

Learning	PHP	7

Table	of	Contents

Learning	PHP	7

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Setting	Up	the	Environment

Setting	up	the	environment	with	Vagrant

Introducing	Vagrant

Installing	Vagrant

Using	Vagrant

Setting	up	the	environment	on	OS	X

Installing	PHP

Installing	MySQL

Installing	Nginx

Installing	Composer

Setting	up	the	environment	on	Windows

Installing	PHP

Installing	MySQL

Installing	Nginx

Installing	Composer

Setting	up	the	environment	on	Ubuntu

Installing	PHP

Installing	MySQL

Installing	Nginx

Summary

2.	Web	Applications	with	PHP

The	HTTP	protocol

A	simple	example

Parts	of	the	message

URL

The	HTTP	method

Body

Headers

The	status	code

A	more	complex	example

Web	applications

HTML,	CSS,	and	JavaScript

Web	servers

How	they	work

The	PHP	built-in	server

Putting	things	together

Summary

3.	Understanding	PHP	Basics

PHP	files

Variables

Data	types

Operators

Arithmetic	operators

Assignment	operators

Comparison	operators

Logical	operators

Incrementing	and	decrementing	operators

Operator	precedence

Working	with	strings

Arrays

Initializing	arrays

Populating	arrays

Accessing	arrays

The	empty	and	isset	functions

Searching	for	elements	in	an	array

Ordering	arrays

Other	array	functions

PHP	in	web	applications

Getting	information	from	the	user

HTML	forms

Persisting	data	with	cookies

Other	superglobals

Control	structures

Conditionals

Switch…case

Loops

While

Do…while

For

Foreach

Functions

Function	declaration

Function	arguments

The	return	statement

Type	hinting	and	return	types

The	filesystem

Reading	files

Writing	files

Other	filesystem	functions

Summary

4.	Creating	Clean	Code	with	OOP

Classes	and	objects

Class	properties

Class	methods

Class	constructors

Magic	methods

Properties	and	methods	visibility

Encapsulation

Static	properties	and	methods

Namespaces

Autoloading	classes

Using	the	__autoload	function

Using	the	spl_autoload_register	function

Inheritance

Introducing	inheritance

Overriding	methods

Abstract	classes

Interfaces

Polymorphism

Traits

Handling	exceptions

The	try…catch	block

The	finally	block

Catching	different	types	of	exceptions

Design	patterns

Factory

Singleton

Anonymous	functions

Summary

5.	Using	Databases

Introducing	databases

MySQL

Schemas	and	tables

Understanding	schemas

Database	data	types

Numeric	data	types

String	data	types

List	of	values

Date	and	time	data	types

Managing	tables

Keys	and	constraints

Primary	keys

Foreign	keys

Unique	keys

Indexes

Inserting	data

Querying	data

Using	PDO

Connecting	to	the	database

Performing	queries

Prepared	statements

Joining	tables

Grouping	queries

Updating	and	deleting	data

Updating	data

Foreign	key	behaviors

Deleting	data

Working	with	transactions

Summary

6.	Adapting	to	MVC

The	MVC	pattern

Using	Composer

Managing	dependencies

Autoloader	with	PSR-4

Adding	metadata

The	index.php	file

Working	with	requests

The	request	object

Filtering	parameters	from	requests

Mapping	routes	to	controllers

The	router

URLs	matching	with	regular	expressions

Extracting	the	arguments	of	the	URL

Executing	the	controller

M	for	model

The	customer	model

The	book	model

The	sales	model

V	for	view

Introduction	to	Twig

The	book	view

Layouts	and	blocks

Paginated	book	list

The	sales	view

The	error	template

The	login	template

C	for	controller

The	error	controller

The	login	controller

The	book	controller

Borrowing	books

The	sales	controller

Dependency	injection

Why	is	dependency	injection	necessary?

Implementing	our	own	dependency	injector

Summary

7.	Testing	Web	Applications

The	necessity	for	tests

Types	of	tests

Unit	tests	and	code	coverage

Integrating	PHPUnit

The	phpunit.xml	file

Your	first	test

Running	tests

Writing	unit	tests

The	start	and	end	of	a	test

Assertions

Expecting	exceptions

Data	providers

Testing	with	doubles

Injecting	models	with	DI

Customizing	TestCase

Using	mocks

Database	testing

Test-driven	development

Theory	versus	practice

Summary

8.	Using	Existing	PHP	Frameworks

Reviewing	frameworks

The	purpose	of	frameworks

The	main	parts	of	a	framework

Other	features	of	frameworks

Authentication	and	roles

ORM

Cache

Internationalization

Types	of	frameworks

Complete	and	robust	frameworks

Lightweight	and	flexible	frameworks

An	overview	of	famous	frameworks

Symfony	2

Zend	Framework	2

Other	frameworks

The	Laravel	framework

Installation

Project	setup

Adding	the	first	endpoint

Managing	users

User	registration

User	login

Protected	routes

Setting	up	relationships	in	models

Creating	complex	controllers

Adding	tests

The	Silex	microframework

Installation

Project	setup

Managing	configuration

Setting	the	template	engine

Adding	a	logger

Adding	the	first	endpoint

Accessing	the	database

Silex	versus	Laravel

Summary

9.	Building	REST	APIs

Introducing	APIs

Introducing	REST	APIs

The	foundations	of	REST	APIs

HTTP	request	methods

GET

POST	and	PUT

DELETE

Status	codes	in	responses

2xx	–	success

3xx	–	redirection

4xx	–	client	error

5xx	–	server	error

REST	API	security

Basic	access	authentication

OAuth	2.0

Using	third-party	APIs

Getting	the	application’s	credentials

Setting	up	the	application

Requesting	an	access	token

Fetching	tweets

The	toolkit	of	the	REST	API	developer

Testing	APIs	with	browsers

Testing	APIs	using	the	command	line

Best	practices	with	REST	APIs

Consistency	in	your	endpoints

Document	as	much	as	you	can

Filters	and	pagination

API	versioning

Using	HTTP	cache

Creating	a	REST	API	with	Laravel

Setting	OAuth2	authentication

Installing	OAuth2Server

Setting	up	the	database

Enabling	client-credentials	authentication

Requesting	an	access	token

Preparing	the	database

Setting	up	the	models

Designing	endpoints

Adding	the	controllers

Testing	your	REST	APIs

Summary

10.	Behavioral	Testing

Behavior-driven	development

Introducing	continuous	integration

Unit	tests	versus	acceptance	tests

TDD	versus	BDD

Business	writing	tests

BDD	with	Behat

Introducing	the	Gherkin	language

Defining	scenarios

Writing	Given-When-Then	test	cases

Reusing	parts	of	scenarios

Writing	step	definitions

The	parameterization	of	steps

Running	feature	tests

Testing	with	a	browser	using	Mink

Types	of	web	drivers

Installing	Mink	with	Goutte

Interaction	with	the	browser

Summary

Index

Learning	PHP	7

Learning	PHP	7
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2016

Production	reference:	1210316

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-054-4

www.packtpub.com

http://www.packtpub.com

Credits
Author

Antonio	Lopez

Reviewer

Brad	Bonkoski

Commissioning	Editor

Kunal	Parikh

Acquisition	Editors

Nikhil	Karkal

Divya	Poojari

Content	Development	Editor

Rohit	Kumar	Singh

Technical	Editor

Taabish	Khan

Copy	Editors

Shruti	Iyer

Sonia	Mathur

Project	Coordinator

Izzat	Contractor

Proofreader

Safis	Editing

Indexer

Tejal	Daruwale	Soni

Production	Coordinator

Melwyn	D’sa

Cover	Work

Melwyn	D’sa

About	the	Author
Antonio	Lopez	is	a	software	engineer	with	more	than	7	years	of	experience.	He	has
worked	with	PHP	since	university,	which	was	10	years	ago,	building	small	personal
projects.	Later,	Antonio	started	his	journey	around	Europe,	working	in	Barcelona,	London,
Dublin,	and	back	in	Barcelona.	He	has	worked	in	a	number	of	different	areas,	from	web
applications	to	REST	APIs	and	internal	tools.	Antonio	likes	to	spend	his	spare	time	on
personal	projects	and	start-ups	and	has	a	strong	vocation	in	education	and	teaching.

I	would	like	to	give	thanks	to	my	wife,	Neri,	for	supporting	me	through	the	whole	process
of	writing	this	book	without	going	crazy.

About	the	Reviewer
Brad	Bonkoski	has	been	developing	software	for	over	15	years,	specializing	in	internal
operations,	systems,	tools,	and	automation.	Sometimes,	this	role	is	loosely	referred	to	as
DevOps.	He	leans	more	toward	the	Dev	side	of	this	misunderstood	buzzword.	After
building	an	incident	management	system	and	managing	change	management	for	Yahoo,
Brad	became	motivated	by	metrics	and	now	lives	by	the	mantra	that	what	doesn’t	get
measured	doesn’t	get	fixed.	Today,	he	greases	the	wheels	of	productivity	for	Shazam.

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
There	is	no	need	to	state	how	much	weight	web	applications	have	in	our	lives.	We	use	web
applications	to	know	what	our	friends	are	doing,	to	get	the	latest	news	about	politics,	to
check	the	results	of	our	favorite	football	team	in	a	game,	or	graduate	from	an	online
university.	And	as	you	are	holding	this	book,	you	already	know	that	building	these
applications	is	not	a	job	that	only	a	selected	group	of	geniuses	can	perform,	and	that	it’s
rather	the	opposite.

There	isn’t	only	one	way	to	build	web	applications;	there	are	actually	quite	a	lot	of
languages	and	technologies	with	the	sole	purpose	of	doing	this.	However,	if	there	is	one
language	that	stands	out	from	the	rest,	either	historically	or	because	it	is	extremely	easy	to
use,	it	is	PHP	and	all	the	tools	of	its	ecosystem.

The	Internet	is	full	of	resources	that	detail	how	to	use	PHP,	so	why	bother	reading	this
book?	That’s	easy.	We	will	not	give	you	the	full	documentation	of	PHP	as	the	official
website	does.	Our	goal	is	not	that	you	get	a	PHP	certification,	but	rather	to	teach	you	what
you	really	need	in	order	to	build	web	applications	by	yourself.	From	the	very	beginning,
we	will	use	all	the	information	provided	in	order	to	build	applications,	so	you	can	note
why	each	piece	of	information	is	useful.

However,	we	will	not	stop	here.	Not	only	will	we	show	you	what	the	language	offers	you,
but	also	we	will	discuss	the	best	approaches	to	writing	code.	You	will	learn	all	the
techniques	that	any	web	developer	has	to	master,	from	OOP	and	design	patterns	such	as
MVC,	to	testing.	You	will	even	work	with	the	existing	PHP	frameworks	that	big	and	small
companies	use	for	their	own	projects.

In	short,	you	will	start	a	journey	in	which	you	will	learn	how	to	master	web	development
rather	than	how	to	master	a	programming	language.	We	hope	you	enjoy	it.

What	this	book	covers
Chapter	1,	Setting	Up	the	Environment,	will	guide	you	through	the	installation	of	the
different	software	needed.

Chapter	2,	Web	Applications	with	PHP,	will	be	an	introduction	to	what	web	applications
are	and	how	they	work	internally.

Chapter	3,	Understanding	PHP	Basics,	will	go	through	the	basic	elements	of	the	PHP
language—from	variables	to	control	structures.

Chapter	4,	Creating	Clean	Code	with	OOP,	will	describe	how	to	develop	web	applications
following	the	object-oriented	programming	paradigm.

Chapter	5,	Using	Databases,	will	explain	how	you	can	use	MySQL	databases	in	your
applications.

Chapter	6,	Adapting	to	MVC,	will	show	how	to	apply	the	most	famous	web	design	pattern,
MVC,	to	your	applications.

Chapter	7,	Testing	Web	Applications,	will	be	an	extensive	introduction	to	unit	testing	with
PHPUnit.

Chapter	8,	Using	Existing	PHP	Frameworks,	will	introduce	you	to	existing	PHP
frameworks	used	by	several	companies	and	developers,	such	as	Laravel	and	Silex.

Chapter	9,	Building	REST	APIs,	will	explain	what	REST	APIs	are,	how	to	use	third-party
ones,	and	how	to	build	your	own.

Chapter	10,	Behavioral	Testing,	will	introduce	the	concepts	of	continuous	integration	and
behavioral	testing	with	PHP	and	Behat.

What	you	need	for	this	book
In	Chapter	1,	Setting	Up	the	Environment,	we	will	go	through	the	details	of	how	to	install
PHP	and	the	rest	of	tools	that	you	need	in	order	to	go	though	the	examples	of	this	book.
The	only	thing	that	you	need	to	start	reading	is	a	computer	with	Windows,	OS	X,	or
Linux,	and	an	Internet	connection.

Who	this	book	is	for
This	book	is	for	anyone	who	wishes	to	write	web	applications	with	PHP.	You	do	not	need
to	be	a	computer	science	graduate	in	order	to	understand	it.	In	fact,	we	will	assume	that
you	have	no	knowledge	at	all	of	software	development,	neither	with	PHP	nor	with	any
other	language.	We	will	start	from	the	very	beginning	so	that	everybody	can	follow	the
book.

Experienced	readers	can	still	take	advantage	of	the	book.	You	can	quickly	review	the	first
chapter	in	order	to	discover	the	new	features	PHP	7	comes	with,	and	then	focus	on	the
chapters	that	might	interest	you.	You	do	not	need	to	read	the	book	from	start	to	end,	but
instead	keep	it	as	a	guide,	in	order	to	refresh	specific	topics	whenever	they	are	needed.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Now,
create	a	myactions.js	file	with	the	following	content.”

A	block	of	code	is	set	as	follows:

#special	{

				font-size:	30px;

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

<head>

		<meta	charset="UTF-8">

		<title>Your	first	app</title>

		<link	rel="stylesheet"	type="text/css"	href="mystyle.css">

</head>

Any	command-line	input	or	output	is	written	as	follows:

$	sudo	apt-get	update

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Click	on	Next	until
the	end	of	the	installation	wizard.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you’re	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Setting	Up	the	Environment
You	are	about	to	start	a	journey—a	long	one,	in	which	you	will	learn	how	to	write	web
applications	with	PHP.	However,	first,	you	need	to	set	up	your	environment,	something
that	has	proven	to	be	tricky	at	times.	This	task	includes	installing	PHP	7,	the	language	of
choice	for	this	book;	MySQL,	the	database	that	we	will	use	in	some	chapters;	Nginx,	the
web	server	that	will	allow	us	to	visualize	our	applications	with	a	browser;	and	Composer,
the	favorite	PHP	dependencies	management	tool.	We	will	do	all	of	this	with	Vagrant	and
also	on	three	different	platforms:	Windows,	OS	X,	and	Ubuntu.

In	this	chapter,	you	will	learn	about:

Using	Vagrant	to	set	up	a	development	environment
Setting	up	your	environment	manually	on	the	main	platforms

Setting	up	the	environment	with	Vagrant
Not	so	long	ago,	every	time	you	started	working	for	a	new	company,	you	would	spend	an
important	part	of	your	first	few	days	setting	up	your	new	environment—that	is,	installing
all	the	necessary	tools	on	your	new	computer	in	order	to	be	able	to	code.	This	was
incredibly	frustrating	because	even	though	the	software	to	install	was	the	same,	there	was
always	something	that	failed	or	was	missing,	and	you	would	spend	less	time	being
productive.

Introducing	Vagrant
Luckily	for	us,	people	tried	to	fix	this	big	problem.	First,	we	have	virtual	machines,	which
are	emulations	of	computers	inside	your	own	computer.	With	this,	we	can	have	Linux
inside	our	MacBook,	which	allows	developers	to	share	environments.	It	was	a	good	step,
but	it	still	had	some	problems;	for	example,	VMs	were	quite	big	to	move	between
different	environments,	and	if	developers	wanted	to	make	a	change,	they	had	to	apply	the
same	change	to	all	the	existing	virtual	machines	in	the	organization.

After	some	deliberation,	a	group	of	engineers	came	up	with	a	solution	to	these	issues	and
we	got	Vagrant.	This	amazing	software	allows	you	to	manage	virtual	machines	with
simple	configuration	files.	The	idea	is	simple:	a	configuration	file	specifies	which	base
virtual	machine	we	need	to	use	from	a	set	of	available	ones	online	and	how	you	would	like
to	customize	it—that	is,	which	commands	you	will	want	to	run	the	first	time	you	start	the
machine—this	is	called	“provisioning”.	You	will	probably	get	the	Vagrant	configuration
from	a	public	repository,	and	if	this	configuration	ever	changes,	you	can	get	the	changes
and	reprovision	your	machine.	It’s	easy,	right?

Installing	Vagrant
If	you	still	do	not	have	Vagrant,	installing	it	is	quite	easy.	You	will	need	to	visit	the
Vagrant	download	page	at	https://www.vagrantup.com/downloads.html	and	select	the
operating	system	that	you	are	working	with.	Execute	the	installer,	which	does	not	require
any	extra	configuration,	and	you	are	good	to	go.

https://www.vagrantup.com/downloads.html

Using	Vagrant
Using	Vagrant	is	quite	easy.	The	most	important	piece	is	the	Vagrantfile	file.	This	file
contains	the	name	of	the	base	image	we	want	to	use	and	the	rest	of	the	configuration	that
we	want	to	apply.	The	following	content	is	the	configuration	needed	in	order	to	get	an
Ubuntu	VM	with	PHP	7,	MySQL,	Nginx,	and	Composer.	Save	it	as	Vagrantfile	at	the
root	of	the	directory	for	the	examples	of	this	book.

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"ubuntu/trusty32"

		config.vm.network	"forwarded_port",	guest:	80,	host:	8080

		config.vm.provision	"shell",	path:	"provisioner.sh"

end

As	you	can	see,	the	file	is	quite	small.	The	base	image’s	name	is	ubuntu/trusty32,
messages	to	our	port	8080	will	be	redirected	to	the	port	80	of	the	virtual	machine,	and	the
provision	will	be	based	on	the	provisioner.sh	script.	You	will	need	to	create	this	file,
which	will	be	the	one	that	contains	all	the	setup	of	the	different	components	that	we	need.
This	is	what	you	need	to	add	to	this	file:

#!/bin/bash

sudo	apt-get	install	python-software-properties	-y

sudo	LC_ALL=en_US.UTF-8	add-apt-repository	ppa:ondrej/php	-y

sudo	apt-get	update

sudo	apt-get	install	php7.0	php7.0-fpm	php7.0-mysql	-y

sudo	apt-get	--purge	autoremove	-y

sudo	service	php7.0-fpm	restart

sudo	debconf-set-selections	<<<	'mysql-server	mysql-server/root_password	

password	root'

sudo	debconf-set-selections	<<<	'mysql-server	mysql-

server/root_password_again	password	root'

sudo	apt-get	-y	install	mysql-server	mysql-client

sudo	service	mysql	start

sudo	apt-get	install	nginx	-y

sudo	cat	>	/etc/nginx/sites-available/default	<<-	EOM

server	{

				listen	80	default_server;

				listen	[::]:80	default_server	ipv6only=on;

				root	/vagrant;

				index	index.php	index.html	index.htm;

				server_name	server_domain_or_IP;

				location	/	{

								try_files	\$uri	\$uri/	/index.php?\$query_string;

				}

				location	~	\.php\$	{

								try_files	\$uri	/index.php	=404;

								fastcgi_split_path_info	^(.+\.php)(/.+)\$;

								fastcgi_pass	unix:/var/run/php/php7.0-fpm.sock;

								fastcgi_index	index.php;

								fastcgi_param	SCRIPT_FILENAME	\$document_root\$fastcgi_script_name;

								include	fastcgi_params;

				}

}

EOM

sudo	service	nginx	restart

The	file	looks	quite	long,	but	we	will	do	quite	a	lot	of	stuff	with	it.	With	the	first	part	of
the	file,	we	will	add	the	necessary	repositories	to	be	able	to	fetch	PHP	7,	as	it	does	not
come	with	the	official	ones,	and	then	install	it.	Then,	we	will	try	to	install	MySQL,	server
and	client.	We	will	set	the	root	password	on	this	provisioning	because	we	cannot	introduce
it	manually	with	Vagrant.	As	this	is	a	development	machine,	it	is	not	really	a	problem,	but
you	can	always	change	the	password	once	you	are	done.	Finally,	we	will	install	and
configure	Nginx	to	listen	to	the	port	8080.

To	start	the	virtual	machine,	you	need	to	execute	the	following	command	in	the	same
directory	where	Vagrantfile	is:

$	vagrant	up

The	first	time	you	execute	it,	it	will	take	some	time	as	it	will	have	to	download	the	image
from	the	repository,	and	then	it	will	execute	the	provisioner.sh	file.	The	output	should
be	something	similar	to	this	one	followed	by	some	more	output	messages:

In	order	to	access	your	new	VM,	run	the	following	command	on	the	same	directory	where

you	have	your	Vagrantfile	file:

$	vagrant	ssh

Vagrant	will	start	an	SSH	session	to	the	VM,	which	means	that	you	are	inside	the	VM.
You	can	do	anything	you	would	do	with	the	command	line	of	an	Ubuntu	system.	To	exit,
just	press	Ctrl	+	D.

Sharing	files	from	your	laptop	to	the	VM	is	easy;	just	move	or	copy	them	to	the	same
directory	where	your	Vagrantfile	file	is,	and	they	will	“magically”	appear	on	the
/vagrant	directory	of	your	VM.	They	will	be	synchronized,	so	any	changes	that	you	make
while	in	your	VM	will	be	reflected	on	the	files	of	your	laptop.

Once	you	have	a	web	application	and	you	want	to	test	it	through	a	web	browser,
remember	that	we	will	forward	the	ports.	This	means	that	in	order	to	access	the	port	80	of
your	VM,	the	common	one	for	web	applications,	you	will	have	to	point	to	the	port	8080	on
your	browsers;	here’s	an	example:	http://localhost:8080.

Setting	up	the	environment	on	OS	X
If	you	are	not	convinced	with	Vagrant	and	prefer	to	use	a	Mac	to	develop	PHP
applications,	this	is	your	section.	Installing	all	the	necessary	tools	on	a	Mac	might	be	a	bit
tricky,	depending	on	the	version	of	your	OS	X.	At	the	time	of	writing	this	book,	Oracle
has	not	released	a	MySQL	client	that	you	can	use	via	the	command	line	that	works	with	El
Capitan,	so	we	will	describe	how	to	install	another	tool	that	can	do	a	similar	job.

Installing	PHP
If	it	is	the	first	time	you	are	using	a	Mac	to	develop	applications	of	any	kind,	you	will
have	to	start	by	installing	Xcode.	You	can	find	this	application	for	free	on	the	App	Store:

Another	indispensable	tool	for	Mac	users	is	Brew.	This	is	the	package	manager	for	OS	X
and	will	help	us	install	PHP	with	almost	no	pain.	To	install	it,	run	the	following	command
on	your	command	line:

$	ruby	-e	"$(curl	-fsSL	

https://raw.githubusercontent.com/Homebrew/install/master/install)"

If	you	already	have	Brew	installed,	you	can	make	sure	that	everything	works	fine	by
running	these	two	commands:

$	brew	doctor

$	brew	update

It	is	time	to	install	PHP	7	using	Brew.	To	do	so,	you	will	just	need	to	run	one	command,	as
follows:

$	brew	install	homebrew/php/php70

The	result	should	be	as	shown	in	the	following	screenshot:

Make	sure	to	add	the	binary	to	your	PATH	environment	variable	by	executing	this
command:

$	export	PATH="$(brew	--prefix	homebrew/php/php70)/bin:$PATH"

You	can	check	whether	your	installation	was	successful	by	asking	which	version	of	PHP
your	system	is	using	with	the	$	php	–v	command.

Installing	MySQL
As	pointed	out	at	the	beginning	of	this	section,	MySQL	is	a	tricky	one	for	Mac	users.	You
need	to	download	the	MySQL	server	installer	and	MySQL	Workbench	as	the	client.	The
MySQL	server	installer	can	be	found	at	https://dev.mysql.com/downloads/mysql/.	You
should	find	a	list	of	different	options,	as	shown	here:

The	easiest	way	to	go	is	to	download	DMG	Archive.	You	will	be	asked	to	log	in	with
your	Oracle	account;	you	can	create	one	if	you	do	not	have	any.	After	this,	the	download
will	start.	As	with	any	DMG	package,	just	double-click	on	it	and	go	through	the	options—
in	this	case,	just	click	on	Next	all	the	time.	Be	careful	because	at	the	end	of	the	process,
you	will	be	prompted	with	a	message	similar	to	this:

https://dev.mysql.com/downloads/mysql/

Make	a	note	of	it;	otherwise,	you	will	have	to	reset	the	root	password.	The	next	one	is
MySQL	Workbench,	which	you	can	find	at	http://www.mysql.com/products/workbench/.
The	process	is	the	same;	you	will	be	asked	to	log	in,	and	then	you	will	get	a	DMG	file.
Click	on	Next	until	the	end	of	the	installation	wizard.	Once	done,	you	can	launch	the
application;	it	should	look	similar	to	this:

http://www.mysql.com/products/workbench/

Installing	Nginx
In	order	to	install	Nginx,	we	will	use	Brew,	as	we	did	with	PHP.	The	command	is	the
following:

$	brew	install	nginx

If	you	want	to	make	Nginx	start	every	time	you	start	your	laptop,	run	the	following
command:

$	ln	-sfv	/usr/local/opt/nginx/*.plist	~/Library/LaunchAgents

If	you	have	to	change	the	configuration	of	Nginx,	you	will	find	the	file	in
/usr/local/etc/nginx/nginx.conf.	You	can	change	things,	such	as	the	port	that	Nginx
is	listening	to	or	the	root	directory	where	your	code	is	(the	default	directory	is
/usr/local/Cellar/nginx/1.8.1/html/).	Remember	to	restart	Nginx	to	apply	the
changes	with	the	sudo	nginx	command.

Installing	Composer
Installing	Composer	is	as	easy	as	downloading	it	with	the	curl	command;	move	the
binary	to	/usr/local/bin/	with	the	following	two	commands:

$	curl	-sS	https://getcomposer.org/installer	|	php

$	mv	composer.phar	/usr/local/bin/composer

Setting	up	the	environment	on	Windows
Even	though	it	is	not	very	professional	to	pick	sides	based	on	personal	opinions,	it	is	well
known	among	developers	how	hard	it	can	be	to	use	Windows	as	a	developer	machine.
They	prove	to	be	extremely	tricky	when	it	comes	to	installing	all	the	software	since	the
installation	mode	is	always	very	different	from	OS	X	and	Linux	systems,	and	quite	often,
there	are	dependency	or	configuration	problems.	In	addition,	the	command	line	has
different	interpreters	than	Unix	systems,	which	makes	things	a	bit	more	confusing.	This	is
why	most	developers	would	recommend	you	use	a	virtual	machine	with	Linux	if	you	only
have	a	Windows	machine	at	your	disposal.

However,	to	be	fair,	PHP	7	is	the	exception	to	the	rule.	It	is	surprisingly	simple	to	install	it,
so	if	you	are	really	comfortable	with	your	Windows	and	would	prefer	not	to	use	Vagrant,
here	you	have	a	short	explanation	on	how	to	set	up	your	environment.

Installing	PHP
In	order	to	install	PHP	7,	you	will	first	download	the	installer	from	the	official	website.
For	this,	go	to	http://windows.php.net/download.	The	options	should	be	similar	to	the
following	screenshot:

Choose	x86	Thread	Safe	for	Windows	32-bit	or	x64	Thread	Safe	for	the	64-bit	one.
Once	downloaded,	uncompress	it	in	C:\php7.	Yes,	that	is	it!

http://windows.php.net/download

Installing	MySQL
Installing	MySQL	is	a	little	more	complex.	Download	the	installer	from
http://dev.mysql.com/downloads/installer/	and	execute	it.	After	accepting	the	license
agreement,	you	will	get	a	window	similar	to	the	following	one:

For	the	purposes	of	the	book—and	actually	for	any	development	environment—you
should	go	for	the	first	option:	Developer	Default.	Keep	going	forward,	leaving	all	the
default	options,	until	you	get	a	window	similar	to	this:

http://dev.mysql.com/downloads/installer/

Depending	on	your	preferences,	you	can	either	just	set	a	password	for	the	root	user,	which
is	enough	as	it	is	only	a	development	machine,	or	you	can	add	an	extra	user	by	clicking	on
Add	User.	Make	sure	to	set	the	correct	name,	password,	and	permissions.	A	user	named
test	with	administration	permissions	should	look	similar	to	the	following	screenshot:

For	the	rest	of	the	installation	process,	you	can	select	all	the	default	options.

Installing	Nginx
The	installation	for	Nginx	is	almost	identical	to	the	PHP	7	one.	First,	download	the	ZIP
file	from	http://nginx.org/en/download.html.	At	the	time	of	writing,	the	versions	available
are	as	follows:

You	can	safely	download	the	mainline	version	1.9.10	or	a	later	one	if	it	is	stable.	Once	the
file	is	downloaded,	uncompress	it	in	C:\nginx	and	run	the	following	commands	to	start
the	web	server:

$	cd	nginx

$	start	nginx

http://nginx.org/en/download.html

Installing	Composer
To	finish	with	the	setup,	we	need	to	install	Composer.	To	go	for	the	automatic	installation,
just	download	the	installer	from	https://getcomposer.org/Composer-Setup.exe.	Once
downloaded,	execute	it	in	order	to	install	Composer	on	your	system	and	to	update	your
PATH	environment	variable.

https://getcomposer.org/Composer-Setup.exe

Setting	up	the	environment	on	Ubuntu
Setting	up	your	environment	on	Ubuntu	is	the	easiest	of	the	three	platforms.	In	fact,	you
could	take	the	provisioner.sh	script	from	the	Setting	up	the	environment	with	Vagrant
section	and	execute	it	on	your	laptop.	That	should	do	the	trick.	However,	just	in	case	you
already	have	some	of	the	tools	installed	or	you	want	to	have	a	sense	of	control	on	what	is
going	on,	we	will	detail	each	step.

Installing	PHP
The	only	thing	to	consider	in	this	section	is	to	remove	any	previous	PHP	versions	on	your
system.	To	do	so,	you	can	run	the	following	command:

$	sudo	apt-get	-y	purge	php.*

The	next	step	is	to	add	the	necessary	repositories	in	order	to	fetch	the	correct	PHP	version.
The	commands	to	add	and	update	them	are:

$	sudo	apt-get	install	python-software-properties

$	sudo	LC_ALL=en_US.UTF-8	add-apt-repository	ppa:ondrej/php	-y

$	sudo	apt-get	update

Finally,	we	need	to	install	PHP	7	together	with	the	driver	for	MySQL.	For	this,	just
execute	the	following	three	commands:

$	sudo	apt-get	install	php7.0	php7.0-fpm	php7.0-mysql	-y

$	sudo	apt-get	--purge	autoremove	-y

$	sudo	service	php7.0-fpm	start

Installing	MySQL
Installing	MySQL	manually	can	be	slightly	different	than	with	the	Vagrant	script.	As	we
can	interact	with	the	console,	we	do	not	have	to	specify	the	root	password	previously;
instead,	we	can	force	MySQL	to	prompt	for	it.	Run	the	following	command	and	keep	in
mind	that	the	installer	will	ask	you	for	the	password:

$	sudo	apt-get	-y	install	mysql-server	mysql-client

Once	done,	if	you	need	to	start	the	MySQL	server,	you	can	do	it	with	the	following
command:

$	sudo	service	mysql	start

Installing	Nginx
The	first	thing	that	you	need	to	know	is	that	you	can	only	have	one	web	server	listening	on
the	same	port.	As	port	80	is	the	default	one	for	web	applications,	if	you	are	running
Apache	on	your	Ubuntu	machine,	you	will	not	be	able	to	start	an	Nginx	web	server
listening	on	the	same	port	80.	To	fix	this,	you	can	either	change	the	ports	for	Nginx	or
Apache,	stop	Apache,	or	uninstall	it.	Either	way,	the	installation	command	for	Nginx	is	as
follows:

$	sudo	apt-get	install	nginx	–y

Now,	you	will	need	to	enable	a	site	with	Nginx.	The	sites	are	files	under
/etc/nginx/sites-available.	There	is	already	one	file	there,	default,	which	you	can
safely	replace	with	the	following	content:

server	{

				listen	80	default_server;

				listen	[::]:80	default_server	ipv6only=on;

				root	/var/www/html;

				index	index.php	index.html	index.htm;

				server_name	server_domain_or_IP;

				location	/	{

								try_files	$uri	$uri/	/index.php?$query_string;

				}

				location	~	\.php$	{

								try_files	$uri	/index.php	=404;

								fastcgi_split_path_info	^(.+\.php)(/.+)$;

								fastcgi_pass	unix:/var/run/php/php7.0-fpm.sock;

								fastcgi_index	index.php;

								fastcgi_param	SCRIPT_FILENAME	$document_root$fastcgi_script_name;

								include	fastcgi_params;

				}

}

This	configuration	basically	points	the	root	directory	of	your	web	application	to	the
/var/www/html	directory.	You	can	choose	the	one	that	you	prefer,	but	make	sure	that	it	has
the	right	permissions.	It	also	listens	on	the	port	80,	which	you	can	change	with	the	one	you
prefer;	just	keep	this	in	mind	that	when	you	try	to	access	your	application	via	a	browser.
Finally,	to	apply	all	the	changes,	run	the	following	command:

$	sudo	service	nginx	restart

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

You	can	download	the	code	files	by	following	these	steps:

Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
Click	on	Code	Downloads	&	Errata.
Enter	the	name	of	the	book	in	the	Search	box.
Select	the	book	for	which	you’re	looking	to	download	the	code	files.
Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

Summary
In	this	chapter,	you	learned	how	easy	it	is	to	set	up	a	development	environment	using
Vagrant.	If	this	did	not	convince	you,	you	still	got	the	chance	to	set	up	all	the	tools
manually.	Either	way,	now	you	are	able	to	work	on	the	next	chapters.

In	the	next	chapter,	we	will	take	a	look	at	the	idea	of	web	applications	with	PHP,	going
from	the	protocols	used	to	how	the	web	server	serves	requests,	thus	setting	the	foundation
for	the	following	chapters.

Chapter	2.	Web	Applications	with	PHP
Web	applications	are	a	common	thing	in	our	lives,	and	they	are	usually	very	user	friendly;
users	do	not	need	to	understand	how	they	work	behind	the	scenes.	As	a	developer,	though,
you	need	to	understand	how	your	application	works	internally.

In	this	chapter,	you	will	learn	about:

HTTP	and	how	web	applications	make	use	of	it
Web	applications	and	how	to	build	a	simple	one
Web	servers	and	how	to	launch	your	PHP	built-in	web	server

The	HTTP	protocol
If	you	check	the	RFC2068	standard	at	https://tools.ietf.org/html/rfc2068,	you	will	see	that
its	description	is	almost	endless.	Luckily,	what	you	need	to	know	about	this	protocol,	at
least	for	starters,	is	way	shorter.

HTTP	stands	for	HyperText	Transfer	Protocol.	As	any	other	protocol,	the	goal	is	to
allow	two	entities	or	nodes	to	communicate	with	each	other.	In	order	to	achieve	this,	the
messages	need	to	be	formatted	in	a	way	that	they	both	understand,	and	the	entities	must
follow	some	pre-established	rules.

https://tools.ietf.org/html/rfc2068

A	simple	example
The	following	diagram	shows	a	very	basic	interchange	of	messages:

A	simple	GET	request

Do	not	worry	if	you	do	not	understand	all	the	elements	in	this	diagram;	we	will	describe
them	shortly.	In	this	representation,	there	are	two	entities:	sender	and	receiver.	The
sender	sends	a	message	to	the	receiver.	This	message,	which	starts	the	communication,	is
called	the	request.	In	this	case,	the	message	is	a	GET	request.	The	receiver	receives	the
message,	processes	it,	and	generates	a	second	message:	the	response.	In	this	case,	the
response	shows	a	200	status	code,	meaning	that	the	request	was	processed	successfully.

HTTP	is	stateless;	that	is,	it	treats	each	request	independently,	unrelated	to	any	previous
one.	This	means	that	with	this	request	and	response	sequence,	the	communication	is
finished.	Any	new	requests	will	not	be	aware	of	this	specific	interchange	of	messages.

Parts	of	the	message
An	HTTP	message	contains	several	parts.	We	will	define	only	the	most	important	of	them.

URL
The	URL	of	the	message	is	the	destination	of	the	message.	The	request	will	contain	the
receiver’s	URL,	and	the	response	will	contain	the	sender’s.

As	you	might	know,	the	URL	can	contain	extra	parameters,	known	as	a	query	string.	This
is	used	when	the	sender	wants	to	add	extra	data.	For	example,	consider	this	URL:
http://myserver.com/greeting?name=Alex.	This	URL	contains	one	parameter:	name
with	the	value	Alex.	It	could	not	be	represented	as	part	of	the	URL
http://myserver.com/greeting,	so	the	sender	chose	to	add	it	at	the	end	of	it.	You	will
see	later	that	this	is	not	the	only	way	that	we	can	add	extra	information	into	a	message.

The	HTTP	method
The	HTTP	method	is	the	verb	of	the	message.	It	identifies	what	kind	of	action	the	sender
wants	to	perform	with	this	message.	The	most	common	ones	are	GET	and	POST.

GET:	This	asks	the	receiver	about	something,	and	the	receiver	usually	sends	this
information	back.	The	most	common	example	is	asking	for	a	web	page,	where	the
receiver	will	respond	with	the	HTML	code	of	the	requested	page.
POST:	This	means	that	the	sender	wants	to	perform	an	action	that	will	update	the
data	that	the	receiver	is	holding.	For	example,	the	sender	can	ask	the	receiver	to
update	his	profile	name.

There	are	other	methods,	such	as	PUT,	DELETE,	or	OPTION,	but	they	are	less	used	in
web	development,	although	they	play	a	crucial	role	in	REST	APIs,	which	will	be
explained	in	Chapter	9,	Building	REST	APIs.

Body
The	body	part	is	usually	present	in	response	messages	even	though	a	request	message	can
contain	it	too.	The	body	of	the	message	contains	the	content	of	the	message	itself;	for
example,	if	the	user	requested	a	web	page,	the	body	of	the	response	would	consist	of	the
HTML	code	that	represents	this	page.

Soon,	we	will	discuss	how	the	request	can	also	contain	a	body,	which	is	used	to	send	extra
information	as	part	of	the	request,	such	as	form	parameters.

The	body	can	contain	text	in	any	format;	it	can	be	an	HTML	text	that	represents	a	web
page,	plain	text,	the	content	of	an	image,	JSON,	and	so	on.

Headers
The	headers	on	an	HTTP	message	are	the	metadata	that	the	receiver	needs	in	order	to
understand	the	content	of	the	message.	There	are	a	lot	of	headers,	and	you	will	see	some
of	them	in	this	book.

Headers	consist	of	a	map	of	key-value	pairs.	The	following	could	be	the	headers	of	a

request:

Accept:	text/html

Cookie:	name=Richard

This	request	tells	the	receiver,	which	is	a	server,	that	it	will	accept	text	as	HTML,	which	is
the	common	way	of	representing	a	web	page;	and	that	it	has	a	cookie	named	Richard.

The	status	code
The	status	code	is	present	in	responses.	It	identifies	the	status	of	the	request	with	a
numeric	code	so	that	browsers	and	other	tools	know	how	to	react.	For	example,	if	we	try
to	access	a	URL	that	does	not	exist,	the	server	should	reply	with	a	status	code	404.	In	this
way,	the	browser	knows	what	happened	without	even	looking	at	the	content	of	the
response.

Common	status	codes	are:

200:	The	request	was	successful
401:	Unauthorized;	the	user	does	not	have	permission	to	see	this	resource
404:	Page	not	found
500:	Internal	server	error;	something	wrong	happened	on	the	server	side	and	it	could
not	be	recovered

A	more	complex	example
The	following	diagram	shows	a	POST	request	and	its	response:

A	more	complex	POST	request

In	this	exchange	of	messages,	we	can	see	the	other	important	method,	POST,	in	action.	In
this	case,	the	sender	tries	to	send	a	request	in	order	to	update	some	entity’s	data.	The
message	contains	a	cookie	ID	with	the	value	84,	which	may	identify	the	entity	to	update.
It	also	contains	two	parameters	in	the	body:	name	and	age.	This	is	the	data	that	the	receiver
has	to	update.

Tip
Submitting	web	forms

Representing	the	parameters	as	part	of	the	body	is	a	common	way	to	send	information
when	submitting	a	form,	but	not	the	only	one.	You	can	add	a	query	string	to	the	URL,	add
JSON	to	the	body	of	the	message,	and	so	on.

The	response	has	a	status	code	of	200,	meaning	that	the	request	was	processed
successfully.	In	addition,	the	response	also	contains	a	body,	this	time	formatted	as	JSON,
which	represents	the	new	status	of	the	updated	entity.

Web	applications
Maybe	you	have	noticed	that	in	the	previous	sections,	I	used	the	not	very	intuitive	terms	of
sender	and	receiver	as	they	do	not	represent	any	specific	scenario	that	you	might	know	but
rather	all	of	them	in	a	generic	way.	The	main	reason	for	this	choice	of	terminology	is	to	try
to	separate	HTTP	from	web	applications.	You	will	see	at	the	end	of	the	book	that	HTTP	is
used	for	more	than	just	websites.

If	you	are	reading	this	book,	you	already	know	what	a	web	application	is.	Alternatively,
maybe	you	know	it	by	other	terms,	such	as	website	or	web	page.	Let’s	try	to	give	some
definitions.

A	web	page	is	a	single	document	with	content.	It	contains	links	that	open	other	web	pages
with	different	content.

A	website	is	the	set	of	web	pages	that	usually	live	in	the	same	server	and	are	related	to
each	other.

A	web	application	is	just	a	piece	of	software	that	runs	on	a	client,	which	is	usually	a
browser,	and	communicates	with	a	server.	A	server	is	a	remote	machine	that	receives
requests	from	a	client,	processes	them,	and	generates	a	response.	This	response	will	go
back	to	the	client,	generally	rendered	by	the	browser	in	order	to	display	it	to	the	user.

