kmitočtové oblasti obohacení jeho spektra o 
složky, které nejsou ve vstupním signálu přítomny. 



_____Elektronické obvody I___________________________________________________________________ 

66 

• Je-li vstupním signálem harmonický signál, pak hovoříme o harmonickém zkreslení a 
ohodnocujeme jej faktorem THD podle rovnice (3.1). 

• Je-li vstupním signálem signál složený z více harmonických složek, pak projevem nelineárního 
zkreslení je vznik tzv. kombinačních složek, které mohou být zdrojem různých intermodulačních 
zkreslení. 

• Je řada aplikací, kdy nelineární zkreslení je nežádoucí jev (zesilovače, přenosové soustavy..) a je 
třeba proti němu provádět opatření. Na druhou stranu řada elektronických zařízení je založena na 
využití jevu obohacení spektra s následnou kmitočtovou filtrací (násobiče kmitočtu, usměrňovače, 
směšovače, modulátory, demodulátory,..). 

 
 

3.3. LINEARIZOVANÝ MODEL OBVODU 
 

V této kapitole bude objasněn postup, jak získat linearizovaný model nelineárního obvodu 
s malosignálovým buzením. Bude vysvětlen význam linearizovaných střídavých parametrů 
nelineárních součástek. Seznámíme se s náhradním schématem obvodu pro střídavý signál a 
s možnostmi jeho zjednodušování tak, aby bylo použitelné pro „ruční“ výpočty. Budou vysvětleny 
pojmy „pásmo středních kmitočtů“ a „obvody prakticky lineární“. 
 
3.3.1 Linearizovaný model obvodu 
 

Z příkladu tranzistorového zesilovače s modelem na obr. 3.5a) a příslušných časových průběhů 
na obr. 3.5b) je zřejmé, že v linearizovaném režimu činnosti, působí-li na vstup zařízení harmonický 
signál, vykazují všechna napětí a proudy v obvodu stejnosměrnou složku, danou souřadnicemi 
klidového pracovního bodu, a střídavou – harmonickou složku. Uživatele zajímají především střídavé 
složky, tj. změny kolem klidového pracovního bodu, neboť to jsou signály, které většinou na výstupu 
využíváme, např. u zesilovače k přeměně na akustický výkon prostřednictvím reproduktoru. 
Porovnáním střídavých složek výstupního a vstupního napětí získáme velikost zesílení, podíl 
střídavých složek vstupního napětí a proudu udává vstupní impedanci, apod.  

Zajímáme-li se především o střídavé veličiny v obvodu a stejnosměrné hodnoty, tj. jednou 
pevně nastavené souřadnice klidového pracovního bodu, jdou mimo naši pozornost, můžeme si dovolit 
určité zjednodušení obvodového modelu.  

Podívejme se na obr. 3.10. V levé části je modelována skutečnost, že napětí uzlu A proti zemi je 
obecně dáno stejnosměrnou složkou UQ (souřadnicí pracovního bodu) a střídavou složkou u~: 

QUuu += ~ . 
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u
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Obr. 3.10.  Zjednodušení obvodu neuvažováním stejnosměrných složek signálů. 
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Nezajímají-li nás stejnosměrná posunutí, nahradíme zdroje UQ zkratem. Zdůrazněme, že se 
jedná pouze o zkrat modelový, nikoliv faktický. Toto je třeba provést se všemi větvemi v obvodu. 
Uvědomíme-li si, že jediným zdrojem – příčinou stejnosměrných posunutí, je stejnosměrný napájecí 
zdroj, postačí nahradit tento zdroj zkratem. 

Obr. 3.14 ilustruje na příkladu zesilovače z obr. 3.1 b) praktický postup převodu schématu 
obvodu na linearizovaný model - náhradní schéma pro přenos střídavého signálu. Nejprve je zdroj 
stejnosměrného napětí nahrazen zkratem (obr. a). Tím dojde k zjednodušení obvodu, který lze 
překreslit do formy na obr. b). Jestliže je kmitočet signálu takový, že akumulační prvky – v našem 
případě kapacitory C1 a C2, mají zanedbatelnou reaktanci, pak úbytek střídavého signálu na nich je 
zanedbatelný a tyto prvky je možno rovněž nahradit zkratem (obr. c). V posledním kroku je jediný 
nelineární prvek v obvodu – tranzistor – nahrazen jeho linearizovaným modelem (vysvětlení bude 
následovat). Získáme tak náhradní schéma na obr. d), jehož analýzou lze určit všechny střídavé 
parametry zesilovače, zejména napěťové zesílení uout~/uin~, vstupní odpor uin~/iin~ a výstupní odpor 
uout~/iout~. 

P3.6 V obvodu na obr. 3.11 zjistěte stejnosměrná a střídavá napětí a proudy pro všechny 
rezistory a zdroje. 
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Obr. 3.11.  Obvod s dvojicí stejnosměrných a jedním střídavým zdrojem napětí. 

 

þ Řešení: 
V souladu s principem superpozice řešme odděleně napětí a proudy při působení jen 

stejnosměrných zdrojů (obr. 3.12 a) a pak při působení jen střídavého zdroje (obr. 3 12 b). Získaná 
stejnosměrná a střídavá řešení pak sečteme (obr. 3.13). Z obrázku například vyplývá, že vzhledem 
k střídavému zdroji obvod vykazuje střídavý vstupní odpor 0,5V/20mA = 25kΩ. To souhlasí s obr. 
3.12b), podle kterého je tento odpor tvořen paralelní kombinací dvou odporů 50kΩ. 
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Obr. 3.12.  Řešení stejnosměrných (a) a střídavých (b) poměrů v obvodu z obr. 3.11. 
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Obr. 3.13.  Úplné řešení obvodu z obr. 3.11, souvislost mezi stejnosměrným a střídavým řešením. 

n 
 

3.3.2 Linearizovaný odporový model nelineárního prvku 
 

Tento model lze získat linearizací stejnosměrných nelineárních charakteristik nelineárního 
prvku v okolí stejnosměrného pracovního bodu. Modelu je pak možné využít k analýze střídavých 
signálů, pracuje-li obvod v linearizovaném režimu, jestliže kmitočet signálu je takový, že je možné 
zanedbat vliv reaktančních prvků v obvodu (například parazitní mezielektrodové kapacity tranzistoru). 
Jestliže vliv těchto prvků není možné zanedbat, pak je třeba doplnit odporový model o příslušné 
reaktanční prvky. 

Uvažujme opět tranzistor z obr. 3.1a) a jeho statické charakteristiky z obr. 3.2. Napěťové a 
proudové poměry v tranzistoru lze popsat soustavou nezávislých napětí a proudů 

UBE, UCE, IB, IC. 

Ostatní veličiny z obr. 3.1a), totiž UBC a IE, lze dopočítat z výše uvedených. 
Závislosti mezi uvedenými veličinami jsou obecně nelineární. Některé z nich jsou graficky 

vyjádřeny na obr. 3.2. Z tohoto obrázku vyplývá, že existuje nelineární závislost mezi proudem 
kolektoru a napětím kolektor-emitor, tj. veličinami v kolektorovém okruhu. Proud kolektoru však bude 
současně ovlivňován i poměry v bázovém okruhu, tj. proudem báze, resp. napětím báze-emitor. 
Podobně proud báze bude závislý na napětí báze-emitor a zpětně bude ovlivňován i napětím kolektor-
emitor, resp. proudem kolektoru. Tyto závislosti lze popsat soustavou dvou nelineárních rovnic: 
 ),( BCECC IUII =   (3.3) 

 ),( CEBEBB UUII =   (3.4) 
Představme si, že se nacházíme v stejnosměrném pracovním bodu Q. Pak 

 ),( BQCEQCCQ IUII = , (3.5) 

 ),( CEQBEQBBQ UUII = . (3.6) 
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Obr. 3.14.  Postupné zjednodušování modelu zesilovače pro přenos „slabého“ střídavého signálu. a) 

Náhrada stejnosměrného zdroje napětí zkratem, b) překreslení schématu z obr. a) do jednodušší 
formy, c) zanedbání relativně malých reaktancí kondenzátorů – jejich náhrada zkratem, d) 
náhrada tranzistoru jeho linearizovaným nízkofrekvenčním modelem. 

 
Sledujme, co se stane s kolektorovým proudem, jestliže se „nepatrně“ změní napětí UCE a proud 

IB o diferenciály dUCE a dIB, a s proudem báze při podobné změně napětí UBE a napětí UCE o 
diferenciály dUBE a dUCE. Diferencováním rovnic (3.3) a (3.4) v pracovním bodu Q dostáváme: 

 
B

QB

C
CE

QCE

C
C dI

I
IdU

U
IdI

∂
∂

+
∂
∂

= , (3.7) 

 
CE

QCE

B
BE

QBE

B
B dU

U
IdU

U
IdI

∂
∂

+
∂
∂

= . (3.8) 

Chápeme-li změny souřadnic stejnosměrného pracovního bodu jako projev střídavých složek 
obvodových veličin, můžeme diferenciály nahradit těmito složkami a psát rovnice (3.7) a (3.8) ve 
tvaru 
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CE
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ur  … střídavý odpor kolektor-emitor při nepůsobení střídavé složky bázového proudu, 
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Obr. 3.15.  Výstupní charakteristiky tranzistoru IC = IC(UCE), IB = konst. V pracovním bodu je definován 

stejnosměrný (statický) výstupní odpor tranzistoru RCE = UCEQ/ICQ a střídavý (diferenciální) 
odpor rCE = uCE~/iC~. Odpory mají odlišný fyzikální význam a podstatně se liší v hodnotách. 
Velikost stejnosměrného odporu souvisí se strmostí přímky procházející bodem Q a počátkem 
souřadnic, zatímco velikost střídavého odporu souvisí se strmostí tečny příslušné výstupní 
charakteristiky v bodu Q. 
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Obr. 3.16.  Převodní charakteristiky tranzistoru IC = IC(IB), UCE = konst. V pracovním bodu je definován 

stejnosměrný (statický) proudový zesilovací činitel tranzistoru B = ICQ/IBQ, a střídavý 
(diferenciální) proudový zesilovací činitel β = iC~/iB~. Veličiny mají odlišný fyzikální význam, 
avšak jejich hodnoty jsou prakticky stejné v důsledku dobré linearity převodních 
charakteristik.  
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Obr. 3.17.  Vstupní charakteristiky přechodu báze-emitor tranzistoru IB = IB(UBE), UCE = konst. V širokém 
rozsahu napětí kolektor-emitor jsou charakteristiky na tomto napětí prakticky nezávislé. Z toho 
vyplývá zanedbatelná velikost parametru gBC = iB~/uCE~, uBE~ = 0. Střídavý vstupní odpor rBE 
souvisí se strmostí tečny k charakteristice v pracovním bodu Q. 

Tyto parametry představují strmosti nelineárních charakteristik tranzistoru v daném pracovním 
bodu v příslušných směrech. Jejich velikosti jsou pochopitelně závislé na typu použitého tranzistoru a 
na volbě pracovního bodu. K vytvoření hrubé představy o řádových hodnotách uvádíme „typické“ 
hodnoty pro křemíkový tranzistor: 
 rCE ≈ 100kΩ, β ≈ 100, rBE ≈ 5kΩ, gBC ≈ 0.  (3.11) 

Poslední údaj hovoří o tom, že při jednoduchých praktických výpočtech obvykle můžeme 
zanedbat zpětný vliv napětí kolektor – emitor na proud báze. 

Fyzikální význam daných parametrů je ilustrován na obr. 3.15 až 3.17. V obrázcích je vždy 
zdůrazněn rozdíl mezi stejnosměrným a střídavým parametrem včetně příslušné geometrické 
interpretace. Výstupní odpor rCE vychází relativně vysoký díky tomu, že výstupní charakteristiky 
tranzistoru vykazují v oblasti napětí kolektor-emitor větších než asi 1V poměrně malou strmost (obr. 
3.15). Z obr. 3.16 zase vyplývá, že pro relativně malé proudy báze je proud kolektoru prakticky přímo 
úměrný proudu báze, sklon příslušných přímek závisí na napětí kolektor-emitor. V této oblasti tedy 
mají stejnosměrný a střídavý proudový zesilovací činitel prakticky stejné hodnoty. Obr. 3.17 zase 
ilustruje, že ampérvoltové charakteristiky přechodu báze-emitor tranzistoru závisejí velmi málo na 
napětí kolektor-emitor, takže v prvním přiblížení je možno zanedbat vodivost gBC, která reprezentuje 
zpětný vliv kolektorového obvodu na obvod bázový. 

Rovnice 3.9 a 3.10 můžeme při zanedbání parametru gBC využít k tvorbě linearizovaného 
modelu tranzistoru na obr. 3.18 b).  
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Obr. 3.18.  Zjednodušený linearizovaný model tranzistoru vyhovující rovnicím 3.9 a 3.10 za předpokladu 
gBC = 0. 
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Rovnice 3.10 – vztah mezi napětím báze-emitor a proudem báze - je reprezentována odporem 
rBE mezi bází a emitorem. Rovnice 3.9 ukazuje, že kolektorový proud se skládá ze dvou částí. První 
člen reprezentuje proud tekoucí výstupním odporem rCE, na němž je napětí kolektor-emitor. Druhý 
člen je proud báze zesílený parametrem β. Tato rovnice je tedy modelována paralelním uspořádáním 
odporu rCE a zdroje proudu, jehož velikost je řízena proudem báze. Uvedený model byl použit v obr. 
3.14 d) jako součást linearizovaného modelu tranzistorového zesilovače. 
 
3.3.3 Linearizovaný kmitočtově závislý model nelineárního prvku 
 

Výše uvedený linearizovaný model nelineárního prvku byl odvozen linearizací stejnosměrných 
nelineárních charakteristik v okolí stejnosměrného pracovního bodu. Model tedy nezahrnuje vliv 
reaktančních prvků – parazitních kapacit a indukčností. Tento vliv je většinou nevýznamný 
v nízkofrekvenčním „audio“ pásmu. Na druhou stranu jej nelze zanedbat při modelování tranzistorů ve 
vysokofrekvenčních aplikacích. Pak je nutné původní odporový model doplnit o reaktanční prvky. Je 
třeba si uvědomit, že tyto prvky bývají rovněž nelineární, takže hodnoty příslušných kapacit a 
indukčností je nutné opět získat linearizací v okolí stejnosměrného pracovního bodu. Příslušné rovnice 
3.9 a 3.10 se pak formálně změní: namísto reálných parametrů budou parametry komplexní (například 
impedance namísto odporů), střídavé signály nyní popíšeme fázory. Pak 
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Příslušný linearizovaný kmitočtově závislý model je na obr. 3.19. 
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Obr. 3.19.  Linearizovaný kmitočtově závislý model tranzistoru vyhovující rovnicím 3.12 a 3.13. 
Komplexní parametry jsou kmitočtově závislé. 

 
3.3.4 Pásmo tzv. středních kmitočtů 
 

Uvažujme opět zesilovač na obr. 3.14 a) a jeho náhradní schémata pro střídavý signál na obr. b) 
až d). Má-li zesilovaný signál relativně nízký kmitočet, pak zesílení celého obvodu bude nízké ze dvou 
důvodů: 1. Kapacitor C1 spolu se vstupním odporem mezi bází a dolním společným vodičem tvoří 
kmitočtově závislý dělič (C-R článek), který vykazuje na nízkých kmitočtech velký útlum signálu. 2. 
Kapacitor C2 reprezentuje na nízkých kmitočtech vysokou impedanci, neblokuje tedy emitorový 
rezistor R2, který vyvolává zápornou zpětnou vazbu. Tato zpětná vazba výrazně snižuje zesílení 
stupně. 

Zesilujeme-li naopak signál o relativně vysokém kmitočtu, začnou se uplatňovat 
mezielektrodové kapacity tranzistoru (na obr. 3.14 nejsou vyznačeny). Uvažujeme-li např. kapacitu 
mezi kolektorem a emitorem CCE, která činí kolem několika pikofaradů, bude tato kapacita na 
kmitočtech řádově 100MHz „zkratovávat“ přechod kolektor-emitor reaktancí řádově stovky ohmů a 
tím snižovat zesílení. Zjednodušený model na obr. 3.14 d) neobsahuje žádnou reaktanci: pracovní 
kapacity C1 a C2 jsou nahrazeny zkraty – předpokládá se, že kmitočet signálu není příliš malý (větší 
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než desítky Hz). Parazitní kapacity tranzistoru jsou vynechány, tj. nahrazeny rozpojeními – 
předpokládá se, že kmitočet není extrémně velký (menší než jednotky MHz). V tomto kmitočtovém 
pásmu, tzv. pásmu středních kmitočtů, kdy je možno obvod modelovat čistě odporovým náhradním 
zapojením, obvod pracuje podle předpokladů návrháře. Zesílení je v tomto kmitočtovém pásmu 
nezávislé na kmitočtu. Lze jej odhadnout analýzou modelu na obr. 3.14 d): 
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Záporné znaménko znamená, že zvětšuje-li se vstupní napětí, klesá napětí výstupní, neboli že 
zesilovač invertuje signál (otáčí fázi o 180°). Mohli jsme se o tom přesvědčit z obrázků 3.5 a 3.6. 

Je třeba poznamenat, že pásmo středních kmitočtů je typické právě pro nízkofrekvenční 
zesilovače, ovšem existuje řada zařízení, u nichž uvedené pásmo nemá smysl definovat. Pracovní 
režim takových zařízení přímo využívá působení vnitřních reaktancí, které pak není možné 
zanedbávat. Typickým příkladem jsou rezonanční obvody. 
 
3.3.5 Obvody „prakticky lineární“ 
 

Jedná se o obvody, které vykazují lineární chování pro relativně široký rozsah budicích signálů. 
Typickým příkladem jsou pasivní kmitočtové filtry, složené z dvojpólů typu R, C a L. Kritickým 
prvkem z hlediska linearity zde bývají induktory. Dalším příkladem jsou obvody složené 
z integrovaných obvodů, kde linearita je zajištěna vnitřním provedením obvodu. U těchto aplikací se 
uživatel většinou nemusí zabývat nastavováním stejnosměrného pracovního bodu: u lineárních 
pasivních obvodů to není principiálně nutné, v případě integrovaných bloků bývá pracovní bod již 
optimálně nastaven ve vnitřní struktuře. Vždy je však třeba mít na paměti, že i tyto obvody se začnou 
chovat jako nelineární, dojde-li k překročení rozsahu budicích signálů mimo povolený interval. 

P3.7 Na obr. 3.20 jsou uvedeny stejnosměrné poměry v tranzistorovém zesilovači. Tranzistor 
má v daném pracovním bodě tyto linearizované parametry: 

rBE=5kΩ, rCE=100kΩ, ß=500. 

Analýzou nalezněte střídavá napětí a proudy v obvodu, je-li na vstupu zesilovače 
střídavé napětí 20mV o kmitočtu z pásma středních kmitočtů (kolem 10kHz). Zjistěte 
střídavé zesílení a vstupní odpor celého zesilovače. 
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Obr. 3.20.  Tranzistorový zesilovač a souřadnice jeho stejnosměrného pracovního bodu. 
 

þ Řešení: 
Nejprve doporučujeme kontrolním výpočtem ověřit, zda není v hodnotách stejnosměrných 

napětí a proudů na obr. 3.20 žádný rozpor. 
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K výpočtu střídavých poměrů je třeba nakreslit náhradní schéma zesilovače pro střídavý signál, 
což v prvním kroku znamená nahradit napájecí baterii zkratem a v druhém kroku zanedbat střídavé 
napětí na vazebním kapacitoru CV (jde o pásmo středních kmitočtů). Tranzistor je nahrazen jeho 
linearizovaným modelem. Výsledek je uveden na obr. 3.21b), který vznikl z obr. 3.21a) jednoduchým 
překreslením. 
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Obr. 3.21.  a) Náhradní schéma zesilovače pro střídavý signál – náhrada napájecí baterie zkratem,  
b) náhrada tranzistoru linearizovaným modelem a překreslení obvodu. 

 
Paralelní kombinace RB║rBE představuje odpor cca 4,988kΩ. Kapacitor CV má na kmitočtu 

10kHz reaktanci cca 1,59Ω. Při těchto nesouměřitelných hodnotách to znamená, že prakticky celé 
vstupní napětí bude rovno napětí báze-emitor, neboli že na kapacitoru bude zanedbatelný úbytek 
napětí. Pro další analýzu tedy lze kapacitor nahradit zkratem (jsme skutečně v pásmu středních 
kmitočtů).  
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Obr. 3.22.  Úplné řešení zesilovače z obr. 3.20, souvislost mezi stejnosměrným a střídavým řešením. 
 

Proud báze bude roven podílu napětí báze-emitor a odporu rBE, neboli 20mV/5kΩ=4µA. 
Kolektorový proud získáme vynásobením proudu báze proudovým zesilovacím činitelem ß, což činí 
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2mA. Tento proud protéká „zdola nahoru“ paralelní kombinací rCE a RC, což je asi 1,961kΩ. Střídavé 
výstupní napětí tedy bude Uout= -3,922V. Tomu odpovídá střídavé zesílení -3,922V/20mV = -196. 

Střídavý vstupní odpor zesilovače, jak vyplývá z obr. 3.21b), je roven odporu paralelní 
kombinace RB║rBE, tedy asi 4,988kΩ. 

Z obr. 3.22 je zřejmý fyzikální význam vypočtených hodnot střídavých napětí a proudů, které 
jsou nasuperponovány na klidových napětích a proudech v nastaveném stejnosměrném pracovním 
bodu. Záporné zesílení znamená, že výstupní napětí je oproti vstupnímu otočeno o 180 stupňů. 
Kolektorový proud se mění v rozmezí od 1mA do 5mA. Přitom možný rozkmit je teoreticky od 0mA 
(tranzistor je zavřen) po 6mA (tranzistor je zcela otevřen). 

n 
 
& Shrnutí a zobecnění: 

• Pro analýzu střídavých poměrů v obvodu, který pracuje v linearizovaném režimu, je výhodné 
sestavit linearizovaný model obvodu pro střídavý signál. 

• Model obvodu pro střídavý signál získáme tak, že v obvodu vyřadíme všechny stejnosměrné zdroje 
(tj. zdroje napětí zkratujeme a zdroje proudu rozpojíme) a všechny nelineární součástky nahradíme 
jejich linearizovanými modely. Při tvorbě modelů zohledníme, zda je nutné uvažovat vliv 
akumulačních prvků. Pokud ne, nahradíme příslušné akumulační prvky zkraty nebo rozpojeními, 
podle toho, zda při pracovních kmitočtech představují nízkou nebo vysokou impedanci. Získáme tak 
maximálně zjednodušený model pro pásmo středních kmitočtů. 

 

3.4 OBVOD V LINEÁRNÍM REŽIMU 
 

Kapitola se zabývá chováním obvodu v lineárním režimu při buzení jedním harmonickým 
signálem, periodickým signálem a jednorázovým impulsem. Je objasněn princip modifikace spektra 
signálu lineárním obvodem, dále lineární zkreslení a jeho příčiny, jsou ukázány podmínky, za nichž 
lineární obvod nezkresluje signál, a je poukázáno na lineární kmitočtovou filtraci jako na způsob 
využití lineárního zkreslení. 
 
3.4.1 Harmonický ustálený stav (HUS) 
 

Je-li obvod buzen jediným harmonickým signálem, pak v případě splnění podmínek stability 
(viz dále) obvod přechází do periodického ustáleného stavu. Jsou-li současně splněny podmínky 
lineárního chování obvodu, budou všechna napětí a všechny proudy v obvodu harmonické. Opakovací 
kmitočet všech těchto signálů bude stejný a bude roven opakovacímu kmitočtu budicího signálu. 
Obvod se pak nachází v stavu, který nazýváme harmonický ustálený stav (HUS). 

Pojem HUS je možné rozšířit i na nelineární obvody pracující v linearizovaném 
malosignálovém režimu, kdy jednotlivé harmonické signály jsou podloženy příslušnými 
stejnosměrnými složkami – souřadnicemi stejnosměrného pracovního bodu obvodu. 
 
3.4.2 Periodický ustálený stav (PUS) 
 

Jestliže zaměníme výše uvažovaný budicí zdroj harmonického signálu zdrojem signálu 
periodického, přechází daný obvod do periodického – obecně neharmonického ustáleného stavu. 
Všechna napětí a proudy v obvodu pak budou periodickými signály. Opakovací kmitočet všech těchto 
signálů bude stejný a bude roven opakovacímu kmitočtu budicího signálu. Obvod se nachází 
v periodickém ustáleném stavu (PUS). Z tohoto pohledu je HUS zvláštním případem PUS, kdy 
obvod je buzen periodickým signálem skládajícím se z jediné harmonické spektrální složky.  

Základní jevy, které se odehrávají v obvodech v HUS a PUS, je výhodné analyzovat 
v kmitočtové oblasti s využitím představy, že budicí signál je popsán spektrálními čarami rozloženými 
na kmitočtové ose, jeho spektrum je průchodem obvodu modifikováno, a to se promítá do změny tvaru 
výstupního signálu. Tato metodika bude použita v následujících kapitolách. 
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3.4.3 Modifikace spektra signálu lineárním obvodem 
 

Protože každý elektrický obvod je setrvačný, neboli obsahující akumulační prvky, jejichž 
reaktance jsou kmitočtově závislé, bude chování obvodu záviset na kmitočtu budicího signálu. 
Kmitočtová závislost sledované vlastnosti obvodu, například zesílení, se nazývá kmitočtová 
charakteristika. Skládá-li se budicí signál z více harmonických složek, pak kmitočtová 
charakteristika udává, s jakými vahami budou tyto složky pronikat na výstup obvodu, neboli jak bude 
modifikováno spektrum signálu po průchodu obvodem. 

Protože tvar signálu je dán jak jeho amplitudovým, tak i fázovým spektrem, je třeba při 
modifikaci spektra uvažovat jak amplitudovou, tak i fázovou kmitočtovou charakteristiku obvodu. 
Oba pojmy zopakujeme na následujícím příkladu. 
 
Příklad: Kmitočtová charakteristika RC článku typu dolní propust. 
 

Na obr. 3.23a) je ukázka testování průchodu harmonického signálu RC článkem. Článek je 
buzen z generátoru harmonických kmitů, jejichž kmitočet máme možnost měnit. Celý obvod se chová 
jako kmitočtově závislý dělič napětí, s růstem kmitočtu se bude přenos postupně zmenšovat, tak jak 
bude postupně klesat reaktance kapacitoru. Výstupní signál proto bude oproti vstupnímu změněn – 
jeho amplituda bude obecně menší a bude patrné určité časové zpoždění výstupu v důsledku průchodu 
signálu článkem. Zeslabení signálu je možné vyjádřit poměrem amplitud výstupního a vstupního 
napětí 1212 // UUUU &&= , časové zpoždění zase pomocí fázového posuvu ϕ2-ϕ1 mezi výstupním a 

vstupním signálem, kde ϕ2, resp. ϕ1 je počáteční fáze výstupního, resp. vstupního signálu. Oba 
sledované faktory budou záviset na kmitočtu. Tyto kmitočtové závislosti jsou vyneseny na obr. 3.23 b) 
jako amplitudová a fázová kmitočtová charakteristika. Daný bod amplitudové charakteristiky získáme 
tak, že nastavíme kmitočet generátoru na požadovanou hodnotu, odečteme amplitudy výstupního a 
vstupního napětí a jejich poměr vyneseme na svislou osu. Bod fázové charakteristiky pak představuje 
fázový posuv mezi výstupním a vstupním signálem při tomto kmitočtu.  

Z průběhu amplitudové kmitočtové charakteristiky vyplývá, že RC článek se chová jako dolní 
propust – signály o nízkých kmitočtech jsou přenášeny bez podstatného zeslabení, útlum roste pro 
signály o vyšších kmitočtech. Hranice mezi propustným a nepropustným pásmem je neostrá. Hraniční 
kmitočet se obyčejně definuje jako kmitočet, při kterém poklesne přenos o 3 decibely oproti přenosu 
na kmitočtu 0 Hz. Tento pokles odpovídá poklesu přenosu na hodnotu 707,02/1 ≈ . Z obrázku 
3.23b) je zřejmé, že tento kmitočet má hodnotu 1kHz. Z teorie vyplývá, že hraniční kmitočet lze určit 
pomocí hodnot R a C z vzorce 

kHz
RC

f 1
10.10.10.16.2

1
2

1
930 === − &

ππ
. 

 
Z uvedeného je zřejmé, že při průchodu harmonického signálu lineárním obvodem dochází 

v ustáleném stavu k změně signálu v tom smyslu, že se obecně změní jeho amplituda i počáteční fáze. 
Obě tyto veličiny budou záviset na kmitočtu v souladu s danými kmitočtovými charakteristikami 
obvodu. Jako příklad je možné uvést průchod harmonické nosné vlny telefonním kabelem dané délky: 
nosná o kmitočtu 1kHz bude procházet poměrně snadno, pro kmitočet 1MHz však nebude kabel 
prakticky průchozí. 

P3.8 Odvoďte vzorec pro kmitočtovou charakteristiku RC článku z obr. 3.23. Na základě 
tohoto matematického popisu nakreslete v Matlabu amplitudovou a fázovou 
kmitočtovou charakteristiku. 
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þ Řešení: 
Poměr fázorů výstupního a vstupního napětí vede na výpočet komplexní kmitočtové charakteristiky: 
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1: f=200Hz, přenos 0,98

2: f=1kHz, přenos 0,707

3: f=3kHz, přenos 0,316

1: f=200Hz, posun 11,3 stupňů

2: f=1kHz, posun 45 stupňů

3: f=3kHz, posun 71,6 stupňů

1: f=200Hz, přenos 0,98, posun 11,3 stupňů

2: f=1kHz, přenos 0,707, posun 45 stupňů

3: f=3kHz, přenos 0,316, posun 71,6 stupňů
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Obr. 3.23.  a) Ukázka měření kmitočtové charakteristiky RC článku, b) změřená amplitudová a fázová 
kmitočtová charakteristika, c) časové průběhy vstupního a výstupního signálu, na základě 
nichž byly změřeny body 1, 2 a 3 kmitočtových charakteristik. 
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Protože modul, resp. argument výsledku je matematický popis amplitudové, resp. fázové 
kmitočtové charakteristiky, dostáváme: 

Amplitudová kmitočtová charakteristika 
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Fázová kmitočtová charakteristika 

( )
62500

ω
ω
ω

ωϕ arctgarctg −=−= . 

Ověřte si, že těmto vzorcům odpovídají grafy na obr. 3.23. 

: Příklad programu v MATLABu pro vykreslení kmitočtových charakteristik: 

R=16000; % zadání odporu 
C=10e-9; % zadání kapacity 
om0=1/(R*C); % výpočet mezního kmitočtu v rad/s 
f0=om0/2/pi; % přepočet mezního kmitočtu na Hz 
f=0:5:5e3; % zadání rozsahu kmitočtů a kroku výpočtu 
om=2*pi*f; % přepočet na kruhový kmitočet 
k=1./(1+j.*om/om0); % výpočet komplexní kmitočtové charakteristiky 
mag=abs(k); % výpočet amplitudové kmitočtové charakteristiky 
plot(f,mag); % vykreslení amplitudové kmitočtové charakteristiky 
% phase=angle(k); % případný výpočet fázové kmitočtové charakteristiky 
% plot(f,phase); % případné vykreslení fázové kmitočtové charakteristiky 

 
Poznámka: Charakteristiky lze získat i „elegantněji“ pomocí funkce freqs z „SP“ Toolboxu. 

n 
 

3.4.4 Průchod signálu lineárním obvodem 
 

Průchod periodického signálu 
 

Vzniká otázka průchodu obecného periodického, nikoliv harmonického signálu obvodem se 
známou kmitočtovou charakteristikou. Zde si pomůžeme představou, že periodický signál je složen ze 
stejnosměrné složky, první harmonické a vyšších harmonických složek. Je-li obvod lineární, pak 
můžeme k určení odezvy na tento složený signál použít princip superpozice: zjistíme průnik 
jednotlivých harmonických na výstup pomocí kmitočtové charakteristiky obvodu a tyto složky pak 
sečteme ve výsledný výstupní signál. Tento přístup je ukázán v následujícím příkladu. 
 
Příklad: Průchod periodického signálu RC článkem typu dolní propust 
 

Jednocestně usměrněný harmonický signál u(t) má tvar kladných půlvln s opakovacím 
kmitočtem F = 2kHz. Tento signál je vyhlazován RC filtrem o mezním kmitočtu 1kHz z příkladu 
P3.8. Z obr. 3.24 je patrné, že vstupní signál je dobře popsatelný stejnosměrnou složkou, první a 
druhou harmonickou. To jsou spektrální složky na kmitočtech 0, 2kHz a 4kHz. Na těchto kmitočtech 
má RC článek přenos 1, 0,45 a 0,24 a tyto složky zpožďuje o fázové posuny 0, 63° a 76°. Po složení 
takto modifikovaných spektrálních složek již tvar výstupního signálu nebude odpovídat tvaru budicího 
signálu. Říkáme, že průchodem signálu RC článkem došlo k jeho zkreslení. Protože článek je lineární, 
hovoříme o lineárním zkreslení. 
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Z obr. 3.24 je dobře patrné, že míra zkreslení bude záviset na poměru mezi mezním kmitočtem 
článku a kmitočtem první harmonické signálu. Pokud je tento poměr mnohem větší než 1, bude 
zkreslení zanedbatelné, neboť pak všechny významné harmonické proniknou na výstup prakticky bez 
útlumu. 
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Obr. 3.24.  Souvislosti mezi časovými průběhy vstupního a výstupního napětí, spektry těchto signálů, a 
amplitudovou a fázovou kmitočtovou charakteristikou RC článku. 

 
Průchod impulsu 
 

Lineární obvod v počátečním stavu bez energie je vybuzen impulsem s1(t) o spektrální funkci 
( )&S1 ω . Reaguje na něj výstupním impulsem s2(t) o spektrální funkci ( )&S2 ω , přičemž platí 

 ( ) ( ) ( )& & &S K S2 1ω ω ω= , (3.14) 

kde ( )&K ω je komplexní kmitočtová charakteristika systému. 
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Odezvu obvodu na vstupní impuls je možné určit i zpětnou Fourierovou transformací. Tohoto 
postupu lze samozřejmě využít jen tehdy, existují-li spektrální funkce vstupního a výstupního signálu. 
Integrál zpětné Fourierovy transformace se však obecně velmi nesnadno řeší. V praxi můžeme použít 
numerickou metodu založenou na DFT. 

Spektrální hustoty energie výstupního a vstupního signálu spolu souvisí takto (platí pro 
jednostranné i dvoustranné hustoty): 
 ( ) ( ) ( )L K L2

2
1ω ω ω= &  (3.15) 

V závislosti na tvaru amplitudové kmitočtové charakteristiky obvodu dojde k přerozdělení 
energie ve spektru mezi vstupním a výstupním signálem. Energie impulsu vstupujícího do obvodu je 
obecně jiná než energie impulsu vystupujícího. U pasivních obvodů bez přídavných přívodů energie je 
energie výstupního impulsu menší než energie vstupního impulsu, neboť část se přemění v teplo na 
rezistivních prvcích uvnitř obvodu. 
 
Příklad: Průchod impulsu RC článkem typu horní propust 
 

RC článek typu horní propust je vybuzen obdélníkovým impulsem o výšce U = 100V a šířce 
ti = 1ms: 

( ) ( ) ( )[ ]u t U t t ti1 1 1= − − . 

Před přivedením impulsu byl kapacitor v článku vybit. Vypočtěme spektrální funkci výstupního 
signálu u2(t). Uvažujme R = 10kΩ, C = 10nF. 

C

Ru1 u2
U

ti  

Obr.3.25. RC článek typu HP buzený obdélníkovým impulsem. 

Odezva na obdélníkový impuls bude ve tvaru dvou „jehlovitých“ exponenciálních impulsů - viz 
obr.3.26. Dá se očekávat přesun energie signálu z nízkofrekvenční části spektra do oblasti vyšších 
kmitočtů. 
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Obr.3.26. Reakce článku z obr.3.25 na obdélníkový impuls. 
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Obr.3.27. Modul spektrální funkce odezvy RC článku na obdélníkový impuls. 

Derivační článek typu HP potlačuje nízkofrekvenční složky procházejícího signálu (proto má 
výstupní signál nulovou spektrální funkci pro kmitočet 0 Hz), zatímco složky nad mezním kmitočtem 
článku jsou přenášeny bez podstatného útlumu. Mezní kmitočet vychází 1/(2πRC)=1,59kHz, což 
zhruba představuje bod maxima druhého laloku na obr. 3.27. Energie impulsu v 1. laloku je 
průchodem obvodem podstatně absorbována. 

P3.9 Vypočtěte a nakreslete závislost jednostranné spektrální hustoty energie vstupního a 
výstupního impulsu RC článku z předchozího příkladu v kmitočtovém rozsahu 
0÷10kHz. 
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Obr.3.28. Spektrální výkonová hustota energie impulsu na a) vstupu b) výstupu RC článku typu horní 
propust. 

n 
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& Poznatky z příkladu: 
Z obrázků je zřejmé, že průchodem impulsu filtrem typu horní propust došlo k značnému přesunu 
energie do vyšších spektrálních pásem. Spektrální hustoty na výstupu dosahují o několik řádů 
nižších hodnot než na vstupu, což svědčí o konzumaci značné části energie impulsu samotným 
filtrem, konkrétně vnitřním rezistorem. 

P3.10 Vypočtěte energii vstupního a výstupního impulsu RC článku z př.P3.9. 

þ Řešení: 
Energie nejprve určíme z časových průběhů vstupního a výstupního signálu a pak ze 

spektrálních hustot energií. 

Výpočet z časových průběhů: 

Energie vstupního impulsu: 

( ) J1,02
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Energie výstupního impulsu (následující výpočet vyžaduje znalosti z oblasti matematického popisu 
přechodných jevů v obvodech 1.řádu): 

t ti∈〈0, ):  

( ) ( )u t U e W u t dt U e dt U e
t t tt ti i i

2 21 2
2

0

2 2

0

2 2 3

2
1 510= ⇒ = = = −









 ≈

− − − −∫ ∫τ τ ττ . J , 

t ti∈〈 ∞, ):  

( ) ( )u t U e e W u t dt U e e dt U e
t t t

t

t t tt ti i

i

i ii i

2 22 2
2 2

2
2

0

2 31 1
2

1 510= − −








 ⇒ = = −









 = −









 ≈

− − − ∞ − − − − −∫ ∫τ τ τ τ ττ . .J  

W W W U e
ti

2 21 22
2 21 10= + = −









 =

− −τ τ & .J  

Energie impulsu vycházejícího z RC článku je 10-krát menší než energie impulsu do něj vstupující. 

Výpočet ze spektrálních hustot energie: 

Energie vstupního impulsu: 
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Použijeme vzorec z numerické matematiky: 
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 Použijeme vzorec z matematiky: 

( )
( )

( )sin
,

2

2
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1 4
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dx

c
e aa

+
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( )W e2
100 01 1 0 01= − =−, & , J . 

n 

P3.11 Vypočtěte, jak je rozdělena energie vstupního a výstupního impulsu z př.P3.9 do 
kmitočtových pásem: 

a)  (0÷1) kHz, b)  (1÷2) kHz, c)  (2÷3) kHz, d)  (3÷∞) kHz. 
Řešení proveďte pomocí MATLABu. 

þ Řešení: 

Energie v kmitočtovém pásmu (ω1, ω2): 

Vstupní impuls: 
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Určité integrály vypočteme v MATLABu pomocí příkazu 

quad(‘hustota’, omega1, omega2) 

kde hustota je název funkce, definující vzorec spektrální hustoty energie v M-souboru, omega1 a 
omega2 jsou dolní a horní integrační mez. 

Výsledky výpočtů jsou shrnuty v tabulce. 

kmitočtový rozsah vstupní impuls výstupní impuls 
[kHz] W[mJ] % z celkové energie W[mJ] % z celkové energie 

 0÷1  90,280  90,280  3,613  36,13 
 1÷2  4,712  4,712  2,131  21,31 
 2÷3  1,647  1,647  1,162  11,62 
 3÷∞  3,361  3,361  3,094  30,94 

n 
 

& Poznatek z příkladu: 

Vstupní obdélníkový impuls má v kmitočtovém rozsahu (0, 1/šířka impulsu) = (0, 1)kHz 
soustředěno přes 90% své energie. Po průchodu horní propustí 1.řádu se energie ve spektru 
přeskupí do vyšších kmitočtů. V uvažovaném kmitočtovém rozsahu bude nyní jen asi 36% celkové 
energie výstupního impulsu. Celková energie na výstupu je jen 10% z energie přiváděné do článku, 
90% se tedy přemění v teplo ve filtru. 
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3.4.5 Lineární zkreslení. Podmínky nezkresleného přenosu 
 

V předchozí kapitole bylo ukázáno, že lineární zkreslení je změna tvaru signálu, vyvolaná 
průchodem signálu lineárním obvodem. Příčina zkreslení spočívá v tom, že obvod vykazuje různé 
přenosy signálu na různých kmitočtech, v důsledku čehož pronikají harmonické složky signálu na 
výstup s různým útlumem a různým fázovým posuvem. 

V technické praxi je výstupní signál s2(t) považován za nezkreslený ve vztahu k vstupnímu 
signálu s1(t), platí-li 
 )(.)( 12 τ−= tsAts ,  (3.16) 

kde A je reálná konstanta různá od nuly, udávající možné zesílení, resp. zeslabení signálu, a τ ≥ 0 
udává možné časové zpoždění signálu.  

Představíme-li si periodický signál složený z harmonických složek, pak změna jeho velikosti, 
reprezentovaná jeho vynásobením konstantou A, vlastně znamená změnu amplitudy každé harmonické 
složky A krát. Zpoždění signálu o čas τ zase znamená zpozdit každou dílčí harmonickou o tento čas. 
Ze spektrální teorie ale víme, že zpoždění 1. harmonické o kmitočtu Ω1 o čas τ představuje fázové 
zpoždění o úhel Ω1τ radiánů, ale stejné zpoždění k-té harmonické o kmitočtu k Ω1 již představuje její 
fázové posunutí kΩ1τ radiánů.  

Znamená to tedy, že ideální přenosový článek, který by zajišťoval nezkreslený přenos signálu 
podle vzorce (3.16), by musel mít konstantní amplitudovou kmitočtovou charakteristiku se zesílením 
A a lineárně klesající fázovou kmitočtovou charakteristiku, popisující nulový fázový posuv mezi 
výstupním a vstupním signálem pro kmitočet 0 a lineárně do záporných hodnot (tj. zpoždění výstupu 
oproti vstupu) klesajícím fázovým posuvem pro rostoucí kmitočet. Záporně vzatá derivace této 
závislosti na kmitočtu je pak konstantní a je právě rovna časovému zpoždění výstupního signálu oproti 
vstupnímu signálu. Nazývá se skupinové zpoždění (group delay, τg): 

 ( )τ
ω

ϕ ωS
d

d
= − . (3.17) 

V praxi postačí, pokud jsou obě podmínky, tj. konstantní amplitudová a lineární fázová 
kmitočtová charakteristika, současně splněny pouze v kmitočtovém pásmu, v němž se nachází 
spektrum zpracovávaného signálu. Například u kvalitního zesilovače hudebního signálu se požadují 
tyto vlastnosti jeho kmitočtových charakteristik v kmitočtovém pásmu cca od 15Hz do 15kHz. Pokud 
například zesilovač vykazuje pokles svého nominálního zesílení od dolního mezního kmitočtu 300Hz, 
nikoliv 15Hz, bude to znamenat, že na jeho výstupu budou potlačeny „basy“, což je projev lineárního 
zkreslení. 

P3.12 Za jakých podmínek se bude chování RC článku z obr. 3.23 blížit chování ideálního 
přenosového článku? 

þ Řešení: 
Jestliže kmitočtové spektrum vstupního signálu bude rozloženo do oblasti kmitočtů 

0ff << , 

kde f0 je mezní kmitočet článku. Pro konkrétní článek z obr. 3.23 je tento kmitočet asi 995Hz. V této 
oblasti je amplitudová kmitočtová charakteristika přibližně konstantní a fázová charakteristika 
přibližně lineární - viz obr.3.29: 

.
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ωτ
ω
ω

ω
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ϕ −=−≈−=

≈

arctg

K
 

Pak signál projde článkem prakticky beze změny tvaru, bude pouze na výstupu zpožděn oproti 
vstupu o posunutí 
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s160)( µτωϕ
ω

τ ===−==∆ RC
d
dt S . 

Pokud tedy RC článek představuje například zjednodušený model vedení pro přenos hudebního 
signálu, jehož spektrum se rozkládá v pásmu kmitočtů od 15Hz do 15kHz, pak mezní kmitočet f0 musí 
být podstatně vyšší než 15kHz. Například při f0=150kHz vychází časová konstanta asi 1µs. Hudební 
signál bude kabelem s danou kmitočtovou charakteristikou procházet prakticky bez zkreslení, na konci 
kabelu bude zpožděn asi o 1µs. 
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Obr.3.29. Detail kmitočtových charakteristik RC článku typu DP v oblasti počátku souřadnic. 

 
 
3.4.6 Kmitočtová filtrace jako příklad využití lineárního zkreslení 
 

Typickým příkladem obvodů, které využívají efektu lineárního zkreslení, jsou kmitočtové filtry. 
Amplitudová kmitočtová charakteristika filtru je záměrně tvarována tak, aby filtr v určitém 
kmitočtovém pásmu přenášel signál na výstup (propustné pásmo), a signál v určitých pásmech aby 
potlačoval (nepropustné pásmo). Daná pásma na sebe navazují formou přechodových pásem. Pro 
kvalitní filtraci je žádoucí, aby „šířka“ těchto pásem byla co nejmenší. Na obr. 3.30 jsou ukázky 
zpracování signálů filtry typu dolní propust (DP), horní propust (HP), pásmová propust (PP) a 
pásmová zádrž (PZ). Aplikační možnosti filtrů jsou velmi rozsáhlé a podrobněji o nich bude 
pojednáno v kapitole 6 „Kmitočtové filtry“. 
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Obr.3.30. Demonstrace chování různých typů kmitočtových filtrů. 
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3.5 LINEÁRNÍ DVOJBRANY 
 

V této kapitole budou ukázány podstata a výhody modelování lineárního obvodu jako 
dvojbranu. Upozorníme na několik typických skupin dvojbranů se zjednodušenými modely. 
Představíme v praxi používané matematické popisy dvojbranů a jejich vzájemné souvislosti. Ukážeme 
fyzikální význam koeficientů dvojbranu při měření naprázdno a nakrátko. Vysvětlíme metodu 
modelování různě vzájemně propojených dvojbranů. Popíšeme tzv.  behaviorální modelování 
dvojbranů pomocí řízených zdrojů. Představíme tranzistor a operační zesilovač jako speciální případy 
dvojbranů. V závěru objasníme pojmy obrazové impedance a impedanční přizpůsobení dvojbranů a 
jejich užitečnost zejména při návrhu a analýze vysokofrekvenčních obvodů pro rozvod a zpracování 
signálů. 

 
 

3.5.1 Co je to dvojbran 
 

V praxi často pracujeme s obvody, které se chovají jako „černé skříňky“ s čtveřicí vývodů, 
uspořádaných do dvojice typu „vstup“ a dvojice typu „výstup“. Tyto dvojice tvoří tzv. vstupní a 
výstupní brány, prostřednictvím nichž obvod spolupracuje s okolím. Pokud je obvod lineární, lze na 
něj pohlížet jako na lineární dvojbran.  

Jestliže nás nezajímá, co se děje uvnitř obvodu a vystačíme plně s informací o chování obvodu 
na jeho branách, pak je dvojbranové modelování přesně to, co potřebujeme. Výhodou dvojbranového 
popisu je jeho jednoduchost. Ukážeme, že bez ohledu na složitost celého obvodu je jeho dvojbranový 
popis redukován do čtveřice parametrů, které budou plně popisovat vztahy mezi napětími a proudy na 
vstupních a výstupních branách. Fakt, že například celý složitý integrovaný obvod lze modelovat 
čtyřmi parametry, lze tedy využít k značnému zjednodušování analýzy rozsáhlých obvodů.  

Jiný pohled na věc vede k představě, že složitý obvod je vlastně různým způsobem pospojovaná 
množina dvojbranů, lépe řečeno podobvodů, které lze modelovat dvojbrany. Pak je vhodné znát 
pravidla, jakým způsobem se dají zjistit parametry výsledného dvojbranu z parametrů dvojbranů 
dílčích. Ukážeme, že tato pravidla jsou poměrně jednoduchá, ovšem pokud mají platit, musíme se 
vyhýbat „nepovoleným“ typům spojování dvojbranů – je třeba zajistit, aby všechna spojení byla tzv. 
regulární. Konkrétně to znamená, že u všech propojených dvojbranů musí platit rovnost proudů ve 
vstupní bráně i ve výstupní bráně (co vtéká přes bránu dovnitř dvojbranu, musí přes bránu z dvojbranu 
vytékat, tj. I1 = I1, I2 = I2, viz obr. 3.31). 

U1 2Udvojbran

I1 I2

I1
I2vstupní brána výstupní brána  

 
Obr.3.31. K definici dvojbranu, vstupní a výstupní brány a branových napětí a proudů. 

 
Obr. 3.31 ukazuje zavedenou konvenci značení branových napětí a proudů. Všimněte si, že u 

obou bran je aplikována zdrojová orientace čítacích šipek, což znamená, že – na první pohled atypicky 
– proud výstupní brány teče horním vývodem dovnitř dvojbranu.  

Pomocí lineárních dvojbranů můžeme mimo jiné modelovat: 
a) Pasivní lineární obvody, obsahující prvky typu R, L, C, M. Příslušné dvojbrany se nazývají 

pasivní a neautonomní. 
b) Pasivní lineární obvody, obsahující prvky typu R, L, C, M, a nezávislé zdroje napětí a proudu. 

Příslušné dvojbrany se nazývají pasivní a autonomní. 
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c) Linearizované obvody, obsahující kromě pasivních prvků i lineární modely aktivních prvků 
(tranzistory, operační zesilovače apod.). V těchto modelech již nejsou uvedeny stejnosměrné 
zdroje napětí a proudu pro nastavování pracovních bodů. Příslušné dvojbrany jsou aktivní a 
neautonomní.  

Praktické uplatnění mají zejména modely typu a) a c). Dále se tedy budeme věnovat zejména 
neautonomním pasivním a aktivním dvojbranům. 

Podle vnitřní topologie se dvojbrany dělí na podélně souměrné a podélně nesouměrné a 
příčně souměrné a příčně nesouměrné. Větší praktický význam má podélná souměrnost: takový 
dvojbran nezmění své vlastnosti, pokud vzájemně zaměníme jeho vstupní a výstupní brány.  

P3.13 Rozhodněte, zda uvedené dvojbrany jsou pasivní nebo aktivní, autonomní či 
neautonomní, podélně souměrné nebo nesouměrné. 
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h)  
Obr. 3.32. Příklady dvojbranů. 

þ Řešení: 
Všechny uvedené dvojbrany jsou neautonomní, protože neobsahují nezávislé zdroje napětí a 

proudu. 
Dvojbrany e) a g) modelují součástky, které ke své funkci potřebují externí napájecí zdroje. 

Tyto zdroje zde nejsou uvedeny, protože dvojbran představuje linearizované náhradní schéma pro 
střídavý signál. Díky těmto „skrytým“ zdrojům mohou dané dvojbrany vykazovat schopnost zesilovat 
signál. Činný výkon na výstupní bráně může být větší než činný výkon na vstupní bráně“: Například u 
tranzistoru e) je součin amplitud vstupního napětí a proudu podstatně menší než součin amplitud 
napětí a proudu na výstupu. Ještě markantnější je to u operačního zesilovače, kde vstupující výkon je 
nulový. Jedná se o aktivní dvojbrany. Dvojbran h) může být náhradním modelem diodového obvodu, 
u něhož nejsou zakresleny stejnosměrné zdroje pro nastavení pracovního bodu. Diody představují 
z hlediska malosignálového pouze střídavé impedance, resp. admitance. Jde tedy o pasivní dvojbran. 

Dvojbrany b), d) a f) jsou podélně souměrné, ostatní jsou podélně nesouměrné. Dvojbran a) by 
byl podélně souměrný za předpokladu rovnosti obou odporů. 

n 
3.5.2 Rovnice neautonomního dvojbranu 

 
Ještě než přistoupíme k matematickému popisu dvojbranu, je vhodné uvést formální poznámku 

k způsobu značení obvodových veličin typu napětí a proud a parametrů obvodu typu odpor, 
impedance, admitance apod. 

 
U lineárních pasivních dvojbranů, složených pouze z rezistorů, mohou být napětí a proudy na 
branách uvažovány v libovolné formě – stejnosměrné, střídavé, s libovolným časovým průběhem. 
Rovnice dvojbranu budou formálně použitelné pro všechny tyto případy. Budou v nich figurovat 
vodivosti, resp. odpory a další stejnosměrné parametry vnitřních prvků. 
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Přidáme-li lineární akumulační prvky, pak můžeme použít dvojbranové rovnice buď k výpočtům 
v harmonickém ustáleném stavu (napětí a proudy budou popsány fázory a akumulační prvky svými 
reaktancemi), nebo k různým výpočtům operátorovou metodou (napětí a proudy budou 
reprezentovány jejich Laplacovými obrazy a „vnitřek“ obvodu operátorovým modelem). 
V případě linearizovaných aktivních nebo pasivních dvojbranů platí uvedené s tím rozdílem, že 
namísto skutečných napětí a proudů se pracuje pouze s jejich střídavými složkami. 
Z výše uvedeného je zřejmé, že napětí, proudy a „vnitřní“ parametry dvojbranu mohou mít různý 
fyzikální význam a tudíž i formálně různé zápisy podle toho, o jaký typ dvojbranu se jedná a co je 
cílem naší analýzy. Pro přehlednost a jednoduchost budeme dále jednotně označovat napětí a 
proudy dvojbranu velkými písmeny a parametry dvojbranu (impedance, admitance, bezrozměrné 
přenosy) malými písmeny, s tím, že v konkrétním případě pak lze přejít na konkrétní a zaužívanou 
formu popisu. 
 

Vnitřní zapojení dvojbranu, tj. množina obvodových prvků, spojující vstupní a výstupní bránu, 
určuje, jak spolu souvisí čtveřice napětí a proudů U1, I1, U2, I2. Protože jde o lineární dvojbran, vztahy 
mezi napětími a proudy musí být proporcionální. Existuje 6 základních tvarů příslušných rovnic 
dvojbranů, které z šesti různých úhlů popisují to samé – vztahy mezi onou čtveřicí. S výjimkou 
určitých singulárních případů platí, že známe-li jeden typ rovnic, snadno lze z něho odvodit ostatních 
pět. 

 
Impedanční rovnice – rovnice typu Z: 
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=  (3.18) 

 
Admitanční rovnice – rovnice typu Y: 
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=  (3.19) 

 
Sériově-paralelní (hybridní) rovnice – rovnice typu H: 
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Paralelně-sériové (hybridní) rovnice – rovnice typu K: 
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Postupné kaskádní rovnice – rovnice typu A: 
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Zpětné kaskádní rovnice – rovnice typu B: 
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Příslušné čtvercové matice obsahují čtveřice parametrů dvojbranu. Dané matice se nazývají 
impedanční, admitanční, sériově-paralelní, paralelně- sériová, postupná kaskádní, zpětná kaskádní, a 
značí se Z, Y, H, K, A, B. 

Všimněte si, že kaskádní parametry dvojbranu jsou definovány při uvažování změny znaménka 
u výstupního proudu. Praktický důvod se dozvíme v následující části, věnované spojování dvojbranů. 

Pohledem na rovnice (3.18)-(3.23) zjistíme, že v dvojicích (3.18)-(3.19), (3.20)-(3.21), (3.22)-
(3.23) jsou vždy zaměněny vektory na levých a pravých stranách. Z toho vyplývá, že například 
rovnice typu Y lze získat z rovnic typu Z inverzí matice Z na matici Y apod. Platí tedy: 

 Y = Z-1, K = H-1, B = A-1 (3.24) 

Pomocí jednoduchých úprav je možný i vzájemný přepočet mezi ostatními typy parametrů. 
Všechny přepočty jsou souhrnně uvedeny v Tab. 3.1. 

 
 
Tab. 3.1. Vzájemné přepočty dvojbranových parametrů. Symbol ∆ značí determinant dvojbranové matice. 
 

 Z Y H K A B 
z11 z11 y22/∆y ∆h/h22 1/k11 a11/a21 -b22/b21 
z12 z12 -y12/∆y h12/h22 -k12/k11 ∆a/a21 -1/b21 
z21 z21 -y21/∆y -h21/h22 k21/k11 1/a21 -∆b/b21 
z22 z22 y11/∆y 1/h22 ∆k/k11 a22/a21 -b11/b21 

Z 

∆z z11 z22-z12z21 1/∆y h11/h22 k22/k11 a12/a21 b12/b21 
y11 z22/∆z y11 1/h11 ∆k/k22 a22/a12 -b11/b12 
y12 -z12/∆z y12 -h12/h11 k12/k22 -∆a/a12 1/b12 
y21 -z21/∆z y21 h21/h11 -k21/k22 -1/a12 ∆b/b12 
y22 z11/∆z y22 ∆h/h11 1/k22 a11/a12 -b22/b12 

Y 

∆y 1/∆z y11 y22-y12 y21 h22/h11 k11/k22 a21/a12 b21/b12 
h11 ∆z/z22 1/y11 h11 k22/∆k a12/a22 -b12/b11 
h12 z12/z22 -y12/y11 h12 -k12/∆k ∆a/a22 1/b11 
h21 -z21/z22 y21/y11 h21 -k21/∆k -1/a22 -∆b/b11 
h22 1/z22 ∆y/y11 h22 k11/∆k a21/a22 -b21/b11 

H 

∆h z11/z22 y22/y11 h11 h22-h12 h21 1/∆k a11/a22 b22/b11 
k11 1/z11 ∆y/y22 h22/∆h k11 a21/a11 -b21/b22 
k12 -z12/z11 y12/y22 -h12/∆h k12 -∆a/a11 -1/b22 
k21 z21/z11 -y21/y22 -h21/∆h k21 1/a11 ∆b/b22 
k22 ∆z/z11 1/y22 h11/∆h k22 a12/a11 -b12/b22 

K 

∆k z22/z11 y11/y22 1/∆h k11 k22-k12 k21 a22/a11 b11/b22 
a11 z11/z21 -y22/y21 -∆h/h21 1/k21 a11 b22/∆b 
a12 ∆z/z21 -1/y21 -h11/h21 k22/k21 a12 -b12/∆b 
a21 1/z21 -∆y/y21 -h22/h21 k11/k21 a21 -b21/∆b 
a22 z22/z21 -y11/y21 -1/h21 ∆k/k21 a22 b11/∆b 

A 

∆a z12/z21 y12/y21 -h12/h21 -k12/k21 a11 a22-a12 a21 1/∆b 
b11 z22/z12 -y11/y12 1/h12 -∆k/k12 a22/∆a b11 
b12 -∆z/z12 1/y12 -h11/h12 k22/k12 -a12/∆a b12 
b21 -1/z12 ∆y/y12 -h22/h12 k11/k12 -a21/∆a b21 
b22 z11/z12 -y22/y12 ∆h/h12 -1/k12 a11/∆a b22 

B 

∆b z21/z12 y21/y12 -∆h/h12 -k21/k12 1/∆a b11 b22-b12 b21 
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P3.14 Určete impedanční parametry T-článku na obr. 3.33. 

þ Řešení: 
Impedanční rovnice (3.18) jsou tvořeny dvojicí rovnic pro výpočet branových napětí 

z branových proudů. 
 

R1 R2

R3U1 U2

I1  I2 750

250

250

I1 + I2 

 
Obr. 3.33. T-článek jako dvojbran. 

 
Z obr. 3.33 je zřejmé, že rezistorem R3 teče součet proudů I1 a I2. Pak napětí U1 a U2 vypočteme 

z proudů I1 a I2 jako součty úbytků na rezistorech: 
)( 213111 IIRIRU ++= , )( 213222 IIRIRU ++= . 

Po úpravě 

231311 )( IRIRRU ++= , 232132 )( IRRIRU ++=  
Toto jsou však rozepsané impedanční rovnice (3.18). Hledané impedanční parametry dvojbranu 

jsou zde: 
z11 = R1 + R3 = 1kΩ, z12 = R3 = 250Ω, z21 = R3 = 250Ω, z22 = R2 + R3 = 500Ω. 

n 

P3.15 Určete parametry postupné kaskádní matice A T-článku na obr. 3.33. 

þ Řešení: 
Postupné kaskádní rovnice (3.22) představují výpočet vstupního napětí a vstupního proudu 

z výstupního napětí a výstupního proudu. Jeden z možných postupů je znázorněn na obr. 3.34. 

 
R1 R2

R3U1 U2

 I2 

 R2 I2

U2 - R2 I2

(U2 - R2 I2)/R3

I1 = (U2 - R2 I2)/R3 - I2

��
�

�

 -I2

 
 

Obr. 3.34. Možný postup při hledání kaskádních parametrů dvojbranu. 
 

Z výstupního proudu se odvodí úbytek napětí na R2. Z tohoto úbytku a napětí U2 se určí napětí 
na R3 a z něj proud tekoucí rezistorem R3. Z tohoto proudu a z výstupního proudu odvodíme I1. Tím 
dostaneme druhou z postupných kaskádních rovnic: 

 ))(1( 2
3

2

3

2
1 I

R
R

R
U

I −++= . (3.25) 

Získáváme tak dvojici kaskádních parametrů 

21,41

3

2
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3
21 =+===
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a . 
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První rovnici odvodíme tak, že vstupní napětí získáme jako součet napětí na R1 a R3: 

).)(()1()])(1([ 2
3

2
1212

3

1
2222

3

2

3

2
1222111 I

R
R

RRRU
R
R

IRUI
R
R

R
U

RIRUIRU −++++=−+−++=−+=  

Zbylé dva kaskádní parametry jsou 

Ω=++==+= k75,1,41
3

2
12112

3

1
11 R

RRRRa
R
Ra . 

Kaskádní parametry jsme mohli pohodlněji získat například přepočtem impedančních parametrů 
z příkladu 3.14 pomocí tabulky 3.1: 

2
21122211 437500250.250500.1000 Ω=−=−=∆ zzzzz  

4/ 211111 == zza , Ω=∆−= 1750/ 2112 za z , mS4/1 2121 == za , 2/ 212222 == zza . 
n 

Získávání dvojbranových parametrů heuristickými postupy z předchozích příkladů je mnohdy 
zdlouhavé a nepohodlné. Výhodnější bývá níže uvedený postup, využívající principu superpozice. 

 
 

3.5.3 Určování dvojbranových parametrů ze stavů naprázdno a nakrátko 
 

Jako příklad uveďme sériově-paralelní rovnice dvojbranu, přepsané z maticové formy (3.20) do 
dvou rovnic: 

2121111 UhIhU += , 2221212 UhIhI += . 

Pak h-parametry můžeme z rovnic určit například takto: 
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1
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2 =

=
UI

Uh , 
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1 =

=
IU

Uh , 
01

2
21

2 =

=
UI

Ih , 
02

2
22

1 =

=
IU

Ih . (3.26) 

Parametry h11 a h21 tedy můžeme stanovit při výstupní bráně nakrátko (U2 = 0) a parametry h12 a 
h22 při vstupní bráně naprázdno (I1 = 0). Vše je ilustrováno v tabulce 3.2 v řádku „H“. Při zjišťování 
parametrů h11 a h21 je zkrat výstupní brány zajištěn ampérmetrem. Vstupní brána je buzena zdrojem 
proudu. Voltmetr měří napětí na vstupu. Z údajů měřicích přístrojů a nastaveného proudu budicího 
zdroje zjistíme oba h – parametry. Další dvojici parametrů zjistíme při vstupní bráně naprázdno 
(paralelně k ní je voltmetr), takže budicí zdroj musí být na výstupu.  

Z tabulky jsou rovněž zřejmé fyzikální interpretace jednotlivých dvojbranových parametrů. 

P3.16 Určete hybridní h- parametry článku Π na obr. 3.35 ze stavů naprázdno a nakrátko. 

R1 R2

R3

U1 U2

I1  I2 50

50 100

 

 
Obr. 3.35.  Analyzovaný článek typu Π. 

þ Řešení: 
Řešení je ilustrováno na obr. 3.36. 
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Tab. 3.2. Určování dvojbranových parametrů z měření naprázdno a nakrátko. 
 

 vstup nakrátko 
U1 = 0 

výstup nakrátko 
U2 = 0 

vstup naprázdno 
I1 = 0 

výstup naprázdno 
I2 = 0 

z12 = U1/I2, z22 = U2/I2 z11 = U1/I1, z21 = U2/I1 Z z11 .. vstupní impedance při výstupu z12 .. výstupně-vstupní transimpe- 
 naprázdno dance při vstupu naprázdno 

z21 .. vstupně-výstupní transimpe- z22 .. výstupní impedance při vstupu 
 dance při výstupu naprázdno naprázdno V Vvstup výstup

I2I1 = 0

 
V Vvstup výstup

I1 I2 = 0

 
y12 = I1/U2, y22 = I2/U2 y11 = I1/U1, y21 = I2/U1 Y 

A vstup výstup
A1 U = 0

U2

 

A
vstup výstup AU1

 U = 02

 

y11 .. vstupní admitance při výstupu y12 .. výstupně-vstupní transadmi- 
 nakrátko tance při vstupu nakrátko 

y21 .. vstupně-výstupní transadmitance y22 .. výstupní admitance při vstupu 
 při výstupu nakrátko nakrátko 

h11 = U1/I1, h21 = I2/I1 h12 = U1/U2, h22 = I2/U2 H h11 .. vstupní impedance při výstupu 
 nakrátko 

h21 .. vstupně-výstupní proudový 
 přenos při výstupu nakrátko V vstup výstup

I1 = 

A

U 02

 
vstup výstup

A 

U2V

I1 = 0

 

h12 .. výstupně-vstupní napěťový 
 přenos při vstupu naprázdno 

h22 .. výstupní admitance při vstupu 
 naprázdno 

k12 = I1/I2, k22 = U2/I2 k11 = I1/U1, k21 = U2/U1 K 

Vvstup výstup

I2

A

U = 01

 

k11 .. vstupní admitance při výstupu k12 .. výstupně-vstupní proudový 
 naprázdno  přenos při vstupu nakrátko 

k21 .. vstupně-výstupní napěťový k22 .. výstupní impedance při vstupu 
 přenos při výstupu naprázdno  nakrátko 

A
vstup výstupU1

 

V

I2 = 0

 
a12 = U1/(-I2), a22 = I1/(-I2) a11 = U1/U2, a21 = I1/U2 A a11 .. vstupně-výstupní napěťový 

 přenos při výstupu naprázdno 

a21 .. vstupně-výstupní transadmitance 
 při výstupu naprázdno 

= 

V
A

vstup výstup

 U 02

A
 

a12 .. vstupně-výstupní transimpe-
 dance při výstupu nakrátko 
a22 .. vstupně-výstupní proudový pře- 
 nos při výstupu nakrátko VV

A
vstup výstup

 I2 = 0

 
b12 = U2/I1, b22 = -I2/I1 b11 = U2/U1, b21 = -I2/U1 B 

Vvstup výstup
1

A

U = 0
A

 

b11 .. výstupně-vstupní napěťový 
 přenos při vstupu naprázdno 
 
b21 .. výstupně-vstupní transadmitan-
 ce při vstupu naprázdno 

V

 

Vvstup výstup
A

I1 = 0

 

b12 .. výstupně-vstupní transimpe-
 dance při vstupu nakrátko 
 
b22 .. výstupně-vstupní proudový pře- 
 nos při vstupu nakrátko 
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R1 R2

R3

U1

I1  I2 
50

50 100

 
R1 R2

R3

U1
U2

 I2 50

50 100

  I2 

a) b)  
Obr. 3.36.  Rozbor článku Π ve stavu a) výstupu nakrátko, b) vstupu naprázdno. 

Z obr. 3.36 a) vyplývá, že rezistory R1 a R3 jsou spojeny paralelně a určují velikost parametru 
h11: 

Ω=
+

== 25
31

31

1

1
11 RR

RR
I

Uh . 

Jsou-li R1 a R3 paralelně, pak proud I1 se dělí do těchto rezistorů podle vzorce pro přenos 
proudového děliče, neboli 

.5,0
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Další dva parametry zjistíme z obr. 3.36 b). Zdroj napětí U2 na výstupu vyvolá napětí U1 na 
vstupu, které je dáno přenosem děliče napětí, tvořeného rezistory R1 a R3: 
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Parametr h22 je výstupní admitance obvodu na obr. 3.36 b), což je 

mS
RRR

h 2011

312
22 =

+
+= . 

n 
 
3.5.4 Parametry vybraných jednoduchých dvojbranů 
 

V Tab. 3.3 jsou uvedeny parametry šesti jednoduchých dvojbranů. U prvních dvou článků 
nejsou uvedeny impedanční, resp. admitanční parametry. Můžete se výpočtem přesvědčit, že dané 
parametry vycházejí nekonečně velké. Říkáme, že dvojbran nemá definovány všechny své 
dvojbranové matice, nebo jinými slovy, že dvojbran je degenerovaný. 

Tabulka může posloužit k rychlému stanovení dvojbranových parametrů konkrétního dvojbranu 
o dané struktuře, případně – jak uvidíme dále – složitějšího dvojbranu, který se skládá z daných 
typizovaných dvojbranů. 

Srovnáváním parametrů uvedených dvojbranů lze dospět k určitým zákonitostem, které jsou 
shrnuty pod tabulkou. Tyto zákonitosti mohou být užitečné, protože pak některé parametry nemusíme 
počítat, ale stačí je odvodit z parametrů již známých. Později však uvidíme, že daná pravidla platí jen 
pro určitou třídu tzv. reciprocitních dvojbranů. Všimněte si, že všechny dvojbrany z Tab. 3.3 jsou 
pasivní. Například pro dvojbranové modely tranzistoru pravidla neplatí. 

Jako výborné cvičení doporučujeme ověřit si prostřednictvím výpočtů v režimech naprázdno a 
nakrátko správnost parametrů z Tab. 3.3. 
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Tab. 3.3. Parametry základních pasivních dvojbranů. 
 
 

Z
 

Z

 

1Z
2Z

 

1Z
2Z

 

1Z 2Z
3Z

 

1Z
2Z 3Z

 

z11  Z  - Z1 + Z2 Z2 Z1 + Z3 Z2(Z1 +Z3)/(Z1+Z2+Z3) 
z12  Z  - Z2 Z2 Z3 Z2Z3/(Z1 +Z2 + Z3) 
z21  Z  - Z2 Z2 Z3 Z2Z3/(Z1 +Z2 + Z3) 

Z 

z22  Z  - Z2 Z1 + Z2 Z2 + Z3 Z3(Z1 +Z2)/(Z1+Z2+Z3) 
y11  -  Y Y1 Y1 + Y2 1/[Z1 + 1/(Y2 + Y3)] Y1 + Y2 
y12  -  -Y -Y1 -Y1 -1/(Z1 + Z2 + Z1Z2/Z3) -Y1 
y21  -  -Y -Y1 -Y1 -1/(Z1 + Z2 + Z1Z2/Z3) -Y1 

Y 

y22  -  Y Y1 + Y2 Y1 1/[Z2 + 1/(Y1 + Y3)] Y1 + Y3 
h11  0  Z Z1 Z1Z2/(Z1 + Z2) Z1 + 1/(Y2 + Y3) Z1Z2/(Z1 + Z2) 
h12  1  1 1 Z2/(Z1 + Z2) Z3/(Z2 + Z3) Z2/(Z1 + Z2) 
h21  -1  -1 -1 -Z2/(Z1 + Z2) -Z3/(Z2 + Z3) -Z2/(Z1 + Z2) 

H 

h22  Y  0 Y2 1/(Z1 + Z2) 1/(Z2 + Z3) Y3 + 1/(Z1 + Z2) 
k11  Y  0 1/(Z1 + Z2) Y2 1/(Z1 + Z3) Y2 + 1/(Z1 + Z3) 
k12  -1  -1 -Z2/(Z1 + Z2) -1 -Z3/(Z1 + Z3) -Z3/(Z1 + Z3) 
k21  1  1 Z2/(Z1 + Z2) 1 Z3/(Z1 + Z3) Z3/(Z1 + Z3) 

K 

k22  0  Z Z1Z2/(Z1 + Z2) Z1 Z2 + 1/(Y1 + Y3) Z1Z3/(Z1 + Z3) 
a11  1  1 1+ Z1/Z2 1 1+ Z1/Z3 1+ Z1/Z3 
a12  0  Z Z1 Z1 Z1 + Z2 + Z1Z2/Z3 Z1 
a21  Y  0 Y2 Y2 Y3 Y2 + Y3 + Y2Y3/Y1 

A 

a22  1  1 1 1+ Z1/Z2 1+ Z2/Z3 1+ Z1/Z2 
b11  1  1 1 1+ Z1/Z2 1+ Z2/Z3 1+ Z1/Z2 
b12  0  -Z -Z1 -Z1 -(Z1 + Z2+ Z1Z2/Z3) -Z1 
b21  -Y  0 -Y2 -Y2 -Y3 -Y2 - Y3 - Y2Y3/Y1 

B 

b22  1  1 1+ Z1/Z2 1 1+ Z1/Z3 1+ Z1/Z3 
 

z12 = z21, y12 = y21, h12 = -h21, k12 = -k21, a11 = b22, a22 = b11, a12 = - b12, a21 = - b21 
∆a = ∆b = 1 
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3.5.5 Modelování dvojbranů pomocí řízených zdrojů 
 

V některých případech je účelné modelovat základní dvojbranové rovnice (3.18) až (3.21) 
pomocí řízených zdrojů. S touto praxí se setkáváme například při modelování tranzistorů. Řízené 
zdroje jsou základním nástrojem pro tzv. behaviorální modelování (ABM – Analog Behavioral 
Modeling) v profesionálních softwarových simulátorech obvodů, kdy obvod je modelován na základě 
rovnic, které popisují jeho vstupně-výstupní chování, nikoliv jeho vnitřní strukturu. Takovéto modely 
pak nemají prakticky nic společného s tím, jak je obvod fyzicky realizován. 

Modely, sestavené na základě dvojbranových rovnic typu Z, Y, H a K jsou shrnuty v Tab. 3.4. 
Vstupní brána je modelována buď sériovou kombinací impedance a zdroje napětí, nebo paralelní 
kombinací impedance a zdroje proudu, podle toho, jestli první z dvojbranových rovnic hovoří o 
vstupním napětí jako součtu jiných dvou napětí nebo o vstupním proudu jako součtu jiných dvou 
proudů. Totéž platí i o modelování výstupní brány. 

Připomeňme, že pokud k danému dvojbranu existují všechny rovnice typu Z, Y, H a K, pak jsou 
všechny dané modely vzájemně ekvivalentní. Je tedy možno volit podle potřeby jeden z daných 
modelů. Přepočty mezi nimi jsou dány tabulkou 3.1. 

Jednoduchá úprava impedančních a admitančních rovnic vede na modifikovaná náhradní 
schémata na obr. 3.37, v nichž jsou eliminovány řízené zdroje na vstupních branách. Kontrolu 
správnosti těchto modelů přenecháváme čtenáři jako cvičení. Z obrázků je zřejmé, že v případě 
rovnosti parametrů z12 = z21 a y12 = y21 (z jedné rovnosti vyplývá druhá rovnost, viz Tab. 3.1) vymizí 
z modelů řízené zdroje, takže takový dvojbran je pak popsán pouhou trojicí obyčejných impedancí, 
které jsou zapojeny do podoby vzájemně ekvivalentních článků typu T nebo Π. O těchto a dalších 
speciálních dvojbranech bude pojednáno v kapitole 3.5.6 „Zvláštní druhy dvojbranů“. 
 
Tab. 3.4. Modelování dvojbranů řízenými zdroji podle rovnic typu Z, Y, H a K. 
 
    
Z U1 = z11 I1 + z12 I2, U2 = z21 I1 + z22 I2 

U1

I1  I2 

U2

z11 z22

z12 I2 z21 I1

 

H U1 = h11 I1 + h12 U2, I2 = h21 I1 + h22 U2 

U1

I1

U2

 I2 

 
22

1
h

h11

h12 U2
h21 I1

 
Y I1 = y11 U1 + y12 U2, I2 = y21 U1 + y22 U2 

U1

I1  I2 

U2y21 U1y12 U2
11

1
y

22

1
y

 

K I1 = k11 U1 + k12 I2, U2 = k21 U1 + k22 I2 

     

U1

I1  I2 

U2

k22

k21 U1

k12 I2

 
11

1
k
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U1

I1  I2 

U2

 
1211

1
yy +

 11221 )( Uyy −

 
12

1
y

−

 
1222

1
yy +

U1

I1  I2 

U2

1211 zz − 1222 zz −

12z

11221 )( Izz −

a) b)
 

 
Obr. 3.37.  Upravené ekvivalentní modely dvojbranů typu a) Π,  a b) T. 
 

P3.17 Nahraďte článek Π na obr. 3.35 ekvivalentním článkem T, tj článkem, který bude mít 
shodné všechny dvojbranové parametry. 

þ Řešení: 
Z obr. 3.37 vyplývá, že kdybychom zjistili z-parametry dvojbranu, pak v případě rovnosti z12 = z21 
a z toho plynoucí rovnosti y12 = y21 bychom mohli článek Π přímo nahradit článkem T a jeho tři 
impedance snadno spočítat z parametrů z. 
Daný článek T byl řešen v příkladu P3.16. Cílem výpočtů byly jeho h-parametry: 

h11 = 25Ω, h12 = 0,5, h21 = -0,5, h22 = 20mS. 

Z přepočítávací tabulky 3.1 vycházejí následující z-parametry: 

z11 = 37,5Ω, z12 = 25Ω, z21 = 25Ω, z22 = 50Ω. 

Rovnost parametrů z12 a z21 je potvrzena. Článek Π tedy může být nahrazen článkem T podle obr. 
3.38 s odpory z11 – z12 = 12,5Ω, z12 = 25Ω a z22 – z12 = 25Ω. 
 
 

U1 U2

I1  I2 

 

U1 U2

I1  I2 12,5 Ω 25 Ω

25 Ω50 Ω

50 Ω

100 Ω

 
 

Obr. 3.38.  Ekvivalentní články Π a T. 
n 

P3.18. Modelujte článek Π z obr. 3.38 obvodem s řízenými zdroji na základě h-parametrů 
článku. 

þ Řešení: 
Hybridní parametry opět převezmeme z příkladu P3.16: 

h11 = 25Ω, h12 = 0,5, h21 = -0,5, h22 = 20mS. 

Z Tab. 3.3 pak vyplývá řešení na obr. 3.39: 
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U1

I1

U2

 I2 

0,5U2

-0,5 I1

25 Ω

50 Ω

 
 

Obr. 3.39.  Ekvivalentní model článků z obr. 3.38. 
n 

 
3.5.6 Zvláštní druhy dvojbranů 

 
Dvojbrany, používané k modelování elektronických obvodů, se dělí do několika skupin. K těm 

nejdůležitějším patří dvojbrany reciprocitní a unilaterální. Typickým představitelem první skupiny je 
dvojbran, složený z pasivních prvků R, L a C. Do druhé skupiny patří aktivní prvky, „vedoucí signál 
jedním směrem“, například tranzistory. 

 
Reciprocitní dvojbrany 
 
Pro tyto dvojbrany platí princip reciprocity, který je znázorněn na obr. 3.40. 
 

 1U

 1I

 2U

 2Ivstup výstup 0U vstup výstup  0U=

vstup výstup
0I vstup výstup= 0I

 
 

Obr. 3.40.  K vysvětlení principu reciprocity. 
 
Obrázek znázorňuje dva ověřovací pokusy, zda je dvojbran reciprocitní: pokus se zdrojem napětí a 

pokus se zdrojem proudu. 
V prvním pokusu se k vstupní bráně připojí zdroj napětí a změří se proud I2, tekoucí zkratovanou 

výstupní branou. Pak se tentýž zdroj napětí připojí k výstupní bráně a změří se proud I1 tekoucí 
zkratem na vstupní bráně. Pokud je dvojbran reciprocitní, musí se proud I1 rovnat proudu I2. 

V druhém pokusu se k vstupní bráně připojí zdroj proudu a změří se napětí U2 na výstupní bráně 
naprázdno. Pak se tentýž zdroj proudu připojí k výstupní bráně a změří se napětí U1 na vstupní bráně 
naprázdno. Pokud je dvojbran reciprocitní, musí se napětí U1 musí rovnat napětí U2. 

Je možné ukázat, že všechny dvojbrany, složené z pasivních prvků typu R, L a C, u nichž je možné 
provést výše uvedené experimenty se zdroji napětí a proudu, jsou reciprocitní [26]. Experimenty nelze 
provést v případě některých degenerovaných dvojbranů, např. u dvojbranu se zkratem na některé 
z bran apod. 

Srovnáme-li obr. 3.40 s definicemi z a y parametrů při měření naprázdno a nakrátko, zjistíme 
následující: 

12
0

1
21

0

2 y
U
Iy

U
I

=== , 
12

0

1
21

0

2 z
I
Uz

I
U

=== . 

Pokus se zdrojem napětí tedy ověřuje, zda platí symetrie typu y21 = y12. Pokus se zdrojem proudu 
zase potvrzuje podmínku z21 = z12.  

Z přepočítávací tabulky 3.1 je zřejmé, že z rovnosti y21 = y12 automaticky vyplývá rovnost z21 = z12 
a naopak. Znamená to tedy, že k otestování, zda je dvojbran reciprocitní, postačí provést jen jeden 
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z pokusů na obr. 3.40. Z Tab. 3.1 pak lze odvodit, jak se reciprocita promítá do dalších parametrů 
dvojbranu. Souhrnně jsou tyto podmínky uvedeny v Tab. 3.5. 

 
Zvláštním typem reciprocitního dvojbranu je ideální transformátor. Pro jeho branová napětí a 

proudy platí všeobecně známé transformační vztahy 

 12 nUU = ,  (3.27) 

 12
1 I
n

I −= ,  (3.28) 

kde transformační poměr n = N2/N1 je poměr počtu závitů na sekundární a primární straně (na výstupu 
a vstupu). 

U1

I1

U2

 I2 

 
n

 
 
Obr. 3.41.  Ideální transformátor jako dvojbran. 
 
Snadno zjistíme, že rovnice (3.27) a (3.28) jsou zpětné kaskádní rovnice dvojbranu. Z 

přepočítávací tabulky 3.1 pak vyplyne, že transformátor má definovány všechny dvojbranové matice 
s výjimkou matic Z a Y: 

n
n

0
0/1

=A , 
n

n
/10
0

=B , 
0/1
/10

n
n

−
=H , 

0
0
n

n−
=K . 

Transformátor tedy paradoxně nemá definovány z a y parametry, pomocí nichž lze ověřit, zda jde o 
reciprocitní dvojbran. Nicméně všechny další podmínky reciprocity, uvedené v Tab. 3.5, jsou splněny. 
Pro jednotkový transformační poměr se transformátor navíc chová jako podélně souměrný dvojbran. 

Je zřejmé, že ideální transformátor je pasivním dvojbranem, neboť celkový výkon, vstupující 
dovnitř přes obě brány, je nulový (vyplývá z rovnic 3.27 a 3.28): 

 U1 I1 + U2 I2 = 0.  (3.29) 

Jinými slovy, výkon vstupující dovnitř dvojbranu se rovná výkonu vystupujícímu druhou branou, 
takže ideální transformátor je systém, který výkon ani nevytváří, ani nespotřebovává. 

Další důležitá vlastnost transformátoru, totiž transformace impedance, bude ukázána později 
v příkladu P3.23 v souvislosti s výkladem různých způsobů spojování dvojbranů. 

 
Unilaterární dvojbrany 

 
V kapitole 3.3 je podrobně analyzován linearizovaný model bipolárního tranzistoru. Převedeme-li 

rovnice (3.9) a (3.10) a obr. 3.18 do dvojbranové symboliky, získáme rovnice (3.30), (3.31) a obr. 
3.42: 

 
BCE

CE
C IU

r
I β+=

1 , (3.30) 

 
CECBBE

BE
B UgU

r
I +=

1 , (3.31) 

kde 

rCE … střídavý odpor kolektor-emitor při nepůsobení střídavé složky bázového proudu, 

ß … střídavý proudový zesilovací činitel při nepůsobení střídavé složky napětí kolektor-emitor, 

rBE …  střídavý odpor kolektor-emitor při nepůsobení střídavé složky bázového proudu, 
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gCB …  zpětná přenosová vodivost z kolektorového do bázového okruhu při nepůsobení střídavé 
složky napětí báze-emitor.  

CI

BI

BEU

CEU

BEUU =1

CEUU =2

BII =1

CII =2

BEUU =1

CEUU =2

BII =1

CII =2

BEr CEr

BIβ

a) b) c)

C

B

E

B
B

C

C

E

E

 
Obr. 3.42.  a) bipolární tranzistor, b) tranzistor jako dvojbran pro zapojení SE, c) jeho linearizovaný 

model. 
 

V pásmu středních kmitočtů jsou parametry tranzistoru reálné, neboť působení parazitních 
reaktancí a kmitočtové závislosti parametrů jsou zanedbatelné. Zpětná přenosová vodivost gCB je 
rovněž zanedbatelná, tedy 

 gCB = 0. (3.32) 

Na obr. 3.42 b) je tranzistor představen jako dvojbran za předpokladu, že emitor je společným 
vývodem tranzistoru jak pro vstupní, tak i výstupní bránu. Jde tedy o zapojení se společným emitorem 
(SE). Díky nulové vodivosti gCB je náhradní schéma tranzistoru na obr. 3.42 c) poměrně jednoduché. 
Srovnáme-li jej s tabulkou 3.3, zjistíme, že schéma odpovídá náhradnímu schématu dvojbranu pro h-
parametry, kde 

 h11 = rBE, h12 = 0, h21 = ß, h22 = 1/rCE.  (3.33) 

Z obr. 3.42 c) vyplývá, že tranzistor zprostředkovává pouze přenos signálu ze vstupní brány na 
výstupní bránu (prostřednictvím řízeného zdroje kolektorového proudu), ale zpětné ovlivňování 
vstupní brány výstupní branou je potlačeno (viz rovnice 3.32). Takový dvojbran se nazývá 
unilaterální. V náhradním schématu takového dvojbranu chybí řízené zdroje, modelující zpětné 
působení výstupu na vstup. Z Tab. 3.3 vyplývá, že unilaterární dvojbran musí splňovat následující 
podmínky: 
 z12 = y12 = h12 = k12 = 0. (3.34) 

 
V Tab. 3.5 je uvedeno, jak se zjednoduší vztahy mezi parametry unilaterálního dvojbranu. 

Poznamenejme, že takový dvojbran nemá definovány b-parametry, což plyne z jejich definice. 
Z tabulky například vyplývají tyto způsoby výpočtu základních parametrů tranzistoru v zapojení SE: 

 
Vstupní odpor  1111 /1 yhrBE ==  (3.35) 
Výstupní odpor  2222 /1/1 yhrCE ==  (3.36) 
Strmost – transkonduktance  112121 / hhyS ==  (3.37) 
Proudový zesilovací činitel  BErSyyh ./ 112121 ===β  (3.38) 

 
Při dalších zapojeních tranzistoru se společnou bází (SB) nebo se společným kolektorem (SC) 

jsou dvojbranové parametry samozřejmě jiné než při zapojení SE. Pak již nepůjde o unilaterární 
dvojbrany. Způsob přepočtů dvojbranových parametrů mezi různými zapojeními tranzistoru je popsán 
např. v [28]. 
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Tab. 3.5. Vzájemné přepočty dvojbranových parametrů unilaterálního dvojbranu. 
 

 Z Y H K A 
z11 z11 1/y11 h11 1/k11 a11/a21 
z12 0 
z21 z21 -y21/∆y -h21/h22 k21/k11 1/a21 
z22 z22 1/y22 1/h22 k22 a22/a21 

Z 

∆z z11 z22 1/∆y h11/h22 k22/k11 a12/a21 
y11 1/z11 y11 1/h11 k11 a22/a12 
y12 0 
y21 -z21/∆z y21 h21/h11 -k21/k22 -1/a12 
y22 1/z22 y22 h22 1/k22 a11/a12 

Y 

∆y 1/∆z y11 y22 h22/h11 k11/k22 a21/a12 
h11 z11 1/y11 h11 K11 a12/a22 
h12 0 
h21 -z21/z22 y21/y11 h21 -k21/∆k -1/a22 
h22 1/z22 y22 h22 1/k22 a21/a22 

H 

∆h z11/z22 y22/y11 h11 h22 1/∆k a11/a22 
k11 1/z11 y11 1/h11 k11 a21/a11 
k12 0 
k21 z21/z11 -y21/y22 -h21/∆h k21 1/a11 
k22 z22 1/y22 1/h22 k22 a12/a11 

K 

∆k z22/z11 y11/y22 1/∆h k11 k22 a22/a11 
a11 z11/z21 -y22/y21 -∆h/h21 1/k21 a11 
a12 ∆z/z21 -1/y21 -h11/h21 k22/k21 a12 
a21 1/z21 -∆y/y21 -h22/h21 k11/k21 a21 
a22 z22/z21 -y11/y21 -1/h21 ∆k/k21 a22 

A 

∆a 0 
 

Dvojbranový model tranzistoru MOSFE je v porovnání s modelem bipolárního tranzistoru o 
něco jednodušší. Je to díky prakticky nekonečnému vstupnímu odporu tranzistoru mezi elektrodami G 
(Gate) a S (Source). Průchodnost tranzistoru mezi elektrodami D (Drain) a S je řízena napětím UGS, 
přičemž do vstupní brány (viz obr. 3.43) neteče proud. Proud ID je popsán rovnicí 

 
GSmDS

DS
D UgU

r
I +=

1 , (3.39) 

kde gm je strmost – transkonduktance tranzistoru MOSFE. Náhradní schéma je na obr. 3.43 c). 
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Obr. 3.43.  a) unilární tranzistor, b) tranzistor jako dvojbran, c) jeho linearizovaný model. 

 
Dalším typickým unilaterálním dvojbranem je ideální zesilovač napětí. Schématická značka 

diferenčního zesilovače napětí je na obr. 3.44 a). Poznamenejme, že spodní vývod, vycházející 



_____Elektronické obvody I___________________________________________________________________ 

102 

z pouzdra zesilovače, představuje vývody pro přivedení stejnosměrných napájecích zdrojů zesilovače, 
které jsou však v náhradním schématu linearizovaného modelu pro střídavý signál nahrazeny zkraty. 

Ideální zesilovač napětí má nekonečný vstupní odpor, nulový výstupní odpor a výstupní napětí 
závisí na vstupním napětí a zesílení podle vzorce 
 12 AUU = . (3.40) 

Výstupní napětí tedy nezávisí na výstupním proudu (protože výstupní odpor je nulový) a 
z hlediska výstupních svorek se zesilovač chová jako ideální zdroj napětí. Výstupní proud závisí na 
tom, co je připojeno k výstupní bráně. Vstupní proudy jsou nulové. Odpovídající náhradní schéma je 
na obr. 3.44 b). 

I = 01

a) b)

AU1

I = 01

I2

I2

 12 AUU =
U1

 12 AUU =

I = 01

I = 01

I2

I2
 

Obr. 3.44.  a) ideální zesilovač napětí, b) jeho dvojbranový model. 
 

Je zřejmé, že tento zesilovač je degenerovaným dvojbranem, protože některé jeho dvojbranové 
matice nejsou definovány. Zesilovač lze popsat pouze hybridními rovnicemi typu K: zesílení A je 
rovno parametru k21, ostatní k-parametry jsou nulové.  

Nejznámějšími integrovanými obvody, které lze modelovat ideálním zesilovačem napětí, jsou 
tzv. napěťový buffer (jednotkový zesilovač, napěťový sledovač) a operační zesilovač. Buffer má 
pouze jeden (neinvertující) vstup a jeho zesílení A je rovno jedné. Operační zesilovač má dvojici 
vstupů (neinvertující a invertující) a napěťové zesílení A se v ideálním případě blíží k nekonečnu. 
Vstupní napětí U1 je v konkrétní aplikaci dáno rozdílem napětí mezi vstupem + a vstupem -. Tento 
rozdíl je v případě záporné zpětné vazby v obvodu automaticky dostavován na nulu. Z uvedeného je 
zřejmé, že ideální operační zesilovač je jako dvojbran popsatelný jen velmi obtížně, protože se vlastně 
vymyká popisu všemi používanými typy dvojbranových rovnic. Lze jej popsat hybridními rovnicemi 
K pro parametr k21→∞. 

 
Zjednodušený popis zvláštních druhů dvojbranů 

 
Obecný dvojbran je popsán čtveřicí dvojbranových parametrů. U reciprocitního dvojbranu platí 

navíc vztahy symetrie typu z12 = z21, takže takovýto dvojbran je popsán trojicí nezávislých parametrů. 
Je-li navíc dvojbran podélně souměrný, lze jej popsat pouhou dvojicí parametrů. 

Unilaterální dvojbran je obecně popsán třemi nezávislými parametry. 
V Tab. 3.6 jsou shrnuty příslušné zjednodušující podmínky, týkající se uvedených typů 

dvojbranů. 
 

Tab. 3.6. Vztahy mezi parametry speciálních dvojbranů. 
 

dvojbran Z Y H K A B 
reciprocitní z12 = z21 y12 = y21 h12 = -h21 k12 = -k21 ∆a = 1 ∆b = 1 
podélně souměrný z11 = z22 y11 = y22 ∆h = 1 ∆k = 1 a11 = a22 b11 = b22 
unilaterální z12 = 0 y12 = 0 h12 = 0 k12 = 0 ∆a = 0 - 
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3.5.7 Spojování dvojbranů 
 

Existuje celkem 5 základních způsobů, jak propojit dva dvojbrany tak, aby se chovaly jako 
jeden „nový“ dvojbran: 
1. Sériové spojení: Spojíme do série vstupní brány a do série výstupní brány.  

2. Paralelní spojení: Spojíme paralelně vstupní brány a paralelně výstupní brány.  

3. Paralelně-sériové (hybridní) spojení: Spojíme paralelně vstupní brány a sériově výstupní brány.  

4. Sériově-paralelní (hybridní) spojení: Spojíme sériově vstupní brány a paralelně výstupní brány.  

5. Kaskádní spojení: Výstupní bránu prvního dvojbranu spojíme paralelně se vstupní branou 
druhého dvojbranu. 
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Obr. 3.45.  Spojování dvojbranů: a) sériové, b) paralelní, c) hybridní sériově-paralelní, d) hybridní 
paralelně-sériové, e) kaskádní. 

 



_____Elektronické obvody I___________________________________________________________________ 

104 

Všech pět způsobů je znázorněno na obr. 3.45. Pod zapojením je vždy uvedeno, jak získat 
dvojbranovou matici výsledného dvojbranu z matic dílčích dvojbranů. V případě matic typu Z, Y, H, 
K se jedná o součet, u kaskádních matic je to součin. Důkaz je snadný a je uveden například v [26]. 

Z obr. 3.45 je možné pochopit, proč v kaskádních rovnicích figuruje proud I2 se záporným 
znaménkem. Při kaskádním spojování dvojbranů se výstupní proud dvojbranu stává vstupním 
proudem následujícího dvojbranu. Podle klasické definice branových proudů by však byly uvažované 
směry obou proudů opačné. Proto je výstupní proud přesměrován a tato změna je kompenzována 
změnou jeho znaménka. 

Uvedená pravidla pro “skládání matic” však platí pouze v případě tzv. regulárního spojení 
dvojbranů. Důsledkem neregulárního spojení je „násilná“ změna příslušných parametrů (např. u 
sériového spojení to budou z-parametry) dílčích dvojbranů. Průvodním znakem takového spojení bývá 
porušení rovnosti proudů vstupujících a vystupujících z každé brány.  

Kaskádní spojení je vždy regulární. Ostatní spojení je vhodné vždy otestovat na regularitu ještě 
před použitím pravidla o součtu dvojbranových matic. Následující příklad ukazuje na možné 
neregulární spojení dvou článků. 

P3.19. Ověřte regulárnost sériového spojení dvojbranů na obr. 3.46 a) a b).  

U1 U2

I1  I2 

 750Ω

250Ω

250Ω

 750Ω

250Ω

250Ω U1 U2

I1  I2 

 750Ω

250Ω

250Ω

 750Ω

250Ω

250Ω

a) b)

 21 II +  21 II +

aI bI aI bI

 
 Obr. 3.46.  Sériová spojení dvojbranů, a) neregulární, b) regulární. 

þ Řešení: 
U obvodu a) došlo spojením dvou identických T-článků k tomu, že spodní článek má paralelně 

spojenou vstupní a výstupní bránu. Vznikl tak modifikovaný dvojbran s jinými z-parametry. 
Impedanční matice výsledného dvojbranu nebude rovna součtu impedančních matic obou dvojbranů 
před spojením. 

U obvodu b) mají oba dvojbrany před i po spojení stejné impedanční matice. Spojení je 
regulární. 

Impedanční matice všech čtyř dílčích dvojbranů na obr. 3.46 jsou ve tvaru (ověřte) 

Ω=
500250
2501000

Z . 

 
Pro regulární spojení musí platit, že impedanční matice výsledného dvojbranu je součet 

impedančních matic dílčích dvojbranů, neboli 

Ω=+=
1000500
5002000

ZZZ reg
. 
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Obvod na obr. 3.46 a) lze zjednodušit: rezistory o odporech 750Ω a 250Ω jsou paralelně a spolu 
s dvojicí sériových odporů 250Ω tvoří odpor 687,5Ω. Pak je snadné určit impedanční parametry a 
zapsat je do impedanční matice: 

Ω=
5,9375,687
5,6875,1437

)aZ . 

Pro obvod a) tedy neplatí poučka o součtu impedančních matic. 
U obvodu b) jsou dva vertikální rezistory 250Ω v sérii a tvoří 500Ω. Výpočet z-parametrů vede 

na matici 

Ω=
1000500
5002000

)bZ , 

takže zde poučka o součtu impedančních matic platí. 
Pro úplnost ještě ověříme, zda došlo k porušení rovnosti branových proudů. Z obr. 3.46 a) 

vyplývá, že součtový proud I1+I2 se dělí na proudy Ia a Ib v závislosti na poměrů odporů 250Ω a 750Ω, 
tedy 

)(25,0
750250

250)( 2121 IIIII a +=
+

+= , )(75,0
750250

750)( 2121 IIIIIb +=
+

+= . 

Je zřejmé, že obecně neplatí rovnosti branových proudů Ia = I1 a Ib = I2. Rovnost by nastala jen 
v případě, že proud I2 by byl trojnásobkem proudu I1. K tomu by došlo při rovnosti napětí U1 a U2. 
Ověření poučky o rovnosti branových proudů u zapojení b) nemá smysl: jaký je poměr proudů, 
tekoucích dvojici „paralelních zkratů“?  

n 
Existují jednoduché postupy, jak ověřit regulárnost spojení dvojbranů bez nutnosti zdlouhavých 

výpočtů a rozborů. Zájemce odkazujeme na [26]. 

P3.20. Rozložte náhradní schéma tranzistorového zesilovače z obr. 3.47 a) na regulární spojení 
dílčích dvojbranů. 

þ Řešení: 
Řešení je na obr. 3.47 b). Sériovým spojením dvojbranu „T“ s dvojbranem „RE“ vznikne další 

dvojbran, který je v kaskádním spojení s dvojbrany „RB“ a „RC“. 
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a) b)  
Obr. 3.47.  a) Náhradní schéma zesilovače pro střídavý signál, RB = 500kΩ, RE = 100Ω, RC = 2kΩ, T: rBE 

= 5kΩ, rCE = 100kΩ, S = 100mA/V, b) rozklad obvodu na propojené dvojbrany. 
n 
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P3.21. Odvoďte kaskádní matici A zesilovače z obr. 3.47. 

þ Řešení: 
Nejprve stanovíme impedanční matice sériově spojených dvojbranů „T“ a „RE“ a sečteme je. 

Tím získáme impedanční matici dvojbranu „T + RE“. Tuto matici převedeme na kaskádní matici A. 
Určíme kaskádní matice dvojbranů „RB“ a „RC“ a v konečném kroku získáme výslednou kaskádní 
matici roznásobením kaskádních matic dvojbranů „RB“, „T + RE“ a „RC“. 

S využitím tabulky 3.5 a rovnic (3.35) až (3.38) stanovíme impedanční matici tranzistoru (prvky 
matice jsou vyčísleny v Ohmech): 

10000050000000
050000

−
=

−
=

CECEBE

BE
T rrSr

r
Z . 

Impedanční matici dvojbranu „RE“ určíme snadno pomocí Tab. 3.3 (v Ohmech): 

.
100100
100100

==
EE

EE
RE RR

RR
Z  

Impedanční matice dvojbranu „T + RE“ bude 

10010049999900
1005100

−
=

+−
+

=+=+
ECECEBEE

EEBE
RETRET RrrSrR

RRr
ZZZ . 

Impedanční parametry převedeme na kaskádní parametry podle Tab. 3.1. Prvky jsou vyčísleny v 
základních jednotkách. 

38

4

10.002,210.2
2102,11010.02,1

−−

−

+ −−
−−

=RETA  

Kaskádní matice dvojbranů “RB” a “RC” stanovíme podle Tab. 3.3: 

110.5
01

1/1
01

,
110.2
01

1/1
01

46 −− ====
C

RC
B

RB RR
AA . 

Kaskádní matice celého zesilovače bude 

36

22

438

4

6 10.2224,210.1314,1
10.1021,110.5207,5

110.5
01

10.002,210.2
2102,11010.02,1

110.2
01

−−

−

−−−

−

−
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=
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=

== RCRETRB AAAA
 

Z fyzikálního významu kaskádních parametrů vyplývá velikost napěťového zesílení zesilovače 
při výstupu naprázdno: 

1.181

111

2 −==
aU

U . 

Pro úplnost je připojen výpis M-souboru MATLABU pro automatizaci výše uvedených výpočtů: 

: Ukázka řešení pomocí MATLABu: 
 
rbe=5000;rce=100000;S=0.1; zadávání parametrů T 
Rc=2000;Rb=500000;Re=100; zadávání odporů v zesilovači 
Zt=[rbe 0;-S*rbe*rce rce]; impedanční matice T 
Zre=[Re Re; Re Re]; impedanční matice RE 
Ztre=Zt+Zre; impedanční matice T+RE 
d=det(Ztre); determinant impedanční matice 
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Atre=[Ztre(1,1) d;1 Ztre(2,2)]/Ztre(2,1); převod na kaskádní parametry 
Arb=[1 0;1/Rb 1]; kaskádní matice RB 
Arc=[1 0;1/Rc 1]; kaskádní matice RC 
A=Arb*Atre*Arc; kaskádní matice celého zes. 
1/A(1,1) zobrazení zesílení 
 
Nyní lze pohodlně zjišťovat, jak závisí zesílení například na velikosti emitorového odporu RE. Při RE = 
0 vychází zesílení -196 (pak nepůsobí záporná zpětná vazba v obvodu). 

n 

P3.22. Pomocí kaskádních matic modelujte přenos napětí příčkového filtru na obr. 3.48 ze 
vstupní na výstupní bránu. 
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Obr. 3.48.  Analyzovaný příčkový filtr a jeho rozklad na kaskádní tři sekce. 

þ Řešení: 
Filtr rozdělíme na tři jednodušší dvojbrany, které jsou zapojeny v kaskádě. Vynásobíme matice 

typu A těchto dvojbranů. Výsledný přenos pak získáme jako reciprokou hodnotu parametru a11 (viz též 
příklad P3.21). 

Kaskádní matice A1, A2 a A3 dvojbranů č. 1, 2 a 3 získáme např. pomocí tabulky 3.3: 
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Následuje ukázka numerického řešení v MATLABu včetně vykreslení kmitočtové závislosti přenosu – 
amplitudové kmitočtové charakteristiky. 

: Ukázka řešení pomocí MATLABu: 
 
L1=0.228;L2=6.19e-3;L3=0.2;L4=4.52e-3;L5=41.7e-3; 
C1=244e-9;C2=128e-9;R=1000; 
flog=(2:0.01:5);f=10.^flog; tvorba logaritmické kmitočtové osy 
 od 100Hz do 100kHz 
N=size(f,2); zjištění počtu bodů kmitočtové osy 
gain=zeros(1,N); tvorba nulového vektoru přenosu 
for I=1:N výpočet přenosu „gain“ pro N kmitočtů 
    fx=f(I); výběr I-tého kmitočtu z vektoru f 
    jom=j*2*pi*fx; výpočet komplexního kmitočtu jωf 
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    pom=1/(jom*L2+1/(jom*C1)); pomocná proměnná 1/(jωL2+1/(jωC1)) 
    A1=[1+jom*L1*pom jom*L1;pom 1]; výpočet matice A1 
    pom=1/(jom*L4+1/(jom*C2)); pomocná proměnná 1/(jωL4+1/(jωC2)) 
    A2=[1+jom*L3*pom jom*L3;pom 1]; výpočet matice A2 
    A3=[1+jom*L5/R jom*L5;1/R 1]; výpočet matice A3 
    A=A1*A2*A3; výpočet výsledné kaskádní matice 
    gain(I)=1/A(1,1); výpočet přenosu napětí = 1/a11 
end; 
semilogx(f,20*log10(abs(gain))) vykreslení amplitud. kmit. char. 
grid zobrazení mřížky v grafu 

102 103 104 105
-140

-120

-100

-80

-60

-40

-20
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20

 
Obr. 3.49.  Amplitudová kmitočtová charakteristika filtru z obr. 3.48. 
 
Filtr lze rozdělit na kaskádní bloky i jinými způsoby, například na šest vzájemně se střídajících 

podélných a příčných dvojpólů. Výhoda takového přístupu může být ve větší jednoduchosti dílčích 
kaskádních matic. Nevýhoda – větší počet matic – je snadno překonatelná výpočetní výkonností 
MATLABu. Následuje ukázka upraveného textu cyklu pro tento způsob modelování: 

 
for I=1:N 
    fx=f(I); 
    jom=j*2*pi*fx; 
    A1=[1 jom*L1;0 1];A2=[1 0;1/(jom*L2+1/(jom*C1)) 1]; 
    A3=[1 jom*L3;0 1];A4=[1 0;1/(jom*L4+1/(jom*C2)) 1]; 
    A5=[1 jom*L5;0 1];A6=[1 0;1/R 1]; 
    A=A1*A2*A3*A4*A5*A6; 
    gain(I)=1/A(1,1); 
end; 

n 

P3.23. Odvoďte hybridní matice H a K dvojbranu na obr. 3.50. 

U1

I1

U2

 I2 

 
n

Y1 Y2  
Obr. 3.50.  Ideální transformátor s impedanční zátěží na primární i sekundární straně. 
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þ Řešení: 
Oboustranně zatížený transformátor můžeme chápat jako kaskádní spojení tří dvojbranů: 

dvojbranu v 1. sloupci tabulky 3.3, ideálního transformátoru, a dalšího dvojbranu stejného typu jako 
na začátku kaskády. Nejprve určíme výslednou kaskádní matici A jako součin tří dílčích kaskádních 
matic: 

nnYnY
n

Yn
n

Y /
0/1

1
01

0
0/1

1
01

1221 +
==A . 

Pomocí Tab. 3.1 provedeme převod na hybridní matice: 

2
12 //1

/10
nYYn

n
+−

=H , 
0

2
21

n
nnYY −+

=K . 

n 
 
& Shrnutí a zobecnění: 
 
- Zkratujeme-li sekundární bránu ideálního transformátoru, na primární bráně se objeví nulová 

impedance (zkrat se z výstupu transformuje na vstup jako zkrat). 
Vyplývá to z nulového parametru h11, což je vstupní impedance při výstupu nakrátko. 

- Zkratujeme-li primární bránu ideálního transformátoru, na sekundární bráně se objeví nulová 
impedance (zkrat se ze vstupu transformuje na výstup jako zkrat). 
Vyplývá to z nulového parametru k22, což je výstupní impedance při vstupu nakrátko. 

- Poměr výstupního a vstupního napětí je roven transformačnímu poměru n a nezávisí na 
impedancích, připojených k branám. 
Toto vyplývá z parametrů h12 a k21. 

- Poměr velikosti proudů primárním a sekundárním vinutím je roven transformačnímu poměru n a 
nezávisí na impedancích, připojených k branám. 
Toto vyplývá z hodnot parametrů h21 a k12. 

- Připojíme-li na výstupní bránu admitanci Y2, transformuje se na vstupní bránu jako admitance 
Y2n2. 
Toto vyplývá z vzorce pro parametr k11. 

- Připojíme-li na vstupní bránu admitanci Y1, transformuje se na výstupní bránu jako admitance 
Y1n/2. 
Toto vyplývá z vzorce pro parametr h22. 

 
Praktickými příklady využití transformace impedance je výstupní transformátor pro převod nízké 
impedance reproduktoru v koncovém stupni zesilovače ve třídě A (dnes již málo používané, viz 
kapitola 8 Zesilovače) nebo přizpůsobovací vf transformátorek pro impedanční přizpůsobení televizní 
dvojlinky a koaxiálního kabelu (viz část 3.5.8 Obrazové impedance dvojbranu). 

 
 
3.5.8 Obrazové impedance dvojbranu 
 

Obrazové impedance a impedanční přizpůsobení dvojbranu 
 

Pojem obrazové nebo též vlnové či charakteristické impedance dvojbranu je spojován 
s problematikou tzv. impedančního přizpůsobení, která je důležitá např. v televizní technice pro 
minimalizaci tzv. odrazů signálu na rozhraní kabel-kabel nebo kabel – spotřebič. Například obrazová 
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impedance koaxiálního kabelu by měla být shodná s impedancí anténních svorek televizoru. Zde je 
vhodné zdůraznit, že impedanční přizpůsobení je něco jiného než výkonové přizpůsobení, které je 
charakteristické tím, že impedance zátěže se v optimálním případě rovná komplexně sdružené vnitřní 
impedanci zdroje. 

Obr. 3.51 znázorňuje následující pokus: V prvním kroku připojíme k vstupní bráně dvojbranu 
dvojpól o impedanci Z1. Na výstupní bráně naměříme impedanci Z2, která bude obecně záviset na 
impedanci Z1 a na vlastnostech dvojbranu. V druhém kroku odpojíme dvojpól od vstupní brány a 
výstupní bránu zatížíme dvojpólem o impedanci Z2, kterou jsme naměřili v prvním kroku. Na vstupní 
bráně naměříme impedanci 1Z ′ , která se nemusí rovnat původní impedanci Z1. 

 1U

 1I

 2U

 2I

vstup výstup vstup výstup
2Z 1Z 2Z 1Z ′

1.
2.

Na vstup připojíme Z1 a na výstupu naměříme Z2.

Na výstup připojíme Z2 a na vstupu naměříme 1Z ′ .

Když 11 ZZ =′ , pak 2211 , OO ZZZZ ==
 

Obr. 3.51.  K objasnění vstupní a výstupní obrazové impedance dvojbranu. 
 

Pokud bychom tento pokus opakovali pro různé výchozí impedance Z1, zjistili bychom, že 
existuje jen jedna hodnota Z1, pro kterou dostaneme po provedení druhého kroku stejnou impedanci 

11 ZZ =′ . Pak impedance Z1 a Z2 jsou tzv. vstupní a výstupní obrazové impedance dvojbranu ZO1 a ZO2. 

Na tomto místě je vhodné zdůraznit následující:  
Zatížíme-li dvojbran na výstupních svorkách jeho výstupní obrazovou impedancí, bude vstupní 

impedance dvojbranu rovna jeho vstupní obrazové impedanci. Jinými slovy, dvojbran se bude „jevit“ 
obvodu, který budí jeho vstupní bránu, jako impedance ZO1. 

Připojíme-li k vstupní bráně dvojbranu jiný dvojbran o výstupní impedanci ZO1, transformuje se 
tato impedance na výstupní bránu dvojbranu jako ZO2. 

 antI

symetrizační člen

TV
anténa

dvojlinka koax. kabel

2OZ 1OZ 2OZ 1OZ 2OZ 1OZd d ss kk

 

300Ω 75Ω300Ω

= =

300Ω 75Ω

75Ω

 
Obr. 3.52.  K objasnění pojmu impedanční přizpůsobení. 

 
Představíme-li si sdělovací řetězec pro přenos signálu jako kaskádní spojení dílčích systémů, 

které lze modelovat dvojbrany, např. anténní dvojlinka, přizpůsobovací člen, koaxiální kabel, anténní 
vstup televizoru, pak v každém „stykovém bodě“ mezi jednotlivými částmi řetězce musí být splněna 
podmínka impedančního přizpůsobení, to znamená, že propojované brány musí vykazovat stejnou 
impedanci. Toho se dosáhne tak, že každý dvojbran musí mít vstupní obrazovou impedanci shodnou 
s výstupní obrazovou impedancí předešlého dvojbranu v kaskádě. 
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Poznamenejme, že symetrizační člen na obr. 3.52, který zajišťuje impedanční přizpůsobení mezi 
dvojlinkou a koaxiálním kabelem, lze realizovat vf transformátorkem o transformačním poměru n = 
2:1. Pak se - v souladu s výsledky příkladu P3.23 - bude impedance 75Ω, připojená k sekundáru, 
transformovat na primární stranu jako impedance n2.75 = 300Ω a impedance 300Ω z primární strany 
se transformuje na sekundární stranu jako 300/ n2 = 75Ω. 

P3.24. Na obr. 3.53 je schéma útlumového článku. Článek se zapojí mezi konce přerušeného 
koaxiálního kabelu o obrazové impedanci 50Ω. Slouží k zeslabování procházejícího 
signálu, např. příliš silného TV signálu, který by přebuzoval vstupní díl televizoru. 
Navrhněte odpory R1 a R2 tak, aby v místech spojení článku s kabely byla dodržena 
podmínka impedančního přizpůsobení. 

R1  R2

 R3

120 Ω

R  R

 R3

120 Ω

50 Ω 50 Ω

a) b)  
Obr. 3.53.  a) Útlumový T-článek, b) výstupní impedance při zatížení vstupní brány odporem 50Ω musí 

být rovněž 50Ω. 

þ Řešení: 
Připojíme-li k jedné z bran článku kabel o impedanci 50 Ω, musíme naměřit na druhé bráně 

rovněž impedanci 50Ω. Článek tedy musí být podélně souměrným dvojbranem, neboli  
R1 = R2 = R. 

Odpor R navrhneme podle obrázku 3.53 b). Výstupní impedance, která musí být 50Ω, vychází 

RR ++= 120)50(50 , neboli 
12050
120).50(50

++
+

=−
R
RR . 

Po úpravě získáme kvadratickou rovnici 
025002402 =−+ RR  

s řešeními R = -250Ω a R = 10Ω. Vybereme fyzikálně přípustné řešení 
R = 10Ω. 

Snadno se můžeme přesvědčit, že platí relace na obr. 3.53 b): 50Ω v sérii s R = 10Ω tvoří 60Ω, 
toto paralelně se 120Ω dává odpor 40Ω. Po připočtení R = 10Ω v sérii dostáváme výstupní impedanci 
50Ω. 

Navržený útlumový článek má vstupní a výstupní obrazové impedance 50Ω a lze k němu „bez 
obav“ připojit z obou stran dané koaxiální kabely. 

n 
 
& Shrnutí a zobecnění: 
 
- V některých vf aplikacích je důležité sledovat podmínky tzv. impedančního přizpůsobení obvodů. 

Pro tyto aplikace je typické, že je lze modelovat kaskádním spojováním dvojbranů. Pokud 
spojované dvojbrany nejsou impedančně přizpůsobeny, vznikají v místě spojení tzv. odrazy vln 
napětí, resp. proudu, s negativními dopady např. na kvalitu přijímaného signálu. 
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- Pro každý dvojbran lze určit jeho tzv. vstupní a výstupní obrazovou impedanci. Pro podélně 
souměrný dvojbran jsou obě impedance stejné. 

- Dvojbran je plně impedančně přizpůsobený, jestliže je zatížen na vstupní bráně jeho vstupní 
obrazovou impedancí a na výstupní bráně jeho výstupní obrazovou impedancí. 

- Pokud dvojbran obsahuje reaktanční prvky, budou jeho obrazové impedance kmitočtově závislé. Ve 
skutečnosti je pak obtížné zajistit impedanční přizpůsobení pro různé kmitočty procházejícího 
signálu. Většinou je žádoucí zajistit toto přizpůsobení alespoň v omezeném kmitočtovém pásmu, 
v němž se nachází nejvíce energie zpracovávaného signálu. 

- Typické podsystémy, které musí být impedančně přizpůsobeny v místě jejich spojení: anténa - TV 
dvojlinka, anténa – anténní zesilovač – koaxiální kabel, TV dvojlinka – přizpůsobovací člen – 
koaxiální kabel, koaxiální kabel – vstupní díl televizoru, koaxiální kabel – rozbočovač TV signálu – 
koaxiální kabel atd. 

 
 

Zjišťování obrazových impedancí ze stavů naprázdno a nakrátko 
 

Pro praktické výpočty jsou užitečné následující poučky, které umožní jednoduše určit obrazové 
impedance dvojbranu ze stavů naprázdno a nakrátko: 

Vstupní obrazová impedance se určí jako geometrický průměr vstupních impedancí při výstupu 
naprázdno (Z1,0) a při výstupu nakrátko (Z1,k). Výstupní obrazová impedance se určí jako geometrický 
průměr výstupních impedancí při vstupu naprázdno (Z2,0) a při vstupu nakrátko (Z2,k): 

 kOkO ZZZZZZ ,20,22,10,11 , == . (3.41) 

 
P3.25. Vypočtěte vstupní a výstupní obrazovou impedanci článku na obr. 3.54. 

U1 U2

I1  I2 

 

900 Ω

410 Ω

85 Ω

R1  R2

 R3

 
Obr. 3.54.  Útlumový článek Π. 

 

þ Řešení: 
Nejprve vypočteme vstupní/vstupní impedanci článku při výstupu/vstupu naprázdno a nakrátko: 

Ω==+= 4,319495900)( 3210,1 &RRRZ , 

Ω=== 7,28141090031,1 &RRZ k , 

Ω==+= 8,79131085)( 3120,2 &RRRZ , 

Ω=== 4,704108532,2 &RRZ k . 

Z (3.41) pak vychází 
ZO1 = 300Ω, ZO2 = 75Ω. 

Obvod tedy může být použit jako přizpůsobovací článek mezi TV dvojlinkou o impedanci 300Ω a 
koaxiálním kabelem o impedanci 75Ω. 

n 
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Zjišťování obrazových impedancí z dvojbranových parametrů 
 

Protože impedance dvojbranu ve stavech naprázdno a nakrátko lze zjistit z dvojbranových 
parametrů, není obtížné vyjádřit obrazové impedance dvojbranu přímo z jeho dvojbranových 
parametrů. Příslušné vzorce jsou shrnuty v Tab. 3.7. 

 
Tab. 3.7. Vzorce pro výpočet obrazových impedancí a přenosů z dvojbranových parametrů. 
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a
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B 

2111

1222

bb
bb  

2122

1211

bb
bb  

2112
22

11
11 bb

b
bb −  

2112
11

22
22 bb

b
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Obrazové přenosy a útlumy dvojbranu 

 

Jsou-li dvojbrany v kaskádním spojení impedančně přizpůsobeny, zajímají nás kromě 
impedančních poměrů i jejich přenosové vlastnosti, zejména přenos napětí a proudu ze vstupu na 
výstup. Definujme následující obvodové funkce, všechny za předpokladu, že dvojbran je zatížen na 
výstupní bráně svou výstupní obrazovou impedancí: 

Obrazový přenos napětí: 

 
1

2
, U

UK UO = . (3.42) 

Obrazový přenos proudu: 

 
1

2
, I

IK IO
−

= . (3.43) 

Obrazový útlum napětí: 

 
UO

UO KU
UG

,2

1
,

1
== . (3.44) 

Obrazový útlum proudu: 

 
IO

IO KI
IG

,2

1
,

1
=

−
= . (3.45) 
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Poznamenejme, že v literatuře je někdy zaměňován termín „útlum“ za „přenos“. Logaritmus 
obrazového přenosu, resp. útlumu, se nazývá obrazová míra přenosu, resp. útlumu. 

V Tab. 3.7 jsou uvedeny vzorce pro výpočet obrazových přenosů dvojbranů z jejich 
dvojbranových parametrů. V případě speciálních dvojbranů, např. reciprocitních nebo podélně 
souměrných, lze tyto vzorce dále zjednodušit s využitím podmínek mezi dvojbranovými parametry, 
které byly shrnuty v Tab. 3.6. Například pro dvojbran reciprocitní podélně souměrný vycházejí stejné 
jak vstupní a výstupní obrazové impedance, tak i obrazové přenosy napětí a proudu. Tabulka 3.8, 
zjednodušená pro takový případ, je uvedena níže. 

Tab. 3.8. Obrazový popis reciprocitního podélně souměrného dvojbranu. 
 

 2
1,OZ = 2

2,OZ = 2
OZ  KO,U = KO,I = KO 

Z 
2
12

2
11 zz −  1

2

12

11

12

11 −







−

z
z

z
z  

Y 
2
12

2
11

1
yy −

 1
2

12

11

12

11 −







+−

y
y

y
y  

H 

22

11

h
h  111

2
1212

−−
hh

 

K 

11

22

k
k  111

2
1212

−+−
kk

 

A 

21

12

a
a  12

1111 −− aa  

B 

21

12

b
b  12

1111 −− bb  

 
 

P3.26. Pomocí dvojbranových parametrů útlumového článku z obr. 3.53 b) odvoďte 
jeho obrazové impedance a jeho obrazový útlum. Odpor R má hodnotu 10Ω 
(vypočteno v příkladu P 3.24). 

þ Řešení: 
Článek je podélně souměrný, takže jeho vstupní a výstupní obrazové impedance jsou stejné. 

Podle Tab. 3.3 jsou například kaskádní parametry dvojbranu následující: 

12/13120/101/1 32211 =+=+== RRaa , 
Ω=+=+= 6/125120/10020/2 3

2
12 RRRa , SRa 120/1/1 321 == . 

Podle Tab. 3.7 vychází 

Ω=== 50120.
6

125

21

12

a
aZO

, 
3
21

12
13

12
131

2
2
1111 =−






−=−−= aaKO

, 5,11
==

O
O K

G . 

V příkladu P3.24 byl článek navrhován tak, aby měl obrazovou impedanci právě 50Ω. Po 
vložení článku mezi padesátiohmové koaxiální kabely bude představovat útlum signálu 1,5 krát, tj. 
útlum o 3,5dB. 

n 
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P3.27. Určete obrazový útlum napětí a proudu článku na obr. 3.54. 

þ Řešení: 
Dvojbran není podélně souměrný, použijeme tedy vzorce z Tab. 3.7. Z Tab. 3.3 vyplývá, že pro 

daný článek bude nejsnadnější určit parametry y: 

mS204,14
85
1

410
1mS,439,2

410
1mS,55.3

410
1

900
1

22211211 =+=−=−===+= &&& yyyy , 

2476,44 Sy µ=∆ & . 

Z Tab. 3.7 pak dostáváme: 

3,11110.855,8 2
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11
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∆+−

= − &&
OU
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OU K
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y
yy

K . 

823,213543,0
12
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==⇒=
∆+−

= &&
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OI K
G
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K . 

Fyzikální význam těchto výsledků je patrný z obr. 3.55, který ukazuje výsledky analýzy článku 
v programu Micro-Cap. Článek je zatížen svou výstupní obrazovou impedancí 75Ω a je napájen na 
vstupní bráně ze zdroje napětí 1V o vnitřním odporu 300Ω, což je vstupní obrazová impedance 
článku. Protože je článek na výstupu impedančně přizpůsoben, chová se na vstupní bráně jako odpor 
300Ω. Va vstupní bráně by tedy měla být polovina vnitřního napětí zdroje, tj. půl voltu. Nepatrná 
chyba je mj. způsobena tím, že obrazové impedance dvojbranu nejsou zcela přesně 300Ω a 75Ω. 
Výstupní napětí je 44.281mV, čemuž odpovídá obrazový přenos a útlum napětí  

29,11110.857,8
942.499
281.44 2 ==⇒== − &&&

OU
OuOU K

GK . 

Z výstupního a vstupního proudu článku pak ověříme obrazový přenos a útlum proudu: 

823,213542,0
1667

414,590
==⇒== &&&

OI
OIOI K

GK . 

R1
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R3

410

R2
85

Vin Rout
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Rin
300

499.942m 44.281m

1

555.491u

1.111m

520.954u1.667m 590.414u

 
 

Obr. 3.55.  Analýza impedančně přizpůsobeného článku z obr. 3.54 programem Micro-Cap. V elipsách 
jsou vyznačena uzlová napětí, v obdélnících větvové proudy. 

n 
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4 METODY ANALÝZY ELEKTRICKÝCH OBVODŮ 
 

Analýza je v širokém vědním pojetí metodou poznávání nebo zkoumání objektu jeho 
rozdělením na jednotlivé části. Je prostředkem zkoumání, který umožňuje v mnohotvárnosti jevů, 
vlastností a specifických stránek objektu odhalit to hlavní, základní, co tvoří jeho podstatu. 

Pojem analýza není v elektrotechnice používán v původním širokém smyslu. Zejména 
v souvislosti s počítačovým řešením obvodů se pod analýzou obvykle rozumí konkrétní metody 
získávání elektrických charakteristik obvodů z jejich modelů (například kmitočtová nebo 
stejnosměrná analýza).  
 
4.1 METODY A NEJČASTĚJŠÍ CÍLE ANALÝZY 
 

Metoda analýzy je konkrétní postup od modelu obvodu až po získání cíle analýzy. 
Všechny existující metody analýzy lze rozdělit na nealgoritmické a algoritmické. 
Nealgoritmické (někdy též nazývané heuristické) postupy řešitel volí na základě svých 

předchozích zkušeností s využíváním tvůrčího přístupu. Cestu a způsob řešení si volí sám dle svého 
uvážení: může obvod zjednodušit metodou transfigurace hvězda-trojúhelník, využít principu 
superpozice, Théveninovy věty apod. Způsobů, jak vyřešit konkrétní obvod, je vždy několik. Zkušený 
řešitel by měl zvolit postup, vedoucí k výsledku s co nejmenším úsilím. 

Algoritmické metody oproti tomu definují přesný postup – algoritmus, který vždy vede k cíli. 
Těchto metod využívají především počítačové simulační programy. V řadě případů je však můžeme 
použít i k jednoduchým ručním výpočtům. 

Další členění metod analýzy je založeno na typu obvodu, který se má řešit. Na obr. 4.1 je 
formou dvojitého kříže ukázáno, že elektrické obvody mohou být lineární a nelineární a rovněž 
nesetrvačné (odporové) a setrvačné (obsahující akumulační prvky typu L a C). Vznikají tak čtyři 
základní skupiny obvodů a metod jejich řešení I až IV podle obr. 4.1. 

Nejjednodušší jsou metody analýzy lineárních odporových obvodů (I). Jednodušší obvody lze 
snadno řešit „ručně“. Vzhledem k tomu, že základní nealgoritmické metody byly předmětem výuky 
v předchozích semestrech, omezíme se pouze na speciální metody řešení obvodů s operačními 
zesilovači. Z algoritmických metod budou probrány efektivní postupy, založené na metodě uzlových 
napětí, zejména pro obvody s tranzistory a operačními zesilovači. 

„Ruční“ řešení obvodů typu II až IV je vhodné jen u velmi jednoduchých případů. 
Nealgoritmické metody, uvedené pro úplnost na obr. 4.1, se již využívají jen velmi okrajově. Takovéto 
úlohy se řeší prostřednictvím specializovaných počítačových programů. 
 
& Shrnutí a zobecnění: 
• Při zkoumání dějů v elektrickém obvodu analýzou v širokém smyslu postupujeme v několika fázích: 

1. Obvod popíšeme jeho modelem, který může mít různé formy (schéma, rovnice, 
charakteristiky…). 2. Z modelu zjišťujeme požadované informace analýzou v užším smyslu. 3. 
Zpracováním výsledků analýzy, jejich konfrontací s vlastní zkušeností a s přihlédnutím k 
věrohodnosti použitých modelů usuzujeme na chování a vlastnosti reálného obvodu. 

• Model obvodu je tedy prostředník mezi člověkem, který se snaží zkoumat reálný obvod, a tímto 
obvodem. Aplikací různých typů analýz můžeme prostřednictvím modelu simulovat chování 
originálu za různých konkrétních podmínek.  

• Jednodušší modely elektrických obvodů je možné analyzovat „ručně“, složitější pak pomocí 
výpočetních prostředků a příslušných programů. Počítačové programy analyzují obvody pomocí 
algoritmických metod. V některých případech jsou tyto metody vhodné i pro „ruční“ řešení. U 
jednoduchých obvodů lze řešení snadno nalézt tvůrčí aplikací základních zákonů a obvodových 
teorémů. 
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lineární nelineární

nesetrvačné

setrvačné

I

II

III

IV

I napětí a proudy v obvodu

metoda ekvivalence
sérioparalelní zjednodušování
Théveninova a Nortonova věta
transfigurace hvězda-trojúhelník
ekvivalence zdrojů U a I
...

metoda superpozice
...

metoda Kirchhoff. a prvkových rovnic

(modifikovaná) metoda uzlových napětí
metoda smyčkových proudů

cíl

heuristické metody

...

algoritmické metody maticové

II časové průběhy, kmit. charakteristiky,

p=jw

cíl

Masonovy grafy

T-grafy + M-C grafy
Masonovy-Coatesovy (M-C) grafy

...

algoritmické metody grafové

III DC pracovní bod, DC charakteristiky

metoda ekvivalence
sérioparalelní zjednodušování

cíl

grafické metody

metoda zatěžovací přímky (křivky)
...

iterační metody 
algoritmické numerické metody

heuristické a algoritmické metody

I po formální substituciviz
a využíváním operátorových 
imitancí

IV časové průběhy, DC prac. bod,

metoda izoklin
metoda stavové roviny

cíl

grafické metody

...

iterační metody 
algoritmické numerické metody

analýza linearizovaného modelu

metody integrace diferenciálních rovnic

operátorové obvodové funkce, ...

 

Obr. 4.1.  Dělení metod analýzy podle charakteru analyzovaných obvodů. 
 
 
4.2 METODY ANALÝZY LINEÁRNÍCH OBVODŮ 
 

4.2.1 Stručně o heuristických a algoritmických metodách 
 

Heuristické metody 
 

Hledáme-li vlastní způsob analýzy konkrétního elektrického obvodu, vycházíme ze znalosti 1. a 
2. Kirchhoffova zákona, Ohmova zákona, elektrických charakteristik jednotlivých součástek a 
způsobu jejich propojení. Dále se můžeme opřít o známé principy, teorémy, věty a poučky, platné 
v teorii obvodů, které nám mohou cestu k řešení usnadnit. Mezi základní principy (teorémy), často 
používané k analýze, patří princip superpozice a princip ekvivalence. 

• Princip superpozice je platný pouze pro lineární obvody (s konstantními i časově 
proměnnými parametry). Umožňuje řešit odezvu obvodu na několik budicích zdrojů tak, že se 
v první fázi určí samostatně odezvy na každý ze zdrojů, načež se dílčí odezvy sečtou do 
výsledné odezvy. K složitému výsledku se tedy dospěje opakovaným řešením jednoduššího 
problému. Praktickou aplikací principu superpozice je metoda superpozice, tj. metoda analýzy 
založená na uvedeném principu. 

• Princip ekvivalence je velmi obecný, protože v sobě sdružuje další principy a teorémy a je na 
něm založena řada analyzačních postupů. Všechny mají společné to, že řeší problém náhrady 
části obvodu jiným obvodem tak, aby napěťové a proudové poměry ve zbytku obvodu zůstaly 
nezměněny. Tyto postupy mají praktický význam zejména tehdy, jestliže uvedenou náhradou 
dojde k zjednodušení obvodu a tím pádem k zjednodušení jeho analýzy. 

Princip ekvivalence sdružuje: 

Princip substituce (platí pro všechny elektrické prvky bez omezení) 
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Tento princip stanovuje, že pokud se nám podaří měřením nebo výpočtem zjistit, že danou větví 
protéká proud i(t), nebo že je na ní napětí u(t), pak ji můžeme nahradit ideálním zdrojem proudu 
i(t), nebo ideálním zdrojem napětí u(t), aniž by se tím změnily poměry ve zbytku obvodu. 
V některých případech může tento postup zjednodušit další analýzu. 

Théveninův a Nortonův teorém (platí pro všechny lineární obvody) 
Tyto vlastně dva teorémy jsou velmi obecné. V jejich zjednodušené verzi umožňují nahradit 
lineární obvod vzhledem k jeho dvěma svorkám reálným zdrojem napětí, resp. proudu, jakkoliv 
je původní obvod složitý.  

Na principu ekvivalence jsou založeny například tyto praktické metody: 

Metoda postupného zjednodušování sériově-paralelních kombinací prvků (platí pro všechny 
elektrické prvky bez omezení) 

Metoda ekvivalence napěťových a proudových zdrojů (platí pro lineární neřízené zdroje), 
Metoda transfigurace hvězda-trojúhelník (platí pro pasivní lineární obvody) a další. 
 

Hledání požadovaných výsledků analýzy může být komplikováno - nebo naopak paradoxně 
usnadněno – přítomností obvodových prvků se speciálním chováním, jakými jsou například ideální 
operační zesilovače. Tyto a další skutečnosti popíšeme v další kapitole. 

 
Algoritmické metody 
 

Tyto metody jsou určeny především pro počítačové řešení obvodů. Kromě toho jich můžeme 
využít k „pohodlné“ ruční analýze méně rozsáhlých obvodů, jejichž struktura nebo netypické 
obvodové prvky znesnadňují heuristické řešení. 

Řešení probíhá ve dvou základních fázích: 

1. Sestavení soustavy rovnic pomocí určitých pravidel přímo ze schématu zapojení. 
2. Vyřešení dané soustavy rovnic. 

 
Algoritmické metody jsou založeny na tzv. obecných metodách analýzy obvodů. Nejznámější 

jsou uvedeny v Tab. 4.1. 

Tab. 4.1. Charakterizace obecných metod analýzy obvodů. 

metoda analýzy výhody nevýhody 
Metoda Kirchhoffových a 
prvkových rovnic 

Analýza všech obvodů bez 
omezení. 

Velký počet rovnic. 
Komplikovaný algoritmus jejich 
sestavení 

Metoda smyčkových proudů Relativně malý počet rovnic. Nelze řešit obvody se zdroji 
proudu.  
Komplikovaný algoritmus 
sestavení rovnic. 

Metoda uzlových napětí Relativně malý počet rovnic. 
Snadný algoritmus jejich 
sestavení. 

Nelze řešit obvody se zdroji 
napětí.  
 

Modifikovaná metoda 
uzlových napětí 

Analýza všech obvodů bez 
omezení. Snadný algoritmus 
sestavení rovnic. 

Některé varianty metody vedou 
na relativně velký počet rovnic. 

 
V tomto učebním textu se z praktických důvodů omezíme na metodu uzlových napětí a její 

modifikace. Zvládnutím metody uzlových napětí je výhodné alespoň ze dvou důvodů. Jednak lépe 
porozumíme fungování většiny komerčních simulátorů, které tuto metodu využívají, jednak získáme 
užitečný nástroj pro vlastní výpočty. 
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4.2.2 Heuristické postupy při řešení obvodů s ideálními operačními 
zesilovači 

 

Ideální operační zesilovač (IOZ) má natolik výjimečné vlastnosti – nekonečné zesílení, 
nekonečný vstupní odpor, nulový výstupní odpor, že analýza aplikačních obvodů, které tento zesilovač 
využívají k své činnosti, může činit určité problémy. Níže uvedená intuitivní metoda je asi to nejlepší, 
čeho se můžeme držet při heuristické analýze lineárních aplikací IOZ. 
 

Intuitivní metoda řešení obvodů s ideálními operačními zesilovači 

Vychází z tří základních vlastností IOZ: 
1. Nekonečný vstupní odpor, jehož důsledkem jsou nulové proudy tekoucí do vstupů. 
2. Nekonečné napěťové zesílení, které v kombinaci se zápornou zpětnou vazbou v obvodu způsobuje 

nulové diferenční napětí mezi vstupy operačního zesilovače. 
3. Nulový výstupní odpor, který způsobuje, že výstup IOZ se chová jako ideální zdroj napětí. 

Velikost tohoto napětí tedy nebude záviset na zátěži, připojené k výstupu. 

Před použitím této metody je vhodné se přesvědčit, že celková zpětná vazba působící v obvodu je 
záporná. Pokud tomu tak není, nelze použít poučku 2 o nulovém diferenčním napětí. 

 
Postup: 

1. Ve schématu vyznačíme, že diferenční napětí IOZ je nulové a že do vstupů IOZ netečou proudy. 
2. Na zbylou část obvodu aplikujeme Kirchhoffovy zákony, Ohmův zákon a případně další známé 

teorémy a poučky. 
 
Připomeňme, že diferenčním napětím se míní napětí mezi vstupními svorkami IOZ. 
Pokud nám chybějí znalosti ke kvalifikovanému ověření, zda v obvodu působí záporná zpětná 

vazba, pak toto ověření provedeme alespoň intuitivně: u jednodušších zapojení ověříme, zda je signál 
z výstupu IOZ veden zpět na invertující vstup (záporná zpětná vazba), nebo na neinvertující vstup 
(kladná zpětná vazba). Zpětné vazbě je věnována kapitola 7. 

V závěru bychom měli ověřit, zda vypočtené výstupní napětí operačního zesilovače leží 
v rozsahu, vymezeném záporným a kladným saturačním napětím OZ. Saturační napětí bývá běžně o 1 
až 2 volty nižší než napájecí napětí, u operačních zesilovačů „rail-rail“ je saturační napětí přímo rovno 
napájecímu napětí. Pokud by vypočtené napětí vybočovalo z těchto mezí, znamenalo by to ve 
skutečném obvodu saturaci OZ, neboli nelineární režim, pro který neplatí mj. poučka o nulovém 
diferenčním napětí. Jinými slovy, výsledky „lineární“ analýzy by neodpovídaly skutečnosti. 

P4.1  Vypočtěte výstupní napětí invertujícího zesilovače na obr. 4.2 a stanovte jeho napěťové 
zesílení. 

þ Řešení: 
V obvodu působí záporná zpětná vazba z výstupu přes rezistory R2 a R1 na invertující vstup, takže je 
možné použít poučku o nulovém diferenčním napětí. 
Postup řešení, rozdělený do 9 kroků, je ilustrován na obr. 4.3. Výstupní napětí je -2V, takže zesílení 
obvodu je -2/0,1 = -20. OZ není v saturaci, výsledky analýzy jsou platné. 
Provedeme-li analýzu obecně se symboly odporů R1 a R2, nikoliv s číselnými hodnotami, získáme 
známý vzorec pro zesílení invertujícího zesilovače s IOZ: 

 
1

2

1

2

R
R

U
UA −== . (4.1) 
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5kR1

100kR2

U 0,1V1 =

15V+

15V−
U2 =?

 

Obr.4.2. Invertující zesilovač s IOZ. 

0V

0A

0A

5k

100k

0,1V

15V+

15V−

0,1V 0V

0,1V

2V
-2V

-2V

1.Vyznačíme nulové diferenční napětí a nulové vstupní proudy.

2.Zde je oproti zemi potenciál 0,1V.

3.Zde je potenciál 0V - virtuální zem (plyne z nulového diferenčního napětí).

4.Napětí jako spád potenciálů.

5.Vyplývá z Ohmova zákona.
6.Celý proud ze zdroje musí téci sem (0A do vstupu OZ).

7.Vyplývá z Ohmova zákona.

8.O 2V nižší potenciál než na "levém konci" rezistoru.

9.Vyplývá z 8.

20  Aµ

20  Aµ

 

Obr.4.3. Možný postup analýzy zesilovače z obr. 4.2. 
 

Vstupní odpor zesilovače je dán poměrem vstupního napětí 0,1V a proudem 20µA, který je 
odebírán ze vstupního zdroje, neboli 5kΩ, což je odpor rezistoru R1. Výstupní odpor zesilovače je 
nulový, což je dáno nulovým výstupním odporem IOZ. 

n 

P4.2  Vypočtěte výstupní napětí neinvertujícího zesilovače na obr. 4.4 a stanovte jeho 
napěťové zesílení. 

5kR1

100kR2

U 0,1V1 =

15V+

15V−
U2 =?

 

Obr.4.4. Neinvertující zesilovač s IOZ. 
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þ Řešení: 
V obvodu působí záporná zpětná vazba z výstupu přes rezistory R2 a R1 na invertující vstup 

IOZ. 
Celý postup analýzy je na obr. 4.5. Výstupní napětí je nyní 2,1V, čemuž odpovídá zesílení 21. 

„Symbolická“ analýza obvodu vede na známý vzorec 

 
1

2

1

2 1
R
R

U
UA +== . (4.2) 

 

0V

0A

0A

0,1V

4.Napětí jako spád potenciálů.

5.Vyplývá z Ohmova zákona.

6.Celý proud ze zdroje musí téci sem (0A do vstupu OZ).

7.Vyplývá z Ohmova zákona.

8.O 2V vyšší potenciál než na "levém konci" rezistoru.

9.Vyplývá z 8.

5k

100k

0,1V

15V+

15V−

0,1V

0,1V20  Aµ

20  Aµ

2V
2,1V

2,1V

1.Vyznačíme nulové diferenční napětí a nulové vstupní proudy.
2.Zde je oproti zemi potenciál 0,1V.

3.Zde je potenciál 0,1V (plyne z nulového diferenčního napětí).

 

Obr.4.5. Postupná analýza zesilovače z obr. 4.4. 
 

Vstupní odpor zesilovače je nyní teoreticky nekonečný, neboť ze zdroje napětí U1 není odebírán 
proud. Výstupní odpor je opět nulový. 

n 

P4.3  Vypočtěte výstupní napětí zesilovače s T-článkem na obr. 4.6 a stanovte jeho napěťové 
zesílení. 

1R

2R 3R

U1 =

50k

15V+

15V−

U 2 = ?

4R

0,1V

50k

5k

5k

 

Obr.4.6. Zapojení zesilovače s T-článkem. 
 

þ Řešení: 
V obvodu působí záporná zpětná vazba z výstupu na invertující vstup IOZ. 
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Postup analýzy je na obr. 4.7 rozfázován pro přehlednost do 14 kroků. Výstupní napětí je -12V 
a zesílení -120. Obecný vzorec pro zesílení je 

 
1

4

32
32

1

2

R
R

RR
RR

U
UA

++
−== .  (4.3) 

Pomocí tohoto zapojení lze dosáhnout poměrně velkých hodnot zesílení při použití rezistorů 
s nepříliš velkým rozsahem odporů. 

0V

0A

0A

0,1V
0V

0,1V

1V

1V

1.Vyznačíme nulové diferenční napětí a nulové vstupní proudy.

2.Zde je oproti zemi potenciál 0,1V.

3. Zde je potenciál 0V - virtuální zem.

4.Napětí jako spád potenciálů.

5.Vyplývá z Ohmova zákona.

6.Celý proud ze zdroje musí téci sem (0A do vstupu OZ).

7. Vyplývá z Ohmova zákona.

8.O 2V nižší potenciál než na "levém konci" rezistoru.

9.Vyplývá z 8.

20  Aµ

20  Aµ 

50k

15V+

15V−
0,1V

50k

5k

5k

-1V

200  Aµ
10. Vyplývá z Ohmova zákona.

220  Aµ 11. Vyplývá z 2. Kirch. zákona

11V 12. Vyplývá z Ohmova zákona.

-12V 13.O 11V nižší potenciál než na "levém konci" rezistoru.

-12V 14. Vyplývá z 13.

 

Obr.4.7. Postupná analýza zesilovače z obr. 4.6. 
n 

Úlohu je možné řešit i jinými cestami. Například je možné T-článek R2-R3-R4 podrobit 
transfiguraci hvězda-trojúhelník, jak je to ukázáno na obr. 4.8 a). Na výstupní napětí nemá vliv ani 
jeden z rezistorů R24 a R34: R24 je vlastně připojen mezi vstupní svorky OZ, kde je nulové napětí, takže 
proud tímto rezistorem neteče a můžeme ho z obvodu odstranit. Rezistor R34 je připojen paralelně 
k výstupní bráně OZ. Zesilovač se chová jako ideální zdroj napětí, takže výstupní napětí nezávisí na 
připojené zátěži. Obvod na obr. 4.8 b) je obyčejný invertující zesilovač se zesílením  

120
1

23

1

2 −=−=
R
R

U
U . 

Porovnáním obrázků 4.6 a 4.8 b) dospíváme k poznání, že použití rezistoru s problematicky 
velkým odporem 600 kΩ jsme obešli třemi rezistory o odporech 50 kΩ, 50 kΩ a 5 kΩ. 

kR 51

kR 60023
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34
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kR 60023
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RU 121
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23
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Obr.4.8. Obvod z obr. 4.6 po transfiguraci hvězda – trojúhelník a jeho řešení. 
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& Shrnutí a zobecnění: 
• Pokud získáte potřebnou zkušenost s „intuitivním“ řešením stejnosměrných obvodů obsahujících 

zdroje napětí, proudu a rezistory, pak dokážete vyřešit napěťové a proudové poměry v jakémkoliv 
obvodu. Budete k tomu potřebovat pouze toto: aktivní znalost Ohmova zákona a dvou 
Kirchhoffových zákonů.  

• V některých případech vám výrazně usnadní práci znalost některých principů, platných v 
lineárních obvodech (ekvivalence, superpozice…) a z nich vyplývajících pouček a metod. K těm 
nepraktičtějším patří: metoda zjednodušování sériových a paralelních kombinací, metoda 
náhradního zdroje, metoda superpozice, přepočty napěťových a proudových zdrojů, metoda 
transfigurace hvězda – trojúhelník. 

• Řešíte-li obvody s idealizovanými modely operačních zesilovačů, je nutné přidat do arzenálu 
znalostí jednoduchou poučku o nulovém diferenčním napětí a nulových vstupních proudech 
(podrobnosti viz „Intuitivní metoda řešení obvodů s operačními zesilovači“). 

• Zkušenost s řešením obvodů, která je potřebná právě k tomu, abyste dobře porozuměli tomu, jak 
tyto obvody fungují, se získává nesnadným, ale logickým způsobem, totiž jejich „ručním“ řešením. 
Pokuste se detailně porozumět příkladům P4.1 až P4.3. V dalším kroku se pokuste podobným 
způsobem vyřešit další jednoduchá zapojení obvodů s operačními zesilovači, kterých je v literatuře 
a na Internetu celá řada. 
 

4.2.3 Algoritmické metody řešení elektrických obvodů 
 

V následujícím textu se seznámíme jednak s klasickou metodou uzlových napětí (MUN), 
jednak s jednou z jejích modifikací, které se označují jako modifikované metody uzlových napětí 
(MMUN). S MUN vystačíme při analýze obvodů, které obsahují libovolné dvojpóly s definovanými 
vodivostmi, resp. admitancemi, libovolné mnohopóly majícími tzv. vodivostní, resp. admitanční 
matice (jako jsou například linearizované modely tranzistorů popsané y-parametry, zdroje proudu 
řízené napětím atd.), a klasické zdroje proudu. Obvody, obsahující prvky, nemající vodivostní, resp. 
admitanční popis, jako jsou například operační zesilovače, budeme analyzovat pomocí MMUN.  

Klasickou MUN využijeme mj. k analýze linearizovaných obvodů s tranzistory. 
Zmíněná modifikace MUN se někdy nazývá metoda zakázaného řádku. Představuje vyvážený 

kompromis mezi počtem obvodových rovnic a náročností algoritmu jejich sestavování. Tato metoda je 
výborná k analýze obvodů, obsahujících ideální zesilovače napětí včetně operačních zesilovačů. 
V této kapitole nebudou probírány ani klasické metody analýzy založené na incidenčních maticích, ani 
například metoda smyčkových proudů. Zájemce odkazujeme na příslušnou literaturu [11, 26, 27]. 

 
Poznámka: 
 

Poznámka se týká všech níže popsaných metod analýzy. Charakter obvodových veličin, které 
figurují v rovnicích, závisí na tom, jaký typ obvodu analyzujeme a v jakém stavu se má obvod 
nacházet. Struktura rovnic na těchto faktech nebude záviset. Například pokud řešíme lineární 
rezistivní obvod bez akumulačních prvků, pak napětí a proudy mají význam obecných časových 
průběhů a obvodové prvky jsou popsány vodivostmi. Při analýze lineárních setrvačných obvodů 
v harmonickém ustáleném stavu je třeba uvažovat admitanční popis prvků a napětí a proudy jsou 
vyjádřeny komplexními fázory. Nejobecnější analýza využívá operátorový model obvodu, kde 
obvodové veličiny jsou Laplaceovými obrazy jejich časových průběhů. Při malosignálové analýze 
nelineárních obvodů v rovnicích figurují proměnné složky časových průběhů v okolí stejnosměrného 
pracovního bodu, a to opět v jednom z výše uvedených tvarů.  

V dalším výkladu budeme pro jednoduchost označovat obvodové veličiny velkými písmeny, jako 
kdyby se jednalo o stejnosměrné hodnoty, s vědomím toho, co je uvedeno výše. Pokud se ve schématu 
analyzovaného obvodu objeví akumulační prvek, označíme jej jeho operátorovou imitancí, a obvodové 
veličiny budeme automaticky považovat za operátorové obrazy jejich časových průběhů. 
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Klasická metoda uzlových napětí (MUN) 
Nejprve na příkladu připomeneme podstatu MUN. Formulujeme algoritmus sestavení maticové 

rovnice obvodu přímo z jeho schématu. Poté se seznámíme s algoritmickými postupy řešení sestavené 
rovnice. Konkrétně se bude jednat o způsob výpočtu uzlových napětí, přenosu napětí a impedančních 
poměrů v obvodu z determinantu obvodové matice a z jejich algebraických doplňků. V závěru se 
naučíme pomocí klasické MUN analyzovat linearizované obvody s tranzistory. 

Podstata metody 
 

Tato metoda není přímo použitelná u obvodů, v nichž působí zdroje o známém napětí. Pokud je 
to možné, je nutné před sestavováním rovnic převést je na ekvivalentní zdroje proudu. 

Mnohdy analyzujeme obvod, v jehož modelu nefiguruje žádný zdroj, pouze je třeba uvažovat 
budicí signál za účelem odvození například napěťového zesílení, vstupního odporu nebo jiné 
obvodové funkce, která je vždy podílem dvou obvodových veličin. Pak si můžeme dovolit, vzhledem 
k ekvivalenci účinků zdrojů napětí a proudu, budit obvod – za účelem analýzy metodou uzlových 
napětí – ze zdroje proudu, i když ve skutečnosti bude třeba použit zdroj napětí.  
 
 
Metoda uzlových napětí je založena na tomto postupu: 

1. Jeden z uzlů obvodu se prohlásí za tzv. referenční uzel. Přiřadí se mu číslo 0, případně 
v počítačovém simulátoru značka uzemnění. Vzhledem k tomuto uzlu se budou vztahovat napětí 
ostatních uzlů obvodu. Tato napětí se nazývají uzlová napětí a tvoří soustavu neznámých 
obvodových veličin metody. V zájmu jednoduchosti algoritmu sestavování rovnic je vhodné, aby 
všechna uzlová napětí byla orientována tak, aby čítací šipky směřovaly do referenčního uzlu. 

Uzlová napětí jsou neznámými metody i tehdy, je-li naším konečným cílem počítat jiné obvodové 
veličiny. Každé napětí a každý proud v obvodu jsou totiž vyjádřitelné jako lineární kombinace 
uzlových napětí. Zatímco simulační program počítá vždy všechny neznámé „najednou“, i když 
z pohledu zadavatele analyzační úlohy to není třeba, při ručním řešení stačí vypočíst jen ta uzlová 
napětí, z nichž získáme kýžený výsledek. 

2. Pro každý uzel obvodu, vyjma referenčního, sestavíme rovnici 1. KZ ve tvaru: 
součet proudů tekoucích dovnitř uzlu z vnějších zdrojů proudu = součet proudů vytékajících 
větvemi obvodu ven z uzlu. 

3. Rovnice vyřešíme, tj. získáme velikosti uzlových napětí. Z nich pak dopočteme požadovaný 
výsledek analýzy. 

 
Důležité ovšem je, že proudy na pravé straně rovnice se vyjádří s využitím Ohmova zákona jako 

součiny vodivostí a napětí na větvích, a větvová napětí pomocí napětí uzlových. V konečném stavu 
tedy na pravé straně rovnice figurují pouze vodivosti a uzlová napětí. Počet neznámých – uzlových 
napětí – je stejný jako počet rovnic, a je roven počtu uzlů obvodu mínus 1 (v úvahu se nebere 
referenční uzel). 
 
 
 
Ilustrativní příklad 

Metodu objasníme na příkladu zapojení z obr. 4.4 b). Je třeba určit proud Ix2. pomocí MUN. 
Nejprve očíslujeme uzly. Zvolíme referenční uzel a přiřadíme mu číslo 0. Zde je třeba zdůraznit, 

že referenční uzel je možno volit zcela libovolně. Většinou se volí tak, aby případné hledané napětí 
bylo rovno jednomu z napětí uzlových. Dále si všimněme, že uzel, v němž se spojuje rezistor R3 a 
proudový zdroj, je vlastně součástí referenčního uzlu a jako takový se přídavně nečísluje – má již 
označení 0. Tato skutečnost je ve schématu výrazně vyznačena. 
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Obr. 4.9. Řešení obvodu metodou uzlových napětí (MUN). 

Poté ve schématu vyznačíme uzlová napětí U1 a U2. Tvoří soustavu dvou neznámých, k níž 
musíme sestavit dvě rovnice. Budou to rovnice 1. KZ pro uzly 1 a 2. Protože počítáme proud Ix2, 
postačí určit uzlové napětí U2. Z něj totiž snadno určíme proud rezistorem R3 a z něj Ix2. 

Podle obr. 4.9 b) napíšeme rovnice 1. KZ pro rovnováhu proudů v uzlech 1 a 2: 

 �: 21 RR III += , 
 �: 4320 RRR III ++−= . 

Poznamenejme, že orientaci čítacích šipek větvových proudů můžeme volit naprosto 
libovolně. Pokud se v orientaci zmýlíme, vyjde nám nakonec u daného proudu opačné znaménko. Je 
ovšem vhodné orientovat proud takovým směrem, o němž předpokládáme, že bude odpovídat 
skutečnosti. 

Větvové proudy na pravé straně rovnic vyjádříme pomocí větvových vodivostí (použijeme 
symboly G s příslušnými indexy) a větvových napětí, která závisí na uzlových napětích (viz obr. 4.9 
b): 
 �: )( 21211 UUGUGI −+= , 
 �: 2423212 )(0 UGUGUUG ++−−= . 

Vytknutím neznámých upravíme rovnice na konečný tvar 
 �: 22121 )( UGUGGI −+= ,  (4.4) 
 �: 243212 )(0 UGGGUG +++−= . 

Dosadíme-li vodivosti v [mS], vyjdou proudy na levé straně v [mA]: 

 �: 21 5,0
3
21 UU −= , 

 �: 21 5,15,00 UU +−= . 
Tyto rovnice mají řešení  

 [U1 U2] = [2 2/3] V. 

Pohledem na schéma na obr. 4.9 b) zjistíme, že při U2 = 2/3 V bude proud IR3=1/3 mA a hledaný 
proud Ix2 vychází z 1. KZ  

mA
3
2mA)

3
11(32 =−=−= Rx III . 

Pravidla pro sestavování rovnic 
 

Nyní se pokusíme o zobecnění poznatků z předchozího příkladu, která jsou důležitá pro 
algoritmické řešení obvodů. 

Rovnice (4.4) zapíšeme v maticovém tvaru: 
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   U1 U2   
� I G1+G2 -G2  U1 
�  = -G2 G2+G3+G4  U2 

Všimněme si několika pravidel, které je vhodné při zápisu rovnic dodržovat: 

Doporučení při sestavování maticového popisu: 

1. Nuly se nemusí do matic zapisovat. Prázdné buňky jsou „normální“ = 0.  
2. Nad sloupci čtvercové matice vodivostí je vhodné zapisovat neznámé, kterými jsou v souladu 

s pravidlem o násobení matice vektorem násobeny prvky v daných sloupcích. 
3. Vlevo od vektoru budicích proudů je vhodné poznačit čísla uzlů, kterých se týká příslušná rovnice. 

 
Porovnáme-li maticovou rovnici s původním schématem obvodu, který je danou soustavou 

rovnic popsán, dospějeme k důležitým pravidlům, která nám umožní sestavit dané rovnice přímo ze 
schématu, bez jakýchkoliv mezivýpočtů. 

Pravidlo o sestavení vektoru budicích proudů na levé straně maticové rovnice: 

V i-tém řádku je algebraický součet proudů, tekoucích dovnitř i-tého uzlu z vnějších zdrojů proudu. 
 
Pravidla o sestavení čtvercové vodivostní (admitanční) matice: 

• Prvek i,i na hlavní diagonále obsahuje součet všech vodivostí (admitancí), připojených k uzlu i. 
• Prvek i,j (i≠j) mimo hlavní diagonálu obsahuje záporně vzatý součet všech vodivostí (admitancí), 

které jsou připojeny bezprostředně mezi uzly i a j. 
 
K poslednímu pravidlu je třeba připojit poznámku. Základní lineární dvojpóly typu R, L a C, 

zapojené mezi uzly i a j, jsou reciprocitní v tom směru, že se chovají stejně ve směru uzel i → uzel j 
jako ve směru uzel j → uzel i, jinými slovy, že jejich admitance jsou v obou případech stejné. Proto u 
obvodů s těmito součástkami vykazují admitanční matice symetrii, tj. prvky i,j a j,i jsou totožné. Toto 
je další faktor, kterým můžeme urychlit algoritmické sestavování rovnic. Tato vlastnost však přestává 
platit, pokud se v obvodu objeví nereciprocitní prvek, například tranzistor. 

Výše uvedená pravidla ukážeme na příkladu složitějšího obvodu na obr. 4.10. Jedná se o 
příčkový filtr 7. řádu typu dolní propust o mezním kmitočtu 1 kHz, navržený programem NAF [I10]. 

Ve schématu vyznačíme 4 nezávislé uzly, kterým přísluší neznámá uzlová napětí U1 až U4. 
Aplikací pravidel přímo zapíšeme soustavu rovnic MUN: 

� � � �1I

1R

2R
1C

2C

3C

4C

5C

6C

7C

1L 2L 3L

k1 n317

n4,29

m157

n430

n2,43

m158 m171

n95,8

n336n430

k1

 
   U1 U2 U3 U4   
� I1  G1+p(C1+C2)+1/pL1 -pC2-1/pL1    U1 
�  = -pC2-1/pL1 p(C2+C3+C4)+1/pL1+1/pL2 -pC4-1/pL2   U2 
�    -pC4-1/pL2 p(C4+C5+C6)+1/pL2+1/pL3 -pC6-1/pL3  U3 
�     -pC6-1/pL3 G2+p(C6+C7)+1/pL3  U4 
 

Obr. 4.10. Ukázka algoritmického sestavení rovnic MUN příčkového filtru. 
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Vodivostní matice se skládá z matic dílčích prvků 
 

Vraťme se ještě k zapojení na obr. 4.9 a). Obr. 4.11 ukazuje, že daný odporový obvod je možné 
rozložit na jednotlivé elementy a výslednou vodivostní matici chápat jako součet dílčích vodivostních 
matic jednotlivých elementů. Zjednodušeně řečeno – výslednou vodivostní matici složitého obvodu 
můžeme postupně skládat z matic dílčích prvků obvodu. V další části se například seznámíme 
s obecnou maticí linearizovaného modelu tranzistoru. Po zvládnutí zásad jejího „vkládání“ pak 
budeme schopni analyzovat libovolné linearizované obvody s tranzistory. 

Všimněme si ještě na obr. 4.11 submatice, která přísluší plovoucímu rezistoru R2. Její 
zvláštností je, že sečteme-li všechny prvky v libovolném řádku nebo sloupci, dostaneme nulu. Tuto 
vlastnost má vodivostní (admitanční) matice každého obvodu, kde při analýze umístíme referenční 
uzel vně tohoto obvodu. Pak daná matice je nazývána úplnou vodivostní (admitanční) maticí. Pokud 
dodatečně prohlásíme za referenční uzel některý z uzlů obvodu, řekněme uzel k, získáme příslušnou 
vodivostní matici tak, že z úplné vodivostní matice vypustíme k-tý řádek a k-tý sloupec. Tohoto 
postupu lze využít např. k vzájemným přepočtům linearizovaných parametrů tranzistoru v zapojeních 
se společným emitorem, bází a kolektorem. 
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Obr. 4.11. Vodivostní (admitanční) matice obvodu se skládá z matic dílčích prvků. 
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Maticový linearizovaný model tranzistoru a MUN 
 

Obecný pohled na tranzistor jako trojpól je na obr. 4.12. Jednotlivá napětí a proudy je třeba 
chápat jako odchylky od stejnosměrného pracovního bodu probíhající libovolně v čase, pokud 
analyzovaný obvod je čistě rezistivní, bez akumulačních prvků. Pak níže uvedené rovnice obsahují 
pouze reálné admitance - vodivosti. Častěji řešíme obvod v ustáleném stavu, malosignálově buzený 
harmonickým signálem. Pak napětí a proudy na obr. 4.12 představují příslušné komplexní fázory a 
symboly typu „y“ v uvedených rovnicích jsou admitance, které pouze na relativně nízkých kmitočtech 
je možné považovat za reálná čísla. Obecně se pod symboly U a I mohou chápat operátorové 
reprezentace obecných časových průběhů malosignálových odchylek kolem pracovního bodu, a 
symboly „y“ pak představují příslušné operátorové admitance. Pro jednoduchost jsme zvolili zápis 
pomocí velkých písmen U a I.  
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Obr. 4.12. Tranzistor v obecném zapojení a soustava jeho linearizovaných rovnic odpovídajících metodě 

uzlových napětí. 
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Obr. 4.13. Maticový popis tranzistoru v zapojení se společným emitorem (a), kolektorem (b) a bází (c). 
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Je-li tranzistor zapojen do obvodu v třech uzlech B, C a E (báze, kolektor a emitor), lze jej 
popsat trojicí rovnic metody uzlových napětí. Vodivosti (admitance) yBB … yEE v prvcích příslušné 
matice budou záviset na přenosových vlastnostech tranzistoru. 

Na obr. 4.13 je znázorněno, jak bude modifikována soustava rovnic, bude-li referenční uzel 
spojen s jedním z uzlů tranzistoru. Na obr. 4.13 a) je ukázka zapojení tranzistoru se společným 
emitorem. Emitor je uzemněný, napětí UE je tedy nulové. Sestavují se pouze 2 rovnice pro uzly B a C. 
Z původní soustavy rovnic tedy škrtáme rovnici pro uzel E a neuvažujeme napětí UE. Tranzistor je pak 
popsán admitanční maticí 2x2. Prvky této matice mají význam y-parametrů tranzistoru v zapojení se 
společným emitorem (index e; báze jako vstupní svorka je zastoupena indexem 1, kolektor – výstupní 
svorka indexem 2). Tuto čtveřici y-parametrů získáme buď měřením nebo přepočtem ze známých h-
parametrů (viz Tab. 3.1 na str. 90). 

Admitanční matice 3x3 je úplnou admitanční maticí tranzistoru. Platí proto i pro ni pravidlo, že 
součet prvků v každém řádku a každém sloupci je nula. Známe-li tedy čtveřici parametrů yBB, yBC, yCB 
a yCC, což je čtveřice y-parametrů tranzistoru v zapojení se společným emitorem, pak je možné snadno 
dopočítat zbylých 5 parametrů. 

Na obrázcích b) a c) je ukázáno, jak bude vypadat popis tranzistoru v zapojení se společným 
kolektorem a se společnou bází. V zapojeních, kde všechny tři vývody tranzistoru jsou plovoucí, se ve 
výsledných rovnicích uplatní všech 9 parametrů tranzistoru. 
 
Souvislost maticového popisu se zjednodušeným modelováním tranzistoru 
 

Vyjdeme z rovnic pro zapojení se společným emitorem na obr. 4.14. Popis pro další varianty lze 
z těchto rovnic odvodit. 

Obr. 4.14. Modelování tranzistoru pomocí řízených zdrojů. 

Rovnice lze modelovat obvodem s řízenými zdroji. Zanedbáme-li parametr yBC, což bývá 
vzhledem k jeho číselným hodnotám na nízkých kmitočtech u většiny tranzistorů opodstatněné (viz 
str. 71), zmizí z náhradního schématu příslušný řízený zdroj. Dospějeme k zjednodušenému modelu 
tranzistoru, který jsme použili např. na str. 74. Parametr yCB tranzistoru pak má význam strmosti 
tranzistoru S = ∆IC/∆UBE. Maticový popis je tedy obecný a při komplexních hodnotách admitancí 
respektuje i chování tranzistoru v oblasti vysokých kmitočtů. Zjednodušený popis na str. 74 je jeho 
speciálním případem. 

Při „typických“ hodnotách vstupního odporu, výstupního odporu a strmosti 

VASkrkr CEBE /1,0,100,2 ≈Ω≈Ω≈  

vycházejí „typické“ hodnoty y-parametrů takto: 

 yBB ≈ 500µS, yCC ≈ 10µS, yBC ≈ 0, yCB ≈ 0,1S, 

 yBE ≈ -500µS, yCE ≈ -0,1 S, yEB ≈ -100,5 mS, yEC ≈ -10µS, yEE ≈ 100,5 mS. 
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P4.4  Sestavte soustavu rovnic linearizovaného modelu tranzistorového zesilovače z obr. 4.15. 
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Obr. 4.15. Náhradní schéma tranzistorového zesilovače pro střídavý signál. 

þ Řešení: 
V první fázi zapíšeme maticovou rovnici MUN tak, jako kdyby v obvodu nebyl tranzistor: 

   U1 U2 U3 U4   
� Ii  Gi+pC1 -pC1    U1 
�  = -pC1 GB+pC1    U2 
�     GC+pC2 -pC2  U3 
�     -pC2 G2+pC2  U4 

 
V druhém kroku vepíšeme do admitanční matice matici tranzistoru. Nejjednodušeji to 

provedeme tak, že do řádků a záhlaví sloupců nejprve doplníme symboly B a C tak, aby to odpovídalo 
číslům uzlů, k nimž jsou připojeny báze a kolektor (emitor se zde neobjeví, protože je zapojen na 
referenční uzel 0, který v matici není zastoupen). Pak do příslušných políček matice vepíšeme 
jednotlivé admitance tranzistoru, jejichž indexy odpovídají indexům řádků a sloupců. Výsledek je zde: 
 

   U1 U2 B U3 C U4   
� Ii  Gi+pC1 -pC1    U1 
� B  = -pC1 GB+pC1+yBB yBC   U2 
� C    yCB GC+pC2+yCC -pC2  U3 
�     -pC2 G2+pC2  U4 

(4.5) 
n 

Získaná rovnice může být použita k řadě výpočtů. Po dosazení číselných hodnot parametrů se 
stává východiskem pro výpočty napěťových poměrů v uzlech, přenosů napětí ze vstupu do všech uzlů 
a impedančních poměrů, to vše pro různé kmitočty buzení podle toho, jaké zvolíme číselné hodnoty 
komplexního kmitočtu p = jω. O jednom z možných způsobů výpočtu se zmíníme v části „Způsob 
výpočtu obvodových funkcí z admitanční matice“ na str. 131. 

V dalším příkladu ukážeme, že budeme-li se držet uvedeného postupu, sestavíme rovnice i u 
obvodů, které obsahují více tranzistorů, a dokonce i tehdy, jestliže budou tranzistory zapojeny 
„atypicky“, například s různě zkratovanými svorkami. 

P4.5  Sestavte admitanční matici části linearizovaného modelu integrovaného obvodu RCA 
3040 na obr. 4.16. 
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Obr. 4.16. Model části integrovaného obvodu RCA 3040. 

þ Řešení: 
Admitanční parametry tranzistorů T1 a T2 odlišíme horními indexy 1 a 2. 
Nejprve sestavíme admitanční matici obvodu bez tranzistorů: 

 
 U1  U2  U3  
�     
�   GC   
�     

 
Pak vepíšeme matici tranzistoru T1: 

 
 U1   U2  U3  B1 C1  
�      
�    GC   
�  B1 C1    y1

BB+ y1
BC +y1

CB + y1
CC  

 
Všimněme si, že jsme do prvku 3,3 matice vepsali všechny čtyři admitanční parametry, které 

vyplývají z kombinací symbolů B1 a C1 v záhlavích matice. 
Nakonec vepíšeme matici tranzistoru T2: 

 
 U1  B2 U2  C2 U3  B1 C1 E2 
�  B2 y2

BB y2
BC y2

BE 
�  C2 y2

CB GC + y2
CC y2

CE 
�  B1 C1 E2 y2

EB y2
EC y1

BB+ y1
BC +y1

CB + y1
CC +y2

EE 
(4.6) 
n 

 

Způsob výpočtu obvodových funkcí z admitanční matice 
 

Sestavení rovnic MUN je první etapou analýzy. Pak je samozřejmě nutné tyto rovnice vyřešit. 
Ukážeme jednu z možných metod, která je založena na výpočtu obvodových funkcí pomocí tzv. 
algebraických doplňků admitanční matice.  

Metodu vysvětlíme na příkladu tranzistorového obvodu z obr. 4.16. Uvažujme následující 
číselné hodnoty y-parametrů obou tranzistorů: 

yBB ≈ 200µS, yCC ≈ 10µS, yBC ≈ 0, yCB ≈ 0,2S. 
yBE ≈ -200µS, yCE ≈ -0,2 S, yEB ≈ -200,2 mS, yEC ≈ -10µS, yEE ≈ 200,2 mS. 

Pak admitanční matice (4.6) celého obvodu bude 
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 U1  U2  U3  
�  0,2  -0,2 
�  200 0,222 -200 
�  -200,2 -0,01 400,41 

 
Všechny admitance jsou dosazeny v [mS]. Matice tedy transformuje napětí ve voltech na 

proudy v miliampérech. 
Předpokládejme, že chceme určit impedanci obvodu mezi uzlem 1 a zemí a napěťové zesílení 

U2/U1. K  bráně mezi uzel 1 a referenční uzel připojíme zdroj proudu I1, vypočteme napětí U1, 
vyvolané tímto proudem, a jejich podílem určíme vstupní impedanci. Pak vypočteme napětí U2, 
vyvolané vstupním buzením, a vydělením U2 a U1 vypočteme zesílení. Situace je znázorněna na obr. 
4.17. 
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Obr. 4.17. K výpočtu napěťového zesílení U2/U1. 

Všimněme si, že i když požadujeme výpočet napěťového zesílení, nepotřebujeme k tomu nutně 
vstupní zdroj napětí.  

K výpočtu napětí U1 z rovnice na obr. 4.17 použijeme Cramerovo pravidlo.  
 

Cramerovo pravidlo: 

Napětí Uk, k = 1,2,3, je podílem dvou determinantů. Ve jmenovateli je determinant ∆ admitanční 
matice. V čitateli je determinant ∆k matice, která vznikne z admitanční matice záměnou sloupce 
k vektorem na levé straně rovnice. 

 
 
Pro napětí U1 vyjde 

1
1:1

1
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1

1
1
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200222,0200
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)1(

41,40001,02,200
200222,0200

2,002,0
41,40001,00

200222,00
2,00

I
I

I

U
∆

∆
=

−−
−
−

−
−

−
=

−−
−
−

−
−
−

=
∆
∆

=

+

 

V čitateli byla použita poučka o rozvoji determinantu podle 1. sloupce.  
 

Symbol ∆i:j, zde konkrétně ∆1:1, představuje tzv. algebraický doplněk admitanční matice při 
vynechání i-tého řádku a j-tého sloupce. Číselně se rovná vzniklému subdeterminantu matice 

násobenému číslu (-1)i+j. 

Po vyčíslení determinantů získáme výsledek 
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Impedance (odpor) obvodu mezi uzlem 1 a referenčním uzlem je necelých 10 kΩ. 
Obdobným způsobem vypočteme napětí U2 a z něj napěťový přenos K = U2/U1. 
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Hledaný přenos napětí bude 

8,460
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Dále si ukažme, jak bychom postupovali při výpočtu výstupní impedance mezi uzlem 2 a 
referenčním uzlem při vstupní bráně naprázdno.  

V tom případě bychom připojili budicí zdroj proudu I2 mezi uzel 2 a referenční uzel, vypočetli 
napěťovou odezvu U2 a následně určili impedanci Z2. Situace je na obr. 4.18 spolu s modifikovanou 
levou stranou rovnice. 
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Obr. 4.18. Postup při výpočtu výstupního odporu obvodu. 
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Na základě předchozího příkladu můžeme formulovat následující pravidla pro výpočty 
obvodových veličin z admitanční matice obvodu: 

 
Pravidla pro výpočet obvodových veličin a funkcí z admitanční matice obvodu: 

Mějme lineární obvod o N uzlech vyjma referenčního uzlu, který je popsán admitanční maticí N x N 
pomocí metody uzlových napětí. Pomocí algebraických doplňků této matice můžeme spočítat: 
 

Impedanci mezi uzlem k a referenčním uzlem: 

∆
∆

= kk
kZ : . 

Přenos napětí z uzlu i do uzlu o: 

ii

oi

i

o

U
UK

:

:

∆
∆

== . 

Uzlové napětí Uk, je-li obvod napájen z jediného zdroje proudu Ii zapojeného mezi uzel i a 
referenční uzel: 

i
ki

k IU
∆

∆
= : . 

 
Ve všech vzorcích je ∆i,j algebraický doplněk admitanční matice při vynechání i-tého řádku a j-

tého sloupce a ∆ je determinant admitanční matice. Vzorce jsou často používány, neboť umožňují 
přímé výpočty z admitanční matice bez nutnosti sestavovat celou soustavu rovnic. 

Modifikovaná metoda uzlových napětí (MMUN) – metoda zakázaného řádku 
Výhodou metody uzlových napětí je její snadná algoritmizace: algoritmus pro sestavení 

soustavy rovnic přímo ze schématu je velmi jednoduchý a lze jej tedy implementovat do počítačových 
programů pro analýzu či simulaci. Nevýhodou metody ovšem je, že neumožňuje analyzovat obvody se 
zdroji napětí a součástkami, které nemají admitanční matici. Bohužel k těmto součástkám patří nejen 
například takové prvky jako je obyčejný transformátor, ale i různé operační zesilovače, konvejory a 
další dnes moderní analogové prvky. 

Proto klasická MUN musí být podrobena určité modifikaci, která jednak zachová její výhodu – 
snadnou algoritmizovatelnost – jednak umožní analyzovat lineární obvody bez výše uvedených 
omezení. Ukážeme jednu z možných metod modifikace, která umožňuje pohodlné výpočty 
v jednodušších obvodech, obsahujících operační zesilovače a zesilovače napětí. 

Ideální operační zesilovač na obr. 4.19 je zapojen do obvodu prostřednictvím uzlů a, b a c. Na 
obrázku jsou znázorněny proudy, které obecně tečou z vnějšího obvodu do těchto uzlů.  

a

b
c

aI

bI

cI

OZI

 
Obr. 4.19. Ideální operační zesilovač. 

Při sestavování maticové rovnice MMUN budeme postupovat tak, jak jsme zvyklí z klasických 
pasivních obvodů, s jednou výjimkou. Tato výjimka se bude týkat rovnice, která odpovídá uzlu c, tedy 
uzlu, k němuž je připojen výstup operačního zesilovače. Rovnice 1. Kirchhoffova zákona pro tento 
uzel by musela obsahovat proud IOZ, tekoucí do výstupu OZ. Tento proud však neznáme. Pokud 
proud IOZ není bezprostředním cílem našich výpočtů, tuto rovnici nepíšeme a namísto ní zapíšeme 
jinou rovnici, tzv. napěťovou vazební podmínku. Tato podmínka zní: diferenční napětí OZ je 
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nulové. Vyjádřeno jinak pomocí uzlových napětí: Ua = Ub, nebo taky 0 =1.Ua-1.Ub. Podívejme se, jak 
tuto podmínku zapíšeme do maticové rovnice: 

   Ua Ub Uc    
a Ia     …  Ua 
b Ib       Ub 
c 0 = 1 -1  … l Uc 
 . 

. 
    . 

. 
  

Řádek „c“ matice označíme domluvenou značkou, například tmavým kolečkem, jako tzv. 
zakázaný řádek. Na rozdíl od ostatních řádků matice totiž do tohoto prostoru není dovoleno zapisovat 
admitance podle algoritmu klasické MUN. Tím bychom porušili napěťovou vazební podmínku – 
v našem konkrétním případě 0 =1.Ua-1.Ub, která jako jediná může být v tomto řádku napsána. 

Stejný princip lze uplatnit při tvorbě rovnic pro ideální zesilovač napětí (IZN), které se liší 
pouze vazební podmínkou. Podobně postupujeme i v případě nezávislých zdrojů napětí. Můžeme tedy 
formulovat následující praktický postup sestavování rovnic metody zakázaného řádku pro obvody 
s operačními zesilovači, IZN a ideálními zdroji napětí. 

 
Praktický postup u metody zakázaného řádku: 

1) Ve schématu vyznačíme čísla uzlů. Referenčnímu uzlu přiřadíme číslo 0. 

2) Zjistíme počet nezávislých uzlů, tj. počet uzlů mínus 1 (referenční uzel). Načrtneme „kostru“ 
maticové rovnice, vyplníme vektor na pravé straně neznámými uzlovými napětími, vektor 
budicích proudů na levé straně, a vyplníme záhlaví řádků a sloupců. 

3) Zjistíme číslo uzlu, k němuž je připojen výstup IOZ, resp. IZN, resp. uzemněný ideální zdroj 
napětí. Příslušný řádek označíme symbolem zakázaného řádku. Pokud je daných prvků 
v obvodu více, každý bude reprezentován svým zakázaným řádkem v matici. Vylučujeme 
případ spojení výstupů ideálních zesilovačů a zdrojů. 

4) Do zakázaného řádku zapíšeme napěťovou vazební podmínku, která přísluší danému 
zesilovači nebo zdroji. 

5) V poslední fázi doplníme ostatní prvky matice admitancemi podle algoritmu klasické MUN. 
Vyhýbáme se však prvkům v zakázaných řádcích. 

 

P4.6  Vypočtěte vstupní impedanci Antoniova mutátoru na obr. 4.20. 

þ Řešení: 
 U1 U2 U3 U4 U5  
� Y1 -Y1     
�   1  -1 l OZ2 
�  -Y2 Y2+Y3 -Y3   
� 1  -1   l OZ1 
�    -Y4 Y4+Y5  

 

Zakázaný řádek č. 2 patří k OZ2, zakázaný řádek č.4 k OZ1. 
Z matice určíme vzorec pro vstupní impedanci: 
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Obr. 4.20. Antoniův mutátor.  
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P4.7  Vypočtěte napěťové zesílení obvodu s T-článkem na obr. 4.21. 

� �
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Obr. 4.21. Zesilovač s T-článkem.  

þ Řešení: 
   U1 U2 U3 U4   
� I1  G1 -G1    U1 
�  = -G1 G1+G2 -G2   U2 
�    -G2 G2+G3+G4 -G3  U3 
�    1   l U4 

 
Pro názornost je uvedena celá maticová rovnice. Jednička v přídavném řádku reprezentuje 

jednoduchou rovnici U2 = 0, což je napěťová vazební podmínka „diferenční napětí = 0“ pro toto 
zapojení. 

Po výpočtu příslušných algebraických doplňků vyjde zesílení -120, již dříve odvozené v rovnici 
(4.3): 



______________________________________________________4 Metody analýzy elektrických obvodů_____ 

137 

.120
)(

001

0
)1(

010
0)1(

32

4321

34322

221
11

4322

2211
41

1:1

4:1

1

4 −=
++−

=

−++−
−+

−

++−
−+−

−

=
∆
∆

=

+

+

GG
GGGG

GGGGG
GGG

GGGG
GGGG

U
U  

n 

P4.8  Vypočtěte napěťové zesílení obvodu se zesilovačem napětí na obr. 4.22. 
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Obr. 4.22. Obvod s diferenčním zesilovačem s konečným zesílením A. 

þ Řešení: 
   U1 U2 U3   
� I1      U1 
�   A -1 -A l U2 
�    -G1 G1+G2  U3 

Napěťová vazební podmínka, zapsaná v zakázaném řádku, nyní zní:  

„výstupní napětí zesilovače = zesílení A krát vstupní diferenční napětí“, neboli  

)( 312 UUAU −= , neboli 2310 UAUAU −−= . 

Poslední tvar vazební podmínky je implementován v řádku 2. 

Pomocí algebraických doplňků určíme požadované zesílení: 
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Poznamenejme, že v případě ideálního operačního zesilovače (A→∞) by bylo zesílení přesně 2. 
n 

 
Počítačová analýza lineárních obvodů programem SNAP 
 

Nejdůležitější aplikací algoritmických metod analýzy je automatizovaná počítačová analýza 
obvodů. Soudobé simulační programy využívají jednu z modifikací metody uzlových napětí.  

Zjednodušeně řečeno, práce s typickým simulačním programem se uskutečňuje v několika 
krocích: 
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1. Zadání modelu obvodu. Zadávání lze provést dvěma různými způsoby – buď nakreslením 
schématu obvodu v tzv. schématickém editoru, nebo napsáním jednoduchého textového souboru, 
v němž bude uvedena informace o elektrických vlastnostech modelu: z jakých součástek se skládá, 
jaké parametry tyto součástky mají, a jak jsou vzájemně propojeny. 

2. Zadání požadavků na analýzu, tj. o jaké výsledky analýzy máme zájem. 
3. Vyhodnocení výsledků analýzy. Výsledky bývají ve formě grafů nebo textových výstupů. 

 
Všechny příklady, uvedené v této kapitole, a mnoho dalších lze snadno vyřešit pomocí 

programu SNAP (Symbolic and Numeric Analysis Program), což je program, specializovaný 
k analýze lineárních obvodů. Doporučujeme stáhnout si z Internetové adresy 
http://snap.webpark.cz/index.html instalační soubory tohoto programu a zkusit si vyřešit některé z 123 
„naprogramovaných“ příkladů. Detailní návody a popisy naleznete v pramenech [3, 6, 9, 10].  
 
& Shrnutí a zobecnění: 
 

• Ruční řešení použijeme zejména pro kontrolní výpočty v obvodech s uvažováním 
jednoduchých idealizovaných modelů součástek. Ve všech ostatních případech je rozumné 
provést analýzu prostřednictvím počítače. 

• Rozhodnutí o tom, zda k ruční analýze použít heuristické nebo algoritmické postupy, je do jisté 
míry subjektivní záležitost. Někomu vyhovuje řešit i poměrně složité obvody tvůrčím způsobem 
za použití mnohdy originálních a netradičních postupů, jiný dá přednost osvědčeným 
metodám, které vedou vždy k cíli, obvykle však za cenu nepříjemných rutinních výpočtů. 

• Třetí alternativou je samozřejmě vyřešit jakoukoliv analyzační úlohu pomocí vhodného 
počítačového programu. 

• Usoudíme-li, že heuristické postupy jsou nad naše síly nebo jejich použití nepreferujeme 
z jiných důvodů, pak je na místě uvažovat buď o počítačové analýze, nebo o ručním řešení 
některou z algoritmických metod. Počítačové řešení se asi stane nutností při analýze 
rozsáhlejších obvodů nebo obvodů, obsahujících aktivní prvky, jejichž modelování vede na 
rozsáhlé soustavy rovnic. Typickou aplikací počítačových programů je analýza obvodů 
s uvažováním vlivů reálných parametrů součástek. Pro analýzu obvodových funkcí 
v operátorovém tvaru se pak nabízí program SNAP jako výborná alternativa s navazující 
numerickou analýzou.  
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4.3 METODY ANALÝZY NELINEÁRNÍCH OBVODŮ 
 

4.3.1 Přehled metod 
 

Analýza nelineárních obvodů je obecně neporovnatelně složitější úloha než v případě obvodů 
lineárních. Pro „ruční“ řešení je zde proto relativně málo prostoru a analýza se většinou uskutečňuje 
počítačově. Uživatel má k dispozici modely nelineárních prvků buď přímo zabudované v simulačním 
programu, nebo v jednodušších případech vystačí se změřenými stejnosměrnými charakteristikami 
(např. ampérvoltovou charakteristikou diody apod.) nebo alespoň s odhady, jak se v daném provozním 
režimu může prvek chovat (např. že na otevřené diodě je úbytek napětí přibližně 0,7 V). Podle 
charakteru modelu se tedy odvíjí následné použití buď grafických nebo početních metod analýzy, 
případně pouhých odhadů řešení. 

metody řešení nelineárních obvodů

co se řeší:

stejnosměrné (ss) poměry

zjednodušování ss charakteristik

metoda zatěžovací přímky (křivky)

numerické řešení algebraických rovnic

časové průběhy

metoda izoklin apod.

numerické řešení diferenciálních rovnic

početní

grafické

smíšené

"přesné"

odhady

nelineární prvky
v typických stavech

 
Obr. 4.23. Zjednodušené dělení metod analýzy nelineárních obvodů. 