Even	though	this	is	out	of	the	scope	of	this	book,	you	may	be	interested	to	know	that	not
only	browsers	can	act	as	clients,	generating	requests	and	sending	them	to	the	servers;	even
servers	can	be	the	ones	taking	the	initiative	of	sending	messages	to	the	browsers.

So,	what	is	the	difference	between	a	website	and	a	web	application?	Well,	the	web
application	can	be	a	small	part	of	a	bigger	website	with	a	specific	functionality.	Also,	not
all	websites	are	web	applications	as	a	web	application	always	does	something	but	a
website	can	just	display	information.

HTML,	CSS,	and	JavaScript
Web	applications	are	rendered	by	the	browser	so	that	the	user	can	see	its	content.	To	do
this,	the	server	needs	to	send	the	content	of	the	page	or	document.	The	document	uses
HTML	to	describe	its	elements	and	how	they	are	organized.	Elements	can	be	links,
buttons,	input	fields,	and	so	on.	A	simple	example	of	a	web	page	looks	like	this:

<!DOCTYPE	html>

<html	lang="en">

<head>

		<meta	charset="UTF-8">

		<title>Your	first	app</title>

</head>

<body>

		Your	page

		Their	page

</body>

</html>

Let’s	focus	on	the	highlighted	code.	As	you	can	see,	we	are	describing	two	<a>	links	with
some	properties.	Both	links	have	a	class,	a	destination,	and	a	text.	The	first	one	also
contains	an	ID.	Save	this	code	into	a	file	named	index.html	and	execute	it.	You	will	see
how	your	default	browser	opens	a	very	simple	page	with	two	links.

If	we	want	to	add	some	styles,	or	change	the	color,	size,	and	position	of	the	links,	we	need
to	add	CSS.	CSS	describes	how	elements	from	the	HTML	are	displayed.	There	are	several
ways	to	include	CSS,	but	the	best	approach	is	to	have	it	in	a	separated	file	and	then
reference	it	from	the	HTML.	Let’s	update	our	<head>	section	as	shown	in	the	following
code:

<head>

		<meta	charset="UTF-8">

		<title>Your	first	app</title>

		<link	rel="stylesheet"	type="text/css"	href="mystyle.css">

</head>

Now,	let’s	create	a	new	mystyle.css	file	in	the	same	folder	with	the	following	content:

.link	{

				color:	green;

				font-weight:	bold;

}

#special	{

				font-size:	30px;

}

This	CSS	file	contains	two	style	definitions:	one	for	the	link	class	and	one	for	the
special	ID.	The	class	style	will	be	applied	to	both	the	links	as	they	both	define	this	class,
and	it	sets	them	as	green	and	bold.	The	ID	style	that	increases	the	font	of	the	link	is	only
applied	to	the	first	link.

Finally,	in	order	to	add	behavior	to	our	web	page,	we	need	to	add	JS	or	JavaScript.	JS	is	a

programming	language	that	would	need	an	entire	book	for	itself,	and	in	fact,	there	are
quite	a	lot	of	them.	If	you	want	to	give	it	a	chance,	we	recommend	the	free	online	book
Eloquent	JavaScript,	Marijn	Haverbeke,	which	you	can	find	at
http://eloquentjavascript.net/.	As	with	CSS,	the	best	approach	would	be	to	add	a	separate
file	and	then	reference	it	from	our	HTML.	Update	the	<body>	section	with	the	following
highlighted	code:

<body>

		Your	page

		Their	page

		<script	src="myactions.js"></script>

</body>

Now,	create	a	myactions.js	file	with	the	following	content:

document.getElementById("special").onclick	=	function()	{

				alert("You	clicked	me?");

}

The	JS	file	adds	a	function	that	will	be	called	when	the	special	link	is	clicked	on.	This
function	just	pops	up	an	alert.	You	can	save	all	your	changes	and	refresh	the	browser	to
see	how	it	looks	now	and	how	the	links	behave.

Note
Different	ways	of	including	JS

You	might	notice	that	we	included	the	CSS	file	reference	at	the	end	of	the	<head>	section
and	JS	at	the	end	of	<body>.	You	can	actually	include	JS	in	both	the	<head>	and	the
<body>;	just	bear	in	mind	that	the	script	will	be	executed	as	soon	as	it	is	included.	If	your
script	references	fields	that	are	not	yet	defined	or	other	JS	files	that	will	be	included	later,
JS	will	fail.

Congratulations!	You	just	wrote	your	very	first	web	page.	Not	impressed?	Well,	then	you
are	reading	the	correct	book!	You	will	have	the	chance	to	work	with	more	HTML,	CSS,
and	JS	during	the	book,	even	though	the	book	focuses	especially	on	PHP.

http://eloquentjavascript.net/

Web	servers
So,	it	is	about	time	that	you	learn	what	those	famous	web	servers	are.	A	web	server	is	no
more	than	a	piece	of	software	running	on	a	machine	and	listening	to	requests	from	a
specific	port.	Usually,	this	port	is	80,	but	it	can	be	any	other	that	is	available.

How	they	work
The	following	diagram	represents	the	flow	of	request-response	on	the	server	side:

Request-response	flow	on	the	server	side

The	job	of	a	web	server	is	to	route	external	requests	to	the	correct	application	so	that	they
can	be	processed.	Once	the	application	returns	a	response,	the	web	server	will	send	this
response	to	the	client.	Let’s	take	a	close	look	at	all	the	steps:

1.	 The	client,	which	is	a	browser,	sends	a	request.	This	can	be	of	any	type—GET	or
POST—and	contain	anything	as	long	as	it	is	valid.

2.	 The	server	receives	the	request,	which	points	to	a	port.	If	there	is	a	web	server
listening	on	this	port,	the	web	server	will	then	take	control	of	the	situation.

3.	 The	web	server	decides	which	web	application—usually	a	file	in	the	filesystem—

needs	to	process	the	request.	In	order	to	decide,	the	web	server	usually	considers	the
path	of	the	URL;	for	example,	http://myserver.com/app1/hi	would	try	to	pass	the
request	to	the	app1	application,	wherever	it	is	in	the	filesystem.	However,	another
scenario	would	be	http://app1.myserver.com/hi,	which	would	also	go	to	the	same
application.	The	rules	are	very	flexible,	and	it	is	up	to	both	the	web	server	and	the
user	as	to	how	to	set	them.

4.	 The	web	application,	after	receiving	a	request	from	the	web	server,	generates	a
response	and	sends	it	to	the	web	server.

5.	 The	web	server	sends	the	response	to	the	indicated	port.
6.	 The	response	finally	arrives	to	the	client.

The	PHP	built-in	server
There	are	powerful	web	servers	that	support	high	loads	of	traffic,	such	as	Apache	or
Nginx,	which	are	fairly	simple	to	install	and	manage.	For	the	purpose	of	this	book,	though,
we	will	use	something	even	simpler:	a	PHP	built-in	server.	The	reason	to	use	this	is	that
you	will	not	need	extra	package	installations,	configurations,	and	headaches	as	it	comes
with	PHP.	With	just	one	command,	you	will	have	a	web	server	running	on	your	machine.

Note
Production	web	servers

Note	that	the	PHP	built-in	web	server	is	good	for	testing	purposes,	but	it	is	highly
recommended	not	to	use	it	in	production	environments.	If	you	have	to	set	up	a	server	that
needs	to	be	public	and	your	application	is	written	in	PHP,	I	highly	recommend	you	to
choose	either	of	the	classics:	Apache	(http://httpd.apache.org)	or	Nginx
(https://www.nginx.com).	Both	can	run	almost	on	any	server,	are	free	and	easy	to	install
and	configure,	and,	more	importantly,	have	a	huge	community	that	will	support	you	on
virtually	any	problem	you	might	encounter.

Finally,	hands	on!	Let’s	try	to	create	our	very	first	web	page	using	the	built-in	server.	For
this,	create	an	index.php	file	inside	your	workspace	directory—for	example,
Documents/workspace/index.php.	The	content	of	this	file	should	be:

<?php

echo	'hello	world';

Now,	open	your	command	line,	go	to	your	workspace	directory,	probably	by	running	the
cd	Documents/workspace	command,	and	run	the	following	command:

$	php	-S	localhost:8000

The	command	line	will	prompt	you	with	some	information,	the	most	important	one	being
what	is	listening,	which	should	be	localhost:8000	as	specified,	and	how	to	stop	it,
usually	by	pressing	Ctrl	+	C.	Do	not	close	the	command	line	as	it	will	stop	the	web	server
too.

Now,	let’s	open	a	browser	and	go	to	http://localhost:8000.	You	should	see	a	hello
world	message	on	a	white	page.	Yay,	success!	If	you	are	interested,	you	can	check	your
command	line,	and	you	will	see	log	entries	of	each	request	you	are	sending	via	your
browser.

So,	how	does	it	really	work?	Well,	if	you	check	again	in	the	previous	diagram,	the	php	-S
command	started	a	web	server—in	our	case,	listening	to	port	8000	instead	of	80.	Also,
PHP	knows	that	the	web	application	code	will	be	on	the	same	directory	that	you	started
the	web	server:	your	workspace.	There	are	more	specific	options,	but	by	default,	PHP	will
try	to	execute	the	index.php	file	in	your	workspace.

http://httpd.apache.org
https://www.nginx.com

Putting	things	together
Let’s	try	to	include	our	first	project	(index.html	with	its	CSS	and	JS	files)	as	part	of	the
built-in	server.	To	do	this,	you	just	need	to	open	the	command	line	and	go	to	the	directory
in	which	these	files	are	and	start	the	web	server	with	php	-S	localhost:8000.	If	you
check	localhost:8000	in	your	browser,	you	will	see	our	two-link	page,	as	is	expected.

Let’s	now	move	our	new	index.php	file	to	the	same	directory.	You	do	not	need	to	restart
your	web	server;	PHP	will	know	about	the	changes	automatically.	Go	to	your	browser	and
refresh	the	page.	You	should	now	see	the	hello	world	message	instead	of	the	links.	What
happened	here?

If	you	do	not	change	the	default	options,	PHP	will	always	try	to	find	an	index.php	file	in
the	directory	in	which	you	started	the	web	server.	If	this	is	not	found,	PHP	will	try	to	find
an	index.html	file.	Previously,	we	only	had	the	index.html	file,	so	PHP	failed	to	find
index.php.	Now	that	it	can	find	its	first	option,	index.php,	it	will	load	it.

If	we	want	to	see	our	index.html	file	from	the	browser,	we	can	always	specify	it	in	the
URL	like	http://localhost:8000/index.html.	If	the	web	server	notices	that	you	are
trying	to	access	a	specific	file,	it	will	try	to	load	it	instead	of	the	default	options.

Finally,	if	we	try	to	access	a	file	that	is	not	on	our	filesystem,	the	web	server	will	return	a
response	with	status	code	404—that	is,	not	found.	We	can	see	this	code	if	we	open	the
Developer	tools	section	of	our	browser	and	go	to	the	Network	section.

Tip
Developer	tools	are	your	friends

As	a	web	developer,	you	will	find	very	few	tools	more	useful	than	the	developer	tools	of
your	browser.	It	changes	from	browser	to	browser,	but	all	of	the	big	names,	such	as
Chrome	or	Firefox,	have	it.	It	is	very	important	that	you	get	familiar	with	how	to	use	it	as
it	allows	you	to	debug	your	applications	from	the	client	side.

I	will	introduce	you	to	some	of	these	tools	during	the	course	of	this	book.

Summary
In	this	chapter,	you	learned	what	HTTP	is	and	how	web	applications	use	it	in	order	to
interact	with	the	server.	You	also	now	know	how	web	servers	work	and	how	to	launch	a
light	built-in	server	with	PHP.	Finally,	you	took	the	first	steps	toward	building	your	first
web	application.	Congratulations!

In	the	next	chapter,	we	will	take	a	look	at	the	basics	of	PHP	so	that	you	can	start	building
simple	applications.

Chapter	3.	Understanding	PHP	Basics
Learning	a	new	language	is	not	easy.	You	need	to	understand	not	only	the	syntax	of	the
language,	but	also	its	grammatical	rules,	that	is,	when	and	why	to	use	each	element	of	the
language.	Luckily	for	you,	some	languages	come	from	the	same	root.	For	example,
Spanish	and	French	are	Romance	languages,	as	they	both	evolved	from	spoken	Latin;	that
means	that	these	two	languages	share	a	lot	of	rules,	and	if	you	already	know	French,
learning	Spanish	becomes	much	easier.

Programming	languages	are	quite	the	same.	If	you	already	know	another	programming
language,	it	will	be	very	easy	for	you	to	go	through	this	chapter.	If	this	is	your	first	time
though,	you	will	need	to	understand	all	those	grammatical	rules	from	scratch,	and	so,	it
might	take	some	more	time.	But	fear	not!	We	are	here	to	help	you	in	this	endeavor.

In	this	chapter,	you	will	learn	about	the	following:

PHP	files
Variables,	strings,	arrays,	and	operators	in	PHP
PHP	in	web	applications
Control	structures	in	PHP
Functions	in	PHP
The	PHP	filesystem

PHP	files
From	now	on,	we	will	work	on	your	index.php	file,	so	you	can	just	start	the	web	server,
and	go	to	http://localhost:8080	to	see	the	results.

You	might	have	already	noticed	that	in	order	to	write	PHP	code,	you	have	to	start	the	file
with	<?php.	There	are	other	options,	and	you	can	also	finish	the	file	with	?>,	but	none	of
them	are	needed.	What	is	important	to	know	is	that	you	can	mix	PHP	code	with	other
content,	like	HTML,	CSS,	or	JavaScript,	in	your	PHP	file	as	soon	as	you	enclose	the	PHP
bits	with	the	<?php	?>	tags.

<?php

		echo	'hello	world';

?>

bye	world

If	you	check	the	result	of	the	preceding	code	snippet	in	your	browser,	you	will	see	that	it
prints	both	messages,	hello	world	and	bye	world.	The	reason	why	this	happens	is	simple:
you	already	know	that	the	PHP	code	there	prints	the	hello	world	message.	What	happens
next	is	that	anything	outside	the	PHP	tags	will	be	interpreted	as	is.	If	there	is	an	HTML
code	for	instance,	it	would	not	be	printed	as	is,	but	will	be	interpreted	by	the	browser.

You	will	learn	in	Chapter	6,	Adapting	to	MVC,	why	it	is	usually	a	bad	idea	to	mix	PHP
and	HTML.	For	now,	assuming	that	it	is	bad,	let’s	try	to	avoid	it.	For	that,	you	can	include
one	file	from	another	PHP	file	using	any	one	of	these	four	functions:

include:	This	will	try	to	find	and	include	the	specified	file	each	time	it	is	invoked.	If
the	file	is	not	found,	PHP	will	throw	a	warning,	but	will	continue	with	the	execution.
require:	This	will	do	the	same	as	include,	but	PHP	will	throw	an	error	instead	of	a
warning	if	the	file	is	not	found.
include_once:	This	function	will	do	what	include	does,	but	it	will	include	the	file
only	the	first	time	that	it	is	invoked.	Subsequent	calls	will	be	ignored.
require_once:	This	works	the	same	as	require,	but	it	will	include	the	file	only	the
first	time	that	it	is	invoked.	Subsequent	calls	will	be	ignored.

Each	function	has	its	own	usage,	so	it	is	not	right	to	say	that	one	is	better	than	the	other.
Just	think	carefully	what	your	scenario	is,	and	then	decide.	For	example,	let’s	try	to
include	our	index.html	file	from	our	index.php	file	such	that	we	do	not	mix	PHP	with
HTML,	but	have	the	best	of	both	worlds:

<?php

echo	'hello	world';

require	'index.html';

We	chose	require	as	we	know	the	file	is	there—and	if	it	is	not,	we	are	not	interested	in
continuing	the	execution.	Moreover,	as	it	is	some	HTML	code,	we	might	want	to	include	it
multiple	times,	so	we	did	not	choose	the	require_once	option.	You	can	try	to	require	a
file	that	does	not	exist,	and	see	what	the	browser	says.

PHP	does	not	consider	empty	lines;	you	can	add	as	many	as	you	want	to	make	your	code

easier	to	read,	and	it	will	not	have	any	repercussion	on	your	application.	Another	element
that	helps	in	writing	understandable	code,	and	which	is	ignored	by	PHP,	is	comments.
Let’s	see	both	in	action:

<?php

/*

	*	This	is	the	first	file	loaded	by	the	web	server.

	*	It	prints	some	messages	and	html	from	other	files.

	*/

//	let's	print	a	message	from	php

echo	'hello	world';

//	and	then	include	the	rest	of	html

require	'index.html';

The	code	does	the	same	job	as	the	previous	one,	but	now	everyone	will	easily	understand
what	we	are	trying	to	do.	We	can	see	two	types	of	comments:	single-line	comments	and
multiple-line	comments.	The	first	type	consists	of	a	single	line	starting	with	//,	and	the
second	type	encloses	multiple	lines	within	/*	and	*/.	We	start	each	commented	line	with
an	asterisk,	but	that	is	completely	optional.

Variables
Variables	keep	a	value	for	future	reference.	This	value	can	change	if	we	want	it	to;	that	is
why	they	are	called	variables.	Let’s	take	a	look	at	them	in	an	example.	Save	this	code	in
your	index.php	file:

<?php

$a	=	1;

$b	=	2;

$c	=	$a	+	$b;

echo	$c;	//	3

In	this	preceding	piece	of	code,	we	have	three	variables:	$a	has	value	1,	$b	has	2,	and	$c
contains	the	sum	of	$a	and	$b,	hence,	$c	equals	3.	Your	browser	should	print	the	value	of
the	variable	$c,	which	is	3.

Assigning	a	value	to	a	variable	means	to	give	it	a	value,	and	it	is	done	with	the	equals	sign
as	shown	in	the	previous	example.	If	you	did	not	assign	a	value	to	a	variable,	we	will	get	a
notice	from	PHP	when	it	checks	its	contents.	A	notice	is	just	a	message	telling	us	that
something	is	not	exactly	right,	but	it	is	a	minor	problem	and	you	can	continue	with	the
execution.	The	value	of	an	unassigned	variable	will	be	null,	that	is,	nothing.

PHP	variables	start	with	the	$	sign	followed	by	the	variable	name.	A	valid	variable	name
starts	with	a	letter	or	an	underscore	followed	by	any	combination	of	letters,	numbers,
and/or	underscores.	It	is	case	sensitive.	Let’s	see	some	examples:

<?php

$_some_value	=	'abc';	//	valid

$1number	=	12.3;	//	not	valid!

$some$signs%	=	'&^%';	//	not	valid!

$go_2_home	=	"ok";	//	valid

$go_2_Home	=	'no';	//	this	is	a	different	variable

$isThisCamelCase	=	true;	//	camel	case

Remember	that	everything	after	//	is	a	comment,	and	is	thus	ignored	by	PHP.

In	this	piece	of	code,	we	can	see	that	variable	names	like	$_some_value	and	$go_2_home
are	valid.	$1number	and	$some$signs%	are	not	valid	as	they	start	with	a	number,	or	they
contain	invalid	symbols.	As	names	are	case	sensitive,	$go_2_home	and	$go_2_Home	are
two	different	variables.	Finally,	we	show	the	CamelCase	convention,	which	is	the
preferred	option	among	most	developers.

Data	types
We	can	assign	more	than	just	numbers	to	variables.	PHP	has	eight	primitive	types,	but	for
now,	we	will	focus	on	its	four	scalar	types:

Booleans:	These	take	just	true	or	false	values
Integers:	These	are	numeric	values	without	a	decimal	point,	for	example,	2	or	5
Floating	point	numbers	or	floats:	These	are	numbers	with	a	decimal	point,	for
example,	2.3
Strings:	These	are	concatenations	of	characters	which	are	surrounded	by	either	single
or	double	quotes,	like	‘this’	or	“that”

Even	though	PHP	defines	these	types,	it	allows	the	user	to	assign	different	types	of	data	to
the	same	variable.	Check	the	following	code	to	see	how	it	works:

<?php

$number	=	123;

var_dump($number);

$number	=	'abc';

var_dump($number);

If	you	check	the	result	on	your	browser,	you	will	see	the	following:

int(123)	string(3)	"abc"

The	code	first	assigns	the	value	123	to	the	variable	$number.	As	123	is	an	integer,	the	type
of	the	variable	will	be	integer	int.	That	is	what	we	see	when	printing	the	content	of	the
variable	with	var_dump.	After	that,	we	assign	another	value	to	the	same	variable,	this	time
a	string.	When	printing	the	new	content,	we	see	that	the	type	of	the	variable	changed	from
integer	to	string,	yet	PHP	did	not	complain	at	any	time.	This	is	called	type	juggling.

Let’s	check	another	piece	of	code:

<?php

$a	=	"1";

$b	=	2;

var_dump($a	+	$b);	//	3

var_dump($a	.	$b);	//	12

You	already	know	that	the	+	operator	returns	the	sum	of	two	numeric	values.	You	will	see
later	that	the	.	operator	concatenates	two	strings.	Thus,	the	preceding	code	assigns	a	string
and	an	integer	to	two	variables,	and	then	tries	to	add	and	concatenate	them.

When	trying	to	add	them,	PHP	knows	that	it	needs	two	numeric	values,	and	so	it	tries	to
adapt	the	string	to	an	integer.	In	this	case,	it	is	easy	as	the	string	represents	a	valid	number.
That	is	the	reason	why	we	see	the	first	result	as	an	integer	3	(1	+	2).

In	the	last	line,	we	are	performing	a	string	concatenation.	We	have	an	integer	in	$b,	so
PHP	will	first	try	to	convert	it	to	a	string—which	is	“2”—and	then	concatenate	it	with	the
other	string,	“1”.	The	result	is	the	string	“12”.

Note

Type	juggling

PHP	tries	to	convert	the	data	type	of	a	variable	only	when	there	is	a	context	where	the	type
of	variable	needed	is	different.	But	PHP	does	not	change	the	value	and	type	of	the	variable
itself.	Instead,	it	will	take	the	value	and	try	to	transform	it,	leaving	the	variable	intact.

Operators
Using	variables	is	nice,	but	if	we	cannot	make	them	interact	with	each	other,	there	is
nothing	much	we	can	do.	Operators	are	elements	that	take	some	expressions—operands
—and	perform	actions	on	them	to	get	a	result.	The	most	common	examples	of	operators
are	arithmetic	operators,	which	you	already	saw	previously.

An	expression	is	almost	anything	that	has	a	value.	Variables,	numbers,	or	text	are
examples	of	expressions,	but	you	will	see	that	they	can	get	way	more	complicated.
Operators	expect	expressions	of	a	specific	type,	for	example,	arithmetic	operators	expect
either	integers	or	floats.	But	as	you	already	know,	PHP	takes	care	of	transforming	the
types	of	the	expressions	given	whenever	possible.

Let’s	take	a	look	at	the	most	important	groups	of	operators.

Arithmetic	operators
Arithmetic	operators	are	very	intuitive,	as	you	already	know.	Addition,	subtraction,
multiplication,	and	division	(+,	-,	*,	and	/)	do	as	their	names	say.	Modulus	(%)	gives	the
remainder	of	the	division	of	two	operands.	Exponentiation	(**)	raises	the	first	operand	to
the	power	of	the	second.	Finally,	negation	(-)	negates	the	operand.	This	last	one	is	the
only	arithmetic	operator	that	takes	just	one	operand.

Let’s	see	some	examples:

<?php

$a	=	10;

$b	=	3;

var_dump($a	+	$b);	//	13

var_dump($a	-	$b);	//	7

var_dump($a	*	$b);	//	30

var_dump($a	/	$b);	//	3.333333…

var_dump($a	%	$b);	//	1

var_dump($a	**	$b);	//	1000

var_dump(-$a);	//	-10

As	you	can	see,	they	are	quite	easy	to	understand!

Assignment	operators
You	already	know	this	one	too,	as	we	have	been	using	it	in	our	examples.	The	assignment
operator	assigns	the	result	of	an	expression	to	a	variable.	Now	you	know	that	an
expression	can	be	as	simple	as	a	number,	or,	for	example,	the	result	of	a	series	of
arithmetic	operations.	The	following	example	assigns	the	result	of	an	expression	to	a
variable:

<?php

$a	=	3	+	4	+	5	-	2;

var_dump($a);	//	10

There	are	a	series	of	assignment	operators	that	work	as	shortcuts.	You	can	build	them
combining	an	arithmetic	operator	and	the	assignment	operator.	Let’s	see	some	examples:

$a	=	13;

$a	+=	14;	//	same	as	$a	=	$a	+	14;

var_dump($a);

$a	-=	2;	//	same	as	$a	=	$a	-	2;

var_dump($a);

$a	*=	4;	//	same	as	$a	=	$a	*	4;

var_dump($a);

Comparison	operators
Comparison	operators	are	one	of	the	most	used	groups	of	operators.	They	take	two
operands	and	compare	them,	returning	the	result	of	the	comparison	usually	as	a	Boolean,
that	is,	true	or	false.

There	are	four	comparisons	that	are	very	intuitive:	<	(less	than),	<=	(less	or	equal	to),	>
(greater	than),	and	>=	(greater	than	or	equal	to).	There	is	also	the	special	operator	<=>
(spaceship)	that	compares	both	the	operands	and	returns	an	integer	instead	of	a	Boolean.
When	comparing	a	with	b,	the	result	will	be	less	than	0	if	a	is	less	than	b,	0	if	a	equals	b,
and	greater	than	0	if	a	is	greater	than	b.	Let’s	see	some	examples:

<?php

var_dump(2	<	3);	//	true

var_dump(3	<	3);	//	false

var_dump(3	<=	3);	//	true

var_dump(4	<=	3);	//	false

var_dump(2	>	3);	//	false

var_dump(3	>=	3);	//	true

var_dump(3	>	3);	//	false

var_dump(1	<=>	2);	//	int	less	than	0

var_dump(1	<=>	1);	//	0

var_dump(3	<=>	2);	//	int	greater	than	0

There	are	comparison	operators	to	evaluate	if	two	expressions	are	equal	or	not,	but	you
need	to	be	careful	with	type	juggling.	The	==	(equals)	operator	evaluates	two	expressions
after	type	juggling,	that	is,	it	will	try	to	transform	both	expressions	to	the	same	type,	and
then	compare	them.	Instead,	the	===	(identical)	operator	evaluates	two	expressions	without
type	juggling,	so	even	if	they	look	the	same,	if	they	are	not	of	the	same	type,	the
comparison	will	return	false.	The	same	applies	to	!=	or	<>	(not	equal	to)	and	!==	(not
identical):

<?php

$a	=	3;

$b	=	'3';

$c	=	5;

var_dump($a	==	$b);	//	true

var_dump($a	===	$b);	//	false

var_dump($a	!=	$b);	//	false

var_dump($a	!==	$b);	//	true

var_dump($a	==	$c);	//	false

var_dump($a	<>	$c);	//	true

You	can	see	that	when	asking	if	a	string	and	an	integer	that	represent	the	same	number	are
equal,	it	replies	affirmatively;	PHP	first	transforms	both	to	the	same	type.	On	the	other
hand,	when	asked	if	they	are	identical,	it	replies	they	are	not	as	they	are	of	different	types.

Logical	operators
Logical	operators	apply	a	logic	operation—also	known	as	a	binary	operation—to	its
operands,	returning	a	Boolean	response.	The	most	used	ones	are	!	(not),	&&	(and),	and	||
(or).	&&	will	return	true	only	if	both	operands	evaluate	to	true.	||	will	return	true	if	any
or	both	of	the	operands	are	true.	!	will	return	the	negated	value	of	the	operand,	that	is,
true	if	the	operand	is	false	or	false	if	the	operand	is	true.	Let’s	see	some	examples:

<?php

var_dump(true	&&	true);	//	true

var_dump(true	&&	false);	//	false

var_dump(true	||	false);	//	true

var_dump(false	||	false);	//	false

var_dump(!false);	//	true

Incrementing	and	decrementing	operators
Incrementing/decrementing	operators	are	also	shortcuts	like	+=	or	-=,	and	they	only	work
on	variables.	There	are	four	of	them,	and	they	need	special	attention.	We’ve	already	seen
the	first	two:

++:	This	operator	on	the	left	of	the	variable	will	increase	the	variable	by	1,	and	then
return	the	result.	On	the	right,	it	will	return	the	content	of	the	variable,	and	after	that
increase	it	by	1.
--:	This	operator	works	the	same	as	++	but	decreases	the	value	by	1	instead	of
increasing	by	1.

Let’s	see	an	example:

<?php

$a	=	3;

$b	=	$a++;	//	$b	is	3,	$a	is	4

var_dump($a,	$b);

$b	=	++$a;	//	$a	and	$b	are	5

var_dump($a,	$b);

In	the	preceding	code,	on	the	first	assignment	to	$b,	we	use	$a++.	The	operator	on	the
right	will	return	first	the	value	of	$a,	which	is	3,	assign	it	to	$b,	and	only	then	increase	$a
by	1.	In	the	second	assignment,	the	operator	on	the	left	first	increases	$a	by	1,	changes	the
value	of	$a	to	5,	and	then	assigns	that	value	to	$b.

Operator	precedence
You	can	add	multiple	operators	to	an	expression	to	make	it	as	long	as	it	needs	to	be,	but
you	need	to	be	careful	as	some	operators	have	higher	precedence	than	others,	and	thus,	the
order	of	execution	might	not	be	the	one	you	expect.	The	following	table	shows	the	order
of	precedence	of	the	operators	that	we’ve	studied	until	now:

Operator Type

** Arithmetic

++,	-- Increasing/decreasing

! Logical

*,	/,	% Arithmetic

+,	- Arithmetic

<,	<=,	>,	>= Comparison

==,	!=,	===,	!== Comparison

&& Logical

|| Logical

=,	+=,	-=,	*=,	/=,	%=,	**= Assignment

The	preceding	table	shows	us	that	the	expression	3+2*3	will	first	evaluate	the	product	2*3
and	then	the	sum,	so	the	result	is	9	rather	than	15.	If	you	want	to	perform	operations	in	a
specific	order,	different	from	the	natural	order	of	precedence,	you	can	force	it	by	enclosing
the	operation	within	parentheses.	Hence,	(3+2)*3	will	first	perform	the	sum	and	then	the
product,	giving	the	result	15	this	time.

Let’s	see	some	examples	to	clarify	this	quite	tricky	subject:

<?php

$a	=	1;

$b	=	3;

$c	=	true;

$d	=	false;

$e	=	$a	+	$b	>	5	||	$c;	//	true

var_dump($e);

$f	=	$e	==	true	&&	!$d;	//	true

var_dump($f);

$g	=	($a	+	$b)	*	2	+	3	*	4;	//	20

var_dump($g);

This	preceding	example	could	be	endless,	and	still	not	be	able	to	cover	all	the	scenarios
you	can	imagine,	so	let’s	keep	it	simple.	In	the	first	highlighted	line,	we	have	a
combination	of	arithmetic,	comparison,	and	logical	operators,	plus	the	assignment

operator.	As	there	are	no	parentheses,	the	order	is	the	one	detailed	in	the	previous	table.
The	operator	with	the	highest	preference	is	the	sum,	so	we	perform	it	first:	$a	+	$b	equals
4.	The	next	one	is	the	comparison	operator,	so	4	>	5,	which	is	false.	Finally,	the	logical
operator,	false	||	$c	($c	is	true)	results	in	true.

The	second	example	might	need	a	bit	more	explanation.	The	first	operator	we	see	in	the
table	is	the	negation,	so	we	resolve	it.	!$d	is	!false,	so	it	is	true.	The	expression	is	now,
$e	==	true	&&	true.	First	we	need	to	solve	the	comparison	$e	==	true.	Knowing	that	$e
is	true,	the	comparison	results	in	true.	The	final	operation	then	is	the	logical	end,	and	it
results	in	true.

Try	to	work	out	the	last	example	by	yourself	to	get	some	practice.	Do	not	be	afraid	if	you
think	we	are	not	covering	operators	enough.	During	the	next	few	sections,	we	will	see	a
lot	of	examples.

Working	with	strings
Working	with	strings	in	real	life	is	really	easy.	Actions	like	Check	if	this	string	contains
this	or	Tell	me	how	many	times	this	character	appears	are	very	easy	to	perform.	But	when
programming,	strings	are	concatenations	of	characters	that	you	cannot	see	at	once	when
searching	for	something.	Instead,	you	have	to	look	one	by	one	and	keep	track	of	what	the
content	is.	In	this	scenario,	those	really	easy	actions	are	not	that	easy	any	more.

Luckily	for	you,	PHP	brings	a	whole	set	of	predefined	functions	that	help	you	in
interacting	with	strings.	You	can	find	the	entire	list	of	functions	at
http://php.net/manual/en/ref.strings.php,	but	we	will	only	cover	the	ones	that	are	used	the
most.	Let’s	look	at	some	examples:

<?php

$text	=	'			How	can	a	clam	cram	in	a	clean	cream	can?	';

echo	strlen($text);	//	45

$text	=	trim($text);

echo	$text;	//	How	can	a	clam	cram	in	a	clean	cream	can?

echo	strtoupper($text);	//	HOW	CAN	A	CLAM	CRAM	IN	A	CLEAN	CREAM	CAN?

echo	strtolower($text);	//	how	can	a	clam	cram	in	a	clean	cream	can?

$text	=	str_replace('can',	'could',	$text);

echo	$text;	//	How	could	a	clam	cram	in	a	clean	cream	could?

echo	substr($text,	2,	6);	//	w	coul

var_dump(strpos($text,	'can'));	//	false

var_dump(strpos($text,	'could'));	//	4

In	the	preceding	long	piece	of	code,	we	are	playing	with	a	string	with	different	functions:

strlen:	This	function	returns	the	number	of	characters	that	the	string	contains.
trim:	This	function	returns	the	string,	removing	all	the	blank	spaces	to	the	left	and	to
the	right.
strtoupper	and	strtolower:	These	functions	return	the	string	with	all	the	characters
in	upper	or	lower	case	respectively.
str_replace:	This	function	replaces	all	occurrences	of	a	given	string	by	the
replacement	string.
substr:	This	function	extracts	the	string	contained	between	the	positions	specified	by
parameters,	with	the	first	character	being	at	position	0.
strpos:	This	function	shows	the	position	of	the	first	occurrence	of	the	given	string.	It
returns	false	if	the	string	cannot	be	found.

Additionally,	there	is	an	operator	for	strings	(.)	which	concatenates	two	strings	(or	two
variables	transformed	to	a	string	when	possible).	Using	it	is	really	simple:	in	the	following
example,	the	last	statement	will	concatenate	all	the	strings	and	variables	forming	the
sentence,	I	am	Hiro	Nakamura!.

<?php

$firstname	=	'Hiro';

$surname	=	'Nakamura';

http://php.net/manual/en/ref.strings.php

echo	'I	am	'	.	$firstname	.	'	'	.	$surname	.	'!';

Another	thing	to	note	about	strings	is	the	way	they	are	represented.	So	far,	we	have	been
enclosing	the	strings	within	single	quotes,	but	you	can	also	enclose	them	within	double
quotes.	The	difference	is	that	within	single	quotes,	a	string	is	exactly	as	it	is	represented,
but	within	double	quotes,	some	rules	are	applied	before	showing	the	final	result.	There	are
two	elements	that	double	quotes	treat	differently	than	single	quotes:	escape	characters	and
variable	expansions.

Escape	characters:	These	are	special	characters	than	cannot	be	represented	easily.
Examples	of	escape	characters	are	new	lines	or	tabs.	To	represent	them,	we	use
escape	sequences,	which	are	the	concatenation	of	a	backslash	(\)	followed	by	some
other	character.	For	example,	\n	represents	a	new	line,	and	\t	represents	a	tabulation.
Variable	expanding:	This	allows	you	to	include	variable	references	inside	the	string,
and	PHP	replaces	them	by	their	current	value.	You	have	to	include	the	$	sign	too.

Have	a	look	at	the	following	example:

<?php

$firstname	=	'Hiro';

$surname	=	'Nakamura';

echo	"My	name	is	$firstname	$surname.\nI	am	a	master	of	time	and	space.	

\"Yatta!\"";

The	preceding	piece	of	code	will	print	the	following	in	the	browser:

My	name	is	Hiro	Nakamura.

I	am	a	master	of	time	and	space.	"Yatta!"

Here,	\n	inserted	a	new	line.	\"	added	the	double	quotes	(you	need	to	escape	them	too,	as
PHP	would	understand	that	you	want	to	end	your	string),	and	the	variables	$firstname
and	$surname	were	replaced	by	their	values.

Arrays
If	you	have	some	experience	with	other	programming	languages	or	data	structures	in
general,	you	might	be	aware	of	two	data	structures	that	are	very	common	and	useful:	lists
and	maps.	A	list	is	an	ordered	set	of	elements,	whereas	a	map	is	a	set	of	elements
identified	by	keys.	Let’s	see	an	example:

List:	["Harry",	"Ron",	"Hermione"]

Map:	{

		"name":	"James	Potter",

		"status":	"dead"

}

The	first	element	is	a	list	of	names	that	contains	three	values:	Harry,	Ron,	and	Hermione.
The	second	one	is	a	map,	and	it	defines	two	values:	James	Potter	and	dead.	Each	of	these
two	values	is	identified	with	a	key:	name	and	status	respectively.

In	PHP,	we	do	not	have	lists	and	maps;	we	have	arrays.	An	array	is	a	data	structure	that
implements	both,	a	list	and	a	map.

Initializing	arrays
You	have	different	options	for	initializing	an	array.	You	can	initialize	an	empty	array,	or
you	can	initialize	an	array	with	data.	There	are	different	ways	of	writing	the	same	data
with	arrays	too.	Let’s	see	some	examples:

<?php

$empty1	=	[];

$empty2	=	array();

$names1	=	['Harry',	'Ron',	'Hermione'];

$names2	=	array('Harry',	'Ron',	'Hermione');

$status1	=	[

				'name'	=>	'James	Potter',

				'status'	=>	'dead'

];

$status2	=	array(

				'name'	=>	'James	Potter',

				'status'	=>	'dead'

);

In	the	preceding	example,	we	define	the	list	and	map	from	the	previous	section.	$names1
and	$names2	are	exactly	the	same	array,	just	using	a	different	notation.	The	same	happens
with	$status1	and	$status2.	Finally,	$empty1	and	$empty2	are	two	ways	of	creating	an
empty	array.

Later	you	will	see	that	lists	are	handled	like	maps.	Internally,	the	array	$names1	is	a	map,
and	its	keys	are	ordered	numbers.	In	this	case,	another	initialization	for	$names1	that	leads
to	the	same	array	could	be	as	follows:

$names1	=	[

				0	=>	'Harry',

				1	=>	'Ron',

				2	=>	'Hermione'

];

Keys	of	an	array	can	be	any	alphanumeric	value,	like	strings	or	numbers.	Values	of	an
array	can	be	anything:	strings,	numbers,	Booleans,	other	arrays,	and	so	on.	You	could	have
something	like	the	following:

<?php

$books	=	[

				'1984'	=>	[

								'author'	=>	'George	Orwell',

								'finished'	=>	true,

								'rate'	=>	9.5

],

				'Romeo	and	Juliet'	=>	[

								'author'	=>	'William	Shakespeare',

								'finished'	=>	false

]

];

This	array	is	a	list	that	contains	two	arrays—maps.	Each	map	contains	different	values	like
strings,	doubles,	and	Booleans.

Populating	arrays
Arrays	are	not	immutable,	that	is,	they	can	change	after	being	initialized.	You	can	change
the	content	of	an	array	either	by	treating	it	as	a	map	or	as	a	list.	Treating	it	as	a	map	means
that	you	specify	the	key	that	you	want	to	override,	whereas	treating	it	as	a	list	means
appending	another	element	to	the	end	of	the	array:

<?php

$names	=	['Harry',	'Ron',	'Hermione'];

$status	=	[

				'name'	=>	'James	Potter',

				'status'	=>	'dead'

];

$names[]	=	'Neville';

$status['age']	=	32;

print_r($names,	$status);

In	the	preceding	example,	the	first	highlighted	line	appends	the	name	Neville	to	the	list	of
names,	hence	the	list	will	look	like	[‘Harry’,	‘Ron’,	‘Hermione’,	‘Neville’].	The	second
change	actually	adds	a	new	key-value	to	the	array.	You	can	check	the	result	from	your
browser	by	using	the	function	print_r.	It	does	something	similar	to	var_dump,	just
without	the	type	and	size	of	each	value.

Note
print_r	and	var_dump	in	a	browser

When	printing	the	content	of	an	array,	it	is	useful	to	see	one	key-value	per	line,	but	if	you
check	your	browser,	you	will	see	that	it	displays	the	whole	array	in	one	line.	That	happens
because	what	the	browser	tries	to	display	is	HTML,	and	it	ignores	new	lines	or
whitespaces.	To	check	the	content	of	the	array	as	PHP	wants	you	to	see	it,	check	the
source	code	of	the	page—you	will	see	the	option	by	right-clicking	on	the	page.

If	you	need	to	remove	an	element	from	the	array,	instead	of	adding	or	updating	one,	you
can	use	the	unset	function:

<?php

$status	=	[

				'name'	=>	'James	Potter',

				'status'	=>	'dead'

];

unset($status['status']);

print_r	($status);

The	new	$status	array	contains	the	key	name	only.

Accessing	arrays
Accessing	an	array	is	as	easy	as	specifying	the	key	as	when	you	were	updating	it.	For	that,
you	need	to	understand	how	lists	work.	You	already	know	that	lists	are	treated	internally
as	a	map	with	numeric	keys	in	order.	The	first	key	is	always	0;	so,	an	array	with	n
elements	will	have	keys	from	0	to	n-1.

You	can	add	any	key	to	a	given	array,	even	if	it	previously	consisted	of	numeric	entries.
The	problem	arises	when	adding	numeric	keys,	and	later,	you	try	to	append	an	element	to
the	array.	What	do	you	think	will	happen?

<?php

$names	=	['Harry',	'Ron',	'Hermione'];

$names['badguy']	=	'Voldemort';

$names[8]	=	'Snape';

$names[]	=	'McGonagall';

print_r($names);

The	result	of	that	last	piece	of	code	is	as	follows:

Array

(

				[0]	=>	Harry

				[1]	=>	Ron

				[2]	=>	Hermione

				[badguy]	=>	Voldemort

				[8]	=>	Snape

				[9]	=>	McGonagall

)

When	trying	to	append	a	value,	PHP	inserts	it	after	the	last	numeric	key,	in	this	case	8.