V dnešní době grafické metody „přežívají“ snad jen ve formě metody zatěžovací přímky, resp. 
křivky, případně při zjednodušování stejnosměrných charakteristik sériově-paralelních struktur. I zde 
však jsou tyto metody spíše v roli nástroje pro názornou ilustraci funkce nelineárních zařízení, 
například stabilizátorů s referenčními diodami, než jako nástroje pro přesnou analýzu. Praktický 
význam tedy dnes mají jednak početní metody, jednak odhady poměrů v obvodech při znalostech 
chování nelineárních členů v typických stavech. 

V této kapitole se proto omezíme jen na některé typické postupy analýzy. Počítačové analýze a 
simulaci jsou věnovány samostatné publikace [3, 24, 41, 42, 43]. 

 
4.3.2 Numerické řešení nelineárních rovnic 
 

„Ruční“ řešení 
 

Uvažujme jednoduchý obvod na obr. 4.23. V sérii s rezistorem o odporu 1kΩ je nelineární 
rezistor o ampérvoltové charakteristice, která je popsána vzorcem 

 3
xx kUI = , kde k = 300mA/V. (4.7) 

Vzorec přibližně popisuje chování nelineárního omezovače amplitudy, který lze jednoduše 
realizovat dvojicí antiparalelně zapojených diod. 

Úkolem je vypočítat napětí na nelineárním prvku a proud, odebíraný ze zdroje. 
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Obr. 4.24. Obvod s nelineárním rezistorem se zadanou ampérvoltovou charakteristikou. 

Upozorňujeme, že následující postup ne zcela koresponduje s ději, které se odehrávají 
v počítačových simulačních programech. Ty jsou velmi zjednodušeně popsány v navazující části 
„počítačové“ řešení. 

Z obr. 4.24 vyplývá, že napětí zdroje se rovná součtu napětí na obou rezistorech, neboli 
UURI xx =+ . 

Po dosazení z (4.7) dostáváme nelineární rovnici pro hledané napětí Ux: 
 UUkRU xx =+3 , neboli 530 3 =+ xx UU   (4.8) 

Tato kubická rovnice je sice analyticky řešitelná, ale ne každý ovládá Cardanovy vzorce [1]. 
Proto použijeme iterační metodu. 

Nejprve upravíme rovnici (4.8) na tvar 
 0530)( 3 =−+= xxx UUUf . (4.9) 

Budeme hledat kořen této rovnice, 
neboli napětí Ux, pro které prochází 
definovaná funkce f nulou. Průběh této 
funkce, který je znázorněn na obr. 4.25, je 
možno snadno získat například po spuštění 
tohoto m-souboru v MATLABu: 

: 
U=5;R=100;k=0.3; 
Ux=(0:0.01:0.7); 
f=k*R*Ux.^3+Ux-U; 
plot(Ux,f) 
grid 
 

Z grafu můžeme odečíst, že hledané 
napětí Ux je asi 0,53V. 

Přesnější řešení získáme Newto-
novou iterační metodou, která je ilustro-
vána na obr. 4.26.  

 
V „nultém“ kroku odhadneme velikost napětí Ux. Dosadíme do funkce f(Ux) a získáme bod na 

křivce f(Ux), kterým vedeme tečnu. V průsečíku tečny s osou f(Ux)=0 najdeme odhad kořene po tzv. 
první iteraci. Po několika iteracích proces rychle konverguje k hledanému řešení. 

Na obr. 4.26 vpravo je ukázáno, jak naprogramovat celý proces, neboli jak matematicky vyjádřit 
konstrukci tečny a hledání jejího průsečíku s vodorovnou osou. Je třeba naprogramovat v cyklu 
následující vzorec: 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-6

-4

-2

0

2

4

6

X: 0.53
Y: -0.00369

 
Obr. 4.25. Průběh funkce f(Ux), získaný z MATLABu. 
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Obr. 4.26. K vysvětlení iterační metody hledání řešení nelineární rovnice. 
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kde f’ značí derivaci funkce f podle napětí Ux. Po dosazení vzorce (4.9) a úpravě vyjde 
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V MATLABu provedeme naprogramování (4.11) jednoduše takto: 

: 
U=5;R=100;k=0.3; 
Ux=0 
N=15; maximalni pocet iteraci 
for i=1:N 
    Ux=Ux-(k*R*Ux^3+Ux-U)/(3*k*R*Ux^2+1) 
end 
 

Před výpočtem je vhodné v menu MATLABu „File/Preferences” nastavit numerický formát 
zobrazovaných dat na „long e“, abychom viděli výsledky na 15 desetinných míst.  

Zvolíme-li počáteční odhad Ux=0, MATLAB nalezne s přesností na 15 desetinných míst řešení 
v 11. iteraci: 

Ux= 5.301403698508722e-001 V. 
Proud Ix pak z rovnice (4.7) vychází  

4.469859630149128e-002 A 
Můžete se přesvědčit o tom, že při počátečním odhadu řešení Ux=1V se ustálí iterační 

algoritmus na správném řešení již v 6. kroku. Klíčem k vysvětlení je obr. 4.26.  
 

„Počítačové“ řešení 
 

Od simulačního programu očekáváme, že nalezne řešení libovolného obvodu, tedy obvodu, 
popsaného různými typy rovnic, bez zásahů uživatele, který by programu „napovídal“, jak má tyto 
rovnice upravovat, jak má definovat funkci f, jejíž kořeny pak bude vyhledávat.  
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Protože program není schopen takovéhoto „heuristického“ přístupu k řešení, jsou v něm 
naprogramovány algoritmické metody, při nichž je postup prakticky stejný při řešení jakéhokoliv 
obvodu. Program nejprve algoritmicky sestaví obvodové rovnice metodou uzlových napětí a pak 
počítá všechny neznámé, tj. uzlová napětí. Na rozdíl od výše uvedeného „ručního“ postupu, kdy jsme 
sestavili jednu nelineární rovnici pro napětí Ux a posléze hledali její řešení, program sestaví tolik 
nelineárních rovnic, kolik je uzlových napětí, a hledá iterací stejný počet neznámých napětí. Iterační 
metoda tedy musí být zobecněná pro více proměnných. Nazývá se Newtonova-Raphsonova iterační 
metoda. V různých modifikacích je zabudována do všech stávajících simulačních programů do 
procedur pro hledání stejnosměrných pracovních bodů. 

Určitou nevýhodou této „vícerozměrné“ metody je pomalá konvergence ve srovnání s 
„jednorozměrným“ případem. V současné době jsou v profesionálních programech naprogramovány 
pomocné procedury k překonávání problémů s konvergencí. Algoritmus by měl spolehlivě 
konvergovat při analýze značně rozsáhlých nelineárních obvodů se součástkami se složitými modely. 
Bez nadsázky je možno zabudované algoritmy označit za výtečně fungující zázrak. I když – nic není 
dokonalé [2]. 

 
 
4.3.3 Přibližná analýza obvodů s diodami a tranzistory 
 

Na dvojici typických příkladů bude ukázán postup přibližné analýzy nelineárních obvodů 
s diodami a tranzistory, kdy vystačíme s minimem informací o modelech použitých polovodičových 
součástek. Popsané postupy ovšem nejsou univerzálně použitelné. Co je společné řešeným příkladům? 
Že na přechodu P-N křemíkové diody či tranzistoru, nacházející se v aktivním režimu, je zhruba 0,65 
voltů (s tolerancí jedné desetiny voltu), že dovedeme odhadnout některá napětí a proudy, případně 
proudové zesílení tranzistoru atd. Velmi dobrých výsledků analýzy dosáhneme u obvodů, které jsou 
relativně málo citlivé na odhadované veličiny, jako jsou například tranzistorové obvody se stabilizací 
polohy stejnosměrného pracovního bodu. Dalším podobným příkladem jsou obvody s operačními 
zesilovači s nelineární zpětnou vazbou. V ostatních případech je však třeba brát výsledky s rezervou. 

V každém případě bychom měli dodržovat následující osvědčený postup: 
 

1. Stanovíme základní odhady (napětí báze-emitor, …). 
2. Na základě základních odhadů provedeme výpočty. 
3. Ověříme, zda jsou výsledky výpočtů v souladu se základními odhady. Pokud ne, přejdeme do 

bodu 1, nebo zkusíme analyzovat jiným způsobem. 

 
P4.9  Odhadněte napětí na výstupu stabilizátoru na obr. 4.27. Dioda ZD má Zenerovo napětí 

5,1V. 
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Obr. 4.27. Stabilizátor napětí. 
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þ Řešení: 
 
1. Předpoklady:  

UZD = 5,1V, UD = 0,65V, neboli:  
diodami teče dostatečně velký proud. 

2. Výpočty:  

U2 = 5,1+0,65 = 5,75V, IR2 = 5,75/550 = 10,45 mA,  
IR1 = (12-5,75)/330 = 18,94 mA, ID = 18,94-10,45= 8,49 mA. 

3. Ověření předpokladů: Diodami teče 8,49 mA.ü 

 
Počítačové simulace ukazují jen nevýznamné odchylky od výsledků, získaných tímto 

jednoduchým postupem. 
Při odhadu napětí na Zenerové diodě jsme neuvažovali úbytek napětí na diferenciálním odporu 

diody. V případě, že je známa jeho hodnota, je možné uvedené odhady dále zpřesnit. 
n 

 

P4.10  Nalezněte klidová napětí a proudy v tranzistorovém zesilovači na obr. 4.28 a). 

þ Řešení: 
Jde o zapojení zesilovače, v němž je technikou „bootstrap“ dosaženo vysokého vstupního 

odporu. V obvodu působí silná stabilizující záporná zpětná vazba přes rezistor R4. Lze tedy 
předpokládat, že souřadnice pracovního bodu budou málo citlivé na vlastnosti tranzistoru, zejména na 
jeho proudový zesilovací činitel. 

 
1. Předpoklady:  
Tranzistor je v aktivním režimu, není v saturaci, VU BE 65,0≈ , 0>>CEU , BEC IhI 21= , kde h21E je 
stejnosměrný proudový zesilovací činitel. Na základě zkušenosti zvolíme jeho velikost 200. Dále 
zanedbáme proud báze oproti proudu kolektoru, neboli uvažujeme IE = IC. 

2. Výpočty: 

];[11,37048,4
32

32

32

3 mAVI
RR

RRI
RR

RUU BBNA −=
+

−
+

= &  

.. dělič napětí zatížený proudovým odběrem IB, řešeno principem superpozice. 

];[11,57398,365,02011,37048,465,05 mAVIIIIRUU BBBBAE −=−−−=−−≈ &  

… 2. Kirchhoffův zákon aplikovaný na smyčku R3-R5-BE-R4. 

];[40021 mAVIIhRIRU BBEECEE ==≈ . 

Sloučení posledních dvou rovnic: 

AmAIII BBB µ434,710.434,740011,57398,3 3 =≈⇒≈− − . 

mAIhI BEC 487,121 == & , VIRUU CEEC 973,2=≈≈ & , VUUUU ECNCE 054,6=−−= & . 

3. Ověření:  0>>CEU ü 
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Obr. 4.28. a) Jednostupňový tranzistorový zesilovač, b) náhradní schéma pro výpočet stejnosměrných 
poměrů. 

 
V tabulce 4.2 jsou výsledky našich odhadů zopakovány ve sloupci „odhady“. Je provedeno 

srovnání se simulací v programu Micro-Cap. Rozdíly ve výsledcích jsou přijatelné. Největší rozdíl je 
v bázových proudech, díky stabilizační záporné zpětné vazbě jsou však v kolektorovém obvodu 
rozdíly minimální. 

 

Tab. 4.2. Výsledky řešení zesilovače z obr. 4.28 odhady a profesionálním simulačním programem. 

 odhady Micro-Cap 
UBE [V] 0,650 0,672 
UA [V] 3,772 3,741 
UC [V] 2,973 2,887 
UE [V] 2,973 2,904 
UCE [V] 6,054 6,209 
IB [µA] 7,434 8,271 
IC [mA] 1,487 1,444 

n 
 

4.3.4 Analýza (nejen) nelineárních obvodů s využitím simulačních 
programů 

 

V roce 1971 vytvořil student „University of California“, Berkeley, USA Larry Nagel program 
SPICE1 (SPICE = Simulation Program with Integrated Circuit Emphasis) jako vývojově vyšší verzi 
svého předchozího programu CANCER (Computer Analysis of Nonlinear Circuits Excluding 
Radiation). Program umožňoval analýzu dějů v obvodech, obsahujících zejména bipolární a unipolární 
tranzistory. O věrohodnost výsledků bylo usilováno propracovaností modelů polovodičových 
součástek i matematických algoritmů řešení rovnic. Uživatel měl navíc možnost prakticky 
neomezeného rozšiřování sortimentu analyzovaných součástek technikou makromodelů zakládáním 
tzv. podobvodů (subcircuits) SPICE. 

Protože program byl v podstatě volně šířitelný, stal se brzo standardním simulačním nástrojem 
pro elektrotechnické úlohy. Usilovně se pracovalo na jeho zdokonalování. 

V roce 1975 byla představena verze SPICE2 s podstatně zdokonalenými modely i numerickými 
algoritmy. Tato verze byla v průběhu téměř 20 let postupně zdokonalována na Berkeleyské univerzitě 
až do dnes všeobecně známého standardu SPICE2G.6, který byl v r. 1983 zpřístupněn k volnému 
používání. 
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Zdrojové texty SPICE1 a SPICE 2 byly napsány ve Fortranu. Vzhledem k zvýšenému využívání 
Unixových pracovních stanic padlo v Berkeley rozhodnutí přepsat SPICE 2 do jazyka C. Tak začala 
vznikat verze SPICE3. Dnes je rozšířena verze SPICE 3F.2. Oproti SPICE2G.6 se vyznačuje řadou 
vylepšení, ovšem z různých důvodů došlo k ztrátě zpětné kompatibility se SPICE2G.6.  

S růstem výkonnosti počítačů PC došlo k přepisování programů, dosud běžících na výkonných 
pracovních stanicích, na programy spustitelné na „PCčkách“. Tak vznikl standard PSpice. 

Dnes existuje více simulačních programů, které využívají v podstatě tři ne zcela kompatibilní 
standardy: SPICE2, SPICE3, PSPICE. Všechny lze rozdělit na tzv. „Spice-like“ a „Spice-compatible“ 
simulátory. 

Označení „Spice-like“ znamená, že simulátor je schopen generovat podobné výsledky analýzy 
jako SPICE, avšak nemusí být schopen číst standardní vstupní soubory SPICE. Typickými příklady 
jsou staré verze programů Micro-Cap nebo TINA, program SABER apod. 

Termínem „Spice-compatible“ se označují simulační programy, které dokáží číst standardní 
vstupní soubory SPICE, provádět klasické SPICE analýzy, a generovat výsledky v standardním 
SPICE2G.6 tvaru. Ze současných programů jsou to například PSpice, HSpice (standard SPICE3), 
WINSpice (standard SPICE3), Micro-Cap od verze IV, Multisim a další. 

Pro „Spice-like“ a „Spice-compatible“ simulační programy jsou charakteristické tyto základní 
analýzy: „Transient“, „DC“, „AC“. Při analýze „Transient“ má uživatel možnost využívat program 
jako „inteligentní osciloskop“ k vizualizaci časových průběhů napětí, proudů a dalších obvodových 
veličin. Analýza „DC“ imituje tzv. charakterograf, tj. přístroj pro snímání stejnosměrných 
charakteristik součástek nebo celých bloků. Příkladem může být vykreslování sítě výstupních 
charakteristik tranzistorů. Analýza „AC“ umožňuje analýzu kmitočtových charakteristik obvodů, tj. 
chování linearizovaných modelů obvodů při jejich malosignálovém buzení v závislosti na kmitočtu. 

Pro běžného uživatele simulačního programu „Spice-like“ nebo „Spice-compatible“ jsou 
důležité dvě věci: 1. Je možné zcela zdarma a legálně používat kvalitní simulační software. Většinou 
jde o volně šířitelné profesionální produkty s určitou limitací na maximální velikost analyzovaného 
obvodu, případně s blokováním určitých druhů analýz. 2. Knihovny součástek, z nichž lze sestavovat 
simulované obvody, lze neomezeně rozšiřovat stahováním modelů SPICE z Internetu. 

Z dostupných profesionálních programů lze doporučit zejména program Micro-Cap, který 
představuje špičkový a uživatelsky velmi přívětivý „Spice-compatible“ simulátor. Jeho volně šířitelná 
evaluační verze umožňuje analyzovat relativně složité obvody. Součástí instalace programu je 
množství vzorových simulačních úloh, které pokrývají širokou škálu analogových, digitálních i 
smíšených aplikací. 
 
& Shrnutí a zobecnění: 
 

• Při „ruční“ analýze nelineárních obvodů bez využití počítačových simulačních programů jsme ze 
zjevných důvodů omezeni na relativně jednoduché úlohy, především na analýzu stejnosměrných 
poměrů. Podle toho, v jaké formě máme k dispozici modely nelineárních prvků, zvolíme buď 
početní nebo grafickou metodu, případně jejich kombinace. Při volbě početní metody je však třeba 
tak jako tak využívat počítače na úrovni programů pro vědeckotechnické výpočty, v mezním 
případě alespoň kalkulačky (pokud možno programovatelné). Pro určitou třídu nelineárních 
obvodů, obsahujících diody a tranzistory, použijeme s výhodou postupy založené na odhadech, 
popsané v části 4.4.3.  

• Ve všech případech ale platí, že „ruční“ analýza bude tím efektivnější, čím více porozumíme funkci 
jednotlivých součástek obvodu i funkci analyzovaného obvodu jako celku. Tato zásada se zde 
projevuje ještě o poznání silněji než při analýze lineárních obvodů. 

• Solidní práce s nelineárními obvody je dnes nemyslitelná bez profesionálních simulačních 
programů, jejichž výstupy poměrně věrně kopírují chování reálných obvodů, a to díky 
propracovaným modelům součástek a výkonnému výpočetnímu jádru. Díky Internetu jsou takovéto 
programy přístupné prakticky pro každého zájemce. 
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4.4 VYUŽITÍ OPERÁTOROVÉHO POČTU K ANALÝZE OBVODŮ 
 

Při analýze lineárních obvodů, které obsahují kapacitory, induktory, případně další modely 
kmitočtově závislých součástek, se běžně využívá operátorového počtu, založeného na Laplaceové 
transformaci. Existuje několik způsobů využití operátorového počtu k řešení obvodů. Shrnutí je 
uvedeno v příloze „Operátorový počet v elektrotechnice“. Nejznámější postupy spočívají v tom, že 
výchozí schéma lineárního obvodu se převede na tzv. operátorové schéma, a to tak, že každý 
obvodový prvek se nahradí svým náhradním operátorovým modelem a signály – funkce času – se 
nahradí jejich Laplaceovými obrazy. Operátorový model rezistoru je opět rezistor. Řešíme-li obvod 
s nulovými počátečními podmínkami, pak prvky typu C a L jsou modelovány jejich operátorovými 
impedancemi 1/pC a pL. V případě nenulových počátečních podmínek jsou tyto impedance doplněny 
o přídavné zdroje napětí nebo proudu (viz příloha). Počátečními podmínkami se zjednodušeně rozumí 
napětí na kapacitorech a proudy induktory obvodu v počátečním čase analyzovaných průběhů. 

Operátorové schéma se řeší některou z heuristických nebo algoritmických metod analýzy. 
Výsledkem řešení je ovšem Laplaceův obraz hledané obvodové veličiny. Časový průběh signálu lze 
určit zpětnou Laplaceovou transformací. 

Mnohdy nejsou cílem analýzy časové průběhy, ale například kmitočtové charakteristiky. Tyto 
snadno získáme z operátorové obvodové funkce po substituci p = jω. 
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5  OBECNÉ VLASTNOSTI LINEÁRNÍCH OBVODŮ A 
NÁSTROJE PRO JEJICH POPIS 

 
Lineární nebo linearizované obvody, využívané v nejrůznějších aplikacích, jsou velmi 

různorodého charakteru. Přesto je však spojují určité obecné vlastnosti, které vyplývají především 
z toho, že chování těchto obvodů je podřízeno – na rozdíl od obvodů nelineárních – velmi 
specifickému principu, a to principu superpozice. Namátkou jmenujme některé obecné vlastnosti 
lineárních obvodů: může v nich nastat harmonický ustálený stav, neobohacují spektrum vstupního 
signálu, lze je modelovat kmitočtovou charakteristikou, při zdvojnásobení velikosti budicího signálu 
dojde k zdvojnásobení odezvy na signál, účinky nezávislých budicích zdrojů na obvod se nezávisle 
sčítají. 

Díky obecným vlastnostem, které budou v této kapitole popsány, můžeme lépe chápat chování 
těchto obvodů při jejich interakci se signály. Na principu superpozice je založeno několik velmi 
užitečných nástrojů, jak tyto interakce jednoduše popisovat a modelovat. V kapitole se seznámíme mj. 
s využitím operátorového popisu lineárních obvodů, který nám umožní elegantně modelovat vlastnosti 
a chování obvodů v nejrůznějších režimech jejich činnosti. 
 
5.1 ZÁKLADNÍ POJMY 
 

5.1.1 Princip superpozice a jeho důsledky 
 

Termínem linearita se označuje proporcionalita (přímá úměra) mezi příčinou (vstupem) a 
účinkem (výstupem). Navíc tento termín zahrnuje i superpozici příčin a účinků. Tyto dva aspekty 
linearity se nazývají homogenita a aditivita (podrobnosti viz [5, 12]). 

Vlastnost homogenity nám poskytuje následující volnost při experimentování s lineárními 
obvody: Je třeba změřit odezvu zesilovače na skokovou změnu vstupního napětí z 0V na 1V. Na 
vstupu však máme k dispozici pouze zdroj napětí 100mV. Zjistíme tedy odezvu obvodu na skok z 0V 
na 100mV a pak zjištěnou odezvu 10krát zesílíme. 

Při těchto experimentech je však třeba dávat pozor na to, že skutečný obvod se chová lineárně 
jen pro určité rozmezí signálových hodnot, které sice mohou být „beztrestně“ překročeny v průběhu 
analýz nad lineárním modelem, nikoliv však u samotného obvodu. 

Velmi užitečná je i vlastnost aditivity, která nabízí zjednodušovat výpočty odezev obvodu na 
dané buzení, a to v časové i kmitočtové oblasti. Složitý vstupní signál aproximujeme součtem signálů 
jednodušších. Jsme-li schopni určit odezvy obvodu na každý z těchto jednoduchých signálů, pak po 
sečtení dílčích odezev získáme odezvu na složitý signál. Na této myšlence je založena např. metoda 
výpočtu reakce obvodu na signál pomocí tzv. konvoluce nebo metoda Fourierovy řady a 
kmitočtové charakteristiky, kdy průchod periodického signálu obvodem řešíme rozfázovaně jako 
průchod harmonických složek, z nichž se vstupní signál skládá (viz obr. 3.24 na str. 79). 

V části 5.1.2 ukážeme, že pokud obvod obsahuje akumulační prvky, pak reakce obvodu na 
vstupní signál bude záviset i na počátečním „stavu“ těchto prvků. Například po připojení dvojpólu 
typu „RC“ k baterii bude průběh napětí napětí na kapacitou záviset i na tom, na jaké počáteční napětí 
byl kapacitor nabit před připojením. Akumulační prvky se totiž chovají jako přídavné zdroje v obvodu, 
konkrétně nabitý kapacitor jako zdroj napětí a induktor jako zdroj proudu. Princip superpozice nám 
umožní dívat se na reakci obvodu na vstupní signál jiným pohledem: signály v obvodu lze chápat tak, 
že jsou složeny ze dvou částí: z reakce na signál a z reakce na počáteční energetický stav 
akumulačních prvků. Rozložením tzv. celkové odezvy na vynucenou a přirozenou (viz část 5.2) 
můžeme dosáhnout podstatných zjednodušení.  

Principu superpozice využijeme i k představě, že odezva obvodu se skládá z tzv. přechodné a 
ustálené složky. Zajímá-li nás například pouze ustálená odezva, můžeme použít rychlou metodu, která 
bude přechodnou složku „ignorovat“. 
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5.1.2 Stav, počáteční podmínky a řád lineárního obvodu 
 

Akumulační prvky v setrvačném obvodu se chovají jako paměť: energie, nahromaděná 
v kapacitoru, je úměrná kvadrátu napětí na kapacitoru, energie induktoru zase kvadrátu proudu. 
Uvedené napětí a proudy jsou výsledkem „nabíjení“ akumulačních prvků v minulosti a mají vliv na 
chování obvodu v budoucnosti. Obvod s pamětí se nazývá dynamický. Není-li v obvodu paměť, pak 
jde o obvod statický. 

Čím větší počet akumulačních prvků je obsažen v obvodu, tím „rozsáhlejší je paměť“. „Obsah“ 
-stav paměti v konkrétním okamžiku lze popsat množinou čísel – velikostí napětí na kapacitorech a 
proudů induktory v tomto okamžiku. Tyto stavové veličiny mají speciální vlastnost: mohou se v čase 
měnit jen spojitě, tj v grafech jejich časových závislostí se nemohou objevovat skoky.  

Pozorujeme-li, resp. analyzujeme-li elektrický obvod z určitého výchozího okamžiku, pak 
hodnoty stavových veličin v tomto výchozím časovém bodu nazýváme fyzikální počáteční 
podmínky. Tyto podmínky tedy popisují stav paměti obvodu na počátku analýzy. 

Počet nezávislých stavových veličin, tj. veličin, které se mohou měnit „volně“ jedna nezávisle 
na druhé, se nazývá řád obvodu n. Závislé veličiny jsou například napětí na kapacitorech, které jsou 
zapojeny paralelně nebo proudy induktorů v sérii. Závislé jsou rovněž například napětí na 
kapacitorech v sérii, k nimž je připojen ideální zdroj napětí, nebo proudy induktorů, které jsou spojeny 
do uzlu se zdrojem proudu. Platí tedy  

 řád obvodu ≤ počet C + počet L v obvodu.  (5.1) 

V daném okamžiku je výstup určen jednoznačně hodnotou vstupního signálu a stavem paměti 
Je-li obvod lineární, pak výstupní signál je dán lineární kombinací vstupního signálu a stavových 
veličin.  

Stav paměti je výsledkem působení vstupu v minulosti. Porovnáváme-li stav paměti ve dvou po 
sobě jdoucích okamžicích, pak zjistíme, že se paměť postupně „přepisuje“ tak, že rychlost změny 
stavu paměti závisí na momentálním stavu paměti a na vstupním signálu. Například při nabíjení 
kapacitoru na napětí baterie před sériový rezistor bude rychlost nabíjení záviset nejen na napětí 
baterie, ale i na tom, na jaké napětí je kapacitor momentálně nabitý, „kolik mu zbývá“ do úplného 
nabití.  

 

5.1.3  Vynucená, přirozená a celková odezva lineárního obvodu 
 

Z předchozího textu je zřejmé, že obvod reaguje na zdroje dvojího typu: na vstupní signál a na 
počáteční energetický stav vnitřních akumulačních prvků (stav paměti), které se chovají jako přídavné 
zdroje. Jedná-li se o lineární obvod, v němž platí princip superpozice, pak lze výslednou odezvu 
obvodu rozložit na dvě části: 

 výstup(t) = vynucená odezva(t) + přirozená odezva(t),  (5.2) 
kde 
 
vynucená odezva (angl. Forced Response) je odezva obvodu na signál, který působí od počátečního 
času t0 při „vynulované paměti“ v čase t0, tj. při nulových počátečních napětích na kapacitorech a 
nulových počátečních proudech induktory, 
přirozená odezva (angl. Zero-Input Response nebo Natural Response nebo Free Mode) je odezva 
obvodu na jeho počáteční stav, tj. na nenulové fyzikální počáteční podmínky při nepůsobení vstupních 
signálů. 

Příkladem může být kapacitor, nabitý na napětí 1V, který je v čase 0 připojen přes rezistor 
k baterii o napětí 6V. „Nabíjecí exponenciála“ začíná z výchozího napětí 1V a směřuje k hodnotě 
ustáleného stavu 6V. Tento děj lze rozložit na dva dílčí děje:  

Kapacitor se nabíjí na napětí baterie z počáteční hodnoty napětí 0V (uvažuje se „vynulovaná 
paměť“, vynucená odezva na vstup). 
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Kapacitor se vybíjí z počátečního napětí 1V přes rezistor (uvažuje se „vynulovaný vstup“ – 
zkrat namísto baterie, přirozená odezva na počáteční stav). 

Přirozená odezva tedy ukazuje, co se stane, ponechá-li se obvod "sám sobě". Je-li například 
paralelní rezonanční obvod ponechán "sám sobě", v důsledku rozptylu energie na odporových prvcích 
obvod nakonec dospěje do nulového stavu. Přechod z výchozího do tohoto konečného stavu se děje 
formou exponenciálně tlumených harmonických kmitů. 

Doplníme-li rezonanční obvod řídicím mechanismem, který hlídá stav obvodu a zpětně dodává 
do obvodu energii kryjící jeho ztráty, dostaneme oscilátor. Přirozená odezva bude nyní harmonická 
bez exponenciálního tlumení. Nebude-li však regulační mechanismus správně seřízen, může přirozená 
odezva zanikat (nevykompenzování ztrát), nebo se může naopak objevit tendence jejího 
neohraničeného růstu (překompenzování ztrát). 

 
5.1.4  Stabilita lineárního obvodu 

 

Z předchozího příkladu je zřejmé, že přirozená odezva může nabývat různých forem: 

- Časem zaniká. Pak obvod nazýváme asymptoticky stabilní vzhledem k výchozímu stavu. 
- Ustálí se v konečných mezích (buď periodicky se opakující nebo konstantní stav). O obvodu se říká, 
že je stabilní (případně že je na mezi stability) vzhledem k výchozímu stavu. 
- Má tendenci k neohraničenému růstu. Obvod je nestabilní vzhledem k výchozímu stavu. 

Obvody obsahující pouze pasivní prvky typu R, L a C mají vždy stabilní chování. Přítomnost 
aktivního prvku s vnějším přívodem energie (tranzistor, operační zesilovač, tunelová dioda,…) může 
být zdrojem nestability. 

Je zřejmé, že průběh přirozené odezvy bude záviset na volbě výchozího stavu. Z předchozích 
příkladů je ale vidět, že tendence pohybu (konvergence, divergence) zde není výchozím stavem 
ovlivněna. Je tomu tak proto, že obvod je lineární. Tendence pohybu je určována vlastnostmi obvodu, 
které v případě linearity nezávisejí na jeho stavu. Jiná situace nastává u nelineárních obvodů, kdy při 
některých počátečních stavech může přirozená odezva zanikat a při jiných zase divergovat. 

Testováním přirozené odezvy tedy můžeme zjišťovat následující informace o obvodu: 

- Stabilitu (sledováním konvergence). 
- Linearitu (sledování "podobnosti" odezev při různých počátečních stavech). 
- Dynamické vlastnosti (sledování charakteru přechodu obvodu do nového stavu: rychlost 

přechodu, monotonicita nebo zakmitávání, frekvence zakmitávání apod.) 

K vyhodnocování těchto testů, zejména posledně jmenovaného, je zapotřebí určitých zkušeností 
a teoretických znalostí z oblasti časových a spektrálních charakteristik obvodů a jejich souvislostí. 
Těmito otázkami se budeme zabývat v části 5.2.4. 

Chování obvodu při buzení vnějším signálem je složitější, neboť je ovlivňováno i charakterem 
tohoto signálu. Z hlediska posuzování stability buzeného obvodu se používají dva základní přístupy: 
Obvod je stabilní podle Ljapunova, pokud se všechny stavové veličiny obvodu budou pohybovat 
v rámci konečných, ohraničených hodnot. Obvod je stabilní ve smyslu „ohraničený vstup – 
ohraničený výstup“ (angl. BIBO – Bounded Input Bounded Output), jestliže každý budicí signál, 
ohraničený v hodnotách, vyvolává výstupní signál, rovněž ohraničený v hodnotách. Lze dokázat, že 
pro většinu lineárních obvodů je „BIBO“ stabilita totéž co asymptotická stabilita [22]. 

Z hlediska konstruktéra nebo uživatele elektronického obvodu, například zesilovače, který má 
zpracovávat signály v lineárním režimu, je prakticky vždy vyžadováno, aby obvod byl asymptoticky 
stabilní. Obvody, které se teoreticky chovají tak, že se nacházejí na mezi stability, jako například 
integrátory, mohou v důsledku vždy přítomných reálných vlivů vykazovat nestabilní chování. Tyto 
negativní jevy lze vyloučit, pokud je daný obvod součástí složitějšího obvodu, v němž působí 
stabilizační účinky záporné zpětné vazby. 
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5.2  ZÁKLADNÍ PŘENOSOVÉ CHARAKTERISTIKY LINEÁRNÍHO 
OBVODU A JEJICH POUŽITÍ 
 

5.2.1 Kmitočtová, impulsní a přechodová charakteristika a operátorová 
přenosová funkce 

 

Čtveřice běžně používaných charakteristik, které vyjadřují vstupně-výstupní přenosové 
vlastnosti obvodů, je shrnuta v Tab. 5.1. Platí mezi nimi jednoznačné převodní vztahy. Známe-li jednu 
z charakteristik g(t), h(t) nebo K(p), lze ostatní odvodit. 

 
Tab. 5.1. Přenosové charakteristiky lineárního obvodu a jejich vzájemné vztahy: Komplexní kmitočtová 
charakteristika )( ωjK& , operátorová přenosová funkce K(p), impulsní charakteristika g(t), přechodová 
charakteristika h(t). Symboly F a L představují Fourierovu a Laplaceovu transformaci. 

 

 ( )ωjK&  ( )pK  ( )tg  ( )th  

( )ωjK&  ( )ωjK&  ( )pK  
pro p = jω  

( ){ }tgF  ( ){ }thj Fω  

( )pK  ( )ωjK&  
pro jω = p 

( )pK  ( ){ }tgL  ( ){ }thpL  

( )tg  ( ){ }ωjK&1−F  ( ){ }pK1−L  ( )tg  ( ){ }th
dt
d  

( )th  ( )






− ω

ω
jK

j
&11F  ( )







− pK

p
11L  ( )∫

∞−

t

dg ττ  ( )th  

 
Kmitočtové charakteristiky:  - Jejich podstata je vysvětlena na str. 76. Lze z nich určit ustálenou 

odezvu obvodu na harmonický signál různého kmitočtu, resp. na 
obecný signál se známým spektrem. 

Časové charakteristiky: - impulsní charakteristika = vynucená odezva obvodu na Diracův 
impuls, 

 - přechodová charakteristika = vynucená odezva obvodu na 
jednotkový skok. 

Operátorové charakteristiky:  - přenosová funkce = poměr Laplaceových obrazů vynucené 
odezvy obvodu na vstup a Laplaceova obrazu vstupního signálu. 

Význam těchto charakteristik spočívá v tom, že z jejich specifických vlastností lze mnohdy 
odhadnout „na první pohled“ chování obvodu při působení různých signálů, jakož i schopnost obvodu 
přenášet ze vstupu na výstup různě rychlé signálové změny. Každá z charakteristik vyjadřuje 
dynamické vlastnosti obvodu z jiného úhlu pohledu.  

Výše uvedené kmitočtové a časové charakteristiky lze poměrně snadno získat experimentálně. 
Způsob měření kmitočtové charakteristiky byl popsán v části 3.4.3. O způsobech stanovení časových 
charakteristik pojednáme níže. Operátorové přenosové funkce lze určit analýzou obvodu způsoby, 
které jsou popsány v příloze „Operátorový počet v elektrotechnice“. 

V části 3.4.4 bylo ukázáno, že kmitočtová charakteristika obvodu sice popisuje jeho přenosové 
vlastnosti při harmonickém buzení, můžeme jí však využít pro zkoumání přenosu neharmonických 
signálů, pokud známe jejich harmonické složky. Obdobný způsob práce je běžný i u časových 
charakteristik: známe-li odezvu na Diracův impuls, resp. na jednotkový skok, pak lze určit i odezvu na 
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jiný známý budicí signál. Tento postup, který vychází z představy rozkladu signálu na elementární 
„segmenty“, popíšeme v části 5.2.3. 

Jakýmsi zobecněním, resp. „kompaktní formou“ výše uvedených charakteristik je operátorová 
přenosová funkce. V části 5.2.4 ukážeme, jak jednoduché je z přenosové funkce vyjádřit kmitočtovou, 
impulsní i přechodovou charakteristiku, jakož i další vlastnosti obvodu. 

Souvislosti mezi jednotlivými charakteristikami lineárního obvodu jsou přehledně znázorněny 
na obr. P.8 v příloze „Operátorový počet v elektrotechnice“. 

 

5.2.2 Přechodová a impulsní charakteristika a jejich vztah ke kmitočtové 
charakteristice 

 

Přechodová charakteristika (někdy též přechodná, angl. Step Response) obvodu h(t) je jeho 
vynucená odezva na jednotkový skok. Před přivedením skoku se tedy obvod musí nacházet 
v nulovém počátečním stavu. 

Z porovnání přechodové charakteristiky a jednotkového skoku můžeme posoudit, jakým 
způsobem byl skok deformován. Z charakteru deformace lze usuzovat na dynamické vlastnosti 
obvodu. 

Na obr. 5.1 je příklad analogového obvodu a jeho odezvy na jednotkový skok. Jde o odporově-
kapacitní dělič napětí, pomocí něhož lze například modelovat chování měřicí sondy k osciloskopu. 
V čase t = 0, kdy se vstupní signál prudce mění z nuly na úroveň 1V, je obvod vystaven náročnému 
testu – jak je schopen reagovat na tuto rychlou změnu. Z obr. 5.1 b) je zřejmé, že skoková změna se 
přenese na výstup rovněž skokově, ovšem s menší úrovní skoku C1/(C1 + C2). Je tomu tak proto, že v 
prvním okamžiku byly oba kapacitory vybity a představovaly tedy napěťový zkrat, takže zpočátku se 
na přenosu nepodílejí "zkratované" rezistory R1 a R2. Skok se tedy na výstup přenese s dělicím 
poměrem kapacitního děliče (obr. 5.1 c). Pak dochází k přechodnému jevu a systém spěje do nového 
ustáleného stavu. Tento stav je charakteristický tím, že kapacitory jsou již plně nabity a neteče jimi 
proud. V tomto ustáleném stavu se proto na přenosu napětí podílejí pouze rezistory, ustálená úroveň 
přechodové charakteristiky je dána dělicím poměrem odporového děliče R2/(R1 + R2)(obr. 5.1 d). 
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Obr. 5.1. a) odporově-kapacitní dělič napětí, b) jeho přechodová charakteristika, c) přenos prudkých 

signálových změn je určován kapacitním děličem, d) přenos pomalých změn a neproměnného 
signálu je určován odporovým děličem. 

 
Na obvodu je zajímavé, že pokud jsou přenosy kapacitního a odporového děliče stejné, t.j. 
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pak charakteristika nevykazuje přechodovou složku a je skoková stejně jako vstupní signál. Tohoto 
jevu se využívá k tzv. vykompenzování děliče napětí. Takový dělič se z hlediska vstupně-výstupního 
chování jeví jako statický systém bez paměti, který do signálu nezanáší lineární zkreslení. 

Zobecníme-li poznatky z příkladu, můžeme konstatovat, že: 
 

Veličina h(0+) (limita zprava) udává schopnost obvodu přenášet rychlé signálové změny 
(skoky). Je-li h(0+) > 1 (resp. < 1, resp. = 0), pak jsou tyto rychlé změny zesilovány (resp. 
zeslabovány, resp. zcela potlačovány). 

 
Ve skutečnosti žádný reálný systém není schopen přenést bez zkreslení ze vstupu na výstup 

úsek signálu s nekonečně velkou derivací, což je dáno jeho setrvačností. Proto přesně vzato jsou 
přechodové charakteristiky reálných systémů spojité v počátku souřadnic a h(0+) = 0. Můžeme se o 
tom přesvědčit na našem obvodu z obr. 5.1, budeme-li například uvažovat nenulový vnitřní odpor 
zdroje napětí. 

Ze studia spekter a kmitočtové charakteristiky víme, že schopnost přenášet rychlé signálové 
změny lze vyjádřit i poměrem amplitud výstupního a vstupního signálu systému v harmonickém 
ustáleném stavu pro kmitočet f → ∞. Proto platí 

 ( ) ( ),0 ∞=+ Kh  (5.5) 

kde K(∞) je limita, k níž se blíží graf amplitudové kmitočtové charakteristiky pro f → ∞.  
 

Veličina h(∞) (pokud existuje) udává schopnost obvodu přenášet konstantní (neměnný) signál 
ze vstupu na výstup. Je tomu tak proto, že po odeznění reakce na počáteční skok obvod reaguje 
už jen na konstantní jednotkovou úroveň vstupu, je v stejnosměrném ustáleném stavu. 
 

Zde je rovněž zřejmá souvislost mezi přechodovou a kmitočtovou charakteristikou: Schopnost 
přenášet relativně pomalé změny lze vyjádřit i přenosem amplitud harmonického signálu pro f → 0. Je 
tedy 
 ( ) ( ).0Kh =∞  (5.6) 

Souvislosti mezi limitními body přechodové a amplitudové kmitočtové charakteristiky jsou 
znázorněny pro případ obvodu z obr. 5.1 a) na obr. 5.2. 
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Obr. 5.2. Souvislosti mezi souřadnicemi přechodové charakteristiky h(0+) a h(∞) a souřadnicemi 

amplitudové kmitočtové charakteristiky K(∞) a K(0) obvodu z obr. 5.1 a). Obrázek c) znázorňuje situaci, kdy v 
důsledku vhodné volby parametrů obvodu došlo k jeho degeneraci na nesetrvačný obvod. 
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Velmi zajímavé jsou souvislosti mezi celkovými průběhy přechodové a kmitočtové 
charakteristiky. Z průběhu přechodové charakteristiky je možno usuzovat na typy módů obvodu (viz 
str. 177 a [5]), které určují i charakter kmitočtové charakteristiky. Objevuje-li se v přechodové 
charakteristice dominantní kmitavý mód, pak lze očekávat v blízkosti tohoto kmitočtu rezonanční 
převýšení amplitudové kmitočtové charakteristiky. Průběh přechodové odezvy je však spjat nejen s 
amplitudovou charakteristikou, ale silně závisí i na fázové kmitočtové charakteristice. 

Přechodovou charakteristiku lze experimentálně stanovit tak, že obvod budíme periodickým 
obdélníkovým signálem a na osciloskopu sledujeme odezvu. Doba trvání jednoho obdélníkového 
impulsu musí být tak dlouhá, aby byl dostatek času na vykreslení celé přechodové charakteristiky, tj. 
aby se obvod dostal do stejnosměrného ustáleného stavu. Před příchodem dalšího impulsu je třeba 
zajistit nulování počátečního stavu, což lze většinou zabezpečit přímo působením napětí nulové 
úrovně v době mezi sousedními impulsy. 

 
Impulsní charakteristika (někdy též impulsová, angl. Pulse Response) obvodu g(t) je jeho 

vynucená odezva na Diracův impuls.  
Přivedením Diracova impulsu na vstup obvodu podrobujeme tento obvod ještě náročnějšímu 

testu než v případě jeho vybuzení jednotkovým skokem, kdy obvod reagoval na konečnou změnu 
signálu v nekonečně krátkém časovém intervalu. Nyní má reagovat na dvě nekonečně velké změny 
v nekonečně krátkém intervalu po sobě: na změnu z 0 do ∞ a z ∞ do 0. Z kapitoly 2 je známo, že že 
čím užší je impuls, tím širší má spektrum. Nekonečně úzký Diracův impuls má nekonečně široké 
spektrum, takže test Diracovým impulsem je ekvivalentní situaci, kdy přivedeme na vstup obvodu 
současně harmonické signály v kmitočtové škále od 0 Hz až do ∞ Hz. Tuto množinu signálů není 
schopen reálný obvod přenést bez zkreslení, takže na impulsní charakteristiku lze pohlížet jako na 
zdeformovaný Diracův impuls. Podle charakteru deformace můžeme usuzovat na dynamické 
vlastnosti obvodu podobně jako v případě přechodové charakteristiky. 

Z kapitoly 2.2.1 víme, že Diracův impuls je derivací jednotkového skoku a jednotkový skok je 
zase integrálem Diracova impulsu (str. 35). Využijme této souvislosti k určení vztahu mezi 
přechodovou a impulsní charakteristikou. Z teorie systémů je známa následující poučka [5]: 

 
Vynucená odezva lineárního stacionárního systému na časovou derivaci (integrál) signálu je 
časovou derivací (integrálem) vynucené odezvy na tento signál. 

 
Tato poučka vyplývá z principu superpozice. Důkaz je uveden například v [5]. Z poučky pak 

vyplývá, že: 
 

Impulsní charakteristika je derivací přechodové charakteristiky: 
 )()( thtg ′= , (5.7) 

a naopak přechodová charakteristika je integrálem impulsní charakteristiky: 

 ∫
∞−

=
t

dgth αα )()( . (5.8) 

 
Vztah mezi g(t) a h(t) je vysvětlen na obr. 5.3 na příkladu obvodu z obr. 5.1 a). Na vstup působí 

rozdíl dvou jednotkových skoků [1(t) – 1(t-∆)]/∆, který pro ∆→0 konverguje k Diracovu impulsu δ(t). 
Odezva, neboli rozdíl odpovídajících posunutých a váhovaných přechodových charakteristik, pak 
konverguje k impulsní charakteristice. 

Průběh impulsní charakteristiky z obr. 5.3 b) lze získat přímo grafickou derivací křivky h(t) 
z obr. 5.1 b). V počátku se objeví Diracův impuls o mohutnosti h(0+), což je derivace skoku z hodnoty 
0 na h(0+). Zopakujme, že tento impuls není přítomen v impulsních charakteristikách reálných obvodů, 
u nichž je přechodová charakteristika spojitá v počátku (h(0+)=0). 
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Obr. 5.3. Odezvu obvodu z obr. 5.1 a) na obdélníkový impuls lze složit ze dvou odezev na skokové 
signály; pro ∆→0 tato odezva konverguje k impulsní charakteristice. 

 
Z grafu impulsní charakteristiky lze usuzovat, že obvod dobře reaguje na rychlé změny 

vstupního signálu, neboť vstupní Diracův impuls byl přenesen na výstup, i když jeho původní 
mohutnost 1 se zmenšila na C1/(C1+C2). Mohutnost tohoto impulsu tedy udává stejnou informaci jako 
veličina h(0+) v přechodové charakteristice, totiž míru přenosu „rychlých“ signálů. Vstupní Diracův 
impuls však není přenesen ideálně, o čemž svědčí exponenciální doznívání impulsní charakteristiky. 

Zbývá objasnit, jak je možné z impulsní charakteristiky určit schopnost obvodu přenášet pomalé 
změny signálu. Víme, že přenos pomalých změn lze určit z přechodové charakteristiky jako h(∞). Ze 
vztahu mezi přechodovou a impulsní charakteristikou vyplývá, že 

 ∫
∞

∞−

=∞ αα dgh )()( . (5.9) 

Proto přenos pomalých změn je dán celkovou plochou, ohraničovanou impulsní charakteristikou 
a osou času. V našem konkrétním případě je tato plocha větší, než mohutnost Diracova impulsu 
v počátku, takže přenos pomalých změn je větší než přenos rychlých změn. To je zcela v souladu 
s našimi předchozími zjištěními. 

Nabízí se otázka, jakým způsobem je možno zjistit impulsní charakteristiku obvodu 
experimentálně, protože, jak známo, vlastní budicí Diracův impuls je nerealizovatelný. Řešení je 
naznačeno již na obr. 5.3. Obvod je možné budit impulsy, které jsou „podobné“ Diracovým impulsům. 
Je-li impuls dostatečně úzký, to znamená je-li jeho šířka několikanásobně menší, než kolik činí časové 
konstanty obvodu, pak odezva na tento impuls je až na multiplikativní konstantu prakticky totožná 
s impulsní charakteristikou. Pak platí: 

 odezva na „krátký“ impuls = impulsní charakteristika x plocha impulsu. (5.10) 

 
Je-li například použit měřicí impuls o úrovni 5V a šířce 10µs, pak funkční hodnoty impulsní 

charakteristiky budou oproti změřeným 20000krát větší (1/(5.10.10-6)). 

P5.1 Určete přechodovou a impulsní charakteristiku RC článku na obr. 5.4. 

R=16k C=10n

u1(t) u2(t)

 

Obr.5.4. Analyzovaný RC článek (viz též obr. 3.23 na str. 77). 
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þ Řešení: 
Přechodovou charakteristiku článku určíme podle její definice jako časový průběh napětí u2(t), 

přivedeme-li v čase t = 0 na vstup článku napětí 0V, přičemž v okamžiku přivedení tohoto napětí byl 
kapacitor vybitý.  

Řešením tohoto jednoduchého přechodného děje je exponenciální „nabíjecí“ křivka z počáteční 
hodnoty 0V do konečné hodnoty 1V: 

 )(1)1()()( 2 tetuth
t
τ

−
−== .   

Vzorec přechodného děje je násoben jednotkovým skokem, který matematicky zabezpečuje, že 
přechodová charakteristika je nulová pro záporné časy. Nabíjení probíhá s časovou konstantou τ = RC 
= 160µs. Charakteristika je znázorněna na obr. 5.5. 

Impulsní charakteristiku, tj. vynucenou odezvu na jednotkový impuls, získáme nejpohodlněji 
derivací přechodové charakteristiky: 

 )(11)(1)1()(1)1()()( tetetethtg
ttt
τττ

τ

−−−
=′−+′−=′= .  

Při úpravě vzorce bylo využito toho, že derivací jednotkového skoku je jednotkový impuls. Ten 
je násoben funkcí (1-e-t/τ), která je nulová pro čas 0. Druhý člen impulsní charakteristiky je tedy 
nulový. 
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∫

 
 

Obr.5.5. Přechodová a impulsní charakteristika RC článku z obr. 5.4. Protože maximální hodnota 
impulsní charakteristiky je 1/τ = 6250V, pro lepší srovnání s přechodovou charakteristikou je 
impulsní charakteristika 6250x zeslabena. 

 
Všimněte si, že maximální hodnota impulsní charakteristiky pro t = 0 vychází 1/τ = 6250 V. 

Takováto napěťová špička by se skutečně objevila na výstupu ideálního RC článku po přivedení 
Diracova impulsu. Z praktického pohledu je však třeba vnímat dvě věci: a) Diracův impuls nelze 
vyrobit, b) odezva obvodu může být ovlivněna parazitními indukčnostmi součástek a spojů. 

n 

P5.2 Určete vynucenou odezvu RC článku z obr. 5.4 na obdélníkový impuls o úrovních 0V a 5V 
a šířce 1µs. 

þ Řešení: 
Délka trvání impulsu je podstatně kratší než je časová konstanta RC článku. Proto můžeme 

použít poučku (5.10): 
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Odezva na impuls = g(t).5.10-6 = 6250.5.10-6 e-t/τ 1(t)=0,03125 e-t/τ 1(t) [V]. 
 

RC článek tedy zareaguje napěťovou špičkou o úrovni 31,25mV. Výstupní napětí bude 
exponenciálně zanikat s časovou konstantou 160µs. 

n 
Pokud by šířka impulsu nebyla zanedbatelná vůči časové konstantě obvodu, uvedený postup by 

vedl na velkou výpočetní chybu. Přesný výsledek bychom získali složitějšími postupy, popsanými 
v částech 5.2.3 a 5.2.4. 

 

5.2.3 Stanovení vynucené odezvy obvodu z impulsní a přechodové 
charakteristiky 

 

Metoda konvolučního integrálu 
 

Vzorec (5.10), případně výsledek příkladu P5.2 lze okomentovat tak, že pokud je impuls, 
působící na obvod, dostatečně úzký, pak obvod na něj reaguje nezávisle na tvaru tohoto impulsu, 
nýbrž pouze v závislosti na tom, jaká je jeho mohutnost. Onou reakcí je impulsní charakteristika, 
násobená mohutností impulsu. 

Libovolný budicí signál lze tedy myšleně rozložit na „dostatečně úzké“ segmenty podle obr. 5.6 
a), každý o šířce ∆t. Z hlediska účinků na obvod je pak tento signál ekvivalentní jinému budicímu 
signálu na obr. 5.6 b), který je složen z posloupnosti Diracových impulsů s modulovanou mohutností. 
Vynucená odezva obvodu je pak dána součtem příslušných impulsních charakteristik. Přesného řešení 
dosáhneme pro ∆t→0. 

b)

t

x(k∆t) ∆t

x(t)

 ∆t

k∆t

t

x(k∆t) ∆t

 ∆t

k∆t

.  . .  .  . .  . .  .  .

a)  
Obr. 5.6. Princip náhrady spojitého signálu Diracovými impulsy. 

 
Matematicky je možno náhradu signálu x(t) Diracovými impulsy zapsat následovně: 

 ∑
∞

−∞=

∆∆−∆≈
k

ttkttkxtx )()()( δ .  (5.11) 

Pro ∆t→ 0 přechází suma na pravé straně (5.11) v integrál a celý vzorec v nám již známý 
matematický popis filtračního účinku Diracova impulsu (2.68): 

 ∫
∞

∞−

−= ααδα dtxtx )()()( .  (5.12) 

Předpokládejme, že x(t) je vstupní signál obvodu s impulsní charakteristikou g(t). Vynucená 
odezva obvodu na impuls δ(t-α) tedy bude g(t-α). Vynucená odezva y(t) obvodu na signál x(t) tedy 
bude 

 ∫
∞

∞−

−= ααα dtgxty )()()( .  (5.13) 

Integrál na pravé straně rovnice se nazývá konvolučním integrálem neboli konvolucí funkcí x 
a g. Operace konvoluce se značí zkráceně symbolem * (konvoluční součin), neboli 
 )(*)()( tgtxty = .  (5.14) 
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Vynucená odezva obvodu na signál x je dána konvolučním součinem tohoto signálu a impulsní 
charakteristiky obvodu. 

 
Lze snadno ukázat, že x(t)*g(t) = g(t)*x(t), neboli že současně platí 

 ∫
∞

∞−

−= ααα dtxgty )()()( .  (5.15) 

Z rovnice (5.13) vyplývá, že přirozenou vlastností obvodu je jeho integrační charakter, tj. 
tendence integrovat budicí signál. Nejedná se však o „čistou“, nýbrž „váženou“ integraci: Každá 
hodnota budicího signálu je před integrací násobena váhovou funkcí – impulsní charakteristikou 
obvodu. Tato charakteristika tedy rozhoduje o tom, jakou vahou přispívají jednotlivé segmenty 
vstupního signálu k tvorbě odezvy. 

Reálný elektrický obvod je kauzální, to znamená, že impulsní charakteristika – odezva na 
Diracův impuls – nemůže časově předbíhat tento impuls, takže g(t) = 0 pro t < 0. Potom lze upravit 
integrační meze v konvolučních integrálech: horní mez v (5.13) na t, dolní mez v (5.15) na nulu: 

 ∫∫
∞

∞−

−=−=
0

)()()()()( αααααα dtxgdtgxty
t

. (5.16) 

Je-li navíc vstupní signál nulový pro t < 0, pak 

 ∫∫ −=−=
tt

dtxgdtgxty
00

)()()()()( αααααα . (5.17) 

Tvary (5.17) se často objevují v literatuře jako jediné, ovšem je třeba si pamatovat, že nejsou 
obecné a že byly zjednodušeny ze vztahů (5.13) a (5.15) za určitých předpokladů. 

P5.3 Určete vynucenou odezvu RC článku z obr. 5.4 na napětí, lineárně rostoucí v čase o 
rychlosti 1V/s. 

þ Řešení: 
Vstupní napětí lze modelovat rovnicí  

)(1)(1 tttu = . 

Z příkladu P5.1 známe impulsní charakteristiku RC článku  

)(11)( tetg
t
τ

τ

−
= . 

K výpočtu odezvy jakožto konvoluce vstupního signálu a impulsní charakteristiky můžeme 
použít vzorce (5.17) (vysvětlete proč): 

αα
τ

αα
τ

ααααα τ
α

ττ
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deedtedtgutu
ttt tt

∫∫∫
−

−
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000

12
1)(11)(1)()()( . 

Obě funkce typu jednotkový skok nabývají v rámci integračních mezí jednotkových hodnot, 
proto mohly být z integrandu odstraněny. Výsledný integrál lze vyřešit např. metodou per partes nebo 
výsledek nalezneme například v tabulkách [1]: 

22
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Po dosazení do předchozího vzorce a úpravě dostáváme výsledek: 

)(1)]1([)(2 tettu
t
ττ

−
−−= . 
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R=16k C=10n
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Obr. 5.7. Vynucená odezva RC článku na lineárně rostoucí vstupní napětí. 

 
První člen na pravé straně reprezentuje vstupní signál. Druhý člen je tedy rozdíl mezi výstupním 

a vstupním napětím. V ustáleném stavu, tedy pro t→∞, je tedy výstupní napětí oproti vstupnímu 
zmenšeno o hodnotu τ. Jde o tzv. rychlostní chybu, vyvolanou například u mechanických 
záznamových zařízení setrvačností záznamové části. Výsledky jsou v grafické formě uvedeny na obr. 
5.7. 

n 
Metoda konvolučního integrálu se příliš nepoužívá k technickým výpočtům vynucených 

odezev. Důvod je zřejmý z příkladu P5.3: zdlouhavé řešení integrálů. Kromě toho nesprávné 
používání vzorců (5.16) a (5.17) může vést k chybám. Upřednostňují se efektivnější metody, založené 
na operátorovém počtu (viz příloha „Operátorový počet v elektrotechnice“). Přesto není osvojení této 
metody zbytečné, neboť nám poskytuje metodiku zkoumání tvorby odezvy obvodu na vstupní signály 
různého charakteru. Daleko širší praktické uplatnění má metoda v obvodech číslicového zpracování 
signálů. Je rovněž naprogramována v některých počítačových simulačních programech typu Spice-like 
a Spice-compatible (viz kapitola 4.4.4), pro analýzu „Transient“ pro obvody s tzv. Laplaceovými 
zdroji.  

 
Metoda Duhamelova integrálu 

 

Duhamelův (čti „Dyhamelův“) integrál umožňuje získávat odezvu obvodu na signál x(t) ze 
znalosti jeho odezvy na jednotkový skok. Hlavní myšlenka je podobná jako u konvolučního integrálu: 
budicí signál se aproximuje skokovými signály a odezva se získá sčítáním příslušných přechodových 
charakteristik. 

 
Z obr. 5.8 je zřejmé, že hodnota signálu x(t) v obecném čase t bude dána součtem 

=∆−∆+=+∆−∆+∆−∆+≈ ∑
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k
k tktxtxttxttxtxtx K  

ttkttkxtx
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∆∆−∆′+= ∑
∞

=

+

1
)(1)()(1)0( , 

kde x’ značí derivaci signálu x podle času. Pro ∆t→0 přejde přibližná rovnost v přesnou rovnost a 
suma na pravé straně v integrál: 

 ∫
∞

+ −′+=
0

)(1)()(1)0()( ααα dtxtxtx . (5.18) 

Vzorec platí za předpokladu, že signál x(t) má v celém uvažovaném časovém intervalu derivaci. 
Vykazuje-li signál skokové změny, lze jej popsat přídavnými členy pomocí jednotkových skoků. 
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Obr. 5.8. Princip náhrady spojitého signálu jednotkovými skoky. 

 
V případě, že signál x(t) je nenulový i pro záporné časy, můžeme první člen na pravé straně 

(5.18) opět složit z posunutých skoků a vzorec pak bude mít obecnější tvar 

 ∫
∞

∞−

−′= ααα dtxtx )(1)()( . (5.19) 

Protože vynucená odezva obvodu na signál 1(t - α) je h(t - α), můžeme z (5.18) a (5.19) psát pro 
vynucenou odezvu y(t) na signál x(t) 

 ∫
∞

+ −′+=
0

)()()()0()( ααα dthxthxty , x(t) = 0 pro t < 0, (5.20) 

 ∫
∞

∞−

−′= ααα dthxty )()()( , x(t) působí i pro t < 0. (5.21) 

Vzorec (5.21) je obecnější, protože z něj plyne vzorec (5.20) při respektování skutečnosti, že 
v bodech nespojitosti („skoků“) x(t) se v derivaci x’(t) objevují Diracovy impulsy. Pro kauzální 
systémy lze navíc zaměnit nevlastní horní meze integrálů za t. 

Úpravami integrálů lze získat další tvary Duhamelových integrálů, známé z literatury [26]. Je 
však třeba konstatovat, že metoda Duhamelových integrálů je pro praktické výpočty ještě méně 
vhodná než metoda konvolučních integrálů. Její význam je proto třeba vidět spíše v tom, že nám 
pomáhá při tvorbě fyzikálního názoru na pochody v dynamických systémech. 

 

5.2.4 Operátorová přenosová funkce, její vlastnosti a její vztah k ostatním 
charakteristikám obvodu 

 
Motivační příklady 
Operátorový počet (viz příloha „Operátorový počet v elektrotechnice“) umožňuje výpočet 

vynucené odezvy na vstupní signál daleko pohodlnějším způsobem, než jak je tomu u konvoluce, 
případně Duhamelova integrálu. Nejprve se určí tzv. přenosová funkce obvodu. Pak se vynásobí 
Laplaceovým obrazem vstupního signálu, čímž získáme Laplaceův obraz odezvy. Následuje převod na 
časový průběh odezvy zpětnou Laplaceovou transformací. 
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Zde je možno vysledovat analogii se známým řešením lineárních obvodů v harmonickém 
ustáleném stavu symbolicko-komplexní metodou, kdy se nejprve řeší přenosové vlastnosti obvodu na 
určitém kmitočtu tak, že kapacitory jsou modelovány reaktancemi 1/(jωC) a induktory reaktancemi 
jωL. Vynásobením komplexního přenosu )(ωK& a fázoru vstupního signálu získáme fázor odezvy na 
výstupu, z něhož pohodlně zjistíme amplitudu a počáteční fázi výstupního signálu. 

Operátorová přenosová funkce představuje užitečné zobecnění symbolicko-komplexní metody. 
Namísto komplexního (imaginárního) kmitočtu jω je uvažován komplexní operátor p = σ+jω, který 
může mít obecně jak imaginární (jω), tak i reálnou (σ) složku. Namísto klasických reaktancí se 
pracuje s operátorovými reaktancemi 1/pC a pL. Výsledkem řešení přenosu obvodu je nyní 
operátorová přenosová funkce K(p), z níž se zjistí komplexní přenos obvodu na konkrétním kmitočtu 
ω jednoduchou substitucí p = jω. Kromě toho je však možné z přenosové funkce vyčíst řadu dalších 
informací o obvodu, jak vyplývá např. z obr. P.8 v příloze. 

Pro ilustraci se pokusme vyřešit příklad P5.3 pomocí operátorové přenosové funkce. 

P5.4 Určete vynucenou odezvu RC článku z obr. 5.4 na napětí, lineárně rostoucí v čase o 
rychlosti 1V/s. Použijte metodu operátorové přenosové funkce. 

þ Řešení: 
V souladu s přílohou „Operátorový počet v elektrotechnice“ je nejprve originální schéma 

obvodu z obr. 5.9 a) překresleno na operátorové schéma na obr. b). Kapacitor je modelován 
operátorovou reaktancí a časový průběh budicího signálu je nahrazen jeho operátorovým obrazem 
podle slovníku Laplaceovy transformace v Tab. P.3. 
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Obr. 5.9. Modelování obvodu operátorovým schématem. 

 
Nyní vypočteme přenosovou funkci obvodu jako poměr operátorových obrazů výstupního a 

vstupního napětí: 
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Operátorový obraz výstupního napětí získáme vynásobením přenosové funkce operátorovým 
obrazem vstupního signálu. Poté provedeme rozklad na parciální zlomky (viz str. 310): 

6250
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21

212 +
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==

p
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p
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p
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pp
pUpKpU , 1321 ,1,

6250
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Podle slovníku Laplaceovy transformace tomu odpovídá signál 
)(1)]1([)(1)(1)(1)( 62506250

3212 tetteAttAtAtu tt −− −−=++= τ . 

n 
Tento výsledek jsme obdrželi v příkladu P5.3 metodou konvoluce, ovšem komplikovanějším 

způsobem. 
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P5.5 Určete přenosové funkce RLC obvodu z obr. 5.10 a) za předpokladu, že výstupním 
signálem je napětí a) uc, b) uL, c) uR, d) uLC.  

þ Řešení: 
Operátorové schéma je na obr. b). Analýza a jednoduché úpravy vedou k těmto výsledkům: 

R
 
pC
1)(ti =10H=220 =200uF

 )(R tu  )(tuL  )(tuC

 )(tuLC )(1 tu  pU )(1

 )( pI pL

 )( pU C )(pUL )( pUR

 )( pULC

R L C

a) b)  
Obr. 5.10. Modelování RLC obvodu operátorovým schématem. 
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n 
Výsledky příkladů využijeme k demonstrování praktického významu přenosových funkcí. 

& Poznatky z příkladů: 
a) Přenosová funkce lineárního obvodu n-tého řádu má obecně tvar 

n
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pbpbb
papaapK

+++
+++
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..)(

10

10 , m≤n.  (5.28) 

Ve jmenovateli je polynom stejného řádu jako je řád obvodu. V čitateli je polynom maximálně 
stejného řádu jako ve jmenovateli. 

b) Při volbě různých výstupních signálů obdržíme různé přenosové funkce téhož obvodu. Jmenovatel 
všech přenosových funkcí bude stejný, různé budou čitatele. 

c) Koeficienty přenosových funkcí závisí na parametrech součástek obvodu, např. na odporech, 
indukčnostech a kapacitách u pasivních RLC obvodů. 

 

Vztah mezi přenosovou funkcí a impulsní a přechodovou charakteristikou obvodu 

Impulsní charakteristika je vynucená odezva obvodu na jednotkový impuls. Vynásobením 
Laplaceova obrazu vstupního signálu – v tomto případě jedničky – a přenosové funkce tedy získáme 
Laplaceův obraz impulsní charakteristiky. Jinými slovy, platí tyto důležité poučky: 
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Přenosová funkce je Laplaceovým obrazem impulsní charakteristiky. 

Impulsní charakteristika je originálem k přenosové funkci. 

Souhrnně 

Impulsní charakteristika a operátorová přenosová funkce tvoří transformační pár Laplaceovy 
transformace, neboli )}({)()},({)( 1 pKLtgtgLpK −== . 

Přechodová charakteristika je vynucená odezva obvodu na jednotkový skok, jehož Laplaceův 
obraz je 1/p. Po vynásobení přenosovou funkcí získáme Laplaceův obraz přechodové charakteristiky. 
Jinými slovy,  

Přenosová funkce, vydělená operátorem p, je Laplaceovým obrazem přechodové 
charakteristiky. 

Přechodová charakteristika je originálem k přenosové funkci, vydělené operátorem p. 

Souhrnně 

Přechodová charakteristika a operátorová přenosová funkce vydělená operátorem p tvoří 
transformační pár Laplaceovy transformace, neboli }/)({)()},({/)( 1 ppKLtgtgLppK −== . 

P5.6 Určete impulsní a přechodové charakteristiky k obvodům z příkladů P5.4 a P5.5.  

þ Řešení: 
RC článek z obr. 5.9: použijeme informace z řádků 5 a 10 Tab. P.3 slovníku Laplaceovy 

transformace: 

)(16250)}({)(ˆ
6520

6250
1

11)( 62501 tepKLtg
p

RC
pRC

pK t−− ===
+

=
+

= , 

)(1]1[}
)6250(

6250{})({)( )625011 te
pp

L
p
pKLth t−−− −=

+
== . 

K těmto výsledkům jsme již dospěli jiným postupem v příkladu P5.1. 

 

Závěry:  

Impulsní charakteristika RC článku z obr. 5.11 exponenciálně zaniká s časovou konstantou  

τ = 1/6520 = 153µs. 

Přechodová charakteristika monotónně roste z nuly na hodnotu 1V s toutéž časovou konstantou. 

Časová konstanta obvodu je záporně vzatá reciproká hodnota kořene jmenovatele přenosové 
funkce, tedy pólu přenosové funkce pp = -6250 (viz příloha „Operátorový počet 
v elektrotechnice“). 

 

RLC obvod z obr. 5.10: Pro ilustraci vyřešíme alespoň případ, kdy výstupní napětí je bráno na 
kapacitoru. Přenosovou funkci KC(p) upravíme na tvar, který je uveden na řádku 18 v Tab. P.3: 
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Tomu odpovídá originál 

)(1)47,19sin(7,25)(1)47,19sin(
47,19

500)( 1111 ttettetg tt
C

−− == && . 

Pro určení přechodové charakteristiky použijeme informací v řádku 20 slovníku Laplaceovy 
transformace: 

=+−
+

=
++

= −− && )(1)]}47,19cos(47,19)47,19sin(11[
47,19

11{
37911

500}
47,19)11(

5001{)( 11
222

1 ttte
pp

Lth t
C

 

)(1)]}47,19cos()47,19sin(565,0[1{ 11 ttte t +−= −&  

Poznamenejme, že póly přenosové funkce jsou nyní dva: 

47,191147,1911047,19)11(50022 2,1
222 jpjpppp p ±−=⇒±=+⇒=++=++ . 

Závěry:  

Impulsní charakteristika RLC obvodu z obr. 5.10 je exponenciálně tlumený harmonický signál 
typu sinus. Odezva zaniká s časovou konstantou  

τ = 1/11 = 90,9ms. 

Tlumené kmity mají kmitočet 

Hz1,3)2/(47,19rad/s,47,19 === &&& πω f . 

Přechodová charakteristika probíhá od počáteční hodnoty 0 do ustálené hodnoty 1. Neroste však 
monotónně, objevují se v ní zákmity které mají stejný kmitočet a stejnou časovou konstantu 
tlumení jako u impulsní charakteristiky. 

Časová konstanta obvodu je záporně vzatá reciproká hodnota reálné části pólů přenosové 
funkce Re{pp1,2 }= -11. 

Kruhový kmitočet zákmitů v odezvách je roven velikosti imaginární části pólů 19,47 rad/s. 
n 

Pokud jsme pochopili metodiku výpočtu časových charakteristik z operátorové přenosové 
funkce, pokusme se určit g(t) a h(t) RLC obvodu z obr. 5.10 (výstupní napětí na kapacitoru), jestliže 
zvýšíme odpor R z 220Ω na 500Ω. Využijeme vzorce pro přenosovou funkci, odvozený v příkladu 
P5.6: 
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Problém je, že ve jmenovateli se objevilo záporné znaménko, což nekoresponduje 

s operátorovým tvarem v řádku 18 Tab. P.3. Vyřešení problému je jednoduché. Záporné znaménko se 
objevilo proto, že kořeny jmenovatele jsou nyní reálné, zatímco pro odpor 220Ω vyšly komplexní. 
Aplikací algebraické poučky „a2-b2=(a+b)(a-b) dostáváme tyto kořeny nepřímo, bez klasického 
postupu řešení kvadratické rovnice: 

)82,13)(18,36(
500

)18,1125)(18,1125(
500

18,11)25(
500

22 ++
=

−+++
=

−+
=

ppppp
KC & . 

Přenosová funkce tedy vykazuje dva různé reálné póly 

pp1=-36,18, pp2 = -13,82. 

K impulsní charakteristice lze nyní dospět buď rozkladem přenosové funkce na parciální 
zlomky, nebo jednodušeji přímým převodem ze slovníku Laplaceovy transformace, konkrétně 
použitím relace v řádku 8: 
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Obdobně přechodovou charakteristiku získáme přímo pomocí řádku 12 ve slovníku: 

)(1)618,1618,01()(1)
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Z průběhů přechodných dějů se nyní vytratil kmitavý charakter, neboť ve vzorcích se neobjevují 
funkce typu sinus a kosinus. Výsledné charakteristiky jsou srovnány s průběhy před modifikací odporu 
na obr. 5.11. Byly získány z programu SNAP. Analýza tímto programem potvrdila i správnost vzorců 
pro g(t) a h(t). 
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 a)  b) 
Obr. 5.11. Impulsní a přechodová charakteristika RLC obvodu z obr. 5.10 pro R= a) 220Ω, b) 500Ω. 

Při růstu odporu, tj. při růstu tlumení RLC obvodu, se rozložení pólů postupně mění a pro 
určitou hodnotu odporu se změní jejich charakter z komplexních na reálné. Z předchozího postupu je 
snadné zjistit, že tato kritická hodnota odporu je  

Ω== 4472 &
C
LRkrit . 

Tomu bude odpovídat dvojnásobný reálný pól a obvod se bude nacházet na tzv. mezi periodicity 
v režimu kritického tlumení. Výsledky z příkladů 5.4 a 5.6 jsou souhrnně ilustrovány na obr. 5.12. 

 

Souvislost mezi rozložením pólů a stabilitou obvodu 

Na str. 145 je mj. vysvětlen pojem stabilita lineárního obvodu. Je ukázáno, že obvod je stabilní, 
pokud jeho přirozená odezva na počáteční podmínky konverguje k nule. 

V následujícím textu poukážeme na často používanou poučku, která vychází z toho, že 
informace o stabilitě či nestabilitě obvodu je jednoznačně obsažena v poloze pólů obvodu v komplexní 
rovině operátoru p, konkrétně v tom, zda reálné části všech pólů jsou záporné či nikoliv. Na tomto 
poznatku jsou založeny všechna v minulosti hojně používaná tzv. kritéria stability (Schurovo, 
Michajlovo, Hurwitzovo apod.). Dnes má velký význam počítačové testování stability navrhovaných 
zařízení před jejich výrobou. Klasický počítačový simulační program typu SPICE dokáže simulovat 
nejrůznější časové odezvy obvodu a z tendence odezvy, tj. zda zaniká nebo diverguje, lze usuzovat na 
stabilitu. Pokud program dokáže počítat póly obvodu, může být testování stability provedeno 
jednodušeji. 
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Obr. 5.12. Souvislosti mezi průběhem impulsní charakteristiky g(t) a rozložením pólů. Posouvání pólů 
„doleva“ znamená růst časových konstant a zpomalování přechodného děje. Vzdalování pólů od 
reálné osy znamená růst frekvence zákmitů v odezvě. Přechod pólů do pravé komplexní 
poloroviny je doprovázeno neohraničeným růstem odezvy a nestabilním chováním obvodu. 

 

Protože impulsní charakteristika obvodu je jeho reakce na jednotkový impuls, můžeme ji chápat 
jako speciální případ přirozené odezvy: jednotkový impuls na vstupu obvodu dodá do obvodu určitou 
energii a skokově změní počáteční podmínky z nulových na nenulové. Poté již impuls nepůsobí, 
protože je nulový pro kladné časy. Impulsní charakteristika pak „doznívá“ při nulovém vstupu. Pro 
stabilní obvod by tedy mělo platit, že 

0)(lim =
∞→t

tg . 

Souvislosti mezi polohou pólů v komplexní rovině a průběhem impulsní charakteristiky jsou 
zřejmé z předchozích příkladů a z obrázku 5.12. Na obr. 5.12 je znázorněna oblast tzv. “záporného” 
tlumení, kdy reálné části pólů jsou kladné. K tomu by teoreticky mohlo dojít u výše analyzovaných RC 
nebo RLC článků při záporných hodnotách odporů. Záporné odpory vlastně představují modely zdrojů, 
nikoliv spotřebičů energie. Popsaný jev může proto být skutečně pozorovatelný u elektronických 
obvodů s aktivními prvky (tranzistory, operační zesilovače…), které ke své funkci potřebují vnější 
zdroje energie. U takových obvodů, jako jsou například audiozesilovače, proto v principu mohou 
nastat nežádoucí jevy, spojené s nestabilitou. 
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Uvedené souvislosti mezi polohou pólů v komplexní rovině a stabilitou obvodu jsou často 
formulovány do známé poučky: 

Lineární obvod je stabilní, pokud jeho všechny póly leží v levé otevřené komplexní polorovině, 
tj. pokud reálné složky všech pólů jsou menší než nula. 

 

Objeví-li se alespoň jeden pól obvodu v pravé polorovině, znamená to nestabilitu obvodu. 
Jednoduché póly na imaginární ose znamenají mez stability (impulsní odezva konverguje do nenulové 
konstantní úrovně nebo do ohraničených oscilací), vícenásobné póly na imaginární ose indikují 
nestabilitu. Podrobnosti jsou uvedeny v [5]. 

 

Souvislost přenosové funkce a kmitočtové charakteristiky obvodu 
Uvažujme přenosovou funkci obvodu n-tého řádu ve tvaru (5.28), resp. (5.29): 
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Kde symboly typu p0 a pp jsou označeny nulové body a póly přenosové funkce (viz příloha 
„Operátorový počet v elektrotechnice“). 

Ze souvislostí mezi Laplaceovou a Fourierovou transformací vyplývá, že: 
 

Komplexní kmitočtovou charakteristiku získáme z přenosové funkce po substituci p = jω, 
neboli 

ω

ω
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pKjK
=

= )()(& . 

 
Pak kmitočtovou charakteristiku obvodu n-tého řádu získáme z (5.29) ve tvaru 
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Uvědomíme-li si, že K(p) je komplexní funkce komplexní proměnné p = σ + jω, pak kmitočtová 
charakteristika se získá „řezem“ této komplexní funkce rovinou p = jω. , tj. pro σ = 0. Konkrétní 
příklad je uveden na obr. 5.13 a) pro kmitočtový filtr o přenosové funkci 
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Na obrázku je vykreslen modul přenosové funkce nad komplexní rovinou p = σ + j2πf. Pro 
jednoduchost je vykreslen jen druhý kvadrant komplexní roviny, tj. pro σ ≤ 0, f ≥ 0. Je zřejmé, že 
v nulovém bodě p0=j70,71 = j2π.11,25, tedy pro kmitočet 70,71 rad/s neboli 11,25Hz prochází 
přenosová funkce nulovou hodnotou. Opačně, v místě pólu, tedy pp=-11+j19,47=-11+j2π.3,1, roste 
modul přenosové funkce nade všechny meze. Tomu odpovídá hodnota σ =-11 s-1 a kmitočet 19,47 
rad/s neboli 3,1Hz. Amplitudová kmitočtová charakteristika je reprezentována okrajovou křivkou 
v řezu plochou pro σ = 0. Jde o dolní propust s rezonančním převýšením v okolí kmitočtu 3Hz a 
s úplným potlačením přenosu na kmitočtu 11,25Hz. 

Protože v případě kmitočtové charakteristiky představuje operátor p komplexní kmitočet jω, pak 
můžeme na základě přenosové funkce velmi rychle otestovat, jaký je přenos obvodu na nízkých a na 
vysokých kmitočtech: 

0)(0)( === ppKK ωω& ,  (5.32) 

∞→=∞→ ppKK )()( ωω& . (5.33) 
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Obr. 5.13. Amplitudová kmitočtová charakteristika obvodu získaná z přenosové funkce řezem rovinou 

p=jω, a) lineární kmitočtová osa i osa přenosu, b) logaritmická kmitočtová osa a decibelová osa 
přenosu. 
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Například přenosová funkce (5.31) odpovídá filtru typu dolní propust, protože přenos na 
nízkých kmitočtech vychází 1, tj. 0dB, a na vysokých kmitočtech 0,1, tj. -20dB. 

Uvědomme si, že hodnoty nulových bodů a pólů, jakož i koeficientů přenosové funkce, jsou 
dány parametry součástek obvodu. Při jejich změnách se posouvá plocha celé přenosové funkce 
vzhledem k rovině řezu p = jω a dochází tak k změnám v kmitočtové charakteristice. Přibližování pólů 
k rovině řezu má za následek růst přenosu obvodu v okolí kmitočtů pólů. Překročí-li pól rovinu řezu 
do kladné komplexní poloroviny, obvod se stane nestabilním, avšak průběh kmitočtové charakteristiky 
tomu nemusí nasvědčovat. V tom tkví nebezpečí při mechanickém používání simulačních programů: 
program provede analýzu kmitočtové charakteristiky, která „vypadá věrohodně“, ovšem samotný 
obvod je nestabilní a tudíž získaná kmitočtová charakteristika nemá v tomto případě žádný fyzikální 
význam. Proto je vhodné v případě „podezření“ otestovat stabilitu obvodu například analýzou 
časových průběhů. 

Z obr. 5.13 a) nejsou dobře patrné detaily přenosové funkce v oblastech nízkých hodnot 
přenosu, například je nesnadné přesněji lokalizovat bod nulového přenosu. Pak je výhodnější vynášet 
na osu přenosu hodnoty v decibelech. Dalším opatřením k zlepšení čitelnosti kmitočtových 
charakteristik je vynášení kmitočtové osy v logaritmické stupnici. Výsledek je na obr. 5.13 b). 

Uvedený způsob prezentace kmitočtových charakteristik souvisí s pojmem Bodeho 
asymptotické kmitočtové charakteristiky. 

 
Bodeho asymptotické kmitočtové charakteristiky 
V případě, kdy přenosová funkce obvodu obsahuje pouze reálné nulové body a póly, lze 

amplitudovou kmitočtovou charakteristiku typu decibelový přenos versus kmitočet v logaritmickém 
měřítku poměrně dobře aproximovat po částech lomenou čarou, která má určité snadno 
zapamatovatelné atributy (kmitočty lomu a strmost růstu, resp. poklesu). V případě komplexních 
nulových bodů nebo pólů je tato aproximace rovněž možná, obecně se však skutečná charakteristika 
k daným asymptotám již nemusí přimykat zdaleka tak těsně. 

Nejprve se budeme zabývat přenosovou funkcí s reálnými nulovými body a póly, rozloženou na 
kořenové součinitele podle (5.29). Příkladem může být následující přenosová funkce a její další 
úprava do tvaru, který nám usnadní konstruovat tzv. „Bodeho asymptoty“: 
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Vzorec pro komplexní kmitočtovou charakteristiku bude 
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a amplitudovou charakteristiku v decibelech: 
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Na tomto místě proveďme shrnutí dosavadního postupu a z toho plynoucí zobecnění: 
 

Přenosovou funkci obvodu s reálnými nulovými body a póly je možné rozložit na součiny členů 
typu 

b
p

a
p

+1, , (5.37) 

které se mohou nacházet jak v čitateli, tak i ve jmenovateli přenosové funkce. Přenosová funkce 
může být případně celá násobena nebo dělena další reálnou konstantou. Výše uvedená konstanta 
b je záporně vzatý nulový bod nebo pól přenosové funkce, podle toho, zda je příslušný člen 
v čitateli nebo jmenovateli. 
Výše uvedené členy reprezentují „elementární“ kmitočtové charakteristiky, z nichž lze složit 
kmitočtovou charakteristiku celého obvodu. Konkrétně fázová kmitočtová charakteristika se 
získá sčítáním nebo odečítáním dílčích fázových charakteristik podle toho, jsou-li příslušné 
členy v čitateli nebo jmenovateli. Je-li přenos vyjádřen v decibelech, pak amplitudová 
kmitočtová charakteristika je dána rovněž součtem, resp. rozdílem dílčích charakteristik. 

 
Zabývejme se nyní průběhem kmitočtových charakteristik členů (5.37). 
První člen p/a má kmitočtové charakteristiky popsány vzorci 
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Příslušné zobrazení je na obr. 5.16 a). Je-li kmitočtová osa vynesena v logaritmickém měřítku, 
pak první z rovnic (5.38) reprezentuje rovnici přímky. 

Vyjádříme vzorce pro kmitočtové charakteristiky druhého členu (1+p/b). Omezíme se na případ 
stabilního obvodu, tedy b>0: 
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Grafy jsou na obr. 5.14 b), opět pro případ logaritmické kmitočtové stupnice. V obrázku je dále 
naznačena možnost jejich poměrně dobré aproximace lomenými čarami.  

Aproximace fázové kmitočtové charakteristiky vychází z toho, že na kmitočtu ω = b je fázový 
posuv ϕ = arctg(1) = 45°. Na kmitočtu, který je o dekádu nižší, tedy b/10, je fázový posuv přibližně 
nulový: ϕ = arctg(1/10) = 5,7°, a na kmitočtu o dekádu vyšším, tedy 10b, je téměř 90°: ϕ = arctg(10) = 
84,3°. 

Aproximace amplitudové kmitočtové charakteristiky je založena na následujícím zjednodušení 
vzorce (5.39) pro nízké a vysoké kmitočty: 
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Pro případ logaritmické kmitočtové osy jde o rovnice lomené přímky s kmitočtem lomu b. 
Skutečná kmitočtová charakteristika má v tomto bodě hodnotu přenosu  

( ) dBKb dB 3)2log(1011log20)( ==+=⇒= &ωω . 
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Obr. 5.14. „Logaritmické“ kmitočtové charakteristiky, odpovídající přenosovým funkcím 1. řádu a) p/a, b) 
1+p/b, a Bodeho asymptoty pro charakteristiku b). 

 
Z obrázků a rovněž z vzorců (5.38) a (5.40) je zřejmé, co je to strmost nárůstu přenosu o 20 

decibelů na dekádu: při vzrůstu kmitočtu z počáteční hodnoty na desetinásobek této hodnoty vzroste 
přenos o 20 decibelů. Tato strmost je někdy vyjadřována i hodnotou 6 decibelů na oktávu: vzroste-li 
kmitočet z počáteční hodnoty na dvojnásobek této hodnoty, tedy o oktávu, je odpovídající zvětšení 
přenosu 6 decibelů. Ověřte výpočtem! 

Dokončení konstrukce kmitočtových charakteristik obvodu o přenosové funkci (5.34) je na obr. 
5.15. Je zřejmé, že se jedná o charakteristiky filtru typu pásmová propust, přičemž hraniční kmitočty 
propustného pásma jsou dány dvěma póly přenosové funkce. 

Nyní uvažujme případ komplexních nulových bodů, resp. pólů. Jako úvodní příklad zvolme 
přenosovou funkci 2. řádu (5.31), o které víme, že má komplexní nulové body a póly. Kmitočtová 
charakteristika je znázorněna na obr. 5.13. Přenosovou funkci upravíme na speciální tvar podobným 
způsobem jako u vzorce (5.34): 

50027,22
1

5000
1

50022
1,0500)( 2

2

2

2

pp

p

pp
ppK

++

+
=

++
+

= . (5.41) 

 
Komplexní kmitočtová charakteristika bude 
 



____________________________________________________5 Obecné vlastnosti lineárních obvodů…_____ 

171 

-40

-20

0

20

40

60

0

45

90

 dBK

] [ oϕ

-45

-90

10m 1 10 100 1k 10k 100k 1M0,1

10m 1 10 100 1k 10k 100k 1M0,1

 rad/s][ω

 rad/s][ω

-40

-20

0

20

40

60

0

45

90

 dBK

] [ oϕ

-45

-90

10m 1 10 100 1k 10k 100k 1M0,1

10m 1 10 100 1k 10k 100k 1M0,1

 rad/s][ω

 rad/s][ω

 
1,0

p

 
1,0

p

 

10
1

1
p

+

 

1000
1

1
p

+

 

10
1

1
p

+

 

1000
1

1
p

+

a) b)  
Obr. 5.15. a) Kmitočtové charakteristiky, odpovídající přenosové funkci (5.34), b) odpovídající 

asymptotické charakteristiky (silně) jako součty dílčích asymptotických charakteristik. 
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Z čehož se dají odvodit vzorce pro amplitudovou a fázovou kmitočtovou charakteristiku. 
Ukazuje se tedy, že pro případ komplexních kořenů je třeba elementární polynomy 1. řádu 

(5.37), které mají reálné kořeny, doplnit o polynom 2. řádu, který zapíšeme takto: 

2
0

2
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1
ωω
p

Q
p

++ ,  (5.44) 

který vznikne z polynomu 2
0

02 ω
ω

++
Q

pp  normováním absolutního členu na jedničku. Parametry ω0 

a Q – tzv. charakteristický kmitočet a činitel jakosti – určují průběh kmitočtové charakteristiky. Pro 
čitatel přenosové funkce (5.41) vychází ω0 = 70,7 rad/s, Q →∞, pro jmenovatel ω0 = 22,36 rad/s, Q 
=1,02. 

Polynom (5.44), stejně jako polynom před normováním, má kořeny 
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Z toho vyplývá, že pro činitel jakosti větší než 0,5 budou oba kořeny komplexní (a navíc 
komplexně sdružené), pro činitel jakosti 0,5 vyjde dvojice stejných reálných kořenů, a pro Q<0,5 
budou kořeny reálné různé. V dalším se budeme zabývat případem Q>0,5, neboli komplexními 
kořeny. 

Amplitudová a fázová kmitočtová charakteristika, odpovídající polynomu (5.44), bude 
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kde k = 0 pro ω ≤ ω0 a k = 1 pro ω > ω0. 
Znázornění kmitočtových charakteristik pro různé hodnoty činitele jakosti je na obr. 5.16. 

Vidíme, že amplitudové kmitočtové charakteristiky se přimykají k asymptotám ve tvaru lomené čáry 
s kmitočtem lomu ω0 a s překmity v okolí tohoto kmitočtu, které značně závisí na činiteli jakosti. Pro 
činitele jakosti od 0,5 do 0,707 (přesně do hodnoty 2/1 ) zůstávají křivky „nad“ asymptotami, pro 
vyšší Q se začínají tvořit lokální minima. Fázová kmitočtová charakteristika je omezena asymptotami 
ϕ = 0 a ϕ = 180°, prochází úrovní 90° na kmitočtu ω0 a její strmost roste s rostoucím činitelem jakosti. 
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Obr. 5.16. Kmitočtové charakteristiky, odpovídající přenosové funkci (5.44), pro různé hodnoty činitele 
jakosti. 
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Provedeme opět zjednodušení pro extrémně nízké a vysoké kmitočty a pro kmitočet ω0: 
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Příslušné asymptoty jsou na obr. 5.17 a). Oproti funkcím 1. řádu je nyní strmost 
charakteristiky dvojnásobná, tedy 40 dB na dekádu neboli 12 dB na oktávu.  

Bez odvození uveďme pravidlo pro aproximaci fázové kmitočtové charakteristiky. U 
kmitočtové charakteristiky obvodu 1. řádu byly body zlomu umístěny vždy 1 dekádu před a za 
kmitočtem lomu. Nyní budou body zlomu umístěny o δ-násobek dekády před a za kmitočtem ω0, kde 
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Vzorec není vhodný pro rychlé výpočty. Hodnotu δ pro daný činitel jakosti je snadnější 
odečíst z grafu na obr. 5.17 c). Z grafu je patrná tendence, že pro činitele jakosti větší než cca 10 je 
hodnota δ  prakticky převrácenou hodnotou Q. 

Způsob aproximace fázové charakteristiky je ukázán na obr. 5.17 b). Pro Q = 0,5 má 
přenosová funkce dvojnásobný reálný kořen, amplitudová charakteristika je bez překmitu s přenosem 
6dB na kmitočtu ω0 (dvojnásobek oproti 1. řádu). Hraniční body zlomu fázové kmitočtové 
charakteristiky jsou vzdáleny vždy jednu dekádu od kmitočtu ω0 (viz δ = 1 z obr. c). Hodnoty fáze 
jsou v těchto bodech 11,4° a 168,6°, což představuje odchylky 11,4°od hraničních hodnot 0° a 180° 
(dvojnásobek než u 1. řádu). 
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Obr. 5.17. Asymptotické kmitočtové charakteristiky a) amplitudová, b) fázová. Veličina δ závisí na činiteli 

jakosti podle vzorce (5.48), jehož grafické znázornění je na obr. c). 
 
Na obr. 5.18 (a) jsou kmitočtové charakteristiky filtru o přenosové funkci (5.41) a na obr. 5.18 

b) je uvedena konstrukce jeho asymptotických charakteristik. Činitel jakosti je pro čitatel nekonečný 
(tedy δ = 0), pro jmenovatel je prakticky 1 (δ = 0,77). Kmitočet je vynášen v hertzích, nikoliv 
v radiánech za sekundu. Proto lomové kmitočty vycházejí Hz56,3)2/(500 =&π  a 

Hz25,11)2/(5000 =&π .  
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Obr. 5.18. a) Kmitočtové charakteristiky filtru o přenosové funkci (5.41), b) konstrukce jeho 

asymptotických charakteristik. 
 

& Shrnutí: 
 
Kmitočtové charakteristiky obvodů vykazují specifický a pro uživatele výhodný tvar, pokud vynášíme 
přenos v decibelech a používáme logaritmickou kmitočtovou osu. Charakteristiky pak lze aproximovat 
lomenými čarami. Tyto čáry mají u amplitudové charakteristiky sklon, roven celočíselnému násobku 
dvaceti decibelů na dekádu. V případě obvodů s komplexními nulovými body nebo póly je věrnost 
aproximace závislá na činitelích jakosti. Při relativně velkých hodnotách Q dochází k výrazným 
odchylkám v okolí lomových kmitočtů. Kmitočty lomu jsou rovny záporně vzatým převráceným 
hodnotám reálných nulových bodů a pólů a odmocninám z absolutních členů v polynomech 2. řádu, 
které generují komplexně sdružené kořeny.  
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5.3  VSTUPNĚ – VÝSTUPNÍ DIFERENCIÁLNÍ ROVNICE (DR) 
LINEÁRNÍHO OBVODU 
 

5.3.1 Motivační příklad 
 

Vztah mezi časovými funkcemi napětí a proudu na rezistoru je popsán známými algebraickými 
rovnicemi 

R
tutitRitu R

RRR
)()(),()( == ,  (5.49) 

zatímco napětí a proudy na induktoru a kapacitou jsou svázány diferenciálními, resp. integrálními 
vztahy 
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t
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Lineární obvod, složený z prvků typu R, L a C, je tedy vnitřně popsán soustavou lineárních 
integro-diferenciálních rovnic, které lze z hlediska vstupně-výstupního popisu přepsat na jedinou 
lineární diferenciální rovnici takového řádu, jaký je řád obvodu. Tato diferenciální rovnice pak 
obsahuje stejné množství informací o obvodu jako jeho operátorová přenosová funkce.  

Možný způsob se stavení vstupně-výstupní DR si demonstrujme na obvodu z obr. 5.10 a), resp. 
5.14. 

P5.7 Určete vstupně-výstupní DR obvodu z obr. 5.19, je-li výstupním signálem a) i, b) uR, c) uL, 
d) uC, e) uLC.  
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Obr. 5.19. Analyzovaný obvod. 
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5.3.2 Základní vlastnosti DR lineárního obvodu 
 

Zobecníme-li výsledky z předchozího příkladu a omezíme-li se pro jednoduchost na obvody 
s jedním vstupem, pak můžeme psát obecnou vstupně-výstupní DR lineárního obvodu takto: 

444 3444 21
F(t)

vbvbvbyayayaya m
m

n
n

n
n

)(
1001

)1(
1

)( ...... ++′+=+′+++ −
−

, m ≤ n,  (5.52) 

kde v, y jsou vstupní a výstupní signály, n je řád obvodu, a koeficienty diferenciální rovnice souvisí 
s parametry obvodu – např. u obvodu z obr. 5.19 jsou vyjádřeny pomocí parametrů R, L a C. Z toho 
plyne: 
-  u lineárních stacionárních obvodů jsou koeficienty DR konstantní reálná čísla, 
-  u lineárních nestacionárních obvodů jsou tyto koeficienty reálnými funkcemi času, nesouvisejí 

však s proměnnými v a y. 
Dále se budeme zabývat pouze lineárními stacionárními obvody. 
Pravá strana DR je funkcí vstupního signálu v a jeho derivací; někdy se celá označuje jako 

budicí funkce F(t). 
Prohlédneme-li si všechny DR z příkladu P5.7, můžeme vypozorovat tyto zákonitosti: 
 
Koeficienty ak, k = 0, 1, .. n levé strany DR nezávisejí na volbě výstupu obvodu. 
Koeficienty bk, k = 0, 1, .., m pravé strany DR závisejí na volbě výstupu. 
Řád derivace u nenulových koeficientů na pravé straně DR není nikdy vyšší než na levé 
straně, tj. není vyšší než řád obvodu n. 
 
 

5.3.3 Vztah DR a přenosové funkce 
 

Z přílohy „Operátorový počet v elektrotechnice“ vyplývá, že k řešení obvodu s nulovými 
počátečními podmínkami, kdy nás zajímá pouze vynucená odezva obvodu na vstupní signál, můžeme 
využít Heavisideova operátorového počtu. Aplikujeme-li jej na DR (5.52), pak namísto k-té derivace 
signálu dosadíme násobení jeho operátorového obrazu výrazem pk. Rovnici (5.52) tak jednoduše 
přepíšeme do tvaru 
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Po úpravě dostáváme již dříve uváděný vzorec (5.28) pro přenosovou funkci lineárního obvodu: 
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Porovnání (5.53) a (5.52) vede k užitečné poučce: 
 
Koeficienty polynomů v čitateli a jmenovateli přenosové funkce jsou rovny koeficientům na 
pravé a levé straně DR, přičemž koeficientu u k-té mocniny operátoru p odpovídá koeficient 
u k-té derivace signálu. 
 
Pomocí poučky je například možné jednoduše sestavit DR obvodu nepřímo přes nalezení 

operátorové přenosové funkce obvodu. Je to daleko snazší než intuitivní postup, prezentovaný 
v příkladu P5.7. 

Z poučky dále vyplývá, že póly přenosové funkce jsou současně kořeny charakteristické rovnice 
k homogenní DR obvodu, tj. DR bez pravé strany. Z matematiky je známo, že tyto kořeny určují typ 
řešení DR. To má velký význam mj. k testování stability, jak jsme již poznali v části „Souvislost mezi 
rozložením pólů a stabilitou obvodu“. 
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 5.3.4 Fyzikální význam a vlastnosti řešení DR lineárního obvodu 
 

Diferenciální rovnice (5.52) je matematickým modelem odezvy výstupního signálu y(t) na 
vstupní signál v(t). Z matematiky je známo, že tzv. obecné řešení DR (5.52) je možno složit z 
obecného řešení tzv. homogenní DR, tj. DR s nulovou pravou stranou, a z tzv. partikulárního, tj. 
libovolného možného řešení DR s pravou stranou: 

)()()( tytyty PH += . (5.54) 

Tento matematický postup má své jednoduché technické vysvětlení, které je založeno na 
principu superpozice.  

Nejprve vysvětlíme fyzikální význam řešení homogenní DR a pak řešení DR s pravou stranou. 
 
Fyzikální význam a vlastnosti řešení homogenní DR 
Vzhledem k tomu, že homogenní DR je DR s nulovou pravou stranou, tj. F(t) = 0, bude jejím 

řešením přirozená odezva obvodu, tj. odezva na počáteční stav při nepůsobení vstupu. Jakou strukturu 
bude mít toto řešení? 

Je-li DR n-tého řádu, znamená to, že v systému je n nezávislých paměťových prvků a systém 
lze popsat souborem n stavových veličin. Odezva systému na počáteční stav bude samozřejmě záviset 
na n hodnotách těchto počátečních podmínek, které jsme dříve nazvali fyzikálními počátečními 
podmínkami. Konkrétní řešení homogenní DR tedy závisí na této n-tici. Obecné řešení homogenní 
DR proto obsahuje n tzv. integračních konstant, které souvisí s n-ticí počátečních podmínek. 
Dosazováním konkrétních konstant do obecného řešení lze pak získat konkrétní přirozenou odezvu na 
konkrétní fyzikální počáteční podmínky. Tyto integrační konstanty lze určit na základě 
matematických počátečních podmínek (podrobnosti viz [5, 22]). Fyzikálních počátečních podmínek 
nemůžeme přímo použít, protože ve vstupně-výstupní DR obecně nefigurují všechny stavové veličiny, 
pouze vstup a výstup. 

Aplikací principu superpozice lze odhalit strukturu obecného řešení homogenní DR. Představa n 
paměťových prvků v obvodu jako n zdrojů akumulované energie vede k závěru, že odezva na 
počáteční podmínky se skládá z n odezev na každou počáteční podmínku, působící samostatně. Z 
linearity obvodu plyne, že každá dílčí odezva bude přímo úměrná její příčině, tj. fyzikální počáteční 
podmínce. Obecné řešení yH(t) homogenní DR lze tedy chápat jako lineární kombinaci n 
elementárních řešení yk(t) (k = 1, ..,n), kde integrační konstanty Ck souvisí s fyzikálními počátečními 
podmínkami (jsou to jakési konstanty úměrnosti): 

( ) ( ) ( ) ( ).2211 tyCtyCtyCty nnH +++= L  (5.55) 

Funkce y1, y2, ..., yn jsou vybrány tak, že tvoří systém tzv. lineárně nezávislých řešení 
homogenní DR (nemusí nutně odpovídat reakcím na dílčí počáteční podmínky; tyto reakce však lze 
vyjádřit pomocí elementárních reakcí y1, y2, ..., yn). Počet lineárně nezávislých řešení přirozené odezvy 
obvodu souvisí s "počtem stupňů volnosti" v obvodu a je roven jeho řádu n. V teorii systémů se 
elementární reakce y1, y2, ..., yn nazývají módy pohybu lineárního systému. 

Z matematiky je známo, že lineárně nezávislá řešení mohou nabývat jen přesně definovaných 
tvarů a závisejí na tom, jaké jsou kořeny λ charakteristické rovnice, přiřazené k DR (5.52): 
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−

1
1

1 0 1 20L L, , , . (5.56) 

Protože polynom na levé straně rovnice má stejné koeficienty jako polynom ve jmenovateli 
přenosové funkce obvodu, jsou jeho kořeny rovny pólům obvodu. V Tab. 5.2 jsou shrnuty tvary 
nezávislých řešení pro různé typy pólů, známé z matematiky. Tvar odezvy sice závisí na integračních 
konstantách, t.j. na počátečním stavu obvodu, nikoliv však tendence odezvy (zánik, divergence, 
monotónní nebo kmitavý charakter). Jinými slovy, rozložení pólů má úzký vztah k stabilitě obvodu 
(viz str. 164). 

Řešení přirozené odezvy nezávisí na způsobu přivádění vstupního signálu, protože je to řešení 
při nulovém vstupu. Obecné řešení homogenní DR však nemůže záviset ani na volbě výstupní 
veličiny, neboť toto řešení je vyjádřeno obecnými lineárními kombinacemi odezev stavových veličin. 
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Výstup lineárního obvodu je však rovněž odvozen lineární kombinací stavových veličin. Proto obecné 
řešení homogenní DR v sobě sdružuje všechny možné alternativy volby výstupní veličiny. Homogenní 
DR a tedy i koeficienty ak v obecné rovnici (5.56) jsou proto invariantní k volbě výstupu i vstupu. 

 

Tab. 5.2.  Módy pohybu lineárního systému odpovídající různým pólům. 

póly odpovídající řešení (módy) 
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Fyzikální význam a vlastnosti řešení DR s pravou stranou 
Toto řešení udává odezvu obvodu na budicí signál se současným uvažováním vlivu počátečních 

podmínek. Jedná se tedy o úplnou odezvu obvodu. Tato odezva opět závisí na n počátečních 
podmínkách. Obecné řešení DR s pravou stranou se podle známé matematické poučky skládá ze dvou 
částí (viz vzorec (5.54)). Z pohledu teorie systémů lze úplnou odezvu rozdělit na dvě části několika 
způsoby, např. 
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 při  vstupna odezva
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odezva
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vynuc tytyCtyCtyCty nn ++++= 2211
 (5.57)

 

Z matematiky je však známo , že poslední člen na pravé straně může být libovolné partikulární 
řešení DR yP(t), tj. řešení DR s pravou stranou při libovolných (nejen nulových) počátečních 
podmínkách. Tento zdánlivý rozpor lze vysvětlit tak, že obecné integrační konstanty Ck, k = 1, 2, ..., n 
rozdělíme na dvě části: C C Ck k k= +1 2 . Po úpravě (5.39) dostaneme 
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 (5.58) 

Toto schéma je již plně v souladu s matematickou konvencí. 
Speciálním případem odezvy na vstup při určitých počátečních podmínkách je ustálená odezva 

(ustálený stav). Rozklad úplné odezvy na přechodnou a ustálenou je tedy speciálním případem 
rozkladu (5.58): 

( ){ ( ) ( ) ( ) ( ) ( ) ( ) ( )
4444444 34444444 21

L
44444 344444 21

L

odezva ustálená stavu lenému 
-ustá odpovídají které ,podmínkách

hpočátečníc při  vstupna odezva

odezvy přirozené
případ zvláštní jako

odezvy složka přechodná
odezva
úplná

=

++++++++= tytyCtyCtyCtyCtyCtyC vynucnnnnty 2
2

2
21

2
1

1
2

1
21

1
1

 (5.59) 

Ve všech výše uvedených rozkladech vystupuje poslední člen v roli partikulárního řešení DR s 
pravou stranou. Při řešení DR, kdy stojíme před problémem nalezení tohoto partikulárního řešení, je 
obvykle nejschůdnější jeho hledání právě ve tvaru ustáleného stavu (5.59). 
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6 KMITOČTOVÉ FILTRY  

6.1 CÍLE POUŽITÍ KMITOČTOVÝCH FILTRŮ, JEJICH 
KLASIFIKACE A ZÁKLADNÍ POPIS VLASTNOSTÍ 

Kmitočtové filtry jsou lineární elektrické obvody, jejichž nejobvyklejším úkolem je výběr 
(selekce) kmitočtových složek procházejícího signálu podle jejich kmitočtů. 

6.1.1 Oblasti a příklady použití kmitočtových filtrů 
S kmitočtovými filtry se setkáváme v nejrůznějších oblastech elektrotechniky a elektroniky. 

Uvést lze mnoho oblastí a typických příkladů použití. V radiotechnice je časté použití pásmových 
propustí pro výběr přijímaných signálů (vstupní obvody přijímačů, mezifrekvenční filtry), dolních 
propustí a horních propustí jako výhybek pro rozdělení kmitočtových pásem v anténních obvodech a 
předzesilovačích, pásmových zádrží pro potlačení rušících signálů, dolních propustí pro různé typy 
demodulátorů atd. Obdobné je využití filtrů v telekomunikacích, při přenosu dat a pod. V 
elektroakustice se velmi často využívají korekční filtry (nastavitelné korektory hloubek, výšek, 
pásmové korektory, korekce kmitočtových charakteristik dynamických přenosek, magnetofonů), různé 
typy filtrů v systémech omezení šumu (Dolby a pod.). Dolní, horní a pásmové propusti tvoří 
kmitočtové výhybky pro reproduktorové soustavy. Kmitočtové filtry se využívají také v oblasti měřící 
techniky. Zde určují měřené kmitočtové pásmo (selektivní voltmetry, měřiče harmonického a dalších 
typů zkreslení, různá vf. měření). Pro akustická měření se modeluje vnímání lidského ucha několika 
typy váhových filtrů. Často se využívá korektorů kmitočtových vlastností snímacích čidel.  

Zvláštní skupinu aplikací tvoří „antialiasingové“ filtry typu dolní propust v systémech pro 
převod analogového signálu na číslicový (pro splnění vzorkovacího teorému) a na výstupu takového 
systému je obdobný rekonstrukční filtr. Kmitočtové filtry se používají obdobně v regulační 
technice, speciální odrušovací filtry nacházejí uplatnění v silnoproudé elektrotechnice, a tak bychom 
mohli vyjmenovat mnoho dalších aplikací. Lze říci, že neexistuje oblast elektrotechniky a elektroniky, 
kde se alespoň v omezené míře nevyužívají kmitočtové filtry. Základní orientace a znalost 
problematiky kmitočtových filtrů je proto potřebná prakticky pro každého tvůrčího pracovníka 
v elektrotechnice. Praktické realizace těchto filtrů vycházejí z více možností, z realizací s diskrétními 
prvky (odpory, kondenzátory, cívky..), z integrovaných realizací elektronických či 
elektromechanických. Jsou možné i další typy realizací včetně číslicových filtrů v digitální technice. 
Pro vysvětlení  základní funkce použijeme filtry RC či RLC, dále pak ukážeme i jiné typy realizací.  

6.1.2 Základní typy filtrů 
Kmitočtové filtry můžeme dělit podle různých hledisek a vlastností. Podle funkce filtru a 

odpovídajícího tvaru kmitočtových charakteristik je dělíme do tří základních skupin – selektivní 
filtry, korekční filtry a fázovací (zpožďovací) obvody. 

a) Selektivní filtry 
První skupinu tvoří filtry, které mají za úkol potlačení přenosu kmitočtových složek signálu v 

nepropustném pásmu. Podle rozložení propustného a nepropustného pásma (viz obr. 6.1) jsou to: 

- dolní propust (DP), propouští složky signálu s kmitočty nižšími než mezní kmitočet FM, 
- horní propust (HP), propouští složky signálu o kmitočtech vyšších než je mezní kmitočet FM, 
- pásmová propust (PP), propouští složky signálu mezi mezním dolním a horním kmitočtem 

FM1 a FM2, 
- pásmová zádrž (PZ), nepropouští složky signálu mezi mezním dolním a horním kmitočtem 

FM1 a FM2. 
V ideálním případě je modul přenosu filtru v propustném pásmu konstantní (např. Ku =1) a v 
nepropustném pásmu nulový. Působení jednotlivých typů filtrů na procházející signál ukazuje obr. 
6.2, který na příkladu různých druhů signálů názorně objasňuje funkci a použití těchto typů filtrů. 
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Obr. 6.1.  Ideální modulové charakteristiky základních typů selektivních filtrů. 
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Obr. 6.2. Příklad průchodu neharmonického signálu základními typy filtrů: a) časový průběh vstupního 

signálu a modul jeho spektra (složen ze tří harmonických signálů F1, F2 a F3), b – e) časové 
průběhy výstupních signálů a jejich spekter po průchodu filtry typu DP, HP, PP a PZ.  

b) Korekční filtry 
Na rozdíl od předchozí skupiny selektivních filtrů je hlavním cílem těchto filtrů taková 

kmitočtová závislost přenosu K2, která koriguje přenos některých bloků přenosového řetězce K1 tak, 
aby modul přenosu celé soustavy K byl kmitočtově nezávislý. Názorné je to v případě vyjádření 
přenosů v logaritmické ose (v dB), kdy výsledný přenos je součtem dílčích přenosů bloků spojených 
v kaskádě, jak to ukazuje obr. 6.3.  

Přenosový
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Celkový přenos
K = K1 . K2     [ - ]
K = K1 + K2   [dB]

K[dB]

K1
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K f

U2U1
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Obr. 6.3. Příklad použití korekčního filtru K2 pro korekci přenosu K1 tak, aby výsledný modul přenosu 

K byl kmitočtově nezávislý. 
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c) Zpožďovací (fázovací) obvody 
Pro předchozí dvě skupiny filtrů jsou určující především vlastnosti modulových charakteristik, 

průběh fázových charakteristik je méně důležitý. Pro fázovací obvody je nejdůležitější kmitočtově 
závislá fázová charakteristika. Jejich modulová charakteristika je kmitočtově nezávislá (též se 
někdy tyto obvody označují jako všepropustné – allpass), jak je to zřejmé z obr. 6.4.  
K(f)

1

f0 0

FM f0

f

ϕ (f)

τg(f)

a) b) c) FM  
Obr. 6.4.  Kmitočtové charakteristiky zpožďovacího obvodu: a) modulová, b) fázová, c) skupinové zpoždění. 
 

Používají se především tam, kde potřebujeme dosáhnout různého fázového (časového) posuvu v 
závislosti na kmitočtu beze změny modulu přenosu. Používají se pro korekci fázových 
charakteristik (obdobně jako korekční filtry pro korekci modulových charakteristik) nebo se užívají 
jako zpožďovací články. 

Poznámka: 
Vzhledem k nárůstu vlivu anglosaské technické literatury a technického názvosloví je vhodné znát alespoň 

anglické zkratky pro označení základních typů filtrů. Nejčastěji se používají tyto zkratky: DP – LP (low-pass), 
HP – HP (high-pass), PP – BP (band-pass), PZ – BR (band-reject) a pro fázovací (všepropustný) článek FČ – 
AP (all-pass). Dále se pro případ ostré zádrže s malou šířkou pásma používá pojem notch (zářez), takže 
označení filtrů typu DPN (dolní propust s nulou přenosu – kap. 6.2.2) je anglická zkratka LPN (low-pass notch). 

Dále lze poznamenat, že v běžné praxi je nečastější použití selektivních filtrů (asi 90 %), méně časté je pak 
použití korektorů (asi 8%) a zpožďovacích obvodů (asi 2 %). To jsou přibližné obecné relace, ale v jednotlivých 
oblastech elektrotechniky a elektroniky může být četnost použití těchto skupin obvodů značně odlišná. 

6.1.3 Řád přenosové funkce filtru a jeho praktický význam a volba 
Přenosové vlastnosti realizovatelného stabilního filtru jsou formálně nejjednodušeji vyjádřené 

v Laplaceově či Fourierově oblasti racionální lomenou funkcí komplexního kmitočtu p či jω 
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kde m < n. Nejvyšší mocnina n udává řád funkce a při praktické realizaci jistým způsobem určuje také 
minimální počet akumulačních prvků – cívek a kondenzátorů. Obvykle je řád funkce roven součtu 
počtu cívek a počtu kondenzátorů (viz kap. 5). 

Pro praktický návrh 
filtru je důležitá volba 
potřebného řádu filtru. Na 
obr. 6.5 vidíme typické 
závislosti modulové charak- 
teristiky přenosu filtru typu 
DP pro různé řády (n = 1 až 
4). Jak je zřejmé, se 
stoupajícím řádem se blíží 
charakteristika ideálnímu 
filtru a zvyšuje se potlačení 
přenosu v nepropustném 
pásmu. Zužuje se tak i 
přechodné pásmo mezi 
propustným a nepropustným 
pásmem. Na druhou stranu 

se ale zvyšuje cena a nároky na realizaci filtru. Proto v praktickém návrhu vždy hledáme 

Přechodné
pásmo

Propustné pásmo Nepropustné
pásmo

1

K(f)

FM

Přípustné zvlnění v
propustném pásmu

Potlačení
přenosu v

nepropustném
pásmu

n=12
3

4∞
f0

KZVL

KPOT

FP

 
Obr. 6.5.  Příklad závislosti modulové charakteristiky filtru typu DP na 

řádu filtru.  



_____Elektronické obvody I___________________________________________________________________ 

 182

kompromis. Z hlediska složitosti realizace volíme co nejnižší řád filtru, ale minimálně takový, aby 
zabezpečil požadované potlačení přenosu KPOT v nepropustném pásmu (pro kmitočty vyšší než FP). V 
uvedeném příkladu bychom zřejmě volili 3. řád. 

6.1.4 Způsoby vyjádření přenosové funkce K(p) či K(jω) filtru 
Přenosové vlastnosti filtru lze vyjádřit více způsoby, které jsou matematicky ekvivalentní (viz 

kap. 5, Tab. 5.1), ale jsou různě výhodné pro praktickou práci s jejich návrhem a použitím. Se dvěma 
základními formami vyjádření se lze setkat už u zmíněné přenosové funkce K(p) či Fourierova 
ekvivalentního vyjádření K(jω), viz (6.1). Určujícími parametry jsou zde koeficienty ai a bi. Protože 
koeficienty mohou mít dosti extrémní hodnoty, je snaha normovat jejich hodnoty vůči jednomu 
z nich. Obvykle se používají dva způsoby úpravy základního tvaru přenosové funkce (6.1). Obě 
varianty rozlišme označením koeficientů, první varianta – ai1, bi1 a druhá varianta ai2, bi2: 
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kde b01 =1 resp. bn2 = 1. Pro první variantu (6.2) platí ai1 = ai / bo, bi1 = bi / bo a pro druhou variantu 
(6.2) ai2 = ai / bn, bi2 = bi / bn . Typ filtru (DP, HP…) určuje čitatel, rezonanční vlastnosti filtru určuje 
jmenovatel. Proto se úprava týká především jmenovatele. Používají se oba způsoby vyjádření, jako 
vhodnější se ukazuje druhý způsob, kde koeficient b02 vyjadřuje hodnotu ΩM

n jako n-tou mocninu 
mezního či rezonančního kmitočtu. Výhoda tohoto vyjádření je zjevná především pro přenosové 
funkce 1. a 2. řádu (viz vztahy 6.9 – 6.39).  

Poznámka:  
Prakticky se používá kmitočet f v jednotkách [Hz], ale v některých teoretických výpočtech je vhodnější vyjádření 
pomocí úhlového kmitočtu ω  v [Hz] (ω = 2πf). To se promítá do odpovídajícího vyjádření hodnot koeficientů ai, 
bi přenosové funkce (6.2). Přenosovou funkci s proměnnou kmitočtu f [Hz] lze vyjádřit ve tvaru 
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kde pro koeficienty platí a’m = am, a’m-1 = am-1/(2π), a’m-2 = am-2/(2π)2,...... a’1 = a1/(2π)m-1, a’0 = a0/(2π)m a 
obdobně b’n = bn, b’n-1 = bn-1/(2π), b’n-2 = bn-2/(2π)2,...... b’1 = a1/(2π)n-1, b’0 = b0/(2π)n. Při výpočtu tak lze 
pracovat s dvěma odlišnými  typy koeficientů. Obě varianty koeficientů jsou používány v programu pro návrh 
kmitočtových filtrů NAF. 

a) Rozklad přenosové funkce pomocí pólů a nulových bodů v komplexní rovině p 
Protože z hodnot koeficientů přenosových funkcí vyšších řádů nejsou přenosové vlastnosti filtru 

dobře patrné, je snaha rozložit tyto funkce na dílčí funkce nižších řádů. K tomuto rozkladu vedou i 
potřeby některých návrhových postupů pro realizaci filtrů. Nejčastěji se přenosová funkce upravuje 
pomocí rozkladu polynomů čitatele a jmenovatele na kořenové činitele (viz. též kap.5.2.4 a příloha) do 
tvaru 
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kde αi jsou obecně komplexní kořeny polynomu čitatele a βi jsou obecně komplexní kořeny polynomu 
jmenovatele v rovině p. Dosadíme-li za hodnotu komplexního kmitočtu p jeden z kořenů čitatele αi, 
bude hodnota příslušného členu a tudíž i celého čitatele a přenosové funkce nulová. Potom hovoříme o 
nulovém bodu funkce (vyjadřuje nulový přenos). Dosadíme-li za p obdobně jeden z kořenů 
jmenovatele βi, bude hodnota celého jmenovatele nulová a přenosová funkce bude mít v tomto bodě 
nekonečnou hodnotu, jedná se o tzv. pól přenosové funkce (vyjadřuje nekonečný přenos). Též je 
vhodné si uvědomit, že póly (i případné nulové body) se vyskytují v komplexně sdružených dvojicích. 
Celou přenosovou funkci lze rozložit na součin dílčích přenosových funkcí 2. řádu, vyjádřených právě 
těmito komplexně sdruženými dvojicemi pólů (viz následující část b). 
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Dále je potřebné si uvědomit, že některé z koeficientů a0 až am mohou být a obvykle bývají nulové 
(tím je určen typ filtru, např. DP, HP, viz kap. 6.2.2), tudíž počet kořenů čitatele αi může být nižší, či 
mohou mít nulovou hodnotu. Oproti tomu všechny koeficienty jmenovatele bi musí být vždy nenulové 
a kladné a tomu odpovídající kořeny βi  musí být vždy nenulové a mít zápornou hodnotu reálné části 
(ležet v levé polorovině - viz např. obr. 6.6 c). 

Jednoduchý příklad přenosové funkce druhého řádu s nulou přenosu (filtr DPN – viz kap. 6.2.2) 
je ukázán na obr. 6.6. Přenosová funkce komplexní proměnné p (obr. 6.6 a) je znázorněna jednak jako 
trojrozměrná funkce (obr. 6.6 b), dále pak obvyklejší dvojrozměrnou formou průmětu pólů a nul 
přenosu v komplexní rovině p. Důležité je, že póly i nulové body přenosu se vyskytují v komplexně 
sdružených dvojicích (pouze v případě přenosové funkce lichého řádu je odpovídající nulový bod a 
pól vždy jeden a reálný). Dále je zřejmé, že další běžně používané dvourozměrné vyjádření – modul 
přenosové funkce v ose jω  – (d), je řezem přenosové funkce v komplexní rovině p (uvažuje se jen 
kladná poloosa jω).  
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   b)    c)    d) 
 

Obr. 6.6. Příklad komplexní přenosové funkce 2. řádu typu DPN a) a způsoby jejího grafického znázornění: 
b) trojrozměrně, c) polohami pólů a nul přenosu v komplexní rovině p, d) modulovou 
charakteristikou jako řezu trojrozměrné funkce v rovině jω (pro σ = 0).  

b) Rozklad celé přenosové funkce pomocí přenosových funkcí 1. a 2. řádu v kmitočtové 
ose jω 

Uvedený způsob znázornění přenosové funkce v rovině p je velmi zajímavý a potřebný 
především pro teoretickou práci. Pro běžnou práci s kmitočtovými filtry je praktičtější následující 
způsob rozkladu. Vychází z poznatku, že přenos komplexně sdružené dvojice pólů a nul lze vyjádřit 
přenosovou funkcí 2. řádu jak pomocí proměnné jω [rad/s], tak i po přepočtu méně používaným, ale 
názornějším způsobem pomocí proměnné jf [Hz] (viz poznámka v úvodu této kapitoly) 
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Obdobně pro 1. řád platí 
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Z uvedených vztahů vyplývá, že u jmenovatelů přenosových funkcí prvního řádu vystupuje jeden 
parametr – mezní kmitočet Ω0 resp. F0 a u druhého řádu dva parametry – rezonanční kmitočet Ω0 resp. 
F0 a činitel jakosti Q. Tyto parametry mají zjevný fyzikální význam (viz. kap. 6.2.1, 6.2.2) a jsou 
velmi často používány.  

Čitatel přenosové funkce musí mít jeden koeficient nenulový, ostatní mívají obvykle nulovou 
hodnotu (tomu odpovídá poloha nulových bodů přenosu v nule či nekonečnu). Tím je určen typ filtru 
(DP, HP, PP – viz kap. 6.2.2). V případě filtru 2. řádu typu pásmová zádrž (či jeho variant DPN nebo 
HPN) je nulový koeficient pouze jeden, a to QN = ∞ neboli ai1 = 0. Pak má kmitočet nuly přenosu ΩN 
resp. FN konečnou hodnotu, zjevný fyzikální význam a v komplexní rovině se vyskytuje pouze na ose 
jω  (viz  obr. 6.6). Podrobněji opět v kap. 6.2.2.  

Po dosazení rovnice (6.4) do přenosové funkce vyššího řádu (6.3) dostaneme pro sudý řád a 
pro úhlový kmitočet ω v [rad/s] přenosovou funkci ve tvaru součinu k = n/2 přenosových funkcí 2. 
řádu 
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Analogicky lze vyjádřit přenosovou funkci pro kmitočet f v [Hz]. 
V případě lichého řádu je tato funkce ještě násobena přenosovou funkcí 1. řádu (6.5). Přenosové 

funkce vyššího řádu n lze tedy vyjádřit jako součin n/2 dílčích funkcí 2. řádu (pro lichý řád n jsou 
funkce 2. řádu násobeny dále jednou dílčí funkcí 1. řádu).  

Tento rozklad celkové přenosové funkce na dílčí funkce 2. resp. 1. řádu fyzikálně odpovídá 
kaskádnímu spojení obvodů 2. řádu v případě, že se navzájem impedančně neovlivňují (např. kaskádní 
spojení bloků ARC – viz. kap. 6.7.3). V tom případě lze poměrně jednoduše odhadovat vliv hodnot 
koeficientů Ω0i, Qi a ΩNi resp. F0i, Qi a FNi na přenosové vlastnosti celého filtru. 

Porovnáme-li oba uvedené způsoby rozkladu přenosové funkce v obecném tvaru (na póly a nuly 
v komplexní rovině a na přenosové funkce 2. a 1. řádu s odpovídajícími parametry Ω0i, Qi a ΩNi resp. 
F0i, Qi a FNi), je zřejmé, že oba způsoby vyjádření jsou ekvivalentní. Vyjádříme-li souřadnice pólu (či 
nulového bodu) jako pbi=[σP, ωP] (viz obr. 1.16 b), pak platí 

22
0 PP ω+σ=Ω , 

P
Q

σ−
Ω

=
2

0  (6.7) 

Je zřejmé, že pro Q<∞ jsou komplexně sdružené póly v levé polorovině a se snižováním hodnoty Q se 
póly pohybují po kružnici směrem k reálné ose, na které splynou pro Q = 0,5, a dále se pak rozdělí a 
pohybují jen po reálné ose. Oproti tomu nulový bod při QN = ∞ je pouze na ose jω a jeho souřadnice 
tedy přímo odpovídá hodnotě ΩN. 

Závěrem lze shrnout a porovnat jednotlivá vyjádření přenosové funkce. Je zřejmé, že 
koeficienty přenosové funkce lze vyjádřit třemi ekvivalentními přístupy: 

1) hodnotami polynomiálních koeficientů ai, bi – (6.2) 
2) hodnotami (rozložení) pólů a nulových bodů αi , βi = [σP, ωP] a koeficientem přenosu am  – 

(6.3) 
3) hodnotami parametrů Ω0i, Qi a ΩNi resp. F0i, Qi a FNi filtrů 2. řádů (typ filtru určuje koeficienty 

čitatele) – (6.6) a koeficientem přenosu am, který lze rozložit na dílčí koeficienty přenosu 
jednotlivých filtrů. 

Třetí způsob vyjádření přenosové funkce pomocí dílčích přenosových funkcí 2. řádu s 
parametry Ω0i, Qi a ΩNi resp. F0i, Qi a FNi je velmi názorný a praktický. Tyto hodnoty přímo 
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korespondují podle (6.7) s méně používaným vyjádřením hodnot pólů a nulových bodů. Třetí forma je 
též obvykle výhodnějším vyjádřením než první s koeficienty ai, bi, které lze snadno a bez numerických 
chyb získat roznásobením dílčích koeficientů přenosových funkcí 2. řádů (získaných ať už z hodnot 
pólů a nul anebo z hodnot Ω0i, Qi a ΩNi). Na druhou stranu lze jen obtížně a s numerickými 
nepřesnostmi provést rozklad koeficientů ai, bi na koeficienty přenosových funkcí 2. řádů. 

Důležitá je skutečnost, že koeficienty ai, bi přenosových funkcí úzkých pásmových propustí či 
zádrží je nutné z hlediska numerické přesnosti vyjadřovat s podstatně vyšším počtem desetinných míst 
než odpovídající koeficienty přenosových funkcí 2. řádů, a to jak pro konkrétní řešení přenosové 
funkce (výpočet kmitočtových charakteristik), tak i pro případný rozklad na 2. řády.  

Navíc o koeficientech ai, bi si nelze vytvořit prakticky žádné konkrétní fyzikální představy a 
soudit tak např. o realizovatelnosti těchto přenosových funkcí, kdežto vyjádření přenosové funkce 
pomocí hodnot F0i, Qi a FNi již na první pohled ukazuje praktické možnosti realizovatelnosti obzvláště 
vzhledem k hodnotám Qi.Také je zřejmá výhodnost vyjádření parametrů F0i a FNi oproti Ω0i, ΩNi. 
Proto jsou i mnohé katalogy standardních aproximací uvedeny v této podobě. V dalším textu budeme 
využívat především toto vyjádření. 

6.1.5 Přenosové kmitočtové a časové charakteristiky filtrů a požadavky na 
jejich vlastnosti 

a) Kmitočtové a časové charakteristiky kmitočtových filtrů  
Kmitočtové charakteristiky jsou grafickým vyjádřením komplexní přenosové funkce K(jω) (6.1). Jak 
již bylo ukázáno v kap. 3.4.3 a 5.2.4, je vhodné ji vyjádřit kmitočtovými charakteristikami modulu a 
fáze přenosu. V praxi se pro popis kmitočtových filtrů nečastěji používají modulové charakteristiky, 
ovšem v případech, kdy důsledněji vyhodnocujeme nejen velikost modulů procházejících 
harmonických složek, ale i zkreslení tvaru procházejícího signálu, musíme brát v potaz i fázovou 
charakteristiku filtru. 

Aby signál, jehož spektrum leží v propustném pásmu filtru, prošel filtrem beze změny svého 
tvaru, musí mít filtr jak konstantní modul přenosu (kmitočtově nezávislý) v propustném pásmu 
(poměr amplitud všech procházejících složek zůstane nezměněn), tak i konstantní časový posuv pro 
všechny procházející kmitočtové složky. Ze vztahu ϕ = ω . t vyplývá pro konstantní časový posuv 
požadavek lineární závislosti fázového posuvu na kmitočtu. Protože tato linearita se obtížně sleduje, 
používáme častěji kmitočtové závislosti skupinového (grupového) zpoždění τg(ω), viz (3.17) kap. 
3.4.5. 

V některých případech je výhodné vyjádřit vlastnosti filtru v časové oblasti, protože je v ní vidět 
přímý vliv filtru na časový průběh signálu. Typické je to např. pro sledování vlivu filtru na 
obdélníkové (číslicové) signály. Pro vyjádření vlastností filtrů v časové oblasti jsou v praxi nejčastěji 
používány odezvy na jednotkový skok h(t) a na jednotkový (Diracův) impuls g(t), viz kap. 5.2.2. 
Pro uvedené časové charakteristiky se někdy také používá názvů přechodná a impulsní 
charakteristika. Obě časové odezvy lze vzájemně integrací či derivací převést. Odezva na jednotkový 
impuls je na rozdíl od odezvy na jednotkový skok přímým Fourierovým obrazem komplexní 
kmitočtové charakteristiky, ale v praxi se více užívá odezva na jednotkový skok, protože názorněji 
ukazuje například přenos stejnosměrné složky a můžeme z ní dedukovat odezvu např. pro často 

používaný obdélníkový signál.  
Popis změnu tvaru obdélníkového signálu po 

průchodu lineárním systémem pomocí odezvy h(t) 
je obvykle upřesněn různými parametry, jako jsou 
např. maximální překmit signálu ∆, doba zpoždění 
tZ, doba náběhu tn jako doba přechodu z 10 % na 90 
% úrovně signálu a doba ustálení tu (viz obr. 6.7). 
 

Obr. 6.7.  Časová odezva obdélníkového signálu s využitím h(t) a definice parametrů ∆ (překmit), tz (doba 
zpoždění), tn (doba náběhu) a tu (doba ustálení).  
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c) Souvislosti modulových a fázových charakteristik s časovou odezvou h(t) 
Jak již bylo naznačeno, komplexní kmitočtová přenosová funkce přímo odpovídá impulsní 

charakteristice a po integraci též přechodné charakteristice. Z přenosové funkce filtru v kmitočtové 
oblasti můžeme tedy přímo určit chování filtru v časové oblasti. Jejich souvislost je naznačena již 
v kap. 5.2.2. Můžeme zrekapitulovat, že u modulových charakteristik platí, že velikost přenosu pro 
kmitočty blížící se nule odpovídá přenosu odezvy na jednotkový skok pro čas blížící se nekonečnu 
(K(f→0) = h(t→∞)) a naopak že velikost přenosu pro kmitočty blížící se nekonečnu odpovídá přenosu 
odezvy na jednotkový skok pro čas blížící se nule (K(f→∞) = h(t→0)). Proto je typická rozdílnost 
průběhů odezev na jednotkový skok h(t) pro jednotlivé typy filtrů, jak je to znázorněno na obr. 6.8. Je 
také zřejmé doplňkové chování jednak filtrů DP a HP a také filtrů PP a PZ.  

Filtr typu DP potlačuje ostrou náběžnou hranu jednotkového skoku a přenáší pomalé 
(stejnosměrné) průběhy, kdežto filtr typu HP naopak přenáší ostré hrany a potlačuje přenos 
stejnosměrné složky. Dále platí, že čím vyšší jsou hodnoty činitele jakosti filtru (vyšší strmost), tím 
více se projevuje v odezvě kmitavá složka. U filtru typu PP je zřejmé potlačení jak přenosu ostré 
náběžné hrany v počátku, tak i stejnosměrné složky pro čas blížící se nekonečnu. Filtr typu PZ je 
doplňkovým filtrem k filtru PP, a proto má i jeho odezva h(t) převrácený tvar, tj. propouští náběžnou 
hranu i stejnosměrnou složku a potlačuje v závislosti na hodnotě šířky potlačovaného pásma (činiteli 
jakosti) signál ve středním časovém úseku. Na obr. 6.8 je znázorněn průběh h(t) pro PZ a PP s nízkou 
hodnotou Q neboli velkou relativní šířkou pásma. V případě zužování šířky pásma může nabývat 
odezva charakteru téměř netlumeného harmonického signálu, přičemž se absolutní velikost této 
kmitavé složky snižuje. 
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Obr. 6.8.  Souvislost průběhů modulových charakteristik a časové odezvy na jednotkový skok pro filtry 
typu DP, HP, PP a PZ. Filtry typu DP a HP mají střední hodnotu Q, filtry typu PP a PZ nízkou 
hodnotu Q (relativně velkou šířku pásma). 

 

Prakticky je také velmi důležitá souvislost nelinearity fázové kmitočtové charakteristiky a 
časového průběhu výstupního signálu, která je názorně vidět na přechodné charakteristice.  

Nelinearita fázové charakteristiky filtru způsobuje i při téměř konstantní modulové 
charakteristice výrazné překmity přechodné charakteristiky, jak ukazuje příklad na obr. 6.9. 

Poznámky: 
1. Čím důrazněji vyžadujeme zachování tvaru procházejícího signálu, tím více musíme dbát nejen na 

kmitočtovou nezávislost modulové charakteristiky v propustném pásmu filtru, ale i na linearitu fázové 
charakteristiky filtru (konstantní skupinové zpoždění). 

2. Modulová a fázová charakteristika spolu úzce souvisí, a proto při požadavku na lineární fázovou 
charakteristiku musíme volit odpovídající (hladký a méně strmý) průběh modulové charakteristiky (viz 
kapitola 2.3.10). 
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Obr. 6.9.  Souvislost průběhu fázové charakteristiky, kmitočtové závislosti skupinového zpoždění a 

časové odezvy na jednotkový skok a) pro téměř lineární fázovou charakteristiku v propustném 
pásmu, b) pro nelineární fázovou charakteristiku. 

6.2 PŘENOSOVÉ VLASTNOSTI A CHARAKTERISTIKY FILTRŮ 1. 
A 2. ŘÁDU 

6.2.1 Filtry s přenosovou funkcí 1. řádu 
Jak již bylo v předešlých kapitolách uvedeno, filtry s přenosovou funkcí 1. řádu obsahují mimo 

rezistoru R obvykle jeden akumulační prvek (L nebo C). Vzhledem k jednoduchosti a ceně realizace se 
jako akumulační prvek nejčastěji používá kondenzátor. Jeho spojení s rezistorem označujeme jako filtr 
RC. Vzhledem k tomu, že jde o obvody s přenosovou funkcí 1. řádu, lze realizovat pouze filtry typu 
DP, HP, korekční a fázovací článek, nelze ale realizovat filtry typu PP a PZ. 

a) Dolní a horní propust 1. řádu 
Tyto nejjednodušší filtry byly při různých příležitostech analyzovány a diskutovány 

v předchozích kapitolách, ale pro systematický pohled je uvedena následující rekapitulace. Nejčastější 
zapojení DP 1. řádu je uvedeno na obr. 6.10 a). Jeho základní funkci, danou přenosem napětí, lze 
snadno vyjádřit z přenosu pro nulový a nekonečný kmitočet.  
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Obr. 6.10.  Zapojení filtrů typu DP a HP 1. řádu. 

 

Pro kmitočet blízký nule se impedance kondenzátoru blíží nekonečnu a přenos je vzhledem 
nulovému úbytku napětí na rezistoru R jednotkový. Pro kmitočet, blížící se nekonečnu, se modul 
impedance kondenzátoru blíží nule (zkrat) a proto je přenos napětí nulový. Z toho vyplývá, že obvod 
splňuje základní funkci dolní propusti (propouští nízké kmitočty, vysoké potlačuje). Komplexní 
přenos lze jednoduše spočítat a výslednou přenosovou funkci upravit do různých tvarů: 
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kde Ω0 = 1/(RC) = 1/τ (τ je časová konstanta) a F0 = 1/(2πRC). Komplexní přenosovou funkci K (jω) 
lze rozdělit na funkci modulu a fáze přenosu a případně vyjádřit v normovaném tvaru: 
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Závislost skupinového zpoždění je derivací závislosti fáze a lze ji vyjádřit vztahem: 
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Je zajímavé, že základní tvar charakteristiky je vždy stejný a velikost skupinového zpoždění je 
nepřímo závislá na hodnotě Ω0. 

Na modulové charakteristice v logaritmickém měřítku si všimněme mezního kmitočtu f / F0 = 
1, při němž nastává pokles přenosu o 3 dB oproti přenosu pro nízké kmitočty a pro nulový kmitočet. 
Mimo tento kmitočet se modul přenosu blíží k přímkám tzv. Bodeho asymptot. V nepropustném 
pásmu má asymptota strmost 20 dB na dekádu (tj. rozdíl přenosů o 20 dB pro kmitočty s 
desetinásobným poměrem hodnot), nebo 6 dB na oktávu (tj. rozdíl přenosů o 6 dB pro dvojnásobek 
kmitočtu). Změnou hodnot prvků R nebo C se mění mezní kmitočet, čímž dojde k posuvu modulové a 
fázové charakteristiky beze změny jejich tvaru. 

Hodnoty závislosti skupinového zpoždění (obr. 6.11 d) jsou v normovaném tvaru τg .Ω0, kdy 
lze vydělením normované hodnoty hodnotou mezního kmitočtu Ω0 (nebo 2πF0) vypočítat skutečné 
skupinové zpoždění. Obdobně je normována i časová osa pro přechodnou charakteristiku h(t), viz 
obr. 6.11 e). V této časové charakteristice je naznačena její tečna v počátku, která protíná hodnotu 
vstupního signálu v čase τ = RC. Za povšimnutí stojí i souvislosti mezi modulovou kmitočtovou 
charakteristikou a přechodnou charakteristikou h(t), kdy zvýšení potlačení vyšších kmitočtů (snížení 
mezního kmitočet F0) odpovídá zpomalení náběhu odezvy na jednotkový skok, jak vyplývá i z rozboru 
vztahu (6.9).  
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Obr. 6.11. Kmitočtové a časové charakteristiky DP a HP 1. řádu, a) modulová charakteristika DP, b) odezva 

DP na jednotkový skok c) fázová charakteristika DP (pro HP shodný tvar posunutý o +90°), d) 
modulová charakteristika HP, e) odezva HP na jednotkový skok, f) kmitočtová závislost 
skupinového zpoždění DP i HP. 

 

Nejjednodušší příklad zapojení HP 1. řádu je na obr. 6.10 b). Vzájemná záměna prvků R a C 
oproti DP z obr. 6.10 a) má za následek nulový přenos pro stejnosměrné napětí a jednotkový přenos 
pro vysoký kmitočet, kdy se impedance kondenzátoru blíží nule (zkratu). Přenosová funkce má tvar 
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kde Ω0 = 1/RC stejně jako u DP. Shodný je i tvar jmenovatele, protože jde o shodný obvod s tím, že je 
brán výstupní signál na jiných svorkách. To se odráží na změně tvaru čitatele. Obdobně jako v 
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předchozím případě lze vyjádřit kmitočtovou závislost modulu (viz obr. 6.11 d) a fáze přenosu. V 
porovnání s kmitočtovými charakteristikami DP je modulová charakteristika stranově převrácená 
podle mezního kmitočtu F0. Fázová má shodný tvar jako DP, pouze je posunuta o 90 stupňů. 
Vzhledem k tomu je závislost skupinového zpoždění (viz obr. 6.11 f) jakožto derivace fázové 
charakteristiky zcela shodná pro DP i HP.  

U časové odezvy na jednotkový skok (viz obr. 6.11 d) je nakreslena tečna v počátku, která 
protíná časovou osu v čase τ = RC. Je zřejmé, že horní propust přenáší nejlépe ostré hrany a změny 
signálu a na druhou stranu nepřenáší stejnosměrnou složku. To samozřejmě vyplývá z průběhu 
modulové kmitočtové charakteristiky. Je zajímavé, že časová odezva HP na jednotkový skok je 
doplňkem odezvy h(t) pro dolní propust a jejich součet dá jednotkový skok. Vyplývá to i ze součtu 
přenosů obou filtrů, kdy součet KDP(p) a KHP(p) je roven jedné. 

Další typy filtrů 1. řádu 
Filtry 1. řádu neumožňují realizaci dalších základních selektorů (PP, PZ), ale lze realizovat 

korektory a fázovací články. Korekční filtr 1. řádu lze využít pro korekci přenosu v pásmu nízkých a 
vysokých kmitočtů (určitá obdoba DP a HP). Příklad jednoduchého korektoru s pevnou mírou korekce 
je uveden na obr. 6.12 c). Obvody s nastavitelnou mírou korekce (známé též jako korektory hloubek a 
výšek) mají složitější zapojení a přenosovou funkci [14].  Na obr. 6.12 a) a. 6.12 b) jsou uvedeny 
charakteristiky pro různé hodnoty korekce. Je zřejmé, že pro hodnotu k → 0 korektory přecházejí ve 
filtry typu DP resp. HP.  
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Obr. 6.12. Modulové kmitočtové charakteristiky korekčních filtrů 1. řádu, a) pro nízké kmitočty, b) pro 

vysoké kmitočty, c) příklad korektoru nízkých kmitočtů pro k = 0,1; C = 1/(1,8.π.2R.f0). 
 

Dvě známá zapojení RC fázovacího článku 1. řádu (viz obr. 6.13 a, b) jsou v praxi využívána 
zřídka vzhledem k diferenciálnímu výstupu. Tuto nevýhodu odstraňuje obvod s operačním 
zesilovačem na obr. 6.13 c). Jeho přenosovou funkci lze vyjádřit ve tvaru 
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kde Ω0 = 1/RC, na hodnotě R1 nezáleží. Výpočtem lze zjistit, že modul přenosu je jednotkový a 
kmitočtově nezávislý. Modul přenosu je konstantní, ale posun fáze je dvojnásobný oproti DP 1. řádu.  

)/(2)/()/(2)/( 0000 FfarctgFfarctg −==Ω−=Ω ϕωωϕ  . (6.15) 

Tomu odpovídá i dvojnásobné skupinové zpoždění signálu oproti obr. 6.11 f). 
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Obr. 6.13. Příklady realizací fázovacího článku 1. řádu: - s neuzemněným výstupem a) s přenosem 0,5, b) 

s přenosem 1(2. řád s vlastnostmi 1. řádu), - s uzemněným vstupem i výstupem c) s jedním OZ. 
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Poznámka:  
Z předchozího lze tedy shrnout – tvar charakteristik filtrů prvního řádu je určen pouze jedním parametrem – Ω0 
a dále typem filtru (tvarem čitatele). 

6.2.2 Filtry s přenosovou funkcí 2. řádu 
I tyto obvody byly v různých souvislostech diskutovány v předešlých kapitolách. V rekapitulaci 

lze uvést, že tyto filtry musí obsahovat při realizaci s diskrétními prvky mimo rezistoru nejméně dva 
akumulační prvky. Nejčastěji je využívaná kombinace prvků R, L a C, ale mohou to být i dva 
rezistory a dva kapacitory či dva induktory. Důležité je, že filtry 2. řádu umožňují realizaci všech 
základních typů filtrů, tedy i pásmové propusti (PP) a pásmové zádrže (PZ). Filtry 2. řádu jsou velmi 
často využívány pro různé méně náročné aplikace a jako základní stavební bloky pro filtry vyšších 
řádů. 

a) Dolní a horní propust 2. řádu 

C
R L CRS

LU1
U1 U2U2

DP: HP:

 
Obr. 6.14. Dolní a Horní propust 2. řádu. 

 
Příklad zapojení DP 2. řádu se sériovým rezonančním obvodem RLC je na obr. 6.14. Základní 

funkce je v principu stejná jako u DP 1. řádu. Použití dvou kmitočtově závislých prvků však umožňuje 
dosáhnout větší strmosti kmitočtové modulové charakteristiky v přechodném či nepropustném pásmu. 
Jde v podstatě o jednoduchý, kmitočtově závislý dělič napětí, u kterého se impedance cívky a 
kondenzátoru pro přenos napětí na nízkých kmitočtech neuplatňuje, kdežto pro vysoké kmitočty je 
přenos zmenšen jak vysokou impedancí cívky v sérii, tak i zkratem výstupu nízkou impedancí 
kondenzátoru. Kmitočtové vlastnosti DP popisuje přenosová funkce, kterou lze získat analýzou 
obvodu z obr. 6.14. Je možno ji vyjádřit v obecném tvaru 
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Označení RS vyjadřuje funkci odporu v sériovém obvodu. Vztah pro Q je zde odlišný od vztahu pro 
paralelní rezonanční obvod (viz např. diskuse ke vztahu 6.22). Reálné funkce modulu a fáze přenosu 
v normovaném tvaru lze vyjádřit vztahy: 
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Platí, že K(Ω0) = Q a ϕ(Ω0) = -90°. Závislost skupinového zpoždění je derivací závislosti fáze a lze ji 
vyjádřit vztahem: 
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Základní tvar průběhu skupinového zpoždění je pro dané Q vždy stejný a jeho velikost je nepřímo 
závislá na hodnotě Ω0. Proto se skutečná hodnota z normované snadno vypočítá podělením hodnotou 
Ω0.  
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Odpovídající modulová a fázová kmitočtová charakteristika, kmitočtová závislost skupinového 
zpoždění a odezva na jednotkový skok jsou zobrazeny pro různé hodnoty činitele jakosti Q na obr. 
6.15. Je zřejmé, že tvar modulové charakteristiky závisí na činiteli jakosti, a to především v oblasti 
rezonance. Lze využít poznatek, že pro rezonanční kmitočet je modul hodnoty přenosu roven hodnotě 
Q. V praxi se často setkáme s Q o hodnotě 0,7 až 1. Pro vyšší Q se v oblasti rezonance dolní propust 
začíná chovat jako pásmová a využívá se obvykle jako stavební prvek filtrů vyšších řádů. Pro Q>5 
začíná platit vztah pro šířku pásma jako u PP (6.16). Ve srovnání s DP 1. řádu má tato dolní propust 
dvojnásobnou strmost asymptoty v nepropustném pásmu (40 dB/dek. nebo 12 dB/okt.). Hodnota Q 
také ovlivňuje strmost a nelinearitu fázové charakteristiky. Tuto nelinearitu lépe vyjadřuje 
kmitočtová závislost skupinového zpoždění (pro Q = 10 je hodnota maxima 20 – není zachyceno). V 
propustném pásmu se tato závislost nejvíce blíží kmitočtově nezávislému průběhu přibližně pro Q = 
0,6 (přesněji 0,58), viz obr. 6.15 f). Tomu odpovídají i tvary přechodných charakteristik (obr. 6.15 b), 
kdy pro tento činitel jakosti je odezva maximálně rychlá, bez překmitů, a s nejkratší dobou ustálení. 
Vyšší Q vede k rychlejší odezvě, ale i k překmitům a k prodloužení doby ustálení, nižší Q zase 
k pomalejší odezvě. 
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Obr. 6.15. Kmitočtové a časové charakteristiky DP a HP 2. řádu pro různé hodnoty Q, a) modulová 

charakteristika DP, b) odezva DP na jednotkový skok c) fázová charakteristika DP (pro HP 
shodný tvar posunutý o +180°), d) modulová charakteristika HP, e) odezva HP na jednotkový 
skok, f) kmitočtová závislost skupinového zpoždění DP i HP. 

 

Příklad zapojení HP 2. řádu se sériovým rezonančním obvodem RLC je na obr. 6.14. 
Analogicky jej z DP 2. řádu získáme záměnou prvků L a C. Pro tento obvod je výsledná přenosová 
funkce ve tvaru  
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kde pro Ω0 a Q platí shodné vztahy jako v předchozím případě u DP 2. řádu – (6.9). Odpovídající 
kmitočtové charakteristiky jsou uvedeny na obr. 6.15. Při srovnání jejich vlastností s DP 2. řádu je 
zřejmá i obdoba vlivu parametru Q na tvar kmitočtových i časových charakteristik (viz. obr. 6.15). 
V porovnání s charakteristikami DP jsou modulové charakteristiky stranově převrácené podle F0. 
Fázové charakteristiky jsou tvarově shodné, ale posunuté o 180 stupňů.  

Na kmitočtové závislosti skupinového zpoždění je zřejmé, že je shodná s DP 2. řádu, z toho 
vyplývá odlišné posuzování jejího tvaru v propustném pásmu HP. Na druhou stranu, u odezvy na 
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jednotkový skok se projevuje vliv hodnoty Q a volba jeho optimální hodnoty obdobně jako u DP. 
V porovnání s DP 2. řádu stojí za povšimnutí dva poznatky. Jednak je zřejmý překmit odezvy h(t) pod 
nulovou osu i pro Q nižší než 0,5 (v porovnání s DP 2. řádu) a zpětný překmit nad osu pro Q>0,6. 
Dále v porovnání dvojic DP – HP 1. a 2. řádu je odlišnost v tom, že h(t) pro HP 2. řádu není přímým 
doplňkem k h(t) DP 2. řádu jako je tomu u filtrů 1. řádu, protože součet přenosů KDP(p) a KHP(p) není 
roven jedné.  

b) Pásmová propust a pásmová zádrž 2. řádu 
Příklad zapojení PP s paralelním rezonančním obvodem RLC je na obr. 6.16. Někdy se využívá i 
analogické zapojení se sériovým rezonančním obvodem (viz Tab. 6.1). Princip funkce prvního 
zapojení vyplývá z kmitočtové závislosti impedancí paralelního rezonančního obvodu (nekonečná 
impedance pro rezonanční kmitočet a nulová impedance pro nulový a nekonečný kmitočet). Přenosová 
funkce má tvar 

 
C

RP LU1
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PP: U
2

CU1
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Obr. 6.16. Pásmová propust a pásmová zádrž 2. řádu s paralelním rezonančním obvodem. 
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kde pro Ω0 platí Thomsonův vztah jako u DP 2. řádu – (6.15). Ovšem vztah pro činitel jakosti je 
odlišný vzhledem k tomu, že jde o paralelní rezonanční obvod – Q = RP / (Ω0 L). V případě realizace 
se sériovým rezonančním obvodem by samozřejmě platil vztah pro Q podle (6.15). Kmitočtové 
charakteristiky pásmové propusti jsou na obr. 6.17. Je zřejmé, že nejčastěji používáme PP s Q>>1. 
Šířka propustného pásma pro pokles přenosu o 3 dB je dána vztahem 

Q
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B 0
3 =   [Hz] , 

Q
B 0

3
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=  [rad/s] . (6.23) 

Jak je z obr. 6.17 a) zřejmé, oproti DP a HP mají asymptoty u modulové charakteristiky PP po 
obou stranách poloviční strmost (20 dB/dek). Fázová charakteristika vykazuje při rezonanci nulový 
fázový posuv, tvarem je tedy shodná s fázovou charakteristikou DP a HP.  

Kmitočtová závislost skupinového zpoždění je vzhledem ke shodnému tvaru fázových 
charakteristik stejná jako u DP a HP. Zajímavé jsou praktické vlastnosti závislosti skupinového 
zpoždění v propustném pásmu PP. Pro činitele jakosti Q>3 je relativní tvar skupinového zpoždění 
stejný a nezávislý na hodnotě Q, protože šířka propustného pásma modulové charakteristiky a šířka 
pásma skupinového se zužují s růstem Q shodně. Pro F0 je τg asi dvojnásobné oproti krajům 
propustného pásma nezávisle na Q. Pouze pro nízké hodnoty Q pak přestává mít závislost 
skupinového zpoždění selektivní charakter a pro velmi nízké Q (široké PP) nelze dosáhnout ani 
částečně konstantní závislost τg(f) v celé šířce propustného pásma.  

U časové odezvy h(t) stojí za povšimnutí závislost na činiteli jakosti. Čím vyšší je Q, tím delší 
je doba ustálení s tlumeným harmonickým průběhem, ale také je menší amplituda (užší pásmovou 
propustí projde méně energie). 

Zapojení PZ 2. řádu s paralelním rezonančním obvodem RLC je na obr. 6.16 (používaná je i 
analogická realizace se sériovým rezonančním obvodem). Princip funkce vyplývá z kmitočtových 
závislostí impedance rezonančního obvodu. Oproti pásmové propusti však zde nekonečná impedance 
paralelního obvodu způsobuje nulový přenos na rezonančním kmitočtu, kdežto pro kmitočet blížící 
se nulovému a nekonečnému kmitočtu je přenos jednotkový. Přenosová funkce má tvar 
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Obr. 6.17. Kmitočtové a časové charakteristiky PP a PZ 2. řádu: a) modulová charakteristika PP, b) fázová 

charakteristika PP, c) odezva PP na jednotkový skok, d) modulová charakteristika PZ, e) fázová 
charakteristika PZ, f) odezva PZ na jednotkový skok. 

  
s parametry Ω0 a Q shodnými jako u předchozích typů filtrů. Dále je zde zaveden nový parametr – 
kmitočet nulového přenosu ΩΝ , který je důležitým parametrem i dalších typů filtrů, jak uvidíme 
později. Dosadíme-li p=jΩΝ, bude K(jΩΝ) = 0. V případě PZ je ΩΝ = Ω0. Modulová a fázová 
kmitočtová charakteristika PZ jsou na obr. 6.17 d), e). U modulové charakteristiky má nulový přenos 
pro F0 v logaritmickém měřítku hodnotu -∞ dB. V praxi způsobují reálné ztráty v L a C pro F0 

nenulovou hodnotu přenosu (KU ≠ -∞ dB, v čitateli se objevuje nenulový člen a1p). U reálných obvodů 
je typický růst hodnoty tohoto parazitního přenosu pro ΩΝ s rostoucí hodnotou Q. 

Hodnotou Q u pásmové zádrže je určována také hodnota B3 – a to jako doplněk šířky 
propustného pásma, pro niž platí stejně jako u PP vztah B3 = F0 / Q. Šířku pásma potlačení přenosu je 
obtížné definovat, protože se monotónně zužuje a není definována přesná mez potlačení přenosu. 
Fázové charakteristiky mají shodné tvary průběhů jako předchozí typy filtrů, vyjma fázového skoku 
180o pro F0, kdy z charakteristiky shodné s DP přechází na charakteristiku shodnou s HP. Vzhledem k 
tomu jsou zcela shodné s předcházejícími typy filtrů i průběhy skupinového zpoždění. U odezvy na 
jednotkový skok je pro nízké Q zřejmé, že odezva PZ je součtem odezvy DP a HP a že odezva PZ je 
také doplňkem odezvy PP (součet obou je při shodných parametrech roven jedné).  

c) Dolní a horní propust s nulou přenosu (DPN a HPN) 2. řádu 

C

R L1
L2U1 U2

L

R C1 C2U1 U2
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Obr. 6.18. Dolní propust s nulou přenosu a horní propust s nulou přenosu 2. řádu. 

 

Tyto typy filtrů se obvykle neřadí do základních typů filtrů, nicméně jejich použití je v praxi 
poměrně časté. U DPN spojuje (při určitém kompromisu) vlastnosti filtrů typu DP a PZ. Příklad jeho 
zapojení ve variantě se sériovým rezonančním obvodem RLC je na obr. 6.18, kde cívka L je rozdělena 
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na dvě části, kdy platí L = L1 + L2. V případě, že L1 = 0, jde o pásmovou zádrž, v případě L2 = 0 jde o 
dolní propust. Přenosová funkce obvodu má tvar 
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kde a2 = L2 / (L1 + L2) a může nabývat hodnoty 0 až 1, což jsou dva mezní stavy pro DP a PZ (L2 = 0 či 
L1 = 0). Vlastnosti tohoto filtru jsou zřejmé z obou grafů modulové charakteristiky na obr. 6.19. 
Vzhledem k dvěma volitelným parametrům byl u první varianty zobrazení na obr. 6.19 a) zachycen 
vliv proměnném parametru a2 na modulové charakteristiky při Q = 3. Zřejmý je zde také vliv hodnoty 
FN na maximum přenosu. Druhá varianta zobrazení na obr. 6.19 b) ukazuje vliv proměnném parametru 
Q při parametru a2 = 0,1. Z charakteristiky je význam parametru a2 zřejmý, pro kmitočet nulového 
přenosu totiž platí: 

2
2
0

2 / aN Ω=Ω    =>    2
2

0
2 / aFFN =  .                                (6.30) 

Pro případ a2 = 0 přechází filtr DPN v DP s ΩN  = ∞, pro a2 = 1 přechází filtr DPN v PZ s ΩN = 
Ω0. Přenos na nekonečném kmitočtu má hodnotu  

( ) 2aK =∞  . (6.31) 
Fázové charakteristiky mají podobné průběhy jako filtr PZ s tím rozdílem, že k fázovému skoku 

180o dochází pro kmitočet FN. Obr. 6.19 c) ukazuje vliv změny a2 a tím i FN na přechodnou 
charakteristiku h(t). Zde je také zřejmé, že přenos v počátku je dán přímo hodnotou a2.  

V praxi lze tento filtr použít např. jako filtr DP s možností velkého potlačení přenosu rušivého 
úzkopásmového signálu na kmitočtu blízkém F0. Též se využívá u filtrů vyšších řádů se speciálními 
tvary modulových charakteristik, jak bude vysvětleno dále. 

-60

-50

-40

-30

-20

-10

0

10
0.1 1 10

Q = 3

a)

KU
[dB]

0,01

0,1

a2= 0,25

f / F0

-50

-40

-30

-20

-10

0

10

20
0.1 1 10

a2= 0,1

b)

KU
[dB]

0,3

1

3
Q = 10

f / F0

0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10c)

0,25
0,1

a2= 0,01

Q = 1

h(t)

t.Ω0   

-60

-50

-40

-30

-20

-10

0

10
0.1 1 10

d)

KU
[dB]

0,01

0,1

a0N= 0,25
Q = 3

f / F0

-50

-40

-30

-20

-10

0

10

20
0.1 1 10

e)

KU
[dB]

f / F0

a0N= 0,1

0,3
1
3

Q = 10

-0.2

0

0.2

0.4

0.6

0.8

1.0

0 4 8 12

0,01

0,1

a0N= 0,25

Q = 1

f) t.Ω0

h(t)

 
Obr. 6.19.  Kmitočtové a časové charakteristiky DPN a HPN 2. řádu: a) modulové charakteristiky DPN 

pro Q = 3 a různé hodnoty a2, b) modulové charakteristiky DPN pro a2 = 0,1 a různé Q, c) 
odezvy DPN na jednotkový skok pro Q = 1 a různé hodnoty a2, d) modulové charakteristiky 
HPN pro Q = 3 a různé hodnoty a0N, e) modulové charakteristiky HPN pro a0N = 0,1 a různé 
Q, f) odezvy HPN na jednotkový skok pro Q = 1 a různé hodnoty a0N. 

 
Filtr HPN, jehož příklad zapojení je na obr. 6.18 je analogií filtru typu DPN. Jeho přenosová 

funkce má tvar  

 



______________________________________________________________________6 Kmitočtové filtry_____ 

 195

2
00

2

22

2
00

2

2
00

2

2121
2

2
2

//)/()(/
)/(1)(

Ω+Ω+
Ω+

=
Ω+Ω+

Ω+
=

+++
+

=
Qpp

p
Qpp

ap
CLCCCLpRp

LCpp NN

S
K  ,  (6.32) 

kde a0N = C1 / (C1+C2 ). U tohoto filtru lze volbou a0N přecházet od HP (a0N = 0) až k PZ (a0N = 1). 
Obdobně, jako u DPN, lze určit i kmitočet nulového přenosu 
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2
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a přenos na nulovém kmitočtu  
( ) NaK 00 =  . (6.34) 

Význam těchto parametrů je zřejmý z kmitočtových charakteristik, které jsou na obr. 6.19. 
Modulové charakteristiky jsou zrcadlově převrácené oproti DPN podle kmitočtu F0. U přechodné 
charakteristiky h(t) je zřejmý vliv hodnoty a01 na hodnotu ustáleného stejnosměrného přenosu. Použití 
těchto filtrů je vhodné např. pro vytvoření velkého potlačení přenosu rušivého úzkopásmového signálu 
na kmitočtu FN jen o málo nižším než kmitočet F0. Obdobně jako u DPN se tyto filtry 2. řádu 
používají pro realizaci filtrů vyšších řádů.  

d) Korekční obvod 2. řádu (pásmový) 
Korekční filtr 2. řádu se používá převážně ve funkci 

pásmového korektoru (realizovatelné, ale prakticky 
nepoužívané jsou korektory 2. řádu pro nízké či vysoké 
kmitočty). Zapojení pro nastavitelný parametr k je 
poměrně složité [14]. Přenosová funkce tohoto filtru má 
tvar: 
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kde k je míra korekce. Kmitočtové charakteristiky tohoto 
filtru jsou na obr. 6.20. Je zřejmé, že pro největší korekci 
(k = 10) získává charakteristika tvar pásmové propusti s 
celkovým činitelem jakosti kQQMAX = , kde přibližně 

platí B3 = F0 / QMAX. Při zmenšování korekce celkový činitel jakosti klesá až na hodnotu kQ  a 
charakteristika získává tvar pásmové zádrže s nenulovým přenosem pro rezonanční kmitočet.  

f) Fázovací obvod 2. řádu 
Realizace RLC tohoto obvodu je možná (analogicky jako u fázovacího obvodu 1. řádu) 

obvodem vyššího, tj. čtvrtého či šestého řádu, který má za určitých podmínek přenosové vlastnosti 
fázovacího článku 2. řádu. Přímá realizace je analogicky také možná filtry ARC [14]. Základní 
přenosová funkce tohoto obvodu má tvar 
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Výpočtem lze zjistit, že modul přenosu K(p) = 1 a tudíž že modulová charakteristika je 
kmitočtově nezávislá. Pro praxi jsou zajímavé fázová charakteristika a kmitočtová závislost 
skupinového zpoždění (obr. 6.21). Z komplexní přenosové funkce je lze vyjádřit v normovaných 
tvarech  
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Obr. 6.20. Modulové kmitočtové 
charakteristiky korekčního obvodu 2. řádu. 

-20

-10

0

10

20
0.1 1 10

KU
[dB]

f / F0

0,1

0,3

1

3

k = 10



_____Elektronické obvody I___________________________________________________________________ 

 196

kde je zřejmé, že fázový posuv a časové zpoždění jsou dvojnásobné oproti DP 2. řádu a že pro 
linearitu fázové charakteristiky je rozhodující hodnota Q. Z tohoto hlediska je pro lineární fázovou 
charakteristiku prakticky přijatelná hodnota Q ÷ 0,6 (shodně jako u DP). Pro dobrou rozlišitelnost 
zobrazení průběhů s malými hodnotami Q je zvoleno takové měřítko, kde není zobrazen celý průběh 
pro Q = 10, který dosahuje pro maximum hodnoty 40 (viz vztah 2.34).  

Pro návrh fázovacích obvodů jako zpožďovací články je výhodné si vyjádřit hodnotu zpoždění 
pro rezonanční kmitočet  

00 /4)( Ω=Ωτ Qg .  (6.39) 
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Obr. 6.21. Kmitočtové charakteristiky fázovacího článku 2. řádu: a) fázové charakteristiky, b) kmitočtové 

závislosti skupinového zpoždění. 

Přehled obvodů RLC 2. řádu 
V tab. 6.1 je uveden souhrnný přehled realizace filtrů RLC 2. řádu pomocí sériového a 

paralelního obvodu a odpovídající přenosové funkce v obecném tvaru. V předešlém textu jsou 
uvedeny odpovídající vztahy pro ω0, QS či QP, které lze využít pro návrh. V případech filtrů DPN a 
HPN uvedené vztahy odpovídají ekvivalentnímu spojení funkčně rozdělených kapacitorů či induktorů. 

 

6.3 PŘENOSOVÉ FUNKCE FILTRŮ VYŠŠÍCH ŘÁDŮ 
Z předchozí části vidíme, že u filtrů 1. a 2. řádu lze jednoznačně popsat vliv parametrů F0, Q a 

popř. FN na tvary kmitočtových popř. časových charakteristik, a proto můžeme snadno volit optimální 
hodnoty parametrů tak, aby přenosové charakteristiky filtru odpovídaly našim požadavkům. 

U filtrů vyšších řádů je velmi obtížné porozumět vlivu jednotlivých parametrů přenosové 
funkce na tvary jednotlivých kmitočtových či časových charakteristik a v praxi se o to ani nesnažíme. 
Základní postup návrhu je zde jiný:  

1. Obvykle si stanovíme výchozí požadavky formou přípustného tolerančního pole 
pro modulovou charakteristiku (viz následující text), v němž musí ležet modulová 
charakteristika výsledné přenosové funkce, splňující naše požadavky. Pro jednoduchost 
základního řešení se obvykle používá standardní toleranční pole. 

2. Protože přenosových funkcí splňujících zadané toleranční pole pro modulovou kmitočtovou 
charakteristiku existuje teoreticky nekonečné množství, musíme v dalším kroku nalézt takové 
funkce, které vedou k nejnižšímu řádu (a tudíž obvykle i k nejjednodušší a nejlevnější 
realizaci). Při tom ale obvykle musíme zohlednit také požadované vlastnosti přenosové funkce 
i z hlediska dalších typů charakteristik této funkce (např. linearitu fázové charakteristiky)  

Tuto druhou fázi návrhu nazýváme aproximační úlohou. Jde o matematicky velmi náročný 
problém. Jeho nejjednodušší řešení spočívá ve výběru ze známých standardních přenosových funkcí 
(aproximací), které byly již zpracovány a optimálně voleny z určitých hledisek modulových 
kmitočtových charakteristik či dalších typů charakteristik. I přes toto zjednodušení úlohy je důsledné 
porovnání jednotlivých aproximací a jejich optimální výběr z hlediska všech výchozích požadavků 
dosti komplikované a je vhodné si jej značně usnadnit vhodným programem (např. programem NAF). 
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Tab. 6.1. Souhrnný přehled realizace filtrů RLC 2. řádu pomocí sériového a paralelního obvodu a 
odpovídající přenosové funkce v obecném tvaru. 
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Speciálním problémem je návrh takových filtrů, kde nám nevyhoví standardní toleranční pole a 

standardní aproximace. Pak nezbývá než řešit tuto aproximační úlohu pro získání přenosové funkce 
obecně, bez pomoci zjednodušených standardních postupů. 

Pozn.: Postup, kdy nejprve řešíme matematickou úlohu vyhledání optimální aproximace a pak teprve řešíme 
realizační úlohu volby typu realizace a zapojení filtru a návrhu součástek, je nejobecnější. V některých 
případech, kdy už jsme rozhodnuti o typu realizace, mohou být obě úlohy spojeny. Typické je to při návrhu filtrů 
RLC pomocí odpovídajících katalogů. Nicméně i zde platí všechny předchozí úvahy o výběru typu aproximace. 
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6.3.1 Toleranční pole a kmitočtové transformace na normovanou DP 

a) Zadání tolerančního pole 
Při zadávání požadavků na filtr využíváme nejčastěji již zmíněné toleranční pole pro modulovou 

charakteristiku. V propustném pásmu je definováno tolerančním rozmezím 0 dB až KZVL a mezním 
kmitočtem FM. V něm může charakteristika vykazovat určité nerovnoměrnosti – obvykle označované 
jako tzv. „zvlnění", viz obr. 6.22. Hodnota přípustného zvlnění se volí podle požadavku přesnosti 
přenosu kmitočtových složek v propustném pásmu (chyba je při 0,1 dB 1,15% a při 3 dB 29,2 %). 
Nutno podotknout, že označení zvlnění (podle anglického ripple) není zcela výstižné v případě 
aproximací s plochým (monotónním) průběhem modulové charakteristiky, kdy této hodnoty dosahuje 
až na okraji pásma. Pro nepropustné pásmo určujeme kmitočet meze potlačení FP a potřebné 
potlačení přenosu KPOT. 

Uvedenými požadavky vymezujeme toleranční pole, které musí splňovat přenosová funkce z 
hlediska modulové kmitočtové charakteristiky (modulová charakteristika musí ležet uvnitř 
vymezeného tolerančního pole). V některých případech může být východiskem syntézy toleranční 
pole skupinového zpoždění či přechodná charakteristika h(t). To se ale využívá v praxi dosti 
výjimečně. 

Toleranční pole filtru typu DP je poměrně jednoduché. Složitější jsou toleranční pole pro filtry 
typu PP a PZ (obr. 6.24). Kromě těchto standardních typů tolerančních polí je samozřejmě možné 
zadat i toleranční pole s libovolně složitějším tvarem.  
Pozn.: Dále je možno poznamenat, že název toleranční pole může být chápán i širším způsobem, viz obr. 6.22. 
Vzhledem k problému reálných tolerancí hodnot stavebních prvků a odpovídajících odchylek reálné modulové 
charakteristiky od ideální je potřebné stanovení tolerančního pole. Chceme-li zahrnout uvedený vliv a splnit 
zadané toleranční pole, musíme definovat toleranční pole v širším smyslu slova (reálné). Je nutné jej rozdělit na 
dvě části – vlastní toleranční pole pro hledání ideální přenosové funkce (toleranční pole vždy v užším smyslu 
slova – ideální) a na druhou část, „rezervu“ pro vliv reálných tolerancí, viz obr. 6.22 b). Jak je znázorněno, 
ideální modulová charakteristika (1) splňuje ideální toleranční pole a reálná modulová charakteristika 
zachycující vliv tolerancí hodnot prvků splňuje výsledné reálné toleranční pole. 
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Obr. 6.22. a) Toleranční pole modulové charakteristiky filtru typu DP s příkladem aproximace modulové 
charakteristiky, b) reálné toleranční pole modulové charakteristiky filtru typu DP pro možné 
odchylky od ideální charakteristiky vlivem reálných tolerancí hodnot prvků – ideální aproximace 
(1) splňující ideální toleranční pole, reálná charakteristika (2). 

 
Pro zadávání tolerancí v propustném a nepropustném pásmu je vhodné si upřesnit některé 

pojmy a přístupy s ohledem na volbu typu aproximace. Na obr. 6.23 a) až c) jsou uvedeny typické 
příklady průběhů modulových kmitočtových charakteristik v propustném pásmu:  

- izoextremální aproximace (Čebyševova, Cauerova) je uvedena na obr. 6.23 b) – křivka 1, 
- monotónní maximálně plochou (1) aproximaci a monotónní (nestoupající) aproximaci, která má 

určité zvlnění (2) ukazuje obr. 6.23 a), 
- klasická izoextremální aproximace s děleným tolerančním polem jako křivka 2 (obr. 6.23 b), 

kterou lze definovat se stejným základním útlumem propustného pásma, ale podstatně menším 
zvlněním, tedy pomocí sníženého KZVL pro hlavní část propustného pásma a s normálního KZVL 
pro okraj propustného pásma (Tato zdánlivě zbytečná komplikace má praktický význam, kdy při 
volbě velmi malých zvlnění, např. méně než 0,1 dB, se výsledná funkce chová prakticky jako 
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hladká monotónní, ale při tom má větší strmost v přechodném pásmu, než normálně definovaná 
obvyklým způsobem hladká monotónní aproximace z obr. 6.23 a) pro stejný základní útlum).  

U izoextremálních aproximací je nutno upozornit ještě na tu skutečnost (obr. 6.23 c), že průběh 
modulové charakteristiky se pro lichý a sudý řád liší tak, že v případě přenosové funkce sudého řádu 
je „zvlnění“ nad osou 0 dB (1), kdežto pro liché řády pod ní (porovnej s 1 na obr. 6.23 b). Proto se pro 
sjednocení tolerančního pole obvykle posouvá přenosová funkce sudých řádů adekvátně o hodnotu 
zvlnění pod osu (2) do jednotného tolerančního pole, čímž se např. odpovídajícím způsobem snižuje i 
stejnosměrný přenos (a třeba i odezva na jednotkový skok) pod hodnotu 1. Důležité ale je, že většina 
skutečných realizací těchto dolních propustí sudých řádů má stejnosměrný přenos 1 a tudíž zvlnění a 
maxima budou nad osou 0 dB! Tato vlastnost souvisí samozřejmě s hodnotou koeficientů a0 a b0, 
jejichž poměr nám určuje stejnosměrný přenos.  

V nepropustném pásmu se vyskytují tři typické průběhy modulových kmitočtových 
charakteristik (obr. 6.23 d): 

- aproximace bez nul přenosu mají monotónně klesající charakteristiku (1) a tudíž vzrůstající 
útlum, 

- aproximace s nulami přenosu lichého řádu mají pro n-tý řád filtru maximálně (n -1)/2 nul 
přenosu s poslední, monotónně klesající částí charakteristiky (2), 

- typy aproximací sudého řádu mají maximálně n/2 nul přenosu s neklesající koncovou částí 
modulové charakteristiky (3).  
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a) b) c) d)  
Obr. 6.23. a) maximálně hladká (1) a monotónní aproximace se „zvlněním“(2), b) izoextremální aproximace 

s plným (1) a částečným (2) využitím tolerančního pole, c) izoextremální aproximace sudého 
řádu s původní (1) a posunutou (2) polohou, d) průběhy aproximací v nepropustném pásmu – bez 
nul přenosu (1), – s nulami přenosu lichého řádu (2) a sudého řádu (3).  

b) Kmitočtové transformace filtrů typu DP, HP, PP a PZ na normovanou DP  
Jak již bylo naznačeno, nalezení přenosové funkce pro zadané toleranční pole je složitým 

matematickým problémem. Pro zjednodušení tohoto problému jsou v praxi využívány určité 
standardní aproximace pro normovanou dolní propust (DPn), tj. pro DP s jednotkovým mezním 
kmitočtem - viz obr. 6.24. Za určitých předpokladů lze požadované toleranční pole všech základních 
typů filtrů (DP, HP, PP, PZ) transformovat pomocí vhodných kmitočtových transformací na toleranční 
pole normované dolní propusti. Standardní aproximaci, získanou pro normovanou DP s 
transformovaným tolerančním polem, lze transformovat zpět na požadovaný typ filtru tak, aby 
splňovala výchozí toleranční pole. 
Kmitočtové transformace kmitočtových charakteristik všech čtyř základních typů filtrů na 
kmitočtové charakteristiky normované DP jsou uvedeny a graficky znázorněny na obr. 6.24 pro 
toleranční pole základních typů filtrů.  

Transformace mezi DP a normovanou DP je jednoduchá, představuje vlastně dělení 
kmitočtového měřítka konstantou FM. Transformace pro HP mimo normování převrací kmitočtovou 
osu kolem FM.  
Složitější jsou transformace pro PP a PZ. U nich je nutné uvažovat kmitočet F0 jako geometrický 
střed kmitočtů FM1 a FM2. Pak i kmitočty FP1 a FP2 odpovídají podmínce symetrie v logaritmické ose. 
Jsou-li naše požadavky odlišné, musíme vzít za základ návrhu přísnější z obou požadavků.  

Dále je důležité si uvědomit, že pro PP a PZ dochází i k transformaci řádu přenosové funkce, 
který je oproti DPn 2x vyšší. Proto jsou filtry typu PP a PZ, transformované pomocí uvedené 
transformace, pouze sudého řádu. Zajímavý je i výraz B/F0, který u obvodu druhého řádu má přímo 
hodnotu 1/Q (6.23). Zde je spíš výrazem relativní šířky pásma PP či PZ, a je na něj nutno brát velký 
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ohled při praktickém návrhu těchto filtrů. Je-li jeho hodnota malá (úzká PP či PZ), pak se podstatně 
zvyšují požadavky na realizaci oproti výchozí DPn. 
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Obr. 6.24. Kmitočtová transformace tolerančních polí a modulových charakteristik základních typů filtrů 
(DP, HP, PP, PZ) na normovanou DP a odpovídající transformační vztahy. 

6.3.2 Základní typy aproximací přenosové funkce pro DPn, jejich vlastnosti  

Typy aproximací 
Jak již bylo naznačeno, důležitým matematickým problémem syntézy je nalezení koeficientů 

přenosové funkce tak, aby splňovala zadané toleranční pole modulové charakteristiky. Teoreticky 
existuje nekonečně mnoho řešení, a proto lze k problému syntézy přistupovat z mnoha různých 
hledisek. V praxi se nejčastěji používá několik typů základních variant aproximací, které vyhovují 
běžným požadavkům. Pro speciální požadavky na vlastnosti přenosových funkcí se využívají i další, 
méně používané varianty aproximací. Též je možné si vytvořit zcela individuální variantu aproximace 
přenosové funkce. 

Nejčastěji se lze setkat s následujícími druhy standardních aproximací. Besselova (často 
uváděná též jako Thomsonova) a strmější Butterworthova aproximace jsou v propustném pásmu 
monotónní a ploché. Čebyševova aproximace má v propustném pásmu modulovou charakteristiku 
zvlněnou. Izoextremální Feistelova-Unbehauenova a obdobně strmější inverzní Čebyševova 
aproximace jsou v propustném pásmu monotónní a ploché a v nepropustném pásmu mají zvlnění s 
výraznými nulami přenosu s určitým minimálním potlačením. Cauerova aproximace je kombinací 
Čebyševovy a inverzní Čebyševovy aproximace. Tyto aproximace budou podrobněji popsány dále. 
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Mimo těchto nejčastěji využívaných standardních aproximací se lze setkat i s mnoha dalšími 
aproximacemi, ať už obecného typu (Gaussova, Legendrova, tranzitivní aproximace Besselova-
Butterworthova či obdobná TICFU s nulami přenosu [15]), tak i s aproximacemi pro speciální účely, 
jako jsou umocněné kosinové aproximace pro optimální přenos impulsních signálů apod.  

Dále existují i speciální typy aproximací, vycházející z požadavků v jiných než modulových 
charakteristikách. Jsou to např. izoextermální (zvlněné) aproximace funkcí v oblasti fázových 
charakteristik či skupinového zpoždění či aproximace s neminimální fází, kdy standardní strmé 
aproximace s nelineární závislostí skupinového zpoždění jsou doplněny fázovacími obvody tak, aby 
výsledné skupinové zpoždění bylo pokud možno konstantní. Požadavky na konstantní průběh 
skupinového zpoždění obvykle úzce souvisí s tvarem odezvy na jednotkový skok, kde často 
používaným hlediskem bývá např. minimální doba ustálení. 

Systém standardních aproximací a možnost porovnání a výběru typu aproximace  
Pro porovnání a výběr jednotlivých aproximací lze užít následující obecná kritéria: 

- zvlnění modulové charakteristiky v propustném pásmu, 
- strmost modulové charakteristiky v přechodném pásmu a tomu odpovídající nutný minimální řád 

filtru, 
- linearita fázové charakteristiky či odpovídající závislost skupinového zpoždění v propustném pásmu, 
- velikost překmitu odezvy na jednotkový skok a délka doby ustálení této odezvy, 
- hodnoty „pracovních“ činitelů jakosti a z toho vyplývající potřebné hodnoty jakosti použitých prvků, 
- citlivosti přenosové funkce na hodnoty koeficientů přenosové funkce a tomu odpovídající omezení 

tolerancí hodnot stavebních prvků filtru, zabezpečujících realizaci těchto koeficientů. 
 

Vhodný výběr aproximace je poměrně složitý úkol vzhledem k velkému množství typů a variant 
aproximací a kritérií pro porovnání. Proto byl vytvořen zjednodušující systém standardních 
aproximací [14], který umožňuje poměrně jednoduchou orientaci podle nejdůležitějších kritérií 
(strmost modulové charakteristiky, závislost skupinového zpoždění, popř. další doplňková kritéria – 
hodnoty Q, doba ustálení). Systém nabízí odstupňovanou řadu aproximací jak s monotónním 
průběhem modulové charakteristiky v nepropustném pásmu, tak i aproximací s nulovými body 
přenosu. V této řadě pak lze poměrně snadno volit vhodný kompromis podle uvedených kritérií. 

Systém byl vytvořen z šesti nejobvyklejších a standardně používaných aproximací a čtyřech 
přechodných typů (dvou tranzitivních a dvou izoextremálních s odlišným KZVL 0,1dB – 3dB, viz tab. 
6.2), přičemž polovina z nich je tvořena aproximacemi s nulovými body přenosu. Názorné porovnání 
jejich kmitočtových a časových charakteristik je pro pátý řád ukázáno na obr. 6.25. Z obrázků a) a b) 
je zjevné, že největšího potlačení přenosu při shodném mezním kmitočtu dosahuje Cauerova 
aproximace (10) a nejmenšího potlačení Besselova (1). Inverzní Čebyševova aproximace (8) má 
potlačení 40 dB pro shodný kmitočet potlačení FP jako normální Čebyševova aproximace (5).  

Z uvedených charakteristik skupinového zpoždění (obr. 6.25 c – uvedeny jen charakteristiky 
pro typy 1-5, pro druhou skupinu 6-10 jsou průběhy prakticky stejné či obdobné) vyplývá výhodnost 
Besselovy (1) a tudíž i Feistelovy-Unbehauenovy (6) aproximace a naopak špatné vlastnosti strmých 
aproximací Čebyševa (5) a tudíž i Cauera (10). Tomu do značné míry korespondují odezvy na 
jednotkový skok s nejrychlejším ustálením bez překmitů (obr. 6.25 d – obdobně uvedeny jen pro 
typy 1-5) u Besselovy (1) a tudíž i Feistelovy-Unbehauenovy (6) aproximace, a na druhé straně 
nejpomaleji se ustalující odezvy Čebyševovy (5) a tudíž i Cauerovy (10) aproximace. Lze uvést, že 
závislosti skupinového zpoždění a přechodné charakteristiky odpovídajících aproximací z obou skupin 
(bez nul a s nulami přenosu) jsou prakticky shodné, nebo se jen částečně odlišují (strmé aproximace s 
nulovými body přenosu mají mírně horší vlastnosti).  

Přehled základních vlastností uvedených aproximací pro 5. řád je uveden v tab. 6.2. 
Aproximace jsou rozděleny do dvou skupin, bez nulových bodů přenosu a s nulovými body přenosu. 
Ve stejném řádku jsou vždy uvedeny aproximace s podobným charakterem a fázovými vlastnostmi. 
V této tabulce jsou porovnány vlastnosti, zřejmé z uvedených charakteristik a diskutovaných 
v předešlém textu. Přímé číselné porovnání vlastností jednotlivých aproximací není ale ve všech 
případech dostatečně výstižné, číselně lze porovnat přímo jen hodnoty doby ustálení a činitelů jakostí, 
strmost modulové charakteristiky a linearita fázové charakteristiky jsou porovnány formou seřazení. 
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Obr. 6.25. Základní typy standardních aproximací pro DP 5. řádu – a), 

b) modulové charakteristiky v propustném a nepropustném pásmu, 
c) závislosti skupinového zpoždění, d) odezvy na jednotkový skok – 
pro Besselovu (1), Besselovu-Butterworthovu (2), Butterworthovu 
(3), Čebyševovu 0,1 – 3dB (4), Čebyševovu 3dB (5), Feistelovu-
Unbehauenovu (6), TICFU (7), inverzní Čebyševovu (8), Cauerovu 
0,1 – 3dB (9) a Cauerovu 3dB (10) aproximaci. 

 
 
Z uvedených důvodů je vhodné tyto uvedené aproximace porovnat podle obou nejdůležitějších 

kritérií (strmost a linearita fáze). Lze tak postihnout mezi krajními hledisky i jemnější detaily. Např. 
Čebyševova aproximace (5) má pro 40 dB shodnou strmost jako inverzní Čebyševova aproximace (8), 
na druhou stranu má horší fázové vlastnosti a dobu ustálení. Feistelova-Unbehauenova aproximace (6) 
má při shodných fázových a časových vlastnostech s Besselovou aproximací (1) větší strmost. 
Podobné srovnání lze udělat i pro Čebyševovu a Cauerovu aproximaci. Z těchto porovnání též 
vyplývá, že aproximace s nulovými body přenosu mají obecně vyšší strmost než obdobné 
aproximace bez nulových bodů přenosu. Tato výhoda je ale zase zaplacena omezením možného 
nárůstu minimálního potlačení v nepropustném pásmu a obvykle poněkud složitější realizací filtru.  