You	might’ve	already	figured	it	out	by	yourself,	but	you	can	always	print	any	part	of	the
array	by	specifying	its	key:

<?php

$names	=	['Harry',	'Ron',	'Hermione'];

print_r($names[1]);	//	prints	'Ron'

Finally,	trying	to	access	a	key	that	does	not	exist	in	an	array	will	return	you	a	null	and
throw	a	notice,	as	PHP	identifies	that	you	are	doing	something	wrong	in	your	code.

<?php

$names	=	['Harry',	'Ron',	'Hermione'];

var_dump($names[4]);	//	null	and	a	PHP	notice

The	empty	and	isset	functions
There	are	two	useful	functions	for	enquiring	about	the	content	of	an	array.	If	you	want	to
know	if	an	array	contains	any	element	at	all,	you	can	ask	if	it	is	empty	with	the	empty
function.	That	function	actually	works	with	strings	too,	an	empty	string	being	a	string	with
no	characters	(‘	‘).	The	isset	function	takes	an	array	position,	and	returns	true	or	false
depending	on	whether	that	position	exists	or	not:

<?php

$string	=	'';

$array	=	[];

$names	=	['Harry',	'Ron',	'Hermione'];

var_dump(empty($string));	//	true

var_dump(empty($array));	//	true

var_dump(empty($names));	//	false

var_dump(isset($names[2]));	//	true

var_dump(isset($names[3]));	//	false

In	the	preceding	example,	we	can	see	that	an	array	with	no	elements	or	a	string	with	no
characters	will	return	true	when	asked	if	it	is	empty,	and	false	otherwise.	When	we	use
isset($names[2])	to	check	if	the	position	2	of	the	array	exists,	we	get	true,	as	there	is	a
value	for	that	key:	Hermione.	Finally,	isset($names[3])	evaluates	to	false	as	the	key	3
does	not	exist	in	that	array.

Searching	for	elements	in	an	array
Probably,	one	of	the	most	used	functions	with	arrays	is	in_array.	This	function	takes	two
values,	the	value	that	you	want	to	search	for	and	the	array.	The	function	returns	true	if	the
value	is	in	the	array	and	false	otherwise.	This	is	very	useful,	because	a	lot	of	times	what
you	want	to	know	from	a	list	or	a	map	is	if	it	contains	an	element,	rather	than	knowing
that	it	does	or	its	location.

Even	more	useful	sometimes	is	array_search.	This	function	works	in	the	same	way
except	that	instead	of	returning	a	Boolean,	it	returns	the	key	where	the	value	is	found,	or
false	otherwise.	Let’s	see	both	functions:

<?php

$names	=	['Harry',	'Ron',	'Hermione'];

$containsHermione	=	in_array('Hermione',	$names);

var_dump($containsHermione);	//	true

$containsSnape	=	in_array('Snape',	$names);

var_dump($containsSnape);	//	false

$wheresRon	=	array_search('Ron',	$names);

var_dump($wheresRon);	//	1

$wheresVoldemort	=	array_search('Voldemort',	$names);

var_dump($wheresVoldemort);	//	false

Ordering	arrays
An	array	can	be	sorted	in	different	ways,	so	there	are	a	lot	of	chances	that	the	order	that
you	need	is	different	from	the	current	one.	By	default,	the	array	is	sorted	by	the	order	in
which	the	elements	were	added	to	it,	but	you	can	sort	an	array	by	its	key	or	by	its	value,
both	ascending	and	descending.	Furthermore,	when	sorting	an	array	by	its	values,	you	can
choose	to	preserve	their	keys	or	to	generate	new	ones	as	a	list.

There	is	a	complete	list	of	these	functions	on	the	official	documentation	website	at
http://php.net/manual/en/array.sorting.php,	but	here	we	will	display	the	most	important
ones:

Name Sorts	by Maintains	key	association Order	of	sort

sort Value No Low	to	high

rsort Value No High	to	low

asort Value Yes Low	to	high

arsort Value Yes High	to	low

ksort Key Yes Low	to	high

krsort Key Yes High	to	low

These	functions	always	take	one	argument,	the	array,	and	they	do	not	return	anything.
Instead,	they	directly	sort	the	array	we	pass	to	them.	Let’s	see	some	of	them:

<?php

$properties	=	[

				'firstname'	=>	'Tom',

				'surname'	=>	'Riddle',

				'house'	=>	'Slytherin'

];

$properties1	=	$properties2	=	$properties3	=	$properties;

sort($properties1);

var_dump($properties1);

asort($properties3);

var_dump($properties3);

ksort($properties2);

var_dump($properties2);

Okay,	there	is	a	lot	going	on	in	the	last	example.	First	of	all,	we	initialize	an	array	with
some	key	values	and	assign	it	to	$properties.	Then	we	create	three	variables	that	are
copies	of	the	original	array—the	syntax	should	be	intuitive.	Why	do	we	do	that?	Because
if	we	sort	the	original	array,	we	will	not	have	the	original	content	any	more.	This	is	not
what	we	want	in	this	specific	example,	as	we	want	to	see	how	the	different	sort	functions
affect	the	same	array.	Finally,	we	perform	three	different	sorts,	and	print	each	of	the
results.	The	browser	should	show	you	something	like	the	following:

http://php.net/manual/en/array.sorting.php

array(3)	{

		[0]=>

		string(6)	"Riddle"

		[1]=>

		string(9)	"Slytherin"

		[2]=>

		string(3)	"Tom"

}

array(3)	{

		["surname"]=>

		string(6)	"Riddle"

		["house"]=>

		string(9)	"Slytherin"

		["firstname"]=>

		string(3)	"Tom"

}

array(3)	{

		["firstname"]=>

		string(3)	"Tom"

		["house"]=>

		string(9)	"Slytherin"

		["surname"]=>

		string(6)	"Riddle"

}

The	first	function,	sort,	orders	the	values	alphabetically.	Also,	if	you	check	the	keys,	now
they	are	numeric	as	in	a	list,	instead	of	the	original	keys.	Instead,	asort	orders	the	values
in	the	same	way,	but	keeps	the	association	of	key-values.	Finally,	ksort	orders	the
elements	by	their	keys,	alphabetically.

Tip
How	to	remember	so	many	function	names

PHP	has	a	lot	of	function	helpers	that	will	save	you	from	writing	customized	functions	by
yourself,	for	example,	it	provides	you	with	up	to	13	different	sorting	functions.	And	you
can	always	rely	on	the	official	documentation.	But,	of	course,	you	would	like	to	write	code
without	going	back	and	forth	from	the	docs.	So,	here	are	some	tips	to	remember	what	each
sorting	function	does:

An	a	in	the	name	means	associative,	and	thus,	will	preserve	the	key-value
association.
An	r	in	the	name	means	reverse,	so	the	order	will	be	from	high	to	low.
A	k	means	key,	so	the	sorting	will	be	based	on	the	keys	instead	of	the	values.

Other	array	functions
There	are	around	80	different	functions	related	to	arrays.	As	you	can	imagine,	you	will
never	even	hear	about	some	of	them,	as	they	have	very	specific	purposes.	The	complete
list	can	be	found	at	http://php.net/manual/en/book.array.php.

We	can	get	a	list	of	the	keys	of	the	array	with	array_keys,	and	a	list	of	its	values	with
array_values:

<?php

$properties	=	[

				'firstname'	=>	'Tom',

				'surname'	=>	'Riddle',

				'house'	=>	'Slytherin'

];

$keys	=	array_keys($properties);

var_dump($keys);

$values	=	array_values($properties);

var_dump($values);

We	can	get	the	number	of	elements	in	an	array	with	the	count	function:

<?php

$names	=	['Harry',	'Ron',	'Hermione'];

$size	=	count($names);

var_dump($size);	//	3

And	we	can	merge	two	or	more	arrays	into	one	with	array_merge:

<?php

$good	=	['Harry',	'Ron',	'Hermione'];

$bad	=	['Dudley',	'Vernon',	'Petunia'];

$all	=	array_merge($good,	$bad);

var_dump($all);

The	last	example	will	print	the	following	array:

array(6)	{

		[0]=>

		string(5)	"Harry"

		[1]=>

		string(3)	"Ron"

		[2]=>

		string(8)	"Hermione"

		[3]=>

		string(6)	"Dudley"

		[4]=>

		string(6)	"Vernon"

		[5]=>

		string(7)	"Petunia"

}

As	you	can	see,	the	keys	of	the	second	array	are	now	different,	as	originally,	both	the
arrays	had	the	same	numeric	keys,	and	an	array	cannot	have	two	values	for	the	same	key.

http://php.net/manual/en/book.array.php

PHP	in	web	applications
Even	though	the	main	purpose	of	this	chapter	is	to	show	you	the	basics	of	PHP,	doing	it	in
a	reference-manual	kind	of	a	way	is	not	interesting	enough,	and	if	we	were	to	copy-paste
what	the	official	documentation	says,	you	might	as	well	go	there	and	read	it	by	yourself.
Keeping	in	mind	the	main	purpose	of	this	book	and	your	main	goal	is	to	write	web
applications	with	PHP,	let	us	show	you	how	to	apply	everything	you	are	learning	as	soon
as	possible,	before	you	get	too	bored.

In	order	to	do	that,	we	will	now	start	on	a	journey	towards	building	an	online	bookstore.
At	the	very	beginning,	you	might	not	see	the	usefulness	of	it,	but	that	is	just	because
we’ve	still	not	shown	all	that	PHP	can	do.

Getting	information	from	the	user
Let’s	start	by	building	a	home	page.	In	this	page,	we	are	going	to	figure	out	if	the	user	is
looking	for	a	book	or	just	walking	by.	How	do	we	find	that	out?	The	easiest	way	right	now
is	to	inspect	the	URL	that	the	user	used	to	access	our	application,	and	extract	some
information	from	there.

Save	this	content	as	your	index.php:

<?php

$looking	=	isset($_GET['title'])	||	isset($_GET['author']);

?>

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="UTF-8">

				<title>Bookstore</title>

</head>

<body>

				<p>You	lookin'?	<?php	echo	(int)	$looking;	?></p>

				<p>The	book	you	are	looking	for	is</p>

				

								Title:	<?php	echo	$_GET['title'];	?>

								Author:	<?php	echo	$_GET['author'];	?>

				

</body>

</html>

Now	access	the	link,	http://localhost:8000/?author=HarperLee&title=To	Kill	a
Mockingbird.	You	will	see	that	the	page	prints	some	of	the	information	that	you	passed	on
to	the	URL.

For	each	request,	PHP	stores	all	the	parameters	that	come	from	the	query	string	in	an	array
called	$_GET.	Each	key	of	the	array	is	the	name	of	the	parameter,	and	its	associated	value
is	the	value	of	the	parameter.	So	$_GET	contains	two	entries:	$_GET['author']	contains
Harper	Lee	and	$_GET['title']	has	the	value	To	Kill	a	Mockingbird.

In	the	first	highlighted	line,	we	assign	a	Boolean	value	to	the	variable	$looking.	If	either
$_GET['title']	or	$_GET['author']	exists,	that	variable	will	be	true,	otherwise	false.
Just	after	that,	we	close	the	PHP	tag	and	then	we	print	some	HTML,	but	as	you	can	see,
we	are	actually	mixing	the	HTML	with	some	PHP	code.

Another	interesting	line	here	is	the	second	highlighted	one.	Before	printing	the	content	of
$looking,	we	cast	the	value.	Casting	means	forcing	PHP	to	transform	a	type	of	value	to
another	one.	Casting	a	Boolean	to	an	integer	means	that	the	resultant	value	will	be	1	if	the
Boolean	is	true	or	0	if	the	Boolean	is	false.	As	$looking	is	true	since	$_GET	contains
valid	keys,	the	page	shows	a	“1”.

If	we	try	to	access	the	same	page	without	sending	any	information,	as	in
http://localhost:8000,	the	browser	will	say	Are	you	looking	for	a	book?	0.
Depending	on	the	settings	of	your	PHP	configuration,	you	will	see	two	notice	messages
complaining	that	you	are	trying	to	access	keys	of	the	array	that	do	not	exist.

Note
Casting	versus	type	juggling

We	already	know	that	when	PHP	needs	a	specific	type	of	variable,	it	will	try	to	transform
it,	which	is	called	type	juggling.	But	PHP	is	quite	flexible,	so	sometimes,	you	have	to	be
the	one	specifying	the	type	that	you	need.	When	printing	something	with	echo,	PHP	tries
to	transform	everything	it	gets	into	strings.	Since	the	string	version	of	the	Boolean	false
is	an	empty	string,	that	would	not	be	useful	for	our	application.	Casting	the	Boolean	to	an
integer	first	assures	that	we	will	see	a	value,	even	if	it	is	just	a	0.

HTML	forms
HTML	forms	are	one	of	the	most	popular	ways	of	collecting	information	from	the	user.
They	consist	of	a	series	of	fields—called	input	in	the	HTML	world—and	a	final	submit
button.	In	HTML,	the	form	tag	contains	two	attributes:	action	points	where	the	form	will
be	submitted,	and	method,	which	specifies	the	HTTP	method	that	the	form	will	use	(GET
or	POST).	Let’s	see	how	it	works.	Save	the	following	content	as	login.html	and	go	to
http://localhost:8000/login.html.

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="UTF-8">

				<title>Bookstore	-	Login</title>

</head>

<body>

				<p>Enter	your	details	to	login:</p>

				<form	action="authenticate.php"	method="post">

								<label>Username</label>

							<input	type="text"	name="username"	/>

								<label>Password</label>

							<input	type="password"	name="password"	/>

								<input	type="submit"	value="Login"/>

				</form>

</body>

</html>

The	form	defined	in	the	preceding	code	contains	two	fields,	one	for	the	username	and	one
for	the	password.	You	can	see	that	they	are	identified	by	the	attribute	name.	If	you	try	to
submit	this	form,	the	browser	will	show	you	a	Page	Not	Found	message,	as	it	is	trying	to
access	http://localhost:8000/authenticate.php	and	the	web	server	cannot	find	it.
Let’s	create	it	then:

<?php

$submitted	=	!empty($_POST);

?>

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="UTF-8">

				<title>Bookstore</title>

</head>

<body>

				<p>Form	submitted?	<?php	echo	(int)	$submitted;	?></p>

				<p>Your	login	info	is</p>

				

								username:	<?php	echo	$_POST['username'];	?>

								password:	<?php	echo	$_POST['password'];	?>

				

</body>

</html>

As	with	$_GET,	$_POST	is	an	array	that	contains	the	parameters	received	by	POST.	In	this

preceding	piece	of	code,	we	first	ask	if	that	array	is	not	empty—note	the	!	operator.
Afterwards,	we	just	display	the	information	received,	just	as	in	index.php.	Notice	that	the
keys	of	the	$_POST	array	are	the	values	for	the	argument	name	of	each	input	field.

Persisting	data	with	cookies
When	we	want	the	browser	to	remember	some	data	like	whether	you	are	logged	in	or	not
on	your	web	application,	your	basic	info,	and	so	on,	we	use	cookies.	Cookies	are	stored	on
the	client	side	and	are	sent	to	the	server	when	making	a	request	as	headers.	As	PHP	is
oriented	towards	web	applications,	it	allows	you	to	manage	cookies	in	a	very	easy	way.

There	are	few	things	you	need	to	know	about	cookies	and	PHP.	You	can	write	cookies
with	the	setcookie	function	that	accepts	several	arguments:

A	valid	name	for	the	cookie	as	a	string.
The	value	of	the	cookie—only	strings	or	values	that	can	be	casted	to	a	string.	This
parameter	is	optional,	and	if	not	set,	PHP	will	actually	remove	the	cookie.
Expiration	time	as	a	timestamp.	If	not	set,	the	cookie	will	be	removed	once	the
browser	is	closed.

Note
Timestamps

Computers	use	different	ways	for	describing	dates	and	times,	and	a	very	common	one,
especially	on	Unix	systems,	is	the	use	of	timestamps.	They	represent	the	number	of
seconds	passed	since	January	1,	1970.	For	example,	the	timestamp	that	represents	October
4,	2015	at	6:30	p.m.	would	be	1,443,954,637,	which	is	the	number	of	seconds	since	that
date.

You	can	get	the	current	timestamp	with	PHP	using	the	time	function.

There	are	other	arguments	related	to	security,	but	they	are	out	of	the	scope	of	this	section.
Also	note	that	you	can	only	set	cookies	if	there	is	no	previous	output	from	your
application,	that	is,	before	HTML,	echo	calls,	and	any	other	similar	functions	that	send
some	output.

To	read	the	cookies	that	the	client	sends	to	us,	we	just	need	to	access	the	array,	$_COOKIE.
It	works	as	the	other	two	arrays,	so	the	keys	of	the	array	will	be	the	name	of	the	cookies
and	the	value	of	the	array	will	be	their	values.

A	very	common	usage	for	cookies	is	authenticating	the	user.	There	are	several	different
ways	of	doing	so,	depending	on	the	level	of	security	you	need	for	your	application.	Let’s
try	to	implement	one	very	simple—albeit	insecure	one	(do	not	use	it	for	live	web
applications).	Leaving	the	HTML	intact,	update	the	PHP	part	of	your	authenticate.php
file	with	the	following	content:

<?php

setcookie('username',	$_POST['username']);

$submitted	=	!empty($_POST);

?>

Do	the	same	with	the	body	tag	in	your	index.php:

<body>

				<p>You	are	<?php	echo	$_COOKIE['username'];	?></p>

				<p>Are	you	looking	for	a	book?	<?php	echo	(int)	$lookingForBook;	?></p>

				<p>The	book	you	are	looking	for	is</p>

				

								Title:	<?php	echo	$_GET['title'];	?>

								Author:	<?php	echo	$_GET['author'];	?>

				

</body>

If	you	access	http://localhost:8000/login.html	again,	try	to	log	in,	open	a	new	tab	(in
the	same	browser),	and	go	to	the	home	page	at	http://localhost:8000,	you	will	see	how
the	browser	still	remembers	your	username.

Other	superglobals
$_GET,	$_POST,	and	$_COOKIE	are	special	variables	called	superglobals.	There	are	other
superglobals	too,	like	$_SERVER	or	$_ENV,	which	will	give	you	extra	information.	The	first
one	shows	you	information	about	headers,	paths	accessed,	and	other	information	related	to
the	request.	The	second	one	contains	the	environment	variables	of	the	machine	where	your
application	is	running.	You	can	see	the	full	list	of	these	arrays	and	their	elements	at
http://php.net/manual/es/language.variables.superglobals.php.

In	general,	using	superglobals	is	useful,	since	it	allows	you	to	get	information	from	the
user,	the	browser,	the	request,	and	so	on.	This	is	of	immeasurable	value	when	writing	web
applications	that	need	to	interact	with	the	user.	But	with	great	power	comes	great
responsibility,	and	you	should	be	very	careful	when	using	these	arrays.	Most	of	those
values	come	from	the	users	themselves,	which	could	lead	to	security	issues.

http://php.net/manual/es/language.variables.superglobals.php

Control	structures
So	far,	our	files	have	been	executed	line	by	line.	Due	to	that,	we	have	been	getting	notices
on	some	scenarios,	such	as	when	the	array	does	not	contain	what	we	are	looking	for.
Would	it	not	be	nice	if	we	could	choose	which	lines	to	execute?	Control	structures	to	the
rescue!

A	control	structure	is	like	a	traffic	diversion	sign.	It	directs	the	execution	flow	depending
on	some	predefined	conditions.	There	are	different	control	structures,	but	we	can
categorize	them	in	conditionals	and	loops.	A	conditional	allows	us	to	choose	whether	to
execute	a	statement	or	not.	A	loop	executes	a	statement	as	many	times	as	you	need.	Let’s
take	a	look	at	each	one	of	them.

Conditionals
A	conditional	evaluates	a	Boolean	expression,	that	is,	something	that	returns	a	value.	If	the
expression	is	true,	it	will	execute	everything	inside	its	block	of	code.	A	block	of	code	is	a
group	of	statements	enclosed	by	{}.	Let’s	see	how	it	works:

<?php

echo	"Before	the	conditional.";

if	(4	>	3)	{

				echo	"Inside	the	conditional.";

}

if	(3	>	4)	{

				echo	"This	will	not	be	printed.";

}

echo	"After	the	conditional.";

In	the	preceding	piece	of	code,	we	use	two	conditionals.	A	conditional	is	defined	by	the
keyword	if	followed	by	a	Boolean	expression	in	parentheses	and	by	a	block	of	code.	If
the	expression	is	true,	it	will	execute	the	block,	otherwise	it	will	skip	it.

You	can	increase	the	power	of	conditionals	by	adding	the	keyword	else.	This	tells	PHP	to
execute	some	block	of	code	if	the	previous	conditions	were	not	satisfied.	Let’s	see	an
example:

if	(2	>	3)	{

				echo	"Inside	the	conditional.";

}	else	{

				echo	"Inside	the	else.";

}

The	preceding	example	will	execute	the	code	inside	the	else	as	the	condition	of	the	if
was	not	satisfied.

Finally,	you	can	also	add	an	elseif	keyword	followed	by	another	condition	and	a	block	of
code	to	continue	asking	PHP	for	more	conditions.	You	can	add	as	many	elseif	as	you
need	after	an	if.	If	you	add	an	else,	it	has	to	be	the	last	one	of	the	chain	of	conditions.
Also	keep	in	mind	that	as	soon	as	PHP	finds	a	condition	that	resolves	to	true,	it	will	stop
evaluating	the	rest	of	conditions.

<?php

if	(4	>	5)	{

				echo	"Not	printed";

}	elseif	(4	>	4)	{

				echo	"Not	printed";

}	elseif	(4	==	4)	{

				echo	"Printed.";

}	elseif	(4	>	2)	{

				echo	"Not	evaluated.";

}	else	{

				echo	"Not	evaluated.";

}

if	(4	==	4)	{

				echo	"Printed";

}

In	the	last	example,	the	first	condition	that	evaluates	to	true	is	the	highlighted	one.	After
that,	PHP	does	not	evaluate	any	more	conditions	until	a	new	if	starts.

With	this	knowledge,	let’s	try	to	clean	up	our	application	a	bit,	executing	statements	only
when	needed.	Copy	this	code	to	your	index.php	file:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="UTF-8">

				<title>Bookstore</title>

</head>

<body>

				<p>

<?php

if	(isset($_COOKIE[username']))	{

				echo	"You	are	"	.	$_COOKIE['username'];

}	else	{

				echo	"You	are	not	authenticated.";

}

?>

				</p>

<?php

if	(isset($_GET['title'])	&&	isset($_GET['author']))	{

?>

				<p>The	book	you	are	looking	for	is</p>

				

								Title:	<?php	echo	$_GET['title'];	?>

								Author:	<?php	echo	$_GET['author'];	?>

				

<?php

}	else	{

?>

				<p>You	are	not	looking	for	a	book?</p>

<?php

}

?>

</body>

</html>

In	this	new	code,	we	have	mixed	conditionals	and	HTML	code	in	two	different	ways.	The
first	one	opens	a	PHP	tag,	and	adds	an	if…else	clause	that	will	print	whether	we	are
authenticated	or	not	with	an	echo.	No	HTML	is	merged	within	the	conditionals,	which
makes	it	clear.

The	second	option—the	second	highlighted	block—shows	an	uglier	solution,	but
sometimes	necessary.	When	you	have	to	print	a	lot	of	HTML	code,	echo	is	not	that	handy,
and	it	is	better	to	close	the	PHP	tag,	print	all	HTML	you	need,	and	then	open	the	tag	again.
You	can	do	that	even	inside	the	code	block	of	an	if	clause	as	you	can	see	in	the	code.

Note
Mixing	PHP	and	HTML

If	you	feel	that	the	last	file	we	edited	looks	rather	ugly,	you	are	right.	Mixing	PHP	and
HTML	is	confusing,	and	you	should	avoid	it.	In	Chapter	6,	Adapting	to	MVC,	we	will	see
how	to	do	things	properly.

Let’s	edit	our	authenticate.php	file	too,	as	it	is	trying	to	access	the	$_POST	entries	that
might	not	be	there.	The	new	content	of	the	file	would	be	as	follows:

<?php

$submitted	=	isset($_POST['username'])	&&	isset($_POST['password']);

if	($submitted)	{

				setcookie('username',	$_POST['username']);

}

?>

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="UTF-8">

				<title>Bookstore</title>

</head>

<body>

<?php	if	($submitted):	?>

				<p>Your	login	info	is</p>

				

								username:	<?php	echo	$_POST['username'];	?>

								password:	<?php	echo	$_POST['password'];	?>

				

<?php	else:	?>

				<p>You	did	not	submit	anything.</p>

<?php	endif;	?>

</body>

</html>

This	code	also	contains	conditionals,	which	we	already	know.	We	are	setting	a	variable	to
know	if	we	submitted	a	login	or	not,	and	set	the	cookies	if	so.	But	the	highlighted	lines
show	you	a	new	way	of	including	conditionals	with	HTML.	This	makes	the	code	more
readable	when	working	with	HTML	code,	avoiding	the	use	of	{},	and	instead	using	:	and
endif.	Both	syntaxes	are	correct,	and	you	should	use	the	one	that	you	consider	more
readable	in	each	case.

Switch…case
Another	control	structure	similar	to	if…else	is	switch…case.	This	structure	evaluates	only
one	expression,	and	executes	the	block	depending	on	its	value.	Let’s	see	an	example:

<?php

switch	($title)	{

				case	'Harry	Potter':

								echo	"Nice	story,	a	bit	too	long.";

								break;

				case	'Lord	of	the	Rings':

								echo	"A	classic!";

								break;

				default:

								echo	"Dunno	that	one.";

								break;

}

The	switch	clause	takes	an	expression,	in	this	case	a	variable,	and	then	defines	a	series	of
cases.	When	the	case	matches	the	current	value	of	the	expression,	PHP	executes	the	code
inside	it.	As	soon	as	PHP	finds	a	break	statement,	it	exits	the	switch…case.	In	case	none
of	the	cases	are	suitable	for	the	expression,	PHP	executes	the	default,	if	there	is	one,	but
that	is	optional.

You	also	need	to	know	that	breaks	are	mandatory	if	you	want	to	exit	the	switch…case.	If
you	do	not	specify	any,	PHP	will	keep	on	executing	statements,	even	if	it	encounters	a
new	case.	Let’s	see	a	similar	example,	but	without	the	breaks:

<?php

$title	=	'Twilight';

switch	($title)	{

				case	'Harry	Potter':

								echo	"Nice	story,	a	bit	too	long.";

				case	'Twilight':

								echo	'Uh…';

				case	'Lord	of	the	Rings':

								echo	"A	classic!";

				default:

								echo	"Dunno	that	one.";

}

If	you	test	this	code	in	your	browser,	you	will	see	that	it	prints	Uh…A	classic!	Dunno
that	one.	PHP	found	that	the	second	case	is	valid,	so	it	executes	its	content.	But	as	there
are	no	breaks,	it	keeps	on	executing	until	the	end.	This	might	be	the	desired	behavior
sometimes	but	not	usually,	so	be	careful	when	using	it!

Loops
Loops	are	control	structures	that	allow	you	to	execute	certain	statements	several	times,	as
many	times	as	you	need.	You	might	use	them	in	several	different	scenarios,	but	the	most
common	one	is	when	interacting	with	arrays.	For	example,	imagine	you	have	an	array
with	elements,	but	you	do	not	know	what	is	in	it.	You	want	to	print	all	its	elements,	so	you
loop	through	all	of	them.

There	are	four	types	of	loops.	Each	of	them	has	its	own	use	cases,	but	in	general,	you	can
transform	one	type	of	loop	into	another.	Let’s	look	at	them	closely.

While
The	while	loop	is	the	simplest	of	the	loops.	It	executes	a	block	of	code	until	the
expression	to	evaluate	returns	false.	Let’s	see	one	example:

<?php

$i	=	1;

while	($i	<	4)	{

				echo	$i	.	"	";

				$i++;

}

In	the	preceding	example,	we	define	a	variable	with	value	1.	Then	we	have	a	while	clause
in	which	the	expression	to	evaluate	is	$i	<	4.	This	loop	executes	the	content	of	the	block
of	code	until	that	expression	is	false.	As	you	can	see,	inside	the	loop	we	are	incrementing
the	value	of	$i	by	1	each	time,	so	the	loop	ends	after	4	iterations.	Check	the	output	of	that
script	and	you	will	see	“0	1	2	3”.	The	last	value	printed	is	3,	so	at	that	time	the	value	of	$i
was	3.	After	that,	we	increased	its	value	to	4,	so	when	the	while	clause	evaluates	if	$i	<
4,	the	result	is	false.

Note
Whiles	and	infinite	loops

One	of	the	most	common	problems	with	the	while	loops	is	creating	an	infinite	loop.	If
you	do	not	add	any	code	inside	the	while	loop	that	updates	any	of	the	variables	considered
in	the	while	expression	such	that	it	can	be	false	at	some	point,	PHP	will	never	exit	the
loop!

Do…while
The	do…while	loop	is	very	similar	to	while	in	the	sense	that	it	evaluates	an	expression
each	time,	and	will	execute	the	block	of	code	until	that	expression	is	false.	The	only
difference	is	that	when	this	expression	is	evaluated,	the	while	clause	evaluates	the
expression	before	executing	the	code,	so	sometimes,	we	might	not	even	enter	the	loop	if
the	expression	evaluates	to	false	the	very	first	time.	On	the	other	hand,	do…while
evaluates	the	expression	after	it	executes	its	block	of	code,	so	even	if	the	expression	is
false	from	the	very	beginning,	the	loop	will	be	executed	at	least	once.

<?php

echo	"with	while:	";

$i	=	1;

while	($i	<	0)	{

				echo	$i	.	"	";

				$i++;

}

echo	"with	do-while:	";

$i	=	1;

do	{

				echo	$i	.	"	";

				$i++;

}	while	($i	<	0);

The	preceding	piece	of	code	defines	two	loops	with	the	same	expression	and	block	of
code,	but	if	you	execute	them,	you	will	see	that	only	the	code	inside	the	do…while	is
executed.	In	both	cases,	the	expression	is	false	since	the	beginning,	so	while	does	not
even	enter	the	loop,	whereas	the	do…while	enters	the	loop	once.

For
The	for	loop	is	the	most	complex	of	the	four	loops.	It	defines	an	initialization	expression,
an	exit	condition,	and	the	end	of	an	iteration	expression.	When	PHP	first	encounters	the
loop,	it	executes	what	is	defined	as	the	initialization	expression.	Then,	it	evaluates	the	exit
condition	and	if	it	resolves	to	true,	it	enters	the	loop.	After	executing	everything	inside
the	loop,	it	executes	the	end	of	the	iteration	expression.	Once	done,	it	evaluates	the	end
condition	again,	going	through	the	loop	code	and	the	end	of	the	iteration	expression,	until
it	evaluates	to	false.	As	always,	an	example	will	clarify	it:

<?php

for	($i	=	1;	$i	<	10;	$i++)	{

				echo	$i	.	"	";

}

The	initialization	expression	is	$i	=	1,	and	is	executed	only	the	first	time.	The	exit
condition	is	$i	<	10,	and	it	is	evaluated	at	the	beginning	of	each	iteration.	The	end	of	the
iteration	expression	is	$i++,	which	is	executed	at	the	end	of	each	iteration.	This	example
prints	the	numbers	from	1	to	9.	Another	more	common	usage	of	the	for	loop	is	with
arrays:

<?php

$names	=	['Harry',	'Ron',	'Hermione'];

for	($i	=	0;	$i	<	count($names);	$i++)	{

				echo	$names[$i]	.	"	";

}

In	this	example,	we	have	an	array	of	names.	Since	it	is	defined	as	a	list,	its	keys	will	be	0,
1,	and	2.	The	loop	initializes	the	variable	$i	to	0,	and	it	iterates	until	the	value	of	$i	is	not
less	than	the	number	of	elements	in	the	array,	that	is,	3.	In	the	first	iteration,	$i	is	0,	in	the
second,	it	is	1,	and	in	the	third	one	it	is	equal	to	2.	When	$i	is	3,	it	will	not	enter	the	loop,
as	the	exit	condition	evaluates	to	false.

On	each	iteration,	we	print	the	content	of	the	position	$i	of	the	array,	hence	the	result	of
this	code	will	be	all	three	names	in	the	array.

Tip
Be	careful	with	exit	conditions

It	is	very	common	to	set	an	exit	condition	that	is	not	exactly	what	we	need,	especially	with
arrays.	Remember	that	arrays	start	with	0	if	they	are	a	list,	so	an	array	of	three	elements
will	have	entries	of	0,	1,	and	2.	Defining	the	exit	condition	as	$i	<=	count($array)	will
cause	an	error	in	your	code,	as	when	$i	is	3,	it	also	satisfies	the	exit	condition	and	will	try
to	access	the	key	3,	which	does	not	exist.

Foreach
The	last,	but	not	least,	type	of	loop	is	foreach.	This	loop	is	exclusive	for	arrays,	and	it
allows	you	to	iterate	an	array	entirely,	even	if	you	do	not	know	its	keys.	There	are	two
options	for	the	syntax,	as	you	can	see	in	the	following	examples:

<?php

$names	=	['Harry',	'Ron',	'Hermione'];

foreach	($names	as	$name)	{

				echo	$name	.	"	";

}

foreach	($names	as	$key	=>	$name)	{

				echo	$key	.	"	->	"	.	$name	.	"	";

}

The	foreach	loop	accepts	an	array—in	this	case	$names—and	it	specifies	a	variable	which
will	contain	the	value	of	the	entry	of	the	array.	You	can	see	that	we	do	not	need	to	specify
any	end	condition,	as	PHP	will	know	when	the	array	has	been	iterated.	Optionally,	you	can
specify	a	variable	that	contains	the	key	of	each	iteration,	as	in	the	second	loop.

The	foreach	loops	are	also	useful	with	maps,	where	the	keys	are	not	necessarily	numeric.
The	order	in	which	PHP	iterates	the	array	will	be	the	same	order	that	you	used	to	insert	the
contents	in	the	array.

Let’s	use	some	loops	in	our	application.	We	want	to	show	the	available	books	in	our	home
page.	We	have	the	list	of	books	in	an	array,	so	we	will	have	to	iterate	all	of	them	with	a
foreach	loop,	printing	some	information	from	each	one.	Append	the	following	code	to	the
body	tag	in	index.php:

<?php	endif;

				$books	=	[

								[

												'title'	=>	'To	Kill	A	Mockingbird',

												'author'	=>	'Harper	Lee',

												'available'	=>	true,

												'pages'	=>	336,

												'isbn'	=>	9780061120084

],

								[

												'title'	=>	'1984',

												'author'	=>	'George	Orwell',

												'available'	=>	true,

												'pages'	=>	267,

												'isbn'	=>	9780547249643

],

								[

												'title'	=>	'One	Hundred	Years	Of	Solitude',

												'author'	=>	'Gabriel	Garcia	Marquez',

												'available'	=>	false,

												'pages'	=>	457,

												'isbn'	=>	9785267006323

],

];

?>

<?php	foreach	($books	as	$book):	?>

								

												<i><?php	echo	$book['title'];	?></i>

												-	<?php	echo	$book['author'];	?>

<?php	if	(!$book['available']):	?>

										Not	available

<?php	endif;	?>

								

<?php	endforeach;	?>

				

The	highlighted	code	shows	a	foreach	loop	using	the	:	notation	as	well,	which	is	better
when	mixing	it	with	HTML.	It	iterates	all	of	the	$books	array,	and	for	each	book,	it	prints
some	information	as	an	HTML	list.	Notice	also	that	we	have	a	conditional	inside	a	loop,
which	is	perfectly	fine.	Of	course,	this	conditional	will	be	executed	for	each	entry	in	the
array,	so	you	should	keep	the	block	of	code	of	your	loops	as	simple	as	possible.

Functions
A	function	is	a	reusable	block	of	code	that,	given	an	input,	performs	some	actions	and,
optionally,	returns	some	result.	You	already	know	several	predefined	functions	like	empty,
in_array,	or	var_dump.	Those	functions	come	with	PHP	so	you	do	not	have	to	reinvent
the	wheel,	but	you	can	create	your	own	very	easily.	You	can	define	functions	when	you
identify	portions	of	your	application	that	have	to	be	executed	several	times,	or	just	to
encapsulate	some	functionality.

Function	declaration
Declaring	a	function	means	writing	it	down	so	it	can	be	used	later.	A	function	has	a	name,
takes	some	arguments,	and	has	a	block	of	code.	Optionally,	it	can	define	what	kind	of
value	is	to	be	returned.	The	name	of	the	function	has	to	follow	the	same	rules	as	variable
names,	that	is,	it	has	to	start	with	a	letter	or	an	underscore,	and	can	contain	any	letters,
numbers,	or	underscore.	It	cannot	be	a	reserved	word.

Let’s	see	a	simple	example:

function	addNumbers($a,	$b)	{

				$sum	=	$a	+	$b;

				return	$sum;

}

$result	=	addNumbers(2,	3);

The	preceding	function’s	name	is	addNumbers,	and	it	takes	two	arguments:	$a	and	$b.	The
block	of	code	defines	a	new	variable	$sum,	which	is	the	sum	of	both	arguments,	and	then
returns	its	content	with	return.	In	order	to	use	this	function,	you	just	need	to	call	it	by	its
name	while	sending	all	the	required	arguments,	as	shown	in	the	highlighted	line.

PHP	does	not	support	overloaded	functions.	Overloading	refers	to	the	ability	of	declaring
two	or	more	functions	with	the	same	name	but	different	arguments.	As	you	can	see,	you
can	declare	the	arguments	without	knowing	what	their	types	are,	so	PHP	would	not	be
able	to	decide	which	function	to	use.

Another	important	thing	to	note	is	the	variable	scope.	We	are	declaring	a	variable	$sum
inside	the	block	of	code,	so	once	the	function	ends,	the	variable	will	not	be	accessible	any
more.	That	means	that	the	scope	of	variables	declared	inside	the	function	is	just	the
function	itself.	Furthermore,	if	you	had	a	variable	$sum	declared	outside	the	function,	it
would	not	be	affected	at	all	since	the	function	cannot	access	that	variable	unless	we	send	it
as	an	argument.

Function	arguments
A	function	gets	information	from	outside	via	arguments.	You	can	define	any	number	of
arguments—including	0	(none).	These	arguments	need	at	least	a	name	so	they	can	be	used
inside	the	function;	there	cannot	be	two	arguments	with	the	same	name.	When	invoking
the	function,	you	need	to	send	the	arguments	in	the	same	order	as	declared.

A	function	may	contain	optional	arguments,	that	is,	you	are	not	forced	to	provide	a	value
for	those	arguments.	When	declaring	the	function,	you	need	to	provide	a	default	value	for
those	arguments.	So,	in	case	the	user	does	not	provide	a	value,	the	function	will	use	the
default	one.

function	addNumbers($a,	$b,	$printResult	=	false)	{

				$sum	=	$a	+	$b;

				if	($printResult)	{

								echo	'The	result	is	'	.	$sum;

				}

				return	$sum;

}

$sum1	=	addNumbers(1,	2);

$sum1	=	addNumbers(3,	4,	false);

$sum1	=	addNumbers(5,	6,	true);	//	it	will	print	the	result

This	new	function	in	the	last	example	takes	two	mandatory	arguments	and	an	optional
one.	The	default	value	of	the	optional	argument	is	false,	and	it	is	then	used	normally
inside	the	function.	The	function	will	print	the	result	of	the	sum	if	the	user	provides	true
as	the	third	argument,	which	happens	only	the	third	time	that	the	function	is	invoked.	For
the	first	two,	$printResult	is	set	to	false.

The	arguments	that	the	function	receives	are	just	copies	of	the	values	that	the	user
provided.	That	means	that	if	you	modify	these	arguments	inside	the	function,	it	will	not
affect	the	original	values.	This	feature	is	known	as	sending	arguments	by	value.	Let’s	see
an	example:

function	modify($a)	{

				$a	=	3;

}

$a	=	2;

modify($a);

var_dump($a);	//	prints	2

We	are	declaring	a	variable	$a	with	value	2,	and	then	calling	the	modify	method	sending
that	$a.	The	modify	method	modifies	the	argument	$a,	setting	its	value	to	3,	but	this	does
not	affect	the	original	value	of	$a,	which	remains	2	as	you	can	see	from	var_dump.

If	what	you	want	is	to	actually	change	the	value	of	the	original	variable	used	in	the
invocation,	you	need	to	pass	the	argument	by	reference.	To	do	that,	you	add	an	ampersand
(&)	before	the	argument	when	declaring	the	function:

function	modify(&$a)	{

				$a	=	3;

}

Now,	on	invoking	the	function	modify,	$a	will	always	be	3.

Note
Arguments	by	value	versus	by	reference

PHP	allows	you	to	do	it,	and	in	fact,	some	native	functions	of	PHP	use	arguments	by
reference.	Remember	the	array	sorting	functions?	They	did	not	return	the	sorted	array,	but
sorted	the	array	provided	instead.	But	using	arguments	by	reference	is	a	way	of	confusing
developers.	Usually,	when	someone	uses	a	function,	they	expect	a	result,	and	they	do	not
want	the	arguments	provided	by	them	to	be	modified.	So	try	to	avoid	it;	people	will	be
grateful!

The	return	statement
You	can	have	as	many	return	statements	as	you	want	inside	your	function,	but	PHP	will
exit	the	function	as	soon	as	it	finds	one.	That	means	that	if	you	have	two	consecutive
return	statements,	the	second	one	will	never	be	executed.	Still,	having	multiple	return
statements	can	be	useful	if	they	are	inside	conditionals.	Add	this	function	inside	your
functions.php	file:

function	loginMessage()	{

				if	(isset($_COOKIE['username']))	{

								return	"You	are	"	.	$_COOKIE['username'];

				}	else	{

								return	"You	are	not	authenticated.";

				}

}

And	let’s	use	the	last	example	in	your	index.php	file	by	replacing	the	highlighted	content
(note	that	to	save	some	trees,	I	replaced	most	of	the	code	that	was	not	changed	at	all	with
//…):

//...

<body>

				<p><?php	echo	loginMessage();	?></p>

<?php	if	(isset($_GET['title'])	&&	isset($_GET['author'])):	?>

//...

Additionally,	you	can	omit	the	return	statement	if	you	do	not	want	the	function	to	return
anything.	In	this	case,	the	function	will	end	once	it	reaches	the	end	of	the	block	of	code.