 

Tab. 6.2. Porovnání základních typů aproximací pro DP 5. řádu. 
  Bez nul přenosu    S nulami přenosu   Linearita  

Strmost č.  Typ aproximace Q t ust č.  Typ aproximace Q t ust fáz. char. 

min. 1  Bessel 0,91 6 6  Feistel-Unbehauen 0,92 4 max 
 2  Bessel-Butterworth 1,2 12 7  TICFU 1,25 9  

↓ 3  Butterworth 1,6 16 8  inverzní Čebyšev 2 20 ↑ 
 4  Čebyšev 0,1 – 3 dB 3,3 30 9  Cauer 0,1 – 3 dB 6,6 40  

max 5  Čebyšev 3 dB 8,8 60 10  Cauer 3 dB 19 90 min 
 

Jak již bylo uvedeno, tab. 6.2 obsahuje také jako orientační hledisko maximální hodnoty 
činitelů jakosti pro kaskádní rozklad na funkce 2. řádu (6.4). Hodnoty Q jednak přímo souvisí 
s nelinearitou fázové charakteristiky, ale též nám vyjadřují nároky na realizaci, a to jak z hlediska 
potřebného činitele jakosti použitých obvodů a součástek, tak i z hlediska potřebné tolerance prvků, 
kdy nároky také stoupají s rostoucí hodnotou Q (obojí do určité míry závisí také na typu realizace).  

Dále je nutno si uvědomit, že uvedené hodnoty činitelů jakosti odpovídají přímo dolním a 
horním propustem, u kterých vznikají realizační problémy jen pro vyšší řády strmějších aproximací. 
Avšak pro pásmové propusti a zádrže se výsledné hodnoty Q dělí koeficientem relativní šířky pásma 
B3 / F0. Proto mohou u obvodů PP a PZ při malé relativní šířce pásma nabývat vysokých hodnot. Je to 
zřejmé i z příkladu, který je uveden  v tab. 6.3 pro pásmovou propust s běžnou šířkou pásma (B3 = 0,1 . 
F0). Zde pak může vyniknout výhoda aproximací s menšími potřebnými hodnotami činitelů jakosti. Za 
nižší potřebné hodnoty Q a lepší fázové vlastnosti takového řešení samozřejmě platíme menší strmostí, 
vyšším řádem, nebo nutností použít aproximace s nulami přenosu, viz tab. 6.3. 
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Tab. 6.3.  Příklady maximálních hodnot Q pásmové propusti (B3  = 0,1 F0, B40  = 0,3 F0). 
 Čebyšev Butterworth inv. Čebyšev Feist.-Unbehauen 

 Řád 8 10 8 10 
 Q max 120 32 29 8 

 

Z předchozích grafů, tabulek a textu je zřejmé, že optimální volba typu aproximace je poměrně 
složitý problém, který je nutno řešit s ohledem na řadu často protichůdných hledisek a kritérií. V praxi 
obvykle postupujeme při volbě typu aproximace následujícím způsobem:  

1. Pokud nezáleží na tvaru časového průběhu procházejícího signálu či na linearitě fázové 
charakteristiky, ale jen na velikosti modulů procházejících složek, volíme strmější typy 
aproximací (Čebyševovu, Cauerovu). Čebyševova aproximace bez nul přenosu má sice menší 
potlačení přenosu na kmitočtu FP než Cauerova, ale pro vyšší kmitočty na rozdíl od Cauerovy 
aproximace u ní potlačení stále vzrůstá a též má jednodušší realizaci. 

2. Pokud nám záleží na zachování tvaru časového průběhu procházejícího signálu (např. 
minimalizace překmitů impulsních signálů) nebo na linearitě fázové charakteristiky (např. při 
průchodu frekvenčně modulovaných signálů), musíme volit aproximaci s konstantním nebo 
alespoň minimálně zvlněným skupinovým zpožděním (Besselovu, popř. tranzitivní Besselovu-

Butterworthovu aproximaci – bez nul přenosu, či 
Feistelovu-Unbehauenovu, popř. TICFU aproximaci 
– s nulami přenosu) s tím, že při větších nárocích na 
strmost je nutno použít vyšší řád filtru ve srovnání se 
strmějšími aproximacemi. Též je nutné si uvědomit, 
že tyto požadavky je možné splnit pro filtry typu DP 
či úzkopásmové PP, ale nelze je důsledně uplatnit 
pro další typy filtrů. 

3. V případě, že sledujeme současně obě hlediska, 
strmost modulové i linearitu fázové 
charakteristiky, nelze je splnit obě beze zbytku, ale 
je nutno hledat kompromis mezi oběma základními 
požadavky. V tom případě nám nabízí tab. 6.2 
dostatečný výběr z řady aproximací, včetně často 
využívaného zvýšení strmosti použitím aproximací 
s nulovými body přenosu. Z obr. 6.25 je zřejmé, že 
velmi často používaná Butterworthova aproximace 
není vždy optimálním řešením. 

Při optimálním výběru aproximace je potřebné 
prakticky porovnávat různé druhy aproximací a jejich 
charakteristik, což je prakticky možné jen s použitím 
počítače. Také je nutno brát v úvahu souvislosti tohoto 
kroku návrhu filtru s ostatními kroky, jak je to naznačeno 

na obr. 6.26. Proto se musíme při volbě aproximace často vracet, porovnávat řešení, a mnohdy se 
musíme vrátit zpět až k úpravě zadaného tolerančního pole. 

6.3.3 Vlastnosti základních aproximací bez nul přenosu 
Z normovaných charakteristik Besselovy (Thompsonovy) aproximace je zřejmá souvislost 

téměř konstantního skupinového zpoždění v propustném pásmu a přechodné charakteristiky téměř bez 
překmitů (méně než 1.008), viz obr. 6.27 b) a c). Tyto vlastnosti předurčují Besselovu charakteristiku 
především pro případy, kde záleží na zachování tvaru průchozího signálu. Při filtraci obdélníkových 
signálů budou výstupní impulsy bez překmitů. Výhodné je použití Besselovy aproximace pro filtraci 
frekvenčně a fázově modulovaných signálů. Hlavní nevýhodou Besselovy aproximace je poměrně 
malá strmost modulové charakteristiky.  

 

 

Obr. 6.26. Blokové schéma postupu při 
řešení aproximační úlohy a 
souvisejících kroků při návrhu filtru.  
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Obr. 6. 27. Besselova aproximace pro 2. – 10. řád: a) modulové charakteristiky, b) skupinové zpoždění,  

c) odezva na jednotkový skok. 
 

Butterworthova aproximace patří mezi nejpoužívanější, protože je obvykle přijatelným 
kompromisem mezi požadovanou linearitou fázové charakteristiky a dosažitelným útlumem modulové 
kmitočtové charakteristiky při nízkém řádu filtru. Při obvykle požadovaném zvlnění 3 dB v 
propustném pásmu lze nalézt potřebný řád filtru přímo z modulových charakteristik na obr. 6.28.  
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Obr. 6. 28. Butterworthova aproximace pro 2. – 10. řád: a) modulové charakteristiky, b) skupinové 

zpoždění, c) odezva na jednotkový skok. 
 

Čebyševova aproximace umožňuje dosáhnout prakticky nejstrmější charakteristiky v 
přechodném pásmu s velkým potlačením přenosu v nepropustném pásmu (tj. dostatečné potlačení 
přenosu při poměrně nízkém řádu filtru). Strmější je jen Cauerova aproximace s nulami přenosu. 
Nevýhodou Čebyševovy aproximace je však větší nelinearita fázové charakteristiky a odpovídající 
větší nekonstantnost skupinového zpoždění, než u předchozích aproximací. V případě volby malého 
zvlnění se částečně sníží strmost, ale na druhou stranu lze dosáhnout i téměř konstantního přenosu v 
propustném pásmu, zlepší se fázové vlastnosti a odezva na jednotkový skok.  
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Obr. 6. 29. Čebyševova aproximace se zvlněním 0,1 dB pro 2. – 10. řád: a) modulové charakteristiky,  

b) skupinové zpoždění, c) odezva na jednotkový skok (přenosy pro aproximace sudých řádů 
jsou sníženy o 0,1 dB!). 

Orientační posouzení uvedených vlastností z hlediska volby zvlnění (0,1 dB a 3 dB) je možné z 
obr. 6.29 a 6.30. Pro zvlnění 3 dB (obr. 6.30) je zřejmý posuv charakteristik sudých řádů o -3 dB a 
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adekvátní snížení přenosu pro odezvu na jednotkový skok násobením 0,707 (viz kap. 6.31 – obr. 6.23. 
c). Návrhové katalogy mají obvykle jen několik možností volby hodnoty zvlnění. Libovolnou volbu 
umožňuje jen návrh při použití počítače. 
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Obr. 6. 30. Čebyševova aproximace se zvlněním 3 dB pro 2. – 10. řád: a) modulové charakteristiky,  

b) skupinové zpoždění, c) odezva na jednotkový skok (přenosy pro aproximace sudých řádů 
jsou sníženy o 3 dB!). 

6.3.4 Vlastnosti základních aproximací s nulami přenosu 
Na obr. 6.31 jsou porovnány modulové charakteristiky Feistelovy-Unbehauenovy, inverzní 

Čebyševovy a Cauerovy  aproximace pro KPOT = 60 dB. Na první pohled je zřejmý rozdíl ve strmosti 
jednotlivých aproximací. Pro Feistelovu-Unbehauenovu aproximaci je zřejmé omezení, kdy pro dané 
KPOT nemá cenu dále zvyšovat řád nad určitou mez (pro uvedený příklad je to asi 8. řád), protože 
nezískáme nižší hodnotu FP. 
Fázové charakteristiky, odpovídající průběhy skupinového zpoždění a odezvy h(t) mají velmi podobné 
průběhy, a to Feistelova-Unbehauenova jako Besselova, inverzní Čebyševova jako Butterworthova a 
Cauerova jako Čebyševova aproximace. 
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Obr. 6.31. Aproximace s nulami přenosu - modulové charakteristiky pro potlačení 60 dB pro 2. – 10. řád:  

a) Feistelova – Unbehauenova aproximace, b) inverzní Čebyševova aproximace, c) Cauerova 
aproximace. 

6.3.5 Další typy aproximací  
Mimo uvedené typy aproximací se lze setkat s některými dalšími typy aproximací, které bývají 

obvykle používány k některým speciálním účelům a často nejsou polynomiální, tzn. že jejich 
přenosová funkce nemá tvar vyjádřený podílem polynomů a z toho důvodu nemá ani obvyklým 
způsobem definovaný řád filtru. V tomto případě obvykle nejsou tyto aproximace přímo fyzikálně 
realizovatelné a je nutno hledat polynomiální aproximace, které se k uvažovaným nepolynomiálním 
blíží (podrobněji [14]). 

Gaussova aproximace – o něco méně strmá než Besselova aproximace, má impulsní i 
přechodnou charakteristiku bez jakýchkoliv překmitů. 

Legendrova aproximace- modulové charakteristiky této aproximace jsou strmější než u 
Butterworthovy aproximace za cenu ne zcela hladkého průběhu v propustném pásmu.  

Tranzitivní Besselova-Butterworthova aproximace - tato aproximace umožňuje volit 
kompromis mezi dobrými fázovými vlastnostmi Besselovy aproximace a vyšší strmostí přenosu v 
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nepropustném pásmu Butterworthovy aproximace. Míra kompromisu se volí hodnotou koeficientu m, 
který lze volit v intervalu mezi krajními hodnotami m = 0 (Butterworth) a m = 1 (Bessel). 

Tranzitivní aproximace TICFU - tato aproximace jakožto tranzitivní umožňuje volit 
kompromis v oblasti aproximací s nulovými body přenosu – mezi inverzní Čebyševovou aproximací 
Feistelovou-Unbehauenovou aproximací (zkratka TICFU [15]).  

Umocněné kosinové aproximace (anglicky raised cosine roll-off filter) se používají u filtrů, 
jejichž cílem je maximálně omezit šířku pásma pro přenos datových (číslicových) signálů tak, aby 
byla zajištěna tzv. nulová intersymbolová interference.  

Strmé aproximace s vyrovnáním průběhu skupinového zpoždění pomocí fázovacích 
obvodů - co nejstrmější modulová charakteristika při relativně konstantním skupinovém zpoždění je 
v tomto případě dosahována tak, že přenosová funkce pro strmou aproximaci (např. Čebyševovu) je 
násobena přenosovou funkcí fázovacích (zpožďovacích) obvodů. Ty nemění strmost výsledné 
modulové charakteristiky, ale jsou navrženy tak, aby jejich skupinové zpoždění po součtu s 
nekonstantním zpožděním výchozí aproximace vyrovnaly celkové skupinové zpoždění v propustném 
pásmu na konstantní hodnotu (viz obr. 6.32).  

FM
0 f

τg(f)

původní filtr - τg1

fázovací obvod - τg2

výsledný filtr - τg = τg1+τg2
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U1

U2

 
Obr. 6.32.  Princip vyrovnání skupinového zpoždění doplněním filtru o fázovací (zpožďovací) obvody. 

 

6.4 TYPY REALIZACÍ KMITOČTOVÝCH FILTRŮ 
Kmitočtové filtry můžeme v praxi realizovat mnoha odlišnými způsoby, které do určité míry 

určují i některé podstatné provozní vlastnosti filtru. Nejvhodnější způsob realizace je potřebné si pro 
daný účel optimálně vybrat. Tyto způsoby realizací lze rozdělit orientačně do tří hlavních skupin: 

 

Ø Realizace z diskrétních prvků (odpory, kondenzátory, cívky, operační zesilovače a pod.), kde si 
každý uživatel může s menšími či většími problémy sestavit filtr přesně podle svých požadavků.  

Ø Realizace v podobě integrovaného bloku je obvykle menší, levnější a lépe propracovaná, protože 
ji výrobce vyrábí ve velkých sériích vhodnou technologií. Na druhé straně si však uživatel obvykle 
nemůže upravit tento filtr podle svých speciálních požadavků a musí přesně dodržet podmínky 
zapojení podle výrobce. 

Ø Realizace s číslicovými filtry spočívá v číslicovém zpracování signálu, kdy číslicovou interpretaci 
signálu matematicky upravujeme tak, aby výsledný signál měl po zpětném převodu shodné (či 
dokonce lepší) vlastnosti jako po průchodu normálním kmitočtovým filtrem. Matematicky tak 
modelujeme požadované vlastnosti filtrů, dokonce takto lze realizovat i některé funkce a 
vlastnosti, které běžnými analogovými filtry nelze dosáhnout. Při realizaci jsme však omezeni na 
prostředí číslicového zpracování signálu (převodníky, počítač či signálový procesor, vhodný 
program). Značným omezením může být i maximální rychlost výpočtu počítače a vzorkování a 
tím i použitelné kmitočtové pásmo filtru. 

Konkrétní typy realizací obvykle rozdělujeme podle používaných prvků či technologie. 
Všeobecně lze uvést následující základní vlastnosti, některé typy realizací budou podrobněji 
rozvedeny dále: 

1. Filtry RC vynikají svou jednoduchostí, dostupností a nízkou cenou výchozích součástek, odporů 
a kondenzátorů. Na druhou stranu se s nimi nedá realizovat vyšší selektivita. Praktické využití 
mají jen jednoduché filtry prvního řádu a druhého řádu s nízkým činitelem jakosti (Q < 0,5). Filtry 
RC vyšších řádů se v praxi používají výjimečně.  
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2. Filtry RLC umožňují realizovat teoreticky téměř libovolný typ filtru. Jejich omezení vyplývá 
především z použití cívek. Ty jsou obzvláště pro nízké kmitočty (velké hodnoty L) velké, drahé a 
ztrátové (malý činitel jakosti Q). Obecně je také použití filtrů RLC omezeno vlastními ztrátami 
cívek a kondenzátorů a také tolerancí a stabilitou jejich hodnot pro propusti a zádrže s velmi 
malou relativní šířkou pásma. 

3. Mikrovlnné filtry jsou realizací RLC filtrů v oblasti mikrovln (f > 300 MHz), kde již nelze použít 
prvky se soustředěnými parametry (R, L, C), ale používá se odpovídající realizace s rozloženými 
parametry jako jsou vlnovody, mikropásková vedení, koaxiální vedení a pod.  

4. Filtry ARC (známé také jako aktivní filtry RC) v principu nahrazují filtry RLC. Místo cívek 
používají rezistory, kondenzátory a aktivní prvky, nejčastěji operační zesilovače. Mají obdobné 
vlastnosti jako filtry RLC, ale vzhledem k vlastnostem aktivních prvků se jejich použití omezuje 
nejčastěji na kmitočtové pásmo běžně 0,1 Hz až 100 kHz. Kmitočtově jsou tedy vhodným 
doplňkem k filtrům RLC. Oproti nim mají výhodu i v snazší nastavitelnosti a laditelnosti změnou 
hodnot odporů. Jejich nevýhodou je na druhé straně potřeba napájení a vliv aktivních prvků.  

5. Filtry ASC, známé též jako filtry se spínanými kapacitory, jsou speciální modifikací filtrů 
ARC, které místo odporů používají přepínané kondenzátory. Jejich hlavní výhodou je možnost 
poměrně snadné monolitické integrace v porovnání s filtry ARC. Některé typy se vyrábí jako 
integrované obvody. Jejich mezní kmitočet je určen spínacím kmitočtem a jsou tedy snadno 
přeladitelné. Lze je řadit již do skupiny integrovaných filtrů, nicméně jsou zde možnosti určitého 
přizpůsobení požadavkům, a to jednak přeladěním, jednak také dostupností integrovaných 
nastavitelných bloků 2. řádu. 

6. Elektromechanické filtry jsou historicky nejstarší „integrované“ filtry. Vycházejí z principu 
převodu elektrického signálu na mechanický, využití některé formy mechanické rezonance a 
zpětného převodu výsledného mechanického signálu na elektrický. Chovají se tedy vesměs jako 
pásmové propusti. Podle typu mechanického rezonátoru je lze dělit na různé skupiny. 
V současnosti se používají především piezokeramické filtry (např. mezifrekvenční filtry 455 kHz 
a 10,7 MHz). Zvláštním typem je krystalový filtr, který odpovídá v podstatě složenému 
rezonančnímu obvodu s vysokým činitelem jakosti (řádově 10 000) a vysokou stabilitou 
rezonančního kmitočtu (asi 10-6). Nejčastěji se využívá ve stabilních oscilátorech. Jako filtr se 
používá velmi omezeně vzhledem k vysokému a nenastavitelnému činiteli jakosti a 
nenastavitelnému rezonančnímu kmitočtu.  

7. Filtry s PAV (s povrchovou akustickou vlnou) jsou poměrně novým typem integrovaných filtrů, 
založených na principu vyzařování, šíření a fázového, kmitočtově závislého skládání povrchových 
akustických vln. Realizují se tak, že na nosnou keramickou destičku se nanese soustava vysílacích 
a přijímacích piezoelektrických zářičů, jejichž tvar a funkci lze přirovnat k dvěma Yagiho 
anténám. Obdobně jako u antén je přenosová kmitočtová charakteristika filtru tvarována rozměry 
a polohou zářičů. V porovnání s elektromechanickými filtry mohou realizovat podstatně 
širokopásmovější filtry typu PP. Proto se s výhodou používají např. jako obrazové mezifrekvenční 
filtry v televizorech a v  dalších aplikacích. Na druhou stranu je jejich použití částečně omezeno 
vyšším průchozím útlumem a výkonem. 

8. Filtry CCD (Charge Coupled Devices – nábojově vázané obvody) jsou dalším speciálním typem 
aplikace s časově diskrétním charakterem (např. jako filtry ASC). Využívá se u nich technologie 
známá např. z CCD televizních kamer a princip spočívá v postupném posuvu a fázově závislém 
sčítání jednotlivých „nábojových vzorků“.  

9. Číslicové filtry jsou oproti předchozím filtrům odlišnou („softwarovou“) realizací funkce filtrů, 
jejich princip byl popsán v předešlém textu.  

Uvedený přehled potvrzuje značnou různorodost konečných realizací filtrů. Z výčtu vlastností 
jednotlivých způsobů realizace je zřejmá i obtížnost úlohy konstruktéra při výběru optimálního 
způsobu realizace filtru. Pro rychlejší orientaci o použitelnosti jednotlivých realizací z hlediska 
kmitočtového pásma lze uvést následující tabulku. Meze použití jednotlivých způsobů realizací je 
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nutno chápat jen jako orientační, protože závisí jak na současném stavu technologie, tak i na mnoha 
různých parametrech a požadavcích kladených na filtry. 

 

Tab. 6.4. Orientační znázornění kmitočtových pásem použitelnosti jednotlivých typů realizací filtrů. 
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6.5 FILTRY RC A RLC 1. A 2. ŘÁDU 
Filtry 1. a 2. řádu (popř. i některých výjimečných případů vyšších řádů) je vhodné navrhovat 

přímo podle parametrů přenosových funkcí – tj. podle hodnot F0 pro 1. řád a podle hodnot F0 a Q pro 
2. řád, a tedy nikoliv podle parametrů některého z typů aproximací. Vedou k tomu dva základní 
důvody:  

- Filtry 1. řádu totiž nerealizují žádný typ standardní aproximace a stejně tak filtry RC 2. řádu, 
protože mají omezenou dosažitelnou hodnotou činitele jakosti (Q<0,5). 

- Pomocí filtrů RLC 2. řádu lze realizovat základní typy aproximací, ale přímou volbou 
optimálních hodnot parametrů F0 a Q, popř. FN můžeme dosáhnout výhodnějšího řešení než při 
omezené volbě, odpovídající některé z aproximací. 

 

6.5.1 Filtry RC 1. a 2. řádu 
Jako výchozí podmínky pro návrh jsou obecně uvažovány nulový vnitřní odpor zdroje signálu 

a nekonečný odpor zátěže RZ (např. výstup operačního zesilovače a vstup neinvertujícího zesilovače 
s OZ). V praxi nemusí být tyto podmínky splněny a v tom případě je nutné návrh korigovat. U 
příkladu na obr. 6.33 a) je např. možné sečíst vnitřní odpor zdroje Ri s funkčním odporem filtru R1’ 
tak, aby výsledná hodnota odpovídala požadované hodnotě R1. To ovšem není zcela možné v případě 
připojení zatěžovacího odporu, který zde nejen sníží přenos v propustném pásmu, ale také ovlivní 
hodnotu parametrů filtru. Minimalizace tohoto vlivu je možná pouze zvýšením hodnoty RZ na 
dostatečně velkou hodnotu (RZ > 100 R2).  

Opačná situace je ukázána na obr. 6.33 b), kde lze korigovat vliv zátěže zvýšením hodnoty R2‘ 
tak, aby paralelní kombinace R2‘ a RZ měla požadovanou hodnotu, kdežto odpor zdroje Ri je potřebné 
snižovat na minimální hodnotu (Ri < 0,01 R1). Mohou ale existovat zapojení, která umožňují plně 
korigovat vliv odporu zdroje i zátěže, jako to ukazuje obr. 6.33 c), v některých případech však na úkor 
snížení přenosu v propustném pásmu.  

a) Návrh filtrů RC 1. řádu 
Filtry RC s přenosovou funkcí 1. řádu obsahují minimálně jeden rezistor a jeden kapacitor. Jak 

již bylo vysvětleno v kap. 6.2.1, lze s přenosovou funkcí 1. řádu realizovat pouze filtry typu DP, HP, 
korekční a fázovací článek, nelze ale realizovat filtry typu PP a PZ. 

Zapojení DP a HP 1. řádu, odpovídající vztahy a kmitočtové charakteristiky jsou uvedeny v kap. 
6.2.1. V obou případech vycházíme z volby mezního kmitočtu F0. Filtr typu DP umožňuje kompenzaci 
vnitřního odporu zdroje, filtr typu HP zase umožňuje snadnou kompenzaci zatěžovacího odporu, jak to 
bylo ukázáno na obr. 6.33  a), b). 
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Obr. 6.33.  Zapojení filtrů RC do obvodu a varianty jejich ovlivnění odporem zdroje a zátěže. 

 

Pokud uvažujeme nulový odpor zdroje a nekonečný odpor zátěže, je při návrhu filtrů RC 
charakteristickým rysem minimálně jeden stupeň volnosti, který umožňuje volbu hodnoty jednoho 
z prvků, a to R nebo C. To vyplývá ze základního vztahu pro mezní kmitočet filtrů RC typu DP a HP 
1. řádu 

RC
F

π2
1

0 = . (6.40) 

1) Obvykle volíme hodnotu kapacity C, protože realizace hodnot kapacity mimo základní řadu E6 
popř. E12 je obtížnější a dražší než u hodnot rezistorů. Volba hodnoty C může záviset na mnoha 
okolnostech, ale pro základní orientaci lze užít výchozí vztah  

0
7 /10.3 FC −=   ],[ HzF   . (6.41)  

Tato hodnota kapacity C je pouze orientační, můžeme ji zaokrouhlit např. do řady E6 či E12 či 
volit podle potřeby i hodnotu více odlišnou, ale tak, aby i hodnota R byla dobře realizovatelná, 
např. s ohledem na odpor zdroje či zátěže. Též lze vycházet ze skutečné, přesně změřené hodnoty 
kapacity použitého kondenzátoru.  

2) Hodnotu odporu R vypočteme pro filtry 1. řádu ze vztahu (6.40). Pokud by byla takto vypočítaná 
hodnota odporu R příliš malá či velká, snížíme či zvýšíme adekvátně výchozí hodnotu kapacity C. 
Při návrhu hodnot obvykle volíme hodnotu kapacity C a vypočítáme odpovídající odpor R podle 
vztahu (6.40). 

b) Návrh filtrů RC 2. řádu 

Filtry RC s přenosovou funkcí 2. řádu obsahují minimálně dva rezistory a dva kapacitory. 
S přenosovou funkcí 2. řádu lze realizovat teoreticky všechny základní typy filtrů (DP, HP, PP a PZ), 
ale pro filtry RC jsou omezeny:  

- hodnotou činitele jakosti (Q<0,5),  
- přenosem vždy nižším než jedna u filtrů typu PP (obzvláště pro Q > 0,2) 
- filtr typu PZ nemůže dosáhnout nulového přenosu pro rejekční kmitočet a útlum přenosu pro 

tento kmitočet je dosti malý (obzvláště pro Q > 0,2). 
 

Při návrhu filtrů RC 2. řádu (a také filtrů ARC) je vztah pro mezní či rezonanční kmitočet 

RCCCRR
F

ππ 2
1

2
1

2121
0 ==  ,       kde   21RRR =   a  21CCC = . (6.42) 

Vidíme tedy, že výchozí volby můžeme provést podle vztahů (6.40) až (6.42). Pro skutečnou volbu 
hodnot R1, R2, C1 a C2 je vhodné zavést poměry hodnot 

1

2

R
R

=α  ,  
1

2

C
C

=β  , (6.43) 
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které ovlivňují činitel jakosti. Pro požadovanou hodnotu činitele jakosti Q pak lze vypočítat potřebné 
hodnoty α a β. Z nich pak vypočteme hodnoty odporů a kapacit kondenzátorů: 

αRR =2  ,   α/1 RR =  , (6.44) 

βCC =2  ,   β/1 CC = . (6.45) 

Při návrhu filtrů RC i ARC může být použito zapojení více jak s jedním R a C pro 1. řád, resp. s více 
než dvěma R a C pro 2. řád. V tom případě je nutné použít upřesňující vztahy pro jejich návrh, 
uvedené vždy u daného obvodu. 

Návrh DP a HP 2. řádu 
Zapojení DP a HP 2. řádu, odpovídající vztahy a asymptoty modulových charakteristik jsou 

uvedeny v tab. 6.5. Stanovení výchozích požadavků lze provést dvěma způsoby. Nejjednodušší je 
stanovení hodnot F0 a Q. Běžně stačí volit Q = 0,33 až 0,4 (přenos na mezním kmitočtu je roven 
hodnotě Q), což vede k shodným hodnotám obou R a obou C (pro Q=1/3) či mírnému zvýšení jejich 
poměrů. Další zvyšování Q k maximální hodnotě 0,5 již příliš nezlepší tvar a při tom vede k velkému 
zvyšování poměru hodnot prvků.  
 

Tab. 6.5.  DP a HP 2. řádu (pro Ri = 0, RZ = ∞). 
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V případě hodnoty Q<0,25, kdy začne mít význam i pomocná asymptota se strmostí 20 

dB/dekádu, lze použít i zadání formou hodnot lomových kmitočtů FD a FH. Jejich přepočet na hodnotu 
F0 a Q je zřejmý ze vztahů v tabulce. Návrh lze rozdělit do tří kroků: 

 

1) Z hodnoty mezního kmitočtu F0 volíme hodnotu C podle (6.41) a vypočítáme odpovídající R 
podle (6.42). 

2) Z hodnoty požadovaného Q vypočteme optimální poměr hodnot kondenzátorů β a z něho poměr 
hodnot odporů α (pro Q  = 1/3 je α = β = 1) 

3) Z hodnoty C a R a poměrů α a β vypočteme podle tabulky či vztahů (6.44) a (6.45) hodnoty R1, 
R2, C1 a C2.  

 

Výsledný návrh poté můžeme případně korigovat s ohledem na vliv zdroje či zátěže. 
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Návrh dalších typů filtrů RC 
Návrh filtrů typu PP či PZ pomocí prvků RC využívá více variant zapojení (viz. obr. 6.34 a 

6.35) a je složitější než uvedený návrh filtrů typů DP a HP. Podrobněji je uveden např. v [14]. Filtry 
typu korekční obvod či fázovací obvod 2. řádu je problematické realizovat jako RC, obvykle se 
realizují jako ARC či LC. Pomocí filtrů RC lze realizovat i přenosové funkce vyšších řádů, ale 
s poměrně špatným tvarem, neumožňujícím realizovat žádnou standardní aproximaci. Postupy návrhu 
lze nalézt v např. v [14]. 

a)

U1 R1C1
U2

R2
C2

U1 R1

C1

U2

R2

C2
U1

R1

C1
U2R2

C2

b) c)
 

Obr. 6.34. Tři základní varianty zapojení filtrů RC typu PP 2. řádu. 
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R/2
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U2

R
C

2C

R

a) b) c) d)
 

Obr. 6.35.  a) - c) tři základní varianty zapojení filtrů RC typu PZ 2. řádu, d) zapojení PZ typu dvojitý 
článek T. 

 

6.5.2 Filtry RLC 2. řádu 
Zapojení a základní návrhové vztahy filtrů RLC 2. řádu s jednostranným zakončením jsou 

uvedeny v kap. 6.2.2 včetně jejich přehledu v tab. 6.1. Výchozími parametry pro návrh jsou hodnoty 
rezonančního kmitočtu F0 a činitele jakosti Q. Návrh (výpočet hodnot třech prvků, R, L a C) je dán 
dvěma rovnicemi pro oba výchozí parametry (6.17), přičemž činitel jakosti je nutno vyjádřit buď pro 
sériový nebo pro paralelní rezonanční obvod. Opět zde máme jeden stupeň volnosti, a proto je nutno 
hodnotu jednoho prvku zvolit a hodnoty dalších dvou prvků vypočítat z obou vztahů. V případě filtru 
typu DPN či HPN máme další rovnici pro vyjádření dalšího prvku pro vytvoření nuly přenosu.  

V případě oboustranného zakončení (zatěžovací odpor uvažujeme jak u zdroje, tak u zátěže) 
může základní rezonanční obvod přejít do složitějšího zapojení a návrhové vztahy a postupy jsou 
v tom případě komplikovanější [14]. 
 

6.6 FILTRY RLC VYŠŠÍCH ŘÁDŮ 
Základní vlastnosti a použití RLC filtrů 2. řádu bylo uvedeno v kap. 6.2.2 a 6.5.2. Jejich návrh 

vyplývá z požadovaných hodnot F0, Q, popř. FN a uvedených vztahů. Pro splnění náročnějších 
požadavků na strmost modulové charakteristiky používáme RLC filtry vyšších řádů.  

Požadovanou strmost modulové charakteristiky a tím i potřebný řád přenosové funkce filtru se u 
nich dosahuje odpovídajícím zvyšováním počtu induktorů a kapacitorů v příčkovém článku, 
vytvářejícím vícenásobný kmitočtově závislý impedanční dělič, viz příklady základních typů RLC 
filtrů vyšších řádů na obr. 6.37.  

Charakteristickými rysy filtrů RLC jsou poměrně jednoduchý návrh z tabelovaných hodnot 
pro standardní aproximace, jednoduchá realizace s minimálním počtem prvků a zejména velmi malé 
citlivosti těchto příčkových struktur filtrů na změny parametrů prvků, které umožnily jejich široké 
použití v praxi. Filtry RLC jsou používané jako konečná realizace především pro vysokofrekvenční 
pásma. Často jsou využívané i jako prototypy RLC pro jiné formy realizací (filtry ARC, ASC, 
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krystalové, mikrovlnné a pod.). Pojem prototyp RLC se používá pro označení základního 
normovaného filtru typu DP (označujeme jej DPn), který je východiskem jak pro návrh konečných 
pasivních realizací filtrů RLC všech základních typů (viz kap. 4.5), tak i pro návrh již zmíněných filtrů 
jiných typů realizací (např. aktivních). 

Praktické omezení možností použití filtrů RLC spočívá v konečných hodnotách činitelů 
jakostí (ztrátách) reálných kondenzátorů a především cívek (maximum asi 300) a dále i v konečné 
toleranci a stabilitě hodnot prvků. Z toho vyplývá omezení především pro pásmové propusti a 
pásmové zádrže s malou šířkou pásma (přibližně B< 0,01 F0), přičemž toto omezení narůstá se 
strmostí aproximace a řádem filtru. Další omezení narůstá s rozměry a kvalitou především cívek pro 
snižující se hodnoty kmitočtu, takže se tyto filtry dosti omezeně používají pro kmitočty nižší než asi 
100 kHz. 
Poznámka: Příčkové struktury filtrů RLC, při kterých se pravidelně střídají podélné a příčné impedance (obr. 
6.37) se používají v praxi nejčastěji. Kromě nich se ale můžeme někdy setkat (zejména u pásmových propustí) i 
s dalšími různými strukturami nepravidelně řazených impedancí. Některé typy obvodů využívají pro realizaci i 
transformátory a autotransformátory se vzájemnou vazbou. 

6.6.1 Impedanční zakončení filtrů  
Kmitočtový filtr s požadovanou modulovou a fázovou kmitočtovou charakteristikou je obvykle 

součástí složitějšího zapojení. Buzen je z předchozího obvodu, který pro něj představuje generátor s 
určitou vnitřní impedancí a zatížen je následujícím obvodem, který pro něj představuje zatěžovací 
impedanci. V praxi obvykle převažují u obou impedancí reálné složky. Proto můžeme obvodové 
zapojení libovolného filtru modelovat dvojbranem napájeným z generátoru napětí U1 s vnitřním 
rezistorem R1, zatíženým na výstupu zatěžovacím rezistorem R2 (obr. 6.36 a). Rezistorům R1 a R2 se 
říká zakončovací rezistory. Ty hrají významnou roli z hlediska stanovení pracovních činitelů jakostí 
jednotlivých LC obvodů. Proto je nelze oddělovat od funkce filtru. Dané filtry tedy raději nazýváme 
filtry RLC než filtry LC.  

Hodnoty zakončovacích rezistorů určují i základní napěťový přenos, pokud jej definujeme podle 
obr. 6.36 a) jako U2/U1. V běžném případě shodných hodnot R1 = R2 je základní přenos napětí 
v propustném pásmu 0,5, tedy –6 dB. 

Zajímavý je i pohled z hlediska vysokých kmitočtů, kdy se tyto filtry chovají jako obvody 
s rozloženými parametry. Vzhledem k tomu, že samotné filtry LC mají charakteristickou impedanci 
pro kmitočty mimo propustné pásmo odlišnou od odporu zdroje či zátěže, dochází pro tyto kmitočty 
vzhledem k nepřizpůsobení k zpětnému odrazu energie a potlačení přenosu, jak je to naznačeno na 
obr. 6.36. b). 

U1

R1

U2
R2

filtr LC
U'1

I1 I2

U1

R1
U2

R2
filtr LC

Pm Pz

Pr

a) b)
 

Obr. 6.36.  Filtr jako dvojbran: a) přenos napětí, b) výkonové poměry. 
 

Často jsou hodnoty zakončovacích rezistorů dány a návrh filtru je musí respektovat. V případě, 
že při návrhu filtru máme možnost volby hodnot zakončovacích rezistorů R1 a R2, je nutno zvažovat 
obě jejich funkce. Někdy je nutné vzít v úvahu i další hlediska (nejčastěji kmitočtové), případně 
respektovat i některé další požadavky (např. velikost přenosu, tj. základní útlum filtru v propustném 
pásmu). Vlastní návrh RLC filtrů pak může vycházet z následujících možností: 
1.  Volíme shodné hodnoty zakončovacích rezistorů R1 = R2 obvykle z hlediska výkonového 

přizpůsobení. Shodná hodnota rezistorů je v praxi při návrzích využívána nejčastěji a je pro ni 
vytvořena většina katalogů. Vede k poměrně nejvýhodnější realizaci filtrů RLC (obvykle nejmenší 
rozsah hodnot prvků, nejmenší citlivosti), ale pro některé typy aproximací nemůže být použita 
(např. Čebyševovy a Cauerovy aproximace pro sudé řády – viz další text). 
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2.  Volíme rozdílné hodnoty zakončovacích rezistorů R1 a R2, určené obvykle výstupním odporem 
předcházejícího a vstupním odporem následujícího obvodu bez ohledu na výkonové přizpůsobení. 
Poměr zakončovacích rezistorů určuje základní útlum napěťového přenosu filtru v propustném 
pásmu. Velký poměr může být proto z tohoto hlediska (při R1>R2) nevýhodný. Větší poměry 
rezistorů vedou obvykle i k většímu rozsahu parametrů a tedy i citlivostem jednotlivých prvků 
filtru, což je nevýhodné pro realizaci.  

3.  Při použití aktivních prvků (OZ, tranzistorů) se lze přiblížit limitním případům, kdy nastává jedna 
z variant, hodnota R1→0 či ∞ nebo obdobně R2→0 či ∞, tzn. filtr je napájen z ideálního zdroje 
napětí či proudu nebo na výstupu pracuje naprázdno či nakrátko. Tyto případy se využívají 
zejména pro velké signály, obvykle pro nízké kmitočty, kde výkonové přizpůsobení není nutné.  

Poznámky:  
1. Případ, kdy oba zakončovací rezistory mají současně limitní hodnoty (0 nebo ∞) nelze řešit běžným 

zapojením filtru, protože v tomto případě by bylo nutno potřebné tlumící rezistory zapojit do 
vnitřku LC struktury. 

2. Pokud se výjimečně vyskytne požadavek připojení filtru k zakončovacím prvkům, které nejsou čistě 
reálné (obecná vnitřní impedance zdroje nebo obecná impedance zátěže), je možné použít metody 
kompenzace imaginární složky impedance zdroje či zátěže. Řešení úlohy je však poměrně složité 
obzvláště pro širokopásmové přizpůsobení. 

6.6.2    Normované dolní propusti (DPn) 

Impedanční a kmitočtové normování 
Hodnoty zakončovacích rezistorů mohou nabývat v praxi značně rozdílných hodnot, řádově 10 

Ω až 100 kΩ. Často bývají voleny standardní hodnoty (75, 300, 600, 1000 Ω) v souladu 
s přenosovými vlastnostmi předcházejících nebo navazujících obvodů či vedení. Aby bylo možné 
zúžit rozsah potřebných tabulek pro návrh filtrů, jsou v praxi obvykle všechny numerické hodnoty 
jednotlivých prvků filtrů přepočteny (normovány) nejen k jednotkovému úhlovému meznímu 
kmitočtu filtru ([rad/s], tj. 1/2π [Hz]), ale i k jednotkovému odporu zakončovacího rezistoru (R = 1Ω). 

Tabulky potom obsahují pouze numerické hodnoty filtrů takto normovaných dolních propustí 
(DPn). Pomocí impedančního a kmitočtového odnormování můžeme vypočítat skutečné hodnoty 
jednotlivých prvků filtrů dolních propustí pro libovolné hodnoty odporů zakončovacích rezistorů a 
libovolný skutečný mezní kmitočet filtru. Pro odnormování se používají transformační koeficienty KL 
a KC, které jsou dány vztahy 

M
L F

RK
π2

=       a          
RF

K
M

C π2
1

=   , (6.46) 

kde R je odpor zakončovacího rezistoru a FM je mezní kmitočet filtru.  
Za pomoci kmitočtového a impedančního odnormování je možné z tabulek normovaných 

hodnot prvků dolních propustí vypočítat pomocí přepočtových vztahů hodnoty jednotlivých prvků 
nejen filtru typu DP, ale s využitím kmitočtových transformací (kap.6.3.1) i ostatních typů filtrů, tj. 
horních propustí, pásmových propustí a pásmových zádrží. 

Dolní propusti RLC s monotónně rostoucím útlumem 
Tyto filtry realizují běžné typy aproximací modulové kmitočtové charakteristiky, které mají v 

nepropustném pásmu monotónně klesající přenos (Besselova, Butterworthova, Besselova-
Butterworthova, Čebyševova aproximace). 

Tvar počátku příčkové struktury LC obvodu odlišuje dvě různé varianty zapojení DP (pro 
liché řády T a Π, pro sudé řády z jedné strany T a z druhé Π a naopak), které však mají zcela shodné 
vlastnosti z hlediska přenosu (modulové a fázové kmitočtové charakteristiky). Z hlediska průběhu 
vstupních impedancí však mají tyto varianty navzájem opačné (duální) vlastnosti. Příklady zapojení 
filtrů typu DP 4. a 5. řádu obou variant struktur jsou na obr. 6.37. 

Převod jedné konfigurace na druhou provedeme jednoduchou záměnou charakteru a umístění 
prvků. Jak ukazují pro obě varianty příklady filtrů 4. a 5. řádu na obr. 6.37, kapacitory zaměníme za 
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induktory a naopak, podélné prvky zaměníme za příčné a naopak. V normovaném tvaru se přímo 
zaměňují i hodnoty li za ci a naopak (např. l1, c2, l3 .. cn se zamění za c1, l2, c3 .. ln). Tabulky 
normovaných hodnot tudíž uvádějí pouze jedny hodnoty, použitelné pro oba typy zapojení. 
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l3= 2,000 l5= 0,618

c4= 1,618

r2=1

a)

r1=1 l1= 0,765

c2= 1,848

l3= 1,848

c4= 0,765

r2=1

d)
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Obr. 6.37.  Příklady zapojení normovaných dolních propustí DPn filtrů RLC v zapojení se zakončením T a Π: 

a), b) DP 4. řádu, c), d) DP 5. řádu. Normované hodnoty prvků variant T a Π  jsou totožné! 
 
Pro filtry DP sudých řádů je omezena možnost volby zakončovacích odporů pro Čebyševovu 

aproximaci. Při realizaci filtrů RLC lze dodržet základní tvar přenosové funkce této aproximace pouze 
v případě, že poměr rezistorů R2/R1 je dostatečně větší nebo menší než 1, protože to umožňuje 
dosáhnout potřebné hodnoty činitele jakosti (z jedné strany je připojen odpor jako paralelní a z druhé 
jako sériový). Pro realizaci se shodnými rezistory je nutno použít transformaci, snižující strmost 
modulové charakteristiky, viz [14]. 

Dolní propusti s nulovými body přenosu 
Přenosová funkce těchto typů filtrů vykazuje v nepropustném pásmu na určitých kmitočtech 

výrazná minima přenosu (teoreticky nulový přenos, tj. nekonečný útlum), která nazýváme nulovými 
body (někdy též jen stručně nulami) přenosové funkce. Tyto typy filtrů jsou určeny především pro 
realizaci standardních aproximací s nulami přenosu, např. inverzní Čebyševovu, Cauerovu a 
Feistelovu-Unbehauenovu aproximaci, popř. tranzitivní aproximaci TICFU (viz kap. 6.3.3).  

Minima (nulové body) přenosu, která zvyšují strmost filtru v přechodném pásmu filtru, mohou 
být realizována paralelními rezonančními obvody v podélných větvích (varianta zakončení tvaru Π) 
nebo sériovými rezonančními obvody v příčných větvích filtrů (varianta zakončení tvaru T), viz obr. 
6.38. Rezonanční kmitočty těchto obvodů přímo určují kmitočty nul přenosu. Za povšimnutí stojí též, 
že přidáním prvku pro vytvoření rezonančního obvodu se řád filtru nezvyšuje, jak již bylo uvedeno pro 
filtry DPN a HPN 2. řádu v kap. 6.3.2. Pro normované hodnoty prvků varianty T a Π platí, že jsou 
vzájemně shodné, jak to bylo ukázáno pro filtry bez nul přenosu (obr. 6.37). Pro sudý řád filtrů (n = 
2m) i lichý řád filtrů (n = 2m + 1) mají aproximace m nulových bodů přenosu.  
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Obr. 6.38. Zapojení filtrů lichého řádu s nulovými body přenosu, a) zakončení Π, b) zakončení T. 

 

Poznámka: 
Pro sudé řády přenosové funkce opět docházíme k určitým omezením v případě realizace se shodnými 
odpory. Mimo omezení pro Cauerovu aproximaci z hlediska realizovatelnosti potřebného činitele 
jakosti analogicky jako u Čebyševovy aproximace se projevuje další omezení, kdy po připojení 
zakončovacího rezistoru přímo na paralelní či sériový rezonanční obvod pro zabezpečení nuly přenosu 
vzniká vyšší řád přenosové funkce. Pro tento případ je prováděna druhá transformace, kdy se posouvá 
kmitočet nuly přenosu až do nekonečna (rezonanční obvod přechází pouze v jeden prvek). Podrobnosti 
opět viz [14]. 
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6.6.3    Návrhy filtrů RLC z prototypů DPn 

Návrh dolních propustí – impedanční a kmitočtové odnormování 
Skutečné hodnoty jednotlivých prvků filtru dolní propusti (DP) zvolené struktury (T nebo Π) 

vypočteme pro konkrétní hodnoty mezního kmitočtu filtru Fp a zvolené hodnoty odporu 
zakončovacích rezistorů R za pomoci normovaných (např. v katalogu tabelovaných) hodnot filtru DPn 
impedančním a kmitočtovým odnormováním. Při výpočtu skutečných hodnot filtru se vychází z 
kmitočtových (kap. 6.3.1) a impedančních transformací. Skutečné hodnoty prvků L a C filtru dolní 
propusti (DP) vypočteme podle vztahů 

iLi lKL .=      a       iCi cKC .=   , (6.47) 

kde li a ci jsou normované hodnoty indukčností a kapacit, odečtené například z tabulek katalogu. 
Transformační koeficienty KL a KC jsou dány vztahy (6.46) z úvodu kapitoly. 

Návrh horních propustí  
Návrh je analogický návrhu DP s tím rozdílem, že výsledné schéma má zaměněny kapacitory a 

induktory (viz obr. 6.39) a odpovídajícím způsobem se mění transformační vztahy.  
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C3C1

U2
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C3C1

U2

C5
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C2 C4

 
Obr. 6.39. Filtr HP: a) zapojení HP s monotónně klesajícím přenosem, b) zapojení HP s nulovými body 

přenosu. 
 
Souhrnně jsou transformační vztahy pro transformaci hodnot prvků normované DPn na hodnoty 

adekvátních prvků filtrů typu DP či HP uvedeny v tab. 6.6. 
 

 Tab. 6.6.  Transformace prvků normované DPn na filtry typu DP a HP. 

L = l . KL l
CK

C =l

norm. DPDP HP

C = c . KC c

(viz kap. 4.4)KL = R/(2πFM) KC = 1/(2πFMR)

c
LKL =

 

Návrh pásmových propustí (PP) a pásmových zádrží (PZ) 
Tento návrh je též analogický předchozím dvěma, ale jak je zřejmé z obr. 6.40, výsledkem je 

schéma s dvojnásobným počtem prvků. Proto i transformační vztahy  (tab. 6.7) a postup návrhu jsou 
složitější. 

Postup vycházející z hodnoty zakončovacích odporů R, středního kmitočtu F0, šířky pásma B a 
kmitočtu nul přenosu FNn prototypu DPn: 

1. Vypočteme hodnoty KB, KL a KC z hodnot R, B a F0. 
2. V případě realizace aproximací s nulami přenosu vypočteme hodnoty FX, FN± a KF± z hodnot 

KB a FNn. 
3. Vypočteme hodnoty Li a Ci z normovaných hodnot li a ci podle vztahů, uvedených v tabulkách. 
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Obr. 6.40.  Příklad transformace struktury filtru DPn na strukturu filtru PP a filtru PZ. 

 
Tab 6.7.  Transformace prvků normované DPn na filtry typu PP. 

L = l KLKB
B

C

K
KC
l

=l

norm. DP

c

L CF0LC

F0LC= F0

PP        KB = F0 / B ,      KL = R / (2πF0) ,    KC=1 / (2πF0R)

C = c KCKB
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c
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l c
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Tab 6.8.  Transformace prvků normované DPn na filtry typu PZ. 
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PZ        KB = F0 / B ,      KL = R / (2πF0) ,    KC=1 / (2πF0R)
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6.6.4 Další typy a modifikace zapojení filtrů RLC s cílem snazší 
realizovatelnosti 

Ačkoliv můžeme pomocí filtrů RLC realizovat teoreticky téměř libovolný typ filtru a 
aproximace, přesto praktická realizace může vést k obtížně realizovatelným hodnotám součástek. 
Základním problémem je realizace zapojení s velkým rozptylem hodnot součástek. Pro malé 
hodnoty C a L (např. méně než 10 pF a 10 nH) mají velký vliv hodnoty parazitních kapacit a 
indukčností, pro velké hodnoty C a L (např. více než 1 µF a 0,1 H) je zase problém s rozměry, cenou a 
případně kvalitou samotných prvků. K tomuto velkému rozptylu dochází především pro pásmové 
propusti a pásmové zádrže s malou relativní šířkou pásma. Proto je snahou modifikovat standardní 
zapojení (viz předchozí kapitola) tak, aby byl tento poměr součástek minimalizován, popř. aby 
hodnoty některých prvků byly dokonce shodné, což je výhodné pro realizaci. 

První známá cesta využívá k realizaci pásmových propustí s malou relativní šířkou pásma a s 
aproximací bez nul přenosu zapojení s tzv. vázanými rezonančními obvody. Pro vazbu 
rezonančních obvodů lze využít kapacitory (viz obr. 6.41 b), popř. induktory či transformátorovou 
vazbu. Tyto obvody sice nejsou pásmové propusti, ale při vysokých činitelích jakosti jednotlivých 
rezonančních obvodů (odpovídajících požadované pásmové propusti) přechází u obvodu z obr. 6.41 b 
modulová charakteristika nestandardní horní propusti v pásmovou propust s potlačeným přenosem pro 
vysoké kmitočty (při induktorové vazbě jde o dolní propust). Pro malé šířky pásma lze realizovat 
přenosové funkce velmi přesně odpovídající pásmovým propustem se standardními aproximacemi. 
Návrh vychází z normované dolní propusti (obr. 6.41 a) a je uveden např. v [14]. Z obrázku je zřejmý i 
ten fakt, že výsledné zapojení pásmové propusti 8. řádu má větší počet prvků, než standardní PP.  

a)

r1=1

r2=1a1 a3

a2 a4

R1 R2

L2L1
C4C1 C2 L4

CV CV

C3

CV

L3

b)  
Obr. 6.41.   Transformace prototypu DPn na PP s vázanými obvody. 

 
Existují i další formy úprav a transformací, které umožňují měnit hodnoty součástek při 

stejných přenosových vlastnostech filtrů [14]. Jsou to dvojpólové, trojpólové a dvojbranové 
transformace, z nichž má největší význam tzv. Nortonova transformace. 

 
 

6.7  FILTRY ARC  
6.7.1 Základní principy funkce filtrů ARC 

Již v předešlém textu bylo naznačeno, že při realizaci filtrů RLC pro nízké kmitočty jsou 
největší problémy s kvalitou, rozměry a cenou cívek. Proto se pro nízké kmitočty s výhodou 
nahrazují filtry RLC aktivními filtry RC (filtry ARC). Jejich základní princip spočívá v „náhradě" 
cívky pomocí zapojení aktivního prvku (operační zesilovač, tranzistor) se dvěma rezistory a 
kapacitory. 

Nahradit cívku můžeme v zásadě dvěma základními způsoby. První spočívá v použití obvodu, 
který přímo či nepřímo nahrazuje cívku jako dvojpól a vykazuje mezi určitými svorkami příslušnou 
indukčnost. Druhý princip, jak bude ukázáno dále, nahrazuje cívku jinou cestou, pomocí transformace 
výchozího LRC obvodu do ekvivalentně se chovající struktury RCD, která indukční prvek 
nepotřebuje, ale na druhou stranu potřebuje syntetický prvek D – dvojný kapacitor (kmitočtově závislý 
negativní rezistor). 
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a) Obvody s náhradou cívky 
Aktivní filtry ARC, které vycházejí z filtrů RLC a využívají k tomu přímou či nepřímou 

náhradu cívek, mají velké množství různých variant zapojení. V oblasti návrhu ARC filtrů lze 
vysledovat dva hlavní přístupy. Velmi názorný je takový přístup, který vytváří obvody, vykazující na 
vstupních svorkách induktivní impedanci, umožňující přímou náhradu indukčnosti ve filtru RLC. 
Nejčastější je ale takový pohled, kdy vytváříme celý obvod ARC s přenosovou funkcí 2. řádu jako 
ekvivalenci obvodu LRC 2. řádu, přičemž přímá náhrada cívky nemusí být na první pohled zřejmá.  

Obvody (bloky) ARC s přenosovou funkcí 2. řádu 
Typický příklad filtru typu DP 2. řádu, známý jako obvod Sallena a Keye [37], je ukázán na obr. 

6.42. Obvod s OZ, dvěma R a dvěma C má přenosovou funkci ve tvaru 

2
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Tento tvar je shodný s přenosovou funkcí RLC dolní propusti 2. řádu na obr. 6.14 (kap. 6.2.2), 
přičemž hodnoty F0 a Q lze vyjádřit vztahy 
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Vztah pro Q je nakonec zjednodušen pro častý a optimální případ shodných hodnot R1 a R2. 

R1 R2

U1 C1

C2

U2

R L
U1 C U2

a) b)  
Obr. 6.42.  Dolní propust ARC 2. řádu a odpovídající obvod RLC. 

Zapojení aktivního prvku (OZ) spolu s pasivními součástkami (R,C) tedy realizuje obvod, který 
je z hlediska přenosové funkce ekvivalentní s obvodem RLC. Z tohoto hlediska tedy OZ s rezistory R1, 
R2 a kondenzátorem C2 představuje (simuluje) vlastně ztrátovou cívku. Proto lze nakreslit ekvivalentní 
schéma se shodnou přenosovou funkcí (obr. 6.42 b). Zajímavé je, že OZ je v zapojení na obr. 6.42 a) 
využit nejen pro simulaci L, ale též jako oddělovací zesilovač. Dosáhneme tím malé hodnoty 
výstupního odporu filtru a přenosová funkce není závislá na impedanci zátěže na rozdíl od samotného 
obvodu RLC z obr. 6.14. Impedanční oddělení výstupu od rezonančního obvodu pomocí OZ umožňuje 
mj. jednoduché kaskádní spojování těchto filtrů (kap. 6.7.3). 

Poznámka: Vyjádření, že obvod simuluje indukčnost L zde znamená obvod, který se chová jako tato 
indukčnost. I v dalším textu budeme používat pojem simulace v tomto smyslu. 

Možnosti realizace syntetického induktoru 
Druhý pohled na filtry ARC spočívá v přímé simulaci cívek jako dvojpólů složitějším obvodem 

(s jedním či více aktivními prvky, dvěma či více rezistory a kapacitorem), který na vstupních svorkách 
vykazuje induktivní reaktanci (syntetický induktor). Hodnota ekvivalentní indukčnosti je určena 
součinem hodnot funkčních prvků podle vztahu LEKV = R1R2C. Je zajímavé, že takto lze simulovat i 
značně velké hodnoty indukčnosti. Například pro R1 = R2 = 1 MΩ a C = 1 µF u obvodu z obr. 6.43 a) 
vychází ekvivalentní hodnota LEKV = R1 R2 C = 106 H! 

Praktické případy realizace lze rozdělit podle dvou hledisek – ztrátovosti a vztahu ke 
společnému (zemnímu) uzlu – do více skupin. Jednodušší obvody (obvykle s jedním OZ) realizují 
ztrátové uzemněné syntetické induktory, viz např. obvod z obr. 6.43 a). Složitější obvody (obvykle 
s dvěma OZ) umožňují realizovat teoreticky ideální bezeztrátové uzemněné syntetické induktory 
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(obr. 6.43 b). Obtížnější je realizace neuzemněných induktorů, protože to obvykle vyžaduje zdvojení 
předchozích obvodů (obr. 6.43 c). Některé případy ztrátových induktorů lze sice chápat jako plovoucí, 
ale obvykle nejsou oddělitelné jako naprosto nezávislý neuzemněný dvojpól (viz obr. 6.42 a) a nemají 
shodný přenos signálu v obou směrech. 
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Obr. 6.43.  Zapojení syntetických induktorů: a) uzemněný ztrátový induktor, b) uzemněný bezeztrátový 

induktor, c) plovoucí bezeztrátový induktor. 

b)  Brutonova transformace a dvojné kapacitory 
Tato transformace vychází z úvahy, že napěťový přenos obvodu jako bezrozměrná funkce je 

určen poměrem impedancí, a proto při násobení všech impedancí obvodu stejným koeficientem se 
přenos nemění. Brutonova impedanční transformace násobí (či dělí) impedance komplexním 
kmitočtem podle vztahu 

p
kZZ T

T =   ,  (6.51) 

kde kT je volitelný transformační koeficient. Touto transformací prvků L, R a C dospějeme k novým impedancím 
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Transformací se mění rezonanční induktor na rezistor, rezistor na kapacitor a rezonanční 
kapacitor na nový syntetický prvek, kmitočtově závislý záporný rezistor (anglická zkratka FDNR – 
Frequency Dependent Negative Rezistor), nazývaný též jako dvojný kapacitor. Jeho admitance je 
reálná jako u rezistoru, ale je kmitočtově závislá a záporná (Y = – ω2DC). Z toho pohledu dostáváme 
po transformaci nový typ rezonančního obvodu RCD, kde jsou rezonančními prvky rezistor R a 
dvojný kapacitor D a ztrátovým prvkem je kapacitor C (viz např. obr. 6.44). 

Na základě této transformace lze převést např. dolní propust LRC na dolní propust RCD, jak je 
vidět z obr. 6.44. Je zřejmé, že se tím mění impedanční vlastnosti, ale je podstatné, že napěťový 
přenos takto transformovaného obvodu se oproti původnímu obvodu LRC nemění (ve vztahu pro 
přenos se transformační koeficient vykrátí). Samozřejmými předpoklady pro obvod RCD jsou v tomto 
případě nulový vnitřní odpor zdroje (případně jen vnitřní kapacita, kterou lze spojit s CR1) a ryze 
kapacitní zátěž s nekonečně velkým paralelním odporem. 

U1

R1

R2

L2

L1 L3

C U2 U1

CR1
RL1

DC
U2'

RL2

RL3

CR2 1

'
2

1

2

U
U

U
U

K U ==

 

  Obr. 6.44.  Příklad Brutonovy transformace dolní propusti LRC na RCD se shodným přenosem napětí. 
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Stejně jako u syntetických induktorů bychom mohli i pro obvody s dvojnými kapacitory uvést 
jako příklady aplikací bloky s přenosovou funkcí druhého řádu. Typickým příkladem je filtr typu 
HP 2. řádu, který vznikne z filtru DP na obr. 6.42 vzájemnou záměnou rezistorů a kapacitorů. 
Nicméně, tento pohled není častý. Na bloky druhého řádu se obvykle díváme bez ohledu na podstatu 
simulace, i když při rozboru např. parazitních vlivů to může být užitečné.  

Možnosti realizace dvojného kapacitoru 
Jak z předešlého odstavce vyplývá, výhoda struktur s prvky RCD bez indukčností je vykoupená 

nutností realizace umělého (syntetického) prvku – dvojného kapacitoru, viz (6.54). Realizace tohoto 
syntetického prvku má podobné rysy jako u syntetického induktoru s tím rozdílem, že hodnota jeho 
admitance je určena jedním rezistorem a dvěma kapacitory jako součin podle vztahu DEKV = C1C2R. 
Praktické případy realizace lze rozdělit stejně jako u syntetického induktoru podle ztrátovosti a vztahu 
ke společnému (zemnímu) uzlu. 

Pomocí jednoho OZ lze realizovat ztrátové uzemněné dvojné kapacitory, viz např. obvod z 
obr. 6.45 a). Obvodem s dvěma OZ lze vytvořit teoreticky ideální bezeztrátové uzemněné dvojné 
kapacitory (obr. 6.45 b). Realizace neuzemněných dvojných kapacitorů stejně jako syntetických 
induktorů je možná zdvojením předchozího obvodu (obr. 6.45 c).  
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Obr. 6.45.   Zapojení syntetických dvojných kapacitorů: a) uzemněný ztrátový dvojný kapacitor,  

b) uzemněný bezeztrátový dvojný kapacitor, c) plovoucí bezeztrátový dvojný kapacitor,  
d) bezeztrátový rezonanční obvod RD. 

c)  Transformační dvojbrany  
Další pohled na filtry ARC umožňují transformační dvojbrany. Jsou to obvody s dvěma 

bránami, kde po připojení prvku s impedancí Z na jednu bránu se na druhé bráně projeví jiná hodnota 
impedance a dvojbran tedy zatěžovací impedanci podle nějakého vztahu transformuje. Transformace 
je realizována jako násobení (konverze) nebo jako převrácení hodnoty (inverze). Typickými 
transformačními dvojbrany, často používanými pro filtry ARC, jsou impedanční konvertor (GIC, 
mutátor) a impedanční invertor (gyrátor). 

Impedanční konvertor (GIC, mutátor) 
Tento obvod s různými názvy (anglická zkratka GIC – General Impedance Converter či dříve 

používaný a ne zcela přesný název mutátor – obr. 6.46) přímo realizuje Brutonovu transformaci, kdy z 
jedné strany násobí nebo z druhé strany dělí zatěžovací impedanci kmitočtem a konstantou podle 
rovnice (6.51). Tento dvojbran je tedy z hlediska vstupů nesymetrický a je potřebné rozlišovat brány 
(zde je tečkou označena brána, kde je vhodné připojovat kapacitor).  

Impedanční konvertory umožňují přímou simulaci uzemněných syntetických induktorů a 
dvojných kapacitorů podle obr. 6.48 a). Zatížíme-li jej tedy na výstupu odporem, má vstupní 
impedanci jako induktor. Při kapacitní zátěži na vstupní bráně simuluje na druhé bráně dvojný 
kapacitor. Na bráně označené tečkou je při připojení kapacitoru ideální paralelní rezonanční obvod 
LC, na druhé bráně zase rezonanční obvod RD. Obvyklé zapojení impedančního konvertoru (Antoniův 
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GIC) je použito pro vytvoření syntetického induktoru na obr. 6.43 b) a pro dvojný kapacitor na obr. 
6.45 b). V principu lze realizovat i ztrátové impedanční konvertory s jedním OZ, ale tento přístup se 
v praxi příliš nevyužívá. 

GIC umožňuje transformaci nejen dvojpólů, ale i vícepólových obvodů, pokud na každý pól 
umístíme GIC, jak je naznačeno na obr. 6.48 c) pro trojpól. Je nutno podotknout, že neuzemněný 
dvojpól se chová jako degenerovaný trojpól, a tudíž je pro jeho transformaci nutno použít rovněž dvou 
GIC, jak je to zřejmé z obr. 6.43 c) a 6.45 c). Na využití transformačních vlastností tohoto konvertoru 
je založena syntéza filtrů ARC vyšších řádů (kap. 6.7.3). 
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Obr. 6.46.   Transformace impedance impedanční konvertorem: a) R → LEKV, b) C → DEKV, c) transformace 

vícepólového obvodu pomocí GIC – nemění konfiguraci. 

Impedanční invertor (gyrátor) 
Druhým transformačním dvojbranem, využívaným pro filtry ARC, je historicky dříve zavedený 

impedanční investor, nazývaný gyrátor. Provádí inverzi hodnoty zatěžovací impedance a násobí ji 
tzv. gyrační konstantou kg. To znamená, že při zatížení kondenzátorem vykazuje vstupní impedanci 
induktivního charakteru a simuluje tedy induktor, a to z obou stran stejně. Na obou branách gyrátoru je 
po připojení kapacitorů paralelní rezonanční obvod LC, na orientaci bran tedy nezáleží. Realizace 
gyrátoru z diskrétních prvků (OZ) je však poměrně obtížná, proto se dnes využívají častěji simulace s 
GIC. Na druhou stranu je poměrně snadná realizace gyrátoru pomocí zdrojů proudu řízených napětím, 
což je využíváno v integrovaných realizacích. 

Při použití gyrátoru ve složitějším obvodu je nutno si uvědomit, že impedanční inverze mění i 
konfiguraci obvodu, paralelních prvků na sériové a naopak, jako to ukazuje obr. 6.47 c). Oproti tomu 
impedanční konvertor konfiguraci obvodu nemění (obr. 6.46 c). 
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   Obr. 6.47 a), b) transformace impedance gyrátorem: C na LEKV, c) transformace vícepólového obvodu 

gyrátorem – mění konfiguraci. 

d)  Obecný pohled na obvod ARC 2. řádu 
Předchozí pohledy ukazují zjevné souvislosti, které lze zobecnit a sjednotit následujícím 

způsobem. Obvody ARC 2. řádu jsou vždy tvořeny: 
   –  dvěma funkčními kapacitory a dvěma funkčními rezistory (R1, R2, C1, C2), jež určují svou 

hodnotou rezonanční kmitočet a vzájemnými poměry svých hodnot zase hodnotu Q, 
   –   zbytkem obvodu (jeden či více aktivních prvků, obvykle OZ, a případně několik rezistorů, 

někdy i kapacitorů), který ovlivňuje především hodnotu činitele jakosti Q, někdy též působí jako 
násobná konstanta pro rezonanční kmitočet.  
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Obr. 6.48.  Zobecněný pohled na 
obvod ARC 2. řádu: a) jako 
rezonanční obvody LRC a RCD, b), c) 
jako rezonanční obvody se 
syntetickým induktorem a dvojným 
kapacitorem, d), e) jako rezonanční 
obvody s transformačními dvojbrany 
gyrátorem a GIC. 

 
Obvod jako celek je tedy 

určitým ekvivalentem rezonan- 
čních obvodů LRC a RCD (obr. 
6.48 a). Pokud neuvažujeme 
společnou svorku (zem), lze se na 
tentýž obvod dívat z různých 
hledisek: 

1) jako na paralelní 
rezonanční obvod s 
kapacitorem C1 a se 
syntetickým induktorem 
Lekv (obr. 6.48 b), 

2) nebo jako na paralelní rezonanční obvod RCD s odporem R1 a dvojným kapacitorem Dekv 
(obr. 6.48 c), 

3) případně lze rezonační obvody LC vidět i na obou stranách gyrátoru, kdy gyrátor např. se 
zatěžovací kapacitou C1 na jedné straně vytváří induktor na druhé straně a s C2 tak vzniká 
rezonanční obvod a opačně (obr. 6.48 d), 

4) nebo na obou stranách impedančního konvertoru, kde je z jedné strany rezonanční obvod s 
C1 se syntetickým induktorem či na druhém vstupu s R2 se syntetickým dvojným kapacitorem 
(obr. 6.48 e). Oba syntetické prvky vzniknou transformací zatěžovacích impedancí z druhé 
brány GIC. 

 
Z uvedeného pohledu na různé interpretace funkce obvodů ARC 2. řádu vyplývají též různé 

metody syntézy filtrů ARC vyšších řádů (kap. 6.7.3). Lze říci, že u každé metody je výchozím 
bodem návrh základní části obvodu s aktivním prvkem (OZ). Podle přístupu k syntéze filtrů vyšších 
řádů je aplikován buď jako GIC, gyrátor, nebo po doplnění zatěžovacím prvkem jako syntetický 
induktor, dvojný kapacitor, popř. celý obvod 2. řádu. Využití té či oné metody syntézy závisí na řadě 
okolností. Často je rozhodujícím hlediskem snadnost realizace, možnost využití a minimalizace počtu 
OZ, minimalizace citlivostí a vlivu parazitních prvků a pod. 
 

6.7.2 Klasifikace a základní vlastnosti filtrů ARC 2. řádu 
Nejpraktičtějším se ukázalo dělení různých zapojení z hlediska počtu aktivních prvků, to je 

obvykle podle počtu OZ na tři základní skupiny, které mají podstatně odlišné vlastnosti: 
- s jedním OZ (Q<20), 
- s dvěma OZ (Q<100), 
- s třemi a více OZ (Q<100, univerzální). 

Mají uveden nejdůležitější parametr, kvalitu vyjádřenou dosažitelnou hodnotou činitele jakosti Q. 
Tento údaj je nutno chápat orientačně, je závislý na dalších okolnostech, jako jsou kmitočtové pásmo, 
požadovaná stabilita hodnoty Q apod. Jako zvláštní skupinu lze chápat filtry 2. řádu s jinými typy 
aktivních prvků (s konvejory, OTA zesilovači apod.), nicméně i u nich lze nalézt shodné 
charakteristické rysy s běžnými filtry ARC podle uvedeného dělení. 
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a) Zapojení bloků 2. řádu s jedním OZ 

Typy zapojení  
Obvody ARC 2. řádu s jedním OZ jsou oblíbené pro jejich jednoduchost. Typickým 

představitelem je již uvedený obvod Sallena a Keye (obr. 6.42). Nejčastěji se využívají zapojení se 
dvěma základními typy článků RC – s dvěma variantami přemostěného článku T, jak je to ukázáno 
v kap. 6.5.1 pro filtry RC. Méně výhodné je zapojení s Wienovým článkem. 

Výchozí jsou zapojení filtrů ARC s minimálním počtem čtyř pasivních prvků, tj. s dvěma 
rezistory a dvěma kapacitory – viz obr. 6.49. Obě varianty přemostěných článků T lze zapojit různými 
způsoby s „invertujícím“ i neinvertujícím zesilovačem neboli s článkem RC zapojeným v záporné či 
kladné zpětné vazbě [14]. Zapojení s neinvertujícím zesilovačem vede k snadné realizaci filtru typu 
DP (spojené a shodné R – obr. 6.49 a) a HP (spojené a hodné C– obr. 6.49 b). Zapojení se zápornou 
ZV je vhodné pro realizaci filtrů typu PP. Zde je možno využít oba typy přemostěného článku T – se 
shodnými rezistory (obr. 6.49 c) a se shodnými kapacitory (obr. 6.49 d).  
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Obr. 6.49. Zapojení základních typů filtrů DP, HP a dvou variant PP s jedním OZ a minimálním počtem 
pasivních prvků.  
 

Pro realizaci filtrů 2. řádu se složitějším tvarem čitatele přenosové funkce (PZ, FČ, DPN, 
HPN, – obr. 6.50) je nutno použít další pasivní prvky – rezistory Ra a Rb (na obrázku zvýrazněny, 
slouží pro nastavení hodnoty koeficientů a0 až a2. Obzvláště důležitá je hodnota a1, např. pro zádrž 
a1 = 0 – nula přenosu) a další rezistor RN či kapacitor CN (též zvýrazněny) pro nastavení hodnoty 
kmitočtu nuly přenosu. Při tom je podstatné, že tyto doplňkové prvky neovlivňují hodnotu 
rezonančního kmitočtu a činitele jakosti. Hodnoty F0 a Q jsou určeny prvky R1, R2, C1 a C2 podle již 
uvedených vztahů pro všechny filtry shodně. Vzhledem k tomu, že tyto další typy filtrů vycházejí ze 
zapojení pásmové propusti, mohou být stejně jako PP realizovány ve variantě se shodnými kapacitory 
i shodnými rezistory.  
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Obr. 6.50. Zapojení dvou variant filtrů typu PZ, FČ, DPN A HPN s jedním OZ a minimálním počtem 

pasivních prvků (zvýrazněny jsou prvky potřebné pro realizaci složitějšího čitatele přenosové 
funkce). U shodných schémat pro PZ a FČ platí následující podmínky. PZR: Ra /Rb = 2 C1 /C2 ; 
PZC: Ra /Rb = 2 R1 /R2 ; FČR: Ra /Rb = 4 C1 /C2 ; FČC: Ra /Rb = 4 R1 /R2. 

Základní vlastnosti z hlediska hodnot F0 a Q 
Vztahy pro F0 a Q jsou uvedeny v Tab. 6.9. Z ní vyplývá, že všechny běžné obvody s jedním 

OZ mají shodný rezonanční kmitočet F0 pro všechny základní varianty filtrů z obr. 6.49 a tedy i obr. 
6.42 podle vztahu (6.49). Činitel jakosti Q má omezenou hodnotu, obvody s jedním OZ simulují z 
principu ztrátový rezonanční obvod. Zvyšování zesílení zesilovače umožňuje první cestu 
zmenšování ztrát neboli zvyšování Q (je možné teoreticky až na nekonečnou hodnotu do oblasti 
nestability – vznikají oscilátory RC). Proto je lépe využít druhou cestu, zvyšování poměru hodnot 
prvků bez zvyšování zesílení. Pro typ obvodu se shodnými rezistory (DP, PPR, PZR, FCR, HPNR) 
zvyšuje Q poměr hodnot kapacitorů C2/C1 (viz tab. 6.9), pro typ obvodu se shodnými rezistory (HP, 
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PPC, PZC, FCC, DPNC) zvyšuje Q poměr hodnot rezistorů R2/R1 (viz tab. 6.9). V tomto případě 
zůstávají citlivosti Q

xS malé, teoreticky na hodnotě 1 či 0,5, ovšem potřebný poměr hodnot kapacit, 
resp. odporů se zvyšuje s 4Q2. To pro velké hodnoty Q vede k obtížně realizovatelným hodnotám 
prvků. Z toho vyplývá, že obvody s jedním OZ nejsou vhodné pro realizaci filtrů s vysokým činitelem 
jakosti. Prakticky dosažitelné maximum Q je asi 10 až 30 podle typu zapojení, vyšší hodnoty Q lze 
dosáhnout zvyšováním zesílení jen při značném narůstání citlivostí. 

  

Tab. 6.9.  Vztahy pro F0 a Q  filtrů 2. řádu s jedním OZ (obr. 6.49). 

Všechny obvody:       
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Uvedené vztahy pro F0 a pro Q nám umožňují posoudit laditelnost těchto filtrů (změnu F0 beze 
změny Q). Je zřejmé, že všechny základní typy filtrů (obr. 6.49 a obr. 6.50 a, b) lze ladit jak 
souběžnou změnou odporů, tak i souběžnou změnou kapacit kondenzátorů. Většinou je prakticky 
výhodné plynule ladit kmitočet tandemovým potenciometrem či nějakým elektronicky řízeným 
ekvivalentním obvodem a skokově (např. po dekádách) přepínat kapacity kondenzátorů. Další 
možnosti vhodných modifikací a podrobnější rozbory reálných vlastností uvedených zapojení je 
možné nalézt v [14]. 

b) Zapojení bloků 2. řádu s dvěma OZ (s Antoniovým GIC) 
Zde je možno využít obvody, vycházející ze zapojení s jedním OZ (ztrátové), kde přidání 

druhého OZ umožňuje méně citlivé zvyšování hodnoty Q. Podstatně výhodnější je ale skupina 
obvodů, která vychází z použití Antoniova GIC. Je z principu bezeztrátová, protože simuluje 
ideální bezeztrátovou indukčnost. 

Tato zapojení filtrů ARC 2. řádu se ukazují jako výhodnější především pro realizaci filtrů s 
vyššími hodnotami činitele jakosti (přibližně pro Q>15). Obecné schéma obvodu je na obr. 6.51 a) a 
jeho varianta pro Antoniův GIC je na obr. 6.51 b) – nakresleno druhým typickým způsobem. 
Analýzou lze zjistit charakteristickou rovnici obvodu (jmenovatel přenosové funkce při běžných 
možnostech umístění vstupního zdroje napětí) ve tvaru D = Z1Z2Z3 + Z2Z4Z6. Pro získání obvodu 2. 
řádu musíme volit dvě z impedancí Zi jako kapacitní reaktance, viz např. obr. 6.51 b,c). 
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Obr. 6.51.  Zapojení filtrů ARC s Antoniovým GIC: a) základní konfigurace, b) varianta znázornění 

bezeztrátového obvodu s GIC, c) zapojení PP 2. řádu s konečnou hodnotou Q, d) odpovídající 
náhradní schéma. 

 



______________________________________________________________________6 Kmitočtové filtry_____ 

 225

Jmenovatel přenosové funkce (charakteristická rovnice) obvodu z obr. 6.51 b) má pak tvar 

642
31

2
5 RRR
CCp

RD +=  ,  (6.58) 

a po úpravách celé přenosové funkce jej můžeme upravit do tvaru 

64231

52

RRRCC
Rp +  . (6.59) 

Ze vztahu je patrné, že prostřední člen polynomu je nulový (koeficient b1 jmenovatele 
přenosové funkce), což odpovídá hodnotě Q=∞ a umožňuje simulaci v principu bezeztrátového 
obvodu 2. řádu. K stejnému výsledku dospějeme i simulací ideálního rezonančního obvodu LC či RD 
Antoniovým GIC (obr. 6.45). Konečnou hodnotu Q potom nastavujeme zatlumením pomocí vnějšího 
ztrátového prvku (RQ pro LC obvod nebo CQ pro RD obvod). Ze vztahu (6.61) pro Q vyplývá malá a 
na hodnotě Q nezávislá relativní citlivost ( Q

xS je 1, resp. 0,5). Jak je z (6.61) zřejmé, zvyšování 
hodnoty Q vyžaduje pouze lineární zvyšování hodnoty tlumícího prvku. Tyto obvody tedy umožňují 
realizovat zapojení s vysokými hodnotami Q (100 i více).  

Příklad realizace filtru typu PP 2. řádu ukazuje obr. 6.51 c). Jeho náhradní schéma je na obr. 
6.51 d). Přenosová funkce obvodu má tvar 
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Koeficient celkového přenosu K0 = 1+R5/R6 je vzhledem k podmínce UR6 = UC1 (nulové napětí 
diferenčních vstupů OZ) dán děličem R5 / R6. Pro optimální poměr jedné je tedy K0 = 2. Na často 
požadovaný jednotkový přenos je vhodné jej snížit vstupním děličem (např. rozdělení RQ). Druhá 
možnost, volba jiného poměru R5 / R6 než jedna s sebou přináší některé nevýhody. Pro uvedený obvod 
lze také odvodit vztahy pro rezonanční kmitočet a činitel jakosti: 
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Vztah pro rezonanční kmitočet F0 je obdobný jako vztah pro filtry ARC s jedním OZ s tím 
rozdílem, že rezistory R2 a R4 mají shodnou funkci jako R1 a R2 ve vztahu (6.49). Navíc je zde násobící 
výraz 65 / RR , který je vhodné volit jednotkový nebo blízký jedné. Vztah pro F0 lze odvodit také 
z výrazu pro simulovanou indukčnost pomocí GIC (obr. 6.43 b).  

Hodnota činitele jakosti je dána poměrem hodnoty tlumícího odporu RQ k ekvivalentní hodnotě 
funkčních rezistorů R2 a R4. Ve vztahu se opět objevuje násobící činitel, kromě již diskutovaného 
poměru R5 / R6 je zde v poměru i C1 / C3. Je též obvykle výhodné, aby i tento poměr byl roven nebo 
byl blízký jedné. 

Další zapojení filtrů 2. řádu s Antoniovým GIC a jejich reálné vlastnosti 
Ze základního zapojení simulace rezonančního obvodu (obr. 6.51 b) lze odvozovat zapojení 

jednotlivých typů filtrů bez nul přenosu, jak je to ukázáno pro PP na obr. 6.51 c) – d). Obvykle 
existuje více variant zapojení pro tentýž typ filtru. Např. filtr typu DP je vytvořen jako simulace 
rezonančního obvodu RCD, kde R1 je rezonanční odpor, CQ je tlumící prvek a zbytek obvodu tvoří 
syntetický dvojný kapacitor. Jiné zapojení lze získat umístěním tlumícího CQ do série s R1 (sériový 
rezonanční obvod) či např. RQ paralelně s C2. Podstatně větší množství variant obvodů s různými 
vlastnostmi se vyskytuje u filtrů s nulou přenosu a fázovacích článků (PZ, FČ a obzvláště DPN, 
HPN) [14]. 

Na reálné vlastnosti těchto filtrů ARC mají vliv jak reálné vlastnosti pasivních prvků, tak i OZ. 
Základní vlivy parazitních projevů pasivních prvků jsou obdobné jako u filtrů s jedním OZ s tím 
rozdílem, že obvody s Antoniovým GIC mají méně citlivý způsob zvyšování Q než obvody s jedním 



___Elektronické obvody I______________________________________________________________________ 

 226

OZ. S tím souvisejí i nízké relativní citlivosti na tolerance hodnot pasivních prvků 0Ω
xS a Q

xS , které 
mají hodnotu maximálně 1 a nejsou funkcí Q. Parazitní pasivní prvky (především parazitní kapacity) 
se u obvodů s GIC projevují méně, protože tyto obvody nevyžadují pro vyšší hodnoty Q vysoké 
poměry hodnot součástek.  

Závěrem lze k této skupině obvodů shrnout, že jde o obvody použitelné prakticky v nejširším 
kmitočtovém pásmu a pro vysoké hodnoty Q. Tyto obvody nevyžadují zvyšování poměru hodnot 
součástek, vyjma hodnoty prvků pro určení Q či FN. Jsou nejvýhodnějším řešením pro náročné 
filtry, pokud nevyžadujeme speciální požadavky, jako jsou univerzálnost či elektronické ladění. 

c)  Zapojení bloků 2. řádu se třemi a více OZ 
V této skupině existuje též více různých realizací. Jde vesměs o obvody v principu 

bezeztrátové, obdobně jako u obvodů s Antoniovým GIC. Nejčastěji používané obvody jsou některou 
z variant zapojení invertujícího a neinvertujícího integrátoru ve smyčce (obr. 6.52 a). Díky 
minimálnímu vlivu reálných vlastností OZ má specifické postavení Akerbergův – Mossbergův 
obvod. Také se zde vyskytují i další obvody, založené na jiných principech, např. použití fázovacích 
článků 1. řádu ve smyčce. 

Univerzální filtry 2. řádu s dvěma integrátory ve smyčce 
Jak již bylo naznačeno, jsou tyto obvody obdobně jako obvody s Antoniovým GIC v principu 

bezeztrátové (simulují bezeztrátový rezonanční obvod) – viz obr. 6.52. Např. ke každému z kapacitorů 
se zbytek obvodu chová jako syntetický induktor a obdobně k rezistorům R1 až R3 jako dvojný 
kapacitor. Na rozdíl od obvodů s Antoniovým GIC ale nelze tyto obvody použít jako transformační 
dvojbrany, protože žádný z prvků není uzemněný.  

Protože není možné jednoduše realizovat zapojení invertujícího a neinvertujícího integrátoru ve 
smyčce vzhledem k nemožnosti realizace bezeztrátového neinvertujícího integrátoru s jedním OZ, 
většina realizací využívá zapojení dvou invertujících integrátorů a invertoru ve smyčce (obr. 6.52 b). 
Zde invertor s integrátorem tvoří dohromady potřebný neinvertující integrátor. Jak lze odvodit, má 
determinant přenosové funkce takového obvodu shodný tvar jako pro bezeztrátový rezonanční obvod 
s Antoniovým GIC (6.61). 
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C
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Obr. 6.52.  Bezeztrátový rezonanční obvod LC nebo RD, realizovaný a) neinvertujícím a invertujícím 

integrátorem ve smyčce, b) dvěma invertujícími integrátory s invertorem ve smyčce.  
 

Nutné zvýšení počtu OZ na tři přináší některé výhody, a to především jeho univerzálnost. 
Obvod umožňuje současný výstup filtrů typu DP, HP a PP (obr. 6.53 b, c), po přidání sumačního 
obvodu se čtvrtým OZ (obr. 6.53 d) i PZ či DPN, HPN v závislosti na poměru hodnot RS1 a RS3 podle 
uvedeného vztahu. Další přidání RS2 k UPP+ umožňuje vytvoření fázovacího článku či pásmového 
korekčního obvodu po připojení RS2 k UPP-. Tyto univerzální obvody se současnou realizací většího 
počtu typů filtrů mohou fungovat např. také jako snadno laditelná kmitočtová výhybka pro dělení 
kmitočtového spektra pomocí DP a HP se shodným mezním kmitočtem. Další výhodou je možnost 
získat současně signály s fázovým posuvem 90o (např. mezi výstupy DP a PP nebo PP a HP). Při 
použití tohoto filtru v oscilátoru ARC získáme tzv. kvadraturní signály.  
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Obr. 6.53. Zapojení univerzálních filtrů s třemi a více OZ: a) zapojení s třemi vstupy a s tlumením 

ztrátovým prvkem CQ, b) zapojení s třemi výstupy a s tlumením zpětnovazební smyčkou do 
diferenčního zesilovače, c) zapojení s třemi výstupy a s tlumením dalším invertorem, d) 
sumační zesilovač pro realizaci filtrů typu PZ, DPN, HPN a FČ. 

Lze ale také vytvořit variantu s třemi vstupy a jedním výstupem, použitelnou též jako slučovací 
obvod – opak kmitočtové výhybky (obr. 6.53 a). Další výhodou této skupiny obvodů je možnost 
snadného nezávislého nastavování jednotlivých parametrů (rezonanční kmitočet F0, činitel jakosti 
Q a základní přenos K0). Vzhledem k umístění jednotlivých regulačních prvků lze většinou poměrně 
snadno realizovat elektronické řízení (viz [14], kap. 8). Pro rezonanční kmitočet všech tří obvodů platí  
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Prakticky je důležitá modifikace zapojení obvodu pro nastavení činitele jakosti. Na obr. 6.53 
jsou uvedeny tři základní možnosti. První obvod (autorů Towa a Thomase, tzv. T-T obvod) využívá 
připojení tlumícího rezistoru paralelně k jednomu z kapacitorů C1 a C2 či tlumícího kapacitoru CQ 
paralelně k jednomu z rezistorů R1 až R3 (obr. 6.53 a). Též je možné použít méně obvyklé sériové 
spojení RQ a C. Tato varianta ale neumožňuje jednoduché ladění dvěma typy prvků (pro tlumící 
kapacitor CQ nelze ladit změnou C1, C2, pro tlumící rezistor RQ nelze ladit změnou R1, R2, obdobně 
jako u obvodů s Antoniovým GIC), jak vyplývá ze vztahu pro Q v případě tlumícího CQ v tab. 6.10.  

Druhá možnost využívá odporovou zpětnou vazbu do diferenciálně zapojeného invertoru (obr. 
6.53 b) – autorů Kerwina, Huelsmana a Newcomba, tzv. K-H-N obvod). Tento obvod umožňuje ladění 
souběžnou změnou dvou rezistorů i dvou kapacitorů. Širokopásmové ladění je výhodné realizovat 
plynule souběžnou změnou R1 – R2, např. v rámci dekády, a skokově přepínat jednotlivé dekády 
pomocí C1 – C2. Určitou nevýhodou je zde nelineární závislost hodnoty Q na hodnotách nastavovacích 
odporů (viz vztah v tab. 6.10) a vzájemná závislost hodnoty Q a přenosu K0.  

Z hlediska maximální univerzálnosti a jednoduchosti realizace elektronického řízení hodnoty Q 
a K0 je vhodné přidat jako tlumící prvek zpětnou vazbu se čtvrtým OZ jako invertorem podle obr. 6.53 
c). Toto zapojení má navíc dvě varianty umístění vstupu, kde u druhé realizace nedochází pro PZ ke 
snižování dynamického rozsahu vzhledem k omezení maxima signálu na ostatních výstupech, což se 
projevuje u všech ostatních zapojení.  

 
Tab. 6.10. Vztahy pro činitele jakosti Q univerzálních obvodů 2. řádu z obr. 6.53. 

 obr. 6.53 a) obr. 6.53 b) obr. 6.53 c) 
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Základní vlivy parazitních projevů pasivních prvků jsou u těchto zapojení v principu malé, 
obdobně jako u filtrů s Antoniovým GIC. Vliv reálných vlastností OZ vyplývá z kmitočtových 
přenosových závislostí (FT čili GBW), když se projevuje výrazný parazitní nárůst hodnoty Q již od 
hodnoty F0 = 0,01 FT, a to v závislosti na Q. Proto lze tento typ obvodů používat pro podstatně nižší 
maximální kmitočty (přibližně 10x) než u ostatních typů zapojení. Do určité míry lze tento efekt 
vzrůstu Q kompenzovat [14].  

c)  Zapojení bloků 2. řádu s jinými typy aktivních prvků 
Zapojení filtrů ARC s OZ, uvedená v předchozím textu, jsou snadno realizovatelná s dobrými 

vlastnostmi pro kmitočtové pásmo asi do 1 MHz. Uvažujeme-li pro toto kmitočtové pásmo 
elektronicky neladitelnou realizaci z diskrétních součástek, jsou tato zapojení vzhledem k nízkým 
cenám a dostupnosti běžných OZ asi nejvýhodnějším řešením. Některá další hlediska a požadavky 
však vedou k hledání nových realizací s jinými typy aktivních prvků. Lze uvést např. požadavek 
elektronické laditelnosti napětím či proudem, použitelnosti v kmitočtovém pásmu nad 1 MHz a také 
možnost integrovatelnosti. 

Při diskusi použitelných aktivních prvků lze vhledem k špatným vlastnostem prakticky vyloučit 
zapojení s nejjednodušším aktivním prvkem, tranzistorem. Proto dále uvažujme jen vyráběné 
integrované aktivní prvky, a to obvykle s řízenými zdroji proudu (transkonduktanční zesilovače 
OTA, proudové konvejory, transimpedanční zesilovače TIA). 

Obvody 2. řádu ARC lze realizovat samozřejmě s kterýmkoliv z uvedených aktivních prvků 
obdobně jako s OZ. Rozdílné vlastnosti aktivních prvků s proudovým výstupem jsou zřejmé 
především na realizaci integrátoru, který je zde realizován připojením zatěžovacího kapacitoru k 
proudovému výstupu. Na obr. 6.54 a – c) jsou ukázány integrátory s OTA zesilovačem, proudovým 
konvejorem a transimpedančním zesilovačem. První z nich je možno zapojit jako invertující i 
neinvertující s nekonečným vstupním odporem (viz obr. 6.54 d). Druhý oproti tomu jen jako 
neinvertující. Pro opačnou polaritu přenosu má konečný vstupní odpor, který zatlumuje proudový 
výstup předchozího integrátoru, pokud potřebujeme zapojit invertující a neinvertující integrátory ve 
smyčce (viz obr. 6.54 a). Tuto nevýhodu nemá třetí realizace s TIA, protože proudový zdroj na svorce 
Z je v něm oddělen napěťovým oddělovačem (viz obr. 6.54 c).  
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Obr. 6.54. Zapojení integrátorů a) s OTA, b) s konvejorem, c) s TIA, d) invertující a neinvertující integrátor 
s OTA zesilovači, zapojené ve smyčce jako bezeztrátový rezonanční obvod.  

 
Bezeztrátový obvod 2. řádu s invertujícím a neinvertujícím integrátorem ve smyčce lze 

jednoduše realizovat pouze s OTA zesilovači (obr. 6.54 d). Stojí za povšimnutí, že takto vzájemně 
propojené OTA zesilovače vytvářejí dvojbran gyrátor (obr. 6.55 a) a obr. 6.47), který při zatížení 
kapacitory na obou vstupech vytváří ideální bezeztrátový rezonační obvod. Nejjednodušší aplikace pro 
filtr 2. řádu typu DP či PP je uvedena na obr. 6.55 b). Konečnou hodnotu Q tohoto ideálního 
rezonančního obvodu lze nastavit zatlumením jednoho či obou kapacitorů ztrátovým odporem RQ. Lze 
jej realizovat dalším gyrátorem, což má smysl pro integrovanou realizaci.  