Type	hinting	and	return	types
With	the	release	of	PHP	7,	the	language	allows	the	developer	to	be	more	specific	about
what	functions	are	getting	and	returning.	You	can—always	optionally—specify	the	type	of
argument	that	the	function	needs	(type	hinting),	and	the	type	of	result	the	function	will
return	(return	type).	Let’s	first	see	an	example:

<?php

declare(strict_types=1);

function	addNumbers(int	$a,	int	$b,	bool	$printSum):	int	{

				$sum	=	$a	+	$b;

				if	($printSum)	{

								echo	'The	sum	is	'	.	$sum;

				}

				return	$sum;

}

addNumbers(1,	2,	true);

addNumbers(1,	'2',	true);	//	it	fails	when	strict_types	is	1

addNumbers(1,	'something',	true);	//	it	always	fails

This	preceding	function	states	that	the	arguments	need	to	be	integer,	integer,	and	Boolean,
and	that	the	result	will	be	an	integer.	Now,	you	know	that	PHP	has	type	juggling,	so	it	can
usually	transform	a	value	of	one	type	to	its	equivalent	value	of	another	type,	for	example,
the	string	“2”	can	be	used	as	integer	2.	To	stop	PHP	from	using	type	juggling	with	the
arguments	and	results	of	functions,	you	can	declare	the	directive	strict_types	as	shown
in	the	first	highlighted	line.	This	directive	has	to	be	declared	at	the	top	of	each	file	where
you	want	to	enforce	this	behavior.

The	three	invocations	work	as	follows:

The	first	invocation	sends	two	integers	and	a	Boolean,	which	is	what	the	function
expects,	so	regardless	of	the	value	of	strict_types,	it	will	always	work.
The	second	invocation	sends	an	integer,	a	string,	and	a	Boolean.	The	string	has	a
valid	integer	value,	so	if	PHP	was	allowed	to	use	type	juggling,	the	invocation	would
resolve	just	normally.	But	in	this	example,	it	will	fail	because	of	the	declaration	at	the
top	of	the	file.
The	third	invocation	will	always	fail	as	the	string	“something”	cannot	be	transformed
into	a	valid	integer.

Let’s	try	to	use	a	function	within	our	project.	In	our	index.php,	we	have	a	foreach	loop
that	iterates	the	books	and	prints	them.	The	code	inside	the	loop	is	kind	of	hard	to
understand	as	it	is	a	mix	of	HTML	with	PHP,	and	there	is	a	conditional	too.	Let’s	try	to
abstract	the	logic	inside	the	loop	into	a	function.	First,	create	the	new	functions.php	file
with	the	following	content:

<?php

function	printableTitle(array	$book):	string	{

				$result	=	'<i>'	.	$book['title']	.	'</i>	-	'	.	$book['author'];

				if	(!$book['available'])	{

								$result	.=	'	Not	available';

				}

				return	$result;

}

This	file	will	contain	our	functions.	The	first	one,	printableTitle,	takes	an	array
representing	a	book,	and	builds	a	string	with	a	nice	representation	of	the	book	in	HTML.
The	code	is	the	same	as	before,	just	encapsulated	in	a	function.

Now	index.php	will	have	to	include	the	functions.php	file,	and	then	use	the	function
inside	the	loop.	Let’s	see	how:

<?php	require_once	'functions.php'	?>

<!DOCTYPE	html>

<html	lang="en">

//...

?>

				

<?php	foreach	($books	as	$book):	?>

				<?php	echo	printableTitle($book);	?>	

<?php	endforeach;	?>

				

//...

Well,	now	our	loop	looks	way	cleaner,	right?	Also,	if	we	need	to	print	the	title	of	the	book
somewhere	else,	we	can	reuse	the	function	instead	of	duplicating	code!

The	filesystem
As	you	might	have	already	noticed,	PHP	comes	with	a	lot	of	native	functions	that	help	you
to	manage	arrays	and	strings	in	an	easier	way	as	compared	to	other	languages.	The
filesystem	is	another	of	those	areas	where	PHP	tried	to	make	it	as	easy	as	possible.	The	list
of	functions	extends	to	over	80	different	ones,	so	we	will	cover	here	just	the	ones	that	you
are	more	likely	to	use.

Reading	files
In	our	code,	we	define	a	list	of	books.	So	far,	we	have	only	three	books,	but	you	can	guess
that	if	we	want	to	make	this	application	useful,	the	list	will	grow	way	more.	Storing	the
information	inside	your	code	is	not	practical	at	all,	so	we	have	to	start	thinking	about
externalizing	it.

If	we	think	in	terms	of	separating	the	code	from	the	data,	there	is	no	need	to	keep	using
PHP	arrays	to	define	the	books.	Using	a	less	language-restrictive	system	will	allow	people
who	do	not	know	PHP	to	edit	the	content	of	the	file.	There	are	many	solutions	for	this,	like
CSV	or	XML	files,	but	nowadays,	one	of	the	most	used	systems	to	represent	data	in	web
applications	is	JSON.	PHP	allows	you	to	convert	arrays	to	JSON	and	vice	versa	using	just
a	couple	of	functions:	json_encode	and	json_decode.	Easy,	right?

Save	the	following	into	books.json:

[

				{

								"title":	"To	Kill	A	Mockingbird",

								"author":	"Harper	Lee",

								"available":	true,

								"pages":	336,

								"isbn":	9780061120084

				},

				{

								"title":	"1984",

								"author":	"George	Orwell",

								"available":	true,

								"pages":	267,

								"isbn":	9780547249643

				},

				{

								"title":	"One	Hundred	Years	Of	Solitude",

								"author":	"Gabriel	Garcia	Marquez",

								"available":	false,

								"pages":	457,

								"isbn":	9785267006323

				}

]

The	preceding	code	snippet	is	a	JSON	representation	of	our	array	in	PHP.	Now,	let’s	read
this	information	with	the	function	file_get_contents,	and	transform	it	to	a	PHP	array
with	json_decode.	Replace	the	array	with	these	two	lines:

$booksJson	=	file_get_contents('books.json');

$books	=	json_decode($booksJson,	true);

With	just	one	function,	we	are	able	to	store	all	the	content	from	the	JSON	file	in	a	variable
as	a	string.	With	the	function,	we	transform	this	JSON	string	into	an	array.	The	second
argument	in	json_decode	tells	PHP	to	transform	it	to	an	array,	otherwise	it	would	use
objects,	which	we	have	not	covered	as	yet.

When	referencing	files	within	PHP	functions,	you	need	to	know	whether	to	use	absolute

or	relative	paths.	When	using	relative	paths,	PHP	will	try	to	find	the	file	inside	the	same
directory	where	the	PHP	script	is.	If	not	found,	PHP	will	try	to	find	it	in	other	directories
defined	in	the	include_path	directive,	but	that	is	something	you	would	like	to	avoid.
Instead,	you	could	use	absolute	paths,	which	is	a	way	to	make	sure	the	reference	will	not
be	misunderstood.	Let’s	see	two	examples:

$booksJson	=	file_get_contents('/home/user/bookstore/books.json');

$booksJson	=	file_get_contents(__DIR__,	'/books.json');

The	constant	__DIR__	contains	the	directory	name	of	the	current	PHP	file,	and	if	we
prefix	it	to	the	name	of	our	file,	we	will	have	an	absolute	path.	In	fact,	even	though	you
might	think	that	writing	down	the	whole	path	by	yourself	is	better,	using	__DIR__	allows
you	to	move	your	application	anywhere	else	without	needing	to	change	anything	in	the
code,	as	its	content	will	always	match	the	directory	of	the	script,	whereas	the	hardcoded
path	from	the	first	example	will	not	be	valid	anymore.

Writing	files
Let’s	add	some	functionality	to	our	application.	Imagine	that	we	want	to	allow	the	user	to
take	the	book	that	he	or	she	is	looking	for,	but	only	if	it	is	available.	If	you	remember,	we
identify	the	book	by	the	query	string.	That	is	not	very	practical,	so	let’s	help	the	user	by
adding	links	to	the	list	of	books,	so	when	you	click	on	a	link,	the	query	string	will	contain
that	book’s	information.

<?php	require_once	'functions.php'	?>

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="UTF-8">

				<title>Bookstore</title>

</head>

<body>

				<p><?php	echo	loginMessage();	?></p>

<?php

$booksJson	=	file_get_contents('books.json');

$books	=	json_decode($booksJson,	true);

if	(isset($_GET['title']))	{

				echo	'<p>Looking	for	'	.	$_GET['title']	.	'</p>';

}	else	{

				echo	'<p>You	are	not	looking	for	a	book?</p>';

}

?>

				

<?php	foreach	($books	as	$book):	?>

				

								<a	href="?title=<?php	echo	$book['title'];	?>">

												<?php	echo	printableTitle($book);	?>

								

				

<?php	endforeach;	?>

				

</body>

</html>

If	you	try	the	preceding	code	in	your	browser,	you	will	see	that	the	list	contains	links,	and
by	clicking	on	them,	the	page	refreshes	with	the	new	title	as	part	of	the	query	string.	Let’s
now	check	if	the	book	is	available	or	not,	and	if	it	is,	let’s	update	its	available	field	to
false.	Add	the	following	function	in	your	functions.php:

function	bookingBook(array	&$books,	string	$title):	bool	{

				foreach	($books	as	$key	=>	$book)	{

								if	($book['title']	==	$title)	{

												if	($book['available'])	{

																$books[$key]['available']	=	false;

																return	true;

												}	else	{

																return	false;

												}

								}

				}

				return	false;

}

We	have	to	pay	attention	as	the	code	starts	getting	complex.	This	function	takes	an	array
of	books	and	a	title,	and	returns	a	Boolean,	being	true	if	it	could	book	it	or	false	if	not.
Moreover,	the	array	of	books	is	passed	by	reference,	which	means	that	all	changes	to	that
array	will	affect	the	original	array	too.	Even	though	we	discouraged	this	previously,	in	this
case,	it	is	a	reasonable	approach.

We	iterate	the	whole	array	of	books,	asking	each	time	if	the	title	of	the	current	book
matches	the	one	we	are	looking	for.	Only	if	that	is	true,	we	will	check	if	the	book	is
available	or	not.	If	it	is,	we	will	update	the	availability	to	false	and	return	true,	meaning
that	we	booked	the	book.	If	the	book	is	not	available,	we	will	just	return	false.

Finally,	note	that	foreach	defines	$key	and	$book.	We	do	so	because	the	$book	variable	is
a	copy	of	the	$books	array,	and	if	we	edit	it,	the	original	one	will	not	be	affected.	Instead,
we	ask	for	the	key	of	that	book	too,	so	when	editing	the	array,	we	use	$books[$key]
instead	of	$book.

We	can	use	this	function	from	the	index.php	file:

//...

				echo	'<p>Looking	for	'	.	$_GET['title']	.	'</p>';

				if	(bookingBook($books,	$_GET['title']))	{

								echo	'Booked!';

				}	else	{

								echo	'The	book	is	not	available…';

				}

}	else	{

//...

Try	it	out	in	your	browser.	By	clicking	on	an	available	book,	you	will	get	the	Booked!
message.	We	are	almost	done!	We	are	just	missing	the	last	part:	persist	this	information
back	to	the	filesystem.	In	order	to	do	that,	we	have	to	construct	the	new	JSON	content	and
then	to	write	it	back	to	the	books.json	file.	Of	course,	let’s	do	that	only	if	the	book	was
available.

function	updateBooks(array	$books)	{

				$booksJson	=	json_encode($books);

				file_put_contents(__DIR__	.	'/books.json',	$booksJson);

}

The	json_encode	function	does	the	opposite	of	json_decode:	it	takes	an	array—or	any
other	variable—and	transforms	it	to	JSON.	The	file_put_contents	function	is	used	to
write	to	the	file	referenced	as	the	first	argument,	the	content	sent	as	the	second	argument.
Would	you	know	how	to	use	this	function?

//...

if	(bookingBook($books,	$_GET['title']))	{

				echo	'Booked!';

				updateBooks($books);

}	else	{

				echo	'The	book	is	not	available…';

}

//...

Note
Files	versus	databases

Storing	information	in	JSON	files	is	better	than	having	it	in	your	code,	but	it	is	still	not	the
best	option.	In	Chapter	5,	Using	Databases,	you	will	learn	how	to	store	data	of	the
application	in	a	database,	which	is	a	way	better	solution.

Other	filesystem	functions
If	you	want	to	make	your	application	more	robust,	you	could	check	that	the	books.json
file	exists,	that	you	have	read	and	write	permission,	and/or	that	the	previous	content	was	a
valid	JSON.	You	can	use	some	PHP	functions	for	that:

file_exists:	This	function	takes	the	path	of	the	file,	and	returns	a	Boolean:	true
when	the	file	exists	and	false	otherwise.
is_writable:	This	function	works	the	same	as	file_exists,	but	checks	whether	the
file	is	writable	or	not.

You	can	find	the	full	list	of	functions	at	http://uk1.php.net/manual/en/book.filesystem.php.
You	can	find	functions	to	move,	copy,	or	remove	files,	create	directories,	give	permissions
and	ownership,	and	so	on.

http://uk1.php.net/manual/en/book.filesystem.php

Summary
In	this	chapter,	we	went	through	all	the	basics	of	procedural	PHP	while	writing	simple
examples	in	order	to	practice	them.	You	now	know	how	to	use	variables	and	arrays	with
control	structures	and	functions,	how	to	get	information	from	HTTP	requests,	and	how	to
interact	with	the	filesystem	among	other	things.

In	the	next	chapter,	we	will	study	the	other	and	most	used	paradigm:	OOP.	That	is	one	step
closer	to	writing	clean	and	well-structured	applications.

Chapter	4.	Creating	Clean	Code	with
OOP
When	applications	start	growing,	representing	more	complex	data	structures	becomes
necessary.	Primitive	types	like	integers,	strings,	or	arrays	are	not	enough	when	you	want	to
associate	specific	behavior	to	data.	More	than	half	a	century	ago,	computer	scientists
started	using	the	concept	of	objects	to	refer	to	the	encapsulation	of	properties	and
functionality	that	represented	an	object	in	real	life.

Nowadays,	OOP	is	one	of	the	most	used	programming	paradigms,	and	you	will	be	glad	to
know	that	PHP	supports	it.	Knowing	OOP	is	not	just	a	matter	of	knowing	the	syntax	of	the
language,	but	knowing	when	and	how	to	use	it.	But	do	not	worry,	after	this	chapter	and	a
bit	of	practice,	you	will	become	a	confident	OOP	developer.

In	this	chapter,	you	will	learn	about	the	following:

Classes	and	objects
Visibility,	static	properties,	and	methods
Namespaces
Autoloading	classes
Inheritance,	interfaces,	and	traits
Handling	exceptions
Design	patterns
Anonymous	functions

Classes	and	objects
Objects	are	representations	of	real-life	elements.	Each	object	has	a	set	of	attributes	that
differentiates	it	from	the	rest	of	the	objects	of	the	same	class,	and	is	capable	of	a	set	of
actions.	A	class	is	the	definition	of	what	an	object	looks	like	and	what	it	can	do,	like	a
pattern	for	objects.

Let’s	take	our	bookstore	example,	and	think	of	the	kind	of	real-life	objects	it	contains.	We
store	books,	and	let	people	take	them	if	they	are	available.	We	could	think	of	two	types	of
objects:	books	and	customers.	We	can	define	these	two	classes	as	follows:

<?php

class	Book	{

}

class	Customer	{

}

A	class	is	defined	by	the	keyword	class	followed	by	a	valid	class	name—that	follows	the
same	rules	as	any	other	PHP	label,	like	variable	names—and	a	block	of	code.	But	if	we
want	to	have	a	specific	book,	that	is,	an	object	Book—or	instance	of	the	class	Book—we
have	to	instantiate	it.	To	instantiate	an	object,	we	use	the	keyword	new	followed	by	the
name	of	the	class.	We	assign	the	instance	to	a	variable,	as	if	it	was	a	primitive	type:

$book	=	new	Book();

$customer	=	new	Customer();

You	can	create	as	many	instances	as	you	need,	as	long	as	you	assign	them	to	different
variables:

$book1	=	new	Book();

$book2	=	new	Book();

Class	properties
Let’s	think	about	the	properties	of	books	first:	they	have	a	title,	an	author,	and	an	ISBN.
They	can	also	be	available	or	unavailable.	Write	the	following	code	inside	Book.php:

<?php

class	Book	{

				public	$isbn;

				public	$title;

				public	$author;

				public	$available;

}

This	preceding	snippet	defines	a	class	that	represents	the	properties	that	a	book	has.	Do
not	bother	about	the	word	public;	we	will	explain	what	it	means	when	talking	about
visibility	in	the	next	section.	For	now,	just	think	of	properties	as	variables	inside	the	class.
We	can	use	these	variables	in	objects.	Try	adding	this	code	at	the	end	of	the	Book.php	file:

$book	=	new	Book();

$book->title	=	"1984";

$book->author	=	"George	Orwell";

$book->available	=	true;

var_dump($book);

Printing	the	object	shows	the	value	of	each	of	its	properties,	in	a	way	similar	to	the	way
arrays	do	with	their	keys.	You	can	see	that	properties	have	a	type	at	the	moment	of
printing,	but	we	did	not	define	this	type	explicitly;	instead,	the	variable	took	the	type	of
the	value	assigned.	This	works	exactly	the	same	way	that	normal	variables	do.

When	creating	multiple	instances	of	an	object	and	assigning	values	to	their	properties,
each	object	will	have	their	own	values,	so	you	will	not	override	them.	The	next	bit	of	code
shows	you	how	this	works:

$book1	=	new	Book();

$book1->title	=	"1984";

$book2	=	new	Book();

$book2->title	=	"To	Kill	a	Mockingbird";

var_dump($book1,	$book2);

Class	methods
Methods	are	functions	defined	inside	a	class.	Like	functions,	methods	get	some	arguments
and	perform	some	actions,	optionally	returning	a	value.	The	advantage	of	methods	is	that
they	can	use	the	properties	of	the	object	that	invoked	them.	Thus,	calling	the	same	method
in	two	different	objects	might	have	two	different	results.

Even	though	it	is	usually	a	bad	idea	to	mix	HTML	with	PHP,	for	the	sake	of	learning,	let’s
add	a	method	in	our	class	Book	that	returns	the	book	as	in	our	already	existing	function
printableTitle:

<?php

class	Book	{

				public	$isbn;

				public	$title;

				public	$author;

				public	$available;

				public	function	getPrintableTitle():	string	{

								$result	=	'<i>'	.	$this->title

												.	'</i>	-	'	.	$this->author;

								if	(!$this->available)	{

												$result	.=	'	Not	available';

								}

								return	$result;

				}

}

As	with	properties,	we	add	the	keyword	public	at	the	beginning	of	the	function,	but	other
than	that,	the	rest	looks	just	as	a	normal	function.	The	other	special	bit	is	the	use	of	$this:
it	represents	the	object	itself,	and	allows	you	to	access	the	properties	and	methods	of	that
same	object.	Note	how	we	refer	to	the	title,	author,	and	available	properties.

You	can	also	update	the	values	of	the	current	object	from	one	of	its	functions.	Let’s	use	the
available	property	as	an	integer	that	shows	the	number	of	units	available	instead	of	just	a
Boolean.	With	that,	we	can	allow	multiple	customers	to	borrow	different	copies	of	the
same	book.	Let’s	add	a	method	to	give	one	copy	of	a	book	to	a	customer,	updating	the
number	of	units	available:

public	function	getCopy():	bool	{

				if	($this->available	<	1)	{

								return	false;

				}	else	{

								$this->available--;

								return	true;

				}

}

In	this	preceding	method,	we	first	check	if	we	have	at	least	one	available	unit.	If	we	do
not,	we	return	false	to	let	them	know	that	the	operation	was	not	successful.	If	we	do	have
a	unit	for	the	customer,	we	decrease	the	number	of	available	units,	and	then	return	true,

letting	them	know	that	the	operation	was	successful.	Let’s	see	how	you	can	use	this	class:

<?php

$book	=	new	Book();

$book->title	=	"1984";

$book->author	=	"George	Orwell";

$book->isbn	=	9785267006323;

$book->available	=	12;

if	($book->getCopy())	{

				echo	'Here,	your	copy.';

}	else	{

				echo	'I	am	afraid	that	book	is	not	available.';

}

What	would	this	last	piece	of	code	print?	Exactly,	Here,	your	copy.	But	what	would	be
the	value	of	the	property	available?	It	would	be	11,	which	is	the	result	of	the	invocation	of
getCopy.

Class	constructors
You	might	have	noticed	that	it	looks	like	a	pain	to	instantiate	the	Book	class,	and	set	all	its
values	each	time.	What	if	our	class	has	30	properties	instead	of	four?	Well,	hopefully,	you
will	never	do	that,	as	it	is	very	bad	practice.	Still,	there	is	a	way	to	mitigate	that	pain:
constructors.

Constructors	are	functions	that	are	invoked	when	someone	creates	a	new	instance	of	the
class.	They	look	like	normal	methods,	with	the	exception	that	their	name	is	always
__construct,	and	that	they	do	not	have	a	return	statement,	as	they	always	have	to	return
the	new	instance.	Let’s	see	an	example:

public	function	__construct(int	$isbn,	string	$title,	string	$author,	int	

$available)	{

				$this->isbn	=	$isbn;

				$this->title	=	$title;

				$this->author	=	$author;

				$this->available	=	$available;

}

The	constructor	takes	four	arguments,	and	then	assigns	the	value	of	one	of	the	arguments
to	each	of	the	properties	of	the	instance.	To	instantiate	the	Book	class,	we	use	the
following:

$book	=	new	Book("1984",	"George	Orwell",	9785267006323,	12);

This	object	is	exactly	the	same	as	the	object	when	we	set	the	value	to	each	of	its	properties
manually.	But	this	one	looks	cleaner,	right?	This	does	not	mean	you	cannot	set	new	values
to	this	object	manually,	it	just	helps	you	in	constructing	new	objects.

As	a	constructor	is	still	a	function,	it	can	use	default	arguments.	Imagine	that	the	number
of	units	will	usually	be	0	when	creating	the	object,	and	later,	the	librarian	will	add	units
when	available.	We	could	set	a	default	value	to	the	$available	argument	of	the
constructor,	so	if	we	do	not	send	the	number	of	units	when	creating	the	object,	the	object
will	be	instantiated	with	its	default	value:

public	function	__construct(

				int	$isbn,

				string	$title,

				string	$author,

				int	$available	=	0

)	{

				$this->isbn	=	$isbn;

				$this->title	=	$title;

				$this->author	=	$author;

				$this->available	=	$available;

}

We	could	use	the	preceding	constructor	in	two	different	ways:

$book1	=	new	Book("1984",	"George	Orwell",	9785267006323,	12);

$book2	=	new	Book("1984",	"George	Orwell",	9785267006323);

$book1	will	set	the	number	of	units	available	to	12,	whereas	$book2	will	set	it	to	the
default	value	of	0.	But	do	not	trust	me;	try	it	by	yourself!

Magic	methods
There	is	a	special	group	of	methods	that	have	a	different	behavior	than	the	normal	ones.
Those	methods	are	called	magic	methods,	and	they	usually	are	triggered	by	the
interaction	of	the	class	or	object,	and	not	by	invocations.	You	have	already	seen	one	of
them,	the	constructor	of	the	class,	__construct.	This	method	is	not	invoked	directly,	but
rather	used	when	creating	a	new	instance	with	new.	You	can	easily	identify	magic
methods,	because	they	start	with	__.	The	following	are	some	of	the	most	used	magic
methods:

__toString:	This	method	is	invoked	when	we	try	to	cast	an	object	to	a	string.	It	takes
no	parameters,	and	it	is	expected	to	return	a	string.
__call:	This	is	the	method	that	PHP	calls	when	you	try	to	invoke	a	method	on	a	class
that	does	not	exist.	It	gets	the	name	of	the	method	as	a	string	and	the	list	of
parameters	used	in	the	invocation	as	an	array,	through	the	argument.
__get:	This	is	a	version	of	__call	for	properties.	It	gets	the	name	of	the	property	that
the	user	was	trying	to	access	through	parameters,	and	it	can	return	anything.

You	could	use	the	__toString	method	to	replace	the	current	getPrintableTitle	method
in	our	Book	class.	To	do	that,	just	change	the	name	of	the	method	as	follows:

public	function	__toString()	{

				$result	=	'<i>'	.	$this->title	.	'</i>	-	'	.	$this->author;

				if	(!$this->available)	{

								$result	.=	'	Not	available';

				}

				return	$result;

}

To	try	the	preceding	code,	you	can	just	add	the	following	snippet	that	creates	an	object
book	and	then	casts	it	to	a	string,	invoking	the	__toString	method:

$book	=	new	Book(1234,	'title',	'author');

$string	=	(string)	$book;	//	title	-	author	Not	available

As	the	name	suggests,	those	are	magic	methods,	so	most	of	the	time	their	features	will
look	like	magic.	For	obvious	reasons,	we	personally	encourage	developers	to	use
constructors	and	maybe	__toString,	but	be	careful	about	when	to	use	the	rest,	as	you
might	make	your	code	quite	unpredictable	for	people	not	familiar	with	it.

Properties	and	methods	visibility
So	far,	all	the	properties	and	methods	defined	in	our	Book	class	were	tagged	as	public.
That	means	that	they	are	accessible	to	anyone,	or	more	precisely,	from	anywhere.	This	is
called	the	visibility	of	the	property	or	method,	and	there	are	three	types	of	visibility.	In	the
order	of	being	more	restrictive	to	less,	they	are	as	follows:

private:	This	type	allows	access	only	to	members	of	the	same	class.	If	A	and	B	are
instances	of	the	class	C,	A	can	access	the	properties	and	methods	of	B.
protected:	This	type	allows	access	to	members	of	the	same	class	and	instances	from
classes	that	inherit	from	that	one	only.	You	will	see	inheritance	in	the	next	section.
public:	This	type	refers	to	a	property	or	method	that	is	accessible	from	anywhere.
Any	classes	or	code	in	general	from	outside	the	class	can	access	it.

In	order	to	show	some	examples,	let’s	first	create	a	second	class	in	our	application.	Save
this	into	a	Customer.php	file:

<?php

class	Customer	{

				private	$id;

				private	$firstname;

				private	$surname;

				private	$email;

				public	function	__construct(

								int	$id,

								string	$firstname,

								string	$surname,

								string	$email

)	{

								$this->id	=	$id;

								$this->firstname	=	$firstname;

								$this->surname	=	$surname;

								$this->email	=	$email;

				}

}

This	class	represents	a	customer,	and	its	properties	consist	of	the	general	information	that
the	bookstores	usually	know	about	their	customers.	But	for	security	reasons,	we	cannot	let
everybody	know	about	the	personal	data	of	our	customers,	so	we	set	every	property	as
private.

So	far,	we	have	been	adding	the	code	to	create	objects	in	the	same	Book.php	file,	but	since
now	we	have	two	classes,	it	seems	natural	to	leave	the	classes	in	their	respective	files,	and
create	and	play	with	objects	in	a	separate	file.	Let’s	name	this	third	file	init.php.	In	order
to	instantiate	objects	of	a	given	class,	PHP	needs	to	know	where	the	class	is.	For	that,	just
include	the	file	with	require_once.

<?php

require_once	__DIR__	.	'/Book.php';

require_once	__DIR__	.	'/Customer.php';

$book1	=	new	Book("1984",	"George	Orwell",	9785267006323,	12);

$book2	=	new	Book("To	Kill	a	Mockingbird",	"Harper	Lee",	9780061120084,	2);

$customer1	=	new	Customer(1,	'John',	'Doe',	'johndoe@mail.com');

$customer2	=	new	Customer(2,	'Mary',	'Poppins',	'mp@mail.com');

You	do	not	need	to	include	the	files	every	single	time.	Once	you	include	them,	PHP	will
know	where	to	find	the	classes,	even	though	your	code	is	in	a	different	file.

Note
Conventions	for	classes

When	working	with	classes,	you	should	know	that	there	are	some	conventions	that
everyone	tries	to	follow	in	order	to	ensure	clean	code	which	is	easy	to	maintain.	The	most
important	ones	are	as	follows:

Each	class	should	be	in	a	file	named	the	same	as	the	class	along	with	the	.php
extension
Class	names	should	be	in	CamelCase,	that	is,	each	word	should	start	with	an
uppercase	letter,	followed	by	the	rest	of	the	word	in	lowercase
A	file	should	contain	only	the	code	of	one	class
Inside	a	class,	you	should	first	place	the	properties,	then	the	constructor,	and	finally,
the	rest	of	the	methods

To	show	how	visibility	works,	let’s	try	the	following	code:

$book1->available	=	2;	//	OK

$customer1->id	=	3;	//	Error!

We	already	know	that	the	properties	of	the	Book	class’	objects	are	public,	and	therefore,
editable	from	outside.	But	when	trying	to	change	a	value	from	Customer,	PHP	complains,
as	its	properties	are	private.

Encapsulation
When	working	with	objects,	one	of	the	most	important	concepts	you	have	to	know	and
apply	is	encapsulation.	Encapsulation	tries	to	group	the	data	of	the	object	with	its
methods	in	an	attempt	to	hide	the	internal	structure	of	the	object	from	the	rest	of	the
world.	In	simple	words,	you	could	say	that	you	use	encapsulation	if	the	properties	of	an
object	are	private,	and	the	only	way	to	update	them	is	through	public	methods.

The	reason	for	using	encapsulation	is	to	make	it	easier	for	a	developer	to	make	changes	to
the	internal	structure	of	the	class	without	directly	affecting	the	external	code	that	uses	that
class.	For	example,	imagine	that	our	Customer	class,	that	now	has	two	properties	to	define
its	name—firstname	and	surname—has	to	change.	From	now	on,	we	only	have	one
property	name	that	contains	both.	If	we	were	accessing	its	properties	straightaway,	we
should	change	all	of	those	accesses!

Instead,	if	we	set	the	properties	as	private	and	enable	two	public	methods,	getFirstname
and	getSurname,	even	if	we	have	to	change	the	internal	structure	of	the	class,	we	could
just	change	the	implementation	of	those	two	methods—which	is	at	one	place	only—and
the	rest	of	the	code	that	uses	our	class	will	not	be	affected	at	all.	This	concept	is	also
known	as	information	hiding.

The	easiest	way	to	implement	this	idea	is	by	setting	all	the	properties	of	the	class	as
private	and	enabling	two	methods	for	each	of	the	properties:	one	will	get	the	current	value
(also	known	as	getter),	and	the	other	will	allow	you	to	set	a	new	value	(known	as	setter).
That’s	at	least	the	most	common	and	easy	way	to	encapsulate	data.

But	let’s	go	one	step	further:	when	defining	a	class,	think	of	the	data	that	you	want	the
user	to	be	able	to	change	and	to	retrieve,	and	only	add	setters	and	getters	for	them.	For
example,	customers	might	change	their	e-mail	address,	but	their	name,	surname,	and	ID
remains	the	same	once	we	create	them.	The	new	definition	of	the	class	would	look	like	the
following:

<?php

class	Customer	{

				private	$id;

				private	$name;

				private	$surname;

				private	$email;

				public	function	__construct(

								int	$id,

								string	$firstname,

								string	$surname,

								string	$email

)	{

								$this->id	=	$id;

								$this->firstname	=	$firstname;

								$this->surname	=	$surname;

								$this->email	=	$email;

				}

				public	function	getId():	id	{

								return	$this->id;

				}

				public	function	getFirstname():	string	{

								return	$this->firstname;

				}

				public	function	getSurname():	string	{

								return	$this->surname;

				}

				public	function	getEmail():	string	{

								return	$this->email;

				}

				public	function	setEmail(string	$email)	{

								$this->email	=	$email;

				}

}

On	the	other	hand,	our	books	also	remain	almost	the	same.	The	only	change	possible	is	the
number	of	available	units.	But	we	usually	take	or	add	one	book	at	a	time	instead	of	setting
the	specific	number	of	units	available,	so	a	setter	here	is	not	really	useful.	We	already	have
the	getCopy	method	that	takes	one	copy	when	possible;	let’s	add	an	addCopy	method,	plus
the	rest	of	the	getters:

<?php

class	Book	{

				private	$isbn;

				private	$title;

				private	$author;

				private	$available;

				public	function	__construct(

								int	$isbn,

								string	$title,

								string	$author,

								int	$available	=	0

)	{

								$this->isbn	=	$isbn;

								$this->title	=	$title;

								$this->author	=	$author;

								$this->available	=	$available;

				}

				public	function	getIsbn():	int	{

								return	$this->isbn;

				}

				public	function	getTitle():	string	{

								return	$this->title;

				}

				public	function	getAuthor():	string	{

								return	$this->author;

				}

				public	function	isAvailable():	bool	{

								return	$this->available;

				}

				public	function	getPrintableTitle():	string	{

								$result	=	'<i>'	.	$this->title	.	'</i>	-	'	.	$this->author;

								if	(!$this->available)	{

												$result	.=	'	Not	available';

								}

								return	$result;

				}

				public	function	getCopy():	bool	{

								if	($this->available	<	1)	{

												return	false;

								}	else	{

												$this->available--;

												return	true;

								}

				}

				public	function	addCopy()	{

								$this->available++;

				}

}

When	the	number	of	classes	in	your	application,	and	with	it,	the	number	of	relationships
between	classes	increases,	it	is	helpful	to	represent	these	classes	in	a	diagram.	Let’s	call
this	diagram	a	UML	diagram	of	classes,	or	just	an	hierarchic	tree.	The	hierarchic	tree	for
our	two	classes	would	look	as	follows:

We	only	show	public	methods,	as	the	protected	or	private	ones	cannot	be	called	from
outside	the	class,	and	thus,	they	are	not	useful	for	a	developer	who	just	wants	to	use	these
classes	externally.

Static	properties	and	methods
So	far,	all	the	properties	and	methods	were	linked	to	a	specific	instance;	so	two	different
instances	could	have	two	different	values	for	the	same	property.	PHP	allows	you	to	have
properties	and	methods	linked	to	the	class	itself	rather	than	to	the	object.	These	properties
and	methods	are	defined	with	the	keyword	static.

private	static	$lastId	=	0;

Add	the	preceding	property	to	the	Customer	class.	This	property	shows	the	last	ID
assigned	to	a	user,	and	is	useful	in	order	to	know	the	ID	that	should	be	assigned	to	a	new
user.	Let’s	change	the	constructor	of	our	class	as	follows:

public	function	__construct(

				int	$id,

				string	$name,

				string	$surname,

				string	$email

)	{

				if	($id	==	null)	{

								$this->id	=	++self::$lastId;

				}	else	{

								$this->id	=	$id;

								if	($id	>	self::$lastId)	{

												self::$lastId	=	$id;

								}

				}

				$this->name	=	$name;

				$this->surname	=	$surname;

				$this->email	=	$email;

}

Note	that	when	referring	to	a	static	property,	we	do	not	use	the	variable	$this.	Instead,	we
use	self::,	which	is	not	tied	to	any	instance	but	to	the	class	itself.	In	this	last	constructor,
we	have	two	options.	We	are	either	provided	with	an	ID	value	that	is	not	null,	or	we	send	a
null	in	its	place.	When	the	received	ID	is	null,	we	use	the	static	property	$lastId	to	know
the	last	ID	used,	increase	it	by	one,	and	assign	it	to	the	property	$id.	If	the	last	ID	we
inserted	was	5,	this	will	update	the	static	property	to	6,	and	then	assign	it	to	the	instance
property.	Next	time	we	create	a	new	customer,	the	$lastId	static	property	will	be	6.
Instead,	if	we	get	a	valid	ID	as	part	of	the	arguments,	we	assign	it,	and	check	if	the
assigned	$id	is	greater	than	the	static	$lastId.	If	it	is,	we	update	it.	Let’s	see	how	we
would	use	this:

$customer1	=	new	Customer(3,	'John',	'Doe',	'johndoe@mail.com');

$customer2	=	new	Customer(null,	'Mary',	'Poppins',	'mp@mail.com');

$customer3	=	new	Customer(7,	'James',	'Bond',	'007@mail.com');

In	the	preceding	example,	$customer1	specifies	that	his	ID	is	3,	probably	because	he	is	an
existing	customer	and	wants	to	keep	the	same	ID.	That	sets	both	his	ID	and	the	last	static
ID	to	3.	When	creating	the	second	customer,	we	do	not	specify	the	ID,	so	the	constructor
will	take	the	last	ID,	increase	it	by	1,	and	assign	it	to	the	customer.	So	$customer2	will

have	the	ID	4,	and	the	latest	ID	will	be	4	too.	Finally,	our	secret	agent	knows	what	he
wants,	so	he	forces	the	system	to	have	the	ID	as	7.	The	latest	ID	will	be	updated	to	7	too.

Another	benefit	of	static	properties	and	methods	is	that	we	do	not	need	an	object	to	use
them.	You	can	refer	to	a	static	property	or	method	by	specifying	the	name	of	the	class,
followed	by	::,	and	the	name	of	the	property/method.	That	is,	of	course,	if	the	visibility
rules	allow	you	to	do	that,	which,	in	this	case,	it	does	not,	as	the	property	is	private.	Let’s
add	a	public	static	method	to	retrieve	the	last	ID:

public	static	function	getLastId():	int	{

				return	self::$lastId;

}

You	can	reference	it	either	using	the	class	name	or	an	existing	instance,	from	anywhere	in
the	code:

Customer::getLastId();

$customer1::getLastId();

Namespaces
You	know	that	you	cannot	have	two	classes	with	the	same	name,	since	PHP	would	not
know	which	one	is	being	referred	to	when	creating	a	new	object.	To	solve	this	issue,	PHP
allows	the	use	of	namespaces,	which	act	as	paths	in	a	filesystem.	In	this	way,	you	can
have	as	many	classes	with	the	same	name	as	you	need,	as	long	as	they	are	all	defined	in
different	namespaces.	It	is	worth	noting	that,	even	though	namespaces	and	the	file	path
will	usually	be	the	same,	this	is	enforced	by	the	developer	rather	than	by	the	language;	you
could	actually	use	any	namespace	that	has	nothing	to	do	with	the	filesystem.

Specifying	a	namespace	has	to	be	the	first	thing	that	you	do	in	a	file.	In	order	to	do	that,
use	the	namespace	keyword	followed	by	the	namespace.	Each	section	of	the	namespace	is
separated	by	\,	as	if	it	was	a	different	directory.	If	you	do	not	specify	the	namespace,	the
class	will	belong	to	the	base	namespace,	or	root.	At	the	beginning	of	both	files—Book.php

and	Customer.php—add	the	following:

<?php

namespace	Bookstore\Domain;

The	preceding	line	of	code	sets	the	namespace	of	our	classes	as	Bookstore\Domain.	The
full	name	of	our	classes	then	is	Bookstore\Domain\Book	and
Bookstore\Domain\Customer.	If	you	try	to	access	the	init.php	file	from	your	browser,
you	will	see	an	error	saying	that	either	the	class	Book	or	the	class	Customer	were	not
found.	But	we	included	the	files,	right?	That	happens	because	PHP	thinks	that	you	are
trying	to	access	\Book	and	\Customer	from	the	root.	Do	not	worry,	there	are	several	ways
to	amend	this.

One	way	would	be	to	specify	the	full	name	of	the	classes	when	referencing	them,	that	is,
using	$customer	=	new	Bookstore\Domain\Book();	instead	of	$book	=	new	Book();.
But	that	does	not	sound	practical,	does	it?

Another	way	would	be	to	say	that	the	init.php	file	belongs	to	the	BookStore\Domain
namespace.	That	means	that	all	the	references	to	classes	inside	init.php	will	have	the
BookStore\Domain	prefixed	to	them,	and	you	will	be	able	to	use	Book	and	Customer.	The
downside	of	this	solution	is	that	you	cannot	easily	reference	other	classes	from	other
namespaces,	as	any	reference	to	a	class	will	be	prefixed	with	that	namespace.

The	best	solution	is	to	use	the	keyword	use.	This	keyword	allows	you	to	specify	a	full
class	name	at	the	beginning	of	the	file,	and	then	use	the	simple	name	of	the	class	in	the
rest	of	that	file.	Let’s	see	an	example:

<?php

use	Bookstore\Domain\Book;

use	Bookstore\Domain\Customer;

require_once	__DIR__	.	'/Book.php';

require_once	__DIR__	.	'/Customer.php';

//...

In	the	preceding	file,	each	time	that	we	reference	Book	or	Customer,	PHP	will	know	that
we	actually	want	to	use	the	full	class	name,	that	is,	with	Bookstore\Domain\	prefixed	to
it.	This	solution	allows	you	to	have	a	clean	code	when	referencing	those	classes,	and	at	the
same	time,	to	be	able	to	reference	classes	from	other	namespaces	if	needed.

But	what	if	you	want	to	include	two	different	classes	with	the	same	name	in	the	same	file?
If	you	set	two	use	statements,	PHP	will	not	know	which	one	to	choose,	so	we	still	have
the	same	problem	as	before!	To	fix	that,	either	you	use	the	full	class	name—with
namespace—each	time	you	want	to	reference	any	of	the	classes,	or	you	use	aliases.

Imagine	that	we	have	two	Book	classes,	the	first	one	in	the	namespace	Bookstore\Domain
and	the	second	one	in	Library\Domain.	To	solve	the	conflict,	you	could	do	as	follows:

use	Bookstore\Domain\Book;

use	Library\Domain\Book	as	LibraryBook;

The	keyword	as	sets	an	alias	to	that	class.	In	that	file,	whenever	you	reference	the	class
LibraryBook,	you	will	actually	be	referencing	the	class	Library\Domain\Book.	And	when
referencing	Book,	PHP	will	just	use	the	one	from	Bookstore.	Problem	solved!

Autoloading	classes
As	you	already	know,	in	order	to	use	a	class,	you	need	to	include	the	file	that	defines	it.	So
far,	we	have	been	including	the	files	manually,	as	we	only	had	a	couple	of	classes	and	used
them	in	one	file.	But	what	happens	when	we	use	several	classes	in	several	files?	There
must	be	a	smarter	way,	right?	Indeed	there	is.	Autoloading	to	the	rescue!

Autoloading	is	a	PHP	feature	that	allows	your	program	to	search	and	load	files
automatically	given	some	set	of	predefined	rules.	Each	time	you	reference	a	class	that
PHP	does	not	know	about,	it	will	ask	the	autoloader.	If	the	autoloader	can	figure	out
which	file	that	class	is	in,	it	will	load	it,	and	the	execution	of	the	program	will	continue	as
normal.	If	it	does	not,	PHP	will	stop	the	execution.

So,	what	is	the	autoloader?	It	is	no	more	than	a	PHP	function	that	gets	a	class	name	as	a
parameter,	and	it	is	expected	to	load	a	file.	There	are	two	ways	of	implementing	an
autoloader:	either	by	using	the	__autoload	function	or	the	spl_autoload_register	one.

Using	the	__autoload	function
Defining	a	function	named	__autoload	tells	PHP	that	the	function	is	the	autoloader	that	it
must	use.	You	could	implement	an	easy	solution:

function	__autoload($classname)	{

				$lastSlash	=	strpos($classname,	'\\')	+	1;

				$classname	=	substr($classname,	$lastSlash);

				$directory	=	str_replace('\\',	'/',	$classname);

				$filename	=	__DIR__	.	'/'	.	$directory	.	'.php';

				require_once($filename);

}

Our	intention	is	to	keep	all	PHP	files	in	src,	that	is,	the	source.	Inside	this	directory,	the
directory	tree	will	emulate	the	namespace	tree	of	the	classes	excluding	the	first	section
BookStore,	which	is	useful	as	a	namespace	but	not	necessary	as	a	directory.	That	means
that	our	Book	class,	with	full	class	name	BookStore\Domain\Book,	will	be	in
src/Domain/Book.php.

In	order	to	achieve	that,	our	__autoload	function	tries	to	find	the	first	occurrence	of	the
backslash	\	with	strpos,	and	then	extracts	from	that	position	until	the	end	with	substr.
This,	in	practice,	just	removes	the	first	section	of	the	namespace,	BookStore.	After	that,
we	replace	all	\	by	/	so	that	the	filesystem	can	understand	the	path.	Finally,	we
concatenate	the	current	directory,	the	class	name	as	a	directory,	and	the	.php	extension.

Before	trying	that,	remember	to	create	the	src/Domain	directory	and	move	the	two	classes
inside	it.	Also,	to	make	sure	that	we	are	testing	the	autoloader,	save	the	following	as	your
init.php,	and	go	to	http://localhost:8000/init.php:

<?php

use	Bookstore\Domain\Book;

use	Bookstore\Domain\Customer;

function	__autoload($classname)	{

				$lastSlash	=	strpos($classname,	'\\')	+	1;

				$classname	=	substr($classname,	$lastSlash);

				$directory	=	str_replace('\\',	'/',	$classname);

				$filename	=	__DIR__	.	'/src/'	.	$directory	.	'.php'

				require_once($filename);

}

$book1	=	new	Book("1984",	"George	Orwell",	9785267006323,	12);

$customer1	=	new	Customer(5,	'John',	'Doe',	'johndoe@mail.com');

The	browser	does	not	complain	now,	and	there	is	no	explicit	require_once.	Also
remember	that	the	__autoload	function	has	to	be	defined	only	once,	not	in	each	file.	So
from	now	on,	when	you	want	to	use	your	classes,	as	soon	as	the	class	is	in	a	namespace
and	file	that	follows	the	convention,	you	only	need	to	define	the	use	statement.	Way
cleaner	than	before,	right?

Using	the	spl_autoload_register	function
The	__autoload	solution	looks	pretty	good,	but	it	has	a	small	problem:	what	if	our	code	is
so	complex	that	we	do	not	have	only	one	convention,	and	we	need	more	than	one
implementation	of	the	__autoload	function?	As	we	cannot	define	two	functions	with	the
same	name,	we	need	a	way	to	tell	PHP	to	keep	a	list	of	possible	implementations	of	the
autoloader,	so	it	can	try	all	of	them	until	one	works.

That	is	the	job	of	spl_autoload_register.	You	define	your	autoloader	function	with	a
valid	name,	and	then	invoke	the	function	spl_autoload_register,	sending	the	name	of
your	autoloader	as	an	argument.	You	can	call	this	function	as	many	times	as	the	different
autoloaders	you	have	in	your	code.	In	fact,	even	if	you	have	only	one	autoloader,	using
this	system	is	still	a	better	option	than	the	__autoload	one,	as	you	make	it	easier	for
someone	else	who	has	to	add	a	new	autoloader	later:

function	autoloader($classname)	{

				$lastSlash	=	strpos($classname,	'\\')	+	1;

				$classname	=	substr($classname,	$lastSlash);

				$directory	=	str_replace('\\',	'/',	$classname);

				$filename	=	__DIR__	.	'/'	.	$directory	.	'.php';

				require_once($filename);

}

spl_autoload_register('autoloader');

Inheritance
We	have	presented	the	object-oriented	paradigm	as	the	panacea	for	complex	data
structures,	and	even	though	we	have	shown	that	we	can	define	objects	with	properties	and
methods,	and	it	looks	pretty	and	fancy,	it	is	not	something	that	we	could	not	solve	with
arrays.	Encapsulation	was	one	feature	that	made	objects	more	useful	than	arrays,	but	their
true	power	lies	in	inheritance.

Introducing	inheritance
Inheritance	in	OOP	is	the	ability	to	pass	the	implementation	of	the	class	from	parents	to
children.	Yes,	classes	can	have	parents,	and	the	technical	way	of	referring	to	this	feature	is
that	a	class	extends	from	another	class.	When	extending	a	class,	we	get	all	the	properties
and	methods	that	are	not	defined	as	private,	and	the	child	class	can	use	them	as	if	they
were	its	own.	The	limitation	is	that	a	class	can	only	extend	from	one	parent.

To	show	an	example,	let’s	consider	our	Customer	class.	It	contains	the	properties
firstname,	surname,	email,	and	id.	A	customer	is	actually	a	specific	type	of	person,	one
that	is	registered	in	our	system,	so	he/she	can	get	books.	But	there	can	be	other	types	of
persons	in	our	system,	like	librarian	or	guest.	And	all	of	them	would	have	some	common
properties	to	all	people,	that	is,	firstname	and	surname.	So	it	would	make	sense	if	we
create	a	Person	class,	and	make	the	Customer	class	extend	from	it.	The	hierarchic	tree
would	look	as	follows:

Note	how	Customer	is	connected	to	Person.	The	methods	in	Person	are	not	defined	in
Customer,	as	they	are	implicit	from	the	extension.	Now	save	the	new	class	in
src/Domain/Person.php,	following	our	convention:

<?php

namespace	Bookstore\Domain;

class	Person	{

				protected	$firstname;

				protected	$surname;

				public	function	__construct(string	$firstname,	string	$surname)	{

								$this->firstname	=	$firstname;

								$this->surname	=	$surname;

				}

				public	function	getFirstname():	string	{

								return	$this->firstname;

				}

				public	function	getSurname():	string	{

								return	$this->surname;

				}

}

The	class	defined	in	the	preceding	code	snippet	does	not	look	special;	we	have	just
defined	two	properties,	a	constructor	and	two	getters.	Note	though	that	we	defined	the
properties	as	protected,	because	if	we	defined	them	as	private,	the	children	would	not	be
able	to	access	them.	Now	we	can	update	our	Customer	class	by	removing	the	duplicate
properties	and	its	getters:

<?php

namespace	Bookstore\Domain;

class	Customer	extends	Person	{

				private	static	$lastId	=	0;

				private	$id;

				private	$email;

				public	function	__construct(

								int	$id,

								string	$name,

								string	$surname,

								string	$email

)	{

								if	(empty($id))	{

												$this->id	=	++self::$lastId;

								}	else	{

												$this->id	=	$id;

												if	($id	>	self::$lastId)	{

																self::$lastId	=	$id;

												}

								}

								$this->name	=	$name;

								$this->surname	=	$surname;

								$this->email	=	$email;

				}

				public	static	function	getLastId():	int	{

								return	self::$lastId;

				}

				public	function	getId():	int	{

								return	$this->id;

				}

				public	function	getEmail():	string	{

								return	$this->email;

				}

				public	function	setEmail($email):	string	{

								$this->email	=	$email;

				}

}

Note	the	new	keyword	extends;	it	tells	PHP	that	this	class	is	a	child	of	the	Person	class.
As	both	Person	and	Customer	are	in	the	same	namespace,	you	do	not	have	to	add	any	use
statement,	but	if	they	were	not,	you	should	let	it	know	how	to	find	the	parent.	This	code
works	fine,	but	we	can	see	that	there	is	a	bit	of	duplication	of	code.	The	constructor	of	the
Customer	class	is	doing	the	same	job	as	the	constructor	of	the	Person	class!	We	will	try	to
fix	it	really	soon.

In	order	to	reference	a	method	or	property	of	the	parent	class	from	the	child,	you	can	use
$this	as	if	the	property	or	method	was	in	the	same	class.	In	fact,	you	could	say	it	actually
is.	But	PHP	allows	you	to	redefine	a	method	in	the	child	class	that	was	already	present	in
the	parent.	If	you	want	to	reference	the	parent’s	implementation,	you	cannot	use	$this,	as
PHP	will	invoke	the	one	in	the	child.	To	force	PHP	to	use	the	parent’s	method,	use	the
keyword	parent::	instead	of	$this.	Update	the	constructor	of	the	Customer	class	as
follows:

public	function	__construct(

				int	$id,

				string	$firstname,

				string	$surname,

				string	$email

)	{

				parent::__construct($firstname,	$surname);

				if	(empty($id))	{

								$this->id	=	++self::$lastId;

				}	else	{

								$this->id	=	$id;

								if	($id	>	self::$lastId)	{

												self::$lastId	=	$id;

								}

				}

				$this->email	=	$email;

}

This	new	constructor	does	not	duplicate	code.	Instead,	it	calls	the	constructor	of	the	parent
class	Person,	sending	$firstname	and	$surname,	and	letting	the	parent	do	what	it	already
knows	how	to	do.	We	avoid	code	duplication	and,	on	top	of	that,	we	make	it	easier	for	any
future	changes	to	be	made	in	the	constructor	of	Person.	If	we	need	to	change	the
implementation	of	the	constructor	of	Person,	we	will	change	it	in	one	place	only,	instead
of	in	all	the	children.

Overriding	methods
As	said	before,	when	extending	from	a	class,	we	get	all	the	methods	of	the	parent	class.
That	is	implicit,	so	they	are	not	actually	written	down	inside	the	child’s	class.	What	would
happen	if	you	implement	another	method	with	the	same	signature	and/or	name?	You	will
be	overriding	the	method.

As	we	do	not	need	this	feature	in	our	classes,	let’s	just	add	some	code	in	our	init.php	file
to	show	this	behavior,	and	then	you	can	just	remove	it.	Let’s	define	a	class	Pops,	a	class
Child	that	extends	from	the	parent,	and	a	sayHi	method	in	both	of	them:

class	Pops	{

				public	function	sayHi()	{

								echo	"Hi,	I	am	pops.";

				}

}

class	Child	extends	Pops{

				public	function	sayHi()	{

								echo	"Hi,	I	am	a	child.";

				}

}

$pops	=	new	Pops();

$child	=	new	Child();

echo	$pops->sayHi();	//	Hi,	I	am	pops.

echo	$child->sayHi();	//	Hi,	I	am	Child.

The	highlighted	code	shows	you	that	the	method	has	been	overridden,	so	when	invoking	it
from	a	child’s	point	of	view,	we	will	be	using	it	rather	than	the	one	inherited	from	its
father.	But	what	happens	if	we	want	to	reference	the	inherited	one	too?	You	can	always
reference	it	with	the	keyword	parent.	Let’s	see	how	it	works:

class	Child	extends	Pops{

				public	function	sayHi()	{

								echo	"Hi,	I	am	a	child.";

								parent::sayHi();

				}

}

$child	=	new	Child();

echo	$child->sayHi();	//	Hi,	I	am	Child.	Hi	I	am	pops.

Now	the	child	is	saying	hi	for	both	himself	and	his	father.	It	seems	very	easy	and	handy,
right?	Well,	there	is	a	restriction.	Imagine	that,	as	in	real	life,	the	child	was	very	shy,	and
he	would	not	say	hi	to	everybody.	We	could	try	to	set	the	visibility	of	the	method	as
protected,	but	see	what	happens:

class	Child	extends	Pops{

				protected	function	sayHi()	{

								echo	"Hi,	I	am	a	child.";

				}

}

When	trying	this	code,	even	without	trying	to	instantiate	it,	you	will	get	a	fatal	error
complaining	about	the	access	level	of	that	method.	The	reason	is	that	when	overriding,	the
method	has	to	have	at	least	as	much	visibility	as	the	one	inherited.	That	means	that	if	we
inherit	a	protected	one,	we	can	override	it	with	another	protected	or	a	public	one,	but
never	with	a	private	one.

Abstract	classes
Remember	that	you	can	extend	only	from	one	parent	class	each	time.	That	means	that
Customer	can	only	extend	from	Person.	But	if	we	want	to	make	this	hierarchic	tree	more
complex,	we	can	create	children	classes	that	extend	from	Customer,	and	those	classes	will
extend	implicitly	from	Person	too.	Let’s	create	two	types	of	customer:	basic	and	premium.
These	two	customers	will	have	the	same	properties	and	methods	from	Customer	and	from
Person,	plus	the	new	ones	that	we	implement	in	each	one	of	them.

Save	the	following	code	as	src/Domain/Customer/Basic.php:

<?php

namespace	Bookstore\Domain\Customer;

use	Bookstore\Domain\Customer;

class	Basic	extends	Customer	{

				public	function	getMonthlyFee():	float	{

								return	5.0;

				}

				public	function	getAmountToBorrow():	int	{

								return	3;

				}

				public	function	getType():	string	{

								return	'Basic';

				}

}

And	the	following	code	as	src/Domain/Customer/Premium.php:

<?php

namespace	Bookstore\Domain\Customer;

use	Bookstore\Domain\Customer;

class	Premium	extends	Customer	{

				public	function	getMonthlyFee():	float	{

								return	10.0;

				}

				public	function	getAmountToBorrow():	int	{

								return	10;

				}

				public	function	getType():	string	{

								return	'Premium';

				}

}

Things	to	note	in	the	preceding	two	codes	are	that	we	extend	from	Customer	in	two

different	classes,	and	it	is	perfectly	legal—	we	can	extend	from	classes	in	different
namespaces.	With	this	addition,	the	hierarchic	tree	for	Person	would	look	as	follows:

We	define	the	same	methods	in	these	two	classes,	but	their	implementations	are	different.
The	aim	of	this	approach	is	to	use	both	types	of	customers	indistinctively,	without
knowing	which	one	it	is	each	time.	For	example,	we	could	temporally	have	the	following
code	in	our	init.php.	Remember	to	add	the	use	statement	to	import	the	class	Customer	if
you	do	not	have	it.

function	checkIfValid(Customer	$customer,	array	$books):	bool	{

				return	$customer->getAmountToBorrow()	>=	count($books);

}

The	preceding	function	would	tell	us	if	a	given	customer	could	borrow	all	the	books	in	the
array.	Notice	that	the	type	hinting	of	the	method	says	Customer,	without	specifying	which
one.	This	will	accept	objects	that	are	instances	of	Customer	or	any	class	that	extends	from
Customer,	that	is,	Basic	or	Premium.	Looks	legit,	right?	Let’s	try	to	use	it	then:

$customer1	=	new	Basic(5,	'John',	'Doe',	'johndoe@mail.com');

var_dump(checkIfValid($customer1,	[$book1]));	//	ok

$customer2	=	new	Customer(7,	'James',	'Bond',	'james@bond.com');

var_dump(checkIfValid($customer2,	[$book1]));	//	fails

The	first	invocation	works	as	expected,	but	the	second	one	fails,	even	though	we	are
sending	a	Customer	object.	The	problem	arises	because	the	parent	does	not	know	about
any	getAmountToBorrow	method!	It	also	looks	dangerous	that	we	rely	on	the	children	to
always	implement	that	method.	The	solution	lies	in	using	abstract	classes.

An	abstract	class	is	a	class	that	cannot	be	instantiated.	Its	sole	purpose	is	to	make	sure
that	its	children	are	correctly	implemented.	Declaring	a	class	as	abstract	is	done	with	the
keyword	abstract,	followed	by	the	definition	of	a	normal	class.	We	can	also	specify	the

methods	that	the	children	are	forced	to	implement,	without	implementing	them	in	the
parent	class.	Those	methods	are	called	abstract	methods,	and	are	defined	with	the	keyword
abstract	at	the	beginning.	Of	course,	the	rest	of	the	normal	methods	can	stay	there	too,
and	will	be	inherited	by	its	children:

<?php

abstract	class	Customer	extends	Person	{

//...

				abstract	public	function	getMonthlyFee();

				abstract	public	function	getAmountToBorrow();

				abstract	public	function	getType();

//...

}

The	preceding	abstraction	solves	both	problems.	First,	we	will	not	be	able	to	send	any
instance	of	the	class	Customer,	because	we	cannot	instantiate	it.	That	means	that	all	the
objects	that	the	checkIfValid	method	is	going	to	accept	are	only	the	children	from
Customer.	On	the	other	hand,	declaring	abstract	methods	forces	all	the	children	that	extend
the	class	to	implement	them.	With	that,	we	make	sure	that	all	objects	will	implement
getAmountToBorrow,	and	our	code	is	safe.

The	new	hierarchic	tree	will	define	the	three	abstract	methods	in	Customer,	and	will	omit
them	for	its	children.	It	is	true	that	we	are	implementing	them	in	the	children,	but	as	they
are	enforced	by	Customer,	and	thanks	to	abstraction,	we	are	sure	that	all	classes	extending
from	it	will	have	to	implement	them,	and	that	it	is	safe	to	do	so.	Let’s	see	how	this	is	done:

With	the	last	new	addition,	your	init.php	file	should	fail.	The	reason	is	that	it	is	trying	to
instantiate	the	class	Customer,	but	now	it	is	abstract,	so	you	cannot.	Instantiate	a	concrete
class,	that	is,	one	that	is	not	abstract,	to	solve	the	problem.

Interfaces
An	interface	is	an	OOP	element	that	groups	a	set	of	function	declarations	without
implementing	them,	that	is,	it	specifies	the	name,	return	type,	and	arguments,	but	not	the
block	of	code.	Interfaces	are	different	from	abstract	classes,	since	they	cannot	contain	any
implementation	at	all,	whereas	abstract	classes	could	mix	both	method	definitions	and
implemented	ones.	The	purpose	of	interfaces	is	to	state	what	a	class	can	do,	but	not	how	it
is	done.

From	our	code,	we	can	identify	a	potential	usage	of	interfaces.	Customers	have	an
expected	behavior,	but	its	implementation	changes	depending	on	the	type	of	customer.	So,
Customer	could	be	an	interface	instead	of	an	abstract	class.	But	as	an	interface	cannot
implement	any	function,	nor	can	it	contain	properties,	we	will	have	to	move	the	concrete
code	from	the	Customer	class	to	somewhere	else.	For	now,	let’s	move	it	up	to	the	Person
class.	Edit	the	Person	class	as	shown:

<?php

namespace	Bookstore\Domain;

class	Person	{

				private	static	$lastId	=	0;

				protected	$id;

				protected	$firstname;

				protected	$surname;

				protected	$email;

				public	function	__construct(

								int	$id,

								string	$firstname,

								string	$surname,

								string	$email

)	{

								$this->firstname	=	$firstname;

								$this->surname	=	$surname;

								$this->email	=	$email;

								if	(empty($id))	{

												$this->id	=	++self::$lastId;

								}	else	{

												$this->id	=	$id;

												if	($id	>	self::$lastId)	{

																self::$lastId	=	$id;

												}

								}

				}

				public	function	getFirstname():	string	{

								return	$this->firstname;

				}

				public	function	getSurname():	string	{

								return	$this->surname;

				}

				public	static	function	getLastId():	int	{

								return	self::$lastId;

				}

				public	function	getId():	int	{

								return	$this->id;

				}

				public	function	getEmail():	string	{

								return	$this->email;

				}

}

Note
Complicating	things	more	than	necessary

Interfaces	are	very	useful,	but	there	is	always	a	place	and	a	time	for	everything.	As	our
application	is	very	simple	due	to	its	didactic	nature,	there	is	no	real	place	for	them.	The
abstract	class	already	defined	in	the	previous	section	is	the	best	approach	for	our	scenario.
But	just	for	the	sake	of	showing	how	interfaces	work,	we	will	be	adapting	our	code	to
them.

Do	not	worry	though,	as	most	of	the	code	that	we	are	going	to	introduce	now	will	be
replaced	by	better	practices	once	we	introduce	databases	and	the	MVC	pattern	in	Chapter
5,	Using	Databases,	and	Chapter	6,	Adapting	to	MVC.

When	writing	your	own	applications,	do	not	try	to	complicate	things	more	than	necessary.
It	is	a	common	pattern	to	see	very	complex	code	from	developers	that	try	to	show	up	all
the	skills	they	have	in	a	very	simple	scenario.	Use	only	the	necessary	tools	to	leave	clean
code	that	is	easy	to	maintain,	and	of	course,	that	works	as	expected.

Change	the	content	of	Customer.php	with	the	following:

<?php

namespace	Bookstore\Domain;

interface	Customer	{

				public	function	getMonthlyFee():	float;

				public	function	getAmountToBorrow():	int;

				public	function	getType():	string;

}

Note	that	an	interface	is	very	similar	to	an	abstract	class.	The	differences	are	that	it	is
defined	with	the	keyword	interface,	and	that	its	methods	do	not	have	the	word
abstract.	Interfaces	cannot	be	instantiated,	since	their	methods	are	not	implemented	as
with	abstract	classes.	The	only	thing	you	can	do	with	them	is	make	a	class	to	implement
them.

Implementing	an	interface	means	implementing	all	the	methods	defined	in	it,	like	when	we
extended	an	abstract	class.	It	has	all	the	benefits	of	the	extension	of	abstract	classes,	such
as	belonging	to	that	type—useful	when	type	hinting.	From	the	developer’s	point	of	view,

using	a	class	that	implements	an	interface	is	like	writing	a	contract:	you	ensure	that	your
class	will	always	have	the	methods	declared	in	the	interface,	regardless	of	the
implementation.	Because	of	that,	interfaces	only	care	about	public	methods,	which	are	the
ones	that	other	developers	can	use.	The	only	change	you	need	to	make	in	your	code	is	to
replace	the	keywords	extends	by	implements:

class	Basic	implements	Customer	{

So,	why	would	someone	use	an	interface	if	we	could	always	use	an	abstract	class	that	not
only	enforces	the	implementation	of	methods,	but	also	allows	inheriting	code	as	well?	The
reason	is	that	you	can	only	extend	from	one	class,	but	you	can	implement	multiple
instances	at	the	same	time.	Imagine	that	you	had	another	interface	that	defined	payers.
This	could	identify	someone	that	has	the	ability	to	pay	something,	regardless	of	what	it	is.
Save	the	following	code	in	src/Domain/Payer.php:

<?php

namespace	Bookstore\Domain;

interface	Payer	{

				public	function	pay(float	$amount);

				public	function	isExtentOfTaxes():	bool;

}

Now	our	basic	and	premium	customers	can	implement	both	the	interfaces.	The	basic
customer	will	look	like	the	following:

//...

use	Bookstore\Domain\Customer;	

use	Bookstore\Domain\Person;

class	Basic	extends	Person	implements	Customer	{

				public	function	getMonthlyFee():	float	{

//...

And	the	premium	customer	will	change	in	the	same	way:

//...

use	Bookstore\Domain\Customer;	

use	Bookstore\Domain\Person;

class	Premium	extends	Person	implements	Customer	{

				public	function	getMonthlyFee():	float	{

//...

You	should	see	that	this	code	would	no	longer	work.	The	reason	is	that	although	we
implement	a	second	interface,	the	methods	are	not	implemented.	Add	these	two	methods
to	the	basic	customer	class:

public	function	pay(float	$amount)	{

				echo	"Paying	$amount.";

}

public	function	isExtentOfTaxes():	bool	{

				return	false;

}

Add	these	two	methods	to	the	premium	customer	class:

public	function	pay(float	$amount)	{

				echo	"Paying	$amount.";

}

public	function	isExtentOfTaxes():	bool	{

				return	true;

}

If	you	know	that	all	customers	will	have	to	be	payers,	you	could	even	make	the	Customer
interface	to	inherit	from	the	Payer	interface:

interface	Customer	extends	Payer	{

This	change	does	not	affect	the	usage	of	our	classes	at	all.	Other	developers	will	see	that
our	basic	and	premium	customers	inherit	from	Payer	and	Customer,	and	so	they	contain
all	the	necessary	methods.	That	these	interfaces	are	independent,	or	they	extend	from	each
other	is	something	that	will	not	affect	too	much.

Interfaces	can	only	extend	from	other	interfaces,	and	classes	can	only	extend	from	other
classes.	The	only	way	to	mix	them	is	when	a	class	implements	an	interface,	but	neither
does	a	class	extend	from	an	interface,	nor	does	an	interface	extend	from	a	class.	But	from
the	point	of	view	of	type	hinting,	they	can	be	used	interchangeably.

To	summarize	this	section	and	make	things	clear,	let’s	show	what	the	hierarchic	tree	looks
like	after	all	the	new	additions.	As	in	abstract	classes,	the	methods	declared	in	an	interface
are	shown	in	the	interface	rather	than	in	each	of	the	classes	that	implement	it.

Polymorphism
Polymorphism	is	an	OOP	feature	that	allows	us	to	work	with	different	classes	that
implement	the	same	interface.	It	is	one	of	the	beauties	of	object-oriented	programming.	It
allows	the	developer	to	create	a	complex	system	of	classes	and	hierarchic	trees,	but	offers
a	simple	way	of	working	with	them.

Imagine	that	we	have	a	function	that,	given	a	payer,	checks	whether	it	is	exempt	of	taxes
or	not,	and	makes	it	pay	some	amount	of	money.	This	piece	of	code	does	not	really	mind
if	the	payer	is	a	customer,	a	librarian,	or	someone	who	has	nothing	to	do	with	the
bookstore.	The	only	thing	that	it	cares	about	is	that	the	payer	has	the	ability	to	pay.	The
function	could	be	as	follows:

function	processPayment(Payer	$payer,	float	$amount)	{

				if	($payer->isExtentOfTaxes())	{

								echo	"What	a	lucky	one…";

				}	else	{

								$amount	*=	1.16;

				}

				$payer->pay($amount);

}

You	could	send	basic	or	premium	customers	to	this	function,	and	the	behavior	will	be
different.	But,	as	both	implement	the	Payer	interface,	both	objects	provided	are	valid
types,	and	both	are	capable	of	performing	the	actions	needed.

The	checkIfValid	function	takes	a	customer	and	a	list	of	books.	We	already	saw	that
sending	any	kind	of	customer	makes	the	function	work	as	expected.	But	what	happens	if
we	send	an	object	of	the	class	Librarian,	which	extends	from	Payer?	As	Payer	does	not
know	about	Customer	(it	is	rather	the	other	way	around),	the	function	will	complain	as	the
type	hinting	is	not	accomplished.

One	useful	feature	that	comes	with	PHP	is	the	ability	to	check	whether	an	object	is	an
instance	of	a	specific	class	or	interface.	The	way	to	use	it	is	to	specify	the	variable
followed	by	the	keyword	instanceof	and	the	name	of	the	class	or	interface.	It	returns	a
Boolean,	which	is	true	if	the	object	is	from	a	class	that	extends	or	implements	the
specified	one,	or	false	otherwise.	Let’s	see	some	examples:

$basic	=	new	Basic(1,	"name",	"surname",	"email");

$premium	=	new	Premium(2,	"name",	"surname",	"email");

var_dump($basic	instanceof	Basic);	//	true

var_dump($basic	instanceof	Premium);	//	false

var_dump($premium	instanceof	Basic);	//	false

var_dump($premium	instanceof	Premium);	//	true

var_dump($basic	instanceof	Customer);	//	true

var_dump($basic	instanceof	Person);	//	true

var_dump($basic	instanceof	Payer);	//	true

Remember	to	add	all	the	use	statements	for	each	of	the	class	or	interface,	otherwise	PHP
will	understand	that	the	specified	class	name	is	inside	the	namespace	of	the	file.

Traits
So	far,	you	have	learned	that	extending	from	classes	allows	you	to	inherit	code	(properties
and	method	implementations),	but	it	has	the	limitation	of	extending	only	from	one	class
each	time.	On	the	other	hand,	you	can	use	interfaces	to	implement	multiple	behaviors
from	the	same	class,	but	you	cannot	inherit	code	in	this	way.	To	fill	this	gap,	that	is,	to	be
able	to	inherit	code	from	multiple	places,	you	have	traits.

Traits	are	mechanisms	that	allow	you	to	reuse	code,	“inheriting”,	or	rather	copy-pasting
code,	from	multiple	sources	at	the	same	time.	Traits,	as	abstract	classes	or	interfaces,
cannot	be	instantiated;	they	are	just	containers	of	functionality	that	can	be	used	from	other
classes.

If	you	remember,	we	have	some	code	in	the	Person	class	that	manages	the	assignment	of
IDs.	This	code	is	not	really	part	of	a	person,	but	rather	part	of	an	ID	system	that	could	be
used	by	some	other	entity	that	has	to	be	identified	with	IDs	too.	One	way	to	extract	this
functionality	from	Person—and	we	are	not	saying	that	it	is	the	best	way	to	do	so,	but	for
the	sake	of	seeing	traits	in	action,	we	choose	this	one—is	to	move	it	to	a	trait.

To	define	a	trait,	do	as	if	you	were	defining	a	class,	just	use	the	keyword	trait	instead	of
class.	Define	its	namespace,	add	the	use	statements	needed,	declare	its	properties	and
implement	its	methods,	and	place	everything	in	a	file	that	follows	the	same	conventions.
Add	the	following	code	to	the	src/Utils/Unique.php	file:

<?php

namespace	Bookstore\Utils;

trait	Unique	{

				private	static	$lastId	=	0;

				protected	$id;

				public	function	setId(int	$id)	{

								if	(empty($id))	{

												$this->id	=	++self::$lastId;

								}	else	{

												$this->id	=	$id;

												if	($id	>	self::$lastId)	{

																self::$lastId	=	$id;

												}

								}

				}

				public	static	function	getLastId():	int	{

								return	self::$lastId;

				}

				public	function	getId():	int	{

								return	$this->id;

				}

}

Observe	that	the	namespace	is	not	the	same	as	usual,	since	we	are	storing	this	code	in	a

different	file.	This	is	a	matter	of	conventions,	but	you	are	entirely	free	to	use	the	file
structure	that	you	consider	better	for	each	case.	In	this	case,	we	do	not	think	that	this	trait
represents	“business	logic”	like	customers	and	books	do;	instead,	it	represents	a	utility	for
managing	the	assignment	of	IDs.

We	include	all	the	code	related	to	IDs	from	Person.	That	includes	the	properties,	the
getters,	and	the	code	inside	the	constructor.	As	the	trait	cannot	be	instantiated,	we	cannot
add	a	constructor.	Instead,	we	added	a	setId	method	that	contains	the	code.	When
constructing	a	new	instance	that	uses	this	trait,	we	can	invoke	this	setId	method	to	set	the
ID	based	on	what	the	user	sends	as	an	argument.

The	class	Person	will	have	to	change	too.	We	have	to	remove	all	references	to	IDs	and	we
will	have	to	define	somehow	that	the	class	is	using	the	trait.	To	do	that,	we	use	the
keyword	use,	like	in	namespaces,	but	inside	the	class.	Let’s	see	what	it	would	look	like:

<?php

namespace	Bookstore\Domain;

use	Bookstore\Utils\Unique;

class	Person	{

				use	Unique;

				protected	$firstname;

				protected	$surname;

				protected	$email;

				public	function	__construct(

								int	$id,

								string	$firstname,

								string	$surname,

								string	$email

)	{

								$this->firstname	=	$firstname;

								$this->surname	=	$surname;

								$this->email	=	$email;

							$this->setId($id);

				}

				public	function	getFirstname():	string	{

								return	$this->firstname;

				}

				public	function	getSurname():	string	{

								return	$this->surname;

				}

				public	function	getEmail():	string	{

								return	$this->email;

				}

				public	function	setEmail(string	$email)	{

								$this->email	=	$email;

				}

}

We	add	the	use	Unique;	statement	to	let	the	class	know	that	it	is	using	the	trait.	We
remove	everything	related	to	IDs,	even	inside	the	constructor.	We	still	get	an	ID	as	the	first
argument	of	the	constructor,	but	we	ask	the	method	setId	from	the	trait	to	do	everything
for	us.	Note	that	we	refer	to	that	method	with	$this,	as	if	the	method	was	inside	the	class.
The	updated	hierarchic	tree	would	look	like	the	following	(note	that	we	are	not	adding	all
the	methods	for	all	the	classes	or	interfaces	that	are	not	involved	in	the	recent	changes	in
order	to	keep	the	diagram	as	small	and	readable	as	possible):

Let’s	see	how	it	works,	even	though	it	does	so	in	the	way	that	you	probably	expect.	Add
this	code	into	your	init.php	file,	include	the	necessary	use	statements,	and	execute	it	in
your	browser:

$basic1	=	new	Basic(1,	"name",	"surname",	"email");

$basic2	=	new	Basic(null,	"name",	"surname",	"email");

var_dump($basic1->getId());	//	1

var_dump($basic2->getId());	//	2

The	preceding	code	instantiates	two	customers.	The	first	of	them	has	a	specific	ID,
whereas	the	second	one	lets	the	system	choose	an	ID	for	it.	The	result	is	that	the	second
basic	customer	has	the	ID	2.	That	is	to	be	expected,	as	both	customers	are	basic.	But	what
would	happen	if	the	customers	are	of	different	types?

$basic	=	new	Basic(1,	"name",	"surname",	"email");

$premium	=	new	Premium(null,	"name",	"surname",	"email");

var_dump($basic->getId());	//	1

var_dump($premium->getId());	//	2

The	IDs	are	still	the	same.	That	is	to	be	expected,	as	the	trait	is	included	in	the	Person
class,	so	the	static	property	$lastId	will	be	shared	across	all	the	instances	of	the	class
Person,	including	Basic	and	Premium	customers.	If	you	used	the	trait	from	Basic	and
Premium	customer	instead	of	Person	(but	you	should	not),	you	would	have	the	following

result:

var_dump($basic->getId());	//	1

var_dump($premium->getId());	//	1

Each	class	will	have	its	own	static	property.	All	Basic	instances	will	share	the	same
$lastId,	different	from	the	$lastId	of	Premium	instances.	This	should	make	clear	that	the
static	members	in	traits	are	linked	to	whichever	class	uses	them,	rather	than	the	trait	itself.
That	could	also	be	reflected	on	testing	the	following	code	which	uses	our	original	scenario
where	the	trait	is	used	from	Person:

$basic	=	new	Basic(1,	"name",	"surname",	"email");

$premium	=	new	Premium(null,	"name",	"surname",	"email");

var_dump(Person::getLastId());	//	2

var_dump(Unique::getLastId());	//	0

var_dump(Basic::getLastId());	//	2

var_dump(Premium::getLastId());	//	2

If	you	have	a	good	eye	for	problems,	you	might	start	thinking	about	some	potential	issues
around	the	usage	of	traits.	What	happens	if	we	use	two	traits	that	contain	the	same
method?	Or	what	happens	if	you	use	a	trait	that	contains	a	method	that	is	already
implemented	in	that	class?

Ideally,	you	should	avoid	running	into	these	kinds	of	situations;	they	are	warning	lights	for
possible	bad	design.	But	as	there	will	always	be	extraordinary	cases,	let’s	see	some
isolated	examples	on	how	they	would	behave.

The	scenario	where	the	trait	and	the	class	implement	the	same	method	is	easy.	The	method
implemented	explicitly	in	the	class	is	the	one	with	more	precedence,	followed	by	the
method	implemented	in	the	trait,	and	finally,	the	method	inherited	from	the	parent	class.
Let’s	see	how	it	works.	Take	for	example	the	following	trait	and	class	definitions:

<?php

trait	Contract	{

				public	function	sign()	{

								echo	"Signing	the	contract.";

				}

}

class	Manager	{

				use	Contract;

				public	function	sign()	{

								echo	"Signing	a	new	player.";

				}

}

Both	implement	the	sign	method,	which	means	that	we	have	to	apply	the	precedence	rules
defined	previously.	The	method	defined	in	the	class	takes	precedence	over	the	one	from
the	trait,	so	in	this	case,	the	executed	method	will	be	the	one	from	the	class:

$manager	=	new	Manager();

$manager->sign();	//	Signing	a	new	player.

The	most	complicated	scenario	would	be	one	where	a	class	uses	two	traits	with	the	same
method.	There	are	no	rules	that	solve	the	conflict	automatically,	so	you	have	to	solve	it
explicitly.	Check	the	following	code:

<?php

trait	Contract	{

				public	function	sign()	{

								echo	"Signing	the	contract.";

				}

}

trait	Communicator	{

				public	function	sign()	{

								echo	"Signing	to	the	waitress.";

				}

}

class	Manager	{

				use	Contract,	Communicator;

}

$manager	=	new	Manager();

$manager->sign();

The	preceding	code	throws	a	fatal	error,	as	both	traits	implement	the	same	method.	To
choose	the	one	you	want	to	use,	you	have	to	use	the	operator	insteadof.	To	use	it,	state
the	trait	name	and	the	method	that	you	want	to	use,	followed	by	insteadof	and	the	trait
that	you	are	rejecting	for	use.	Optionally,	use	the	keyword	as	to	add	an	alias	like	we	did
with	namespaces	so	that	you	can	use	both	the	methods:

class	Manager	{

				use	Contract,	Communicator	{

								Contract::sign	insteadof	Communicator;

								Communicator::sign	as	makeASign;

				}

}

$manager	=	new	Manager();

$manager->sign();	//	Signing	the	contract.

$manager->makeASign();	//	Signing	to	the	waitress.

You	can	see	how	we	decided	to	use	the	method	of	Contract	instead	of	Communicator,	but
added	the	alias	so	that	both	methods	are	available.	Hopefully,	you	can	see	that	even	the
conflicts	can	be	solved,	and	there	are	specific	cases	where	there	is	nothing	to	do	but	deal
with	them;	in	general,	they	look	like	a	bad	sign—no	pun	intended.

Handling	exceptions
It	does	not	matter	how	easy	and	intuitive	your	application	is	designed	to	be,	there	will	be
bad	usage	from	the	user	or	just	random	errors	of	connectivity,	and	your	code	has	to	be
ready	to	handle	these	scenarios	so	that	the	user	experience	is	a	good	as	possible.	We	call
these	scenarios	exceptions:	an	element	of	the	language	that	identifies	a	case	that	is	not	as
we	expected.

The	try…catch	block
Your	code	can	throw	exceptions	manually	whenever	you	think	it	necessary.	For	example,
take	the	setId	method	from	the	Unique	trait.	Thanks	to	type	hinting,	we	are	enforcing	the
ID	to	be	a	numeric	one,	but	that	is	as	far	as	it	goes.	What	would	happen	if	someone	tries	to
set	an	ID	that	is	a	negative	number?	The	code	right	now	allows	it	to	go	through,	but
depending	on	your	preferences,	you	would	like	to	avoid	it.	That	would	be	a	good	place	for
an	exception	to	happen.	Let’s	see	how	we	would	add	this	check	and	consequent	exception:

public	function	setId($id)	{

				if	($id	<	0)	{

								throw	new	\Exception('Id	cannot	be	negative.');

				}

				if	(empty($id))	{

								$this->id	=	++self::$lastId;

				}	else	{

								$this->id	=	$id;

								if	($id	>	self::$lastId)	{

												self::$lastId	=	$id;

								}

				}

}

As	you	can	see,	exceptions	are	objects	of	the	class	exception.	Remember	adding	the
backslash	to	the	name	of	the	class,	unless	you	want	to	include	it	with	use	Exception;	at
the	top	of	the	file.	The	constructor	of	the	Exception	class	takes	some	optional	arguments,
the	first	one	of	them	being	the	message	of	the	exception.	Instances	of	the	class	Exception
do	nothing	by	themselves;	they	have	to	be	thrown	in	order	to	be	noticed	by	the	program.

Let’s	try	forcing	our	program	to	throw	this	exception.	In	order	to	do	that,	let’s	try	to	create
a	customer	with	a	negative	ID.	In	your	init.php	file,	add	the	following:

$basic	=	new	Basic(-1,	"name",	"surname",	"email");

If	you	try	it	now	in	your	browser,	PHP	will	throw	a	fatal	error	saying	that	there	was	an
uncaught	exception,	which	is	the	expected	behavior.	For	PHP,	an	exception	is	something
from	what	it	cannot	recover,	so	it	will	stop	execution.	That	is	far	from	ideal,	as	you	would
like	to	just	display	an	error	message	to	the	user,	and	let	them	try	again.

You	can—and	should—capture	exceptions	using	the	try…catch	blocks.	You	insert	the
code	that	might	throw	an	exception	in	the	try	block	and	if	an	exception	happens,	PHP	will
jump	to	the	catch	block.	Let’s	see	how	it	works:

public	function	setId(int	$id)	{

				try	{

								if	($id	<	0)	{

												throw	new	Exception('Id	cannot	be	negative.');

								}

								if	(empty($id))	{

												$this->id	=	++self::$lastId;

								}	else	{

												$this->id	=	$id;

												if	($id	>	self::$lastId)	{

																self::$lastId	=	$id;

												}

								}

				}	catch	(Exception	$e)	{

								echo	$e->getMessage();

				}

}

If	we	test	the	last	code	snippet	in	our	browser,	we	will	see	the	message	printed	from	the
catch	block.	Calling	the	getMessage	method	on	an	exception	instance	will	give	us	the
message—the	first	argument	when	creating	the	object.	But	remember	that	the	argument	of
the	constructor	is	optional;	so,	do	not	rely	on	the	message	of	the	exception	too	much	if	you
are	not	sure	how	it	is	generated,	as	it	might	be	empty.

Note	that	after	the	exception	is	thrown,	nothing	else	inside	the	try	block	is	executed;	PHP
goes	straight	to	the	catch	block.	Additionally,	the	block	gets	an	argument,	which	is	the
exception	thrown.	Here,	type	hinting	is	mandatory—you	will	see	why	very	soon.	Naming
the	argument	as	$e	is	a	widely	used	convention,	even	though	it	is	not	a	good	practice	to
use	poor	descriptive	names	for	variables.