Obvody s OTA se na první pohled jeví jako z mnoha hledisek ideální realizace pro obvody 2. 
řádu. Především je velkou výhodou možnost plné integrace bez potřeby použití v integrované 
technologii obtížně realizovatelných kvalitních a přesných funkčních rezistorů. Proto je tato realizace 
obvykle označována jako OTA-C filtry. Další výhodou je možnost poměrně snadného elektronického 
řízení hodnoty přenosové strmosti gM.  
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Na druhou stranu je nevýhodou omezení velikosti napětí na vstupu OTA zesilovače (asi desítky 
mV) z hlediska omezení nelineárního zkreslení, což snižuje dynamický rozsah přenosu. Další 
snižování dynamického rozsahu může být způsobeno přelaďováním. Zvýšení použitelné úrovně 
signálu je možné dosáhnout použitím odporových děličů na vstupu OTA. Ty ale snižují celkový 
vstupní odpor a zvyšují ztráty na proudových výstupech integrátorů, k nimž jsou zapojeny, pokud 
nepoužijeme napěťové oddělovače. Děliče také snižují ekvivalentní přenosovou strmost gM. Problém 
zatížitelnosti proudového výstupu řeší výrobci přidáním oddělovacího zesilovače do jednoho 
integrovaného obvodu (dvojité LM 13600, LM 13700, jednoduchý LT 1228) obdobně, jako jsou 
řešeny TIA zesilovače s konvejory. Princip zapojení s těmito obvody je uveden na obr. 6.55 c).  
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Obr. 6.55. Zapojení obvodů 2. řádu s OTA zesilovači: a) kapacitně zatížený gyrátor, b) filtr DP a PP 

s dvěma OTA zesilovači, c) tentýž filtr s OTA zesilovači, s oddělovacími zesilovači (např. LM 
13700) a vstupními děliči napětí.  

6.7.3  Filtry ARC vyšších řádů 
Pro realizaci ARC filtrů vyšších řádů je možné využít větší počet variant řešení než u filtrů 

RLC. Při návrhu se využívá dvou základních obvodových principů: 

§ spojování bloků 1. a 2. řádu (často označované jako SFB – selektivní funkční bloky), 
§ zapojení simulující filtry RLC. 

První princip, spojování bloků 1. a 2. řádu, má celou řadu předností. Vychází ze základních 
vlastností selektivních funkčních bloků. Teoreticky nulový výstupní odpor bloků umožňuje spojování 
bloků bez vzájemného ovlivňování jejich základních přenosů. Zvýšením předběžně navržených 
hodnot činitelů jakosti Qi funkčních bloků lze snadno kompenzovat parazitní ztráty reálných prvků či 
jednoduše kompenzovat další parazitní vlivy (např. odchylku rezonančního kmitočtu) a dostavit 
individuálně požadované parametry (F0, Q, popř. FN) každého bloku 2. řádu zvlášť. Výhodou návrhu 
je i možnost volby optimální impedanční úrovně (prakticky lze volit hodnoty funkčních kapacit a tím i 
hodnot odporů) každého bloku nezávisle na ostatních blocích. To vede k snížení nutného rozptylu 
hodnot součástek celého filtru. Uvedený obvodový princip má samozřejmě i určité nevýhody. Ty ale 
závisí na konkrétním způsobu realizace a budou rozebrány později. 

Druhý obvodový princip, simulace filtrů RLC, odráží především základní výhody a nevýhody 
výchozích prototypů obvodů – příčkových filtrů RLC. Hlavní výhodou jsou prakticky nejnižší 
citlivosti přenosové funkce na tolerance hodnot součástek. Hlavní nevýhody spočívají jednak ve velmi 
obtížné kompenzaci reálných ztrát, pokud nejsou zanedbatelné (obvykle se při návrhu vychází z RLC 
filtru s uvažovanými ideálními cívkami a kondenzátory), a dále v obtížné kompenzaci dalších vlivů 
reálných prvků případným dostavováním hodnot prvků filtru, protože změny hodnot jednotlivých 
prvků včetně zatěžovacích odporů jsou navzájem vázány a ovlivňují celou přenosovou charakteristiku. 
Důsledkem toho je i obtížná minimalizace případného velkého rozptylu hodnot stavebních prvků 
filtru. Další vlastnosti závisí také na konkrétním způsobu simulace filtru RLC pomocí některé z forem 
realizace (syntetické indukčnosti či dvojné kapacitory ve struktuře RCD).  
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Oba základní obvodové principy lze navíc realizovat větším počtem různých variant 
obvodových struktur. Ty lze potom podle typu zapojení rozdělit do následujících skupin: 

1) Kaskádní spojení bloků 1. a 2. řádu. 
2) Nekaskádní spojení bloků 1. a 2. řádu. 
3) Simulace filtrů RLC. 
4) Kombinace předchozích principů („leap-frog“). 
5) Speciální typy realizací. 

Pro porovnání jednotlivých způsobů řešení a výběr optimální varianty je možno vycházet z těchto 
kritérií: 

§ citlivosti na tolerance hodnot prvků filtru, 
§ rozptyl hodnot činitelů jakosti Q dílčích obvodů a s tím související jejich maximální velikost, 
§ rozptyl hodnot prvků, 
§ počet prvků, především OZ, 
§ vliv parazitních vlastností a možnost jejich eliminace, 
§ realizovatelnost typů filtrů, především úzkých pásmových propustí či zádrží, 
§ dynamický rozsah (úroveň šumu, úroveň maximálního signálu). 

Mnohé z těchto kritérií a vlastností spolu vzájemně souvisí a mohou mít v závislosti na 
podmínkách zadání filtru různou váhu. Předběžně lze říci, že v praxi se nejvíce využívá první a třetí 
způsob návrhu ARC filtrů, ostatní možnosti se využívají v běžné praxi zřídka. Některé z nich, např. 
tzv. leap-frog, jsou v poněkud větší míře používány pro integrované technologie.  

a) Filtry ARC s kaskádním řazením bloků 1. a 2. řádu 
Tento způsob realizace je v praxi velmi oblíbený pro relativní jednoduchost návrhu a použití 

a také díky jednoduchému dostavování. Výhody vyplývající z použití selektivních bloků 1. a 2. řádu 
byly již uvedeny v předchozím textu. Samotný princip kaskádní realizace má oproti dalším typům 
realizací tyto výhody:  

§ velmi jednoduchý návrh filtrů typu DP a HP a poměrně snadný i návrh filtru typu PP, popř. 
úzkopásmových filtrů typu PZ, 

§ jednoduchost dostavování koeficientů vzhledem k zřejmému vlivu vlastností jednotlivých 
selektivních bloků na výslednou přenosovou funkci, 

§ poměrně dobré a snadno nastavitelné dynamické poměry (minimální a maximální úroveň 
signálu), 

§ nezávislost tvaru výsledné modulové a fázové charakteristiky na základních koeficientech 
přenosu K0i jednotlivých bloků, což umožňuje snadnou optimalizaci dynamického rozsahu. 

Základní nevýhodou tohoto typu realizace jsou na druhé straně hlavně poměrně velké citlivosti 
na tolerance hodnot prvků a největší rozptyl základních parametrů bloků (F0i, Qi) a tudíž i nejvyšší 
hodnoty Q a s tím související zmíněné vyšší citlivosti. Tyto nevýhody se výrazněji projevují se 
zvyšováním řádu filtru. 

Princip kaskádní realizace 
Základní princip spočívá v možnosti rozložení libovolné přenosové funkce na součin dílčích 

přenosových funkcí 2., popř. 1. řádu. Přenosovou funkci sudého řádu n realizuje m = n/2 bloků 2. 
řádu, viz (6.6). 

V případě filtrů typu DP a HP je možné použít přenosové funkce lichých řádů (u PP a PZ by 
byly kmitočtové charakteristiky nesymetrické a nestandardní). Přenosovou funkci lichého řádu n 
realizuje m = (n-1)/2 bloků 2. řádu a jeden blok 1. řádu. 
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Praktický příklad kaskádní realizace DP s Cauerovou aproximací je ukázán na obr. 6.1. Jde o 
filtr 5. řádu. Je tudíž sestaven ze dvou bloků DPN 2. řádu a jednoho bloku DP 1. řádu. Filtr je tedy 
jednoznačně určen koeficienty F0i, Qi a FNi, jimiž jsou na obr. 6.1 a) popsány jednotlivé bloky. Z obr. 
6.56 b) a c) je zřejmý vliv modulových charakteristik jednotlivých sekcí na celkovou modulovou 
charakteristiku, protože násobení modulů dílčích přenosů K1, K2 a K3 se v logaritmické ose (dB) 
projevuje jako jejich součet. Díky jednoznačnému vlivu parametrů F0i, Qi a FNi jednotlivých sekcí na 
tvar výsledné modulové charakteristiky je možné jednoduché a přesné dostavení jak jednotlivých 
sekcí, tak i filtru jako celku. 

Dílčím problémem při kaskádní realizaci je volba pořadí jednotlivých bloků v kaskádě. Z 
hlediska výsledné přenosové funkce na pořadí nezáleží (jde o prosté násobení dílčích přenosů). 
Zásadním způsobem však může pořadí bloků ovlivnit dynamický rozsah přenosu filtru (minimální 
úroveň – daná šumem a maximální úroveň – omezená výstupy OZ). Nejjednodušší a nejčastěji 
používaný princip je seřazení bloků podle velikosti jejich Q od nejnižší po nejvyšší hodnoty včetně 
umístění bloku 1. řádu na prvním místě, jak je patrné z obr. 6.56 a). Řešení tohoto problému ale není 
zcela jednoznačné [14].  

V případě použití aproximací s nulami přenosu je dalším problémem přiřazení kmitočtů nul 
přenosu FNi k jednotlivým blokům s daným F0i. Výsledná přenosová funkce na tomto přiřazení 
nezávisí, nicméně přiřazení ovlivňuje výslednou citlivost na toleranci součástek [14]. 
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Obr. 6.56.  Princip kaskádní realizace DP 5. řádu s Cauerovou aproximací, a) blokové zapojení,  

b) modulové charakteristiky jednotlivých sekcí, c) modulová charakteristika celého filtru. 

Transformace parametrů normované DPn na DP, HP, PP a PZ 
Obdobně jako u filtrů RLC, i pro tuto realizaci jsou vytvořeny tabulky normovaných filtrů DP 

pro různé typy aproximací a řádů. Existují např. obdobné tabulky zapojení DPn s normovanými 
hodnotami prvků se zapojením Sallena a Keye . Pro filtry ARC je tento přístup nevýhodný, protože je 
použitelný jen pro filtry typu DP a HP. Též je v některých případech nevýhodné se vázat jen na 
výchozí zapojení, obzvláště pro vysoké hodnoty Q. Proto je více používán návrh pomocí tabulek (či 
programů), které poskytují hodnoty koeficientů bloků 2. nebo 1. řádů (F0i, Qi, popř. FN), kdy pro 
realizaci takto definovaných bloků lze pak zvolit optimální zapojení. Tabulky normovaných dolních 
propustí 2. řádu, popř. 1. řádu, označené DPn, (indexem n jsou označeny i všechny parametry 
normované DP), jsou normované pro jednotkový kmitočet bez nutnosti rozlišení, zda jde o ω či f. Je 
tedy výhodnější používat hodnoty f v [Hz]. Parametry těchto DPn musíme přepočítat na parametry 
námi požadovaného filtru. Princip přepočtu vyplývá z kmitočtové transformace, uvedené v kap. 6.3.1. 
Její pomocí obdržíme parametry výsledných bloků 1. a 2. řádu, realizující požadovaný filtr (stejný 
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 počet bloků pro DP a HP, dvojnásobný pro PP a PZ), viz tab. 6.11. Konkrétní postupy přepočtů 
parametrů DPn pro požadovaný typ filtru jsou uvedeny např. v [14]. 
 

Tab. 6.11. Princip kmitočtové transformace kaskádních filtrů ARC z normovaných DPn . 

Typ filtru   \ DPn      DPn 1. ř.  ↓       DPn 2. ř.  ↓       DPNn 2. ř.  ↓ 

DP DP 1. ř. DP 2. ř. DPN 2. ř. 
HP HP 1. ř. HP 2. ř. HPN 2. ř. 
PP PP 2. ř. PP 2. ř. + PP 2. ř. 

(DP 2. ř. + HP 2. ř.) 
DPN 2. ř. + HPN 2. ř. 

PZ PZ 2. ř. DPN 2. ř. + HPN 2. ř. DPN 2. ř. + HPN 2. ř. 

Poznámka: Bloky 3. řádu pro realizaci filtrů typu DP a HP bez nul přenosu 
Pro filtry lichých řádů typu DP a HP s aproximacemi bez nulových bodů přenosu se s oblibou 

místo dvou bloků (1. řádu a 2. řádu) využívá jeden blok 3. řádu s jedním OZ. Tato náhrada tak sníží 
počet OZ. Obecně vede realizace bloků vyšších řádů s jedním OZ k vysokým citlivostem, ale v tomto 
případě totiž vzrůst citlivostí pro realizaci bloku 3. řádu není ještě výrazný (citlivost je srovnatelná 
s bloky 2. řádu s mírně vyšším Q). Příklad uvedené náhrady pro DP ukazuje obr. 6.57.  
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Obr. 6.57.  Náhrada bloků DP1. řádu a DP 2. řádu blokem DP 3. řádu s jedním OZ. 

b) Filtry ARC jako simulace příčkových filtrů RLC 
Nejjednodušší způsob realizace těchto typů ARC filtrů spočívá v přímé náhradě cívek 

bezeztrátovými syntetickými induktory, viz kap. 6.7.1. Druhý možný přístup, vycházející z 
Brutonovy transformace (viz kap. 6.7.1), je v mnoha případech výhodnější, protože vede k 
minimalizaci počtu operačních zesilovačů. Výhodné je simulovat najednou celé skupiny (bloky) se 
stejným typem prvků.  

Bloková simulace filtrů RLC s využitím Brutonovy transformace  
Základní principy simulace RLC příčkových článků pomocí Brutonovy transformace byly 

rozebrány v kap. 6.7.1. Při návrhu filtrů s využitím transformace je ale výhodnější nahrazovat celé 
podobvody R, L a C (bloky prvků stejného typu). Základní myšlenka spočívá v poznatku, že část 
obvodu se shodným typem prvků je transformována na obvod se stejnou konfigurací a stejným 
koeficientem transformace. Podmínkou je, aby byly všechny přívody vydělené části obvodu připojeny 
ke zbytku obvodu přes impedanční konvertory se stejnou transformační konstantou kT, viz příklad 
transformace odporového bloku na ekvivalentní blok indukčností na obr. 6.58.  
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       Obr. 6.58.  Příklad simulace bloku indukčností L1 – Ln ekvivalentním blokem shodných odporů RL1 – RLn. 
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 Obecné využití základního poznatku o blokové transformaci je znázorněno v tab. 6.12. Vidíme, 
že mezi dvěma krajními realizacemi ve struktuře LRC a zcela transformované RCD (varianta I a IV, 
se syntetickými induktory či dvojnými kapacitory) existují další dvě možné varianty, realizované 
částečnou transformací pouze s prvky R a C. Podmínkou těchto dvou realizací je ale připojení 
impedančních konvertorů (GIC, znázorněno čtverečkem) na všechny spoje mezi bloky Ci, Rj v 
realizaci LRC a bloky CRj, RLk v realizaci RCD, vyjma společného spoje (země).  

 

Tab. 6.12.  Princip blokové simulace filtrů RLC pomocí Brutonovy transformace.  
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Konkrétní příklad čtyř možných variant realizace filtru typu DP 5. řádu ukazuje obr. 6.59. 
Všechny čtyři varianty obvodové realizace mají shodný tvar přenosové funkce, ale samozřejmě jiné 
impedanční vlastnosti. 

Varianta I (přímá simulace induktorů Lk) vyžaduje při realizaci ARC přímé použití plovoucích 
syntetických induktorů (viz obr. 6.43) na místě původních cívek (L1 – L5). 

Varianta II (bloková simulace induktorů Lk) odděluje blok s cívkami Lk a tyto cívky blokově 
simuluje rezistory RLk pomocí impedančních konvertorů. 

Varianta III (bloková simulace dvojných kapacitorů DCi) vychází z obvodu, převedeného do 
struktury RCD. Zde odděluje blok s dvojnými kapacitory DCi a tyto dvojné kapacitory blokově 
simuluje kapacitory Ci pomocí impedančních konvertorů. Důležitá je skutečnost, že tato realizace 
vyžaduje zdroj signálu s nulovým vnitřním odporem a čistě kapacitní zátěž či oddělení ideálním 
zesilovačem s velkou hodnotou RVST.  

Varianta IV (přímá simulace dvojných kapacitorů DCi) je obdobná variantě III tím že vychází 
z obvodu, převedeného impedanční transformací na strukturu RCD. Místo impedančních konvertorů 
s původními kapacitory (C1 a C2) vytvářejících dvojné kapacitory, jsou použita přímo některá ze 
zapojení syntetických dvojných kapacitorů (viz obr. 6.45). 
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Obr. 6.59.  Varianty realizace příčkového článku RLC podle tab. 6.12. 
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Je nutno podotknout, že v některých případech mohou vést odlišné návrhové postupy některých 
obvodových variant k totožnému zapojení, jak je přímo zřejmé pro varianty III a IV filtru typu DP na 
obr. 6.59. Zapojení syntetických dvojných kapacitorů zde mohou být totožná se zapojením konvertorů 
GIC, zatížených odpovídajícím kapacitorem. 

Porovnání vlastností jednotlivých variant zapojení není zcela jednoznačné, závisí jednak na 
tvaru výchozího obvodu RLC a dále např. na možnosti realizace kapacitní zátěže u varianty III nebo 
IV atd.  

Základní postup návrhu filtrů ARC jako simulace příčkových filtrů RLC: 

1. Navrhneme vhodný prototyp příčkového filtru RLC podle kap. 6.6. V některých případech může 
být nejednoznačná volba výchozí hodnoty zakončovacích odporů R1 a R2. V tom případě zvolíme 
např. hodnoty 1 kΩ a pak podle potřeby impedanční úroveň celého filtru snadno přepočítáme 
vynásobením hodnot Rj, Lk a vydělením hodnot Ci vhodnou konstantou. 

2. Další postup záleží na zvolené variantě. V případě varianty I navrhujeme potřebné syntetické 
induktory přímo podle [14], kap. 5.4.3.  

3. V případě varianty II, III a IV potřebujeme zvolit transformační konstantu kT a podle ní 
přepočítat hodnoty simulujících prvků (6.52 – 6.54) pro strukturu RCD. Je vhodné vyjít z mezního 
kmitočtu FM pro DP či HP, nebo středního kmitočtu F0 pro PP či PZ, přičemž orientační hodnotu 
konstanty kT lze volit podle vztahu 

kT = MF310  . (6.63) 

Pokud by ovšem některé z výsledných hodnot prvků měly příliš malou či velkou hodnotu, je 
potřebné výchozí volbu transformační konstanty kT odpovídajícím způsobem korigovat.  

4. Návrh hodnot součástek Antoniova GIC pro varianty II a III pak realizujeme podle [14], kap. 5.4.5. 
5. Dvojné kapacitory pro variantu IV navrhujeme podle [14], kap. 5.4.6. 

Poznámka:  Simulace filtrů RLC se ztrátovými syntetickými prvky (s jedním OZ) 
V případě filtrů s nízkými hodnotami pracovních činitelů jakosti jednotlivých prvků (DP, HP 

nízkých řádů) je možné při realizaci s úspěchem použít ztrátové syntetické prvky (syntetické induktory, 
dvojné kapacitory) v zapojení s jedním OZ [14]. To může vést k dalšímu snížení počtu OZ na polovinu 
a k realizacím s nejmenším možným počtem OZ.  
 

6.8  FILTRY SE SPÍNANÝMI KONDENZÁTORY  
Tento typ realizace kmitočtových filtrů, označovaný SC, či přesněji ASC, vznikl na základě 

snahy o výrobu plně integrovaných kmitočtových filtrů ARC. Výroba filtrů ARC jako hybridních 
integrovaných obvodů byla technologicky zvládnuta, ale při vývoji komplexně integrovaných verzí 
obvodů se stala klíčovým problémem realizace přesných a kvalitních odporů. K úspěšnému vyřešení 
napomohl již dlouho známý, ale pro realizaci s diskrétními prvky nepříliš výhodný způsob realizace 
odporu pomocí přepínaného kondenzátoru. Využití tohoto způsobu realizace položilo základ výroby 
plně integrovaných kmitočtových filtrů.  

Uvedený typ filtrů má jako plně integrované realizace navíc výraznou výhodu v možnosti 
snadného ladění, a to i u filtrů vyšších řádů, jednoduchou změnou spínacího kmitočtu. Tuto vlastnost 
nemá žádná jiná z realizací kmitočtových filtrů vyjma číslicových filtrů. Na druhou stranu však tyto 
obvody mají některé nevýhody, spojené s technologií spínačů (rušivé vlivy, vzorkovací efekt, zvýšení 
ofsetu, kmitočtové omezení), jakož i samozřejmé výrobní omezení na úzký okruh nejběžnějších typů 
filtrů v důsledku velkosériové výroby integrovaných obvodů.  

Omezení okruhu typů sériově vyráběných filtrů se obchází výrobou univerzálních bloků ASC 2. 
řádu, ze kterých si může uživatel sestavit filtr pro své speciální zadání. Nastavení parametrů filtru je 
určováno připojením vnějších odporů ke každému bloku. Použití tohoto způsobu realizace je do určité 
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míry sporné, protože kromě výhody snadné přeladitelnosti se hlavní výhoda – komplexní integrace - 
ztrácí, pouze se omezuje potřeba připojování vnějších kapacitorů.  

6.8.1 Princip funkce filtrů ASC  
Základní princip využití spínaného kapacitoru jako odporu je ukázán na obr. 6.60. Celkovou 

funkci obvodu jako filtru lze nejlépe vysvětlit na zapojení dolní propusti 1. řádu. V první fázi se 
kapacitor CR nabije na napětí zdroje U1 a v druhé fázi se přepne ke kapacitoru C, který se tím částečně 
nabije (hodnota napětí závisí na poměru obou kapacit). Opakovaným nabíjením kapacitoru C (pomocí 
kapacitoru CR) vzrůstá postupně jeho napětí až na hodnotu U1. Obvod se tedy chová stejně, jako kdyby 
byl kapacitor C připojen ke zdroji konstantního napětí U1 přes ekvivalentní rezistor RSP (viz obr. 6.60 
c). Přepínaný kapacitor se tak stává „dávkovačem“ náboje, jehož hodnota závisí na kapacitě CR a na 
kmitočtu přepínání fSP. Je ale zřejmé, že obvodu s normálním rezistorem se spínaný obvod s 
kapacitory blíží jen při velmi krátké době periody T přepínání v poměru k rychlosti změny signálu. 
Nejčastěji se volí poměr kmitočtů spínacího a užitečného signálu fSP/f  padesát nebo sto.  

Důležitým faktem je možnost vzniku aliasingového efektu u filtrů ASC, která je daná 
vzorkovacím principem. Vzhledem k vysokému poměru fSP/f však stačí obvykle použít jednoduchý 
antialiasingový filtr či v mnoha případech není potřeba používat žádný.  
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Obr. 6.60.  Základní vlastnosti obvodů s přepínanými kapacitory: a) nejjednodušší varianta přepínaného 

kapacitoru jako simulace rezistoru, b) dolní propust 1. řádu s přepínaným kapacitorem jako 
ekvivalent dolní propusti RC 1. řádu, c) časový průběh výstupního napětí, d) simulace 
neuzemněného (plovoucího) rezistoru, e) možné zapojení obvodu 2. řádu jako realizace 
invertujícího a neinvertujícího integrátoru ve smyčce. 

 
Z uvedeného principu funkce není na první pohled zřejmé energetické hledisko, v přepínaném 

obvodu totiž musí rovněž docházet k ekvivalentní energetické ztrátě jako na odporu ekvivalentního 
rezistoru. To lze vysvětlit ztrátami při přechodných dějích nabíjení a vybíjení. I v případě ideálních 
vodičů a přepínačů by docházelo v uvedeném obvodu ke ztrátám vyzařováním při nekonečně rychlých 
přechodných dějích. V běžných obvodech se většina energie ztratí při podstatně pomalejších 
přechodných dějích na odporech vodičů, zdroje a přepínačů. Konečná rychlost přechodných dějů je 
naopak na druhé straně jedním z faktorů, limitujících maximální použitelné kmitočtové pásmo. 
Principu spínaných kapacitorů je možné využít jen pro nízkovýkonové signálové obvody. Pro 
výkonové obvody je potřebné spínané obvody doplnit i indukčnostmi, snižující rušení a energetické 
ztráty. 

Pomocí přepínaného kapacitoru je možno simulovat i neuzemněný (plovoucí) rezistor, jak 
ukazuje obr. 6.60 d). Obvodová technologie spínaných kapacitorů umožňuje bohatší možnosti 
zapojení než u klasických obvodů ARC, i když v podstatě z těchto filtrů vychází. Ukázkou je zapojení 
obvodu 2. řádu na obr. 6.60 e) se zapojením invertujícího a neinvertujícího integrátoru ve smyčce. Na 
rozdíl od obvodů ARC lze realizovat bezeztrátový integrátor s neinvertujícím zesilovačem (veškerý 
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náboj přepínaného kondenzátoru je vybit přes jednotkový zesilovač do integračního kondenzátoru). 
Spínanými obvody lze realizovat také neinvertující integrátor s jedním OZ tak, že polarita CR2 je při 
přepnutí otočena a přepínaný kondenzátor se chová jako odpor, který způsobuje záporný přenos této 
části obvodu. Při spínání obvodů lze dokonce využít takové zapojení, kdy jeden OZ slouží jako aktivní 
prvek pro oba integrátory – to umožňuje realizovat toto zapojení pouze s jedním OZ. 

Ze základního vztahu pro rezonanční kmitočet a jeho vyjádření pomocí ekvivalentního odporu 
spínaných kapacitorů vyplývá přímá úměra mezi spínacím a rezonančním kmitočtem: 

21

21

2121
0 22

1
CC
CCf

CCRR
F RRSP

ππ
==   . (6.64) 

Ze vztahu je patrné, že rezonanční kmitočet je určen pouze poměrem hodnot kapacit, což je 
výhodné obzvláště z hlediska realizace integrovaných obvodů v technologii CMOS (mj. kompenzace 
tolerancí, teplotních vlivů a pod.). 
Poznámka: 

K syntéze obvodů se spínanými kondenzátory lze přistupovat i odlišným přístupem, vycházejícím 
z diskrétního (vzorkovaného) principu funkce. Diskrétní přenosová funkce je realizovatelná i 
číslicovými filtry, s tím rozdílem, že navzorkované hodnotě napětí kondenzátoru odpovídá  příslušné 
binární číslo. Proto lze vyjít při návrhu filtrů ASC z některých principů návrhu číslicových filtrů. Pro 
filtry ASC se taktéž projevuje některá z tzv. p-z transformací, nicméně k obvykle velkému poměru 
spínacího a funkčního kmitočtu jejich praktický vliv není příliš podstatný. Blíže se s principy realizace 
číslicových filtrů seznámíte v dalším studiu. Závěrem je možné říci, že filtry ASC jsou přechodným 
typem mezi analogovou a číslicovou realizací filtrů, když diskrétní funkcí odpovídají spíše číslicovým 
filtrům, ale vzhledem k uplatňované podmínce dostatečně vysokého spínacího kmitočtu je lze 
zjednodušeně navrhovat a používat jako filtry analogové. 
 

6.8.2 Univerzální integrované bloky ASC 2. řádu 
Pro účely návrhu univerzálních filtrů ASC byly vytvořeny univerzální bloky 2. řádu, u nichž si 

může uživatel nastavit své vlastní parametry tak, aby po sestavení pomocí kaskádní či nekaskádní 
syntézy vytvořil filtr podle svého specifického zadání, přičemž tento filtr může být přeladitelný 
spínacím kmitočtem. Pro nepřelaďované aplikace je však použití těchto filtrů málo výhodné mj. 
vzhledem ceně a poměrně malé úspoře v pracnosti montáže oproti realizacím s diskrétními prvky a 
OZ. 
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Obr. 6.61.  Univerzální obvod ASC 2. řádu: a) zapojení IO, b – f) varianty zapojení.  
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Většina realizací těchto typů obvodů vychází ze zapojení univerzálního filtru 2. řádu s dvěma 
integrátory a invertorem (obr. 6.61 a). To umožňuje několik variant zapojení. Výrobci je označují 
obvykle jako Mód 1 – 3. Blokové zapojení univerzálního integrovaného obvodu ASC 2. řádu s dvěma 
ASC integrátory a základní varianty zapojení filtrů jsou na obr. 6.61. Rozdíly mezi jednotlivými 
variantami obvodů spočívají především v možnosti realizace výstupů HP, PZ, DPN a HPN a dále 
v poměru rezonančního kmitočtu F0 ke spínacímu kmitočtu, kdy pro filtry vyšších řádů potřebujeme 
rozdílné rezonanční kmitočty v poměru k jednotnému spínacímu kmitočtu. Tyto rozdíly jsou zřejmé 
z tab. 6.13. 

Při návrhu filtru vycházíme z volby hodnoty spínacího kmitočtu (100krát či 50krát vyšší 
než rezonanční kmitočet jednoho z bloků). Pro ostatní bloky pak volíme mód a odpor pro snížení či 
zvýšení kmitočtu podle jejich F0i. Pro potřebné přenosy a hodnoty Qi navrhneme odpovídající hodnoty 
odporů podle uvedených vztahů. V případě přenosových funkcí s nulami přenosu musíme zvolit 
odpovídající mód pro snížení či zvýšení kmitočtu FN nuly přenosu oproti F0 pomocí odpovídajících 
odporů. Podrobné návrhové postupy jsou uvedeny v katalogových listech [I11], [I12], popř. je možno 
použít i programy pro návrh. 
 

Tab. 6.13. Vztahy pro parametry bloků ASC 2. řádu z obr. 6.61 pro jednotlivé módy obvodu.  
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6.8.3 Integrované filtry ASC vyšších řádů 
Hlavní výhoda filtrů ASC spočívá v možnosti monolitické realizace filtrů vyšších řádů. Výrobci 

nabízejí sortiment filtrů většinou typu DP s různými typy aproximací, řádů a odpovídajících potlačení 
a strmostí. Jednotlivé typy se liší v rozsahu přeladitelného pásma a v dalších vlastnostech (dynamický 
rozsah, příkon a pod.). Historicky první filtry využívaly kaskádního zapojení bloků, později přešli 
výrobci většinou na strukturu „leap-frog", avšak u mnohých obvodů se vnitřní struktura obvodu v 
katalogových listech vůbec neuvádí. 

Určitá nectnost filtrů ASC – vyšší ofset – vedla výrobce k produkci tzv. „Zero-error" filtrů 
neboli filtrů s minimálním ofsetem. První varianty těchto obvodů vyžadovaly přídavný odpor a 
kondenzátor s hodnotou závislou na kmitočtu. Proto nebyly plynule přeladitelné spínacím kmitočtem. 
Novější varianty s omezeným ofsetem už tyto externí prvky nevyžadují a jsou přeladitelné. Je ovšem 
nutno podotknout, že i u těchto obvodů může jít o ofset ještě poměrně velký. Pro případ přesnějšího 
stejnosměrného přenosu (přesné měřící a rekonstrukční filtry) lze proto raději doporučit filtry ARC 
podle [14], kap. 8.3. 
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6.9  ELEKTROMECHANICKÉ FILTRY A FILTRY S PAV 
Základní princip funkce elektromechanických filtrů je ukázán na obr. 6.62. Podstatou realizace 

požadovaných selektivních přenosových vlastností je využití mechanické rezonance kmitajících 
soustav, v tomto případě kovové struny. Aby tento mechanický systém mohl být uplatněn v elektrické 
přenosové cestě, musí obsahovat vhodné měniče elektrického signálu na mechanický signál a zpět. Na 
obr. 6.62 je využito v obou případech cívek – jednou jako budící a podruhé snímací. Přenosové 
vlastnosti mají charakter pásmové propusti, který je převážně určen rezonančními vlastnostmi kovové 
struny.  

U1
U2

f

U2/U1

 
Obr. 6.62. Princip elektromechanického filtru s využitím rezonance kmitající struny. 
 

Prakticky používané elektromechanické filtry používají výhodnějších mechanických rezonátorů 
a měničů elektrické energie na mechanickou a zpět. Jedním z nejdokonalejších rezonátorů jsou 
výbrusy křemenných krystalů s piezoelektrickým efektem pro převod elektrického signálu na 
mechanický, využívané jako tzv. krystalové filtry. Chovají se jako sérioparalelní rezonanční obvody 
s vysokým činitelem jakosti (cca 10 000) a vysokou stabilitou rezonančního kmitočtu. Vzhledem 
k jejich vysokému Q a tím velmi malé relativní šířce pásma se pro běžnou filtraci signálů téměř 
nepoužívají, vyjma např. speciálních mezifrekvenčních filtrů v leteckých přijímačích. Vzhledem 
k výhodné realizaci filtru typu PP s vysokou stabilitou rezonančního kmitočtu se ale používají 
v oscilátorech. 

Pro aplikace s větší relativní šířkou pásma se využívají jiné typy rezonátorů, založené převážně 
na různých keramických hmotách. Touto cestou se vyrábějí velmi malé a levné mezifrekvenční filtry 
455 kHz a 10,7 MHz pro rozhlasové přijímače a zvukovou mezifrekvenci TV přijímačů, takže 
prakticky vytlačily použití klasických LC filtrů, převážně používaných pro tyto aplikace ještě před asi 
20-ti lety. Ovšem i tento typ elektromechanických filtrů má příliš malou šířku pásma pro použití jako 
filtr mezifrekvenčního obrazového signálu v TV přijímačích (B je cca 8 MHz na kmitočtu 39 MHz). 
Proto mohly klasické LC filtry být nahrazeny až podstatně později, kdy se podařilo vyvinout levnější a 
menší filtry typu PP s dostatečnou šířkou pásma na základě jevu povrchové akustické vlny (PAV, 
anglicky SAW). Tento jev taktéž využívá změnu elektrického signálu na mechanický, ale dále využívá 
vzniku a šíření povrchové vlny (ultrazvukové s vysokým kmitočtem). Selektivní vlastnosti zde 
nevznikají mechanickou rezonancí, ale vhodnými rozměry, tvarováním a rozmístěním piezoměničů na 
keramickém materiálu tak, aby došlo na přijímacím měniči k vhodnému fázovému součtu šířících 
se povrchových vln pro požadovaný kmitočet a naopak k fázovému odečtu pro nepropustné pásmo. 
Tuto techniku se podařilo rozpracovat i pro vyšší kmitočtová pásma, takže se tyto filtry používají např. 
v mobilních telefonech.  

Aplikace těchto elektromechanických a PAV filtrů v praxi je poměrně jednoduchá, je pouze 
nutno dodržet impedanci zdroje a zátěže, doporučenou výrobcem. Je nutno ovšem počítat s větším 
průchozím útlumem filtrů PAV v propustném pásmu. 

6.10  SYNTÉZA ELEKTRICKÝCH OBVODŮ 
Návrh či syntéza elektrických či elektronických obvodů je jakýmsi protikladem analýzy 

obvodů. V porovnání s analýzou jde o podstatně složitější problém, plynoucí mj. z toho, že můžeme 
obdržet velké množství (teoreticky až nekonečné) počtu řešení z hlediska variant zapojení obvodu a 
variant hodnot použitých prvků tak, aby bylo splněno základní zadání požadované funkce. Navíc 
musíme kromě základních funkčních požadavků brát v úvahu řadu dalších praktických kritérií, které 
obvykle souvisí i s cenou realizace. Proto je obvykle hledána optimální realizace z hlediska všech 
požadovaných kritérií, tj. např. nejjednodušší a nejlevnější realizace s nejmenšími citlivostmi na 
reálné vlastnosti skutečných stavebních prvků při dostatečné rezervě ve spolehlivosti funkce. 
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Stanovena mohou být i další kritéria (rozměrová, příkonu atd). Tuto ve svém dopadu velice 
složitou úlohu nelze řešit jednoduchými univerzálními algoritmy, jako je tomu u analýzy. Navíc často 
ani nejsou vzhledem ke složitosti zpracovány algoritmy přímého návrhu. Proto se obvykle využívá 
částečně intuitivní metoda opakované analýzy, kdy spíše na základě empirie či zkušeností zvolíme 
nějaké výchozí řešení a pak se po provádění dílčích změn snažíme pomocí opakované analýzy dospět 
k požadovaným vlastnostem.  

Lze říci, že každá specifická oblast elektrických obvodů si vytvořila své specifické přístupy 
k syntéze. Výsadní oblast zde má syntéza elektrických filtrů, kde vzhledem k relativní standardnosti 
požadavků a dlouholeté systematické práci byly zpracovány různé přímé postupy syntézy bez nutnosti 
použití relativně těžkopádné opakované analýzy. 

Stanovení požadavků na filtr

Volba typu aproximace a řešení
aproximační úlohy

Volba typu realizace

Volba typu zapojení filtru a
jeho návrh

Kontrola a dostavování
požadovaných vlastností

Konec

Start

 
Obr. 6.63. Blokový diagram postupu návrhu kmitočtových filtrů. 
 

Poměrně nové prvky a postupy do této oblasti vneslo masové nasazení počítačů a 
odpovídajícího software. To zvýšilo jak masovější dostupnost složitých návrhových postupů přímé 
syntézy, tak i potlačilo relativní těžkopádnost postupů s opakovanou analýzou i pro běžné uživatele. 
Vzniklo tak mnoho různých programů pro návrh různých obvodů. Nicméně, při použití těchto 
programů je vždy vhodné dostatečně hluboce rozumět problematice a znát různá důležitá praktická 
omezení, která každý návrhový postup má. Při jejich zanedbání pak obdržíme použitým návrhem 
neoptimální či zcela špatná řešení. 

Navíc i pro tak relativně uzavřenou problematiku, jakou je návrh kmitočtových filtrů, nelze 
využít počítač pro celý návrh. Počítač je jen výkonný nástroj pro pomoc návrháře při rutinních 
složitých výpočtech, jak je to zřejmé z obr. 6.63. 

Jako jednoduché příklady syntézy lze uvést návrhy filtrů s přenosovou funkcí 1. a 2. řádu. Zde 
lze požadavky poměrně jednoznačně zadat hodnotami základních parametrů (f0, Q) a požadovaným 
typem filtru (DP, HP…) a dále impedancemi na vstupu a výstupu filtru. Pokud zvolíme realizaci RC, 
resp. RLC (vyhovuje realizačním požadavkům), máme dán téměř jednoznačný sortiment výchozích 
schémat a k nim platných vztahů pro požadované parametry (kap. 6.2). I tak ale obvykle máme větší 
počet neznámých stavebních prvků než návrhových rovnic (jeden či více tzv. stupňů volnosti). Proto 
jednu či více hodnot můžeme volit, a to tak, aby výsledné hodnoty všech prvků byly snadno 
realizovatelné a málo závislé na parazitních vlivech. Např. hodnoty kapacit nesmí být příliš vysoké 
(velké rozměry, cena, nízká kvalita), ale ani příliš malé (nestabilita hodnot vzhledem k vlivu 
parazitních kapacit apod.  
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 Pro filtry vyšších řádů přibývá mimo nárůstu počtu prvků a složitosti návrhových rovnic také 
problém stanovení koeficientů přenosové funkce (řešení aproximační úlohy), viz kap. 6.3. V druhém 
kroku pak je důležitá volba typu realizace a následná volba typu zapojení obvodu filtru. Zde je 
pochopitelně podstatně více možností než u filtrů 1. a 2. řádů.  Podstatně obtížnější je i matematické 
řešení dalšího kroku, návrh hodnot součástek (někdy jako úžeji chápaný pojem syntézy obvodu). Pro 
typické standardní úlohy jsou obvykle již vypracovány algoritmy, kterých využívají běžné programy 
pro návrh filtrů. 

Nicméně zde problém návrhu obvykle nekončí. Teoreticky vypočítané hodnoty součástek je 
potřebné ověřit. Především je důležitý rozbor vlivu konečné přesnosti (či spíše nepřesnosti) hodnot 
součástek a běžných parazitních vlivů (parazitní kapacity, kmitočtové vlastnosti OZ apod.) na 
výsledné vlastnosti. Tomu se obvykle říká toleranční či citlivostní analýza. Tato ověření praktické 
funkčnosti se realizují obvykle i experimentálně.  

V případě, že výsledné vlastnosti či již dílčí výsledky návrhu z nějakého důvodu nevyhovují, je 
potřebné se vracet v jednotlivých krocích návrhu, jak je to naznačeno i na obr. 6.63. Některé negativní 
skutečnosti (mimo základních vlastností např. velikost hodnot prvků, požadavky na aktivní prvky a 
pod.) se pak mohou cílevědomě odstraňovat. Tomu se obvykle říká optimalizace. Může mít různé 
podoby. Zde lze také s výhodou použít počítač. Příklad možné optimalizace pro kompenzaci vlivu 
parazitních kmitočtových vlastností OZ filtrů ARC je ukázán na obr. 6.64. Specifické možnosti 
optimalizací pro jednotlivé typy realizací jsou podrobněji ukázány např. v [14]. 

Ω0i, Qi, (FNi)

Návrh hodnot
součástek

Semisymbolická
analýza

Porovnání dominantních
pólů a nul přenosu s

požadovanými

prekorekce
Ω0i', Qi', (FNi')

Vyhovuje?

Ano

Ne

 
 

Obr. 6.64. Diagram iteračního algoritmu prekorekce vlivu reálných OZ na přenosové vlastnosti filtrů ARC. 
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7 ZESILOVAČE 
7.1 PRINCIP ZESILOVAČE 

Zesilovač elektrického signálu je dvojbran (obr. 7.1). Na jeho vstup přivádíme signál, který má 
být zesílen (vstupní signál, budící signál). Z jeho výstupu odebíráme zesílený signál (výstupní signál, 
odezvu). Aby dvojbran byl zesilovačem, musí být výkon P2 výstupního signálu větší než výkon P1 
vstupního signálu. Jinými slovy, výkonové zesílení zesilovače musí být větší než jedna. 

 1
1

2 >=
P
PAP

 (7.1) 

 
 

 

Zdroj signálu Zesilovač Zátěž 

 
Obr. 7.1. Blokové schéma zesilovače jako 

dvojbranu a jeho vstupní a 
výstupní veličiny. 

Obr. 7.2.    K energetické bilanci zesilovače. 

Nestačí, aby např. napěťový přenos byl větší než jedna (aby výstupní napětí bylo větší než 
vstupní), nebo aby proudový přenos byl větší než jedna (aby výstupní proud byl větší než vstupní). U 
transformátoru může být v závislosti na poměru závitů primárního a sekundárního vinutí buď přenos 
napětí nebo přenos proudu větší než jedna, ale vždy bude výstupní výkon menší něž vstupní o ztráty 
v transformátoru. 

Aby mohl být výstupní výkon zesilovače větší než jeho budící výkon,  
• musí být do zesilovače dodávána energie ze zdroje (z napájecího zdroje) a 
• zesilovač musí obsahovat prvek, který dovede přesouvat energii z napájecího zdroje do 

výstupního signálu. 
Důležitým ukazatelem energetické bilance zesilovače je účinnost. Ta je dána poměrem výkonu 

P2 dodávaného signálem do zátěže a součtu všech výkonů dodávaných do zesilovače, tj. výkonu P1 
zesilovaného signálu a výkonu P0 dodávaného napájecím zdrojem. Zpravidla bývá výkon budícího 
signálu zanedbatelný. Vztah pro účinnost je: 

 
01

2

PP
P
+

=η  , resp.  
0

2

P
P

=η  . (7.2) 

Napájecí zdroj bývá většinou zdroj ss napětí, u některých typů tzv. parametrických zesilovačů to 
bývá zdroj střídavého napětí. 

Zesilovač musí obsahovat aspoň jeden prvek, který je schopen přeměňovat výkon dodávaný 
napájecím zdrojem na výkon zesíleného signálu, tj. prvek, který je schopen vytvářet nové složky 
spektra a který je schopen přesouvat energii z jedné složky spektra signálu do jiné složky signálu. To 
dovedou prvky nelineární a prvky parametrické. Takovým prvkům zpravidla říkáme aktivní prvky. 
Typickým a nejčastěji používaným aktivním prvkem (nelineárním prvkem) v zesilovačích je tranzistor 
(bipolární nebo polem řízený). 
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Zesilovač je tedy v podstatě nelineární obvod, avšak musí být navržen tak, aby se vzhledem k 
zesilovanému signálu choval jako lineární obvod (Kap. 3.1, obr. 3.5 a 3.6, Shrnutí a zobecnění). 
Budeme-li uvažovat příklad z obr. 7.17 (str.258) a práci v oblasti středních kmitočtů, pak výstupní 
napětí u2 musí být nezkresleným obrazem napětí u1, tj. musí mít stejný průběh jako vstupní napětí u1, 
jenom je násobeno určitou konstantou K, zesílením (přenosem): 
 12 uKu =  . (7.3) 

Zesílení K v oblasti středních kmitočtů může být číslo kladné, nebo záporné. Pokud zesilovač 
neobrací fázi zesilovaného signálu je K kladné (obr. 7.35, s. 267), pokud obrací (obr. 7.17), je záporné. 

U zesilovačů, které splňují (aspoň do jisté míry) požadavek linearity, používáme pro 
zjednodušení úvah pro popis některých základních vlastností zesilovače tzv. linearizovaný model 
skutečného zesilovače (viz. kapitola 3.3 Linearizovaný model obvodu). Pro tento model zesilovače 
používáme pojem ideální zesilovač. 

 
Obr. 7.3. Příklad práce tranzistoru v lineárním a nelineárním režimu. 
 

Pokud je vstupní signál u1(t) dostatečně malý (nepřekročí meze, ohraničující tuto téměř 
lineární část charakteristiky), odpovídá výstupní signál u2(t) téměř přesně vztahu (7.3), viz obr. 7.3. 
signál s1. Pak mluvíme o kvazilineárním zesilovači, který ovšem pro zvýšení velikosti vstupního 
signálu nad uvažovanou mez přechází do nelineárního režimu, kdy vztah (7.3) již neplatí, viz obr. 7.3, 
signály s2 a s3. Každý zesilovač má tedy mez velikosti signálu a tomu odpovídající pracovní oblast, 
kdy pracuje jako kvazilineární. Tato mez se může měnit podle použití zesilovače - menší bude u 
zesilovačů akustického signálu, kdy je požadavek na zkreslení signálu přísný, větší např. u zesilovačů 
regulačních soustav. Míru odchylky od ideální lineární funkce vyjadřujeme různými způsoby. Často se 
používá činitel harmonického zkreslení (kap. 3.2.1, vztah 3.3) a také činitel intermodulačního 
zkreslení. 
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7.2 PARAMETRY ZESILOVAČE 
Parametry zesilovačů můžeme rozdělit do několika skupin podle různých hledisek. Každý 

aktivní prvek má omezenou pracovní oblast, ve které se vůči signálu jeví jako víceméně lineární (obr. 
7.3). Ale i v této pracovní oblasti není nikdy dokonale lineární. Pokud nelinearitu zanedbáme, můžeme 
vlastnosti linearizovaného zesilovače popsat Lineárními parametry. Po překročení pracovní oblasti se 
jeho nelinearita začne projevovat intenzivněji. Pro popis vlivu nelinearity (jak v případě malého 
signálu tak i velkého signálu) na procházející signál použijeme tzv. nelineární parametry. 

Velmi často se pro zesilovače (ale i jiná zařízení) udávají tzv. jmenovité (nominální) parametry. 
Tyto parametry udávají typické vlastnosti zařízení za definovaných (vyjmenovaných) podmínek. 

7.2.1 Lineární parametry 
Do lineárních parametrů zahrnujeme ty parametry zesilovačů, které jsou typické pro lineární 

obvody. Jsou to především přenosové a imitanční parametry a charakteristiky. Přenosové parametry 
můžeme definovat jednak v časové oblasti a jednak ve frekvenční oblasti. V časové oblasti to je např. 
přechodová charakteristika, resp. impulsní odezva, ve frekvenční oblasti jsou to kmitočtové závislosti 
přenosu a impedancí v harmonickém ustáleném stavu. Vztah mezi okamžitými hodnotami výstupního 
a vstupního signálu udává převodní charakteristika. 

Přenosové parametry 
Přechodová charakteristika a frekvenční charakteristika se vztahují k práci aktivního prvku v 

lineární oblasti. Mluvíme o linearizovaném modelu zesilovače. Přechodová charakteristika h(t) 
zesilovače je jeho odezvou na jednotkový skok. Frekvenční charakteristika ( ) ( ) ( )ωωω 12 SSjK &&& =  je 
kmitočtová závislost odezvy zesilovače na harmonický signál v ustáleném stavu. Modulová 
charakteristika ( ) ( ) ( )ωωω 12 SSK =  určuje velikost přenosu v závislosti na kmitočtu (obr. 7.18 a, s. 
259), fázová charakteristika ( ) ( ) ( )ωϕωϕωϕ 12 −=  pak kmitočtovou závislost fázového posuvu 
způsobeného průchodem signálu zesilovačem (obr. 7.18 b). 

 

 

Zesilovače můžeme dělit, klasifikovat podle různých vlastností a parametrů. Pokud jde o 
přenosové parametry, můžeme použít následující klasifikace: 

1. Klasifikace podle kmitočtového rozsahu. 
Každý zesilovač má už z principu omezený horní mezní kmitočet. I kdyby zesilovací prvek 
byl ideální, vždy přítomná kapacita výstupních svorek zesilovače způsobuje na velmi 
vysokých kmitočtech prakticky zkrat. Proto u reálných zesilovačů vždy velikost jeho přenosu 
směrem k vyšším kmitočtům klesá. 
• Stejnosměrné zesilovače. 

Stejnosměrné zesilovače zesilují ve frekvenčním rozsahu od 0 Hz (tj. stejnosměrný 
signál) až po určitý horní mezní kmitočet (obr. 7.4.a). Přenosová funkce má tvar 

 
Obr. 7.4. a)  Příklad frekvenční charakteristiky  

   stejnosměrného zesilovače. 

 
Obr. 7.4. b)   Příklad frekvenční charakteristiky  

  střídavého zesilovače. 
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frekvenční charakteristiky dolní propusti. Podle typu (použití) zesilovače se horní mezní 
kmitočet přenosové funkce může pohybovat od několika Hz (např. zesilovače lékařských 
přístrojů zpracovávající pomalu proměnné signály) až po GHz (např. zesilovač rychlých 
osciloskopů pro pozorování pulsních signálů v počítačích, sdělovacích zařízeních apod.) 

• Střídavé zesilovače 
Střídavé zesilovače nezesilují stejnosměrný signál. Jejich přenosová funkce má tvar 
charakteristiky pásmové propusti (obr. 7.4.b). Podle poměru mezi horním mezním 
kmitočtem Fh a dolním mezním kmitočtem Fd můžeme zesilovače dělit na širokopásmové 
(Fh / Fd >>1) a úzkopásmové (Fh / Fd →1). 
o Širokopásmové - nízkofrekvenční, vysokofrekvenční. 
o Úzkopásmové (selektivní) – nízkofrekvenční. 
o Vysokofrekvenční. 

2. Klasifikace podle typu zesilovaného signálu. 
• Zesilovače akustického signálu. U těchto zesilovačů se klade důraz na veliký dynamický 

rozsah a konstantní přenos (zesílení) v pracovním kmitočtovém pásmu. U stereofonních 
zesilovačů je nutné, aby nejen modulové, ale i fázové charakteristiky obou kanálů byly 
shodné. 

• Obrazové zesilovače se používají např. v televizorech pro zesilování obrazového signálu, 
v radiolokátorech, v řadě měřících přístrojů. U těchto zesilovačů je hlavní požadavek 
zachování časového průběhu zesíleného signálu. 

• Rezonanční zesilovače  jsou zpravidla úzkopásmové (selektivní) zesilovače používané pro 
zesilování modulovaných signálů. V případě výkonových rezonančních zesilovačů pracují 
aktivní prvky pro dosažení vysoké výkonové účinnosti zpravidla v nelineárním režimu. 

3. Klasifikace podle výkonu dodávaného do zátěže. 
• Nízkovýkonové. Zpracovávají malé signály, pracovní bod aktivních prvků těchto 

zesilovačů se pohybuje v blízkosti klidového pracovního bodu. 
• Výkonové. Tyto zesilovače musí dodat do zátěže dostatečný výkon, aktivní prvky těchto 

zesilovačů musí být schopny tento výkon převést ze zdroje do zátěže. Převod energie se 
děje s určitou výkonovou účinností. Část energie se v aktivním prvku mění v teplo. Toto 
teplo je třeba z prvku odvést (problém chlazení). S ohledem na spotřebu energie 
(dimenzování zdrojů) a chlazení (váha) je třeba navrhovat tyto zesilovače s co největší 
energetickou účinností. 

Impedanční parametry 

Z hlediska vstupních svorek se zesilovač vůči zdroji zesilovaného signálu chová jako spotřebič 
o určité impedanci. Z hlediska výstupních svorek se pak na zesilovač můžeme dívat jako na zdroj 
napětí (Thévenin, obr. 7.5a) nebo proudu (Norton, obr. 7.5b) o určité vnitřní impedanci.  

U zesilovačů, zpracovávajících signály o vysokých kmitočtech, kdy odpovídající délka vlny je 
již srovnatelná s délkou spojovacích vodičů, musíme brát v úvahu charakter šíření signálů podél 
vedení. V takovém případě pro zamezení odrazu signálu na vstupu zesilovače je nutné pro přívod 

 
a) NZ zesilovače se zdrojem napětí. 

 
b) NZ zesilovače se zdrojem proudu. 

       Obr. 7.5.   Náhradní zapojení (NZ) zesilovače z hlediska vstupu a výstupu. 
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signálu použít koaxiální kabel a vstupní impedanci zesilovače přizpůsobit impedanci kabelu (nebo 
naopak).  

U zesilovačů, které zpracovávají signály o "nízkých" kmitočtech (zesilovače akustických 
signálů, zesilovače některých regulačních systémů) nehrozí komplikace vyvolané odrazy signálu. Pak 
podle oblasti použití zesilovače volíme i jeho vstupní impedanci. Např. při zpracovávání slabých 
signálů je třeba volit vstupní impedanci s ohledem na minimální šum, jindy je vhodné co nejlépe 
využít vstupní signál a proto volíme hodnotu vstupní impedance rovnou komplexně sdružené hodnotě 
impedance zdroje signálu (výkonové přizpůsobení). 

Volba výstupní impedance zesilovače závisí na tom, zda požadujeme, aby průběh výstupního 
napětí kopíroval průběh vstupního signálu nebo aby průběh výstupního proudu kopíroval průběh 
vstupního signálu. V prvém případě volíme zesilovač s malou výstupní impedancí (výstup zesilovače 
je blízký ideálnímu zdroji napětí), v druhém případě volíme zesilovač s velikou výstupní impedanci 
(výstup zesilovače je blízký ideálnímu zdroji proudu). 

7.2.2   Nelineární parametry a dynamický rozsah  
Obecně je převodní charakteristika zesilovače nelineární. Převodní charakteristika může být 

statická a dynamická. Statickou převodní charakteristiku měříme při pomalu proměnném vstupním 
signálu, kdy se neprojeví vliv akumulačních prvků ("setrvačnost" obvodu). 

Nelinearita převodní charakteristiky se také projeví ve změně spektrálního složení výstupního 
signálu (viz. kapitola 3.2. Obvody v nelineárním režimu). U zesilovačů signálu hudby či řeči je toto 
zkreslení důležitým parametrem (mělo by být co nejmenší). Vyjadřuje se dvěma různými parametry a 
to jednak činitelem harmonického zkreslení THD (Total Harmonic Distortion, kap. 3.21, vztah 3.1) a 
jednak činitelem intermodulačního zkreslení.  

Intermodulační zkreslení podstatně lépe vyjadřuje vlastnosti akustických zesilovačů nezkresleně 
reprodukovat zvuk než THD. Působí-li na prvek s nelineární závislostí několik harmonických signálů, 
vznikají nejen vyšší harmonické složky jednotlivých signálů, ale také složky o kombinačních 
kmitočtech (kap. 3.2.2), které jsou ve zvuku mnohem patrnější a podstatně více ruší, než samotné 
vyšší harmonické. 

Dynamické zkreslení jako důsledek omezené rychlosti přeběhu 

U vícestupňových zesilovačů (operační zesilovače) při větším vstupním signálu může dojít k 
přebuzení nejen koncového stupně, ale i stupně před ním (viz kap. 7.9.1, obr. 7.51 a diskuse k 
němu).To při rychlých a velkých změnách vstupního signálu způsobí, že předposlední zesilovací 
stupeň je vyřazen z provozu. Pak se napětí na jeho výstupu, tj. na vstupu koncového stupně, mění 
pouze podle toho, jak se parazitní kapacity uvnitř zesilovače stačí nabíjet, resp. vybíjet. Tato pomalá 
změna se pak projeví na výstupu koncového stupně. Jeho výstupní napětí se postupně mění od jedné 
mezní (saturační) hodnoty ke druhé. Tento případ je uveden na obr. 7.7, kde u1 je skokově proměnné 
vstupní napětí a u2 je výstupní napětí zesilovače. 

 
Obr. 7.6. a)  Statická převodní charakteristika  

  u2=f(u1). 

 
Obr. 7.6. b)  Příklad dynamické převodní  

   charakteristiky zesilovače  u2=f(u1). 
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Vícestupňové zesilovače zpravidla 
pracují se zavedenou zápornou zpětnou vazbou 
(kap. 7.3). Na obr. 7. 8 je uveden případ, kdy 
zpětnou vazbou je nastaveno zesílení K = 10. V 
levé části obrázku je případ, kdy na vstup 
zesilovače je přivedeno pouze skokově 
proměnné napětí, měnící se mezi úrovněmi -0.5 
V a +0.5 V. Ustálené hodnoty výstupního 
napětí -5 V a +5 V odpovídají zesílení 
zesilovače, ale přechod mezi těmito úrovněmi 
je pozvolný. V pravé části je případ, kde ke 
vstupnímu napětí byl přidán harmonický signál 
o amplitudě 0.2 V. V ustáleném režimu 
výstupní napětí odpovídá vstupnímu napětí a 
zesílení zesilovače, ale opět existuje 

přechodová část, ve které je harmonický signál vyklíčován. Pro porovnání je v obr. 7.8c) zakresleno 
výstupní napětí spolu s desetinásobkem vstupního napětí. V obr. 7.8.d) je pouze harmonická složka 
výstupního signálu. Na ní je patrné vyklíčování během přechodného děje. 

Maximální výkon 
Důležitým parametrem koncových stupňů vícestupňových zesilovačů je maximální úroveň 

signálu, kterou jsou schopny za daných podmínek dodat do zátěže. Podle typu zesilovače může být 
výstupní veličinou  

• maximální možný výkon dodaný do zátěže, 
• maximální hodnota proudu do zátěže, 
• maximální napětí na zátěži. 

Podmínky, které při tom musí být splněny, mohou být například: 
• hodnota zatěžovací impedance (zpravidla pouze odporu, uvažuje se oblast středních kmitočtů), 
• dovolené nelineární zkreslení. 

 
Obr. 7.7. Přeběh výstupního napětí přebuzeného 

operačního zesilovače. 

 
 

a) 

 
 
 

b) 

 
 
 
 
 

c) 
Obr. 7.8. Příklad dynamického zkreslení 

signálu při průchodu operačním 
zesilovačem. 

Vlevo:  Dynamické zkreslení impulsního 
signálu s krátkými přechody (hranami). 

Vpravo: Dynamické zkreslení signálu daného 
součtem harmonického signálu a 
impulsu s velmi krátkými hranami. 

a) vstupní signál, 
b) výstupní signál zesilovače, 
c) porovnání výstupního signálu se 

vstupním (vstupní signál zvětšen 10x), 
d) zkreslená harmonická složka výstupního 

signálu. 
 

 
 
 
 

d) 
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Šumové vlastnosti zesilovačů 

Šumy rezistorů a především tranzistorů (či jiných aktivních prvků) znemožňují kvalitní 
zpracování slabých signálů, jejichž výkon je srovnatelný s výkonem šumu. Parametr udávající 
nejslabší vstupní signál při zachování požadovaného poměru signál/šum je citlivost. Citlivost se udává 
v dB, dBm, dBμ (v decibelech na watt, mW, μW ap.). Např. údaj -10 dBm znamená, že pro zachování 
předepsaného poměru signál/šum na výstupu zesilovače stačí na jeho vstupu signál, jehož výkon leží 
20 dB pod 1 mW.  

Jiným měřítkem, jak zesilovač ovlivňuje průchod signálu, je šumové číslo. Na vstupu zesilovače 
není nikdy nerušený signál, vždy obsahuje šum (příčinou šumu je např. termický šum odporových 
částí zdroje šumu). Šumové číslo udává v decibelech, kolikrát se zvětší (zhorší) poměr signál/šum na 
výstupu zesilovače oproti poměru signál/šum na vstupu zesilovače. Podrobněji se problematice šumu 
věnuje kap. 7.8.2 o reálných vlastnostech operačních zesilovačů.  

Z hlediska aplikací zesilovačů je potřebné si uvědomit některé zásady. Jednak při kaskádním 
spojení více stupňů rozhoduje o šumových vlastnostech především první stupeň, protože v dalších 
stupních již má signál vyšší úroveň. Jde-li o případ přenosu vícestupňovou cestou s konstantní úrovní 
signálu, je nutné počítat se stálým přidáváním energie šumu každého stupně do signálu a zhoršující se 
kvalitou signálu. Je to důležitá vlastnost analogových systémů, kdy mluvíme o tzv. akumulaci šumu. 
Běžně je to známé např. z opakovaného nahrávání videokazet či dlouhé trasy analogového telefonu.  

Dále máme-li signálovou cestu, kde v některých částech dochází i k útlumu signálu, je potřebné 
zařazovat zesilovače tak, aby signál neklesl na příliš nízkou úroveň, kdy ho příliš ovlivňuje základní 
šum. Proto je potřebné např. na kabelové trasy či dlouhé přívody od antén vřazovat zesilovače či 
předzesilovače pro splnění této podmínky.  

Dynamický rozsah 
Rozsah mezi maximální úrovní signálu, vyhovující uvedeným podmínkám, a nejmenší úrovní 

signálu při zachování požadovaného poměru signál/šum je dynamický rozsah zesilovače. Místo horní a 
dolní hranice dynamického rozsahu se často udává horní hranice a poměr mezi horní hranicí a spodní 
hranicí vyjádřený v decibelech. Pro náročné zpracování signálu je potřebné použít zesilovače a celé 
signálové cesty s velkým dynamickým rozsahem. Jako běžný příklad lze uvést porovnání 
dynamického rozsahu cca 50 dB (běžný magnetofon či 8-mi bitový převod pro telefonní kanál) 
s dynamickým rozsahem 96 dB 16-ti bitového záznamu (běžné CD).  

Obdobný pojem je poměr signál/šum. Ten ale vyjadřuje poměr úrovně skutečného signálu ku 
šumu. Jeho hodnota musí být nižší nebo nanejvýš rovna dynamickému rozsahu. Pro dosažení co 
nejvyšší kvality přenosu signálu a využití vlastností přenosové cesty je žádoucí zabezpečit, aby se na 
celé trase úroveň signálu pohybovala v co nejvyšší možné výši (s určitou rezervou vzhledem 
k možným výkyvům úrovně tak, aby na druhé straně nedošlo k překročení přijatelné úrovně zkreslení). 
Jakmile poklesne podstatně úroveň signálu, obvykle hrozí zhoršení jeho kvality velkým šumem. 

7.3 ZESILOVAČE A ZPĚTNÁ VAZBA - ÚVOD 
Zpětná vazba (ZV) se vyskytuje nejen v technických zařízeních konstruovaných člověkem, ale i 

v živých organizmech. Při psaní sledujeme očima psaný text a okamžitě korigujeme odchylky od 
zamýšleného (zkuste psát se zavřenýma očima a hned bude znát výsledek přerušení zpětnovazební 
smyčky). Obdobně při chůzi, při řízení auta, v podstatě při každé činnosti využíváme zpětnou vazbu. 

Dále se budeme zabývat pouze využitím zpětné vazby pro ovlivňování vlastností zesilovače. 
V této oblasti se používají dva typy zpětných vazeb:  Signálová ZV a parametrická ZV. Jejich bloková 
schémata jsou na obr. 7.9. 

Při parametrické zpětné vazbě, obr. 7.9b), je výstupní signál s2 zesilovače zpracován 
zpětnovazebním článkem a jako řídící signál sř ovládá některý z parametrů zesilovače. Jedním z 
příkladů tohoto typu zpětné vazby je automatické řízení zesílení podle velikosti zesilovaného signálu 
(AGC – Automatic Gain Control, AVC – Automatic Volume Control). Používá se např. v rádiových 
přijímačích. Při příjmu slabého signálu je jak výstupní signál s2, tak vytvořený řídící signál sř malý, při 
příjmu silného signálu jsou jak výstupní, tak i řídící signál veliké. Zesilovač je navržen např. tak, že 
malý řídící signál posune pracovní bod tranzistorů do oblasti s vysokou strmostí (parametr yCB) a tedy 
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do oblasti s vysokým zesílením, a naopak veliký řídící signál posune pracovní bod do oblasti s malým 
zesílením. Tím se zmenší kolísání mezi velikostí výstupního signálu při zesilování slabých a silných 
signálů. Dalším příkladem tohoto zesilovače jsou zesilovače v kazetových magnetofonech, kdy při 
záznamu řeči do určité míry kompenzujeme kolísání intenzity vstupního signálu při mluvení na 
mikrofon z různých vzdáleností. 

 

 

Při signálové zpětné vazbě, obrázek 7.9a), se část výstupního signálu přivádí zpět na vstup 
zesilovače a znovu se zesiluje. To ovlivní nejen celkové zesílení zesilovače, ale i celou řadu jeho 
parametrů. V dalším si budeme všímat pouze signálových zpětných vazeb. 

7.3.1 Klasifikace signálových zpětných vazeb 
V následující úvaze k obr 7.9a) můžeme pracovat s fázory. Zavedeme tato označení: 
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Zjednodušíme-li však přenos jako kmitočtově nezávislý (konstantní modulová charakteristika s 
nulovým fázovým posuvem, což platí pro pásmo středních kmitočtů), lze od komplexních fázorů přejít 
k reálným číslům. Pak signál po průchodu zpětnovazební smyčkou může být se vstupním signálem 
buď ve fázi (kladný) nebo v protifázi (záporný). Je zřejmé, že o celkovém přenosu rozhoduje 
především jmenovatel 1-AB. Můžeme diskutovat čtyři základní hodnoty součinu AB.  

Tab. 7.1   Přehled vlivu ZV v závislosti na hodnotě součinu AB. 
AB 1-AB K Typ ZV Stabilita 

AB < 0 (1-AB) >1 K < A Záporná ZV vyšší 
0 < AB < 1 1> (1-AB) > 0 K > A Kladná ZV nižší 

AB =1 (1-AB) = 0 K = ∞ Kladná ZV na mezi stability (oscilátor) 
A >1 (1-AB) < 0 K > - ∞ Kladná ZV za mezí stability 

 
a) Blokové schéma zesilovače se signálovou zpětnou 

vazbou. 

 
b) Blokové schéma zesilovače s parametrickou 

zpětnou vazbou. 
Obr. 7.9. Ke klasifikaci zpětných vazeb podle způsobu využití zpětnovazebního signálu. 
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Signál může být po průchodu zpětnovazební smyčkou se vstupním signálem buď ve fázi nebo v 
protifázi. Tomu odpovídá kladná, resp. záporná hodnota součinu AB. Při záporné hodnotě (záporná 
ZV, -ZV) dochází k odečítání zpětnovazebním signálu sB od vstupního signálu s1. Důsledkem je 
snížení celkového zesílení. Při tom je jedno, zda signál invertuje zesilovač (záporné A) nebo 
zpětnovazební článek (záporné B). Bude-li zpětnovazební signál sB přicházet ve fázi se vstupním 
signálem s1 (AB>0), bude amplituda signálu S0 = S1+SB na vstupu zesilovače A větší než amplituda 
vstupního signálu S1 a velikost celkového zesílení K proto vzroste. Jde o kladnou ZV (+ZV). Zvýší-li 
se součin AB až na hodnotu 1, vzroste přenos na nekonečnou hodnotu a zesilovač se dostane až na 
mez stability. Při vhodných parametrech zpětnovazební smyčky se takovýto zesilovač může stát 
oscilátorem, viz kap. 8. Při dalším nárůstu AB nad hodnotu 1 je obvod nestabilní, amplituda signálu 
neustále narůstá až do velikosti, kdy zesilovač překročí mez linearity a jeho chování se odpovídajícím 
způsobem změní. Je tedy zřejmé, že +ZV snadno může vést k nestabilitě zesilovače. V souvislosti 
s negativním vlivem + ZV i na další parametry, jako jsou šířka pásma a zkreslení, což bude 
diskutováno dále (Tab. 7.2, kap. 7.8), převládá v konstrukcích zesilovačů použití –ZV.  

Existují čtyři možné způsoby propojení svorek zesilovače A a zpětnovazebního článku B. Tyto 
možnosti jsou uvedeny na obr. 7.10. Tímto propojením můžeme zásadním způsobem měnit vliv zpětné 
vazby na parametry zesilovače. 

Jsou-li vstupní svorky zesilovače A a výstupní svorky zpětnovazebního článku B zapojeny v 
sérii, je vstupním signálem napětí. Jsou-li tyto svorky propojeny paralelně, je vstupním signálem 
proud. Jsou-li výstupní svorky zesilovače A propojeny se vstupními svorkami zpětnovazebního článku 
B paralelně, je zpětnovazební signál odvozen od výstupního napětí (zpětná vazba napěťová). Jsou-li 
tyto svorky propojeny do série, je zpětnovazební signál odvozen od proudu do zátěže (zpětná vazba 
proudová). 

 Zpětná vazba sériová napěťová (SNZV) 
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 Zpětná vazba sériová proudová (SPZV) 
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 Zpětná vazba paralelní napěťová (PNZV) 
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 Zpětná vazba paralelní proudová (PPZV) 
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Obr. 7.10. Možné způsoby propojení zesilovače a zpětnovazebního článku. 
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Přenos K může mít různý rozměr, podle toho, zda vstupním či výstupním signálem je napětí 
nebo proud. Budou-li vstupní i výstupní signál napětí, bude přenos bezrozměrný a půjde o přenos 
napětí (napěťové zesílení). Budou-li vstupní i výstupní signál proud, bude přenos rovněž bezrozměrný 
a půjde o přenos proudu (proudové zesílení). Bude-li výstupním signálem napětí a vstupním proud, 
bude přenos K = U2/I1 rovem přenosové impedance a bude mít rozměr ohmu (Ω). Konečně, bude-li 
výstupním signálem proud a vstupním signálem napětí, bude přenos K = I2 /U1 roven přenosové 
admitanci a bude mít rozměr siemens (S). 

Z uvedeného je zřejmé, že ke vztahům (7.4) pro přenos zesilovače K se zpětnou vazbou je třeba 
přistupovat s rozvahou. Zda zpětnou vazbou ovlivňujeme přenos napětí, přenos proudu, přenosovou 
impedanci či přenosovou admitanci, závisí na tom, jakým způsobem jsou navzájem propojeny 
zesilovač a zpětnovazební článek. V obrázku 7.10 byly zvoleny směry čítacích šipek odlišně od směrů 
požívaných při spojování dvojbranů (kap. 3.5.7 Spojování dvojbranů) tak, aby to vyhovovalo vztahům 
(7.4) a blokovému schématu na obr. 7.9a .  

7.3.2 Vliv zpětné vazby na parametry zesilovačů 
U zesilovačů se téměř vždy používá záporná zpětná vazba. Ta sice zmenšuje jejich zesílení, ale 

na druhé straně může citelně zlepšit další parametry zesilovače. V dnešní době integrovaných obvodů 
není problém mít k dispozici veliké zesílení (např. operační zesilovače). Díky tomu lze tak silnou 
zápornou zpětnou vazbou dosáhnout u důležitých parametrů téměř ideálních hodnot. 

Na obr. 7.11 je ilustrován vliv zpětné vazby na kmitočtovou charakteristiku přenosu střídavého 
zesilovače. Záporná zpětná vazba rozšiřuje frekvenční pásmo, ve kterém je přenos udržován v 
požadovaných mezích. Součin maximálního zesílení a šířky propustného pásma v podstatě nezávisí na 
velikosti zpětné vazby. Kolikrát se vlivem zpětné vazby zmenší přenos, tolikrát se šířka propustného 
pásma zvětší a naopak. 

 

 
Obr. 7.11. Vliv zpětné vazby na kmitočtovou modulovou (horní graf) i fázovou (dolní graf) charakteristiku 

zesilovače. 
Vhodným parametrem vlivu zpětné vazby je relativní citlivost A

KS&  přenosu zesilovače se 
zpětnou vazbou K na přenos zesilovače bez zpětné vazby A, resp. její inverzní hodnota, tzv. stupeň 
zpětné vazby N. Označme symbolem ΔA změnu přenosu A a symbolem ΔK změnu přenosu K. Pak 
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citlivost vypočteme jako poměr relativních změn přenosu při změnách přenosu jdoucích k nule, což 
lze upravit na tvar:  
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K &
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, BAN &&& −= 1  . (7.5) 

Lze říci, že kolikrát se vlivem zpětné vazby sníží hodnota přenosu, tolikrát vzroste stupeň 
zpětné vazby a tolikrát klesne citlivost přenosu A

KS . Snížíme-li zápornou zpětnou vazbou přenos 
stokrát (N = 100), pak při změně hodnoty A o ΔA = 10 % se hodnota K změní pouze o  
ΔK = 10%/100 = 0,1%. Tato skutečnost je patrna i v horní části obrázku 7.11, kdy původní změny 
přenosu bez zpětné vazby jsou při záporné zpětné vazbě redukovány a při kladné zvětšeny. Podobný 
vliv můžeme pozorovat i u převodní charakteristiky. Vlivem záporné zpětné vazby se sklon převodní 
charakteristiky zmenší a současně se zmenší i její křivost. Záporná zpětná vazba stabilizuje parametry 
zesilovače a mírou této stabilizace je stupeň vazby N& , resp. citlivost A

KS& . 

Zpětná vazba ovlivňuje jak vstupní, tak i výstupní impedanci zesilovače. Vstupní impedance je 
ovlivněna pouze způsobem propojení svorek na vstupu zesilovače a tím, zda je ZV kladná nebo 
záporná, ale vůbec nezávisí na propojení výstupních svorek zesilovače. Oproti tomu je výstupní 
impedance ovlivněna pouze propojením výstupních svorek a tím, zda ZV je kladná nebo záporná. 
Protože vliv +ZV a -ZV na impedance je přesně opačný, stačí, když rozbor provedeme pouze pro -ZV. 
Rozbor provedeme pro oblast středních kmitočtů, kde jsou jak přenos A, tak i vstupní a výstupní 
impedance zesilovače reálné. Pak všechna napětí a všechny proudy jsou buď ve fázi nebo v protifázi a 
můžeme pracovat pouze s moduly.  

Uvažujme nejprve paralelní spojení vstupních svorek a -ZV. Při záporné zpětné vazbě 
odčerpává zpětnovazební článek část vstupního proudu. Při daném vstupním napětí se vlivem - ZV 
zvětší vstupní proud a proto se vstupní impedance zmenší. Označíme-li vstupní impedanci zesilovače 
bez zpětné vazby ZAvst a vstupní impedanci zesilovače po zavedení zpětné vazby ZKvst a vezmeme-li v 
úvahu, že při tomto propojení vstupních svorek je U1 = U0 , dostáváme: 
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1  resp. AvstKvst YY >  . (7.6.a) 

Budou-li vstupní svorky zapojeny do série, pak při -ZV a daném vstupním proudu bude celkové 
vstupní napětí větší než vstupní napětí samotného zesilovače bez zpětné vazby (zpětnovazební napětí 
se od vstupního odečítá), a tudíž vstupní impedance vzroste. Vezmeme-li v úvahu, že při tomto 
propojení vstupních svorek je I1 = I0 , dostáváme: 
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1  resp. AvstKvst YY <  . (7.6.b) 

Při rozboru vlivu ZV na výstupní impedanci zesilovače vyjdeme z poznatku, že -ZV stabilizuje 
přenos, tj. že při neměnném budícím signálu se vliv kolísání přenosu A redukuje (viz vztah 7.5). 
Budeme-li uvažovat velmi silnou ZV, kdy AB >> 1 (vztah 7.8), změny přenosu K i výstupního signálu 
se změnou zátěže se zmenší téměř na nulu.  

V případě napěťové ZV, tj. při paralelním propojení výstupních svorek, je výstupním signálem 
výstupní napětí U2. Protože se v tomto případě velikost výstupního napětí se zátěží nemění, blíží se 
chování výstupu zesilovače k chování ideálního zdroje napětí, tj. zdroje o téměř nulové výstupní 
impedanci. 

AvýstKvýst ZZ <  

V případě proudové ZV, tj. při sériovém spojení výstupních svorek, je výstupním signálem 
proud. Protože se v tomto případě velikost výstupního proudu se zátěží nemění, blíží se chování 
výstupu zesilovače k chování ideálního zdroje proudu, tj. zdroje o téměř nekonečné výstupní 
impedanci.  

 AvýstKvýst ZZ > . 
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Úvahy uvedené výše lze potvrdit i analýzou. Pro sériovou zpětnou vazbu můžeme psát: 

NZ
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ZZ A
K
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Kvst

&&
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&
& ==  , resp. 

N
YSYY AvstA

KAvstKvst &
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&&& ==  . (7.7.a) 

Pro paralelní zpětnou vazbu dostáváme: 
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YY AvstA
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ZSZZ AvstA

KAvstKvst &
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&&& ==  . (7.7.b) 

K podobným výsledkům lze dospět i pro výstupní impedanci. 
Obecně lze pro zápornou zpětnou vazbu, jak pro vstup tak pro výstup říci: Jsou-li svorky propojeny 

• paralelně (paralelní -ZV, proudová -ZV), zvyšuje se odpovídající admitance,  
• sériově (sériová -ZV, proudová -ZV), zvyšuje se odpovídající impedance. 

Výsledky předchozího rozboru můžeme shrnout do následující tabulky: 
 
 Tab. 7.2. Vliv zpětné vazby na základní vlastnosti zesilovače. 
 

svorky ZV přenos propustné pásmo THD vstupní impedance výstupní impedance 
v sérii ↓ sériová ZV ↓ proudová ZV 

paralelně 
+ ZV ↑ ↓ ↑ ↑ paralelní ZV ↑ napěťová ZV 

v sérii ↑ sériová ZV ↑ proudová ZV 
paralelně - ZV ↓ ↑ ↓ ↓ paralelní ZV ↓ napěťová ZV 

  

Zajímavý případ nastane, bude-li velikost přenosu zpětnovazební smyčky AB >> 1, resp. 
1/A << B. Pak můžeme jedničku vůči součinu AB zanedbat a zkrátit A. Pak dostáváme: 

B
K

&
& 1

−=   nebo přesněji  
B

A

K
&

&

&

−
= 1

1  . (7.8) 

Vidíme, že při velmi silné zpětné vazbě je přenos zesilovače určen pouze přenosem zpětnovazebního 
článku. 

7.3.3   Stabilita zesilovačů se zpětnou vazbou - parazitní oscilace 
V zesilovačích se pro dosažení lepších vlastností používá záporná zpětná vazba. Zpětnovazební 

signál působí na vstupu zesilovače proti vstupnímu signálu, odečítá se od něho. Na obr.7.12a) je 
blokové schéma zpětnovazebního zesilovače. Přenos zpětnovazební smyčky je tjeBA ∆−−= ω1&& , Δt je 
zpoždění signálu při průchodu zpětnovazební smyčkou. Předpokládejme, že zesilovač jednak invertuje 
signál a jednak jej zpožďuje o interval Δt = 10 μs a že zpětnovazební článek nevnáší do přenosu žádný 
časový posuv. Časové zpoždění Δt se na různých kmitočtech projeví různým fázovým posuvem Δϕ: 

 tft ∆=∆=∆ πωϕ 2  . 

Na obr. 7.12 je tento jev uveden pro tři kmitočty: 1 kHz, 10 kHz a 50 kHz. Na kmitočtu 1 kHz 
je změna fáze velmi malá, zpětnovazební signál zůstává téměř v protifázi. Avšak na kmitočtu 50 kHz 
je fázový posuv Δt = 10 μs již roven polovině periody a zpětnovazební signál je již ve fázi se vstupním 
signálem. Záporná zpětná vazba se na tomto kmitočtu změnila v kladnou zpětnou vazbu, přenos 
zpětnovazební smyčky BA &&  se z hodnoty -1 změnil na hodnotu +1. Celkový přenos zesilovače, který 
byl na nízkých kmitočtech, kde se zpoždění 10 μs v podstatě neprojevilo  

( ) 2111
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&&
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& =
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=

−
= ,  se na kmitočtu 50 kHz změní na ∞→

−
=

−
=
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&
&  .  

Zesilovač začne produkovat signál s2 i při nulovém vstupním signálu s1. Ze zesilovače se stal oscilátor. 
Zpětnovazební signál sB zcela nahradil vstupní signál.  

Z uvedeného rozboru vyplývá tzv. oscilační podmínka, která určuje, kdy se ve zpětnovazebním 
systému mohou udržet kmity s konstantní amplitudou a konstantním kmitočtem. Oscilační podmínku  
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  ( ) 1=== + BABA jjj eABeBeABA ϕϕϕϕ&&   (7.9) 

můžeme rozdělit na amplitudovou oscilační podmínku  

 1=BA  (7.9.a) 

a fázovou oscilační podmínku  

 ( )πϕϕ 2kBA =+ , kde k = 0, ±1, ±2,  .....  (7.9.b) 
 

a) 

 

 

 
 
b) 
 
 
 
c) 
 
 
 
d) 

Obr. 7.12. Vztah mezi fází signálu, kmitočtem a časovým zpožděním Δt = 10 μs: a) Blokové schéma 
zesilovače se signálovou zpětnou vazbou,  b) fázový posuv signálu sa0 na kmitočtu 1 kHz, c) 
fázový posuv signálu sb0 na kmitočtu 10 kHz, d) fázový posuv signálu sc0 na kmitočtu 50 kHz. 

Amplitudová oscilační podmínka říká, že velikost přenosu zpětnovazební smyčky musí být 
jedna a fázová oscilační podmínka stanovuje, že fázový posun zpětnovazební smyčky musí být roven 
celému násobku délky periody signálu. Pak na kmitočtu, kde jsou splněny obě tyto podmínky, se udrží 
oscilace s konstantní amplitudou i konstantním kmitočtem. 

U vícestupňových zesilovačů, kde je zpětná vazba zavedena přes celý zesilovač, vzniká 
nebezpečí oscilací na vysokých kmitočtech. Každý zesilovací stupeň je na svém výstupu zatížen 
kapacitou spojů a kapacitou vstupu následujícího stupně. Spolu s vnitřním odporem výstupu 
zesilovače tvoří tato kapacita RC integrační článek, jehož přenos na vysokých kmitočtech je sice malý, 
ale fázový posuv se blíží 90°. Má-li zesilovač více než dva stupně, a je-li jeho zesílení A dostatečně 
vysoké, může být splněna oscilační podmínka a v zesilovači vzniknou parazitní kmity. 

7.4 TŘÍDY ZESILOVAČŮ  
Základními aktivními prvky, tj. bipolárními či polem řízenými tranzistory, může proud téci 

jenom jedním směrem. Charakteristiky těchto prvků jsou výrazně nelineární, avšak v určité části 
charakteristiky je závislost změny proudu protékajího aktivním prvkem téměř lineární. Tato skutečnost 
je naznačena na obr. 7.13. 

Používají se dva typy práce, dva režimy aktivních prvků. V prvním režimu se využívá přímo 
převodní charakteristika aktivního prvku, v druhém pracuje aktivní prvek jako spínač. První režim 
můžeme rozdělit do tzv. tříd A, B a C. Příkladem druhého režimu práce je zesilovač třídy D. 

Klasifikace na třídy A, B a C vychází z využití určitého úseku převodní charakteristiky 
aktivního prvku. Ve třídě A aktivním prvkem trvale protéká proud, jeho velikost pouze kolísá kolem 
střední hodnoty (obr. 7.13a). Aktivní prvek pracuje v "lineární" oblasti převodní charakteristiky, 
klidový pracovní bod Q je umístěn v jejím středu, tranzistor je po celou periodu signálu otevřen, tudíž 
poloviční úhel otevření θ je 180o. 

Ve třídě B je pracovní bod Q umístěn v okolí zlomu převodní charakteristiky (obr. 7.13b). Proud 
aktivním prvkem protéká pouze při signálu jedné polarity (v obrázku při kladné polaritě), proto je úhel 
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θ roven 90o. Tato třída se zpravidla používá u tzv. dvojčinných zesilovačů, kdy jeden prvek 
zpracovává kladné hodnoty signálu (např. tranzistor NPN) a druhý záporné hodnoty signálu 
(doplňkový tranzistor PNP). Složením proudů obou aktivních prvků získáme převodní charakteristiku 
symetrickou kolem nuly, jak je uvedeno na obr. 7.38. 

Režim práce ve třídě C se používá v rezonančních zesilovačích, u kterých je vstupní signál 
harmonický o určitém kmitočtu fs. Aktivní prvek je otevírán po dobu kratší, než je polovina periody 
(obr. 7.13c). Tzv. úhel otevření, 2θ je menší než π (než 180°), resp. poloviční úhel otevření θ < π/2. 
Proud aktivního prvku je sled periodických pulsů s vysokým obsahem harmonických složek. Obsahuje 
složku na kmitočtu fs budícího signálu a složky na kmitočtech n fs, rovných celému násobku kmitočtu 
fs. Zátěží rezonančního zesilovače je paralelní rezonanční okruh (nebo soustava rezonančních okruhů), 
naladěný na kmitočet fs budícího signálu. Rezonanční okruh představuje na kmitočtu fs základní 
harmonické vysokou impedanci, kdežto pro ostatní složky spektra (ss a vyšší harmonické) představuje 
téměř zkrat. Do zátěže tedy dodává výkon P = i∙u pouze složka na kmitočtu fs, která má dostatečný 
proud a současně vytvoří na zátěži dostatečné napětí. Ostatní složky sice disponují proudem, ale na 
zátěži nevytvářejí napětí. 

 
Obr. 7.13. Práce aktivního prvku ve třídě A, B a C. 

Zesilovače, pracující ve třídě A, mohou pracovat s malým nelineárním zkreslením, ale mají 
malou energetickou účinnost. Pokud zpracováváme slabé signály, malá účinnost příliš nevadí, i tak 
zůstává příkon energie ze zdroje malý. Pokud však máme do zátěže dodat veliký výkon, pak už 
účinnost hraje důležitou roli. Je-li např. účinnost zesilovače η = 20 % a požadovaný výkon do zátěže 

P2 = 10 W, pak zdroj musí dodat celkový výkon WPP 50
2,0

102
0 ===

η
. Rozdíl P0 -P2 = 40 W musí být 

ze zesilovače odveden ve tvaru tepla - je třeba zajistit odpovídající chlazení, aby nedošlo k 
nebezpečnému přehřátí zesilovače (aktivního prvku). Dále zdroj musí dodat napájecí výkon P0 = 50 W 
(pokud napájíme z baterií, je třeba dostatečně dimenzovat jejich kapacitu). Pokud by účinnost byla 50 
%, stačil by napájecí příkon pouze 20 W a na ohřívání zesilovače by padlo pouze 10 W, což by 
podstatně zmenšilo problémy s chlazením i napájením. 
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Jak si dále ukážeme (kap. 7.7), zesilovače pracující ve třídě A mají nízkou účinnost. V 
idealizovaném modelu nemohou přesáhnout hodnotu 50 %, ve skutečnosti však mnohem méně, 
protože 50 % lze dosáhnout teoreticky při maximálním signálu, ale pro menší amplitudu účinnost 
podstatně klesá, protože příkon zůstává konstantní a průměrná velikost signálu musí být nižší než 
maximální. Dvojčinné zesilovače pracující ve třídě B mohou v idealizovaném modelu dosáhnout 
účinnosti 76 %, v realitě ale opět méně. Ovšem zde se signálem klesá i příkon, takže pro běžné signály 
je praktická účinnost podstatně vyšší než u třídy A. U rezonančních zesilovačů, pracujících ve třídě C, 
lze dosáhnout ještě vyšší účinnosti. Uvedené vlastnosti shrnuje následující tabulka: 

 

  

Dalším zapojením výkonových zesilovačů s vysokou energetickou účinností jsou zesilovače ve 
třídě D. Ve třídách A, B a C, teče-li tranzistorem proud i, je na něm vždy i napětí u, takže výkon p = ui 
zahřívající tranzistor, je ztracen, vyzářen jako teplo. V zesilovačích třídy D jsou tranzistory téměř stále 
buď sepnuté, nebo rozepnuté. Je-li tranzistor sepnut, teče jím proud, ale napětí ne něm je velmi malé. 
Při rozepnutém tranzistoru je sice na něm veliké napětí, ale zase jím neprotéká proud. V době sepnutí i 
rozepnutí tranzistoru se v něm ztrácí velmi malý výkon. Pouze při přechodu ze sepnutého stavu do 
rozepnutého (a naopak) po dobu přechodu je součin ui znatelný, ale zase trvá krátkou dobu. Aby tyto 
přepínací ztráty byly co nejmenší, je třeba používat tranzistoru s krátkou dobou přechodu a budit jej 
pulsy se strmými nástupnými i sestupnými přechody. Používají se polem řízené tranzistory (FET). 

 

 

a) 

 

b) 

 

c) 

 

Obr. 7.14. Princip zesilovače ve třídě D. 
 a) Zapojení s jedním přepínačem a dvěma zdroji. 
 b) Vstupní napětí u1 a šířkově modulované obdélníkové napětí uab řídící přepínač a-b-c. 
 c) Zapojení se dvěma přepínači a jedním napájecím zdrojem. 
 

Zjednodušené schéma jedné modifikace zesilovače ve třídě D je uvedeno na obr. 7.14a). Má dvě 
části: modulátor a koncový stupeň. V modulátoru se zesilovaný signál u1 přemění na obdélníkový 
šířkově modulovaný signál uab. Obdélníkový signál ovlivňuje dva přepínací tranzistory, z nichž každý 
je v principiálním schématu nahrazen dvojicí kontaktů, spojující body a-c a b-c. Tento přepínač 
připojuje na vstup filtru, dolní propusti, střídavě kladné a záporné napětí UN z dvojic napájecích 
zdrojů. Za přepínačem v bodě c je stejné (až na velikost) obdélníkové, šířkově modulované napětí Uab 
jako je na výstupu modulátoru. Dolní propust LC z tohoto signálu propustí pouze nízkofrekvenční 
složku (pomalu proměnnou střední hodnotu), která odpovídá vstupnímu napětí U1 zesilovače 

třída θ  [o] Teoretická η Praktická.η Linearita  Linearizace  Použití 
A 180 50 % 10  % Dobrá  Není třeba Předzesilovače 
B   90 76 % 50 % Špatná Dvojčinný st. Výkonové širokopásmové 
C <90 > 78 % 80-90 % Špatná Úzkop. filtr Výkonové úzkopásmové 
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(modulátoru). Tato modifikace zesilovače vyžaduje dva napájecí zdroje. S použitím čtyř spínacích 
tranzistorů lze vystačit s jedním zdrojem, který je ke vstupu filtru připojován střídavě s jednou a 
druhou polaritou. V prvém případě lze zátěž jedním koncem připojit k zemi (uzemnit). Ve druhém 
případě je zátěž plovoucí. 

7.5 ZÁKLADNÍ ZAPOJENÍ TRANZISTOROVÝCH ZESILOVAČŮ 
Téměř každý skutečně používaný zesilovač obsahuje více než jeden tranzistor, více než jeden 

zesilovací stupeň. Mluvíme o vícestupňových zesilovačích. Tyto jednotlivé stupně mohou obsahovat 
jeden nebo dva tranzistory. Základní zapojení s jedním tranzistorem jsou zapojení se společným 
emitorem (SE), zapojení se společným kolektorem (SK, zvaný též emitorový sledovač) a zapojení se 
společnou bází (SB). Jejich principiální zapojení je na obr. 7.15. Příklady zapojení se dvěma 
tranzistory jsou diferenční zesilovač a kaskódové zapojení a různá dvojčinná zapojení. 

Pro všechna tři základní zapojení lze odvodit obecné vztahy pro napěťové, proudové a 
výkonové zesílení, vstupní impedanci a výstupní impedanci. Tranzistor bude reprezentován obecným 
trojpólem podle obr. 7.16a) s obecnou admitanční maticí (obr. 7.16b). 

   
a) Zesilovač v zapojení SE b) Zesilovač v zapojení SC c) Zesilovač v zapojení SB 
Obr. 7.15.   Principální zapojené zesilovačů v zapojení SE, SC (emitorový sledovač) a SB. 

7.5.1 Hlavní parametry zesilovačů v základních zapojeních 
Na základě admitanční matice z obr. 7.16b) a náhradních zapojení z obr 7.16c) a d) můžeme pro 

přenos napětí, přenos proudu, vstupní a výstupní admitanci odvodit následující vztahy: 
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Poznámka: V admitančním náhradním zapojení trojpólu s jedním řízeným zdrojem je admitance 
y12 zapojena mezi vstupní a výstupní svorkou a realizuje vnitřní zpětnou vazbu (paralelní, napěťovou). 
Tato zpětná vazba ovlivňuje především vstupní admitanci - tzv. Millerův jev. Na vysokých kmitočtech 
a při velikém napěťovém zesílení se projeví především kapacitní složka parametru y12. To se projeví 
zvětšenou vstupní kapacitou zesilovače - Millerova kapacita. 

Jako ukázku číselných hodnot parametrů pro jednotlivá zapojení uvedeme výsledky řešení 
zesilovače s tranzistorem pro oblast středních kmitočtů, jehož parametry v pracovním bodě jsou 
následující: 
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a) b) c) d) 

Obr. 7.16. Obecné náhradní zapojení zesilovače. 
a) Tranzistor nahrazen obecným trojpólem. 
b) Admitanční matice obecného trojpólu. 
c) Náhradní zapojení pro výpočet přenosu napětí a vstupní impedance. 
d) Náhradní zapojení pro výpočet výstupní impedance. 
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Pro výpočet parametrů jednotlivých zapojení budeme potřebovat úplnou admitanční matici 
tranzistoru (kap. 4.4., Maticový linearizovaný model tranzistoru a MUN). Z parametrů pro zapojení se 
SE (7.11) byla sestavena úplná soustav rovnic tranzistoru: 
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=  (7.12) 

Po dosazení parametrů do vztahů (7.10) dostáváme hodnoty uvedené v následujících tabulkách. 
Pro výpočet byla použita admitanční soustava (7.12). 

Výsledky pro úplný model. 
R0 = 0 Ω,  R = 1,25 kΩ 

 Ku Ki Kp Rvst [kΩ] Rvýst  [kΩ] 
SE    -178,0 203,3 36 217 1,434 22,946 
SC 0,994     -204,2 203,2 256,7 0,006 623 
SB     178,1 -0,995 177,3 0,006 982 22,946 

R0 = 1 kΩ,  R = 1,25 kΩ 
 Ku Ki Kp Rvst [kΩ] Rvýst  [kΩ] 

SE   -178,09 203,3 36 216 1,434 22,137 
SC 0,994 -204,2 203,2 256,797 0,011 24 
SB   178,15 -0,995 177,3 0,006 982 1 982,001 

 

Výsledky pro zjednodušený model :  ybc = 0, ostatní parametry neupraveny. 
R0 = 0 Ω,  R = 1,25 kΩ 

 Ku Ki Kp Rvst [kΩ] Rvýst  [kΩ] 
SE   -178,01 204,29 36 383 1,435 22,727 
SC        0,994 4 -205,24 204,09 258,0 0,006 623 
SB    178,06  -0,995 1 177,28 0,006 986 22,727 

R0 = 1 kΩ,  R = 1,25 kΩ 
 Ku Ki Kp Rvst [kΩ] Rvýst  [kΩ] 

SE   -178,01 204,29 36383 1,433 22,727 
SC         0,994 4 -205,24 204,09 258,0 0,011 23 
SB    178,06 -0,995 1 177,28 0,006 986 2 035,4 

 
Po porovnání výsledků v tabulkách vidíme, že použití zjednodušeného modelu (zanedbání 

parametru ybc ) nemá v oblasti středních kmitočtů podstatný vliv na přesnost vypočtených parametrů 
zesilovače. Může se však projevit u zapojení se SE na vysokých kmitočtech (Millerův jev). 

Z předchozích tabulek vidíme, že velikost napěťového zesílení zesilovačů SE a SB v oblasti 
středních kmitočtů je přibližně R∙ybc a v našem případě je  R∙ybc  =  187.8 a  KU = 178. Napěťové 
zesílení emitorového sledovače je o něco menší než jedna. 

Proudové zesílení je největší v zapojeních SE a SC a je o něco menší než proudový zesilovací 
činiteli β. V našem případě  β = 215,4. V zapojení SB je o něco menší než jedna. 

Výkonové zesílení zesilovače SE je o něco menší než součin napěťového zesílení a  β∙KU a je 
největší ze všech tří zapojení. V našem případě β∙Rybc = 40 431 a Kp = 36 217. Výkonové zesílení 
zesilovače v zapojení SC je o něco menší než β a u zesilovače SB je ještě o něco menší. 
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Protože uvažujeme vlastnosti v oblasti středních kmitočtů, budou všechny uvažované 
impedance reálné, odporové. Velikost vstupního odporu z hlediska vstupní nebo výstupní brány je 
vhodné posuzovat podle toho, která z elektrod je připojena k živé svorce dané brány. Nejmenší 
hodnotu vykazují odpory bran, jejichž živou svorkou je emitor. Tento odpor je větší než 1/yee = 6,623 
Ω a s odporem rezistoru v bázi roste. Největší hodnotu odporu vykazuje brána, jejíž živou svorkou je 
kolektor a je vždy větší než 1/ycc. V našem příkladě je 1/ycc = 22,9 kΩ. Tento odpor velmi silně roste s 
odporem zařazeným v emitoru. Střední hodnotu vstupního odporu vykazují brány, jejichž živou 
svorkou je báze. Tento odpor je vždy větší ne 1/ybb a velmi silně roste s odporem zařazeným v 
emitoru. V našem příkladě je 1/ybb = 1,434 kΩ.  

7.5.2 Zesilovač v zapojení se společným emitorem 

Na obr. 7.17a) je zapojení zesilovače v zapojení se společným emitorem. Napájecí napětí Un se 
v kolektorovém okruhu rozdělí na napětí URc na kolektorovém rezistoru a na napětí Uce mezi 
kolektorem a emitorem tranzistoru. V obvodu báze se napájecí napětí dělí na napětí URb na rezistoru Rb 
a napětí Ube mezi bází a emitorem tranzistoru. Proud Iob tekoucí do báze nastavuje jeho pracovní bod.  

Vstupní napětí u1 se přes vazební kondenzátor C dostává na bázi tranzistoru, kde se přičítá ke 
stejnosměrnému napětí (obr. 7.17 c). Kolísání napětí ube způsobí změnu kolektorového proudu a tím i 
změnu úbytku napětí na kolektorovém rezistoru Rc (obr. 7.17 b). Vzrůst napětí na bázi způsobí vzrůst 
proudu báze, to způsobí vzrůst kolektorového proudu a to zase způsobí vzrůst úbytku napětí uRc na 
kolektorovém rezistoru. V důsledku toho napětí mezi kolektorem a emitorem tranzistoru uce= Un - uRc 
poklesne. Zvýšení vstupního napětí způsobí snížení výstupního napětí. Zesilovač SE obrací fázi 
zesilovaného signálu. 

Modulová a fázová kmitočtová charakteristika tohoto zesilovače jsou na obr. 7.18. Pokles 
přenosu v oblasti nízkých kmitočtů je způsoben vazebním kondenzátorem C, který se vstupním 
odporem zesilovače tvoří RC horní propust 1. řádu. V oblasti vysokých kmitočtů je pokles přenosu 
způsoben kapacitami spojů paralelně k výstupním svorkám tranzistoru a vlastnostmi tranzistoru. 

 

 
RC = 1,25 kΩ Rb = 390 kΩ C = 10 μF 
UN = 10 V T = 2N2222 

a) 
 

 
Obr. 7.17. Základní zapojení střídavého zesilovače 

ve třídě A a průběhy napětí. 
a) Zapojení. 
b) Průběhy napětí v kolektorovém obvodu. 
c) Průběhy napětí v obvodu báze. 

 

b) 
 
 
 
 
 
 
 
 
c) 

Na obr. 7.19 je naznačen postup nastavení pracovního bodu. Pro danou velikost kolektorového 
rezistoru zakreslíme do sítě kolektorových charakteristik zatěžovací charakteristiku (obr. 7.19 a). Byl 
použit tranzistor 2N2222 a Rc = 1,25 kΩ. Ze sítě kolektorových charakteristik a zatěžovací přímky 
zkonstruujeme převodní charakteristiku uce

 = f(ube) (obr. 7.19 c) a na ní zvolíme vhodný pracovní  
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a) 
 
 
 
 
 

b) 
Obr. 7.18. Kmitočtová 
závislost modulové a 
fázové charakteristiky 
zesilovače v zapojení SE. 

 

 

a) 
 

 

 

b) 

Obr. 7.19. Grafické řešení pracovního bodu 
zesilovače ve třídě A. 

a) Grafické řešení kolektorového 
okruhu. 

b) Grafické řešení okruhu báze. 
c) Převodní charakteristika. 
   

c) 
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bod Q. Pracovní bod volíme v lineární části převodní charakteristiky. Zvolený pracovní bod 
přeneseme do sítě kolektorových charakteristik a odečteme nutný proud báze ib. Hodnotu tohoto 
proudu přeneseme do vstupní charakteristiky (bod Q v obr. 7.19b). Nyní z Ohmova zákona vypočteme 
odpor rezistoru Rb: 

Ω=== k390
μA8,23
V3,9

bQ

R
b I

U
R b   nebo Ω=== k390

μA6,25
V10

0I
U

R n
b

 . 

 
Pro tranzistor tohoto zesilovače byly určeny parametry v pracovním bodě a pro daný kolektorový 
odpor RC byl pro oblast středních kmitočtů vypočítán přenos napětí KU = -178,097, což je decibelech 
Ku  = 45,013 dB. 

7.5.3  Zesilovač v zapojení se společným kolektorem (emitorový sledovač) 

Na emitorový sledovač (obr. 7.21) se můžeme dívat jako na zesilovač se sériovou napěťovou 
zápornou zpětnou vazbou. Protože velikost přenosu zpětnovazebního článku je 1 a tudíž přenos 
zpětnovazební smyčky AB >> 1, je přenos napětí blízký jedné, ale je menší než 1. Podle vztahu (7.8) 
bude pro oblast středních kmitočtů 
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V tabulce "Výsledky pro úplný model" také vidíme, že vstupní impedance je vysoká a výstupní nízká. 
Na obr. 7.20 je typická vstupní charakteristika křemíkového tranzistoru (PN přechodu). Je vidět, 

že i při značných změnách proudu báze (a tedy i proudu emitoru) se napětí mezi bází a emitorem příliš 
nemění. Výstupní napětí  

konstantauuuu bbeb −≈−=2  

je přibližně rovno vstupnímu, ale jeho stejnosměrná složka je snížena o určitou konstantu (cca 0,65 V). 
Protože při kladném vrcholu budicího signálu teče tranzistorem větší proud než při záporném, je posun 
kladného vrcholu větší než posun minima. Z toho vyplývá, že výstupní napětí bude mít rozkmit menší 
o hodnotu ubeMax -ubeMin. Napěťové zesílení je menší než jedna. 

 

 

 

 

Obr. 7.20. Charakteristika PN přechodu a 
vliv změny polohy pracovního bodu na 
celkové napětí na přechodu. 

 
Obr. 7.21. Zapojení emitorového sledovače. 

 
Zmenšíme-li hodnotu emitorového odporu Re, zvětší se rozkmit proudu emitorem a také proudu 

do báze, avšak napětí mezi bází a emitorem se příliš měnit nebude. Bez ohledu na velikost zátěže se 
výstupní napětí sledovače příliš nemění => emitorový sledovač se vůči zátěži chová jako zdroj napětí, 
tedy jako zdroj s malým vnitřním odporem. 
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Vstupní odpor emitorového sledovače je dán paralelní kombinací odporu rezistoru R1 pro 
nastavení klidového proudu báze a vlastního vstupního odporu sledovače Rvst mezi bází a zemí. Tento 
odpor můžeme přibližně určit i následujícím způsobem: 
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U emitorového sledovače je zpětná vazba kmitočtově nezávislá, a proto působí i pro pomalé 
kolísání teploty. Ve své podstatě je shodná s můstkovou stabilizací (viz obr. 7.25).  

7.5.4 Zesilovač v zapojení se společnou bází 
Schéma střídavého zesilovače v zapojení se SB je na obr. 7.22a), průběhy napětí v jeho 

jednotlivých bodech na obr. 7.22b). Vstupní signál se přivádí přes kondenzátor Ce na emitor 
tranzistoru. Báze tranzistoru je pro signál uzemněna kondenzátorem Cb. Vzrůst napětí na emitoru 
zmenší rozdíl napětí mezi bází a emitorem, což vyvolá zmenšení kolektorového proudu. Menší 
kolektorový proud zmenší úbytek napětí na kolektorovém rezistoru Rc. To způsobí, že výstupní napětí 
uc = Un - URc vzroste. Vzrůstu vstupního napětí odpovídá vzrůst výstupního napětí - zesilovač SB 
neobrací fázi. 

Porovnáme-li zapojení tohoto zesilovače z hlediska stejnosměrných poměrů se zesilovačem SE, 
vidíme, že je totožné s můstkovou stabilizací polohy pracovního bodu. Proto i v tomto zapojení SB je 
zajištěna teplotní stabilizace polohy pracovního bodu. 

Vlastnosti zesilovače v zapojení SB 

Budeme uvažovat oblast středních kmitočtů, kde se neprojevují vlastnosti reaktančních prvků. 
Pak všechny impedance jsou čistě odporové. 

Vstupní odpor zesilovače SB je malý a blíží se hodnotě 1/ycb (vstupní odpor ze strany emitoru). 
Výstupní odpor je velmi vysoký a je silně ovlivněn vnitřním odporem zdroje signálu (proudová 
záporná ZV). Napěťové zesílení je vysoké, přibližně Ku ≈ ycb Rc, proudové zesílení je o něco menší 
než 1.  

 

a) 

 

b) 

Obr. 7.22. Zesilovač v zapojení SB. 
a) Zapojení. 
b) Průběhy napětí v důležitých bodech zesilovače pro tři různé teploty. 

 
Základní vlastnost, pro kterou se používá tento typ zesilovače (jak s bipolárním tak i s polem 

řízeným tranzistorem), je velmi vysoká impedance mezi výstupní svorkou (kolektorem) a vstupní 
svorkou (emitorem). Mezi oběmi elektrodami leží báze, která je v tomto zesilovači spojena s nulovým 
(střídavým) napětím a dobře od sebe kolektor a emitor odstiňuje. Proto vliv Millerova jevu (vliv 
paralelní napěťové ZV) je velmi malý a uplatní se až u velmi vysokých kmitočtů. Tento typ zesilovače 
je tedy vhodný pro zesilování signálů o velmi vysokých kmitočtech. 
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7.6 VLIV TEPLOTY NA POLOHU PRACOVNÍHO BODU 
Parametry všech prvků jsou teplotně závislé. Největší závislost však projevují polovodičové 

prvky, v případě zesilovače je to tranzistor. Při konstantním napětí na PN přechodu s rostoucí teplotou 
roste i proud přechodem. U tranzistoru je to emitorový přechod, který určuje hlavní teplotní chování 
tranzistoru. V zesilovači na obr. 7.17 změna teploty vyvolá změnu polohy pracovního bodu.  

  
a) Poloha pracovního bodu při teplotě -30° C. b) Poloha pracovního bodu při teplotě 90° C. 

Obr. 7.23. Vliv teploty na polohu pracovního bodu zesilovače z obr. 7.17. 
Na obr. 7.23 jsou uvedeny sítě 

kolektorových charakteristik spolu se 
zatěžovací charakteristikou tohoto zesilovače 
pro teploty lišící se o ± 60° C od sítě 
kolektorových charakteristik v obr. 7.19 a 
(při teplotě 30°C). Je zřejmé, že změna 
polohy pracovního bodu má vliv na velikost 
pracovní oblasti tranzistoru. 

Na obr. 7.24 jsou uvedeny převodní 
charakteristiky tohoto zesilovače spolu s 
odpovídajícími pracovními body a napětími 
na vstupu a výstupu zesilovače pro teploty 
-30°, 30° a 90° C. Je vidět že dochází i ke 
změně velikosti zesílení. Při větší amplitudě 
budícího signálu by rovněž docházelo ke 
zkreslení výstupního signálu. Při nízkých 
teplotách může být oříznuta dolní část 
výstupního signálu, při vysokých zase horní. 
Navíc při vyšších teplotách se dostáváme do 
zakřivenější části charakteristiky. 

Stabilizace polohy pracovního bodu. 

Jak jsme viděli, teplota působí na tranzistor jako další signál. Kdyby elektrický vstupní signál 
byl nulový, pak by výstupní napětí sledovalo pouze změny teploty. Pro potlačení vlivu teploty se 
používají dvě metody: metoda kompenzační a metoda zpětnovazební. Kompenzační metoda využívá 
jiného teplotně závislého prvku (dnes výhradně PN přechodu), který ovlivňuje polohu pracovního 
bodu tranzistoru zesilovače tak, aby změna jeho polohy byla minimalizována. Tato metoda se používá 
především uvnitř bipolárních integrovaných obvodů. Zpětnovazební metoda využívá záporné zpětné 
vazby a má dvě varianty. V jednom případě se využívá toho, že změna teploty integrovaného obvodu 
probíhá pomaleji, než změny zesilovaného signálu, tj. že složky spektra teplotních změn jsou v oblasti 
velmi nízkých kmitočtů, nižších než složky spektra zesilovaného signálu (složky obou spekter se 
nepřekrývají). Pak lze použít kmitočtově závislou zpětnou vazbu, která působí pouze v oblasti velmi 
nízkých kmitočtů, v oblasti, kde jsou přítomny pouze složky teplotního signálu. Jiný případ nastává u 
diferenčních zesilovačů, kdy teplota působí jako společný signál, který je diferenčním zesilovačem 

 
Obr. 7.24. Vliv teploty na polohu pracovního bodu a 

zesílení zesilovače z obr. 7.19. Režim práce 
při teplotách -30°, 30° a 90° C.  
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potlačen a elektrický signál je normálně zesílen (na tento způsob se lze dívat jak z hlediska 
kompenzační metody, tak z hlediska zpětnovazební metody). 

7.6.1 Zpětnovazební metody stabilizace pracovního bodu 

a)    b)    
Obr. 7.25. Využití kmitočtově závislé záporné zpětné vazby pro teplotní stabilizaci polohy pracovního 

bodu. a) Sériová proudová ZV, stabilizuje ss kolektorový proud tranzistoru, b) paralelní 
napěťová ZV, stabilizuje ss výstupní napětí tranzistoru.  

 

Jak v jednostupňových, tak i ve vícestupňových zesilovačích se používají dva typy kmitočtově 
závislých záporných zpětných vazeb: sériová proudová a paralelní napěťová. Podstata těchto zapojení 
je naznačena na obr. 7.25. 

V případě sériové proudové ZV (obr. 7.25a) vzniká zpětnovazební signál na impedanci ZZ, 
realizované zpravidla paralelním spojením rezistoru RZ a kondenzátoru CZ. Tato kombinace tvoří pro 
zpětnovazební signál dolní propust. Rychlé změny kolektorového proudu vyvolané signálem jsou 
kondenzátorem CZ zkratovány a nevytvářejí zpětnovazební signál. Pomalé složky vyvolané kolísáním 
teploty stačí nabíjet a vybíjet kondenzátor a zpětnovazební signál tak vzniká. 

V případě paralelní proudové ZV (obr. 7.25b) vzniká zpětnovazební signál na výstupu dolní 
propusti, která zpravidla bývá realizována integračním článkem RZ CZ a oddělovacím členem RB. 
Rychlé změny výstupního napětí jsou kondenzátorem CZ zkratovány, filtr potlačí zpětnovazební 
signál. Pomalé složky, vyvolané kolísáním teploty, stačí nabíjet a vybíjet kondenzátor, zpětnovazební 
signál filtrem projde. Oddělovací rezistor RB zajišťuje, aby vstupní signál nebyl zkratován 
kondenzátorem Cf. 

Stabilizace polohy pracovního bodu sériovou proudovou zpětnou vazbou 

Na obr. 7.26b) je tzv. můstkové zapojení a na obr. 7.26a) je jeho ekvivalentní zapojení. Zdroj Un 
spolu s rezistory R1 a R2 z obr. b) je podle Thévenina v obr. a) nahrazen zdrojem napětí Up a 
rezistorem Rb. 

21

2

RR
RUU np +

=  a 
21

21

RR
RRRb +

=  . (7.14) 

 

  
a)   Zapojení se dvěma zdroji. b)   Zapojení s jedním zdrojem. 

 

Obr. 7.26. Využití záporné proudové kmitočtově závislé zpětné vazby ke stabilizaci polohy pracovního bodu. 
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Na obr. 7.27a) je náhradní schéma z hlediska zesilovaného signálu a na obr. 7.27b) z hlediska 
stabilizace pracovního bodu. Klidový proud IbQ do báze tranzistoru je, jak patrno ze schématu na obr. 
7.26.a), 7.27.b) a průběhů napětí v obr. 7.28, určován součtem úbytků napětí na sériové kombinaci 
rezistoru Rb a emitorovém přechodu tranzistoru B-E, 

beRbpc UUU += .  
Na druhé straně je toto napětí určeno rozdílem napětí Up zdroje předpětí a napětí emitoru ue = Re Ie. 

 

 

epeeppe UUIRUU −=⋅−= . 

Vzroste-li teplota tranzistoru, vzroste i jeho 
emitorový proud. To vyvolá zvýšení napětí na 
emitoru a tudíž snížení napětí Upe. Snížení napětí 
Upe vyvolá snížení klidového proudu báze IbQ a to 
způsobí snížení emitorového proudu tranzistorem. 
Tak je vliv zvýšené teploty částečně redukován 
snížením klidového proudu báze. Použijeme-li pro 
teplotu symbol ϑ , pro vzrůst a pokles hodnoty 
symboly ↓↑ a , můžeme tento proces zaznamenat 
následujícím způsobem: 

 
(7.15) 

Stabilizace pracovního bodu paralelní napěťovou zpětnou vazbou 

Na obr. 7.29a je úplné zapojení zesilovače s paralelní napěťovou zápornou zpětnou vazbou. 
Zpětnovazební signál je filtrován dolní propustí RZ, CZ a přes R0 je přiveden ke vstupní svorce 
zesilovače. Rezistor R0 odděluje vstup od kondenzátoru CZ, který by jinak zkratoval vstupní svorky 
pro signál. 

Na obr. 7.30a je náhradní schéma z hlediska zesilovaného signálu, kdy můžeme kondenzátory 
CZ a Cb považovat za zkraty. Na obr. 7.30b je náhradní schéma z hlediska stabilizace pracovního bodu, 
kdy se naopak kondenzátory chovají jako rozpojené obvody. Klidový proud IbQ do báze tranzistoru je, 
jak patrno ze schématu na obr. 7.29a, 7.30b a průběhů napětí v obr. 7.29b, určován součtem úbytků 

  
a) b) 

Obr. 7.27. Náhradní zapojení zesilovače v zapojení SE se stabilizací pracovního bodu sériovou proudovou ZV 
z obr 7.26a). 

a) Náhradní zapojení z hlediska signálu; kondenzátory a zdroje napětí představují pro signál zkrat. 
b) Náhradní zapojení z hlediska pomalých změn vyvolaných teplotou. 
 

 
Obr. 7.28.Průběhy napětí v zesilovači SE z obr. 7.26. 
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napětí na sériové kombinaci rezistoru RZ a Rb a emitorovém přechodu tranzistoru. Toto napětí je však 
také rovno napětí mezi kolektorem a emitorem tranzistoru. 

cebeRR UUUU
bZ

=++ .  

Vzroste-li teplota tranzistoru, vzroste i jeho kolektorový proud. To vyvolá zvětšení úbytku napětí na 
kolektorovém odporu RC a tudíž snížení napětí Uce mezi kolektorem a zemí, které však určuje klidový 
proud do báze. Snížení napětí Uce tak vyvolá snížení klidového proudu báze IbQ a to následně zase 
způsobí snížení kolektorového proudu tranzistorem. Tak je vliv zvýšené teploty částečně redukován 
snížením klidového proudu báze. 

  
a) b) 

Obr. 7.30. Náhradní zapojení zesilovače SE se stabilizací pracovního bodu paralelní napěťovou ZV. 
a) Náhradní zapojení z hlediska signálu; zdroje napětí a kondenzátory představují pro signál zkrat. 
b) Náhradní zapojení z hlediska pomalých změn vyvolaných teplotou. 

Použijeme-li pro teplotu symbol ϑ , pro vzrůst a pokles hodnoty symboly ↑ a ↓, můžeme tento proces 
zaznamenat následujícím způsobem: 

 
(7.16) 

Paralelní napěťová zpětná vazba ovlivňuje přenosovou impedanci ZT , ale neovlivňuje přenos 
napětí KU (vstupní napětí je přímo připojeno na vstup tranzistoru). Proto frekvenční charakteristika 
přenosu napětí zesilovače v obr. 7.29a je v oblasti nízkých kmitočtů ovlivněna vazebním 
kondenzátorem Cb a v oblasti vysokých kmitočtů pouze vlastnostmi tranzistoru a vedlejších kapacit.  

 
a) 

 

Obr. 7.29.  Využití záporné napěťové kmitočtově závislé 
zpětné vazby ke stabilizaci polohy pracovního bodu. 
a) Zapojení. 
b) Napětí v jednotlivých bodech zesilovače při třech   
    různých teplotách. b) 
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7.6.2 Kompenzační metody stabilizace polohy pracovního bodu 
Dalším příkladem využití zesilovače v zapojení SE se stabilizací pracovního bodu je zdroj 

konstantního proudu, široce používaný v analogových integrovaných obvodech. Na obr. 7.31 je jeho 
základní zapojení. Zdroj využívá kolektorové charakteristiky tranzistoru T1 při pevném napětí mezi 
bází a emitorem (na emitorovém přechodu). Zde v širokém rozsahu napětí mezi kolektorem a 
emitorem s růstem tohoto napětí narůstá kolektorový proud velmi málo. Jeho teplotní stabilita je však 
velmi malá (viz charakteristiky v obr. 7.23, s. 262). Proto je nutná teplotní stabilizace. Je použita 
kompenzační metoda, kdy je jako teplotně závislé čidlo využito emitorového přechodu tranzistoru T2 
(kolektor je spojen s bází). Oba tranzistory, T1 i T2 musí být stejné a musí mít stejnou teplotu, což lze v 
IO snadno splnit. Protože na emitorových přechodech obou tranzistorů je stejné napětí a protože oba 
tranzistory jsou shodné, budou stejné i jejich emitorové proudy, bez ohledu na jejich teplotu.  

 

   
a) Bez zpětné vazby b) Se zpětnou vazbou c) Charakteristiky zdroje konstantního I 
 

Obr. 7.31.  Zapojení zdroje konstantního proudu s teplotní kompenzací. 
a) Základní zapojení, b) zapojení se zápornou proudovou zpětnou vazbou, 
c) AV charakteristiky zdrojů konstantního proudu z obr a) a b) pro teploty: - 30° C, +30° C a +90° C. 
 

Na obr. 7.32 je vidět, že se změnou teploty se 
bude měnit i proud PN přechodu tranzistoru T2 a tedy i 
tranzistoru T1. Tyto změny však budou tím menší, čím 
větší bude napájecí napětí Un a tomu odpovídající 
větší odpor rezistoru R. 

Dalšího zlepšení vlastností tohoto zdroje 
proudu dosáhneme zavedením proudové záporné 
zpětné vazby, která, jak víme (kap. 7.3.2. "Vliv zpětné 
vazby na parametry zesilovačů", tab. 7.2, s. 252) 
stabilizuje výstupní proud - výstupní proud i bude 
méně závislý na výstupním napětí u. Tato zpětná 
vazba je zavedena u tranzistoru T1 pomocí rezistoru 
R1. Aby napětí na emitorech obou tranzistorů zůstala 
stejná (oběma tranzistory má téci stejný emitorový 
proud), je třeba zařadit i do emitoru tranzistoru T2 
rezistor R2 o stejném odporu jako je odpor rezistoru 

R1. Vliv této záporné proudové (sériové) zpětné vazby je dobře patrný z výstupních charakteristik 
tohoto zdroje proudu na obr. 7.31 c). 

 
Obr. 7.32. Vliv velikosti napětí Un a odporu 

rezistoru R na kolísání proudu PN 
přechodem T1 vlivem kolísání teploty 
(ϑ  = -30°, 30° a 90°). 
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7.7 VÝKONOVÉ ZESILOVAČE 
7.7.1 Výkonové zesilovače ve třídě A 

Zesilovače pracující ve třídě A se 
používají především tam, kde není třeba dodat 
veliký výkon do zátěže. Jako koncové stupně 
výkonových zesilovačů se používají zřídka, 
pouze jsou-li kladeny extrémní požadavky na 
minimální hodnotu nelineárního zkreslení (Hi-Fi 
akustické zesilovače). 

Jsou možné dvě základní zapojení: 
jednočinné a dvojčinné. Jednočinný zesilovač 
(obr. 7.33) potřebuje k oddělení klidového 
proudu tranzistoru od signálu transformátor. Ten 
také umožňuje přizpůsobit hodnotu 
zatěžovacího odporu R2 režimu tranzistoru. S 
ohledem na stejnosměrné sycení jádra 
transformátoru, způsobené stejnosměrnou 
složkou kolektorového proudu, musí mít 
transformátor vzduchovou mezeru, což pro 
dosažení potřebné indukčností zvětšuje jeho 
rozměry (váhu a cenu). Nevýhodou zesilovače s 
transformátorem je pokles zesílení zesilovače 
jak na nízkých, tak na vysokých kmitočtech. 
Na obr. 7.34 je závislost poměru napětí uR2/ub1 
zesilovače z obr. 7.33. Pokles zesílení pod 
kmitočtem 200 Hz se sklonem 20 dB/dekádu je 

způsoben indukčností primáru transformátoru a pokles zesílení nad 6 kHz se sklonem -20 dB/dekádu 
je způsoben rozptylovou indukčností transformátoru. Nad kmitočtem 100 kHz se začíná projevovat 
pokles zesilovacích schopností tranzistoru a sklon charakteristiky se blíží k hodnotě - 40 dB/dekádu. 

  
 a) Průběhy napětí. b) Principiální schéma. 
Obr. 7.35.   Dvojčinný zesilovač ve třídě A. 

 
Obr. 7.33.  Jednočinný výkonový zesilovač ve třídě  

  A s transformátorem 

 
Obr. 7.34. Příklad kmitočtové závislosti  modulu 

přenosu zesilovače s transformátorovou 
vazbou. 
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Dvojčinný zesilovač může pracovat jak s transformátorem, tak bez transformátoru. Je celá řada 
modifikací dvojčinného zesilovače a jedna z nich s komplementárními tranzistory bez transformátoru 
je na obr. 7.35. Pracovní bod obou tranzistorů je nastaven do třídy A (tranzistory vždy teče proud, 
nikdy nedojde k jejich uzavření) a klidové proudy obou tranzistorů jsou stejně veliké. V klidovém 
stavu proto neprotéká zátěží R žádný proud, výstupní napětí U2 je nulové. Kladné vstupní napětí u1 
zvětší proud ia NPN tranzistoru Ta a zmenší proud ib PNP tranzistoru Tb. Zátěží R2 převládá proud od 
emitorů k zemi. Výstupní napětí u2 je kladné. Naopak záporné vstupní napětí u1 zmenší proud ia a 
zvětší proud ib. Proud zátěží nyní teče od země k emitorům tranzistorů, výstupní napětí u2 je záporné. 

Na obr. 7.35a vlevo dole je průběh vstupního harmonického napětí u1, vlevo nahoře převodní 
charakteristiky tranzistoru Ta  u2a = f(u1),  tranzistoru Tb u2b = f(u1) a celková charakteristika zesilovače 
u2 = f(u1). Vpravo nahoře je průběh výstupního napětí u2 a příspěvků u2a a u2b, vyvolaných proudy 
tranzistorů Ta a Tb. Jak na převodní charakteristice, tak i na průběhu výstupního napětí je vidět, že 
nelinearity obou tranzistorů se navzájem vykompenzovaly.  

Účinnost zesilovače ve třídě A 

Pro účinnost zesilovače využijeme zjednodušený vztah (7.2, s. 241) η = P2 /P0 , kde P2 je výkon 
dodávaný do zátěže a P0 výkon odebíraný ze zdroje. 

Na obr. 7.36 jsou naznačeny poměry v kolektorovém obvodu zesilovače ve třídě A. Uvažujme 
nejprve zesilovač s rezistorem přímo v kolektorovém obvodu tranzistoru podle obr. 7.17, s.238. Pak 
celkový příkon P0 se v klidu (bez signálu) rozdělí mezi rezistor RC a tranzistor. Výkon dodaný ze 
zdroje P0, příkon P0T dodaný do tranzistoru a příkon P0R dodaný do kolektorového rezistoru je  

RTQnN PPIUP 000 +==   QceC IUP =0  a ( ) QcenQRcR IUUIUP −==0  . 

Těmto výkonům odpovídají vyšrafované obdélníky v síti výstupních charakteristik tranzistoru na obr. 
7.36. Tyto obdélníky nazýváme obdélníky příkonu. Jejich "plocha" ve voltampérech udává 
odpovídající příkony. Střídavý výkon dodaný do kolektorového rezistoru je v případě harmonického 
signálu dán součinem efektivních hodnot napětí a proudu 

22
22

2 2
1

22
IUIUP ==  . 

Tomuto příkonu odpovídá "plocha" vyšrafovaného trojúhelníka P2. Po dosazení do vztahu pro 
účinnost dostáváme: 
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V ideálním případě, kdy pracovní bod je uprostřed zatěžovací přímky a amplituda proudu je rovna 
klidovému proudu a tudíž amplituda výstupního napětí polovině napájecího napětí, bude 
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η  . (7.17b) 

V reálném případě to ale bude vždy citelně méně než 25 %. 
V případě zesilovače s transformátorem, pokud zanedbáme odpor vinutí transformátoru, bude 

na kolektoru klidové napětí rovno napájecímu. Pak 

Qn I
I

U
U 22

2
1

=η  . 

V ideálním případě, kdy zesilovač je plně vybuzen, tj. amplituda proudu je rovna klidové hodnotě 
proudu zdroje a amplituda výstupního napětí hodnotě napájecího napětí, bude účinnost 
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Je zřejmé, že v reálném případě bude účinnost vždy menší než ideálních 50 %. Při neúplném vybuzení 
se účinnost snižuje. 

Pokud signál nepůsobí, celý příkon z napájecího zdroje se spotřebuje na ohřívání tranzistoru. Při 
vybuzení zesilovače se část dodávaného výkonu P0 mění i na výkon P2 zesíleného signálu a tranzistor 
je pak méně zahříván. Kolektorová ztráta 

2PPP nc −=  (7.18) 

s vybuzením tranzistoru klesá. Tranzistor je ve třídě A tepelně namáhán nejvíce, je-li zesilovač bez 
signálu. 

7.7.2 Výkonové zesilovače ve třídě B 
Výkonové zesilovače pracující ve třídě B se používají jak v nízkofrekvenční (akustické), tak ve 

vysokofrekvenční technice (zejména u širokopásmových zesilovačů), prostě všude tam, kde 
vyžadujeme nízké nelineární zkreslení a přijatelnou energetickou účinnost. 

Příklad principiálního dvojčinného zapojení zesilovače je na obr. 7.37b. Zapojení je totožné s 
dvojčinným zapojením z obr. 7.35, pracujícím ve třídě A, liší se pouze nastavením pracovního bodu. 
Jde opět o dvojčinný emitorový sledovač (SK). 

Každý z tranzistorů zpracovává jednu polaritu vstupního signálu. V uvedeném příkladě, kdy 
vstupním signálem je harmonický signál, zpracovává tranzistor Ta typu NPN kladnou půlperiodu a 
během (téměř celé) záporné půlperiody je uzavřen, neteče jím (téměř žádný) proud. Obdobně 
tranzistor Tb typu PNP zpracovává zápornou půlvlnu a při kladné je uzavřen. Emitorové proudy obou 
tranzistorů protékají zatěžovacím rezistorem R. Protože mají opačný směr, složí se v celý harmonický 
průběh.  

Na stabilizaci polohy pracovního bodu se podílí jednak záporná ZV (sériová, napěťová) a 
jednak je použito kompenzační metody - předpětí tranzistorů je dáno úbytkem napětí na diodách Da a 
Db (PN přechody). 

 

 
Obr. 7.36. Výkonové poměry v tranzistorovém zesilovači. 
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 a) Průběhy napětí. b) Principiální schéma. 
Obr. 7.37. Dvojčinný emitorový sledovač pracující ve třídě B. 

 

 

a) 

 

c) 

Obr. 7.38. Dvojčinný emitorový sledovač pracující ve třídě B. 
a) Skutečné zapojení. 
b) Převodní charakteristiky pro tři různé teploty. 

Účinnost dvojčinného zesilovače ve třídě B 
Uvažujme ideální případ, kdy je vstupní napětí harmonické, tranzistory jsou střídavě otevírány 

přesně po dobu půlperiody a impulsy proudu mají tvar poloviny kosinusovky. Označme I2 amplitudu 
výstupního proudu a I0 střední hodnotu tohoto proudu. Tato střední hodnota kosinového impulsu je v 
případě polovičního úhlu otevření π/2 rovna  

π20 II =  . 
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Příkon dodaný z obou baterií je roven dvojnásobku příkonu jednoho zdroje (jedné baterie): 
π20 2 IUP n=  . (7.18a) 

Výkon dodaný do zátěže je 

22
22

2 2
1

22
IUIUP ==  (7.18b) 

a účinnost je 
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1

====
π

π

η  . (7.18c) 

Z posledního vztahu je vidět, že s rostoucím vybuzením zesilovače roste i účinnost. V ideálním 
případě a při plném vybuzení dosahuje účinnost hodnoty 78,5 %. Této účinnosti ale nelze v praxi 
dosáhnout, protože vždy existují okamžiky, kdy teče proud oběma tranzistory. Na rozdíl od zesilovače 
ve třídě A, je-li zesilovač bez buzení (je-li vstupní signál nulový), v ideálním případě neodebírá ze 
zdrojů energii. Ve skutečném zapojení jistý proud teče, ale je, jak ukazuje obr. 7.37, relativně malý. 
Oproti zesilovači ve třídě A, který odebírá stále stejný příkon bez ohledu na výkon dodaný do zátěže, 
zesilovač ve třídě B odebírá příkon úměrný amplitudě výstupního signálu. 

7.7.3 Výkonové zesilovače ve třídě C 
Účinnost ve třídě C 

V případě rezonančního zesilovače je střídavý výkon dodán z tranzistoru do kmitavého okruhu a 
z něj pak do zátěže. V samotném kmitavém okruhu také dochází ke ztrátám. Za účinnost η budeme v 
tomto případě uvažovat podíl výkonu P2 dodaného do kmitavého okruhu k příkonu P0 ze ss zdroje.  

Při odvozování vztahu pro účinnost budeme opět uvažovat ideální tranzistor. Pak odpovídající 
převodní charakteristika iC = f(ube) bude na rozdíl od obr. 7.39b dána dvěma úsečkami a impulsy 
kolektorového proudu budou mít tvar kosinových impulsů s polovičním úhlem otevření θ a 
amplitudou IMax (obr. 7.40). Rezonanční okruh naladěný na kmitočet budícího signálu vybere ze 
spektra pulsů kolektorového proudu první harmonickou složku o amplitudě I2 a ta vytvoří na 
kmitavém okruhu napětí o amplitudě U2 . Pro vyjádření vztahu mezi impulsem proudu a obsahem jeho 
stejnosměrné složky a první harmonické složky využijeme Schultzovy koeficienty (kap. 2.1. 
Periodické signály, Oříznutý harmonický signál, Schultzovy koeficienty). Pak: 
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a) b) 
Obr. 7.39. Rezonanční zesilovač ve třídě C :    a) Schéma, 

b) průběh napětí mezi bází a emitorem, převodní charakteristika a průběh kolektorového proudu. 
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Po dosazení a úpravách dostáváme: 
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Budeme-li uvažovat úplné vybuzení zesilovače, pak amplituda výstupního napětí bude rovna 
napájecímu napětí a účinnost bude dána vztahem 

( ) ( )
( ) ( )θθθ

θθθ
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1

−
−

=  . (7.19b) 

  
Obr. 7.40. Poměry v ideálním zesilovači 
třídy C. 

Obr.7.41. Průběh účinnosti zesilovače ve třídě C 
v závislosti na polovičním úhlu otevření. 

 
Průběh této závislosti je na obr. 7.41. Pro třídu A je poloviční úhel otevření 180° a v grafu tomu 
odpovídá hodnota η = 50 %. Pro třídu B je poloviční úhel otevření 90° a v grafu tomu odpovídá 
hodnota  η = 78,5 %. Pro třídu C graf udává hodnotu vetší než 78,5 %.  

Poznámka k účinnosti 
Je třeba zdůraznit, že vztahy 7.17b, c, 7.18.b a 7.19.b pro účinnost byly odvozeny pro ideální 

aktivní prvek a že v reálných případech nelze nikdy tuto hodnotu dosáhnout. 
 

7.8 POLEM ŘÍZENÉ TRANZISTORY V ZESILOVAČÍCH 
Jedním z rozdílů mezi bipolárními tranzistory a polem řízenými tranzistory je to, že bipolární 

tranzistory jsou řízeny proudem do báze, kdežto polem řízené tranzistory (FET - Field Effect 
Transistor) jsou řízeny napětím mezi řídící a zdrojovou elektrodou. Proto parametrem u sítě 
výstupních charakteristik bipolárních tranzistorů je proud do báze (např. obr. 7.19a nebo 7.36), kdežto 
u polem řízených tranzistorů je to napětí UG  mezi řídící a zdrojovou elektrodou (obr. 7.42). 

  

 

a) 

 

b) 

Obr. 7.42. Příklad výstupní charakteristiky polem řízených tranzistorů. 
a) BSS83 typu N MOS FET, b) 2N3822 typu N J FET. 



___________________________________________________________________________7 Zesilovače_____ 

 273 

Polem řízené tranzistory můžeme rozdělit do dvou základních druhů: s kanálem vytvořeným 
elektrickým polem kovové elektrody (MOS FET - Metal Oxide Semiconductor, MIS FET - Metal 
Insulator Semiconductor) a s kanálem vytvořeným pomocí PN přechodu (J FET - Junction Field Effect 
Transistor). Způsob vytvoření vodivého kanálu mezi sběrnou a zdrojovou elektrodou ovlivňuje i 
velikost řídícího napětí FETu. U tranzistorů s kanálem N typu MOS či MIS toto napětí bývá kladné, u 
tranzistorů s kanálem N typu J FET je záporné. (u tranzistorů s kanálem typu P mají tato napětí 
opačnou polaritu). 

Citlivost polem řízených tranzistorů na teplotu je oproti bipolárním tranzistorům menší, což 
můžeme ilustrovat srovnáním např. převodních charakteristik bipolárních tranzistorů (např. obr. 7.24) 
s charakteristikami polem řízených tranzistorů (obr. 7.43 a 7.44). U tranzistorů J FET je dokonce vliv 
teploty v širokém rozsahu, jak ilustruje obrázek 7.44, zanedbatelný. 

 

 
a) b) 

Obr. 7.43.  K vlastnostem polem řízených tranzistorů typu MOS. 
                 a) Zapojení zesilovače. 
                 b) Dole - vstupní napětí uG = +2.13 + 0,1 sin (2 π 1000 t) [V, s]. 
                       Vlevo nahoře - převodní charakteristiky pro tři různé teploty: 90°C, 20°C a -50°C. 
                        Vpravo nahoře - Výstupní napětí uD  zesilovače pro uvedené tři teploty. 

Řídící elektroda polem řízeného tranzistoru je od zbývající části tranzistoru oddělena buď 
dielektrikem (MOS FET), nebo PN přechodem polarizovaným v závěrném směru (J FET). Proto je 
vstupní impedance polem řízených tranzistorů dána impedancí kondenzátoru, tvořeného řídící 
elektrodou a tělem tranzistoru. To je v obr. 7.45 b) ilustrováno frekvenční závislostí fáze vstupní 
impedance zesilovače na kmitočtu. V pracovním kmitočtovém pásmu je tato fáze rovna 90°, vstupní 
impedance tranzistoru má čistě kapacitní charakter. 

 

a) 

 

b) 

Obr. 7.44.   K vlastnostem polem řízených tranzistorů typu J FET. 
a) Zapojení zesilovače. 
b) Dole - vstupní napětí uG  = -2.5 + 0,08 sin (2 π 1000 t) [V, s]. 
    Vlevo nahoře - převodní charakteristiky pro tři různé teploty: 90°C, 20°C a -50°C. 
     Vpravo nahoře - Výstupní napětí uD  zesilovače pro uvedené tři teploty. 
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a) 

 

b) 

Obr. 7.45.  Příklad zesilovače s tranzistorem typu JFET. 
a) Zapojení zesilovače. 
b) Kmitočtová charakteristika zesilovače, vstupní kapacita a fáze vstupní impedance. 

Jak už jsme uvedli, je řídící veličinou polem řízených tranzistorů napětí mezi řídící a zdrojovou 
elektrodou. To má za následek i poněkud modifikovaný obvod pro nastavení polohy pracovního bodu. 
Na obr. 7.46 jsou uvedena možná zapojení pro tranzistory s kanálem typu N. 

 

 

a) 

 

b) 

 

Obr. 7.46.  Možné způsoby vytváření předpětí polem řízených tranzistorů. 
a)  Vytvoření kladného předpětí pro  MOS FET. b)  Vytvoření záporného předpětí pro J FET.  

Pro tranzistor typu MOS lze získat předpětí odporovým děličem R1 a R2 (obr. 7.46a). Horní 
konec R1 lze připojit ke sběrné elektrodě tranzistoru a zavést tak -ZV pro teplotní stabilizaci polohy 
pracovního bodu (viz obr. 7.29). Pro tranzistor typu J lze předpětí získat pomocí rezistoru RS ve 
zdrojové elektrodě tranzistoru (obr. 7.46b). I u tohoto zapojení je zavedena -ZV, která zde však není 
využita k teplotní stabilizaci polohy pracovního bodu, protože tento typ tranzistoru s teplotou nemění 
vlastnosti. 

 
 

7.9 OPERAČNÍ (A DALŠÍ INTEGROVANÉ) ZESILOVAČE 
Operační zesilovače (OZ) jsou dnes nejpoužívanější skupinou zesilovačů (lze odhadovat asi 

95%). Historie jejich vzniku se obvykle datuje od roku 1947 a je spjatá s vývojem analogových 
počítačů v padesátých a šedesátých letech, kdy byly vyvíjeny co neideálnější diskrétně realizované 
(elektronky a pak tranzistory) a později integrované zesilovače, umožňující jednoduché modelování 
základních analogových funkcí (sumace, diference, integrál, derivace apod.). S vývojem integrace OZ 
se ukázalo ekonomičtější použít tyto relativně předimenzované zesilovače namísto jedno či 
vícestupňových diskrétně realizovaných tranzistorových zesilovačů i v běžných aplikacích, a tak OZ 
přetrval, i když éra analogových počítačů víceméně skončila. To umožňovala jejich rapidně klesající 
cena s vývojem integrované technologie. Pro praxi byla výhodná i zvyšující se kvalita, univerzálnost a 
jednoduchost použití. Zde lze hledat analogii s nasazením mikroprocesorů, kdy se ukázalo 
ekonomicky i provozně výhodnější použít relativně složitý mikroprocesor namísto jednodušších 
logických obvodů, realizovaných skládáním základních diskrétních logických prvků. 
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7.9.1  Ideální OZ, reálný OZ a jeho základní vlastnosti 
Pro vysvětlení  funkce OZ je vhodné zavést pojem ideálního operačního zesilovače (IOZ). Jeho 

funkce byla vysvětlena již v kapitole 4.2.2. Schématická značka a základní model IOZ jsou uvedeny 
na obr. 7.46 a), b). Podstata funkce spočívá v nekonečném zesílení rozdílového napětí Ua-b, které vede 
při použití záporné zpětné vazby z výstupního řízeného zdroje napětí na vstup k podmínce nulové 
hodnoty rozdílového napětí Ua-b. Výhodou tohoto modelu skutečného OZ je jeho názornost a 
jednoduchost, přičemž pokud nevyžadujeme použití OZ pro vysoké hodnoty kmitočtů či zesílení, je 
použití tohoto jednoduchého modelu velmi přesné. Proto je daný model v praxi dosti využíván. 

Napájení 
Pro praktické použití OZ je nutné uvažovat i napájecí obvody, jak je to ukázáno na obr. 7.46 c). 

Zde je zřejmé jednak nejčastěji používané symetrické napájení (obvykle ± 15 V, OZ s vysokým GBW 
±5 V, někdy jen +5 V či nižší), a dále skutečnost, že symbolicky vyjádřený výstupní řízený zdroj 
napětí z obr. 7.46 b) nemá přímo vyvedenou zemnící svorku, ale funguje, jako by byl připojen k zemní 
svorce, tvořené středem napájecích zdrojů. V případě, že máme k dispozici pouze jeden napájecí zdroj 
(např. v autě), je možné získat potřebné symetrické napájení OZ vytvořením umělého středu napájení 

(umělé země) některou z běžných metod, 
počínaje odporovým děličem (viz obr. 7.46 
d), přes použití různých variant stabilizátorů 
apod. Důležitý je dostatečně malý vnitřní 
odpor takto vytvořených zdrojů s ohledem 
na zatěžovací proudy, odebírané 
zesilovačem. Dále je nutno si uvědomit, že 
signálová zem je vztažena k uměle 
vytvořenému středu napájení a nikoliv ke 
skutečné zemi napájecího zdroje (např. při 
použití v autě). Proto se čím dál tím více 
prosazuje vytvoření druhé napájecí větve 
nějakým vhodným integrovaným měničem 
DC-DC, čímž odpadnou problémy rozdílů 
mezi signálovou a zdrojovou zemí. Též je 
nutno podotknout, že hodnoty napájecích 
napětí nemusí být zcela shodné, protože 
symetrie napájení není nutnou podmínkou 
funkce. Je ale pravda, že se některé reálné 
vlastnosti v tomto případě částečně zhoršují.  

S uvedeným jednoduchým modelem 
IOZ vystačíme jen pro nenáročná použití. Se 
stoupajícími požadavky na hodnoty zesílení, 
kmitočtového pásma apod. se začínají 

výrazněji projevovat reálné vlastnosti OZ, takže pro rozbor těchto vlastností potřebujeme podrobnější 
a přesnější modely skutečného a značně složitého zapojení OZ, vytvořeného z řádově desítek 
tranzistorů. 

Stejnosměrné vlastnosti, ofset, drift 
Pro pochopení stejnosměrné funkce OZ lze použít zjednodušené schéma z obr. 7.47 a). Vstup 

OZ je tvořen některou z variant tzv. diferenčního zesilovače z tranzistorů T1 a T2. Jeho funkci si lze 
představit jako dvojramenné váhy. V případě, že napětí Ua a Ub obou bází jsou shodná, jsou při 
shodných vlastnostech obou tranzistorů shodné i kolektorové proudy a rozdílové napětí Uc-d je také 
nulové (váhy jsou v rovnováze). V případě, že se např. napětí Ua zvýší, vede to ke zvýšení hodnoty 
UBE1 a tím i IC1. Zvýšení IC1 a tím i emitorového proudu vede ke zvýšení napětí na rezistoru RE (RE je 
zjednodušení, obvykle jde o zdroj proudu), které působí jako záporná zpětná vazba, snižující hodnotu 
UBE1. Tím se ale sníží i hodnota UBE2, což naopak vede k uzavírání tranzistoru T2 a snižování IC2 (jako 

Uca) UC=∞Ua-bb)
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Obr. 7.46. a) IOZ, b) jeho model, c) zapojení symetrického 
napájecího napětí, d) úprava jednoduchého 
napájecího zdroje na symetrický e,f,g) standardní 
zapojení IO s jedním, dvěma a čtyřmi OZ. 
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druhé rameno vah). Zvýšení IC1 a snížení IC2 vyvolá na rezistorech RC1 a RC2 rozdílové napětí Uc-d, 
jehož hodnota je zesílená vzhledem k hodnotě Ua-b. Při praktickém použití pak lze připojit jednu bázi 
k signálové zemi a zesilovač tak funguje jako stejnosměrný s možností kladného i záporného 
vstupního napětí.  

Protože pro stejnosměrný režim a nízké kmitočty lze chápat OZ jako nesetrvačný obvod, 
definuje jeho přenosové vlastnosti převodní charakteristika, viz obr. 7.47 b). Plnou čarou je 
naznačena převodní charakteristika OZ s plným zesílením bez záporné zpětné vazby. Lze z ní spočítat 
hodnotu konečného zesílení A0 pro OZ bez zpětné vazby (zde cca 10 000, tj. 80 dB). Dále jsou vidět 
nelinearita a hodnoty saturačního napětí. Při zapojení záporné zpětné vazby klesne zesílení, sníží se 
tak adekvátně strmost převodní charakteristiky (čárkovaně) a zvýší se linearita charakteristiky, protože 
ji více určují lineární rezistory než nelineární zesilovač. Případný ofset (viz dále) se projevuje 
posunem charakteristiky v ose Ua-b o hodnotu ofsetu. 
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Obr. 7.47. a) Stejnosměrný model OZ se vstupním diferenčním zesilovačem,  b) převodní charakteristika pro 

přenos A0 a nižší zesílení. 
 

V porovnání s klasickým jednostupňovým zesilovačem, který neumožňuje stejnosměrné zesílení 
s ohledem na vliv prahového napětí UBE diody báze-emitor (cca 0,6 V), je toho dosaženo u 
diferenčního zesilovače tím, že se obě napětí UBE1 a UBE2 vzájemně kompenzují. Důležitým 
předpokladem je shodnost vlastností diod BE obou tranzistorů. Proto se tento problém často označuje 
jako napěťová (a proudová) nesymetrie vstupů. Protože shodnost obou přechodů BE nebude nikdy 
absolutní, projevuje se rozdíl obou napětí jako chybové napětí, označované jako napěťový ofset. To 
se po průchodu zesilovačem a odpovídajícím zesílení projeví jako stejnosměrná chyba výstupního 
napětí. Běžná velikost ofsetového napětí je asi 1 mV, takže je zřejmé, že je problematické použít OZ 
jako stejnosměrný zesilovač se zesílením víc než 100, aby výsledná chyba nepřekročila přijatelnou 
mez. Potřebujeme-li vyšší stejnosměrné zesílení, musíme použít speciální OZ s malým ofsetem (cca 
10 µV), nebo speciální zapojení OZ se spínači, které tento ofset dokáže kompenzovat.  

Chybové napětí na výstupu je kromě rozdílných napěťových vlastností vstupních tranzistorů 
způsobeno i klidovými proudy do jejich bází. Tyto stejnosměrné proudy vyvolávají na rezistorech, 
připojených k bázím, dodatečná stejnosměrná napětí, která nemusí být shodná a nedochází tak k jejich 
úplné kompenzaci. Tato neshodnost může být způsobena rozdílem hodnot odporů a rozdílem proudu 
obou bází. Tomuto efektu se říká proudový ofset. Celkové chybové napětí na výstupu je pak dáno 
součtem těchto dvou efektů.  

Model OZ s náhradními zdroji napěťového (UO) a proudových ofsetů (IO+ a IO-) je ukázán pro 
invertující zesilovač (obr. 7.48 a), kde je použit pomocný kompenzační rezistor R3 (obvykle je kladný 
vstup přímo uzemněn, z hlediska střídavého zesílení nemá rezistor R3 vliv). Do hodnoty rezistoru R1 
lze zahrnout vnitřní odpor zdroje. Je zřejmé, že toto zapojení není vhodné pro zdroje signálu s velkým 
vnitřním odporem. Poněkud komplikované řešení lze zjednodušit přepočtem proudových zdrojů na 
napěťové (UIO+ a UIO -, viz obr 7.48 b) podle vztahů  

3RIU OIO ++ = ,          (7.20) 

1RIU OIO −− = .          (7.21) 

Výsledné chybové napětí pak lze vyjádřit rovnicí  
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kde je zřejmá možnost kompenzace proudových ofsetů volbou hodnoty pomocného odporu R3 = 
R1//R2. Pro velké zesílení, kdy se problém ofsetu prakticky projevuje, lze podmínku zjednodušit bez 
velké chyby na volbu R3=R1. Je nutno podotknout, že v případě malého zesílení, malé hodnoty 
proudového ofsetu či střídavého zesilovače, kdy není potřeba kompenzace proudového ofsetu, je 
použití odporu R3 zbytečné a nahrazuje se zkratem. Dále je zřejmé, že prakticky stejné řešení má i 
neinvertující zesilovač, když jeho zdroj vstupního napětí (U1 na obr. 7.48 b) je nutno přesunout do 
větve v kladném vstupu. V tom případě můžeme ztotožnit R3 s vnitřním odporem zdroje U1.  

U2
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R1 R2

a)
R3
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IO- IO+
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b)

R3

UO

UIO-
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R3
+UN
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Obr. 7.48. Ofset invertujícího zesilovače: a) model s napěťovým a proudovými zdroji ofsetu, b) model 

s přepočtenými proudovými zdroji na napěťové, c) možný způsob kompenzace celkového ofsetu. 
 

Z hlediska návrhu zesilovače s minimalizací ofsetu je třeba rozlišovat rozdílné vlastnosti 
vstupního diferenčního zesilovače realizovaného z bipolárních nebo unipolárních tranzistorů. 
V případě OZ s unipolárními tranzistory je proudový ofset minimální (cca 1-10 fA), takže se neprojeví 
ani při použití zdrojů signálu s velkým vnitřním odporem (či rezistorů připojených ke vstupu OZ). 
Např. při odporu zdroje 1MΩ dostaneme proudový ofset menší 10-8 V. Toto řešení přináší ale vyšší 
napěťový ofset UO než u bipolárních diferenčních zesilovačů (cca 5x až 10x). Oproti tomu bipolární 
vstup OZ má nižší napěťový ofset, ale mnohonásobně vyšší ofsetový proud (cca 1-10 nA). Proto při 
použití rezistorů s vysokými odpory připojených ke vstupům OZ se vytváří větší napěťová chyba než 
u unipolárních vstupů. Např. při použití odporu zdroje 1 MΩ je vzniklý ofset až 10 mV. Potřebujeme 
li stejnosměrný zesilovač s minimálním ofsetem, je nutno znát především vnitřní odpor zdroje signálu 
(např. R3 pro neinvertující zesilovač). Je-li vysoký (řádově nad 10 či 100 kΩ), je výhodnější použít OZ 
s unipolárním vstupem. Pro menší odpory je výhodnější bipolární OZ, protože je vliv proudového 
ofsetu nižší než vliv napěťového. Dále je vhodné proudové ofsety do značné míry kompenzovat 
vhodnou volbou rezistorů ve smyslu diskuse vztahu (7.22).  

Napěťový (případně celkový) ofset pak lze kompenzovat také, a to zařazením kompenzačního 
napětí do vstupního obvodu. Jedna z možných variant je vytvoření kompenzačního napětí ze zdroje 
napájení přes proměnný dělič s velkým dělícím poměrem (z V na mV), jak je to ukázáno na obr. 7.48 
c). Výhodnější interní kompenzace ofsetu umožňují některé OZ s vyvedeními příslušnými svorkami a 
doporučeným zapojením dostavovacího trimru. Tyto kompenzace nejsou absolutní, protože hodnota 
ofsetu je závislé i na změně teploty (teplotní závislost ofsetu je vyjadřována jako drift) popř. na změně 
odporů vstupu obvodu (např. při přepínání zesílení).  

 
Střídavé kmitočtové vlastnosti 

Pro objasnění střídavých vlastností v kmitočtové oblasti je vhodné použít zjednodušený lineární 
model na obr. 7.49 a). Tento model vyjadřuje jednak konečný vstupní odpor RVST, konečnou hodnotu 
zesílení A0 a dále dominantní RC člen s mezním kmitočtem FL1 (obr. 7.49 b), způsobující pokles 
zesílení s kmitočtem se strmostí kmitočtové charakteristiky 20 dB na dekádu. Protože hodnota FL1 
závisí i na hodnotě A0, je vhodnější tento vliv vyjadřovat hodnotou tranzitního kmitočtu FT (anglicky 
obvykle GBW), což je maximální kmitočet pro jedničkový přenos (0 dB). Z této hodnoty snadno 
odvodíme maximální zisk pro požadovanou šířku pásma či naopak, protože každá dekáda 
kmitočtového rozsahu snižuje zisk 10x (20 dB), viz obr. 7.49 c). Pokud nemáme OZ, který by měl 
dostatečné zesílení pro námi požadované kmitočtové pásmo, je nutné použít dva zesilovače s OZ 
v kaskádě. Charakteristika výsledného zesilovače pak bude klesat se strmostí 40dB na dekádu. 
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Obr. 7.49. a) Střídavý model OZ, b) modulová kmitočtová charakteristika pro přenos A0, c,d) modulová a 

fázová charakteristika pro přenosy 80, 40 a 0 dB po aplikaci záporné zpětné vazby. 
 

 

Poznámka: Je nutno upozornit na maximální hodnotu rezistoru R2, protože při jeho velké hodnotě 
(např. 1 MΩ) se může projevit jeho parazitní kapacita. Má-li např. hodnotu 5 pF, vzniká tak DP 1. 
řádu s mezním kmitočtem 32 kHz, což může být nižší hodnota než je vlastní mezní kmitočet zesilovače 
s OZ. Volbou vysoké hodnoty R2 tak můžeme jeho vlastnosti znehodnotit. Kapacitu lze k R2  naopak 
cíleně přidávat pro požadované omezení šířky pásma a potlačení potenciální nestability. 

P7.1 Navrhněte realizaci zesilovače se zesílením 60 dB s mezním kmitočtem 100 kHz pomocí 
OZ s tranzitním kmitočtem FT=10 MHz. 

þ Řešení:  Protože každé snížení kmitočtu od FT o dekádu přidá 20 dB, jednoduše pro tento OZ 
vypočteme, že pro 100 kHz lze dosáhnout zesílení 40 dB, což je nedostačující. Proto použijeme dva 
zesilovače v kaskádě, každý se zesílením 30 dB. Tím každý z nich bude mít šířku pásma asi o půl 
dekády vyšší (cca 300 kHz) a celý zesilovač o něco nižší vzhledem k tomu, že útlum 3 dB na mezním 
kmitočtu každého dílčího zesilovače se sčítá a pro 300 kHz to bude 6 dB. Tento výpočet lze 
samozřejmě provést přesněji, ale orientační řešení je většinou dostačující. n 

OZ obsahuje samozřejmě více parazitních kapacit, ale jejich vliv je (díky někdy i záměrně větší 
hodnotě kapacity dominantního RC členu) více či méně potlačen. Prakticky lze obvykle pozorovat 

pouze mírný vliv druhé kapacity, označovaný jako tzv. 
druhý lom s mezní hodnotou FL2 (obr. 7.49 b). Ten nemá 
vliv na praktické přenosové vlastnosti, protože je až za 
tranzitním kmitočtem. Může však vlivem dalšího posuvu 
fáze způsobovat nestabilitu v okolí tranzitního kmitočtu.  

Pokles zesílení s kmitočtem ovlivňuje samozřejmě 
i další vlastnosti závislé na zesílení. Jedním z nich je i 
výstupní odpor. Ten je v oblasti nízkých kmitočtů a 
malého zesílení díky záporné zpětné vazbě velice malý, 
prakticky nulový. Ovšem se vzrůstajícím kmitočtem a 
poklesem zesílení klesá i vliv zpětné vazby a výstupní 
odpor stoupá až na základní hodnotu RO v zapojení bez 
zpětné vazby, viz obr. 7.50 a střídavé náhradní schéma na 
obr. 7.49 a). 
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Obr. 7.50. Závislost výstupního odporu na 

kmitočtu při silné záporné zpětné vazbě. 
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Dosud jsme se zabývali lineárními kmitočtovými vlastnostmi, ale je potřebné se zmínit i o 
nelineárních. Pro tento rozbor je vhodné použít jednotkový zesilovač s modelem OZ podle obr. 7.51 
a). Jde o modifikaci modelu z obr. 7.49 a), kde je uvažována limitace výstupního napětí vstupního 
zesilovače hodnotou napájecího napětí. Hlavním problémem je rychlost reakce výstupu na rychlou 
změnu vstupního signálu, např. na jednotkový skok (obr. 7.51 a). Ideální jednotkový zesilovač by měl 
mít na výstupu shodný signál. Reálný zesilovač ale musí nabíjet kapacitor C. Funkce záporné zpětné 
vazby by nutila zvyšovat výstupní napětí vstupního zesilovače až na nekonečnou hodnotu, aby se 
kapacitor nabil skokově. Protože je však výstupní napětí omezeno napájecím, nabíjení kapacitoru trvá 
konečnou dobu, po kterou je vstupní zesilovač zasaturován a pracuje v nelineárním režimu. Rychlost 
nabíjení kapacitoru a tím i maximální rychlost změny výstupního napětí ∆u2/∆t se obvykle vyjadřuje 
jako rychlost přeběhu (Slew Rate - SR) a vyjadřuje se v praktických jednotkách V/µs. Je zjevné, že 
rychlost přeběhu úzce souvisí s hodnotou tranzitního kmitočtu. Dále je běžné, že rychlosti přeběhu 
v kladném a záporném směru nejsou zcela shodné. Též je zajímavý téměř lineární průběh výstupního 
signálu při saturaci vstupního zesilovače, kdy se obvody nabíjející kapacitor chovají spíše jako zdroje 
proudu než jako zdroje napětí. 
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d)    e)  
Obr. 7.51. Rychlost přeběhu: a) střídavý nelineární model OZ pro jednotkové zesílení, b) odezva na 

jednotkový skok, c) odezva na malý a velký harmonický signál, d) kmitočtová charakteristika 
pro malé signály, e) kmitočtová závislost omezení velkých signálů vzhledem k rychlosti 
přeběhu (LT 1028 [I11]). 

 

Praktický dopad, kdy obdélníkový signál bude OZ přenášet jako lichoběžníkový s konečnou 
dobou náběžných hran, je poměrně známý. Méně často si uživatelé uvědomují, že tento efekt se 
projevuje i pro pomaleji se měnící signály (např. harmonický signál), pokud rychlost změny tohoto 
signálu na výstupu OZ překročí danou rychlost přeběhu, jak je to znázorněno na obr. 7.51 c). Tento 
efekt je obvykle v katalogových listech vyjádřen závislostí maximálního rozkmitu harmonického 
signálu na kmitočtu, kde plný rozkmit výstupního signálu je omezen kmitočtem cca 10x-100x nižším 
než je tranzitní kmitočet FT. To dokumentuje obr. 7.51 d, e) pro OZ typu LT1028 a LT1128, kdy pro 
tranzitní kmitočty cca 5 MHz, resp. 10 MHz jsou maximální kmitočty s rozkmitem, nelimitovaným 
rychlostí přeběhu, asi 70 kHz a 200 kHz. 

Nelineární zkreslení OZ  
Dosud uvedené poznatky o zkreslení plně platí i u OZ. Lze říci, že klasická statická nelineární 

zkreslení OZ (harmonické, intermodulační) jsou díky používané záporné zpětné vazbě velice nízká (u 
speciálních OZ i méně než 100 dB). Na druhou stranu je třeba si uvědomit kmitočtovou závislost 
těchto zkreslení, kdy zhruba od 10 kHz jejich hodnota narůstá vzhledem k poklesu kmitočtově závislé 
rezervy zesílení. Pro speciální OZ s vysokou hodnotou FT se tato hranice posouvá až k 1 MHz.  



___Elektronické obvody I______________________________________________________________________ 

 280

Trochu odlišná situace je u tzv. dynamických zkreslení (označovaná např. TIM), způsobených 
saturací v době překročení rychlosti přeběhu, viz obr. 7.51 b,c). V této době efekt záporné zpětné 
vazby přestává fungovat a zkreslení rapidně narůstá. Z tohoto hlediska je potřeba použít zesilovače 
s vysokou rychlostí přeběhu. Jednoduchým řešením je omezení maximální rychlosti vstupního signálu 
pomocí RC dolní propusti 1. řádu tak, aby mezní kmitočet jen mírně překračoval potřebnou maximální 
šířku přenášeného pásma (u akustického pásma např. asi 30- 40 kHz). 

Šumové vlastnosti OZ  
Pokud potřebujeme vyšší zesílení, stává se limitujícím faktorem dynamického rozsahu šum OZ 

(analogicky jako pro stejnosměrný režim ofset). Vysvětlení šumových poměrů a minimalizace šumu je 
poměrně složitý problém, protože do něho vstupuje hodně faktorů a lze k němu přistupovat různými 
způsoby. Nejprve je vhodné si uvést základní vztah pro tepelný šum rezistoru: 

BeRBkTBRU fnn === −1010.26,14 .      (7.23) 

Z něj je zřejmé, že šum je určen hodnotou absolutní teploty T, odporu R a šířky pásma B a 
Boltzmanovou konstantou k. Pro eliminaci jednoho faktoru, šířky pásma B, se vyjadřuje kmitočtově 
normovaná velikost šumu - napěťová spektrální hustota en jako Un /√B v jednotkách V/√Hz či spíše 
nV/√Hz, což je šum pro šířku pásma 1 Hz. Z ní pak snadno vypočítáme šum pro požadovanou šířku 
pásma. V případě kmitočtové závislosti šumu pak používáme s výhodou kmitočtovou závislost 
spektrální hustoty, jak bude ukázáno dále. Je zajímavé, že pro konstantní teplotu (např. 20°C) přímo 
koresponduje hodnota spektrální napěťové hustoty hodnotě šumu odporu, kterou lze vypočítat 
vztahem 1,26x10-10√R. Proto se v některých případech namísto šumové spektrální hustoty OZ používá 
hodnota odporu s ekvivalentním šumem, viz též obr. 7.53. 

Šumový model OZ je ukázán na obr. 7.52. Zde je použito ekvivalentní vyjádření šumu Une na 
vstupu OZ. Tím se vyloučí další proměnná ovlivňující šum – a to napěťové zesílení. Výsledný šum 
pak na výstupu UnOUT získáme prostým vynásobením ekvivalentního vstupního šumu a zesílení. Jak je 
z obr. 7.52 zřejmé, vstupní ekvivalentní šum OZ je tvořen součtem šumu z různých zdrojů. Jsou to 
napěťový šum Un, proudové šumy In+, In- (analogické ke zdrojům ofsetu, viz obr. 7.52 a) a dále 
tepelné šumy všech připojených rezistorů. Výsledný šum lze vyjádřit vztahem 

2
3

22
2

2
1

222 / nRnRnRInInnnenOUT UAUUUUUAAUU +++++== −+  . (7.24) 

Tepelný šum rezistorů R1 - R3 odpovídá vztahu (7.23).  Proudové zdroje šumu lze vyjádřit jako 
napěťové obdobně jako u ofsetu podle rovnic 

3RIU nIn ++ = , )//( 21 RRIU nIn −− = . (7.25) 

Velmi důležitým faktorem pro velikost šumu je velikost vnitřního odporu zdroje signálu (např. 
R3 pro neinvertující zesilovač) popř. velikost dalších odporů na vstupu (R1, R2). Ze vztahu (7.25) 
vyplývá závislost  

kTBRRIU nne 4)( 2 +≈ ±  ,  (7.26) 

kdy ekvivalentní vstupní šum závisí u proudového šumu přímo na hodnotě odporu těchto rezistorů, 
kdežto tepelný šum roste jen s odmocninou jejich hodnoty: 
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R3 UnOUT
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UnOUT
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Obr. 7.52.  Šumový model OZ s napěťovým a proudovými zdroji šumu (Un, In+, In-). 
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tepelný šum - RUne ≈  proudový šum  -  RUne ≈       ( ZUne ≈ !!!) (7.27) 

Dále je nutno poukázat na použití zdroje signálu s komplexní vnitřní impedancí. Je známo, že 
kapacitní resp. induktivní složky této impedance neprodukují tepelný šum. Je ale důležité, že vliv 
proudového šumu vzrůstá úměrně modulu impedance, takže např. i kapacita některých senzorů (nebo 
zdrojů signálu s kapacitně oddělenou stejnosměrnou složkou) může zvyšovat pro určité kmitočtové 
pásmo šum! Efekty vztahů (7.26) s (7.27) názorně ukazují závislost ekvivalentního šumu na hodnotě 
R, viz obr. 7.53. Zde je závislost tepelného šumu samotného odporu podle (7.26) a dále závislosti 
ekvivalentního šumu pro unipolární a bipolární vstup OZ. Z nich je zřejmé, že pro nízké hodnoty 

odporu zdroje přidává OZ k tepelnému šumu 
zdroje převážně napěťový šum, kdežto pro 
vysoké hodnoty odporu zdroje převažuje 
lineární nárůst vlivu proudového šumu (7.27). 
Je zřejmé, že pro nízké hodnoty R je výhodné 
použití OZ s bipolárním vstupem, kdežto pro 
vysoké hodnoty odporu přidává méně šumu 
unipolární vstup. V oblasti středních hodnot R 
(cca 10 kΩ) je přidaný šum OZ minimální. 
Míru přidaného šumu vyjadřuje tzv. šumové 
číslo zesilovače jako poměr celkového 
ekvivalentního šumu k tepelnému šumu 
zdroje signálu. Je ale zřejmé, že jeho hodnota 
je proměnná v závislosti na více faktorech, 
jako jsou odpor zdroje, kmitočet apod.  

Rozbor šumových vlastností je potřebné doplnit také o kmitočtové závislosti šumových 
spektrálních hustot. Ty jsou ukázány na obr. 7.54 pro příklady typických nízkošumových bipolárních 
a unipolárních OZ – LT1028 a AD745 [I11], [I16]. Na nich je vidět základní vlastnost těchto průběhů, 
relativně konstantní průběh (bílý šum) pro střední kmitočty a nárůst šumu přibližně se směrnicí 1/f pro 
nízké kmitočty (blikavý šum). Z tohoto hlediska lze ofset považovat za limitní případ šumu pro nulový 
kmitočet. U vysokých kmitočtů může u některých OZ dojít k mírnému zvýšení šumu, jako je tomu u 
AD 747 (obr. 7.54 d). Je též vhodné porovnat hodnoty proudových a napěťových šumů pro oba typy 
OZ (unipolární a bipolární). Na obr. 7.54 f) výrobce přímo porovnává unipolární AD725 s bipolárním 
OP37 a ukazuje, že vzhledem k extrémně malému šumovému proudu (cca 10 fA) je nárůst šumu pro 
vysoké hodnoty odporu prakticky zanedbatelný. 

Pro návrh zesilovače s OZ s ohledem na minimalizaci šumu lze vyjít z podobných zásad jako 
při minimalizaci ofsetu. Jako výchozí údaj je nutné vzít vnitřní odpor (nebo i komplexní impedanci!) 
zdroje signálu. V souladu s diskusí k obr. 7.53 volíme nízkošumový OZ s unipolárním či bipolárním 
vstupem. Volba dalších odporů (na obr. 7.52 např. R1 a R2, pokud je R3 odpor zdroje signálu) vede na 
pokud možno nižší hodnotu R1 než R3 pro minimalizaci jejich tepelného šumu a případného 
proudového šumu. Evidentní je, že nelze provést kompenzaci proudového šumu jako u proudového 
ofsetu vzhledem k náhodnému charakteru šumových signálů.  

Výsledný šum pak lze orientačně spočítat následovně. Ze součtu ekvivalentních šumových 
zdrojů na vstupu podle (7.25) (a to obvykle v normované hodnotě spektrálních hustot) vyjádříme 
ekvivalentní spektrální hustotu na vstupu a tu vynásobíme zesílením a odmocninou šířky propustného 
pásma. Pro nízké kmitočty, kde nelze považovat spektrální hustotu za konstantní, je nutno nahradit 
prostý součin spektrální hustoty a kmitočtu integrací či zjednodušeným výpočtem odpovídající plochy. 
To má praktický význam jen pro nízkofrekvenční zesilovače s malou šířkou pásma (cca do 1 kHz), 
protože při větší šířce pásma je příspěvek z nekonstantní části spektrální hustoty k celému šumu 
zanedbatelný.  
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Obr. 7.53. Závislost ekvivalentního šumu na hodnotě 

odporu zdroje signálu. 
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a)   b)                                  c) 

 
d)   e)                                  f) 

Obr. 7.54. Napěťové a proudové spektrální šumové hustoty a závislosti ekvivalentního šumu na odporu pro bipolární 
OZ (LT1028 a-c) a unipolární OZ (AD745 d-e). 

 
Poznámka: Je nutno rozlišovat běžnou šířku pásma pro přenos signálu a ekvivalentní šumovou šířku 
pásma. Ta odpovídá šířce ideální DP, která přenese stejnou energii šumu. To přináší určité zvýšení 
šířky v porovnání se signálovou šířkou především pro filtr 1. řádu (asi 1,5x). U filtrů vyšších řádů je 
již tento rozdíl minimální (pro 2. řád asi 1,1x, pro 3. řád 1,05x). 

P7.2 Navrhněte neinvertující zesilovač se zesílením 40 dB a šířkou pásma 100 kHz 
s minimálním šumem pro zdroj signálu v jedné variantě s Ri = 10 Ω a v druhé s 
Ri = 1 MΩ. Vypočtěte výsledný dynamický rozsah těchto zesilovačů. 

þ Řešení: Pro Ri = 10 Ω zvolíme nízkošumový bipolární zesilovač LT1028 (obr. 7.54 a,b), který 
vyhovuje i z hlediska zesílení a šířky pásma. Pro zesílení 40 dB zvolíme R1 = 10 Ω a  R2 = 1 kΩ. Podle 
(7.24) a (7.25) vypočteme ekvivalentní výstupní napěťovou spektrální hustotu: 

( ) ( ) ( ) ( )
./89109,8100

100/10001010101010100

100

10

2122122122

HznV

ee nenOUT

=××=

=××+×+×+×+×=

==

−

−−−−− 10101,6100,8 209   

Vidíme dominantní vliv podílu napěťového šumu OZ, malý příspěvek odporu zdroje a zanedbatelný 
příspěvek proudových šumů OZ. Výsledné šumové napětí bude pro B = 100 kHz (šumová šířka je 150 
kHz)  

VU nOUT µ344105,1109,8 58 =×××= −  . 

Při uvažované maximální výstupní amplitudě 8 V pak dostaneme dynamický rozsah 8V/344µV, což je 
23x103 (87,3 dB). Dále je zřejmé, že při použití unipolárního OZ by ještě klesl zanedbatelný proudový 
šum, ale stoupl by dominantní napěťový (a tedy v podstatě výsledný) šum podle typu OZ asi 5x až 
10x. 
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V případě Ri = 1 MΩ zvolíme nízkošumový unipolární zesilovač AD745 (obr. 7.54 d,e). Pro 
zesílení 40 dB můžeme zvolit i vyšší hodnoty rezistorů (R1= 100 Ω a R2= 10 kΩ. Ζ obr. 7.54 c,d) 
odhadneme střední napěťovou a proudovou spektrální hustotu a podle (7.24) a (7.25) vypočteme 
ekvivalentní výstupní napěťovou spektrální hustotu: 
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Zde je dominantní vliv tepelného šumu vnitřního odporu zdroje, velmi malý příspěvek proudového 
šumu OZ na odporu zdroje a zanedbatelný příspěvek napěťového šumu OZ. Výsledné šumové napětí 
bude pro šumovou šířku pásma 150 kHz  

mVU nOUT 5105,11013 56 ≅×××= − . 

Při uvažované maximální výstupní amplitudě 8 V pak dostaneme dynamický rozsah 8V/5mV, což je 
1600 (64 dB). Při použití bipolárního OZ by ještě klesl zanedbatelný napěťový šum, ale stoupl by 
dominantní proudový (a tedy v podstatě výsledný) šum. Pro LT1028 by pak celková spektrální 
hodnota byla  
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Celkové šumové napětí pro uvažovanou šířku pásma je pak 38 mV, což odpovídá dynamickému 
rozsahu asi 46 dB. Toto podstatné zhoršení dynamického rozsahu má za následek radikální vzrůst 
proudového šumu na odporu zdroje.  

Kromě uvedených reálných vlastností OZ lze najít v katalogových listech i řadu dalších 
parametrů, jako např. potlačení souhlasného signálu na vstupu, potlačení rušivých signálů z napájecích 
zdrojů, teplotní vlastnosti apod. Velmi často uvádí výrobci výběr těchto reálných vlastností s ohledem 
na jejich důležitost podle typu (a tím předpokládané aplikace) OZ (rychlý, přístrojový, nízkošumový, 
nízkopříkonový atd.), jak  bude vysvětleno dále. 

7.9.2  Typy OZ a jejich základní zapojení 

Typy OZ 
Největší část OZ produkuje několik hlavních firem ve světě. Lze uvést např. Analog Devices, 

Fairchild, Linear Technology, National Semiconductor, Texas Instruments. Přitom jsou v jejich 
sortimentu uváděny řádově stovky typů OZ. Je to zdánlivě divné, chápeme-li OZ jako univerzální 
zesilovač. Avšak se snahou o dosáhnutí maximálních reálných parametrů jsou vyvíjeny OZ s určitým 
speciálním zaměřením, protože jednotlivé požadavky vedou často k protichůdným technologiím 
výroby (i když pokroky v technologii se dokáží s některými z problémů vypořádat). Výrobci běžně 
třídí OZ do různých skupin, jako např.: 
§ univerzální (levné, pro běžné méně náročné aplikace, dříve µA741, pak řada TL O8X apod.), 
§ rychlé OZ (s GBW nad 10 MHz, některé až do 1 GHz a s velkou rychlostí přeběhu), 
§ přesné a přístrojové (velké A0, nízký ofset, šum a zkreslení), 
§ nízkopříkonové (tj. i s nízkým napájecím napětím, např. pro bateriové napájení), 
§ rail-to-rail (s minimálním saturačním napětím, výstup a někdy i vstup pracuje v plném rozsahu 

napájecího napětí, potřebné obzvláště pro malá napájecí napětí), 
§ výkonové OZ (pro velký výstupní proud, někdy používány i jako výkonové akustické 

zesilovače). 
 

Proto konstruktér musí při návrhu aplikace vybrat typ OZ s ohledem na požadované vlastnosti. 
Dále mimo standardní OZ s různými reálnými vlastnostmi a tzv. napěťovou zpětnou vazbou pak 
byly v průběhu let vyvíjeny i jiné typy integrovaných zesilovačů: 
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§ Jednak jde o zesilovače založené na jiné konstrukci či odlišné funkci (např. OZ s proudovou 
ZV, zesilovač OTA, Nortonův zesilovač, zesilovače s proudovými výstupy - budou uvedeny 
dále). 

§ Dále jsou to zesilovače se speciálním určením (např. tzv. čopované zesilovače s potlačením 
ofsetu pomocí spínání, zesilovače s řízeným ziskem – napěťově, číslicově, oddělovací 
s galvanickou izolací, integrované zesilovače pro vf - 100 MHz až jednotky GHz, zesilovače 
pro optoelektronické vysílače a přijímače a pod), či složitější analogové integrované obvody 
jako aplikace OZ (logaritmické zesilovače, analogové násobičky, obvody pro získání efektivní 
hodnoty, integrované filtry ARC či ASC a pod). 

Základní zapojení obvodů s OZ 
OZ se nejčastěji využívají jako nejjednodušší neinvertující či invertující zesilovače (obr. 7.55 

a,b), jejichž vztahy pro zesílení jsou známé a řešené mj. v kapitole o analýze. Za připomenutí stojí 
teoreticky nekonečný vstupní odpor neinvertujícího a konečný vstupní odpor s hodnotou R1 u 
invertujícího zesilovače. V případě potřeby sumace (s inverzí) více signálů se využívá zapojení z obr. 
7.55 c), jehož základem je invertující zesilovač. Sumace se zde dosahuje vlivem efektu nulového 
rozdílového napětí na vstupu OZ, kdy proudy rezistorů R1-R3 odpovídají vstupním napětím a jsou 
sečteny do proudu rezistoru R. Napětí na něm pak koresponduje záporně vzatému součtu vstupních 
napětí, násobených koeficienty R/Rn. Pro případ odečítání dvou signálů se používá nejjednodušší 
rozdílový zesilovač z obr. 7.55 d), který je spojením invertujícího zesilovače (vstup U1) a 
neinvertujícho zesilovače se vstupním pasivním odporovým děličem R3-R4. Obvykle se volí shodné 
hodnoty odporů R1=R3 a R2=R4, kdy poměr R2/R1 určuje hodnotu zesílení rozdílového signálu. Je nutno 
podotknout, že nejsou shodné vstupní odpory pro oba vstupy.  
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Obr 7.55.  Aplikační příklady zapojení OZ: a, b) neinvertující a invertující zesilovač, c, d) invertující 

sumační a diferenční zesilovač, e) „přístrojový“ diferenční zesilovač, f, g) invertující 
diferenciátor a integrátor, h) neinvertující integrátor s dvěma OZ. 

 
V některých případech potřebujeme diferenční zesilovač s velkým (nekonečným) vstupním 

odporem. Je známo více zapojení, ale nejvíce se využívá tzv. přístrojový zesilovač podle obr. 7.55 e). 
Zde je před klasický diferenční zesilovač (často se zesílením 1) umístěna dvojice neinvertujících 
zesilovačů se spojeným rezistorem R1. Zesílení je pak  

UVÝST / (U1 -U2 )= (1+2R2 / R1 ) (R4 / R3). (7.28) 
Těmito zapojeními se nejčastěji realizují nejjednodušší matematické operace, sčítání, odčítání a 

násobení konstantou. OZ ale už v době svého vzniku byl určen pro realizaci složitějších operací 
v analogových počítačích. Nejčastěji se využívá principu invertujícího zesilovače, kde dochází 
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k převodu vstupního napětí na proud přes R1 a zpětný převod proudu na výstupní napětí přes R2. 
Převodními vztahy pro rezistory je Ohmův zákon. Ovšem použijeme-li prvky s jinými vztahy mezi 
proudem a napětím, můžeme obdržet jiné funkce. Typickým příkladem je diferenciátor a integrátor 
(obr. f, g), kde se využívá integrálního (či diferenciálního) vztahu mezi napětím a proudem na 
kapacitoru, což pro invertující integrátor vyjadřuje vztah pro výstupní napětí  
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V Fourierově oblasti má jeho přenosová funkce tvar 
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kde Ki = 1/T =1/(RC), T je integrační konstanta. Ideální přechodová (nulové počáteční podmínky) a 
frekvenční charakteristika jsou na obr. 7.56. Z nich je zřejmé, že pro nízké kmitočty a stejnosměrný 
režim je integrátor nestabilní a je proto využíván v rámci složitějších zapojení, která jeho stabilitu 
zabezpečují, jako jsou např. filtry ARC (kap.6.7.2c) či různé generátory signálů (pilového signálu či 
RC). Potřebujeme-li neinvertující integrátor, používá se kromě poněkud citlivého zapojení s jedním 
OZ spíše zapojení s dvěma OZ, kde jsou integrátor a invertor v kaskádě. Protože toto zapojení má 
zhoršené vlastnosti pro vysoké kmitočty, je výhodnější zapojení podle obr. 7.55 h). Obdobné úvahy a 
vztahy lze vyjádřit pro diferenciátor. Jeho použití je ale částečně omezeno špatnou stabilitou pro 
vysoké kmitočty. 
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Obr 7.56.   Přechodová a frekvenční charakteristika ideálního (neinvertujícího) integrátoru. 

  
Další potřebné matematické operace jsou nelineární. Často je využíván obvod absolutní 

hodnoty, známý pod názvem dvojcestný operační usměrňovač. Základním cílem tohoto zapojení je 
eliminace prahového napětí obyčejného usměrňovače, které značně omezuje jeho dynamický rozsah. 
Operační usměrňovač (viz obr. 7.57 a) tohoto cíle dosahuje již zmíněným principem eliminace 
výstupního odporu (diskuse k obr. 7.50). Jeho zpětnovazební smyčka je rozdělena na dvě s dvěma 
výstupními svorkami (a,b), když každá pracuje pro jednu polaritu napětí výstupu (dáno polaritou 
diod). Podstatou funkce je, že i při velmi malé hodnotě vstupního signálu (např. +1 mV) bude při 
shodnosti odporů R na výstupu b hodnota napětí U2b= – 1mV, protože záporná zpětná vazba zabezpečí 
na výstupu OZ takové napětí (cca -0,601V), aby napětí diody bylo kompenzováno, neboť jen v tom 
případě bude na vstupu OZ nulové napětí (což je i princip, který kompenzuje i výstupní odpor 
zesilovače). V případě změny polarity vstupního napětí bude na výstupu b nulové napětí, protože 
zpětnovazební proud poteče druhou smyčkou a odpovídající invertované napětí bude na výstupu a. 
Toto zapojení nám tedy realizuje dva jednocestné operační usměrňovače s poměrně velkým výstupním 
odporem. Proto se v praxi obvykle využívá některého z více známých zapojení s dvěma OZ, kdy 
druhý OZ funguje např. jako diferenční. Odečtením obou charakteristik z obr. b) a c) tak dostaneme 
charakteristiku dvojcestného usměrňovače (absolutní hodnoty). Různá zapojení lze prakticky hodnotit 
především podle jejich  základní chyby (minimální hodnoty usměrněného napětí, viz např. vliv ofsetu) 
a podle toho, jak se tato chyba zvyšuje s kmitočtem (analogicky s poklesem kompenzace vnitřního 
odporu OZ s kmitočtem podle obr. 7.50). Navíc se zde projevují nelineární parazitní efekty, kdy při 
změně polarity musí výstup OZ změnit skokově polaritu kompenzačních napětí diod. Pro tuto 
skokovou změnu se již projevuje omezená rychlost přeběhu a fakt, že diody mají také své parazitní 
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kapacity. Proto je problém realizovat dobrý operační usměrňovač pro oblast vysokých kmitočtů nad 1 
MHz a prosazují se zde spíše aplikace s proudovými zesilovači.  
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Obr 7.57. Operační usměrňovač: a) schéma, b, c) převodní charakteristiky. 
 

Mezi další nelineární obvody, realizované na základě OZ, lze zařadit např. logaritmický a 
exponenciální zesilovač. Jejich základní myšlenka je shodná jako u integrátoru, a to využití prvku 
s vhodným vztahem mezi napětím a proudem na místo jednoho z odporů invertujícího zesilovače. 
V tomto případě se nabízí použití diody, jejíž vztah mezi proudem a napětím lze uvažovat jako 
exponenciální: 

)1.( /
0 −= Td Uu

d eIi . (7.31) 

Postupem, analogickým s (7.29), bychom dospěli k logaritmickému převodu napětí. Je ale 
pravdou, že reálné vlastnosti (především dynamický rozsah a teplotní stabilita) takovéhoto zapojení 
nejsou příliš dobré. Proto se používají složitější zapojení v integrované podobě (lepší teplotní 
kompenzace). Obdobné poznatky platí i pro realizaci dalších složitějších matematických funkcí, jako 
jsou např. analogové násobení a dělení, obvod převodu na efektivní hodnotu apod. Proto se tyto 
obvody dnes již téměř výhradně používají jako speciální integrované obvody a nabízí je většina 
výrobců analogových obvodů. 

Mimo tyto klasické aplikace OZ jako různé formy zesilovačů či speciálních obvodů se 
setkáváme s další širokou škálou aplikací v rámci různých elektronických obvodů. Zde lze uvést 
alespoň pro přehled např. filtry ARC, různé typy oscilátorů a generátorů signálů, převodníků (U-I, I-U, 
U-f, f-U) atd. 