Being	a	bit	critical,	so	far,	there	is	not	any	real	advantage	to	be	seen	in	using	exceptions	in
this	example.	A	simple	if…else	block	would	do	exactly	the	same	job,	right?	But	the	real
power	of	exceptions	lies	in	the	ability	to	be	propagated	across	methods.	That	is,	the
exception	thrown	on	the	setId	method,	if	not	captured,	will	be	propagated	to	wherever	the
method	was	invoked,	allowing	us	to	capture	it	there.	This	is	very	useful,	as	different	places
in	the	code	might	want	to	handle	the	exception	in	a	different	way.	To	see	how	this	is	done,
let’s	remove	the	try…catch	inserted	in	setId,	and	place	the	following	piece	of	code	in
your	init.php	file,	instead:

try	{

				$basic	=	new	Basic(-1,	"name",	"surname",	"email");

}	catch	(Exception	$e)	{

				echo	'Something	happened	when	creating	the	basic	customer:	'

								.	$e->getMessage();

}

The	preceding	example	shows	how	useful	it	is	to	catch	propagated	exceptions:	we	can	be
more	specific	of	what	happens,	as	we	know	what	the	user	was	trying	to	do	when	the
exception	was	thrown.	In	this	case,	we	know	that	we	were	trying	to	create	the	customer,
but	this	exception	might	have	been	thrown	when	trying	to	update	the	ID	of	an	existing
customer,	which	would	need	a	different	error	message.

The	finally	block
There	is	a	third	block	that	you	can	use	when	dealing	with	exceptions:	the	finally	block.
This	block	is	added	after	the	try…catch	one,	and	it	is	optional.	In	fact,	the	catch	block	is
optional	too;	the	restriction	is	that	a	try	must	be	followed	by	at	least	one	of	them.	So	you
could	have	these	three	scenarios:

//	scenario	1:	the	whole	try-catch-finally

try	{

				//	code	that	might	throw	an	exception

}	catch	(Exception	$e)	{

				//	code	that	deals	with	the	exception

}	finally	{

				//	finally	block

}

//	scenario	2:	try-finally	without	catch

try	{

				//	code	that	might	throw	an	exception

}	finally	{

				//	finally	block

}

//	scenario	3:	try-catch	without	finally

try	{

				//	code	that	might	throw	an	exception

}	catch	(Exception	$e)	{

				//	code	that	deals	with	the	exception

}

The	code	inside	the	finally	block	is	executed	when	either	the	try	or	the	catch	blocks	are
executed	completely.	So,	if	we	have	a	scenario	where	there	is	no	exception,	after	all	the
code	inside	the	try	block	is	executed,	PHP	will	execute	the	code	inside	finally.	On	the
other	hand,	if	there	is	an	exception	thrown	inside	the	try	block,	PHP	will	jump	to	the
catch	block,	and	after	executing	everything	there,	it	will	execute	the	finally	block	too.

In	order	to	test	this	functionality,	let’s	implement	a	function	that	contains	a	try…catch…
finally	block,	trying	to	create	a	customer	with	a	given	ID	(through	an	argument),	and
logging	all	the	actions	that	take	place.	You	can	add	the	following	code	snippet	into	your
init.php	file:

function	createBasicCustomer($id)

{

				try	{

								echo	"\nTrying	to	create	a	new	customer.\n";

								return	new	Basic($id,	"name",	"surname",	"email");

				}	catch	(Exception	$e)	{

								echo	"Something	happened	when	creating	the	basic	customer:	"

												.	$e->getMessage()	.	"\n";

				}	finally	{

								echo	"End	of	function.\n";

				}

}

createBasicCustomer(1);

createBasicCustomer(-1);

If	you	try	this,	your	browser	will	show	you	the	following	output—remember	to	display	the
source	code	of	the	page	to	see	it	formatted	prettily:

The	result	might	not	be	the	one	you	expected.	The	first	time	we	invoke	the	function,	we
are	able	to	create	the	object	without	an	issue,	and	that	means	we	execute	the	return
statement.	In	a	normal	function,	this	should	be	the	end	of	it,	but	since	we	are	inside	the
try…catch…finally	block,	we	still	need	to	execute	the	finally	code!	The	second
example	looks	more	intuitive,	jumping	from	the	try	to	the	catch,	and	then	to	the	finally
block.

The	finally	block	is	very	useful	when	dealing	with	expensive	resources	like	database
connections.	In	Chapter	5,	Using	Databases,	you	will	see	how	to	use	them.	Depending	on
the	type	of	connection,	you	will	have	to	close	it	after	use	for	allowing	other	users	to
connect.	The	finally	block	is	used	for	closing	those	connections,	regardless	of	whether
the	function	throws	an	exception	or	not.

Catching	different	types	of	exceptions
Exceptions	have	already	been	proven	useful,	but	there	is	still	one	important	feature	to
show:	catching	different	types	of	exceptions.	As	you	already	know,	exceptions	are
instances	of	the	class	Exception,	and	as	with	any	other	class,	they	can	be	extended.	The
main	goal	of	extending	from	this	class	is	to	create	different	types	of	exceptions,	but	we
will	not	add	any	logic	inside—even	though	you	can,	of	course.	Let’s	create	a	class	that
extends	from	Exception,	and	which	identifies	exceptions	related	to	invalid	IDs.	Put	this
code	inside	the	src/Exceptions/InvalidIdException.php	file:

<?php

namespace	Bookstore\Exceptions;

use	Exception;

class	InvalidIdException	extends	Exception	{

				public	function	__construct($message	=	null)	{

								$message	=	$message	?:	'Invalid	id	provided.';

								parent::__construct($message);

				}

}

The	InvalidIdException	class	extends	from	the	class	Exception,	and	so	it	can	be	thrown
as	one.	The	constructor	of	the	class	takes	an	optional	argument,	$message.	The	following
two	lines	inside	it	contain	interesting	code:

The	?:	operator	is	a	shorter	version	of	a	conditional,	and	works	like	this:	the
expression	on	the	left	is	returned	if	it	does	not	evaluate	to	false,	otherwise,	the
expression	on	the	right	will	be	returned.	What	we	want	here	is	to	use	the	message
given	by	the	user,	or	a	default	one	in	case	the	user	does	not	provide	any.	For	more
information	and	usages,	you	can	visit	the	PHP	documentation	at
http://php.net/manual/en/language.operators.comparison.php.
parent::__construct	will	invoke	the	parent’s	constructor,	that	is,	the	constructor	of
the	class	Exception.	As	you	already	know,	this	constructor	gets	the	message	of	the
exception	as	the	first	argument.	You	could	argue	that,	as	we	are	extending	from	the
Exception	class,	we	do	not	really	need	to	call	any	functions,	as	we	can	edit	the
properties	of	the	class	straightaway.	The	reason	for	avoiding	this	is	to	let	the	parent
class	manage	its	own	properties.	Imagine	that,	for	some	reason,	in	a	future	version	of
PHP,	Exception	changes	the	name	of	the	property	for	the	message.	If	you	modify	it
directly,	you	will	have	to	change	that	in	your	code,	but	if	you	use	the	constructor,	you
have	nothing	to	fear.	Internal	implementations	are	more	likely	to	change	than	external
interfaces.

We	can	use	this	new	exception	instead	of	the	generic	one.	Replace	it	in	your	Unique	trait
as	follows:

throw	new	InvalidIdException('Id	cannot	be	a	negative	number.');

You	can	see	that	we	are	still	sending	a	message:	that	is	because	we	want	to	be	even	more

http://php.net/manual/en/language.operators.comparison.php

specific.	But	the	exception	would	work	as	well	without	one.	Try	your	code	again,	and	you
will	see	that	nothing	changes.

Now	imagine	that	we	have	a	very	small	database	and	we	cannot	allow	more	than	50	users.
We	can	create	a	new	exception	that	identifies	this	case,	let’s	say,	as
src/Exceptions/ExceededMaxAllowedException.php:

<?php

namespace	Bookstore\Exceptions;

use	Exception;

class	ExceededMaxAllowedException	extends	Exception	{

				public	function	__construct($message	=	null)	{

								$message	=	$message	?:	'Exceeded	max	allowed.';

								parent::__construct($message);

				}

}

Let’s	modify	our	trait	in	order	to	check	for	this	case.	When	setting	an	ID,	if	this	ID	is
greater	than	50,	we	can	assume	that	we’ve	reached	the	maximum	number	of	users:

public	function	setId(int	$id)	{

								if	($id	<	0)	{

												throw	new	InvalidIdException(

																'Id	cannot	be	a	negative	number.'

);

								}

								if	(empty($id))	{

												$this->id	=	++self::$lastId;

								}	else	{

												$this->id	=	$id;

												if	($id	>	self::$lastId)	{

																self::$lastId	=	$id;

												}

								}

								if	($this->id	>	50)	{

												throw	new	ExceededMaxAllowedException(

																'Max	number	of	users	is	50.'

);

								}

				}

Now	the	preceding	function	throws	two	different	exceptions:	InvalidIdException	and
ExceededMaxAllowedException.	When	catching	them,	you	might	want	to	behave	in	a
different	way	depending	on	the	type	of	exception	caught.	Remember	how	you	have	to
declare	an	argument	in	your	catch	block?	Well,	you	can	add	as	many	catch	blocks	as
needed,	specifying	a	different	exception	class	in	each	of	them.	The	code	could	look	like
this:

function	createBasicCustomer(int	$id)

{

				try	{

								echo	"\nTrying	to	create	a	new	customer	with	id	$id.\n";

								return	new	Basic($id,	"name",	"surname",	"email");

				}	catch	(InvalidIdException	$e)	{

								echo	"You	cannot	provide	a	negative	id.\n";

				}	catch	(ExceededMaxAllowedException	$e)	{

								echo	"No	more	customers	are	allowed.\n";

				}	catch	(Exception	$e)	{

								echo	"Unknown	exception:	"	.	$e->getMessage();

				}

}

createBasicCustomer(1);

createBasicCustomer(-1);

createBasicCustomer(55);

If	you	try	this	code,	you	should	see	the	following	output:

Note	that	we	catch	three	exceptions	here:	our	two	new	exceptions	and	the	generic	one.
The	reason	for	doing	this	is	that	it	might	happen	that	some	other	piece	of	code	throws	an
exception	of	a	different	type	than	the	ones	we	defined,	and	we	need	to	define	a	catch
block	with	the	generic	Exception	class	to	get	it,	as	all	exceptions	will	extend	from	it.	Of
course,	this	is	absolutely	optional,	and	if	you	do	not	do	it,	the	exception	will	be	just
propagated.

Bear	in	mind	the	order	of	the	catch	blocks.	PHP	tries	to	use	the	catch	blocks	in	the	order
that	you	defined	them.	So,	if	your	first	catch	is	for	Exception,	the	rest	of	the	blocks	will
be	never	executed,	as	all	exceptions	extend	from	that	class.	Try	it	with	the	following	code:

try	{

				echo	"\nTrying	to	create	a	new	customer	with	id	$id.\n";

				return	new	Basic($id,	"name",	"surname",	"email");

}	catch	(Exception	$e)	{

				echo	'Unknown	exception:	'	.	$e->getMessage()	.	"\n";

}	catch	(InvalidIdException	$e)	{

				echo	"You	cannot	provide	a	negative	id.\n";

}	catch	(ExceededMaxAllowedException	$e)	{

				echo	"No	more	customers	are	allowed.\n";

}

The	result	that	you	get	from	the	browser	will	always	be	from	the	first	catch:

Design	patterns
Developers	have	been	creating	code	since	way	before	the	appearance	of	with	Internet,	and
they	have	been	working	on	a	number	of	different	areas,	not	just	web	applications.	Because
of	that,	a	lot	of	people	have	already	had	to	confront	similar	scenarios,	carrying	the
experience	of	previous	attempts	for	fixing	the	same	thing.	In	short,	it	means	that	almost
surely,	someone	has	already	designed	a	good	way	of	solving	the	problem	that	you	are
facing	now.

A	lot	of	books	have	been	written	trying	to	group	solutions	to	common	problems,	also
known	as	design	patterns.	Design	patterns	are	not	algorithms	that	you	copy	and	paste	into
your	program,	showing	how	to	fix	something	step-by-step,	but	rather	recipes	that	show
you,	in	a	heuristic	way,	how	to	look	for	the	answer.

Studying	them	is	essential	if	you	want	to	become	a	professional	developer,	not	only	for
solving	problems,	but	also	for	communicating	with	other	developers.	It	is	very	common	to
get	an	answer	like	“You	could	use	a	factory	here”,	when	discussing	your	program	design.
It	saves	a	lot	of	time	knowing	what	a	factory	is,	rather	than	explaining	the	pattern	each
time	someone	mentions	it.

As	we	said,	there	are	entire	books	that	talk	about	design	patterns,	and	we	highly
recommend	you	to	have	a	look	at	some	of	them.	The	goal	of	this	section	is	to	show	you
what	a	design	pattern	is	and	how	you	can	use	it.	Additionally,	we	will	show	you	some	of
the	most	common	design	patterns	used	with	PHP	when	writing	web	applications,
excluding	the	MVC	pattern,	which	we	will	study	in	Chapter	6,	Adapting	to	MVC.

Other	than	books,	you	could	also	visit	the	open	source	project	DesignPatternsPHP	at
http://designpatternsphp.readthedocs.org/en/latest/README.html.	There	is	a	good
collection	of	them,	and	they	are	implemented	in	PHP,	so	it	would	be	easier	for	you	to
adapt.

http://designpatternsphp.readthedocs.org/en/latest/README.html

Factory
A	factory	is	a	design	pattern	of	the	creational	group,	which	means	that	it	allows	you	to
create	objects.	You	might	think	that	we	do	not	need	such	a	thing,	as	creating	an	object	is	as
easy	as	using	the	new	keyword,	the	class,	and	its	arguments.	But	letting	the	user	do	that	is
dangerous	for	different	reasons.	Apart	from	the	increased	difficulty	caused	by	using	new
when	unit	testing	our	code	(you	will	learn	about	unit	testing	in	Chapter	7,	Testing	Web
Applications),	a	lot	of	coupling	too	gets	added	into	our	code.

When	we	discussed	encapsulation,	you	learned	that	it	is	better	to	hide	the	internal
implementation	of	a	class,	and	you	could	consider	the	constructor	as	part	of	it.	The	reason
is	that	the	user	needs	to	know	at	all	times	how	to	create	objects,	including	what	the
arguments	of	the	constructor	are.	And	what	if	we	want	to	change	our	constructor	to	accept
different	arguments?	We	need	to	go	one	by	one	to	all	the	places	where	we	have	created
objects	and	update	them.

Another	reason	for	using	factories	is	to	manage	different	classes	that	inherit	a	super	class
or	implement	the	same	interface.	As	you	know,	thanks	to	polymorphism,	you	can	use	one
object	without	knowing	the	specific	class	that	it	instantiates,	as	long	as	you	know	the
interface	being	implemented.	It	might	so	happen	that	your	code	needs	to	instantiate	an
object	that	implements	an	interface	and	use	it,	but	the	concrete	class	of	the	object	may	not
be	important	at	all.

Think	about	our	bookstore	example.	We	have	two	types	of	customers:	basic	and	premium.
But	for	most	of	the	code,	we	do	not	really	care	what	type	of	customer	a	specific	instance
is.	In	fact,	we	should	implement	our	code	to	use	objects	that	implement	the	Customer
interface,	being	unaware	of	the	specific	type.	So,	if	we	decide	in	the	future	to	add	a	new
type,	as	long	as	it	implements	the	correct	interface,	our	code	will	work	without	an	issue.
But,	if	that	is	the	case,	what	do	we	do	when	we	need	to	create	a	new	customer?	We	cannot
instantiate	an	interface,	so	let’s	use	the	factory	pattern.	Add	the	following	code	into
src/Domain/Customer/CustomerFactory.php:

<?php

namespace	Bookstore\Domain\Customer;

use	Bookstore\Domain\Customer;

class	CustomerFactory	{

				public	static	function	factory(

								string	$type,

								int	$id,

								string	$firstname,

								string	$surname,

								string	$email

):	Customer	{

								switch	($type)	{

												case	'basic':

																return	new	Basic($id,	$firstname,	$surname,	$email);

												case	'premium':

																return	new	Premium($id,	$firstname,	$surname,	$email);

								}

				}

}

The	factory	in	the	preceding	code	is	less	than	ideal	for	different	reasons.	In	the	first	one,
we	use	a	switch,	and	add	a	case	for	all	the	existing	customer	types.	Two	types	do	not
make	much	difference,	but	what	if	we	have	19?	Let’s	try	to	make	this	factory	method	a	bit
more	dynamic.

public	static	function	factory(

								string	$type,

								int	$id,

								string	$firstname,

								string	$surname,

								string	$email

):	Customer	{

				$classname	=	__NAMESPACE__	.	'\\'	.	ucfirst($type);

				if	(!class_exists($classname))	{

								throw	new	\InvalidArgumentException('Wrong	type.');

				}

				return	new	$classname($id,	$firstname,	$surname,	$email);

}

Yes,	you	can	do	what	we	did	in	the	preceding	code	in	PHP.	Instantiating	classes
dynamically,	that	is,	using	the	content	of	a	variable	as	the	name	of	the	class,	is	one	of	the
things	that	makes	PHP	so	flexible…	and	dangerous.	Used	wrongly,	it	will	make	your	code
horribly	difficult	to	read	and	maintain,	so	be	careful	about	it.	Note	too	the	constant
__NAMESPACE__,	which	contains	the	namespace	of	the	current	file.

Now	this	factory	looks	cleaner,	and	it	is	also	very	dynamic.	You	could	add	more	customer
types	and,	as	long	as	they	are	inside	the	correct	namespace	and	implement	the	interface,
there	is	nothing	to	change	on	the	factory	side,	nor	in	the	usage	of	the	factory.

In	order	to	use	it,	let’s	change	our	init.php	file.	You	can	remove	all	our	tests,	and	just
leave	the	autoloader	code.	Then,	add	the	following:

CustomerFactory::factory('basic',	2,	'mary',	'poppins',	

'mary@poppins.com');

CustomerFactory::factory('premium',	null,	'james',	'bond',	

'james@bond.com');

The	factory	design	pattern	can	be	as	complex	as	you	need.	There	are	different	variants	of
it,	and	each	one	has	its	own	place	and	time,	but	the	general	idea	is	always	the	same.

Singleton
If	someone	with	a	bit	of	experience	with	design	patterns,	or	web	development	in	general,
reads	the	title	of	this	section,	they	will	probably	start	tearing	their	hair	out	and	claiming
that	singleton	is	the	worst	example	of	a	design	pattern.	But	just	bear	with	me.

When	explaining	interfaces,	I	added	a	note	about	how	developers	tend	to	complicate	their
code	too	much	just	so	they	can	use	all	the	tools	they	know.	Using	design	patterns	is	one	of
the	cases	where	this	happens.	They	have	been	so	famous,	and	people	claimed	that	good
use	of	them	is	directly	linked	to	great	developers,	that	everybody	that	learns	them	tries	to
use	them	absolutely	everywhere.

The	singleton	pattern	is	probably	the	most	infamous	of	the	design	patterns	used	in	PHP	for
web	development.	This	pattern	has	a	very	specific	purpose,	and	when	that	is	the	case,	the
pattern	proves	to	be	very	useful.	But	this	pattern	is	so	easy	to	implement	that	developers
continuously	try	to	add	singletons	everywhere,	turning	their	code	into	something
unmaintainable.	It	is	for	this	reason	that	people	call	this	an	anti-pattern,	something	that
should	be	avoided	rather	than	used.

I	do	agree	with	this	point	of	view,	but	I	still	think	that	you	should	be	very	familiar	with
this	design	pattern.	Even	though	you	should	avoid	its	overuse,	people	still	use	it
everywhere,	and	they	refer	to	it	countless	times,	so	you	should	be	in	a	position	to	either
agree	with	them	or	rather	have	enough	reasons	to	discourage	them	to	use	it.	Having	said
that,	let’s	see	what	the	aim	of	the	singleton	pattern	is.

The	idea	is	simple:	singletons	are	used	when	you	want	one	class	to	always	have	one
unique	instance.	Every	time,	and	everywhere	you	use	that	class,	it	has	to	be	through	the
same	instance.	The	reason	is	to	avoid	having	too	many	instances	of	some	heavy	resource,
or	to	keep	always	the	same	state	everywhere—to	be	global.	Examples	of	this	are	database
connections	or	configuration	handlers.

Imagine	that	in	order	to	run,	our	application	needs	some	configuration,	such	as	credentials
for	the	database,	URLs	of	special	endpoints,	directory	paths	for	finding	libraries	or
important	files,	and	so	on.	When	you	receive	a	request,	the	first	thing	you	do	is	to	load	this
configuration	from	the	filesystem,	and	then	you	store	it	as	an	array	or	some	other	data
structure.	Save	the	following	code	as	your	src/Utils/Config.php	file:

<?php

namespace	Bookstore\Utils;

use	Bookstore\Exceptions\NotFoundException;

class	Config	{

				private	$data;

				public	function	__construct()	{

				$json	=	file_get_contents(__DIR__	.	'/../../config/app.json');

								$this->data	=	json_decode($json,	true);

				}

				public	function	get($key)	{

								if	(!isset($this->data[$key]))	{

												throw	new	NotFoundException("Key	$key	not	in	config.");

								}

								return	$this->data[$key];

				}

}

As	you	can	see,	this	class	uses	a	new	exception.	Create	it	under
src/Utils/NotFoundException.php:

<?php

namespace	Bookstore\Exceptions;

use	Exception;

class	NotFoundException	extends	Exception	{

}

Also,	the	class	reads	a	file,	config/app.json.	You	could	add	the	following	JSON	map
inside	it:

{

		"db":	{

				"user":	"Luke",

				"password":	"Skywalker"

		}

}

In	order	to	use	this	configuration,	let’s	add	the	following	code	into	your	init.php	file.

$config	=	new	Config();

$dbConfig	=	$config->get('db');

var_dump($dbConfig);

That	seems	a	very	good	way	to	read	configuration,	right?	But	pay	attention	to	the
highlighted	line.	We	instantiate	the	Config	object,	hence,	we	read	a	file,	transform	its
contents	from	JSON	to	array,	and	store	it.	What	if	the	file	contains	hundreds	of	lines
instead	of	just	six?	You	should	notice	then	that	instantiating	this	class	is	very	expensive.

You	do	not	want	to	read	the	files	and	transform	them	into	arrays	each	time	you	ask	for
some	data	from	your	configuration.	That	is	way	too	expensive!	But,	for	sure,	you	will
need	the	configuration	array	in	very	different	places	of	your	code,	and	you	cannot	carry
this	array	everywhere	you	go.	If	you	understood	static	properties	and	methods,	you	could
argue	that	implementing	a	static	array	inside	the	object	should	fix	the	problem.	You
instantiate	it	once,	and	then	just	call	a	static	method	that	will	access	an	already	populated
static	property.	Theoretically,	we	skip	the	instantiation,	right?

<?php

namespace	Bookstore\Utils;

use	Bookstore\Exceptions\NotFoundException;

class	Config	{

				private	static	$data;

				public	function	__construct()	{

								$json	=	file_get_contents(__DIR__	.	'/../config/app.json');

								self::$data	=	json_decode($json,	true);

				}

				public	static	function	get($key)	{

								if	(!isset(self::$data[$key]))	{

												throw	new	NotFoundException("Key	$key	not	in	config.");

								}

								return	self::$data[$key];

				}

}

This	seems	to	be	a	good	idea,	but	it	is	highly	dangerous.	How	can	you	be	absolutely	sure
that	the	array	has	already	been	populated?	And	how	can	you	be	sure	that,	even	using	a
static	context,	the	user	will	not	keep	instantiating	this	class	again	and	again?	That	is	where
singletons	come	in	handy.

Implementing	a	singleton	implies	the	following	points:

1.	 Make	the	constructor	of	the	class	private,	so	absolutely	no	one	from	outside	the	class
can	ever	instantiate	that	class.

2.	 Create	a	static	property	named	$instance,	which	will	contain	an	instance	of	itself—
that	is,	in	our	Config	class,	the	$instance	property	will	contain	an	instance	of	the
class	Config.

3.	 Create	a	static	method,	getInstance,	which	will	check	if	$instance	is	null,	and	if	it
is,	it	will	create	a	new	instance	using	the	private	constructor.	Either	way,	it	will	return
the	$instance	property.

Let’s	see	what	the	singleton	class	would	look	like:

<?php

namespace	Bookstore\Utils;

use	Bookstore\Exceptions\NotFoundException;

class	Config	{

				private	$data;

				private	static	$instance;

				private	function	__construct()	{

								$json	=	file_get_contents(__DIR__	.	'/../config/app.json');

								$this->data	=	json_decode($json,	true);

				}

				public	static	function	getInstance(){

								if	(self::$instance	==	null)	{

												self::$instance	=	new	Config();

								}

								return	self::$instance;

				}

				public	function	get($key)	{

								if	(!isset($this->data[$key]))	{

												throw	new	NotFoundException("Key	$key	not	in	config.");

								}

								return	$this->data[$key];

				}

}

If	you	run	this	code	right	now,	it	will	throw	you	an	error,	as	the	constructor	of	this	class	is
private.	First	achievement	unlocked!	Let’s	use	this	class	properly:

$config	=	Config::getInstance();

$dbConfig	=	$config->get('db');

var_dump($dbConfig);

Does	it	convince	you?	It	proves	to	be	very	handy	indeed.	But	I	cannot	emphasize	this
enough:	be	careful	when	you	use	this	design	pattern,	as	it	has	very,	very,	specific	use
cases.	Avoid	falling	into	the	trap	of	implementing	it	everywhere!

Anonymous	functions
Anonymous	functions,	or	lambda	functions,	are	functions	without	a	name.	As	they	do
not	have	a	name,	in	order	to	be	able	to	invoke	them,	we	need	to	store	them	as	variables.	It
might	be	strange	at	the	beginning,	but	the	idea	is	quite	simple.	At	this	point	of	time,	we	do
not	really	need	any	anonymous	function,	so	let’s	just	add	the	code	into	init.php,	and	then
remove	it:

$addTaxes	=	function	(array	&$book,	$index,	$percentage)	{

				$book['price']	+=	round($percentage	*	$book['price'],	2);

};

This	preceding	anonymous	function	gets	assigned	to	the	variable	$addTaxes.	It	expects
three	arguments:	$book	(an	array	as	a	reference),	$index	(not	used),	and	$percentage.
The	function	adds	taxes	to	the	price	key	of	the	book,	rounded	to	2	decimal	places	(round
is	a	native	PHP	function).	Do	not	mind	the	argument	$index,	it	is	not	used	in	this	function,
but	forced	by	how	we	will	use	it,	as	you	will	see.

You	could	instantiate	a	list	of	books	as	an	array,	iterate	them,	and	then	call	this	function
each	time.	An	example	could	be	as	follows:

$books	=	[

				['title'	=>	'1984',	'price'	=>	8.15],

				['title'	=>	'Don	Quijote',	'price'	=>	12.00],

				['title'	=>	'Odyssey',	'price'	=>	3.55]

];

foreach	($books	as	$index	=>	$book)	{

				$addTaxes($book,	$index,	0.16);

}

var_dump($books);

In	order	to	use	the	function,	you	just	invoke	it	as	if	$addTaxes	contained	the	name	of	the
function	to	be	invoked.	The	rest	of	the	function	works	as	if	it	was	a	normal	function:	it
receives	arguments,	it	can	return	a	value,	and	it	has	a	scope.	What	is	the	benefit	of
defining	it	in	this	way?	One	possible	application	would	be	to	use	it	as	a	callable.	A
callable	is	a	variable	type	that	identifies	a	function	that	PHP	can	call.	You	send	this
callable	variable	as	an	argument,	and	the	function	that	receives	it	can	invoke	it.	Take	the
PHP	native	function,	array_walk.	It	gets	an	array,	a	callable,	and	some	extra	arguments.
PHP	will	iterate	the	array,	and	for	each	element,	it	will	invoke	the	callable	function	(just
like	the	foreach	loop).	So,	you	can	replace	the	whole	loop	by	just	the	following:

array_walk($books,	$addTaxes,	0.16);

The	callable	that	array_walk	receives	needs	to	take	at	least	two	arguments:	the	value	and
the	index	of	the	current	element	of	the	array,	and	thus,	the	$index	argument	that	we	were
forced	to	implement	previously.	It	can	optionally	take	extra	arguments,	which	will	be	the
extra	arguments	sent	to	array_walk—in	this	case,	the	0.16	as	$percentage.

Actually,	anonymous	functions	are	not	the	only	callable	in	PHP.	You	can	send	normal
functions	and	even	class	methods.	Let’s	see	how:

function	addTaxes(array	&$book,	$index,	$percentage)	{

				if	(isset($book['price']))	{

								$book['price']	+=	round($percentage	*	$book['price'],	2);

				}

}

class	Taxes	{

				public	static	function	add(array	&$book,	$index,	$percentage)

				{

								if	(isset($book['price']))	{

												$book['price']	+=	round($percentage	*	$book['price'],	2);

								}

				}

				public	function	addTaxes(array	&$book,	$index,	$percentage)

				{

								if	(isset($book['price']))	{

												$book['price']	+=	round($percentage	*	$book['price'],	2);

								}

				}

}

//	using	normal	function

array_walk($books,	'addTaxes',	0.16);

var_dump($books);

//	using	static	class	method

array_walk($books,	['Taxes',	'add'],	0.16);

var_dump($books);

//	using	class	method

array_walk($books,	[new	Taxes(),	'addTaxes'],	0.16);

var_dump($books);

In	the	preceding	example,	you	can	see	how	we	can	use	each	case	as	a	callable.	For	normal
methods,	just	send	the	name	of	the	method	as	a	string.	For	static	methods	of	a	class,	send
an	array	with	the	name	of	the	class	in	a	way	that	PHP	understands	(either	the	full	name
including	namespace,	or	adding	the	use	keyword	beforehand),	and	the	name	of	the
method,	both	as	strings.	To	use	a	normal	method	of	a	class,	you	need	to	send	an	array	with
an	instance	of	that	class	and	the	method	name	as	a	string.

OK,	so	anonymous	functions	can	be	used	as	callable,	just	as	any	other	function	or	method
can.	So	what	is	so	special	about	them?	One	of	the	things	is	that	anonymous	functions	are
variables,	and	so	they	have	all	the	advantages—or	disadvantages—that	a	variable	has.
That	includes	scope—that	is,	the	function	is	defined	inside	a	scope,	and	as	soon	as	this
scope	ends,	the	function	will	no	longer	be	accessible.	That	can	be	useful	if	your	function	is
extremely	specific	to	that	bit	of	code,	and	there	is	no	way	you	will	want	to	reuse	it
somewhere	else.	Moreover,	as	it	is	nameless,	you	will	not	have	conflicts	with	any	other
existing	function.

There	is	another	benefit	in	using	anonymous	functions:	inheriting	variables	from	the
parent	scope.	When	you	define	an	anonymous	function,	you	can	specify	some	variable
from	the	scope	where	it	is	defined	with	the	keyword	use,	and	use	it	inside	the	function.
The	value	of	the	variable	will	be	the	one	it	had	at	the	moment	of	declaring	the	function,

even	if	it	is	updated	later.	Let’s	see	an	example:

$percentage	=	0.16;

$addTaxes	=	function	(array	&$book,	$index)	use	($percentage)	{

				if	(isset($book['price']))	{

								$book['price']	+=	round($percentage	*	$book['price'],	2);

				}

};

$percentage	=	100000;

array_walk($books,	$addTaxes);

var_dump($books);

The	preceding	example	shows	you	how	to	use	the	keyword	use.	Even	when	we	update
$percentage	after	defining	the	function,	the	result	shows	you	that	the	taxes	were	only
16%.	This	is	useful,	as	it	liberates	you	from	having	to	send	$percentage	everywhere	you
want	to	use	the	function	$addTaxes.	If	there	is	a	scenario	where	you	really	need	to	have
the	updated	value	of	the	used	variables,	you	can	declare	them	as	a	reference	as	you	would
with	a	normal	function’s	argument:

$percentage	=	0.16;

$addTaxes	=	function	(array	&$book,	$index)	use	(&$percentage)	{

				if	(isset($book['price']))	{

								$book['price']	+=	round($percentage	*	$book['price'],	2);

				}

};

array_walk($books,	$addTaxes,	0.16);

var_dump($books);

$percentage	=	100000;

array_walk($books,	$addTaxes,	0.16);

var_dump($books);

In	this	last	example,	the	first	array_walk	used	the	original	value	0.16,	as	that	was	still	the
value	of	the	variable.	But	on	the	second	call,	$percentage	had	already	changed,	and	it
affected	the	result	of	the	anonymous	function.

Summary
In	this	chapter,	you	have	learned	what	object-oriented	programming	is,	and	how	to	apply	it
to	our	web	application	for	creating	a	clean	code,	which	is	easy	to	maintain.	You	also	know
how	to	manage	exceptions	properly,	the	design	patterns	that	are	used	the	most,	and	how	to
use	anonymous	functions	when	necessary.

In	the	next	chapter,	we	will	explain	how	to	manage	the	data	of	your	application	using
databases	so	that	you	can	completely	separate	data	from	code.

Chapter	5.	Using	Databases
Data	is	probably	the	cornerstone	of	most	web	applications.	Sure,	your	application	has	to
be	pretty,	fast,	error-free,	and	so	on,	but	if	something	is	essential	to	users,	it	is	what	data
you	can	manage	for	them.	From	this,	we	can	extract	that	managing	data	is	one	of	the	most
important	things	you	have	to	consider	when	designing	your	application.

Managing	data	implies	not	only	storing	read-only	files	and	reading	them	when	needed,	as
we	were	doing	so	far,	but	also	adding,	fetching,	updating,	and	removing	individual	pieces
of	information.	For	this,	we	need	a	tool	that	categorizes	our	data	and	makes	these	tasks
easier	for	us,	and	this	is	when	databases	come	into	play.

In	this	chapter,	you	will	learn	about:

Schemas	and	tables
Manipulating	and	querying	data
Using	PDO	to	connect	your	database	with	PHP
Indexing	your	data
Constructing	complex	queries	in	joining	tables

Introducing	databases
Databases	are	tools	to	manage	data.	The	basic	functions	of	a	database	are	inserting,
searching,	updating,	and	deleting	data,	even	though	most	database	systems	do	more	than
this.	Databases	are	classified	into	two	different	categories	depending	on	how	they	store
data:	relational	and	nonrelational	databases.

Relational	databases	structure	data	in	a	very	detailed	way,	forcing	the	user	to	use	a	defined
format	and	allowing	the	creation	of	connections—that	is,	relations—between	different
pieces	of	information.	Nonrelational	databases	are	systems	that	store	data	in	a	more
relaxed	way,	as	though	there	were	no	apparent	structure.	Even	though	with	these	very
vague	definitions	you	could	assume	that	everybody	would	like	to	use	relational	databases,
both	systems	are	very	useful;	it	just	depends	on	how	you	want	to	use	them.

In	this	book,	we	will	focus	on	relational	databases	as	they	are	widely	used	in	small	web
applications,	in	which	there	are	not	huge	amounts	of	data.	The	reason	is	that	usually	the
application	contains	data	that	is	interrelated;	for	example,	our	application	could	store
sales,	which	are	composed	of	customers	and	books.

MySQL
MySQL	has	been	the	favorite	choice	of	PHP	developers	for	quite	a	long	time.	It	is	a
relational	database	system	that	uses	SQL	as	the	language	to	communicate	with	the	system.
SQL	is	used	in	quite	a	few	other	systems,	which	makes	things	easier	in	case	you	need	to
switch	databases	or	just	need	to	understand	an	application	with	a	different	database	than
the	one	you	are	used	to.	The	rest	of	the	chapter	will	be	focused	on	MySQL,	but	it	will	be
helpful	for	you	even	if	you	choose	a	different	SQL	system.

In	order	to	use	MySQL,	you	need	to	install	two	applications:	the	server	and	the	client.	You
might	remember	server-client	applications	from	Chapter	2,	Web	Applications	with	PHP.
The	MySQL	server	is	a	program	that	listens	for	instructions	or	queries	from	clients,
executes	them,	and	returns	a	result.	You	need	to	start	the	server	in	order	to	access	the
database;	take	a	look	at	Chapter	1,	Setting	Up	the	Environment,	on	how	to	do	this.	The
client	is	an	application	that	allows	you	to	construct	instructions	and	send	them	to	the
server,	and	it	is	the	one	that	you	will	use.

Note
GUI	versus	command	line

The	Graphical	User	Interface	(GUI)	is	very	common	when	using	a	database.	It	helps
you	in	constructing	instructions,	and	you	can	even	manage	data	without	them	using	just
visual	tables.	On	the	other	hand,	command-line	clients	force	you	to	write	all	the
commands	by	hand,	but	they	are	lighter	than	GUIs,	faster	to	start,	and	force	you	to
remember	how	to	write	SQL,	which	you	need	when	you	write	your	applications	in	PHP.
Also,	in	general,	almost	any	machine	with	a	database	will	have	a	MySQL	client	but	might
not	have	a	graphical	application.

You	can	choose	the	one	that	you	are	more	comfortable	with	as	you	will	usually	work	with
your	own	machine.	However,	keep	in	mind	that	a	basic	knowledge	of	the	command	line
will	save	your	life	on	several	occasions.

In	order	to	connect	the	client	with	a	server,	you	need	to	provide	some	information	on
where	to	connect	and	the	credentials	for	the	user	to	use.	If	you	do	not	customize	your
MySQL	installation,	you	should	at	least	have	a	root	user	with	no	password,	which	is	the
one	we	will	use.	You	could	think	that	this	seems	to	be	a	horrible	security	hole,	and	it	might
be	so,	but	you	should	not	be	able	to	connect	using	this	user	if	you	do	not	connect	from	the
same	machine	on	which	the	server	is.	The	most	common	arguments	that	you	can	use	to
provide	information	when	starting	the	client	are:

-u	<name>:	This	specifies	the	user—in	our	case,	root.
-p<password>:	Without	a	space,	this	specifies	the	password.	As	we	do	not	have	a
password	for	our	user,	we	do	not	need	to	provide	this.
-h	<host>:	This	specifies	where	to	connect.	By	default,	the	client	connects	to	the
same	machine.	As	this	is	our	case,	there	is	no	need	to	specify	any.	If	you	had	to,	you
could	specify	either	an	IP	address	or	a	hostname.
<schema	name>:	This	specifies	the	name	of	the	schema	to	use.	We	will	explain	in	a

bit	what	this	means.

With	these	rules,	you	should	be	able	to	connect	to	your	database	with	the	mysql	-u	root
command.	You	should	get	an	output	very	similar	to	the	following	one:

$	mysql	-u	root

Welcome	to	the	MySQL	monitor.		Commands	end	with	;	or	\g.

Your	MySQL	connection	id	is	2

Server	version:	5.1.73	Source	distribution

Copyright	(c)	2000,	2013,	Oracle	and/or	its	affiliates.	All	rights	

reserved.

Oracle	is	a	registered	trademark	of	Oracle	Corporation	and/or	its

affiliates.	Other	names	may	be	trademarks	of	their	respective

owners.

Type	'help;'	or	'\h'	for	help.	Type	'\c'	to	clear	the	current	input	

statement.

mysql>

The	terminal	will	show	you	the	version	of	the	server	and	some	useful	information	about
how	to	use	the	client.	From	now	on,	the	command	line	will	start	with	mysql>	instead	of
your	normal	prompt,	showing	you	that	you	are	using	the	MySQL	client.	In	order	to
execute	queries,	just	type	the	query,	end	it	with	a	semicolon,	and	press	Enter.	The	client
will	send	the	query	to	the	server	and	will	show	the	result	of	it.	To	exit	the	client,	you	can
either	type	\q	and	press	Enter	or	press	Ctrl	+	D,	even	though	this	last	option	will	depend
on	your	operating	system.

Schemas	and	tables
Relational	database	systems	usually	have	the	same	structure.	They	store	data	in	different
databases	or	schemas,	which	separate	the	data	from	different	applications.	These	schemas
are	just	collections	of	tables.	Tables	are	definitions	of	specific	data	structures	and	are
composed	of	fields.	A	field	is	a	basic	data	type	that	defines	the	smallest	component	of
information	as	though	they	were	the	atoms	of	the	data.	So,	schemas	are	group	of	tables
that	are	composed	of	fields.	Let’s	look	at	each	of	these	elements.

Understanding	schemas
As	defined	before,	schemas	or	databases—	in	MySQL,	they	are	synonyms—are
collections	of	tables	with	a	common	context,	usually	belonging	to	the	same	application.
Actually,	there	are	no	restrictions	around	this,	and	you	could	have	several	schemas
belonging	to	the	same	application	if	needed.	However,	for	small	web	applications,	as	it	is
our	case,	we	will	have	just	one	schema.

Your	server	probably	already	has	some	schemas.	They	usually	contain	the	metadata
needed	for	MySQL	in	order	to	operate,	and	we	highly	recommend	that	you	do	not	modify
them.	Instead,	let’s	just	create	our	own	schema.	Schemas	are	quite	simple	elements,	and
they	only	have	a	mandatory	name	and	an	optional	charset.	The	name	identifies	the
schema,	and	the	charset	defines	which	type	of	codification	or	“alphabet”	the	strings	should
follow.	As	the	default	charset	is	latin1,	if	you	do	not	need	to	change	it,	you	do	not	need
to	specify	it.

Use	CREATE	SCHEMA	followed	by	the	name	of	the	schema	in	order	to	create	the	schema	that
we	will	use	for	our	bookstore.	The	name	has	to	be	representative,	so	let’s	name	it
bookstore.	Remember	to	end	your	line	with	a	semicolon.	Take	a	look	at	the	following:

mysql>	CREATE	SCHEMA	bookstore;

Query	OK,	1	row	affected	(0.00	sec)

If	you	need	to	remember	how	a	schema	was	created,	you	can	use	SHOW	CREATE	SCHEMA	to
see	its	description,	as	follows:

mysql>	SHOW	CREATE	SCHEMA	bookstore	\G

***************************	1.	row	***************************

							Database:	bookstore

Create	Database:	CREATE	DATABASE	`bookstore`	/*!40100	DEFAULT	CHARACTER	SET	

latin1	*/

1	row	in	set	(0.00	sec)

As	you	can	see,	we	ended	the	query	with	\G	instead	of	a	semicolon.	This	tells	the	client	to
format	the	response	in	a	different	way	than	the	semicolon	does.	When	using	a	command	of
the	SHOW	CREATE	family,	we	recommend	that	you	end	it	with	\G	to	get	a	better
understanding.

Tip
Should	you	use	uppercase	or	lowercase?

When	writing	queries,	you	might	note	that	we	used	uppercase	for	keywords	and	lowercase
for	identifiers,	such	as	names	of	schemas.	This	is	just	a	convention	widely	used	in	order	to
make	it	clear	what	is	part	of	SQL	and	what	is	your	data.	However,	MySQL	keywords	are
case-insensitive,	so	you	could	use	any	case	indistinctively.

All	data	must	belong	to	a	schema.	There	cannot	be	data	floating	around	outside	all
schemas.	This	way,	you	cannot	do	anything	unless	you	specify	the	schema	you	want	to
use.	In	order	to	do	this,	just	after	starting	your	client,	use	the	USE	keyword	followed	by	the
name	of	the	schema.	Optionally,	you	could	tell	the	client	which	schema	to	use	when

connecting	to	it,	as	follows:

mysql>	USE	bookstore;

Database	changed

If	you	do	not	remember	what	the	name	of	your	schema	is	or	want	to	check	which	other
schemas	are	in	your	server,	you	can	run	the	SHOW	SCHEMAS;	command	to	get	a	list	of	them,
as	follows:

mysql>	SHOW	SCHEMAS;

+--------------------+

|	Database											|

+--------------------+

|	information_schema	|

|	bookstore										|

|	mysql														|

|	test															|

+--------------------+

4	rows	in	set	(0.00	sec)

Database	data	types
As	in	PHP,	MySQL	also	has	data	types.	They	are	used	to	define	which	kind	of	data	a	field
can	contain.	As	in	PHP,	MySQL	is	quite	flexible	with	data	types,	transforming	them	from
one	type	to	the	other	if	needed.	There	are	quite	a	few	of	them,	but	we	will	explain	the	most
important	ones.	We	highly	recommend	that	you	visit	the	official	documentation	related	to
data	types	at	http://dev.mysql.com/doc/refman/5.7/en/data-types.html	if	you	want	to	build
applications	with	more	complex	data	structures.

Numeric	data	types
Numeric	data	can	be	categorized	as	integers	or	decimal	numbers.	For	integers,	MySQL
uses	the	INT	data	type	even	though	there	are	versions	to	store	smaller	numbers,	such	as
TINYINT,	SMALLINT,	or	MEDIUMINT,	or	bigger	numbers,	such	as	BIGINT.	The	following
table	shows	what	the	sizes	of	the	different	numeric	types	are,	so	you	can	choose	which	one
to	use	depending	on	your	situation:

Type Size/precision

TINYINT -128	to	127

SMALLINT -32,768	to	32,767

MEDIUMINT -8,388,608	to	8,388,607

INT -2,147,483,648	to	2,147,483,647

BIGINT -9,223,372,036,854,775,808	to	9,223,372,036,854,775,807

Numeric	types	can	be	defined	as	signed	by	default	or	unsigned;	that	is,	you	can	allow	or
not	allow	them	to	contain	negative	values.	If	a	numeric	type	is	defined	as	UNSIGNED,	the
range	of	numbers	that	it	can	take	is	doubled	as	it	does	not	need	to	save	space	for	negative
numbers.

For	decimal	numbers	we	have	two	types:	approximate	values,	which	are	faster	to	process
but	are	not	exact	sometimes,	and	exact	values	that	give	you	exact	precision	on	the	decimal
value.	For	approximate	values	or	the	floating-point	type,	we	have	FLOAT	and	DOUBLE.	For
exact	values	or	the	fixed-point	type	we	have	DECIMAL.

MySQL	allows	you	to	specify	the	number	of	digits	and	decimal	positions	that	the	number
can	take.	For	example,	to	specify	a	number	that	can	contains	five	digits	and	up	to	two	of
them	can	be	decimal,	we	will	use	the	FLOAT(5,2)	notation.	This	is	useful	as	a	constraint,
as	you	will	note	when	we	create	tables	with	prices.

String	data	types
Even	though	there	are	several	data	types	that	allow	you	to	store	from	single	characters	to
big	chunks	of	text	or	binary	code,	it	is	outside	the	scope	of	this	chapter.	In	this	section,	we
will	introduce	you	to	three	types:	CHAR,	VARCHAR,	and	TEXT.

http://dev.mysql.com/doc/refman/5.7/en/data-types.html

CHAR	is	a	data	type	that	allows	you	to	store	an	exact	number	of	characters.	You	need	to
specify	how	long	the	string	will	be	once	you	define	the	field,	and	from	this	point	on,	all
values	for	this	field	have	to	be	of	this	length.	One	possible	usage	in	our	applications	could
be	when	storing	the	ISBN	of	the	book	as	we	know	it	is	always	13	characters	long.

VARCHAR	or	variable	char	is	a	data	type	that	allows	you	to	store	strings	up	to	65,535
characters	long.	You	do	not	need	to	specify	how	long	they	need	to	be,	and	you	can	insert
strings	of	different	lengths	without	an	issue.	Of	course,	the	fact	that	this	type	is	dynamic
makes	it	slower	to	process	compared	with	the	previous	one,	but	after	a	few	times	you
know	how	long	a	string	will	always	be.	You	could	tell	MySQL	that	even	if	you	want	to
insert	strings	of	different	lengths,	the	maximum	length	will	be	a	determined	number.	This
will	help	its	performance.	For	example,	names	are	of	different	lengths,	but	you	can	safely
assume	that	no	name	will	be	longer	than	64	characters,	so	your	field	could	be	defined	as
VARCHAR(64).

Finally,	TEXT	is	a	data	type	for	really	big	strings.	You	could	use	it	if	you	want	to	store	long
comments	from	users,	articles,	and	so	on.	As	with	INT,	there	are	different	versions	of	this
data	type:	TINYTEXT,	TEXT,	MEDIUMTEXT,	and	LONGTEXT.	Even	if	they	are	very	important	in
almost	any	web	application	with	user	interaction,	we	will	not	use	them	in	ours.

List	of	values
In	MySQL,	you	can	force	a	field	to	have	a	set	of	valid	values.	There	are	two	types	of
them:	ENUM,	which	allows	exactly	one	of	the	possible	predefined	values,	and	SET,	which
allows	any	number	of	the	predefined	values.

For	example,	in	our	application,	we	have	two	types	of	customers:	basic	and	premium.	If
we	want	to	store	our	customers	in	a	database,	there	is	a	chance	that	one	of	the	fields	will
be	the	type	of	customer.	As	a	customer	has	to	be	either	basic	or	premium,	a	good	solution
would	be	to	define	the	field	as	an	enum	as	ENUM("basic",	"premium").	In	this	way,	we
will	make	sure	that	all	customers	stored	in	our	database	will	be	of	a	correct	type.

Although	enums	are	quite	common	to	use,	the	use	of	sets	is	less	widespread.	It	is	usually	a
better	idea	to	use	an	extra	table	to	define	the	values	of	the	list,	as	you	will	note	when	we
talk	about	foreign	keys	in	this	chapter.

Date	and	time	data	types
Date	and	time	types	are	the	most	complex	data	types	in	MySQL.	Even	though	the	idea	is
simple,	there	are	several	functions	and	edge	cases	around	these	types.	We	cannot	go
through	all	of	them,	so	we	will	just	explain	the	most	common	uses,	which	are	the	ones	we
will	need	for	our	application.

DATE	stores	dates—that	is,	a	combination	of	day,	month,	and	year.	TIME	stores	times—that
is,	a	combination	of	hour,	minute,	and	second.	DATETIME	are	data	types	for	both	date	and
time.	For	any	of	these	data	types,	you	can	provide	just	a	string	specifying	what	the	value
is,	but	you	need	to	be	careful	with	the	format	that	you	use.	Even	though	you	can	always
specify	the	format	that	you	are	entering	the	data	in,	you	can	just	enter	the	dates	or	times	in
the	default	format—for	example,	2014-12-31	for	dates,	14:34:50	for	time,	and	2014-12-31

14:34:50	for	the	date	and	time.

A	fourth	type	is	TIMESTAMP.	This	type	stores	an	integer,	which	is	the	representation	of	the
seconds	from	January	1,	1970,	which	is	also	known	as	the	Unix	timestamp.	This	is	a	very
useful	type	as	in	PHP,	it	is	really	easy	to	get	the	current	Unix	timestamp	with	the	now()
function,	and	the	format	for	this	data	type	is	always	the	same,	so	it	is	safer	to	work	with	it.
The	downside	is	that	the	range	of	dates	that	it	can	represent	is	limited	as	compared	to	other
types.

There	are	some	functions	that	help	you	manage	these	types.	These	functions	extract
specific	parts	of	the	whole	value,	return	the	value	with	a	different	format,	add	or	subtract
dates,	and	so	on.	Let’s	take	a	look	at	a	short	list	of	them:

Function	name Description

DAY(),	MONTH(),	and	YEAR() Extracts	the	specific	value	for	the	day,	month,	or	year	from	the	DATE	or	DATETIME
provided	value.

HOUR(),	MINUTE(),	and
SECOND()

Extracts	the	specific	value	for	the	hour,	minute,	or	second	from	the	TIME	or	DATETIME
provided	value.

CURRENT_DATE()	and
CURRENT_TIME()

Returns	the	current	date	or	current	time.

NOW() Returns	the	current	date	and	time.

DATE_FORMAT() Returns	the	DATE,	TIME	or	DATETIME	value	with	the	specified	format.

DATE_ADD() Adds	the	specified	interval	of	time	to	a	given	date	or	time	type.

Do	not	worry	if	you	are	confused	on	how	to	use	any	of	these	functions;	we	will	use	them
during	the	rest	of	the	book	as	part	of	our	application.	Also,	an	extensive	list	of	all	the	types
can	be	found	at	http://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html.

http://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html

Managing	tables
Now	that	you	understand	the	different	types	of	data	that	fields	can	take,	it	is	time	to
introduce	tables.	As	defined	in	the	Schemas	and	tables	section,	a	table	is	a	collection	of
fields	that	defines	a	type	of	information.	You	could	compare	it	with	OOP	and	think	of
tables	as	classes,	fields	being	their	properties.	Each	instance	of	the	class	would	be	a	row
on	the	table.

When	defining	a	table,	you	have	to	declare	the	list	of	fields	that	the	table	contains.	For
each	field,	you	need	to	specify	its	name,	its	type,	and	some	extra	information	depending
on	the	type	of	the	field.	The	most	common	are:

NOT	NULL:	This	is	used	if	the	field	cannot	be	null—that	is,	if	it	needs	a	concrete	valid
value	for	each	row.	By	default,	a	field	can	be	null.
UNSIGNED:	As	mentioned	earlier,	this	is	used	to	forbid	the	use	of	negative	numbers	in
this	field.	By	default,	a	numeric	field	accepts	negative	numbers.
DEFAULT	<value>:	This	defines	a	default	value	in	case	the	user	does	not	provide	any.
Usually,	the	default	value	is	null	if	this	clause	is	not	specified.

Table	definitions	also	need	a	name,	as	with	schemas,	and	some	optional	attributes.	You
can	define	the	charset	of	the	table	or	its	engine.	Engines	can	be	a	quite	large	topic	to	cover,
but	for	the	scope	of	this	chapter,	let’s	just	note	that	we	should	use	the	InnoDB	engine	if	we
need	strong	relationships	between	tables.	For	more	advanced	readers,	you	can	read	more
about	MySQL	engines	at	https://dev.mysql.com/doc/refman/5.0/en/storage-engines.html.

Knowing	this,	let’s	try	to	create	a	table	that	will	keep	our	books.	The	name	of	the	table
should	be	book,	as	each	row	will	define	a	book.	The	fields	could	have	the	same	properties
the	Book	class	has.	Let’s	take	a	look	at	how	the	query	to	construct	the	table	would	look:

mysql>	CREATE	TABLE	book(

				->	isbn	CHAR(13)	NOT	NULL,

				->	title	VARCHAR(255)	NOT	NULL,

				->	author	VARCHAR(255)	NOT	NULL,

				->	stock	SMALLINT	UNSIGNED	NOT	NULL	DEFAULT	0,

				->	price	FLOAT	UNSIGNED

				->)	ENGINE=InnoDb;

Query	OK,	0	rows	affected	(0.01	sec)

As	you	can	note,	we	can	add	more	new	lines	until	we	end	the	query	with	a	semicolon.
With	this,	we	can	format	the	query	in	a	way	that	looks	more	readable.	MySQL	will	let	us
know	that	we	are	still	writing	the	same	query	showing	the	->	prompt.	As	this	table
contains	five	fields,	it	is	very	likely	that	we	will	need	to	refresh	our	minds	from	time	to
time	as	we	will	forget	them.	In	order	to	display	the	structure	of	the	table,	you	could	use	the
DESC	command,	as	follows:

mysql>	DESC	book;

+--------+----------------------+------+-----+---------+-------+

|	Field		|	Type																	|	Null	|	Key	|	Default	|	Extra	|

+--------+----------------------+------+-----+---------+-------+

|	isbn			|	char(13)													|	NO			|					|	NULL				|							|

|	title		|	varchar(255)									|	NO			|					|	NULL				|							|

https://dev.mysql.com/doc/refman/5.0/en/storage-engines.html

|	author	|	varchar(255)									|	NO			|					|	NULL				|							|

|	stock		|	smallint(5)	unsigned	|	NO			|					|	0							|							|

|	price		|	float	unsigned							|	YES		|					|	NULL				|							|

+--------+----------------------+------+-----+---------+-------+

5	rows	in	set	(0.00	sec)

We	used	SMALLINT	for	stock	as	it	is	very	unlikely	that	we	will	have	more	than	thousands
of	copies	of	the	same	book.	As	we	know	that	ISBN	is	13	characters	long,	we	enforced	this
when	defining	the	field.	Finally,	both	stock	and	price	are	unsigned	as	negative	values	do
not	make	sense.	Let’s	now	create	our	customer	table	via	the	following	script:

mysql>	CREATE	TABLE	customer(

				->	id	INT	UNSIGNED	NOT	NULL,

				->	firstname	VARCHAR(255)	NOT	NULL,

				->	surname	VARCHAR(255)	NOT	NULL,

				->	email	VARCHAR(255)	NOT	NULL,

				->	type	ENUM('basic',	'premium')

				->)	ENGINE=InnoDb;

Query	OK,	0	rows	affected	(0.00	sec)

We	already	anticipated	the	use	of	enum	for	the	field	type	as	when	designing	classes,	we
could	draw	a	diagram	identifying	the	content	of	our	database.	On	this,	we	could	show	the
tables	and	their	fields.	Let’s	take	a	look	at	how	the	diagram	of	tables	would	look	so	far:

Note	that	even	if	we	create	tables	similar	to	our	classes,	we	will	not	create	a	table	for
Person.	The	reason	is	that	databases	store	data,	and	there	isn’t	any	data	that	we	could	store
for	this	class	as	the	customer	table	already	contains	everything	we	need.	Also,	sometimes,
we	may	create	tables	that	do	not	exist	as	classes	on	our	code,	so	the	class-table
relationship	is	a	very	flexible	one.

Keys	and	constraints
Now	that	we	have	our	main	tables	defined,	let’s	try	to	think	about	how	the	data	inside
would	look.	Each	row	inside	a	table	would	describe	an	object,	which	may	be	either	a	book
or	a	customer.	What	would	happen	if	our	application	has	a	bug	and	allows	us	to	create
books	or	customers	with	the	same	data?	How	will	the	database	differentiate	them?	In
theory,	we	will	assign	IDs	to	customers	in	order	to	avoid	these	scenarios,	but	how	do	we
enforce	that	the	ID	not	be	repeated?

MySQL	has	a	mechanism	that	allows	you	to	enforce	certain	restrictions	on	your	data.
Other	than	attributes	such	as	NOT	NULL	or	UNSIGNED	that	you	already	saw,	you	can	tell
MySQL	that	certain	fields	are	more	special	than	others	and	instruct	it	to	add	some
behavior	to	them.	These	mechanisms	are	called	keys,	and	there	are	four	types:	primary
key,	unique	key,	foreign	key,	and	index.	Let’s	take	a	closer	look	at	them.

Primary	keys
Primary	keys	are	fields	that	identify	a	unique	row	from	a	table.	There	cannot	be	two	of	the
same	value	in	the	same	table,	and	they	cannot	be	null.	Adding	a	primary	key	to	a	table	that
defines	objects	is	almost	a	must	as	it	will	assure	you	that	you	will	always	be	able	to
differentiate	two	rows	by	this	field.

Another	part	that	makes	primary	keys	so	attractive	is	their	ability	to	set	the	primary	key	as
an	autoincremental	numeric	value;	that	is,	you	do	not	have	to	assign	a	value	to	the	ID,	and
MySQL	will	just	pick	up	the	latest	inserted	ID	and	increment	it	by	1,	as	we	did	with	our
Unique	trait.	Of	course,	for	this	to	happen,	your	field	has	to	be	an	integer	data	type.	In	fact,
we	highly	recommend	that	you	always	define	your	primary	key	as	an	integer,	even	if	the
real-life	object	does	not	really	have	this	ID	at	all.	The	reason	is	that	you	should	search	a
row	by	this	numeric	ID,	which	is	unique,	and	MySQL	will	add	some	performance
improvements	that	come	by	setting	the	field	as	a	key.

Then,	let’s	add	an	ID	to	our	book	table.	In	order	to	add	a	new	field,	we	need	to	alter	our
table.	There	is	a	command	that	allows	you	to	do	this:	ALTER	TABLE.	With	this	command,
you	can	modify	the	definition	of	any	existing	field,	add	new	ones,	or	remove	existing
ones.	As	we	add	the	field	that	will	be	our	primary	key	and	be	autoincremental,	we	can	add
all	these	modifiers	to	the	field	definition.	Execute	the	following	code:

mysql>	ALTER	TABLE	book

				->	ADD	id	INT	UNSIGNED	NOT	NULL	AUTO_INCREMENT	

				->	PRIMARY	KEY	FIRST;

Query	OK,	0	rows	affected	(0.02	sec)

Records:	0		Duplicates:	0		Warnings:	0

Note	FIRST	at	the	end	of	the	command.	When	adding	new	fields,	if	you	want	them	to
appear	on	a	different	position	than	at	the	end	of	the	table,	you	need	to	specify	the	position.
It	could	be	either	FIRST	or	AFTER	<other	field>.	For	convenience,	the	primary	key	of	a
table	is	the	first	of	its	fields.

As	the	table	customer	already	has	an	ID	field,	we	do	not	have	to	add	it	again	but	rather
modify	it.	In	order	to	do	this,	we	will	just	use	the	ALTER	TABLE	command	with	the	MODIFY
option,	specifying	the	new	definition	of	an	already	existing	field,	as	follows:

mysql>	ALTER	TABLE	customer

				->	MODIFY	id	INT	UNSIGNED	NOT	NULL

				->	AUTO_INCREMENT	PRIMARY	KEY;

Query	OK,	0	rows	affected	(0.00	sec)

Records:	0		Duplicates:	0		Warnings:	0

Foreign	keys
Let’s	imagine	that	we	need	to	keep	track	of	the	borrowed	books.	The	table	should	contain
the	borrowed	book,	who	borrowed	it,	and	when	it	was	borrowed.	So,	what	kind	of	data
would	you	use	to	identify	the	book	or	the	customer?	Would	you	use	the	title	or	the	name?
Well,	we	should	use	something	that	identifies	a	unique	row	from	these	tables,	and	this
“something”	is	the	primary	key.	With	this	action,	we	will	eliminate	the	change	of	using	a
reference	that	can	potentially	point	to	two	or	more	rows	at	the	same	time.

We	could	then	create	a	table	that	contains	book_id	and	customer_id	as	numeric	fields,
containing	the	IDs	that	reference	these	two	tables.	As	the	first	approach,	it	makes	sense,
but	we	can	find	some	weaknesses.	For	example,	what	happens	if	we	insert	wrong	IDs	and
they	do	not	exist	in	book	or	customer?	We	could	have	some	code	in	our	PHP	side	to	make
sure	that	when	fetching	information	from	borrowed_books,	we	only	displayed	the
information	that	is	correct.	We	could	even	have	a	routine	that	periodically	checks	for
wrong	rows	and	removes	them,	solving	the	issue	of	having	wrong	data	wasting	space	in
the	disk.	However,	as	with	the	Unique	trait	versus	adding	primary	keys	in	MySQL,	it	is
usually	better	to	allow	the	database	system	to	manage	these	things	as	the	performance	will
usually	be	better,	and	you	do	not	need	to	write	extra	code.

MySQL	allows	you	to	create	keys	that	enforce	references	to	other	tables.	These	are	called
foreign	keys,	and	they	are	the	primary	reason	for	which	we	were	forced	to	use	the
InnoDB	table	engine	instead	of	any	other.	A	foreign	key	defines	and	enforces	a	reference
between	this	field	and	another	row	of	a	different	table.	If	the	ID	supplied	for	the	field	with
a	foreign	key	does	not	exist	in	the	referenced	table,	the	query	will	fail.	Furthermore,	if	you
have	a	valid	borrowed_books	row	pointing	to	an	existing	book	and	you	remove	the	entry
from	the	book	table,	MySQL	will	complain	about	it—even	though	you	will	be	able	to
customize	this	behavior	soon—as	this	action	would	leave	wrong	data	in	the	system.	As
you	can	note,	this	is	way	more	useful	than	having	to	write	code	to	manage	these	cases.

Let’s	create	the	borrowed_books	table	with	the	book,	customer	references,	and	dates.	Note
that	we	have	to	define	the	foreign	keys	after	the	definition	of	the	fields	as	opposed	to	when
we	defined	primary	keys,	as	follows:

mysql>	CREATE	TABLE	borrowed_books(

				->	book_id	INT	UNSIGNED	NOT	NULL,

				->	customer_id	INT	UNSIGNED	NOT	NULL,

				->	start	DATETIME	NOT	NULL,

				->	end	DATETIME	DEFAULT	NULL,

				->	FOREIGN	KEY	(book_id)	REFERENCES	book(id),

				->	FOREIGN	KEY	(customer_id)	REFERENCES	customer(id)

				->)	ENGINE=InnoDb;

Query	OK,	0	rows	affected	(0.00	sec)

As	with	SHOW	CREATE	SCHEMA,	you	can	also	check	how	the	table	looks.	This	command
will	also	show	you	information	about	the	keys	as	opposed	to	the	DESC	command.	Let’s
take	a	look	at	how	it	would	work:

mysql>	SHOW	CREATE	TABLE	borrowed_books	\G

***************************	1.	row	***************************

							Table:	borrowed_books

Create	Table:	CREATE	TABLE	`borrowed_books`	(

		`book_id`	int(10)	unsigned	NOT	NULL,

		`customer_id`	int(10)	unsigned	NOT	NULL,

		`start`	datetime	NOT	NULL,

		`end`	datetime	DEFAULT	NULL,

		KEY	`book_id`	(`book_id`),

		KEY	`customer_id`	(`customer_id`),

		CONSTRAINT	`borrowed_books_ibfk_1`	FOREIGN	KEY	(`book_id`)	REFERENCES	

`book`	(`id`),

		CONSTRAINT	`borrowed_books_ibfk_2`	FOREIGN	KEY	(`customer_id`)	REFERENCES	

`customer`	(`id`)

)	ENGINE=InnoDB	DEFAULT	CHARSET=latin1

1	row	in	set	(0.00	sec)

Note	two	important	things	here.	On	one	hand,	we	have	two	extra	keys	that	we	did	not
define.	The	reason	is	that	when	defining	a	foreign	key,	MySQL	also	defines	the	field	as	a
key	that	will	be	used	to	improve	performance	on	the	table;	we	will	look	into	this	in	a
moment.	The	other	element	to	note	is	the	fact	that	MySQL	defines	names	to	the	keys	by
itself.	This	is	necessary	as	we	need	to	be	able	to	reference	them	in	case	we	want	to	change
or	remove	this	key.	You	can	let	MySQL	name	the	keys	for	you,	or	you	can	specify	the
names	you	prefer	when	creating	them.

We	are	running	a	bookstore,	and	even	if	we	allow	customers	to	borrow	books,	we	want	to
be	able	to	sell	them.	A	sale	is	a	very	important	element	that	we	need	to	track	down	as
customers	may	want	to	review	them,	or	you	may	just	need	to	provide	this	information	for
taxation	purposes.	As	opposed	to	borrowing,	in	which	knowing	the	book,	customer,	and
date	was	more	than	enough,	here,	we	need	to	set	IDs	to	the	sales	in	order	to	identify	them
to	the	customers.

However,	this	table	is	more	difficult	to	design	than	the	other	ones	and	not	just	because	of
the	ID.	Think	about	it:	do	customers	buy	books	one	by	one?	Or	do	they	rather	buy	any
number	of	books	at	once?	Thus,	we	need	to	allow	the	table	to	contain	an	undefined
amount	of	books.	With	PHP,	this	is	easy	as	we	would	just	use	an	array,	but	we	do	not	have
arrays	in	MySQL.	There	are	two	options	to	this	problem.

One	solution	could	be	to	set	the	ID	of	the	sale	as	a	normal	integer	field	and	not	as	a
primary	key.	In	this	way,	we	would	be	able	to	insert	several	rows	to	the	sales	table,	one
for	each	borrowed	book.	However,	this	solution	is	less	than	ideal	as	we	miss	the
opportunity	of	defining	a	very	good	primary	key	because	it	has	the	sales	ID.	Also,	we	are
duplicating	the	data	about	the	customer	and	date	since	they	will	always	be	the	same.

The	second	solution,	the	one	that	we	will	implement,	is	the	creation	of	a	separated	table
that	acts	as	a	“list”.	We	will	still	have	our	sales	table,	which	will	contain	the	ID	of	the
sale	as	a	primary	key,	the	customer	ID	as	a	foreign	key,	and	the	dates.	However,	we	will
create	a	second	table	that	we	could	name	sale_book,	and	we	will	define	there	the	ID	of
the	sale,	the	ID	of	the	book,	and	the	amount	of	books	of	the	same	copy	that	the	customer
bought.	In	this	way,	we	will	have	at	once	the	information	about	the	customer	and	date,	and
we	will	be	able	to	insert	as	many	rows	as	needed	in	our	sale_book	list-table	without

duplicating	any	data.	Let’s	take	a	look	at	how	we	would	create	these:

mysql>	CREATE	TABLE	sale(

				->	id	INT	UNSIGNED	NOT	NULL	AUTO_INCREMENT	PRIMARY	KEY,

				->	customer_id	INT	UNSIGNED	NOT	NULL,

				->	date	DATETIME	NOT	NULL,

				->	FOREIGN	KEY	(customer_id)	REFERENCES	customer(id)

				->)	ENGINE=InnoDb;

Query	OK,	0	rows	affected	(0.00	sec)

mysql>	CREATE	TABLE	sale_book(

				->	sale_id	INT	UNSIGNED	NOT	NULL,

				->	book_id	INT	UNSIGNED	NOT	NULL,

				->	amount	SMALLINT	UNSIGNED	NOT	NULL	DEFAULT	1,

				->	FOREIGN	KEY	(sale_id)	REFERENCES	sale(id),

				->	FOREIGN	KEY	(book_id)	REFERENCES	book(id)

				->)	ENGINE=InnoDb;

Query	OK,	0	rows	affected	(0.00	sec)

Keep	in	mind	that	you	should	always	create	the	sales	table	first	because	if	you	create	the
sale_book	table	with	a	foreign	key	first,	referencing	a	table	that	does	not	exist	yet,
MySQL	will	complain.

We	created	three	new	tables	in	this	section,	and	they	are	interrelated.	It	is	a	good	time	to
update	the	diagram	of	tables.	Note	that	we	link	the	fields	with	the	tables	when	there	is	a
foreign	key	defined.	Take	a	look:

Unique	keys
As	you	know,	primary	keys	are	extremely	useful	as	they	provide	several	features	with
them.	One	of	these	is	that	the	field	has	to	be	unique.	However,	you	can	define	only	one
primary	key	per	table,	even	though	you	might	have	several	fields	that	are	unique.	In	order
to	amend	this	limitation,	MySQL	incorporates	unique	keys.	Their	job	is	to	make	sure	that
the	field	is	not	repeated	in	multiple	rows,	but	they	do	not	come	with	the	rest	of	the
functionalities	of	primary	keys,	such	as	being	autoincremental.	Also,	unique	keys	can	be
null.

Our	book	and	customer	tables	contain	good	candidates	for	unique	keys.	Books	can
potentially	have	the	same	title,	and	surely,	there	will	be	more	than	one	book	by	the	same
author.	However,	they	also	have	an	ISBN	which	is	unique;	two	different	books	should	not
have	the	same	ISBN.	In	the	same	way,	even	if	two	customers	were	to	have	the	same	name,
their	e-mail	addresses	will	be	always	different.	Let’s	add	the	two	keys	with	the	ALTER
TABLE	command,	though	you	can	also	add	them	when	creating	the	table	as	we	did	with
foreign	keys,	as	follows:

mysql>	ALTER	TABLE	book	ADD	UNIQUE	KEY	(isbn);

Query	OK,	0	rows	affected	(0.01	sec)

Records:	0		Duplicates:	0		Warnings:	0

mysql>	ALTER	TABLE	customer	ADD	UNIQUE	KEY	(email);

Query	OK,	0	rows	affected	(0.01	sec)

Records:	0		Duplicates:	0		Warnings:	0

Indexes
Indexes,	which	are	a	synonym	for	keys,	are	fields	that	do	not	need	any	special	behavior	as
do	the	rest	of	the	keys	but	they	are	important	enough	in	our	queries.	So,	we	will	ask
MySQL	to	do	some	work	with	them	in	order	to	perform	better	when	querying	by	this
field.	Do	you	remember	when	adding	a	foreign	key	that	MySQL	added	extra	keys	to	the
table?	Those	were	indexes	too.

Think	about	how	the	application	will	use	the	database.	We	want	to	show	the	catalog	of
books	to	our	customers,	but	we	cannot	show	all	of	them	at	once	for	sure.	The	customer
will	want	to	filter	the	results,	and	one	of	the	most	common	ways	of	filtering	is	by
specifying	the	title	of	the	book	that	they	are	looking	for.	From	this,	we	can	extract	that	the
title	will	be	used	to	filter	books	quite	often,	so	we	want	to	add	an	index	to	this	field.	Let’s
add	the	index	via	the	following	code:

mysql>	ALTER	TABLE	book	ADD	INDEX	(title);

Query	OK,	0	rows	affected	(0.01	sec)

Records:	0		Duplicates:	0		Warnings:	0

Remember	that	all	other	keys	also	provide	indexing.	IDs	of	books,	customers	and	sales,
ISBNs,	and	e-mails	are	already	indexed,	so	there	is	no	need	to	add	another	index	here.
Also,	try	not	to	add	indexes	to	every	single	field	as	in	doing	so	you	will	be	overindexing,
which	would	make	some	types	of	queries	even	slower	than	if	they	were	without	indexes!

Inserting	data
We	have	created	the	perfect	tables	to	hold	our	data,	but	so	far	they	are	empty.	It	is	time
that	we	populate	them.	We	delayed	this	moment	as	altering	tables	with	data	is	more
difficult	than	when	they	are	empty.

In	order	to	insert	this	data,	we	will	use	the	INSERT	INTO	command.	This	command	will
take	the	name	of	the	table,	the	fields	that	you	want	to	populate,	and	the	data	for	each	field.
Note	that	you	can	choose	not	to	specify	the	value	for	a	field,	and	there	are	different
reasons	to	do	this,	which	are	as	follows:

The	field	has	a	default	value,	and	we	are	happy	using	it	for	this	specific	row
Even	though	the	field	does	not	have	an	explicit	default	value,	the	field	can	take	null
values;	so,	by	not	specifying	the	field,	MySQL	will	automatically	insert	a	null	here
The	field	is	a	primary	key	and	is	autoincremental,	and	we	want	to	let	MySQL	take
the	next	ID	for	us

There	are	different	reasons	that	can	cause	an	INSERT	INTO	command	to	fail:

If	you	do	not	specify	the	value	of	a	field	and	MySQL	cannot	provide	a	valid	default
value
If	the	value	provided	is	not	of	the	type	of	the	field	and	MySQL	fails	to	find	a	valid
conversion
If	you	specify	that	you	want	to	set	the	value	for	a	field	but	you	fail	to	provide	a	value
If	you	provide	a	foreign	key	with	an	ID	but	the	ID	does	not	exist	in	the	referenced
table

Let’s	take	a	look	at	how	to	add	rows.	Let’s	start	with	our	customer	table,	adding	one
basic	and	one	premium,	as	follows:

mysql>	INSERT	INTO	customer	(firstname,	surname,	email,	type)

				->	VALUES	("Han",	"Solo",	"han@tatooine.com",	"premium");

Query	OK,	1	row	affected	(0.00	sec)

mysql>	INSERT	INTO	customer	(firstname,	surname,	email,	type)

				->	VALUES	("James",	"Kirk",	"enter@prise",	"basic");

Query	OK,	1	row	affected	(0.00	sec)

Note	that	MySQL	shows	you	some	return	information;	in	this	case,	it	shows	that	there	was
one	row	affected,	which	is	the	row	that	we	inserted.	We	did	not	provide	an	ID,	so	MySQL
just	added	the	next	ones	in	the	list.	As	it	is	the	first	time	that	we	are	adding	data,	MySQL
used	the	IDs	1	and	2.

Let’s	try	to	trick	MySQL	and	add	another	customer,	repeating	the	e-mail	address	field	that
we	set	as	unique	in	the	previous	section:

mysql>	INSERT	INTO	customer	(firstname,	surname,	email,	type)

				->	VALUES	("Mr",	"Spock",	"enter@prise",	"basic");

ERROR	1062	(23000):	Duplicate	entry	'enter@prise'	for	key	'email'

An	error	is	returned	with	an	error	code	and	an	error	message,	and	the	row	was	not

inserted,	of	course.	The	error	message	usually	contains	enough	information	in	order	to
understand	the	issue	and	how	to	fix	it.	If	this	is	not	the	case,	we	can	always	try	to	search
on	the	Internet	using	the	error	code	and	note	what	either	the	official	documentation	or
other	users	have	to	say	about	it.

In	case	you	need	to	introduce	multiple	rows	to	the	same	table	and	they	contain	the	same
fields,	there	is	a	shorter	version	of	the	command,	in	which	you	can	specify	the	fields	and
then	provide	the	groups	of	values	for	each	row.	Let’s	take	a	look	at	how	to	use	it	when
adding	books	to	our	book	table,	as	follows:

mysql>	INSERT	INTO	book	(isbn,title,author,stock,price)	VALUES

				->	("9780882339726","1984","George	Orwell",12,7.50),

				->	("9789724621081","1Q84","Haruki	Murakami",9,9.75),

				->	("9780736692427","Animal	Farm","George	Orwell",8,3.50),

				->	("9780307350169","Dracula","Bram	Stoker",30,10.15),

				->	("9780753179246","19	minutes","Jodi	Picoult",0,10);

Query	OK,	5	rows	affected	(0.01	sec)

Records:	5		Duplicates:	0		Warnings:	0

As	with	customers,	we	will	not	specify	the	ID	and	let	MySQL	choose	the	appropriate	one.
Note	also	that	now	the	amount	of	affected	rows	is	5	as	we	inserted	five	rows.

How	can	we	take	advantage	of	the	explicit	defaults	that	we	defined	in	our	tables?	Well,	we
can	do	this	in	the	same	way	as	we	did	with	the	primary	keys:	do	not	specify	them	in	the
fields	list	or	in	the	values	list,	and	MySQL	will	just	use	the	default	value.	For	example,	we
defined	a	default	value	of	1	for	our	book.stock	field,	which	is	a	useful	notation	for	the
book	table	and	the	stock	field.	Let’s	add	another	row	using	this	default,	as	follows:

mysql>	INSERT	INTO	book	(isbn,title,author,price)	VALUES

				->	("9781416500360",	"Odyssey",	"Homer",	4.23);

Query	OK,	1	row	affected	(0.00	sec)

Now	that	we	have	books	and	customers,	let’s	add	some	historic	data	about	customers
borrowing	books.	For	this,	use	the	numeric	IDs	from	book	and	customer,	as	in	the
following	code:

mysql>	INSERT	INTO	borrowed_books(book_id,customer_id,start,end)

				->	VALUES

				->	(1,	1,	"2014-12-12",	"2014-12-28"),

				->	(4,	1,	"2015-01-10",	"2015-01-13"),

				->	(4,	2,	"2015-02-01",	"2015-02-10"),

				->	(1,	2,	"2015-03-12",	NULL);

Query	OK,	3	rows	affected	(0.00	sec)

Records:	3		Duplicates:	0		Warnings:	0

Querying	data
It	took	quite	a	lot	of	time,	but	we	are	finally	in	the	most	exciting—and	useful—section
related	to	databases:	querying	data.	Querying	data	refers	to	asking	MySQL	to	return	rows
from	the	specified	table	and	optionally	filtering	these	results	by	a	set	of	rules.	You	can	also
choose	to	get	specific	fields	instead	of	the	whole	row.	In	order	to	query	data,	we	will	use
the	SELECT	command,	as	follows:

mysql>	SELECT	firstname,	surname,	type	FROM	customer;

+-----------+---------+---------+

|	firstname	|	surname	|	type				|

+-----------+---------+---------+

|	Han							|	Solo				|	premium	|

|	James					|	Kirk				|	basic			|

+-----------+---------+---------+

2	rows	in	set	(0.00	sec)

One	of	the	simplest	ways	to	query	data	is	to	specify	the	fields	of	interest	after	SELECT	and
specify	the	table	with	the	FROM	keyword.	As	we	did	not	add	any	filters—mostly	known	as
conditions—to	the	query,	we	got	all	the	rows	there.	Sometimes,	this	is	the	desired
behavior,	but	the	most	common	thing	to	do	is	to	add	conditions	to	the	query	to	retrieve
only	the	rows	that	we	need.	Use	the	WHERE	keyword	to	achieve	this.

mysql>	SELECT	firstname,	surname,	type	FROM	customer

				->	WHERE	id	=	1;

+-----------+---------+---------+

|	firstname	|	surname	|	type				|

+-----------+---------+---------+

|	Han							|	Solo				|	premium	|

+-----------+---------+---------+

1	row	in	set	(0.00	sec)

Adding	conditions	is	very	similar	to	when	we	created	Boolean	expressions	in	PHP.	We
will	specify	the	name	of	the	field,	an	operator,	and	a	value,	and	MySQL	will	retrieve	only
the	rows	that	return	true	to	this	expression.	In	this	case,	we	asked	for	the	customers	that
had	the	ID	1,	and	MySQL	returned	one	row:	the	one	that	had	an	ID	of	exactly	1.

A	common	query	would	be	to	get	the	books	that	start	with	some	text.	We	cannot	construct
this	expression	with	any	comparison	operand	that	you	know,	such	as	=	and	<	or	>,	since	we
want	to	match	only	a	part	of	the	string.	For	this,	MySQL	has	the	LIKE	operator,	which
takes	a	string	that	can	contain	wildcards.	A	wildcard	is	a	character	that	represents	a	rule,
matching	any	number	of	characters	that	follows	the	rule.	For	example,	the	%	wildcard
represents	any	number	of	characters,	so	using	the	1%	string	would	match	any	string	that
starts	with	1	and	is	followed	by	any	number	or	characters,	matching	strings	such	as	1984
or	1Q84.	Let’s	consider	the	following	example:

mysql>	SELECT	title,	author,	price	FROM	book

				->	WHERE	title	LIKE	"1%";

+------------+-----------------+-------+

|	title						|	author										|	price	|

+------------+-----------------+-------+

|	1984							|	George	Orwell			|			7.5	|

|	1Q84							|	Haruki	Murakami	|		9.75	|

|	19	minutes	|	Jodi	Picoult				|				10	|

+------------+-----------------+-------+

3	rows	in	set	(0.00	sec)

We	asked	for	all	the	books	whose	title	starts	with	1,	and	we	got	three	rows.	You	can
imagine	how	useful	this	operator	is,	especially	when	we	implement	a	search	utility	in	our
application.

As	in	PHP,	MySQL	also	allows	you	to	add	logical	operators—that	is,	operators	that	take
operands	and	perform	a	logical	operation,	returning	Boolean	values	as	a	result.	The	most
common	logical	operators	are,	as	in	PHP,	AND	and	OR.	AND	returns	true	if	both	the
expressions	are	true	and	OR	returns	true	if	either	of	the	operands	is	true.	Let’s	consider
an	example,	as	follows:

mysql>	SELECT	title,	author,	price	FROM	book

				->	WHERE	title	LIKE	"1%"	AND	stock	>	0;

+------------+-----------------+-------+

|	title						|	author										|	price	|

+------------+-----------------+-------+

|	1984							|	George	Orwell			|			7.5	|

|	1Q84							|	Haruki	Murakami	|		9.75	|

+------------+-----------------+-------+

2	rows	in	set	(0.00	sec)

This	example	is	very	similar	to	the	previous	one,	but	we	added	an	extra	condition.	We
asked	for	all	titles	starting	with	1	and	whether	there	is	stock	available.	This	is	why	one	of
the	books	does	not	show	as	it	does	not	satisfy	both	conditions.	You	can	add	as	many
conditions	as	you	need	with	logical	operators	but	bear	in	mind	that	AND	operators	take
precedence	over	OR.	If	you	want	to	change	this	precedence,	you	can	always	wrap
expressions	with	a	parenthesis,	as	in	PHP.