 

7.9.3 Integrované zesilovače s řízenými proudovými zdroji 
 

Jak již bylo v předchozím textu naznačeno, klasický OZ s napěťovou zpětnou vazbou obvykle 
chápeme a modelujeme jako napětím řízený zdroj napětí s nulovým výstupním odporem. V rámci 
hledání zesilovacích obvodových struktur, jež by zlepšily vlastnosti klasických OZ, byly v průběhu 
doby vytvořeny jiné typy integrovaných zesilovačů, které mají charakter spíše proudových zdrojů. 
Jsou to především  

- transkonduktanční zesilovače (OTA, např. LM 13700), 
- speciální bloky (např. proudové konvejory – především CCII), 
- operační zesilovače s proudovou zpětnou vazbou (nové typy OZ pro oblasti vysokých 

kmitočtů, některé označované jako transimpedanční, např. AD844). 
 

Nejjednodušším aktivním prvkem, který můžeme uvažovat jako napětím či proudem řízený 
zdroj proudu, je jednostupňový tranzistorový zesilovač. Obvykle jej však zapojujeme jako zesilovač 
napětí, který můžeme chápat jako zesilovač s podstatně horšími vlastnostmi než OZ. Výhodnějším 
integrovaným zesilovačem, který je již řadu let dostupný a používaný, je transkonduktanční 
zesilovač (OTA). Je to vlastně ideální zdroj proudu řízený napětím. Obvodově je realizován se 
vstupním diferenčním zesilovačem (obr. 7.58 a, obdobně jako OZ na obr. 7.47 a), ale navazující 
stupeň je výstupní a lze jej chápat jako zdroj proudu řízený napětím s konečnou hodnotou převodní 
strmosti (transkonduktancí) gM s rozměrem vodivosti, kterou je možno řídit vnějším proudem IR (či 
napětím). Schématická značka a model varianty s uzemněným výstupem je na obr. 7.58 b, c), varianta 
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s plovoucím (diferenčním) výstupem (BOTA) je na obr. 7.58 d). Jako příklad lze uvést populární 
obvod LM 13700 (OTA s výstupním napěťovým sledovačem), který je využitelný např. pro realizaci 
napětím řízených (laděných) zesilovačů, filtrů ARC a pod. Na obr. 7.58 e) je v zapojení řízeného 
neinvertujícího integrátoru. Výhoda možnosti řízení gM v širším rozmezí je zaplacena určitým 
omezením dynamického rozsahu přenosu (zvyšuje se zkreslení a šum). V posledních letech jsou 
používané integrované OTA-C integrované filtry pro pásma vysokých kmitočtů, ovšem jejich určitou 
nevýhodou je dříve zmíněný omezený dynamický rozsah. 

I2=gMU1
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I2

U1
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I2

I2
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a) b) c)

IR
gM=f(IR)
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Obr. 7.58.   Transkonduktanční (OTA) zesilovač: a) obvodový princip, b) OTA s uzemněným výstupem,  
c) jeho model, d) s plovoucím výstupem, d) řízený OTA zesilovač s oddělovacím zesilovačem 
(LM 13700) v zapojení jako neinvertující integrátor. 

  
Řízený zdroj proudu obsahují i proudové konvejory (používaná je anglická zkratka – CC) . 

Jsou to speciální trojbrany s řídícím proudem IX.V současnosti existuje větší počet jejich obvodových 
variant, které se rozlišují podle generací (1 až 3 podle funkce svorky Y) a polarity řízení  

výstupního proudu IZ. Nejvíce se dnes 
využívá proudový konvejor 2. generace 
(CCII+). Ten byl zkušebně vyráběn, ale 
v praxi se příliš neprosadil. Na obr. 7.59 je 
schématická značka a model CCII+, který je 
vytvořen z ideálního jednotkového zesilovače 
a proudového sledovače. Z něj je zřejmá 
funkce, kdy jednotkový zesilovač udržuje 
nulové napětí mezi vstupními svorkami (za 
předpokladu nulového výstupního odporu RX, 

ve skutečnosti je jeho reálná hodnota nenulová) a výstupní proud sleduje s koeficientem 1 proud 
svorky X. Lze si jej představit také jako jednu z variant ideálního tranzistoru (Y – báze, X – emitor, Z 
– kolektor). Metody popisu a analýzy jsou uvedeny např. v [3]. 

Z koncepce CCII+ vychází většina transimpedančních zesilovačů (TIA, chápe se jako zdroj 
napětí řízený proudem, proto transimpedance). Jeho model je uveden na obr. 7.60. V podstatě je to 
CCII+ doplněný o napěťový sledovač. S použitím obvyklých zpětnovazebních odporů se chová 
obdobně jako klasický operační zesilovač. Vyrábí se buď ve variantě s vyvedenou svorkou Z, která 
umožňuje připojením kapacitoru realizaci bezeztrátového integrátoru (např. AD 844 [I16]), nebo ve 
variantě bez vyvedené této svorky. Důvodem vynechání svorky Z je snaha o minimalizaci parazitní 
kapacity CZ. Hlavním motivem výrobců byla možnost realizace OZ s proudovou zpětnou vazbou, 
který se označuje též jako CFA – Current Feedback Amplifier (oproti běžnému OZ s napěťovou ZV, 
označovanému jako VFA). Obvodová realizace umožňuje použít proudové zdroje (nabíjející kapacitu 
CZ), které dosahují podstatně větších proudů než u klasických OZ a tudíž mají podstatně vyšší 
rychlost přeběhu než běžné OZ s napěťovou zpětnou vazbou. Proudová ZV pak umožňuje dosáhnout 
širší přenosové pásmo. To je ukázáno na obr. 7.60 c), kde je porovnání modulových kmitočtových 
charakteristik. Poněkud překvapivě u CFA (v porovnání s VFA) nedochází k poklesu mezního 
kmitočtu se zvyšováním nastaveného zesílení.  

CCII+UY

IZ

a)

Y

X Z UY

IZ= IX

b)

Y

X
Z

1

IX IX RX

 
   Obr. 7.59.  Proudový konvejor 2. generace CCII+:  

a) schématická značka, b) model. 
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   Obr. 7.60. Transimpedanční zesilovač: a) schématická značka, b) model s rezistory R1 a R2 jako neinvertující  

zesilovač (U1=UX), c) porovnání kmitočtových charakteristik s klasickým OZ (VFA). 
 

 

Tento jev lze objasnit analýzou přenosu modulů obou typů OZ. Provedeme-li analýzu přenosu 
neinvertujícího zesilovače s CFA podle obr. 7.60 b), dostaneme vztah pro dolní propust 1. řádu 
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kde je zřejmé, že mezní kmitočet kromě CZ ovlivňují R2 a RZ. Přenos tak lze ovlivňovat volbou 
hodnoty R1 beze změny mezního kmitočtu, což odpovídá průběhům pro CFA na obr. 7.60 c). Oproti 
tomu analýzou klasického VFA (model podle obr. 7.49 a), když uvažujeme realizaci neinvertujícího 
zesilovače s odpory R1 a R2 obdobně jako u CFA, dostaneme přenosovou funkci ve tvaru 

( )21
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1

RRCR
Rp

CRKU

+
+

= . (7.33) 

Zde je zřejmé, že pomocí volby hodnot rezistorů R1 nebo R2 nelze měnit hodnotu přenosu pro nízké 
kmitočty beze změny hodnoty mezního kmitočtu, což odpovídá poznatkům o přenosu VFA. 

Uvedené závěry je nutno doplnit dalšími poznatky. Jednak zmíněná kmitočtová nezávislost 
nastavení přenosu u CFA vyplývá z proudové zpětné vazby (R2 ovlivňuje přímo vstup proudově 
řízeného zdroje proudu). Dále poznamenejme, že u reálných CFA se projevuje nenulový výstupní 
odpor RX vstupního napěťového sledovače (obr. 7.59 b) částečným snižováním mezního kmitočtu pro 
vyšší zisk zesilovače. Volba hodnoty R2 dosti ovlivňuje stabilitu zesilovače a jeho hodnota je obvykle 
výrobcem doporučena. K omezujícím vlastnostem patří i nižší stabilita zesilovače pro kapacitní zátěž 
(proto nejsou obvykle příliš vhodné např. pro realizaci aktivních filtrů RC) a větší proudový šum. 

7.9.4 Speciální integrované zesilovače a obvody s OZ 
 
V předchozím textu byla též zmíněna další skupina integrovaných zesilovačů, u nichž je 

většinou požadována nějaká speciálnější funkce než běžné zesílení signálu. Jde o případy s tak často 
požadovanou variantou, kde se vyplatí integrovaná výroba. Ta přináší obvykle i vyšší kvalitu než 
obdobná realizace s diskrétních prvků. 

Jedním z takových příkladů jsou logaritmické zesilovače s velkou šířkou pásma a velkým 
dynamickým rozsahem. Toho nelze dosáhnout klasickým přístupem s použitím diody ve zpětné vazbě 
(viz diskuse ke vztahu 7.31), a proto výrobci nabízí jiná řešení, viz  např. obvod AD606 [I16] s šířkou 
pásma 50 MHz a dynamickým rozsahem 90 dB, viz obr. 7.61 a), kde je využita tzv. 9-tistupňová 
postupná detekční technika. Dosažená převodní charakteristika je ukázána na obr. 7.61 b). 

Dalším příkladem jsou zesilovače s napěťově řízeným ziskem. Cesta přes využití řízených 
OTA zesilovačů (viz předchozí kapitola) má poměrně omezený dynamický rozsah. Oproti tomu obvod 
AD603 [I16] (obr. 7.62) dosahuje rozsah řízení 40 dB či v kaskádě 80 dB pro pásmo do 90 MHz 
s chybou řízení 0,5 dB pro kmitočet 10 MHz, napětovou šumovou spektrální hustotou 1,3 nV√Hz a 
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 maximální výstupní napětí ± 3 V, což je nesrovnatelně vyšší dynamický rozsah než jakého se dosahuje 
pro OTA zesilovače. 

 

 
Obr. 7.61. Logaritmický zesilovač AD606: a) blokové schéma, b) převodní charakteristika. 

 

 
Obr. 7.62.  Napěťově řízený zesilovač AD603: a) blokové schéma, b) řídící charakteristika. 

 
V popisu reálných vlastností byl popsán problém ofsetu pro stejnosměrné zesilovače s větším 

ziskem. To řeší výrobci konstrukcí speciálního OZ s automatickým nulováním ofsetu pomocí běžné 
techniky automatického nulování či tzv. chopper-techniky. Jejich princip spočívá v použití přepínačů, 
kdy v jedné fázi sepnutí snímají pouze chybový ofset a v druhé fázi odečítají tento chybový signál od 
zesíleného užitečného signálu s chybou ofsetu. Jejich nevýhodou je zvýšení šumu pro pásmo, 
odpovídající kmitočtu spínání, či omezení pásma pod tento spínací kmitočet. Tento problém řeší 
zesilovač AD8571, který dosahuje eliminaci ofsetu na úroveň 1 µV při možnosti použití plné šířky 
pásma (GBW=1 MHz) technikou rozprostření spínaného šumu do celého kmitočtového spektra. 
Funkce tohoto OZ pro obě spínací fáze je ukázána na obr. 7.63. Pro vysvětlení je nutno uvést, že jsou 
zde použity dva stejné zesilovače se základním zesílením AA = AB a pomocným vstupem se zesílením 
BA = BB. V nulovací fázi je na výstupu zesilovače A jeho ofsetové napětí potlačeno přenosem BA: 

A

OSAA
OA B

VA
V

+
=

1
   . (7.34) 

V druhé fázi je na jeho výstupu zesílené vstupní napětí sníženo o potlačení jeho ofsetového napětí 
(zapamatované kompenzační napětí na CM1) (7.35). Na výstupu celého zesilovače je pak výstupní 
napětí podle (7.36). To lze po vhodných úpravách a za předpokladu AA = AB = A a BA = BB = B upravit 
do tvaru (7.37), kdy ofsetové napětí obou zesilovačů je zesíleno Bkrát méně než vstupní signál. 
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a) b)  
Obr. 7.63. OZ s potlačeným ofsetem AD8571: a) fáze nulování, b) fáze zesílení. 

 
Příkladem složitějších funkcí jsou tzv. analogové násobičky. Na obr. 7.64 a) je blokové schéma 

obvodu AD633 i s odpovídajícím matematickým vztahem vstupních veličin X, Y, Z a výstupní 
veličiny W pro čtyřkvadrantové násobení. Obdobný obvod AD637 (obr. 7.64 b) umožňuje získat 
skutečnou efektivní hodnotu vstupního signálu pomocí zapojení pro druhou odmocninu (např. pro 
měření neharmonických veličin).  

a)     b)  
Obr. 7.64. a) Analogová čtyřkvadrantová násobička AD633, b) obvod efektivní hodnoty AD637.  

 
Mimo tyto uvedené příklady lze uvést mnohé další speciální obvody, nabízené výrobci. Jsou to 

např. různé číslicově řízené zesilovače, oddělovací zesilovače s galvanickou izolací, zesilovače pro 
optoelektronické vysílače a přijímače (též se označují jako TIA), či složitější analogové integrované 
aplikace OZ jako integrované filtry ARC či ASC a pod. 
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8 OSCILÁTORY  

8.1  KLASIFIKACE A VLASTNOSTI GENERÁTORŮ SIGNÁLŮ A 
OSCILÁTORŮ  

Před vlastním rozborem principu a vlastností oscilátorů je vhodné se zorientovat v celé 
problematice generátorů signálů. Podle typů generovaných signálů je lze klasifikovat následovně: 

§ generátory harmonických signálů (oscilátory), 
§ generátory neharmonických signálů (obecný obdélníkový signál, pilový signál, 

lichoběžníkové signály a pod.), 
§ generátory se speciálními průběhy (šumové, s libovolně definovanými průběhy), 
§ generátory číslicových signálů (obdélníkové signály s velikostí impulsů odpovídající 

logickým obvodům a případnými speciálními průběhy – např. konečné sekvence impulsů 
odpovídající požadovaným binárním číslům). 

 
Základní vlastnosti většiny typů generátorů signálů lze shrnout do těchto skupin: 

Kmitočtové vlastnosti: 
§ kmitočtové pásmo a nastavitelnost kmitočtu (nf, vf, širokopásmové, úzkopásmové, 

neladitelné, laditelné – spojitě či diskrétně), 
§ stabilita kmitočtu ∆f0/f0 (okamžitá, dlouhodobá...) a její teplotní závislosti. 

Amplitudové a impedanční vlastnosti: 
§ velikost a nastavitelnost amplitudy,  
§ stabilita amplitudy, 
§ výstupní impedance a výkon. 

Kvalita tvaru výstupního signálu: 
§ u harmonického signálu harmonické zkreslení a čistota spektra, u obdélníkových signálů doby 

náběžných hran, u pilového signálu linearita a pod.  
 

Oscilátory jako zdroje harmonického signálu lze realizovat více způsoby. O výběru rozhodují 
především tato hlediska: kmitočtové pásmo, laditelnost (spojitá, diskrétní), stabilita kmitočtu, čistota 
spektra a harmonické zkreslení, popř. možnost přímých modulací generovaného harmonického 
signálu. Tyto vlastnosti jsou obvykle nejvýrazněji ovlivněny vlastnostmi zpětnovazebního článku B 
(obr. 8.3a). S ohledem na tato kritéria a způsoby realizace zpětnovazebních článků se používají nejvíce 
tyto typy realizací oscilátorů: 

§ klasické zpětnovazební RC (dobře laditelné v kmitočtovém pásmu cca 10 Hz – 10 MHz, 
stabilita kmitočtu cca 10-3 až 10-4, zkreslení 1% až 0,001%), 

§ klasické zpětnovazební LC (dobře laditelné v kmitočtovém pásmu 100 kHz – 300 MHz, při 
mikrovlnné realizaci i jednotky GHz, stabilita kmitočtu cca 10-3 až 10-4, zkreslení 1% až 
0,1%), 

§ klasické zpětnovazební krystalové (prakticky neladitelné, vyráběné v odpovídajících 
kmitočtových pásmech od 10 kHz do 100 MHz, stabilita kmitočtu cca 10-6 i lepší, zkreslení 
1% až 0,1%, 

§ tvarové generátory pilového signálu s převodem na harmonický signál (dobře laditelné 
v kmitočtovém pásmu cca 0,01 Hz – 10 MHz, stabilita cca 10-3, zkreslení 1%), 

§ oscilátory s fázovým závěsem (diskrétně laditelné, použitelné v kmitočtových pásmech cca 1 
k Hz – 1GHz, stabilita kmitočtu cca 10-6, zkreslení 1% až 0,1%), 

§ přímá digitální syntéza DDS (diskrétně laditelné s velmi jemným krokem v kmitočtovém 
pásmu cca 0,001 Hz – 100 MHz), stabilita kmitočtu cca 10-6, zkreslení dáno počtem bitů 
převodníku AD  (10 – 14 bitů, asi 0,3% až 0,01%). 
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8.2   PRINCIP FUNKCE OSCILÁTORU SE ZÁPORNÝM ODPOREM 
V současnosti je tento princip aplikován pro návrh a konstrukci oscilátorů výjimečně, je však 

názorný z hlediska pochopení energetické funkce oscilátoru. Vycházíme ze základních vlastností 
rezonačního obvodu LC, který po vhodném vybuzení (např. nabitý kapacitor připojíme k induktoru, 
viz obr. 8.1) vytváří napěťovou a proudovou odezvu ve formě harmonických signálů jakožto obecného 
řešení diferenciální rovnice 2. řádu, viz kapitola 5 a učební látka předmětu Základy elektrotechniky.  
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Obr. 8.1. Základní princip harmonického oscilátoru: a) zapojení, b) časové průběhy pro celkové 
GΣ<0 (rostoucí), GΣ=0 (ustálený) a GΣ>0 (tlumený). 

Důležitým předpokladem netlumené odezvy s čistým harmonickým průběhem jsou nulové 
ztráty v rezonančním obvodu (nulová hodnota G+ v obr. 8.1). Reálné rezonační obvody jsou vždy 
ztrátové, což způsobují jak samotné ztráty v reálných prvcích L a C, tak i vnější tlumení, vzniklé 
připojením oscilátoru jako zdroje signálu k další obvodům. Všechny tyto ztráty, reprezentované ve 
schématu ztrátovou vodivostí G+, způsobují vznik tlumené harmonické odezvy.  

Pro vznik netlumené odezvy musíme energeticky vykompenzovat reálné ztráty, což je možné 
díky použití připojení vodivosti G- se zápornou hodnotou. Ta vždy reprezentuje zdroj energie. Pro 
správnou funkci oscilátoru je vždy nutné, aby absolutní hodnoty obou vodivostí byly přesně shodné, 
protože jen v tom případě bude odezvou obvodu ustálený harmonický signál. 

Uvedenou podmínku absolutní shody hodnot G+ a G- (GΣ=G++G-=0) nelze v praxi zabezpečit 
jiným způsobem než automatickým regulačním procesem, který stabilizuje určitou hodnotu 
výstupního napětí. Ukažme si to na realizaci oscilátoru s tunelovou diodou, která byla v historii často 
využívána. Dioda je z hlediska střídavého signálu připojena paralelně k rezonančnímu obvodu. Cv je 
oddělovací kondenzátor pro zamezení stejnosměrného zkratu diody cívkou, který má pro oscilační 
kmitočet minimální impedanci. Aby dioda představovala pro rezonanční obvod zápornou vodivost, je 
zabezpečen stejnosměrným zdrojem vhodný pracovní bod diody a tlumivkou T je zamezen střídavý 
zkrat rezonančního obvodu napájecím zdrojem..  
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Obr. 8.2. Oscilátor s tunelovou diodou: a) zapojení, b) závislost G+, G- a GΣ na velikosti napětí, c) A-V 
charakteristika tunelové diody a ekvivalentní záporná vodivost pro malý signál (G-a) a pro velký 
signál (G-b). 

 

Automatická regulace a stabilizace amplitudy výstupního napětí je zabezpečena 
následovně. Pro malý signál je ekvivalentní záporná vodivost tunelové diody v absolutní hodnotě větší 
než tlumící vodivost obvodu LC. Díky tomu se rozběhnou oscilace jako odtlumený harmonický děj 
s narůstající amplitudou. Poté, co amplituda harmonického napětí na diodě překročení meze lineární 
záporné části AV charakteristiky, dojde k omezení a zkreslení proudu. Vzhledem k selektivitě obvodu 
se projeví jen první harmonická složka proudu, která se též zmenší. Tím dojde k poklesu hodnoty 
ekvivalentní záporné vodivosti pro 1. harmonickou složku a amplituda harmonického průběhu se 
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ustálí pro takové napětí UOSC, kdy bude ekvivalentní záporná vodivost přesně kompenzovat tlumící 
kladnou vodivost. Při každém narušení tohoto stavu, například snížením amplitudy, se zase adekvátně 
zvýší hodnota záporné vodivosti, což povede ke zvýšení amplitudy na rovnovážný stav. Analogický 
děj proběhne při nějakém vybuzení vyšší amplitudy nad rovnovážný stav. 

Dále je možno poznamenat, že záporná vodivost je energetickým zdrojem, který v tomto 
případě funguje ne úkor energie stejnosměrného napájecího obvodu. Existuje i mnoho dalších způsobů 
realizace záporného odporu (obvykle jako zapojení s tranzistory či OZ), kde je energetická bilance 
zabezpečena stejnosměrným napájecím zdrojem. Všechny tyto realizace záporné vodivosti či odporu 
jsou ohraničené (obvykle napájecím napětím), kdy AV charakteristika pro vyšší napětí či proud 
přechází v kladnou směrnici a vytváří tak nelinearitu typu S či N. Dále je možno konstatovat, že tyto 
záporné vodivosti či odpory je možno nalézt i v jiných zapojeních oscilátorů, které jsou navrhovány 
např. jako zpětnovazební. 

 
8.3     PRINCIP FUNKCE ZPĚTNOVAZEBNÍHO OSCILÁTORU  

Teorie zpětnovazebních oscilátorů vychází z poznatků o zpětné vazbě v zesilovačích (kap. 7.3), 
kde při uspořádání zesilovače (přenos A) se zpětnovazebním obvodem (přenosem B) v kladné zpětné 
vazbě se celkový obvod za podmínky  

1. =BA &&   (8.1) 
dostane na mez stability. Má-li zpětnovazební obvod přenosovou funkci minimálně 2. řádu, může mez 
stability reprezentovat ustálený harmonický signál. Uvedenou komplexní podmínku kladné zpětné 
vazby (8.1) je vhodné rozložit na část „amplitudovou“ a „fázovou“: 

1. =BA   ,  (8.2) 
ϕA + ϕB = 0 + k . 2π.  (8.3) 

Nyní můžeme diskutovat možnosti a dopady splnění těchto rovnic. Jednodušší je diskuse splnění 
fázové podmínky (8.3). V případě ϕA=0 (neinvertující širokopásmový zesilovač) musí pro 
zpětnovazební obvod být splněna podmínka ϕB=0 pouze pro jediný kmitočet. Ze základních filtrů 2. 
řádu tuto podmínku splňuje pouze filtr typu pásmová propust (viz kap. 6.2.2), a to pro rezonační 
kmitočet F0. Proto je na základě této fázové podmínky určen oscilační kmitočet, který je roven 
kmitočtu F0 zpětnovazebního článku.  
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Obr. 8.3.   Zpětnovazební oscilátor: a) blokové schéma, b) modulová a fázová charakteristika 
selektivního bloku B, c) závislost modulu přenosu A na velikosti napětí (splnění 
amplitudové podmínky). 

V případě použití invertujícího zesilovače je nutno použít další invertor (realizovaný např. pomocí 
transformátoru), nebo filtr vyššího (např. třetího) řádu, popř. fázovací obvod 2. řádu, které definují 
fázový posuv o 1800 pro jediný kmitočet. 

Složitější je zabezpečení amplitudové podmínky (8.2) modulů přenosů A a B pro oscilační 
kmitočet F0. Vzhledem k jednoduššímu nastavování přenosu zesilovačů je vhodné vyjít z přenosu 
zpětnovazebního článku B(F0) a vypočítat požadovanou hodnotu přenosu zesilovače: 

A= 1/ B(F0) (8.4) 
Tuto hodnotu lze pak u zesilovače nastavit. Obtížné je ale zabezpečení absolutní přesnosti 
amplitudové podmínky, která je nutná pro dosažení ustáleného harmonického stavu. Jde tu o 
analogický problém s výše diskutovaným problémem absolutně shodných velikostí záporné a kladné 
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vodivosti. Obdobné je i řešení tohoto problému, kdy splnění amplitudové podmínky je nutno 
zabezpečit automatickou regulací závislosti zesílení na amplitudě (obr. 8.3b). Zpočátku je pro malou 
amplitudu signálu zesílení A větší než požadovaná hodnota 1/B. Amplitudová podmínka je překročena, 
a proto dochází k nárůstu amplitudy napětí až do té meze, které odpovídá zesílení o hodnotě A=1/B. 
Zde se nárůst napětí zastaví a oscilátor pracuje s ustáleným harmonickým signálem. Jakékoliv 
vychýlení z této rovnovážné hodnoty, např. vnějším zásahem, je automaticky opět dorovnáno do stavu 
přesného splnění amplitudové podmínky.  

Důležitým problémem je způsob realizace řízení zesílení zesilovače v závislosti na výstupním 
napětí. Konkrétní realizace může být různá, ale v podstatě bude záviset na obvodovém řešení 
zpětnovazebního článku (RC, LC popř. ARC), jak bude ukázáno dále. 

Lze tedy říci, že fázová podmínka (8.3) určuje kmitočet oscilací a amplitudová podmínka 
(8.2) spolu s regulačním obvodem určuje amplitudu výstupního napětí oscilátoru.  

8.4 OSCILÁTORY RC 
Základní princip oscilátorů RC vychází z obecného zpětnovazebního schématu podle obr. 8.3a. 

Jeho princip funkce lze vysvětlit pomocí upřesněného blokového schématu z obr. 8.4a. Blok s 
komplexím přenosem A je obvykle realizován jako řízený zesilovač (lineární, kmitočtově nezávislý, 
neinvertující s fázovým posuvem 0° nebo invertující s fází 180°). Pro druhý blok s komplexním 
přenosem B se obvykle používá pásmová propust RC. Tyto dva bloky po spojení do smyčky splňují 
komplexní oscilační podmínku ve tvaru 1. =BA && , kterou lze rozložit na amplitudovou a fázovou 
podmínku. 

Specifický je způsob zabezpečení amplitudové podmínky, kde je nutno použít detektor 
amplitudy a filtr typu DP, jehož výstupní signál (úměrný amplitudě oscilací) řídí přenos zesilovače pro 
splnění amplitudové podmínky (A . B = 1). Filtr typu DP, z jehož výstupu jde regulační signál, musí 
mít velmi nízký mezní kmitočet (asi 100 x nižší než F0), aby zesilovač byl řízený „pomalu“ a choval 
se z hlediska periody oscilačního signálu jako lineární. Zkreslení signálu v případě jeho nelineární 
funkce totiž nelze podstatně snížit filtrací v selektivním bloku B, protože filtr RC  má malou hodnotu 
Q a tudíž malou selektivitu. Nízký mezní kmitočet DP neumožňuje použití běžných oscilátorů RC pro 
kmitočtové pásmo pod 10 Hz, protože potřebné snížení mezního kmitočtu filtru DP by neúnosně 
prodloužilo dobu ustálení amplitudy. 

Jednoduchým příkladem je často používaný oscilátor RC s Wienovým článkem (viz obr. 8.4b). 
Přenos filtru typu PP s Wienovým článkem lze vypočítat běžnou analýzou: 

21212121

2221112

12

1

1

CCRRCCRR
CRCRCRpp

CR
p

+
++

+
=B& ,   

21,21
0 3

1)(
CCRR

F
==

=B ,    0)( 0 =Fϕ      (8.5) 

Potřebné zesílení zesilovače pak vyjádříme podle (8.4) A = 1/ B(F0) = 3. Klasický způsob zabezpečení 
amplitudové podmínky je realizován žárovkou. Ta funguje jako blok regulace: - detekuje amplitudu 
(podle velikosti se žhaví), funguje jako DP (je setrvačná) a řídí zesílení (změna odporu žárovky RŽ 
mění zesílení zesilovače). Pro nenažhavenou žárovku musí být nastaven odpor R3 tak, aby zesílení 
bylo vyšší než 3 a pak s růstem amplitudy (a odpovídajícím růstem odporu žárovky) klesalo zesílení. 
Amplituda se pak ustálí podle obr.8.3c. 
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Obr. 8.4.  Oscilátor RC: a) základní blokové zapojení, b) Příklad zapojení s Wienovým článkem. 
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Základní vlastnosti RC oscilátorů jsou určeny hlavně způsobem realizace článku RC. Ukazuje 
se, že přemostěný článek T (viz obr. 8.5) s vhodnou volbou poměrů hodnot prvků má výhodnější 
vlastnosti než často používaný Wienův článek. Vyplývá to i z rozboru vlastností ARC filtrů 2. řádu s 
jedním OZ (kap. 6.7.2). Obvod s Wienovým článkem má podstatně vyšší citlivosti činitele jakosti SQ

x 
na změnu hodnot poměru prvků [14] (např. nedokonalý souběh hodnot ladících prvků), což vede k 
nutnosti větší regulace zesílení a vyššího zkreslení. Oproti tomu je oscilátor s přemostěným článkem T 
méně citlivý např. na zmíněný souběh hodnot ladících prvků. 

Použití přemostěného článku T přináší také výhodu v potřebě menšího zesílení (A→1) a tím 
také menšího napětí na regulačním nelineárním prvku, což vede k menšímu zkreslení a lepším 
šumovým poměrům. Např. oscilátor s Wienovým článkem vyžaduje zesílení A0 = 3, oscilátor 
s přemostěným článkem T při vhodném poměru prvků (možno volit např. v rozmezí 10 <C2/C1< 1000, 
optimum je asi 100) vyžaduje zesílení asi A0 = 1,001 až 1,1. Mimo uvedené dva typy zapojení bývá 
využíván i dvojitý článek T, u kterého je ovšem problematické použití z hlediska ladění. 

Důležitým problémem je způsob realizace obvodu pro stabilizaci amplitudy kmitů 
(zabezpečení amplitudové oscilační podmínky). Nejjednodušším způsobem stabilizace amplitudy je 
využití nelineární charakteristiky samotného zesilovače (limitace výstupního napětí) bez detektoru 
amplitudy a filtru DP. Tato cesta stabilizace amplitudy nelineárním zesilovačem ale obvykle vede k 
vysokým hodnotám zkreslení. Proto je uvedený princip využíván především u oscilátorů LC, kde je 
možné zkreslení snížit díky použití selektivního filtru LC. U kvalitnějších oscilátorů s malým 
zkreslením se využívají pro stabilizaci amplitudy doplňkové obvody pro řízení zesílení zesilovače. 
Nejznámější realizací těchto obvodů pro regulaci amplitudy je žárovka (viz obr. 8.4b), která splňuje (i 
když ne ideálně) všechny uvedené regulační funkce (detekce amplitudy, filtrace, řízení zesílení). 
Snaha o snížení zkreslení vedla k použití nových regulačních prvků (termistor, fotoodpor řízený LED, 
FET tranzistor, integrované řízené zdroje proudu – OTA a pod.) a k vývoji nových typů obvodů pro 
regulaci amplitudy, jako jsou např. dvě regulační smyčky (první rychlejší a hrubější s druhou 
pomalejší a jemnější), nebo vzorkovací princip s rychlou stabilizací pro snižování zkreslení v oblasti 
nízkých kmitočtů. Nové způsoby potlačení zkreslení v oblasti nízkých kmitočtů vlivem obtížné filtrace 
usměrněného signálu jsou ukázány v kap.8.5.  

Jako nejjednodušší a přitom široce využitelné praktické zapojení lze uvést RC oscilátor 
s širokou možností přeladění při poměrně malé citlivosti na souběh hodnot ladících odporů (dvě 
možné varianty zapojení jsou na obr. 8.5). Malé citlivosti je dosaženo volbou dostatečného poměru 
hodnot kapacit (analogicky s volbou hodnoty poměru C2/C1 u filtrů s jedním OZ, kap. 6.7.2a). 
Předností zapojení, korespondující s poznatky z diskuse k obr. 8.3, dokumentuje následující fakt. 
Nepřelaďovaná verze tohoto oscilátoru umožňuje nastavit stabilní oscilace na mezi limitace OZ se 
zkreslením pod 0,1 %, a to i bez obvodu stabilizace amplitudy vhodnou (nepříliš citlivou) volbou 
hodnoty odporu R3 nebo R4. Pro případ přeladitelného oscilátoru je samozřejmě nutno použít 
stabilizaci amplitudy vzhledem k nestabilitě poměru hodnot ladících prvků.  

Pro praktické použití je vhodnější volit zapojení oscilátoru z obr. 8.5 b) vzhledem k tomu, že 
výstup OZ zde není zatížený velkou kapacitou a má tudíž lepší a stabilnější vlastnosti pro vyšší 
kmitočty. Pro přeladění v celém akustickém pásmu 20 Hz až 20 kHz bez přepínání je nutno použít 
logaritmický či exponenciální tandemový potenciometr 500 kΩ se sériovými omezovacími odpory asi 
390 Ω. Pro dosažení požadovaného ladícího rozsahu lze vypočítat základní kapacitu (asi 18 nF). 
Vzhledem k potřebnému poměru hodnot kondenzátorů volíme hodnoty 180 nF a 1,8 nF. Pro stabilizaci 
amplitudy je možné použít různé metody, díky malé hodnotě napětí na R4 lze na tomto místě použít 
FET tranzistor s odpovídajícím usměrňovačem napětí z výstupu OZ a RC filtrem pro získání 
vyhlazeného řídícího napětí. Tak lze snadno dosáhnout zkreslení THD< 1 %. Ještě menšího zkreslení 
(menšího než 0,03 %) lze dosáhnout použitím regulačního obvodu s optočlenem (fotoodpor se svítivou 
diodou), viz obr. 8.5 c). V obou případech musíme zvolit adekvátní hodnotu R3, aby regulovaný odpor 
R4 mohl zabezpečit odpovídající přenos 1/B. Pro další snížení zkreslení je vhodné použít oddělovací 
zesilovač, kterým oddělujeme nelineární zátěž svítivé diody od výstupu a případnou změnou zesílení 
zesilovače jednoduše nastavujeme amplitudu oscilačního napětí. Zmenšení zkreslení pro nízké 
kmitočty (oblast a na obr. 8.24) dosáhneme použitím dvojcestného usměrnění, což je u optočlenu 
vcelku jednoduše realizovatelné antiparalelním zapojením dvou svítivých diod.  
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      Obr. 8.5.  Zapojení laditelných oscilátorů RC s jedním OZ: a) varianta zapojení s neinvertujícím 
zesilovačem, b) varianta zapojení s invertujícím zesilovačem, c) varianta zapojení 
regulačního obvodu s optočlenem (fotoodpor – LED).  

 
Další zkvalitnění oscilátorů RC přineslo zapojení s dvěma fázovacími články (popř. 

integrátory). Toto zapojení s třemi OZ (viz obr. 8.6) realizuje blok A jako invertující zesilovač s 
fázovým posuvem 180°. Další potřebný posuv 180° realizují dva fázovací články pro kmitočet f = F0 
(možno použít i zapojení se zaměněnými R a C). Zde je oproti předchozím realizacím s jedním OZ 
výhodou především nízká citlivost na tolerance hodnot ladících prvků a minimální závislost amplitudy 
přenosu při ladění pro splnění amplitudové podmínky. Ta je opět zabezpečena řízením přenosu 
invertujícího zesilovače, např. termistorem ve zpětné vazbě invertoru nebo již uvedeným optočlenem s 
fotoodporem. Další výhodou je možnost kvadraturního výstupu (signál posunutý o 90°) na prvním 
fázovacím článku.  
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          Obr. 8.6.  Příklad zapojení oscilátoru se dvěma fázovacími články RC 1. řádu. 
 

8.5 OSCILÁTORY ARC (S AUTOMATICKOU NÁSLEDNOU 
FILTRACÍ) 

V oblasti nízkofrekvenčních oscilátorů jsou poměrně novým principem oscilátory ARC [14]. 
Tyto obvody se na první pohled příliš neliší od oscilátorů RC, jejich princip funkce je ale částečně 
odlišný. Jedna z možností jejich realizace je naznačena na blokovém schématu na obr. 8.27 a). 
Základním rozdílem je použití filtru ARC s vyšším činitelem jakosti a selektivitou, než má filtr RC u 
klasických oscilátorů RC. Vzhledem k výkonovému zisku filtru ARC může být druhý blok realizován 
jako pasivní obvod pro nesetrvačnou stabilizaci amplitudy. Podstatný je efekt snížení zkreslení 
výstupního signálu UVÝST oproti výstupnímu signálu z obvodu pro stabilizaci amplitudy, a to pomocí 
filtrace selektivní pásmovou propustí. Ukazuje to obr. 8.7 d), kde je zřejmé snížení přenosu pro 
vyšší harmonické složky oproti základní harmonické složce, a to v závislosti na hodnotě Q (zde 
uvažováno Q=10). Tímto typem oscilátoru lze dosáhnout zkreslení THD<0,1 %, ale výhodou je jeho 
funkce s okamžitou stabilizací amplitudy (nulová doba ustálení) i pro kmitočty řádově 0,01 Hz, což je 
dáno nesetrvačnou stabilizací amplitudy (minimální kmitočet omezují pouze možnosti realizace filtru 
ARC). 

U výše uvedeného výchozího zapojení lze dále snižovat harmonické zkreslení. Jedna cesta 
využívá klasické setrvačné stabilizace amplitudy s kvazilineárním řízením (obr. 8.7 b), které má nižší 
základní zkreslení, než předchozí nesetrvačný nelineární stabilizátor.  
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Druhý způsob snižování zkreslení využívá zlepšení filtrace a tudíž většího potlačení vyšších 
harmonických složek při použití univerzálního filtru ARC 2. řádu s výstupem DP (obr. 8.7 c). Zvýšení 
útlumu přenosu pro vyšší harmonické složky v porovnání s výstupem PP je zřejmé na obr. 8.7 d). 
Touto cestou se zvýší útlum pro druhou harmonickou složku asi o 6 dB a pro třetí harmonickou asi o 
9,5 dB. Výhodou je také možnost využít výstupu PP pro získání kvadraturního signálu. 
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   Obr. 8.7. Základní typy zapojení oscilátoru ARC: a) pro velmi nízké kmitočty s nesetrvačnou stabilizací 

amplitudy, b) pro nízká zkreslení se setrvačnou kvazilineární stabilizací amplitudy, c) s větším 
potlačením vyšších harmonických složek filtrem typu DP a kvadraturním výstupem, d) porovnání 
útlumů vyšších harmonických složek pro výstup PP a DP (Q=10).  

 
Další možnosti snížení harmonického zkreslení přináší realizace filtru s nulou přenosu (DPN), 

jak je to zřejmé z obr. 8.8 a). Zde je možno volit kmitočet nuly přenosu v závislosti na tom, která z 
vyšších harmonických složek na výstupu zpětnovazebního stabilizačního členu (např. řízený OTA 
zesilovač) převládá. Typické použití pro potlačení třetí harmonické složky zvyšuje útlum proti 
základnímu výstupu na pásmové propusti pro druhou harmonickou složku asi o 11 dB a pro čtvrtou asi 
o 14 dB (viz obr. 8.8 b).  

DP ARC -
univerzální

OTA

f0 PP DPN

a)

HP

PP
x2

x2
DP

OTA

b)

-40

-20

0

20

100 1000 10000

KU
[dB]

f [Hz]

11
14

c)
 

     Obr. 8.8.  Zapojení oscilátoru ARC: a) pro velmi nízké zkreslení s maximálním potlačením 3. harmonické, 
b) porovnání útlumů vyšších harmonických složek pro výstup PP a DPN (Q=10), c) zapojení pro 
kvadraturní stabilizaci amplitudy (kvazilineární a přitom nesetrvačná). 

 
V předchozím textu byl naznačen problém růstu zkreslení pro nízké kmitočty, způsobené 

detektorem amplitudy při setrvačné stabilizaci amplitudy. Snížení tohoto zkreslení lze dosáhnout 
využitím kvadraturního nesetrvačného detektoru amplitudy (obr. 8.8 c), který využívá známého vztahu 

cos2 (α) + sin2(α) = cos2(α) + cos2(α + 90°) = 1 . (8.5) 

Z něj vyplývá, že součet kvadrátů složek, posunutých o 90°, je konstantní a časově nezávislý. 
Tímto způsobem je možno potlačit zvlnění, typické pro normální amplitudové detektory, které zvyšuje 
zkreslení stabilizátoru amplitudy. Teoreticky pak není potřebné používat filtr typu dolní propust pro 
potlačování tohoto zvlnění. V praxi je však obtížné dosáhnout u reálných signálů absolutně přesně 
uvedené funkce. Proto nemusí být zvlnění zcela nulové a pro jeho minimalizaci je možné použít 
pomocný filtr, jak je naznačeno na obr. 8.8 c). Levnější náhradou tohoto řešení j použití 4-fázového 
dvojcestného usměrnění, kdy dvě fáze jsou dány kvadraturními výstupy a další dvě fáze (45o a 135o) 
lze získat součtem z kvadraturních výstupů. Při vhodné volbě hodnoty zatěžovacího odporu pro 
usměrňovací diody lze dosáhnout prakticky stejnosměrného průběhu i bez filtračního kapacitoru. 
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Zvýšení zkreslení v oblasti vysokých kmitočtů je dáno především kmitočtovými a nelineárními 
vlastnostmi zesilovačů. Pro optimální návrh oscilátorů v tomto kmitočtovém pásmu je proto potřebné 
volit vhodné zapojení a vhodné typy zesilovačů. 

V současné době je při použití nízkofrekvenčních oscilátorů často požadována možnost jejich 
elektronického ladění. Pro realizaci řízených ladících prvků lze využít některé z možností (např. 
řízené fotoodpory, řízené zesilovače OTA, spínané obvody, převodníky D-A apod.). Optimální výběr 
metody závisí na celé řadě hledisek (typu řídícího signálu, rozsahu ladění, kmitočtové stabilitě, 
harmonickém zkreslení). Použití zesilovačů OTA může přinášet pro širší kmitočtový rozsah poněkud 
větší harmonické zkreslení. Jako perspektivní se ukazují číslicově řiditelné převodníky A-D, zapojené 
jako řízený odpor. 

Důležitou otázkou při návrhu oscilátorů je i volba typu zapojení univerzálního filtru ARC. 
Pro kmitočtové pásmo f <100 kHz se jako nejjednodušší ukazuje volba známého zapojení filtru ARC s 
dvěma integrátory a invertorem (obr. 6.53 c). V tomto obvodu lze vzhledem k virtuálnímu uzemnění 
invertujících vstupů OZ jednoduše použít všechny uvedené řízené odporové prvky. Vhodné je toto 
řízení realizovat např. v rámci jedné dekády a dekády přepínat pomocí změny kondenzátorů. Pro vyšší 
kmitočtová pásma je nutno minimalizovat silný parazitní vliv OZ. 

8.6    OSCILÁTORY LC A KRYSTALOVÉ 
Tento typ oscilátorů rovněž vychází ze základního blokového uspořádání zpětnovazebních 

oscilátorů (obr. 8.3). Oproti oscilátorům RC je zde několik rozdílů. Vzhledem k tomu, že se obvykle 
používá pro oblast vysokých kmitočtů jako aktivní prvek zesilovače tranzistor, a to jeho varianta 
s největším výkonovým zesílením – se společným emitorem, jde o invertující zesilovač (ϕA =180o). 
Proto je relativně obtížnější nalézt jednoduchý zpětnovazební článek s přenosem 180o pro splnění 
fázové podmínky. Dále má tranzistorový zesilovač oproti zesilovači s OZ poměrně nízký vstupní a 
vysoký výstupní odpor (lze ho spíše chápat jako řízený zdroj proudu). Proto pro řešení oscilátoru se 
obtížně oddělují přenosy bloků A a B, protože tyto přenosy jsou ovlivněny jejich výstupními odpory a 
zátěží následného vstupního odporu. Odlišný je také i způsob realizace automatického řízení zesílení 
pro splnění amplitudové podmínky. 

Základní příklad realizace oscilátoru RC s jedním tranzistorem je na obr. 8.9. Zpětnovazební 
princip je zřejmý z obr. 8.9a, kde k invertujícímu zesilovači je připojena pásmová propust LC 
s nulovým fázovým posuvem, a proto je doplněna transformátorem pro otočení polarity signálu. Tím 
je zabezpečena fázová podmínka (8.3). Na obr. 8.9b je uvedeno úplné schéma oscilátoru i 
s pomocnými prvky. Tranzistor je napájen ze zdroje UN a pracovní bod má zabezpečen stejnosměrným 
proudem do báze přes odpor RB. Kapacitor CV slouží pro oddělení stejnosměrného zkratu báze proti 
zemi přes sekundární vinutí transformátoru. Z hlediska střídavého signálu ale musí mít CV minimální 
impedanci, a proto musí mít dostatečnou, ale ne příliš velkou kapacitu (hrozí nebezpečí vzniku 
superreakčních kmitů vzhledem k nabíjení CV přes diodu BE tranzistoru).  
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Obr. 8.9  Zapojení oscilátoru LC s transformátorem: a) principiální střídavé náhradní schéma, b) skutečné 

zapojení, c) průběhy proudu kolektoru bez saturace (přenos A0) a se saturací (přenos A<A0). 
 
Princip zabezpečení amplitudové podmínky je odlišný od oscilátorů RC. Vede k tomu hlavní 

důvod v dostatečné selektivitě filtru LC, takže nejjednodušším řešením je využití nelineární saturace 
proudu kolektoru (viz obr. 8.9c). Pro začátek oscilací a dostatečně malý signál není proud kolektoru 
saturován a zesílení A0 je vyšší, než vyžaduje amplitudová podmínka. Proto amplituda roste, až dojde 
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k saturaci a zkreslení proudu. Filtr LC vybírá z vzniklého spektra první harmonickou složku, takže 
celý zesilovač i s pásmovou propustí se chová jako lineární zesilovač, ovšem s nižší hodnotou zesílení 
A (vstupní napětí se zvýšilo, výstupní zůstalo prakticky konstantní). Tím dosáhneme závislosti 
přenosu pro první harmonickou složku podle základní charakteristiky z obr. 8.3c. 

Nevýhoda komplikovanější realizace transformátoru vedla k použití tzv. tříbodových 
oscilátorů. Dvě základní varianty, Hartleyova a Colpittsova, jsou ukázány na obr. 8.10a,c. Snazší 
pochopení jejich funkce umožňují schémata se zpětnovazebním uspořádáním (obr. 8.10b,d), kde je 
zřejmý blok invertujícího zesilovače A a blok B s filtry typu HP resp. DP 3. řádu. Tyto filtry mají při 
rezonanci posuv fáze o 180o, což umožňuje splnění fázové podmínky bez použití transformátoru. 
Současně rozdělení jedné reaktance rezonančního obvodu (L na L1 a L2 u Hartleyova a C na C1 a C2 u 
Colpittsova oscilátoru) umožní nejen fázový posuv o 180o, ale i impedanční přizpůsobení vstupní a 
výstupní impedance tranzistorového zesilovače (obdobně jako odbočky transformátoru). 
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Obr. 8.10. Střídavé náhradní schéma tříbodových oscilátorů LC: a), b) základní a zpětnovazební schéma 

Hartleyova oscilátoru, c), d) základní a zpětnovazební schéma Colpittsova oscilátoru, e) úplné 
zapojení Colpittsova oscilátoru.  

 
Příklad skutečného zapojení s napájením je na obr. 8.10e. Rezistory Rb1, Rb2 a Re zabezpečují 

pracovní bod, Rk je zatěžovacím rezistorem a CV zabezpečuje stejnosměrné oddělení báze a kolektoru. 
Analýza a návrh těchto oscilátorů je poněkud komplikovanější než u oscilátorů RC. Vzhledem 
k tomu, že zesilovač nemá nekonečný vstupní a nulový výstupní odpor, dochází k vzájemnému 
ovlivňování přenosů A a B, nemluvě o tom, že je problém rozdělit jednoznačně oba bloky. Proto je 
vhodnější řešit obvod oscilátoru jako celek, kdy pro autonomní soustavu platí, že determinant její 
admitanční matice má nulovou hodnotu. Jako příklad si můžeme uvést analýzu Colpittsova oscilátoru 
z obr. 8.10c. Pokud bázový uzel označíme jedničkou a kolektorový dvojkou a uvažujeme hodnotu y12e 
za nulovou a ostatní prvky admitanční matice tranzistoru za reálné, lze admitanční matici celého 
oscilátoru v operátorovém tvaru vyjádřit takto: 
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Přejdeme-li do Fourierovského vyjádření (p=jω), můžeme rozdělit komplexní rovnici na rovnici pro 
reálnou a imaginární část. Reálnou část lze zapsat takto: 
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Z ní lze vyjádřit vztah pro ω0. Rovnice tak vyjadřuje fázovou oscilační podmínku: 
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Je zřejmé, že při nulové hodnotě y11e nebo y22e  přechází vztah (8.9) v klasický Thomsonův vztah pro 
rezonanční obvod s ekvivalentní kapacitou CS, která odpovídá sériovému spojení C1 a C2. Na druhou 
stranu vidíme, že nenulové vodivosti y11e a y22e tranzistoru ovlivňují rezonanční kmitočet a prakticky 
snižují stabilitu oscilačního kmitočtu. 

Imaginární část komplexní rovnice (8.7) lze vyjádřit vztahem 

01
=++++ )yyy(

Lj
 )yC y(Cj 22e21e11e22e211e1 ω

ω  , (8.10) 

z něhož lze po zjednodušeních (zanedbáme y22e v první části a y11e a y22e v druhém členu) vyjádřit 
rovnici 
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Ta odráží amplitudovou podmínku oscilací, když vyjadřuje potřebný poměr hodnot C1/C2 vhledem 
k míře zesílení (y21e) a ztrát (y11e). Ve skutečném případě by bylo nutno uvažovat i ztráty v pomocných 
rezistorech Rb a především Rk a také ztráty ve vnější zátěži. Vzhledem k diskutovanému principu 
stabilizace a větší míře ztrát musí být ve skutečnosti zesílení větší, aby došlo k náběhu kmitů a po 
dosažení saturace proudu k poklesu zesílení na hodnotu odpovídající skutečné amplitudové podmínce. 
Navíc při ladění oscilátoru jedním prvkem se oscilační podmínka mění a je třeba mít ještě větší 
rezervu zesílení. 

Výhody a nevýhody obou variant zapojení 
z obr. 8.10 lze porovnat z různých hledisek. 
Např. z hlediska laditelnosti jedním prvkem je 
výhodnější Hartleyův oscilátor, protože 
umožňuje ladění proměnným kondenzátorem. Z 
hlediska čistoty spektra generovaného 
harmonického signálu je naopak výhodnější 
Colpittsovo zapojení, protože filtr typu DP má 
podstatně vyšší potlačení harmonických složek 
než HP u druhé varianty, jak je to zřejmé z obr. 
8.11. 

Mimo uvedené dvě varianty tříbodových 
oscilátorů existuje několik jejich variant, které se 
různým způsobem snaží minimalizovat reálné 

vlivy tranzistoru (především vliv na stabilitu kmitočtu, ale i vliv přelaďování, zapojení tranzistoru SB 
apod.) a různým způsobem řeší zapojení stejnosměrných obvodů a napájení. Jsou známy např. pod 
názvy Clappův, Pierceův, Vackářův atd. 

Krystalové oscilátory jsou zvláštní variantou oscilátorů LC, kde je využíván krystal jako 
rezonanční dvojpól. Hlavní důvod je ve vysoké stabilitě rezonančního kmitočtu krystalu, což pak 
určuje vysokou stabilitu kmitočtu celého oscilátoru. Náhradní schéma krystalu je uvedeno obr. 8.12b. 
Vzhledem k složitější struktuře se projevuje nejen sériová rezonance rezonančního obvodu CS, LS a RS 
s kmitočtem fS, ale i paralelní rezonance na kmitočtu fP, způsobená připojenou paralelní kapacitou CP 
ke zbytku obvodu. Ekvivalentní hodnoty náhradních prvků mají takové hodnoty, že hodnota paralelní 
kapacity má jen minimální vliv na rezonanční kmitočty fS a fP (které jsou velice blízko sebe), a proto je 
tento rezonátor jen minimálně citlivý na externí změnu paralelní kapacity.  

Pro oscilátory je krystal používán ve dvou režimech. V prvním případě nahrazuje indukčnost v 
Colpittsově oscilátoru (obr. 8.12d). Rezonanční kmitočet se ustálí mezi kmitočty fS a fP, kde má krystal 
induktivní impedanci, aby byla splněna fázová podmínka. Tato varianta se též nejčastěji používá i v 
generátorech „hodinového“ signálu v číslicových obvodech (mikroprocesorech apod.), kde je jako 
invertující zesilovač použito logické hradlo (obr. 8.13a). Běžně používaná hodnota kapacit C1 a C2 je 
pro kmitočty 1-20 MHz asi 10-30 pF. Rezistor R o hodnotě cca 1 MΩ zabezpečuje stejnosměrný režim 
hradla jako analogového zesilovače. Stabilizace amplitudy se obvykle neřeší, naopak, invertor pracuje 
s velkým zesílením, takže je na výstupu saturovaný obdélníkový signál.  
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      Obr. 8.11.   Přenosy filtrů typu DP a HP  

3. řádu (bloky B na obr. 8.10).  
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Obr. 8.12. Krystal: a) symbol, b) náhradní elektrické schéma, c) kmitočtová závislost impedance, d) 

střídavé náhradní schéma Colpittsova oscilátoru s krystalem. 
 
Druhá varianta zapojení (obr. 8.13b) využívá sériové rezonance (pásmová propust s nulovým 

posuvem fáze). Z tohoto důvodu musí být zesilovač neinvertující (dva invertory v kaskádě). V případě 
potřeby získání harmonického signálu jsou používány tranzistorové zesilovače s adekvátním 
nastavením pracovních bodů a vhodným režimem stabilizace amplitudy.  

X C1C2 a)

R

X
b)  

 
 
 
 
Obr. 8.13.  Zapojení krystalových 
oscilátorů s logickými hradly: a) 
Colpittsova varianta, b) se sériovou 
rezonancí a nulovým fázovým posuvem. 

 

8.7    STABILNÍ OSCILÁTORY S NASTAVITELNÝM KMITOČTEM 
Je zřejmé, že je možné běžně udělat oscilátor RC či LC s plynule či skokově nastavitelným 

kmitočtem a relativně nízkou stabilitou kmitočtu (asi ∆f0/f0=10-4) nebo naopak krystalový s pevným 
neladitelným kmitočtem a vysokou stabilitou kmitočtu (lepší než  ∆f0/f0=10-6). Pro některé účely (např. 
oscilátory v různých typech přijímačů, obzvláště pak v leteckých přijímačích) potřebujeme oscilátory 
s nastavitelným kmitočtem a vysokou stabilitou. Řešení se historicky vyvíjelo od různých typů 
syntezátorů či směšovacích systémů (ve starších leteckých či vojenských radiostanicích) až po 
modernější způsoby s fázovými závěsy (PLL) či nový přístup s přímou digitální syntézou (DDS). 
Protože směšovací systémy mají problémy s dostatečnou filtrací parazitních směšovacích složek a 
neposkytují dostatečně čisté spektrum, dnes se již nepoužívají.  

Oscilátory s fázovým závěsem vycházejí z obecnějšího principu fázového závěsu (anglicky 
Phase Lock Loop – PLL), který se používá i v mnoha jiných typech aplikací. Základní princip 
fázového závěsu je uveden na obr. 8.14. Tvoří jej základní smyčka tří bloků, frekvenčně fázového 
detektoru (FFD), filtru typu dolní propust (DP) a napěťově řízeného oscilátoru (NŘO, anglicky 
Voltage Controlled Oscillator – VCO). Pomocné bloky tvarovačů (Tv1 a Tv2) tvarují harmonické 
signály na obdélníkové (pokud řídící signál a signál z VCO není přímo obdélníkový). Je to z toho 
důvodu, že většina FFD pracuje v impulzním režimu. 

Blok FFD, často označovaný jen jako fázový detektor, má za úkol porovnat fázi obou 
přiváděných signálů a řídit výstupní napětí podle velikosti tohoto fázového rozdílu, jak to ukazuje obr. 
8.14c. Fázový rozdíl lze ale definovat pouze pro dva signály se shodným kmitočtem. V obecném 
případě ale mají oba signály rozdílný kmitočet, a proto je požadavek, aby detektor detekoval i 
rozdílnost kmitočtů (proto frekvenčně fázový detektor). Optimální je, aby v případě neshody obou 
kmitočtů měl detektor na výstupu minimální, resp. maximální napětí. Způsobů realizace FFD je více, 
obvykle v impulsním režimu, kdy základním výstupním signálem FFD je impulsní signál s šířkovou 
modulací (ŠIM, anglicky PWM), kde šířka impulsu odpovídá fázovému rozdílu. Jedním z takových 
obvodů je např. logický obvod EX-OR s výstupní úrovní 1 při shodnosti a 0 při neshodnosti vstupních 
signálů. Při fázovém posuvu 90o je pak poměr impuls/mezera výstupního signálu 1:1. 
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Protože řídící napětí pro VCO musí být spojité, je nutno za samotný blok FFD zařadit filtr typu 
DP, který ze signálu ŠIM filtruje jeho střední hodnotu, úměrnou relativní šířce impulsu. Mezní 
kmitočet tohoto filtru musí být značně nižší, než je kmitočet vstupních signálů. Na druhou stranu tento 
mezní kmitočet určuje rychlost regulace celé smyčky a musí splňovat podmínky pro stabilitu celé 
smyčky. Je zřejmé, že hodnota tohoto kmitočtu se volí jako určitý kompromis mezi potřebnou 
rychlostí reakce smyčky a kvalitou řídícího signálu pro VCO. Obvykle se volí filtr RC 1. řádu, popř. 2. 
řádu s nutnou kontrolou stability smyčky. 

Třetím důležitým blokem je napěťově řízený oscilátor (VCO), jehož kmitočet závisí na řídícím 
napětí např. podle charakteristiky z obr. 8.14b. Jeho provedení může být také různé. Jednoduché 
provedení spočívá např. v použití LC oscilátoru, kde jako rezonanční kapacitor použijeme varikap, 
jehož kapacita bude záviset na řídícím napětí. Nepotřebujeme-li harmonický výstupní signál, lze 
použít různé varianty napěťově řízených impulsních generátorů. 

Tv1
Frekvenčně

fázový
detektor

DP
Tv2

Napěťově
řízený

oscilátor

fř

fNŘO

Uř

Uř

ŠIM

fO

UNŘO

Uř

ϕ ϕFFD

UNŘO

NŘO (VCO)

FFD

a)

b)

c)f0= fř

 
Obr. 8.14.   Fázový závěs: a) principiální blokové schéma, b) převodní charakteristika VCO, c) převodní 

charakteristika FFD. 
 

Funkce fázového závěsu má dva režimy. Nejprve je kmitočet VCO f0 odlišný od kmitočtu fř 
řídícího signálu. V tom případě je řídící napětí Uř buď nízké anebo vysoké a způsobuje zvyšování, 
resp. snižování kmitočtu VCO směrem ke kmitočtu fř. Jakmile je kmitočet shodný, tj. 

řff =0 , (8.12) 

nastane druhá fáze, kdy VCO pracuje synchronně s řídícím signálem (tzv. v závěsu), kdy se funkce 
smyčky ustálí nejen na shodnosti kmitočtů, ale i na určité hodnotě fázového rozdílu ϕ tak, aby tato 
hodnota byla převedena na takové řídící napětí, pro které kmitočet VCO odpovídá kmitočtu fř. Smyčka 
pracuje v režimu záporné zpětné vazby, takže každá změna, narušující rovnováhu smyčky (šum 
řídícího napětí, změna řídícího kmitočtu apod.), která je kratší než časová konstanta DP, je okamžitě 
plynule kompenzována bez porušení rovnováhy. Pokud je změna rychlejší, synchronizmus se 
rozpadne a kmitočet oscilátoru je postupně dostavován do synchronizmu. Dále lze podotknout, že 
rozsah zachycení a udržení synchronizmu při pomalých změnách nemusí být vždy v plném rozsahu 0-
Fmax, ale může být i záměrně omezován jak konstrukcí FFD, tak VCO v definovaných mezích. Např. 
tak může fungovat jako speciální typ filtru pro proměnné monochromatické signály apod.  

Lze teda říci, že fázový závěs vyrábí signál o shodném kmitočtu jako je kmitočet řídícího 
signálu, což se na první pohled jeví jako zbytečné. Ovšem při zakombinování do složitějších systémů 
(modulátory, demodulátory, generátory kmitočtů i zmíněný filtr) jde o velmi praktický a využívaný 
obvod. Samotný fázový závěs je též vyráběn jako integrovaný obvod. Neznámějším a již mnoho let 
využívaným typem v technologii CMOS je obvod 4047 či jeho rychlejší varianty. 

Při použití fázového závěsu jako nastavitelného generátoru jej můžeme využít podle obr. 8.15. 
Proti původnímu zapojení z obr. 8.14a je obvod rozšířen o číslicové děličky kmitočtu, které dělí 
vstupní kmitočet celočíselným poměrem n a kmitočet VCO poměrem m. FFD tedy porovnává a 
dostavuje do shody nikoliv původní kmitočty, ale jejich podělené hodnoty, takže platí  
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m
f

n
fř 0=  (8.14) 

Z toho lze odvodit vztah pro výsledný kmitočet VCO 

n
fm

n
mff ř

ř ==0 . (8.15) 

Tento vztah lze interpretovat dvěma způsoby, kdy výsledný kmitočet je dán násobkem neceločíselné 
hodnoty poměru m/n, nebo lépe, kdy máme základní kmitočtový skok fř/n a výsledný kmitočet je m-
násobek tohoto kmitočtového skoku. V přijímačích FM s laděním PPL je tento skok obvykle 50 kHz a 
ladí se změnou celočíselné hodnoty m. Při použití krystalového oscilátoru KO jako zdroje referenčního 
kmitočtu získáme generátor s vysokou stabilitou kmitočtu a možností jeho nastavení podle vztahu 
(8.15). 

Druhá, novější a modernější cesta využívá 
digitální techniku s DA převodníkem a 
obvykle je uváděna pod názvem Direct 
Digital Synthesis – DDS. Její základní 
myšlenka spočívá ve vytváření digitálního 
vyjádření harmonického (či jiného) signálu 
a jeho převod na analogový signál 
převodníkem D-A.  Podrobněji je tento 
princip vyjádřen blokovým schématem na 
obr. 8.16. V bloku paměti ROM jsou 
číslicové hodnoty vzorků harmonického 
(či jiného) signálu. Výsledný kmitočet je 
určen rychlostí, s jakou jsou tyto vzorky 
převáděny do D-A převodníku, neboli na 
kolik dílů bude rozdělena perioda 
vytvářeného signálu při konstantním 
časování.  

 

registr
řídícího
čísla

fázový
akumulátor

ROM
(sin)

D-A
převodník

(10b)

32 14 10

fC

n
(∆ϕ)

 
Obr. 8.16.   Principiální blokové schéma nastavitelného a stabilního oscilátoru technikou DDS. 

 

K určení kmitočtu je využit fázový akumulátor a registr řídícího čísla, které přivedeme do 
obvodu. Vychází se ze základního řídícího („hodinového“) kmitočtu fc, který je dán krystalovým 
oscilátorem. Základní myšlenka vychází z rozdělení celé periody signálu na definovaný počet úseků 
tak, že jeden úsek o hodnotě ∆ϕ  můžeme definovat pomocí časového intervalu ∆t vztahem 

t∆=∆ ωϕ . (8.16) 

Z toho pak vyjádříme úhlový kmitočet ω 

f
t

π
ϕ

ω 2=
∆
∆

= . (8.17) 

Při úvaze, že základní časový krok ∆t je dán periodou hodinového signálu (∆t=1/fc), můžeme vyjádřit 
výsledný kmitočet f vztahem 

cff
π
ϕ

2
∆

= . (8.18) 

: n FFD

DP
: m

VCO

fř

f0= fř m/n Uř

fř/n

f0/mn

m

KO

 

Obr. 8.15. Použití fázového závěsu pro realizaci 
oscilátoru s nastavitelným kmitočtem a 
vysokou stabilitou tohoto kmitočtu. 



_____Elektronické obvody I___________________________________________________________________ 

 304

Nyní je důležité, na jak jemný krok lze rozdělit periodu generovaného signálu. V daném 
příkladě (integrovaný obvod firmy Analog Devices) bylo zvoleno 32-bitové slovo , tedy 322ˆ2 =π a 
základní díl periody má délku 1/232. Řídící číslo n, které pak definuje skutečně zvolený krok ∆ϕ , 
může být voleno v rozsahu 3220 <=∆< nϕ . Touto volbou, dosazenou do (8.18) je pak řízen výsledný 
kmitočet podle vztahu 

cf
nf 322

= . (8.19) 

Je zřejmé, že při volbě n = 1 dostaneme nejnižší kmitočet a základní kmitočtový krok. Např. při 
volbě fc = 10 MHz je základní nastavitelný krok 2,3 mHz, což odpovídá prakticky spojitému ladění, a 
to vše při základní kmitočtové stabilitě hodinového kmitočtu krystalového oscilátoru. Na druhou 
stranu je nutno podotknout, že pro maximální hodnotu kmitočtu nelze volit n = 232, protože by nebyl 
splněn vzorkovací kmitočet. Prakticky je nutno volit maximální kmitočet (a odpovídající hodnotu n) 
asi 5-10x nižší než fc, aby bylo možno získat z převodníku po následné filtraci rekonstrukčním filtrem 
signál o dostatečné čistotě spektra. 
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Příloha: Operátorový počet v elektrotechnice 
 
„Používám metodu, která byla vynalezena Heavisidem před nějakými 25-30 lety a 
která, jak se zdá, byla již zapomenuta. Je podivuhodně krásná a umožňuje velmi 
jednoduchým způsobem počítat přechodné děje v téměř libovolném obvodu… .“ 

 
Volně přeloženo z dopisu E.J. Berga C.P.Steinmetzovi při příležitosti vydání knihy 

E.J.Berg, Electrical Engineering Advanced Course, New York, McGraw-Hill Book Co., 1916. 
 
 

Roku 1812 odvodil francouzský matematik Pierre Simon de Laplace (1749-1827) speciální 
integrální transformaci, která byla později pojmenována po něm jako Laplaceova transformace. Pro 
potřeby inženýrů a dalších pracovníků z technické praxe vytvořil na podobných základech anglický 
fyzik Oliver Heaviside (1850-1925) speciální operátorový počet, v němž hrál významnou úlohu 
komplexní operátor p. Teprve později byly Heavisideovy postupy uznávány i v matematických 
kruzích, když byly podány některé matematické důkazy „intuitivních“ pouček Heavisidea a jejich 
úzké souvislosti právě s Laplaceovou transformací. 

Níže je stručně shrnuta syntéza klasické Laplaceovy transformace a Heavisideova přístupu pro 
modelování jevů v lineárních setrvačných obvodech. 
 
Formální zavedení operátoru p 

Operátor p je zaveden jako zkrácený zápis derivace podle času: 
 p ≡ d/dt. (P.1) 

Namísto zápisu derivace funkce df(t)/dt, případně f’(t), se operátor připojí k této funkci: 

)()( tpftf
dt
d

≡ . 

Je zřejmé, že je-li funkce složena z lineární kombinace jiných funkcí, např. 
)()()( 2211 tfatfatf += , a1, a2 konstanty,  

pak 

22112211 )()()( pfapfatf
dt
datf

dt
datf

dt
d

+≡+= . 

Jsou-li výrazy a1, a2 konstanty nezávislé na čase, pak je lhostejné, v jakém pořadí zapisujeme 
symboly a1, p, f1, příp. a2, p, f2. Operátor p působí pouze na funkci času, s níž je v součinu. 

Platí-li 
y = x‘ ⇒y ≡ px, 

pak je platný i další zápis z toho formálně vyplývající: 

y
p

xydtx 1
≡⇒= ∫ . 

S operátorem p lze tedy pracovat jako se symbolem, pro nějž platí běžné algebraické operace, 
zavedeme-li operátor integrace 

 ∫≡
p
1 . (P.2) 

Operátorem lze jednoduše vyjádřit i vyšší derivace: 
f’ ≡ pf 
f’’= [f’]’ ≡ p[pf] = p2f 
: 
f(n) ≡ pnf. 
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Vyjádření signálu pomocí operátoru p 
Modelování signálu časovou funkcí je mnohdy velmi nepohodlné. Signály mění při průchodu 

elektrickými obvody své vlastnosti, což se popisuje funkcemi času velmi složitě a nepohodlně. Lze 
ukázat, že lineární obvod působí na procházející signál operacemi, které lze složit z integračních a 
derivačních procesů. Integraci a derivaci lze však snadno popsat operátorovým počtem.  

Signál, klasicky popsaný funkcí času, vyjádříme v „kompaktní“ formě jako jednoduchou funkci 
operátoru p. Tomuto „zrcadlení“ signálu v operátorové doméně budeme říkat operátorový (Laplaceův) 
obraz signálu. 

Představme si kaskádu bloků, z nichž každý vykonává integraci signálu, podle obr. P.1. Na 
vstup kaskády přivedeme Diracův impuls δ(t). První integrátor jej transformuje na jednotkový skok 
(viz kapitola 2.2.1, str. 35). Další integrací jednotkového skoku vznikne lineárně rostoucí funkce atd. 

∫ ∫ ∫ ∫ ∫
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Obr. P.1. Ilustrace přiřazení operátorových obrazů k elementárním signálům. 
 
Z hlediska operátorového vyjádření signálů v daném řetězci je zřejmé, že operátorové obrazy 

„sousedních“ signálů se budou lišit násobícím faktorem 1/p. Jestliže se rozhodneme prvnímu signálu v 
kaskádě – Diracovu impulsu – přiřadit jednoduchý operátorový obraz 1, pak obraz jednotkového 
skoku bude 1/p, obraz lineárně rostoucí funkce 1/p2, atd.: 

δ(t) ≡ 1 
1(t) ≡ 1/p 
t 1(t) ≡ 1/p2 (P.3) 
: 
tn 1(t) ≡ n!/pn+1 
: 

Poznamenejme, že všechny uvedené signály jsou nulové pro záporné časy, což je matematicky 
vyjádřeno násobením jednotkovými skoky. 

Pomocí elementárních signálů (P.3) lze na principu Taylorovy řady “složit” další signály. 
Uveďme příklad exponenciální funkce času, kde a je reálné číslo: 
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Existuje způsob, jak nalézt operátorový obraz signálu bez nutnosti výpočtů přes Taylorovu řadu. 
Signál jako funkce času se dosadí do určitého vzorce, který přímo vygeneruje operátorový obraz. Jde o 
definiční vzorec Laplaceovy transformace. 
 
Laplaceova transformace 

Laplaceova transformace jednoznačně přiřazuje signálu f(t), který je nulový pro záporné časy, 
jeho operátorový obraz F(p) podle vzorce 

 ∫
∞

−==
0

)()}({)( dtetftfLpF pt . (P.4) 

Signál musí splňovat určité podmínky, aby konvergoval integrál v (P.4) a aby tedy existoval 
Laplaceův obraz signálu. Tyto podmínky jsou popsány v odborné literatuře, např. v [34]. Pro běžné 
signály z technické praxe jsou automaticky splněny. 

Vzorec (P.4) je možné otestovat například pro jednotkový skok: 
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Výpočet je správný za předpokladu, že e-pt→0 pro t→∞. To je splněno, je-li reálná část 
operátoru p kladná. Jednotkový skok má tedy Laplaceův obraz 1/p, kde p může být libovolné 
komplexní číslo s kladnou reálnou částí. Jinými slovy, toto číslo se musí nacházet v komplexní 
polorovině vpravo od imaginární osy. Tento výsek komplexní roviny nazýváme definičním oborem 
daného Laplaceova obrazu. 

V Tab. P.1 jsou shrnuty základní vlastnosti Laplaceovy transformace, přímo vyplývající 
z definičního integrálu (P.4). V Tab. P.2 jsou uvedeny tzv. limitní teorémy. Stručný slovník 
Laplaceovy transformace je v Tab. P.3. 

Z údajů v řádku „časová derivace signálu“ Tab. P.1. vyplývá, že Heavisideova interpretace 
operátoru p jako symbolu derivace platí jen pro případy, kdy derivovaný signál má v počátku časové 
osy nulovou hodnotu ve smyslu limity zprava. Této podmínce vyhovují všechny signály, uvedené na 
obr. P.1 a v relacích P.3, s výjimkou jednotkového skoku. 

 
Tab. P.1. Základní vlastnosti Laplaceovy transformace. Symboly 0+ a 0- označují limity zprava a zleva. 

 
vlastnost signál f(t) Laplaceův obraz F(p) poznámka 
násobení signálu konstantou )(. tfa  )(. pFa   
součet signálů )()( 21 tftf +  )()( 21 pFpF +   
časové zpoždění signálu )(1)( ττ −− ttf  τpepF −)(  0≥τ  
exponenciální tlumení 
signálu 

atetf −)(  )( apF +  a je libovolné reálné 

změna časové osy 







a
tf  )(. apFa  a > 0 reálné 

násobení signálu časem )(. tft  
dp

pdF )(
−   

časová derivace signálu 
dt

tdf )(  )0()( +− fppF  )(lim)0(
0

tff
t +→

+ =  

časová integrace signálu ∫
−

t

dxxf
0

)(  
p
pF )(   

konvoluce dvou signálů )(*)( 21 tftf  )()( 21 pFpF  

)(*)( 21 tftf = 

= ∫
−

−
t

dxxtfxf
0

21 )()( = 

= ∫
−

−
t

dxxtfxf
0

12 )()(  

 
 

Tab. P.2. Limitní teorémy. Symbol 0+ označuje limitu zprava. Termín pól je vysvětlen na str. 162. 
 
 poznámka 
Teorém o počáteční hodnotě signálu 

)]([lim)(lim
Re0

ppFtf
pt ∞→+→

=  
 

Teorém o konečné hodnotě signálu 
)]([lim)(lim

0
ppFtf

pt →∞→
=  

platí jen pokud limita existuje a je konečná, 
neboli pokud F(p) má všechny póly v levé 
komplexní polorovině 
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Tab. P.3. Stručný slovník Laplaceovy transformace. 
 

 Laplaceův obraz signál poznámka 

1 1  ( )tδ  jednotkový (Diracův) 
impuls 

2 p
1   ( )t1  jednotkový (Heavisideův) 

skok 

3 2

1
p

  ( )tt1   

4 1

1
+np

  ( )t
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t n

1
!

 n je celé kladné číslo 

5 ap +
1   ( )te at1−   

6 ( )2

1
ap +
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t at
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1
)!1(
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8 ))((
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++
 )(1 t
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10 ( )app +
1  ( )te

a
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11 ( )2

1
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at 1])1(1[1
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−+−  0=/a  
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14 22 ω
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 ( )tt1sinω   

15 22 ω+p
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16 
)( 22
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ω
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+pp
 ( )tt 1)cos1( ω−   
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19 22)( ω++ ap
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20 22)(
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Fyzikální interpretace Laplaceovy transformace signálu 
Laplaceův obraz konkrétního signálu je funkcí operátoru p. Tento operátor je obecně komplexní 

číslo 
 p = σ + jω,  (P.5) 
jehož reálnou a imaginární složku si v podstatě volí “uživatel” v souladu s jejich zcela konkrétním 
fyzikálním významem, který bude objasněn v dalším textu. 

S přihlédnutím k (P.5) přepíšeme definiční vztah Laplaceovy transformace (P.4) takto: 

 ∫
∞

−−==
0

])([)}({)( dteetftfLpF tjt ωσ . (P.6) 

Uvědomíme-li si, že signál f(t) je nulový pro záporné časy a tudíž že dolní integrační mez může 
být změněna na -∞, aniž by se změnila velikost integrálu, pak Laplaceova transformace signálu f(t) je 
rovna Fourierově transformaci tohoto signálu, násobeného exponenciální funkcí te σ− . Jinými slovy, 

Laplaceova transformace signálu f(t) vyjadřuje spektrum tohoto signálu po jeho zatlumení 
exponenciálním signálem te σ− s časovou konstantou tlumení τ = 1/σ. 

Přesněji řečeno, pro σ > 0 se jedná o tlumení, pro σ < 0 o exponenciální zesilování. Situace je 
ilustrována na obr. P.2. 

Obrázek P.3 ukazuje konkrétní rozložení modulu Laplaceova obrazu 

22
22 )50()250()1( π

τ
++

=
Ω++ p

p

p

p , τ = 4ms. 

Podle řádku 19 tabulky P.3. jde o obraz signálu, složeného ze sinové a kosinové složky o 
kmitočtu 25Hz, tlumeného exponenciálně s časovou konstantou 4ms. 

V počátku komplexní roviny, tedy pro p = σ+jω = 0, vychází Laplaceův obraz nulový. Daná 
plocha nad komplexní rovinou se “propadá” do tzv. nulového bodu. Naopak pro hodnoty operátoru p, 
pro něž je jmenovatel Laplaceova obrazu nulový, neboli pro 

π
τ

502501 jjp ±−=Ω±−=  

roste modul Laplaceova obrazu nade všechny meze. Daná plochy vytváří jakési „komíny“ v místech 
komplexní roviny, kterým se říká póly. 

Spektrální funkci signálu získáme řezem zobrazené plochy rovinou, která prochází imaginární 
osou a je kolmá ke komplexní rovině p = σ + jω. Kdybychom posouvali rovinu řezu směrem do 
záporných hodnot tlumení σ , jinými slovy, pokud bychom signál násobili “rostoucí” exponenciální 
funkcí, pak pro hodnotu σ = -1/τ bychom protli plochu v místech, kde jsou lokalizovány póly. 
Spektrum signálu by pak vykazovalo v oblastech pólů nekonečný nárůst. Došlo by k vykompenzování 
tlumení harmonického signálu, takže jeho amplituda je konstantní, čemuž odpovídá neohraničený 
nárůst energie signálu v kmitočtovém pásmu v okolí kmitočtu Ω. 

Shrňme, že ze souřadnic pólů lze zjistit kruhový opakovací kmitočet signálu (souřadnice 
imaginární složky) a míru exponenciálního tlumení nebo nárůstu signálu (souřadnice reálné složky). 
Poloha nulového bodu určuje proporce mezi amplitudami sinové a kosinové složky (viz řádek 19 
tabulky P.3) a tudíž souvisí s počáteční fází harmonického signálu. 
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Obr. P.2 [40]. Laplaceova transformace jako zobecnění Fourierovy transformace signálu. 

 
Zpětná Laplaceova transformace 

Tato transformace převádí Laplaceův obraz signálu zpět na původní signál. Integrální definice, 
popsaná v matematické literatuře, např. v [33], se v technické praxi příliš nevyužívá. Většinou se 
postupuje pomocí slovníků Laplaceovy transformace, kde se k danému obrazu dohledá originál. Této 
závěrečné fázi převodu předchází rozklad Laplaceova obrazu na dílčí obrazy, které jsou obsaženy ve 
slovníku. Rovněž se často používá různých pouček a vlastností Laplaceovy transformace, shrnutých v 
tabulkách P.1 a P.2. 

Níže jsou popsány praktické postupy rozkladu Laplaceového obrazu na parciální zlomky. 
Laplaceův obraz je uvažován ve tvaru racionální lomené funkce 
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Symboly p1, p2, … ve jmenovateli představují kořeny jmenovatele a současně póly F(p). 

Signál f(t) v časové reprezentaci 
(časový průběh). Pro záporné časy 
je signál nulový. 

Násobení signálu nekonečným 
počtem exponenciálních křivek 
s různými tlumicími faktory σ od 
-∞ do +∞. 

Výpočet Fourierovy transformace, 
tj. komplexní spektrální funkce  
každého exponenciálně váhova-
ného signálu. 

Umístění každého dílčího spektra 
podél imaginární osy komplexní 
roviny p = σ+jω pro danou 
hodnotu tlumicího faktoru σ. 
F(p) je tedy komplexní funkce nad 
rovinou p, zobrazující spektrální 
funkce signálu f(t) pro všechny 
možné hodnoty tlumicího faktoru. 



________________________________________________Příloha: Operátorový počet v elektrotechnice_____ 

 311 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Obr. P.3. Příklad zobrazení modulu Laplaceova obrazu tlumeného harmonického signálu o kmitočtu 25Hz 
a časové konstantě tlumení 4ms. Řez v rovině imaginární osy určuje spektrální funkci signálu. 

 
Při rozkladu na parciální zlomky je vhodné rozlišovat mezi čtyřmi případy, pomocí nichž lze 

ošetřit všechny možné konfigurace pólů: 
 

1. Póly p1, p2, …, pn jsou reálné různé: 
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2. Póly jsou reálné, p1 je k-násobný: 
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3. Póly p1, p2 jsou jednoduché komplexně sdružené a ± jb: 
Existují dvě možnosti rozkladu: 

a) viz 1, konstanty A1, A2 budou komplexní a současně komplexně sdružené. 
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4. Póly p1, p2 jsou k-násobné komplexně sdružené a ± jb: 
Existují dvě možnosti rozkladu: 

a) viz 2, konstanty Ak budou komplexní. 

b) 
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Konstanty Ai, i=1, 2, .., n lze stanovit například takto: 

a) Parciální zlomky se převedou na společného jmenovatele. Koeficienty u jednotlivých mocnin 
operátoru p v čitateli se porovnají s koeficienty rozkládaného zlomku. Sestaví se soustava rovnic pro 
neznámé konstanty Ai a vyřeší se. 

Příklad:  
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Převedení na společného jmenovatele: 
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Srovnání koeficientů: 
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b) Použije se speciálních postupů, popsaných například v [34]. 
Poznámka: Pokud Laplaceův obraz obsahuje v čitateli polynom o stupni stejném nebo vyšším než je 
stupeň polynomu ve jmenovateli, pak výše uvedené rozklady na parciální zlomky nelze uskutečnit. V 
tom případě je nutno napřed provést speciální úpravu Laplaceova obrazu, jak vysvětluje následující 
příklad. 
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První člen, číslo 2, je Laplaceův obraz Diracova impulsu, násobeného dvěma. Druhý člen se již 
dá rozložit na parciální zlomky, protože řád polynomu v čitateli je o jedničku menší než ve 
jmenovateli. 
 
Operátorové modely pasivních prvků R, L a C 

Vztahy mezi napětími a proudy pasivních součástek typu R, L a C jsou následující: 

)()( tRitu RR = , )()( ti
dt
dLtu LL = , )()( tu

dt
dCti CC = . 

Rovnice převedeme do operátorové oblasti Laplaceovou transformací s využitím pouček o 
násobení signálu konstantou a obrazu derivace (viz Tab. P.1): 

 )()( pRIpU RR = , )0()()( +−= LLL LippLIpU , )0()()( +−= CCC CuppCUpI . (P.7) 

Z první rovnice vyplývá, že Ohmův zákon platí nejen pro okamžité hodnoty napětí a proudu 
rezistoru, ale i pro jejich Laplaceovy obrazy. U induktoru a kapacitoru je poměr operátorových obrazů 
napětí a proudu dán operátorovými reaktancemi pL a 1/pC. Do hry však vstupují i počáteční hodnoty 
proudu induktorem a napětí na kapacitoru, tzv. fyzikální počáteční podmínky. Z jejich spojitosti 
vyplývá, že není třeba rozlišovat mezi limitami zleva a zprava, neboli že ve vzorcích (P.7) není nutné 
– až na speciální případy – uvádět index +. 

Operátorové modely akumulačních prvků L a C, přímo vyplývající z rovnic (P.7), jsou shrnuty 
na obr. P.4. Model se zdrojem proudu je uveden vždy i s modelem se zdrojem napětí a naopak. 
K přepočtu modelů je využita poučka o ekvivalenci napěťových a proudových zdrojů. 
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Obr. P.4. Operátorové modely pasivních prvků C a L s nenulovými počátečními podmínkami. 
 

Použití Laplaceovy transformace tedy vede k tomu, že u obvodů s kapacitory a induktory 
respektujeme diferenciální vztahy mezi napětím a proudem zavedením operátorových reaktancí, 
které přecházejí v klasické reaktance zavedené v teoretické elektrotechnice po záměně  
 p j= ω. (P.8) 

Substituce (P.8) je v elektrotechnice často používaná. Je založena na vztahu mezi Laplaceovou a 
Fourierovou transformací. Při nulových počátečních podmínkách a s uvažováním substituce (P.8) 
přecházejí operátorová schémata kapacitoru a induktoru v klasická reaktanční schémata, běžně 
používaná k výpočtu harmonických ustálených stavů symbolicko-komplexní metodou. 

Operátorový model rezistoru se neliší od jeho klasického modelu. Poměrem operátorových 
obrazů napětí a proudu je opět odpor. 

 
Metoda operátorových schémat k řešení lineárních obvodů 

Tato metoda se často používá při řešení přechodových jevů. Podstata metody je následující:  
• Schéma obvodu překreslíme tak, že akumulační prvky typu L a C nahradíme jejich 

operátorovými modely podle obr. P.4. Lze použít modely se zdroji napětí nebo proudu. 
Rozhodneme se pro variantu, která nám lépe vyhovuje. V případě nulových fyzikálních 
počátečních podmínek tyto zdroje odpadají úplně a zbudou pouze operátorové kapacitní a 
induktivní reaktance 1/pC a pL.  

• Signály v obvodu nahradíme jejich Laplaceovými obrazy. 
• Analýzou operátorového schématu zjistíme Laplaceův obraz hledané veličiny. 
• Zpětnou Laplaceovou transformací zjistíme odpovídající časové průběhy. 
 

Příklad: 
Obvod na obr. P.5 a) se nachází v ustáleném stavu. V čase t = 0 je spínačem odpojena zátěž od 

kapacitoru. Určete časový průběh napětí na kapacitoru a proudu induktorem po rozpojení spínače. 
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Obr. P.5. a) Analyzovaný obvod, b) jeho operátorové schéma pro řešení přechodného děje po rozpojení 

spínače.  
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Řešení: 

Nejprve určíme fyzikální počáteční podmínky přechodného děje, neboli napětí na kapacitoru a 
proud induktorem v okamžiku před rozepnutím spínače: v ustáleném stavu se induktor chová jako 
zkrat a kapacitor jako rozpojený obvod. Řešením dostáváme uC(0) = 1 V, iL(0) = 0,5A. 

Na obr. P.5 b) je sestavené operátorové schéma pro t ≥ 0. Zde je výhodné použít modely 
kapacitoru i induktoru se zdroji napětí. V obvodu jsou nyní tři zdroje napětí v sérii, což usnadní celou 
analýzu. 

Z obr. P.5 b) přímo vyplývá výpočet operátorového obrazu proudu induktorem: 
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Po dosazení číselných hodnot a úpravě vychází 
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´ 
Ze slovníku Laplaceovy transformace v Tab. P.3, řádky 18 a 19, pak vyplyne výsledek: 

[ ] )(1})7,542sin(400)7,542cos(7,542
7,542

5,0)7,542sin(
7,542

400{)( 400400 ttteteti tt
L −+= −−& . 

Po konečné úpravě 
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Obdobně lze analyzovat napětí na kapacitoru. Z obr. P.5 b) a rovnice (P.9) vyplývá postup: 
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Dosadíme numerické hodnoty a upravujeme na tvary ve slovníku: 
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Časový průběh zjistíme pomocí korespondencí v řádcích č. 2, 18 a 20 v Tab. P.3: 
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Časové průběhy proudu induktorem a napětí na kapacitoru jsou na obr. P.6. Přechodný děj má 
kmitavý charakter, což odpovídá dvojici komplexně sdružených pólů řešeného obvodu. Reálná část -
400 znamená útlum – postupný zánik přechodného děje (záporné znaménko) s časovou konstantou 
1/400 = 2,5ms. Imaginární část ±j542,7 značí zákmity přechodného děje o kruhovém kmitočtu 
542,7rad/s, neboli 542,7/(2π)=86,4Hz, což odpovídá periodě kmitů 11,6ms. Srovnejte tyto údaje 
s obrázkem P.6. 
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Obr. P.6. Průběh přechodného děje v obvodu z obr. P.5 a).  

 
Operátorová přenosová funkce 

Z předchozího příkladu operátorového řešení přechodného děje, zejména z obr. P.5b) vyplývá, 
že sledovaná výstupní veličina obvodu – například napětí na kapacitoru nebo proud induktorem – se 
mění v důsledku působení dvou různých typů zdrojů: vnějších zdrojů (baterie) a vnitřních zdrojů 
(počáteční napětí na C a počáteční proud L, tedy fyzikálních počátečních podmínek). V důsledku 
linearity obvodu můžeme k řešení použít princip superpozice, neboli můžeme stanovit odděleně 
odezvu obvodu na nenulové počáteční podmínky při nepůsobení vnějších zdrojů (tzv. přirozená 
odezva), pak určíme odezvu obvodu na vnější buzení při nulových počátečních podmínkách (tzv. 
vynucená odezva), a nakonec obě odezvy sečteme (tzv. celková neboli úplná odezva). 

V elektrotechnických výpočtech má zvlášť velký význam právě vynucená odezva obvodu na 
vstupní signál. Z hlediska operátorového řešení lze tuto odezvu snadno získat řešením zjednodušeného 
operátorového schématu obvodu při neuvažování počátečních podmínek, kdy modely akumulačních 
prvků jsou reprezentovány pouze jejich operátorovými impedancemi. Postupuje se v těchto fázích: 

 
1. Sestaví se operátorový model obvodu s uvažováním nulových počátečních podmínek. 
2. Provede se analýza obvodu s cílem výpočtu tzv. přenosové funkce K(p), což je poměr 
Laplaceových obrazů výstupního a vstupního signálu: 

 
)(
)()(

pVstup
pVýstuppK = . (P.13) 

3. Laplaceův obraz vynucené odezvy se určí vynásobením Laplaceova obrazu vstupního signálu a 
přenosové funkce: 
 )().()( pVstuppKpVýstup =  (P.14) 

Přenosová funkce nezávisí na vstupním signálu, je to charakteristika řešeného obvodu. Může 
být tedy využita k opakovanému výpočtu vynucených odezev obvodu na různé budicí signály. 

 
Příklad: Vypočtěte přenosovou funkci obvodu na obr. P.7 a), je-li vstupním signálem uin a 

výstupním signálem uout. 
L
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Obr. P.7. Způsob zjišťování přenosové funkce obvodu řešením jeho operátorového modelu při nulových 

počátečních podmínkách. 
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Řešení: 
1. Nakreslíme operátorové schéma podle obr. P.7 b). 
2. Vypočteme poměr výstupního a vstupního napětí například metodou děliče napětí: 
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Výsledek můžeme dále využít například k nalezení reakce obvodu na připojení pětivoltové 
baterie k vstupním svorkám (vynucená odezva): Přenosovou funkci vynásobíme Laplaceovým 
obrazem 5/p a provedeme zpětnou Laplaceovu transformaci. Nalezením kořenů jmenovatele můžeme 
zjistit ještě před výpočtem přechodného děje jeho charakter podle toho, zda kořeny (póly) vycházejí 
reálné či komplexní atd.  

Z přenosové funkce lze snadno zjistit vstupně-výstupní diferenciální rovnici obvodu. Například 
pro výše uvedenou přenosovou funkci platí: 
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Uvědomíme-li si, že násobení Laplaceova obrazu operátorem p je ekvivalentní derivaci 
časového originálu, pak výše uvedenou rovnici můžeme přímo mechanicky přepsat na hledanou 
diferenciální rovnici mezi vstupním a výstupním signálem: 

)(10.45,4)(10.45,4)(800)( 55 tutututu inoutoutout =+′+′′ . 

Každý jiný způsob „ručního“ hledání této diferenciální rovnice je komplikovanější. 
Přenosová funkce je využitelná k další analýze důležitých vlastností a charakteristik obvodu, 

jako jsou stabilita, kmitočtové charakteristiky, chování obvodu v čase – impulsní a přechodová 
charakteristika či vynucené odezvy na obecná buzení. Podrobněji je o této problematice pojednáno 
v kapitole 5. 

Obr. P.8 znázorňuje některé souvislosti mezi charakteristikami lineárního obvodu. Je zřejmé, že 
sjednocující charakteristikou je právě operátorová přenosová funkce. 
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Obr. P.8. Přenosová funkce jako sjednocující charakteristika obecného lineárního obvodu. 
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