So	far,	we	have	retrieved	specific	fields	when	querying	for	data,	but	we	could	ask	for	all
the	fields	in	a	given	table.	To	do	this,	we	will	just	use	the	*	wildcard	in	SELECT.	Let’s
select	all	the	fields	for	the	customers	via	the	following	code:

mysql>	SELECT	*	FROM	customer	\G

***************************	1.	row	***************************

							id:	1

firstname:	Han

		surname:	Solo

				email:	han@tatooine.com

					type:	premium

***************************	2.	row	***************************

							id:	2

firstname:	James

		surname:	Kirk

				email:	enter@prise

					type:	basic

2	rows	in	set	(0.00	sec)

You	can	retrieve	more	information	than	just	fields.	For	example,	you	can	use	COUNT	to
retrieve	the	amount	of	rows	that	satisfy	the	given	conditions	instead	of	retrieving	all	the

columns.	This	way	is	faster	than	retrieving	all	the	columns	and	then	counting	them
because	you	save	time	in	reducing	the	size	of	the	response.	Let’s	consider	how	it	would
look:

mysql>	SELECT	COUNT(*)	FROM	borrowed_books

				->	WHERE	customer_id	=	1	AND	end	IS	NOT	NULL;

+----------+

|	COUNT(*)	|

+----------+

|								1	|

+----------+

1	row	in	set	(0.00	sec)

As	you	can	note,	the	response	says	1,	which	means	that	there	is	only	one	borrowed	book
that	satisfies	the	conditions.	However,	check	the	conditions;	you	will	note	that	we	used
another	familiar	logical	operator:	NOT.	NOT	negates	the	expression,	as	!	does	in	PHP.	Note
also	that	we	do	not	use	the	equal	sign	to	compare	with	null	values.	In	MySQL,	you	have	to
use	IS	instead	of	the	equals	sign	in	order	to	compare	with	NULL.	So,	the	second	condition
would	be	satisfied	when	a	borrowed	book	has	an	end	date	that	is	not	null.

Let’s	finish	this	section	by	adding	two	more	features	when	querying	data.	The	first	one	is
the	ability	to	specify	in	what	order	the	rows	should	be	returned.	To	do	this,	just	use	the
keyword	ORDER	BY	followed	by	the	name	of	the	field	that	you	want	to	order	by.	You	could
also	specify	whether	you	want	to	order	in	ascending	mode,	which	is	by	default,	or	in	the
descending	mode,	which	can	be	done	by	appending	DESC.	The	other	feature	is	the	ability
to	limit	the	amount	of	rows	to	return	using	LIMIT	and	the	amount	of	rows	to	retrieve.	Now,
run	the	following:

mysql>	SELECT	id,	title,	author,	isbn	FROM	book

				->	ORDER	BY	title	LIMIT	4;

+----+-------------+-----------------+---------------+

|	id	|	title							|	author										|	isbn										|

+----+-------------+-----------------+---------------+

|		5	|	19	minutes		|	Jodi	Picoult				|	9780753179246	|

|		1	|	1984								|	George	Orwell			|	9780882339726	|

|		2	|	1Q84								|	Haruki	Murakami	|	9789724621081	|

|		3	|	Animal	Farm	|	George	Orwell			|	9780736692427	|

+----+-------------+-----------------+---------------+

4	rows	in	set	(0.00	sec)

Using	PDO
So	far,	we	have	worked	with	MySQL,	and	you	already	have	a	good	idea	of	what	you	can
do	with	it.	However,	connecting	to	the	client	and	performing	queries	manually	is	not	our
goal.	What	we	want	to	achieve	is	that	our	application	can	take	advantage	of	the	database
in	an	automatic	way.	In	order	to	do	this,	we	will	use	a	set	of	classes	that	comes	with	PHP
and	allows	you	to	connect	to	the	database	and	perform	queries	from	the	code.

PHP	Data	Objects	(PDO)	is	the	class	that	connects	to	the	database	and	allows	you	to
interact	with	it.	This	is	the	popular	way	to	work	with	databases	for	PHP	developers,	even
though	there	are	other	ways	that	we	will	not	discuss	here.	PDO	allows	you	to	work	with
different	database	systems,	so	you	are	not	tied	to	MySQL	only.	In	the	following	sections,
we	will	consider	how	to	connect	to	a	database,	insert	data,	and	retrieve	it	using	this	class.

Connecting	to	the	database
In	order	to	connect	to	the	database,	it	is	good	practice	to	keep	the	credentials—that	is,	the
user	and	password—separated	from	the	code	in	a	configuration	file.	We	already	have	this
file	as	config/app.json	from	when	we	worked	with	the	Config	class.	Let’s	add	the
correct	credentials	for	our	database.	If	you	have	the	configuration	by	default,	the
configuration	file	should	look	similar	to	this:

{

		"db":	{

				"user":	"root",

				"password":	""

		}

}

Developers	usually	specify	other	information	related	to	the	connection,	such	as	the	host,
port,	or	name	of	the	database.	This	will	depend	on	how	your	application	is	installed,
whether	MySQL	is	running	on	a	different	server,	and	so	on,	and	it	is	up	to	you	how	much
information	you	want	to	keep	on	your	code	and	in	your	configuration	files.

In	order	to	connect	to	the	database,	we	need	to	instantiate	an	object	from	the	PDO	class.
The	constructor	of	this	class	expects	three	arguments:	Data	Source	Name	(DSN),	which
is	a	string	that	represents	the	type	of	database	to	use;	the	name	of	the	user;	and	the
password.	We	already	have	the	username	and	password	from	the	Config	class,	but	we	still
need	to	build	DSN.

One	of	the	formats	for	MySQL	databases	is	<database	type>:host=<host>;dbname=
<schema	name>.	As	our	database	system	is	MySQL,	it	runs	on	the	same	server,	and	the
schema	name	is	bookstore,	DSN	will	be	mysql:host=127.0.0.1;dbname=bookstore.
Let’s	take	a	look	at	how	we	will	put	everything	together:

$dbConfig	=	Config::getInstance()->get('db');

$db	=	new	PDO(

				'mysql:host=127.0.0.1;dbname=bookstore',

				$dbConfig['user'],

				$dbConfig['password']

);

$db->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE,	PDO::FETCH_ASSOC);

Note	also	that	we	will	invoke	the	setAttribute	method	from	the	PDO	instance.	This
method	allows	you	to	set	some	options	to	the	connection;	in	this	case,	it	sets	the	format	of
the	results	coming	from	MySQL.	This	option	forces	MySQL	to	return	the	arrays	whose
keys	are	the	names	of	the	fields,	which	is	way	more	useful	than	the	default	one,	returning
numeric	keys	based	on	the	order	of	the	fields.	Setting	this	option	now	will	affect	all	the
queries	performed	with	the	$db	instance,	rather	than	setting	the	option	each	time	we
perform	a	query.

Performing	queries
The	easiest	way	to	retrieve	data	from	your	database	is	to	use	the	query	method.	This
method	accepts	the	query	as	a	string	and	returns	a	list	of	rows	as	arrays.	Let’s	consider	an
example:	write	the	following	after	the	initialization	of	the	database	connection—for
example,	in	the	init.php	file:

$rows	=	$db->query('SELECT	*	FROM	book	ORDER	BY	title');

foreach	($rows	as	$row)	{

				var_dump($row);

}

This	query	tries	to	get	all	the	books	in	the	database,	ordering	them	by	the	title.	This	could
be	the	content	of	a	function	such	as	getAllBooks,	which	is	used	when	we	display	our
catalog.	Each	row	is	an	array	that	contains	all	the	fields	as	keys	and	the	data	as	values.

If	you	run	the	application	on	your	browser,	you	will	get	the	following	result:

The	query	function	is	useful	when	we	want	to	retrieve	data,	but	in	order	to	execute	queries
that	insert	rows,	PDO	provides	the	exec	function.	This	function	also	expects	the	first

parameter	as	a	string,	defining	the	query	to	execute,	but	it	returns	a	Boolean	specifying
whether	the	execution	was	successful	or	not.	A	good	example	would	be	to	try	to	insert
books.	Type	the	following:

$query	=	<<<SQL

INSERT	INTO	book	(isbn,	title,	author,	price)

VALUES	("9788187981954",	"Peter	Pan",	"J.	M.	Barrie",	2.34)

SQL;

$result	=	$db->exec($query);

var_dump($result);	//	true

This	code	also	uses	a	new	way	of	representing	strings:	heredoc.	We	will	enclose	the	string
between	<<<SQL	and	SQL;,	both	in	different	lines,	instead	of	quotes.	The	benefit	of	this	is
the	ability	to	write	strings	in	multiple	lines	with	tabulations	or	any	other	blank	space,	and
PHP	will	respect	it.	We	can	construct	queries	that	are	easy	to	read	rather	than	writing	them
on	a	single	line	or	having	to	concatenate	the	different	strings.	Note	that	SQL	is	a	token	to
represent	the	start	and	end	of	the	string,	but	you	could	use	any	text	that	you	consider.

The	first	time	you	run	the	application	with	this	code,	the	query	will	be	executed
successfully,	and	thus,	the	result	will	be	the	Boolean	true.	However,	if	you	run	it	again,	it
will	return	false	as	the	ISBN	that	we	inserted	is	the	same	but	we	set	its	restriction	to	be
unique.

It	is	useful	to	know	that	a	query	failed,	but	it	is	better	if	we	know	why.	The	PDO	instance
has	the	errorInfo	method	that	returns	an	array	with	the	information	of	the	last	error.	The
key	2	contains	the	description,	so	it	is	probably	the	one	that	we	will	use	more	often.
Update	the	previous	code	with	the	following:

$query	=	<<<SQL

INSERT	INTO	book	(isbn,	title,	author,	price)

VALUES	("9788187981954",	"Peter	Pan",	"J.	M.	Barrie",	2.34)

SQL;

$result	=	$db->exec($query);	

var_dump($result);	//	false

$error	=	$db->errorInfo()[2];

var_dump($error);	//	Duplicate	entry	'9788187981954'	for	key	'isbn'

The	result	is	that	the	query	failed	because	the	ISBN	entry	was	duplicated.	Now,	we	can
build	more	meaningful	error	messages	for	our	customers	or	just	for	debugging	purposes.

Prepared	statements
The	previous	two	functions	are	very	useful	when	you	need	to	run	quick	queries	that	are
always	the	same.	However,	in	the	second	example	you	might	note	that	the	string	of	the
query	is	not	very	useful	as	it	always	inserts	the	same	book.	Although	it	is	true	that	you
could	just	replace	the	values	by	variables,	it	is	not	good	practice	as	these	variables	usually
come	from	the	user	side	and	can	contain	malicious	code.	It	is	always	better	to	first	sanitize
these	values.

PDO	provides	the	ability	to	prepare	a	statement—that	is,	a	query	that	is	parameterized.
You	can	specify	parameters	for	the	fields	that	will	change	in	the	query	and	then	assign
values	to	these	parameters.	Let’s	consider	first	an	example,	as	follows:

$query	=	'SELECT	*	FROM	book	WHERE	author	=	:author';

$statement	=	$db->prepare($query);

$statement->bindValue('author',	'George	Orwell');

$statement->execute();

$rows	=	$statement->fetchAll();

var_dump($rows);

The	query	is	a	normal	one	except	that	it	has	:author	instead	of	the	string	of	the	author	that
we	want	to	find.	This	is	a	parameter,	and	we	will	identify	them	using	the	prefix	:.	The
prepare	method	gets	the	query	as	an	argument	and	returns	a	PDOStatement	instance.	This
class	contains	several	methods	to	bind	values,	execute	statements,	fetch	results,	and	more.
In	this	piece	of	code,	we	use	only	three	of	them,	as	follows:

bindValue:	This	takes	two	arguments:	the	name	of	the	parameter	as	described	in	the
query	and	the	value	to	assign.	If	you	provide	a	parameter	name	that	is	not	in	the
query,	this	will	throw	an	exception.
execute:	This	will	send	the	query	to	MySQL	with	the	replacement	of	the	parameters
by	the	provided	values.	If	there	is	any	parameter	that	is	not	assigned	to	a	value,	the
method	will	throw	an	exception.	As	its	brother	exec,	execute	will	return	a	Boolean,
specifying	whether	the	query	was	executed	successfully	or	not.
fetchAll:	This	will	retrieve	the	data	from	MySQL	in	case	it	was	a	SELECT	query.	As
a	query,	fetchAll	will	return	a	list	of	all	rows	as	arrays.

If	you	try	this	code,	you	will	note	that	the	result	is	very	similar	to	when	using	query;
however,	this	time,	the	code	is	much	more	dynamic	as	you	can	reuse	it	for	any	author	that
you	need.

There	is	another	way	to	bind	values	to	parameters	of	a	query	than	using	the	bindValue
method.	You	could	prepare	an	array	where	the	key	is	the	name	of	the	parameter	and	the
value	is	the	value	you	want	to	assign	to	it,	and	then	you	can	send	it	as	the	first	argument	of
the	execute	method.	This	way	is	quite	useful	as	usually	you	already	have	this	array
prepared	and	do	not	need	to	call	bindValue	several	times	with	its	content.	Add	this	code
in	order	to	test	it:

$query	=	<<<SQL

INSERT	INTO	book	(isbn,	title,	author,	price)

VALUES	(:isbn,	:title,	:author,	:price)

SQL;

$statement	=	$db->prepare($query);

$params	=	[

				'isbn'	=>	'9781412108614',

				'title'	=>	'Iliad',

				'author'	=>	'Homer',

				'price'	=>	9.25

];

$statement->execute($params);

echo	$db->lastInsertId();	//	8

In	this	last	example,	we	created	a	new	book	with	almost	all	the	parameters,	but	we	did	not
specify	the	ID,	which	is	the	desired	behavior	as	we	want	MySQL	to	choose	a	valid	one	for
us.	However,	what	happens	if	you	want	to	know	the	ID	of	the	inserted	row?	Well,	you
could	query	MySQL	for	the	book	with	the	same	ISBN	and	the	returned	row	would	contain
the	ID,	but	this	seems	like	a	lot	of	work.	Instead,	PDO	has	the	lastInsertId	method,
which	returns	the	last	ID	inserted	by	a	primary	key,	saving	us	from	one	extra	query.

Joining	tables
Even	though	querying	MySQL	is	quite	fast,	especially	if	it	is	in	the	same	server	as	our
PHP	application,	we	should	try	to	reduce	the	number	of	queries	that	we	will	execute	to
improve	the	performance	of	our	application.	So	far,	we	have	queried	data	from	just	one
table,	but	this	is	rarely	the	case.	Imagine	that	you	want	to	retrieve	information	about
borrowed	books:	the	table	contains	only	IDs	and	dates,	so	if	you	query	it,	you	will	not	get
very	meaningful	data,	right?	One	approach	would	be	to	query	the	data	in	borrowed_books,
and	based	on	the	returning	IDs,	query	the	book	and	customer	tables	by	filtering	by	the	IDs
we	are	interested	in.	However,	this	approach	consists	of	at	least	three	queries	to	MySQL
and	a	lot	of	work	with	arrays	in	PHP.	It	seems	as	though	there	should	be	a	better	option!

In	SQL,	you	can	execute	join	queries.	A	join	query	is	a	query	that	joins	two	or	more
tables	through	a	common	field	and,	thus,	allows	you	to	retrieve	data	from	these	tables,
reducing	the	amount	of	queries	needed.	Of	course,	the	performance	of	a	join	query	is	not
as	good	as	the	performance	of	a	normal	query,	but	if	you	have	the	correct	keys	and
relationships	defined,	this	option	is	way	better	than	querying	separately.

In	order	to	join	tables,	you	need	to	link	them	using	a	common	field.	Foreign	keys	are	very
useful	in	this	matter	as	you	know	that	both	the	fields	are	the	same.	Let’s	take	a	look	at	how
we	would	query	for	all	the	important	info	related	to	the	borrowed	books:

mysql>	SELECT	CONCAT(c.firstname,	'	',	c.surname)	AS	name,

				->					b.title,

				->					b.author,

				->					DATE_FORMAT(bb.start,	'%d-%m-%y')	AS	start,

				->					DATE_FORMAT(bb.end,	'%d-%m-%y')	AS	end

				->	FROM	borrowed_books	bb

				->					LEFT	JOIN	customer	c	ON	bb.customer_id	=	c.id

				->					LEFT	JOIN	book	b	ON	b.id	=	bb.book_id

				->	WHERE	bb.start	>=	"2015-01-01";

+------------+---------+---------------+----------+----------+

|	name							|	title			|	author								|	start				|	end						|

+------------+---------+---------------+----------+----------+

|	Han	Solo			|	Dracula	|	Bram	Stoker			|	10-01-15	|	13-01-15	|

|	James	Kirk	|	Dracula	|	Bram	Stoker			|	01-02-15	|	10-02-15	|

|	James	Kirk	|	1984				|	George	Orwell	|	12-03-15	|	NULL					|

+------------+---------+---------------+----------+----------+

3	rows	in	set	(0.00	sec)

There	are	several	new	concepts	introduced	in	this	last	query.	Especially	with	joining
queries,	as	we	joined	the	fields	of	different	tables,	it	might	occur	that	two	tables	have	the
same	field	name,	and	MySQL	needs	us	to	differentiate	them.	The	way	we	will	differentiate
two	fields	of	two	different	tables	is	by	prepending	the	name	of	the	table.	Imagine	that	we
want	to	differentiate	the	ID	of	a	customer	from	the	ID	of	the	book;	we	should	use	them	as
customer.id	and	book.id.	However,	writing	the	name	of	the	table	each	time	would	make
our	queries	endless.

MySQL	has	the	ability	to	add	an	alias	to	a	table	by	just	writing	next	to	the	table’s	real
name,	as	we	did	in	borrowed_books	(bb),	customer	(c)	or	book	(b).	Once	you	add	an	alias,

you	can	use	it	to	reference	this	table,	allowing	us	to	write	things	such	as	bb.customer_id
instead	of	borrowed_books.customer_id.	It	is	also	good	practice	to	write	the	table	of	the
field	even	if	the	field	is	not	duplicated	anywhere	else	as	joining	tables	makes	it	a	bit
confusing	to	know	where	each	field	comes	from.

When	joining	tables,	you	need	to	write	them	in	the	FROM	clause	using	LEFT	JOIN,	followed
by	the	name	of	the	table,	an	optional	alias,	and	the	fields	that	connect	both	tables.	There
are	different	joining	types,	but	let’s	focus	on	the	most	useful	for	our	purposes.	Left	joins
take	each	row	from	the	first	table—the	one	on	the	left-hand	side	of	the	definition—and
search	for	the	equivalent	field	in	the	right-hand	side	table.	Once	it	finds	it,	it	will
concatenate	both	rows	as	if	they	were	one.	For	example,	when	joining	borrowed_books
with	customer	for	each	borrowed_books	row,	MySQL	will	search	for	an	ID	in	customer
that	matches	the	current	customer_id,	and	then	it	will	add	all	the	information	of	this	row
in	our	current	row	in	borrowed_books	as	if	they	were	only	one	big	table.	As	customer_id
is	a	foreign	key,	we	are	certain	that	there	will	always	be	a	customer	to	match.

You	can	join	several	tables,	and	MySQL	will	just	resolve	them	from	left	to	right;	that	is,	it
will	first	join	the	two	first	tables	as	one,	then	try	to	join	this	resulting	one	with	the	third
table,	and	so	on.	This	is,	in	fact,	what	we	did	in	our	example:	we	first	joined
borrowed_books	with	customer	and	then	joined	these	two	with	book.

As	you	can	note,	there	are	also	aliases	for	fields.	Sometimes,	we	do	more	than	just	getting
a	field;	an	example	was	when	we	got	how	many	rows	a	query	matched	with	COUNT(*).
However,	the	title	of	the	column	when	retrieving	this	information	was	also	COUNT(*),
which	is	not	always	useful.	At	other	times,	we	used	two	tables	with	colliding	field	names,
and	it	makes	everything	confusing.	When	this	happens,	just	add	an	alias	to	the	field	in	the
same	way	we	did	with	table	names;	AS	is	optional,	but	it	helps	to	understand	what	you	are
doing.

Let’s	move	now	to	the	usage	of	dates	in	this	query.	On	one	hand,	we	will	use	DATE_FORMAT
for	the	first	time.	It	accepts	the	date/time/datetime	value	and	the	string	with	the	format.	In
this	case,	we	used	%d-%m-%y,	which	means	day-month-year,	but	we	could	use	%h-%i-%s	to
specify	hours-minutes-seconds	or	any	other	combination.

Note	also	how	we	compared	dates	in	the	WHERE	clause.	Given	two	dates	or	time	values	of
the	same	type,	you	can	use	the	comparison	operators	as	if	they	were	numbers.	In	this	case,
we	will	do	bb.start	>=	"2015-01-01",	which	will	give	us	the	borrowed	books	from
January	1,	2015,	onward.

The	final	thing	to	note	about	this	complex	query	is	the	use	of	the	CONCAT	function.	Instead
of	returning	two	fields,	one	for	the	name	and	one	for	the	surname,	we	want	to	get	the	full
name.	To	do	this,	we	will	concatenate	the	fields	using	this	function,	sending	as	many
strings	as	we	want	as	arguments	of	the	function	and	getting	back	the	concatenated	string.
As	you	can	see,	you	can	send	both	fields	and	strings	enclosed	by	single	quotes.

Well,	if	you	fully	understood	this	query,	you	should	feel	satisfied	with	yourself;	this	was
the	most	complex	query	we	will	see	in	this	chapter.	We	hope	you	can	get	a	sense	of	how
powerful	a	database	system	can	be	and	that	from	now	on,	you	will	try	to	process	the	data

as	much	as	you	can	on	the	database	side	instead	of	the	PHP	side.	If	you	set	the	correct
indexes,	it	will	perform	better.

Grouping	queries
The	last	feature	that	we	will	discuss	about	querying	is	the	GROUP	BY	clause.	This	clause
allows	you	to	group	rows	of	the	same	table	with	a	common	field.	For	example,	let’s	say
we	want	to	know	how	many	books	each	author	has	in	just	one	query.	Try	the	following:

mysql>	SELECT

				->	author,

				->	COUNT(*)	AS	amount,

				->	GROUP_CONCAT(title	SEPARATOR	',	')	AS	titles

				->	FROM	book

				->	GROUP	BY	author

				->	ORDER	BY	amount	DESC,	author;

+-----------------+--------+-------------------+

|	author										|	amount	|	titles												|

+-----------------+--------+-------------------+

|	George	Orwell			|						2	|	1984,	Animal	Farm	|

|	Homer											|						2	|	Odyssey,	Iliad				|

|	Bram	Stoker					|						1	|	Dracula											|

|	Haruki	Murakami	|						1	|	1Q84														|

|	J.	M.	Barrie				|						1	|	Peter	Pan									|

|	Jodi	Picoult				|						1	|	19	minutes								|

+-----------------+--------+-------------------+

5	rows	in	set	(0.00	sec)

The	GROUP	BY	clause,	always	after	the	WHERE	clause,	gets	a	field—or	many,	separated	by	a
coma—and	treats	all	the	rows	with	the	same	value	for	this	field,	as	though	they	were	just
one.	Thus,	selecting	by	author	will	group	all	the	rows	that	contain	the	same	author.	The
feature	might	not	seem	very	useful,	but	there	are	several	functions	in	MySQL	that	take
advantage	of	it.	In	this	example:

COUNT(*)	is	used	in	queries	with	GROUP	BY	and	shows	how	many	rows	this	field
groups.	In	this	case,	we	will	use	it	to	know	how	many	books	each	author	has.	In	fact,
it	always	works	like	this;	however,	for	queries	without	GROUP	BY,	MySQL	treats	the
whole	set	of	rows	as	one	group.
GROUP_CONCAT	is	similar	to	CONCAT,	which	we	discussed	earlier.	The	only	difference	is
that	this	time	the	function	will	concatenate	the	fields	of	all	the	rows	of	a	group.	If	you
do	not	specify	SEPARATOR,	MySQL	will	use	a	single	coma.	However,	in	our	case,	we
needed	a	coma	and	a	space	to	make	it	readable,	so	we	added	SEPARATOR	',	'	at	the
end.	Note	that	you	can	add	as	many	things	to	concatenate	as	you	need	in	CONCAT,	the
separator	will	just	separate	the	concatenations	by	rows.

Even	though	it	is	not	about	grouping,	note	the	ORDER	clause	that	we	added.	We	ordered	by
two	fields	instead	of	one.	This	means	that	MySQL	will	order	all	the	rows	by	the	amount
field;	note	that	this	is	an	alias,	but	you	can	use	it	here	as	well.	Then,	MySQL	will	order
each	group	of	rows	with	the	same	amount	value	by	the	title	field.

There	is	one	last	thing	to	remember	as	we	already	presented	all	the	important	clauses	that
a	SELECT	query	can	contain:	MySQL	expects	the	clauses	of	the	query	to	be	always	in	the
same	order.	If	you	write	the	same	query	but	change	this	order,	you	will	get	an	error.	The

order	is	as	follows:

1.	 SELECT
2.	 FROM
3.	 WHERE
4.	 GROUP	BY
5.	 ORDER	BY

Updating	and	deleting	data
We	already	know	quite	a	lot	about	inserting	and	retrieving	data,	but	if	applications	could
only	do	this,	they	would	be	quite	static.	Editing	this	data	as	we	need	is	what	makes	an
application	dynamic	and	what	gives	to	the	user	some	value.	In	MySQL,	and	in	most
database	systems,	you	have	two	commands	to	change	data:	UPDATE	and	DELETE.	Let’s
discuss	them	in	detail.

Updating	data
When	updating	data	in	MySQL,	the	most	important	thing	is	to	have	a	unique	reference	of
the	row	that	you	want	to	update.	For	this,	primary	keys	are	very	useful;	however,	if	you
have	a	table	with	no	primary	keys,	which	should	not	be	the	case	most	of	the	time,	you	can
still	update	the	rows	based	on	other	fields.	Other	than	the	reference,	you	will	need	the	new
value	and,	of	course,	the	table	name	and	field	to	update.	Let’s	take	a	look	at	a	very	simple
example:

mysql>	UPDATE	book	SET	price	=	12.75	WHERE	id	=	2;

Query	OK,	1	row	affected	(0.00	sec)

Rows	matched:	1		Changed:	1		Warnings:	0

In	this	UPDATE	query,	we	set	the	price	of	the	book	with	the	ID	2	to	12.75.	The	SET	clause
does	not	need	to	specify	only	one	change;	you	can	specify	several	changes	on	the	same
row	as	soon	as	you	separate	them	by	commas—for	example,	SET	price	=	12.75,	stock
=	14.	Also,	note	the	WHERE	clause,	in	which	we	specify	which	rows	we	want	to	change.
MySQL	gets	all	the	rows	of	this	table	based	on	these	conditions	as	though	it	were	a
SELECT	query	and	apply	the	change	to	this	set	of	rows.

What	MySQL	will	return	is	very	important:	the	number	of	rows	matched	and	the	number
of	rows	changed.	The	first	one	is	the	number	of	rows	that	match	the	conditions	in	the
WHERE	clause.	The	second	one	specifies	the	amount	of	rows	that	can	be	changed.	There	are
different	reasons	not	to	change	a	row—for	example	when	the	row	already	has	the	same
value.	To	see	this,	let’s	run	the	same	query	again:

mysql>	UPDATE	book	SET	price	=	12.75	WHERE	id	=	2;

Query	OK,	0	rows	affected	(0.00	sec)

Rows	matched:	1		Changed:	0		Warnings:	0

The	same	row	now	says	that	there	was	1	row	matched,	as	expected,	but	0	rows	were
changed.	The	reason	is	that	we	already	set	the	price	of	this	book	to	12.75,	so	MySQL	does
not	need	to	do	anything	about	this	now.

As	mentioned	before,	the	WHERE	clause	is	the	most	important	bit	in	this	query.	Way	too
many	times,	we	find	developers	that	run	a	priori	innocent	UPDATE	queries	end	up	changing
the	whole	table	because	they	miss	the	WHERE	clause;	thus,	MySQL	matches	the	whole	table
as	valid	rows	to	update.	This	is	usually	not	the	intention	of	the	developer,	and	it	is
something	not	very	pleasant,	so	try	to	make	sure	you	always	provide	a	valid	set	of
conditions.	It	is	good	practice	to	first	write	down	the	SELECT	query	that	returns	the	rows
you	need	to	edit,	and	once	you	are	sure	that	the	conditions	match	the	desired	set	of	rows,
you	can	write	the	UPDATE	query.

However,	sometimes,	affecting	multiple	rows	is	the	intended	scenario.	Imagine	that	we	are
going	through	tough	times	and	need	to	increase	the	price	of	all	our	books.	We	decide	that
we	want	to	increase	the	price	by	16%,	which	is	the	same	as	the	current	price	times	1.16.
We	can	run	the	following	query	to	perform	these	changes:

mysql>	UPDATE	book	SET	price	=	price	*	1.16;

Query	OK,	8	rows	affected	(0.00	sec)

Rows	matched:	8		Changed:	8		Warnings:	0

This	query	does	not	contain	any	WHERE	clause	as	we	want	to	match	all	our	books.	Also
note	that	the	SET	clause	uses	the	price	field	to	get	the	current	value	for	the	price,	which	is
perfectly	valid.	Finally,	note	the	number	of	rows	matched	and	changed,	which	is	8—the
whole	set	of	rows	for	this	table.

To	finish	with	this	subsection,	let’s	consider	how	we	can	use	UPDATE	queries	from	PHP
through	PDO.	One	very	common	scenario	is	when	we	want	to	add	copies	of	the	already
existing	books	to	our	inventory.	Given	a	book	ID	and	an	optional	amount	of	books—by
default,	this	value	will	be	1—we	will	increase	the	stock	value	of	this	book	by	these	many
copies.	Write	this	function	in	your	init.php	file:

function	addBook(int	$id,	int	$amount	=	1):	void	{

				$db	=	new	PDO(

								'mysql:host=127.0.0.1;dbname=bookstore',

								'root',

								''

);

				$query	=	'UPDATE	book	SET	stock	=	stock	+	:n	WHERE	id	=	:id';

				$statement	=	$db->prepare($query);

				$statement->bindValue('id',	$id);

				$statement->bindValue('n',	$amount);

				if	(!$statement->execute())	{

								throw	new	Exception($statement->errorInfo()[2]);

				}

}

There	are	two	arguments:	$id	and	$amount.	The	first	one	will	always	be	mandatory,
whereas	the	second	one	can	be	omitted,	and	the	default	value	will	be	1.	The	function	first
prepares	a	query	similar	to	the	first	one	of	this	section,	in	which	we	increased	the	amount
of	stock	of	a	given	book,	then	binds	both	parameters	to	the	statement,	and	finally	executes
the	query.	If	something	happens	and	execute	returns	false,	we	will	throw	an	exception
with	the	content	of	the	error	message	from	MySQL.

This	function	is	very	useful	when	we	either	buy	more	stock	or	a	customer	returns	a	book.
We	could	even	use	it	to	remove	books	by	providing	a	negative	value	to	$amount,	but	this
is	very	bad	practice.	The	reason	is	that	even	if	we	forced	the	stock	field	to	be	unsigned,
setting	it	to	a	negative	value	will	not	trigger	any	error,	only	a	warning.	MySQL	will	not	set
the	row	to	a	negative	value,	but	the	execute	invocation	will	return	true,	and	we	will	not
know	about	it.	It	is	better	to	just	create	a	second	method,	removeBook,	and	verify	first	that
the	amount	of	books	to	remove	is	lower	than	or	equal	to	the	current	stock.

Foreign	key	behaviors
One	tricky	thing	to	manage	when	updating	or	deleting	rows	is	when	the	row	that	we
update	is	part	of	a	foreign	key	somewhere	else.	For	example,	our	borrowed_books	table
contains	the	IDs	of	customers	and	books,	and	as	you	already	know,	MySQL	enforces	that
these	IDs	are	always	valid	and	exist	on	these	respective	tables.	What	would	happen,	then,
if	we	changed	the	ID	of	the	book	itself	on	the	book	table?	Or	even	worse,	what	would
happen	if	we	removed	one	of	the	books	from	book,	and	there	is	a	row	in	borrowed_books
that	references	this	ID?

MySQL	allows	you	to	set	the	desired	reaction	when	one	of	these	scenarios	takes	place.	It
has	to	be	defined	when	adding	the	foreign	key;	so,	in	our	case,	we	will	need	to	first
remove	the	existing	ones	and	then	add	them	again.	To	remove	or	drop	a	key,	you	need	to
know	the	name	of	this	key,	which	we	can	find	using	the	SHOW	CREATE	TABLE	command,	as
follows:

mysql>	SHOW	CREATE	TABLE	borrowed_books	\G

***************************	1.	row	***************************

							Table:	borrowed_books

Create	Table:	CREATE	TABLE	`borrowed_books`	(

		`book_id`	int(10)	unsigned	NOT	NULL,

		`customer_id`	int(10)	unsigned	NOT	NULL,

		`start`	datetime	NOT	NULL,

		`end`	datetime	DEFAULT	NULL,

		KEY	`book_id`	(`book_id`),

		KEY	`customer_id`	(`customer_id`),

		CONSTRAINT	`borrowed_books_ibfk_1`	FOREIGN	KEY	(`book_id`)	REFERENCES	

`book`	(`id`),

		CONSTRAINT	`borrowed_books_ibfk_2`	FOREIGN	KEY	(`customer_id`)	REFERENCES	

`customer`	(`id`)

)	ENGINE=InnoDB	DEFAULT	CHARSET=latin1

1	row	in	set	(0.00	sec)

The	two	foreign	keys	that	we	want	to	remove	are	borrowed_books_ibfk_1	and
borrowed_books_ibfk_2.	Let’s	remove	them	using	the	ALTER	TABLE	command,	as	we	did
before:

mysql>	ALTER	TABLE	borrowed_books

				->	DROP	FOREIGN	KEY	borrowed_books_ibfk_1;

Query	OK,	4	rows	affected	(0.02	sec)

Records:	4		Duplicates:	0		Warnings:	0

mysql>	ALTER	TABLE	borrowed_books

				->	DROP	FOREIGN	KEY	borrowed_books_ibfk_2;

Query	OK,	4	rows	affected	(0.01	sec)

Records:	4		Duplicates:	0		Warnings:	0

Now,	we	need	to	add	the	foreign	keys	again.	The	format	of	the	command	will	be	the	same
as	when	we	added	them,	but	appending	the	new	desired	behavior.	In	our	case,	if	we
remove	a	customer	or	book	from	our	tables,	we	want	to	remove	the	rows	referencing	these
books	and	customers	from	borrowed_books;	so,	we	need	to	use	the	CASCADE	option.	Let’s
consider	what	they	would	look	like:

mysql>	ALTER	TABLE	borrowed_books

				->	ADD	FOREIGN	KEY	(book_id)	REFERENCES	book	(id)

				->	ON	DELETE	CASCADE	ON	UPDATE	CASCADE,

				->	ADD	FOREIGN	KEY	(customer_id)	REFERENCES	customer	(id)

				->	ON	DELETE	CASCADE	ON	UPDATE	CASCADE;

Query	OK,	4	rows	affected	(0.01	sec)

Records:	4		Duplicates:	0		Warnings:	0

Note	that	we	can	define	the	CASCADE	behavior	for	both	actions:	when	updating	and	when
deleting	rows.	There	are	other	options	instead	of	CASCADE—for	example	SET	NULL,	which
sets	the	foreign	keys	columns	to	NULL	and	allows	the	original	row	to	be	deleted,	or	the
default	one,	RESTRICT,	which	rejects	the	update/delete	commands.

Deleting	data
Deleting	data	is	almost	the	same	as	updating	it.	You	need	to	provide	a	WHERE	clause	that
will	match	the	rows	that	you	want	to	delete.	Also,	as	with	when	updating	data,	it	is	highly
recommended	to	first	build	the	SELECT	query	that	will	retrieve	the	rows	that	you	want	to
delete	before	performing	the	DELETE	command.	Do	not	think	that	you	are	wasting	time
with	this	methodology;	as	the	saying	goes,	measure	twice,	cut	once.	Not	always	is	it
possible	to	recover	data	after	deleting	rows!

Let’s	try	to	delete	a	book	by	observing	how	the	CASCADE	option	we	set	earlier	behaves.	For
this,	let’s	first	query	for	the	existing	borrowed	books	list	via	the	following:

mysql>	SELECT	book_id,	customer_id	FROM	borrowed_books;

+---------+-------------+

|	book_id	|	customer_id	|

+---------+-------------+

|							1	|											1	|

|							4	|											1	|

|							4	|											2	|

|							1	|											2	|

+---------+-------------+

4	rows	in	set	(0.00	sec)

There	are	two	different	books,	1	and	4,	with	each	of	them	borrowed	twice.	Let’s	try	to
delete	the	book	with	the	ID	4.	First,	build	a	query	such	as	SELECT	*	FROM	book	WHERE	id
=	4	to	make	sure	that	the	condition	in	the	WHERE	clause	is	the	appropriate	one.	Once	you
are	sure,	perform	the	following	query:

mysql>	DELETE	FROM	book	WHERE	id	=	4;

Query	OK,	1	row	affected	(0.02	sec)

As	you	can	note,	we	only	specified	the	DELETE	FROM	command	followed	by	the	name	of
the	table	and	the	WHERE	clause.	MySQL	tells	us	that	there	was	1	row	affected,	which	makes
sense,	given	the	previous	SELECT	statement	we	made.

If	we	go	back	to	our	borrowed_books	table	and	query	for	the	existing	ones,	we	will	note
that	all	the	rows	referencing	the	book	with	the	ID	4	are	gone.	This	is	because	when
deleting	them	from	the	book	table,	MySQL	noticed	the	foreign	key	reference,	checked
what	it	needed	to	do	while	deleting—in	this	case,	CASCADE—and	deleted	also	the	rows	in
borrowed_books.	Take	a	look	at	the	following:

mysql>	SELECT	book_id,	customer_id	FROM	borrowed_books;

+---------+-------------+

|	book_id	|	customer_id	|

+---------+-------------+

|							1	|											1	|

|							1	|											2	|

+---------+-------------+

2	rows	in	set	(0.00	sec)

Working	with	transactions
In	the	previous	section,	we	reiterated	how	important	it	is	to	make	sure	that	an	update	or
delete	query	contain	the	desirable	matching	set	of	rows.	Even	though	this	will	always
apply,	there	is	a	way	to	revert	the	changes	that	you	just	made,	which	is	working	with
transactions.

A	transaction	is	a	state	where	MySQL	keeps	track	of	all	the	changes	that	you	make	in	your
data	in	order	to	be	able	to	revert	all	of	them	if	needed.	You	need	to	explicitly	start	a
transaction,	and	before	you	close	the	connection	to	the	server,	you	need	to	commit	your
changes.	This	means	that	MySQL	does	not	really	perform	these	changes	until	you	tell	it	to
do	so.	If	during	a	transaction	you	want	to	revert	the	changes,	you	should	roll	back	instead
of	making	a	commit.

PDO	allows	you	to	do	this	with	three	functions:

beginTransaction:	This	will	start	the	transaction.
commit:	This	will	commit	your	changes.	Keep	in	mind	that	if	you	do	not	commit	and
the	PHP	script	finishes	or	you	close	the	connection	explicitly,	MySQL	will	reject	all
the	changes	you	made	during	this	transaction.
rollBack:	This	will	roll	back	all	the	changes	that	were	made	during	this	transaction.

One	possible	use	of	transactions	in	your	application	is	when	you	need	to	perform	multiple
queries	and	all	of	them	have	to	be	successful	and	the	whole	set	of	queries	should	not	be
performed	otherwise.	This	would	be	the	case	when	adding	a	sale	into	the	database.
Remember	that	our	sales	are	stored	in	two	tables:	one	for	the	sale	itself	and	one	for	the	list
of	books	related	to	this	sale.	When	adding	a	new	one,	you	need	to	make	sure	that	all	the
books	are	added	to	this	database;	otherwise,	the	sale	will	be	corrupted.	What	you	should
do	is	execute	all	the	queries,	checking	for	their	returning	values.	If	any	of	them	returns
false,	the	whole	sale	should	be	rolled	back.

Let’s	create	an	addSale	function	in	your	init.php	file	in	order	to	emulate	this	behavior.
The	content	should	be	as	follows:

function	addSale(int	$userId,	array	$bookIds):	void	{

				$db	=	new	PDO(

								'mysql:host=127.0.0.1;dbname=bookstore',

								'root',

								''

);

				$db->beginTransaction();

				try	{

								$query	=	'INSERT	INTO	sale	(customer_id,	date)	'

												.	'VALUES(:id,	NOW())';

								$statement	=	$db->prepare($query);

								if	(!$statement->execute(['id'	=>	$userId]))	{

												throw	new	Exception($statement->errorInfo()[2]);

								}

								$saleId	=	$db->lastInsertId();

								$query	=	'INSERT	INTO	sale_book	(book_id,	sale_id)	'

												.	'VALUES(:book,	:sale)';

								$statement	=	$db->prepare($query);

								$statement->bindValue('sale',	$saleId);

								foreach	($bookIds	as	$bookId)	{

												$statement->bindValue('book',	$bookId);

												if	(!$statement->execute())	{

																throw	new	Exception($statement->errorInfo()[2]);

												}

								}

								$db->commit();

				}	catch	(Exception	$e)	{

								$db->rollBack();

								throw	$e;

				}

}

This	function	is	quite	complex.	It	gets	as	arguments	the	ID	of	the	customer	and	the	list	of
books	as	we	assume	that	the	date	of	the	sale	is	the	current	date.	The	first	thing	we	will	do
is	connect	to	the	database,	instantiating	the	PDO	class.	Right	after	this,	we	will	begin	our
transaction,	which	will	last	only	during	the	course	of	this	function.	Once	we	begin	the
transaction,	we	will	open	a	try…catch	block	that	will	enclose	the	rest	of	the	code	of	the
function.	The	reason	is	that	if	we	throw	an	exception,	the	catch	block	will	capture	it,
rolling	back	the	transaction	and	propagating	the	exception.	The	code	inside	the	try	block
just	adds	first	the	sale	and	then	iterates	the	list	of	books,	inserting	them	into	the	database
too.	At	all	times,	we	will	check	the	response	of	the	execute	function,	and	if	it’s	false,	we
will	throw	an	exception	with	the	information	of	the	error.

Let’s	try	to	use	this	function.	Write	the	following	code	that	tries	to	add	a	sale	for	three
books;	however,	one	of	them	does	not	exist,	which	is	the	one	with	the	ID	200:

try	{

				addSale(1,	[1,	2,	200]);

}	catch	(Exception	$e)	{

				echo	'Error	adding	sale:	'	.	$e->getMessage();

}

This	code	will	echo	the	error	message,	complaining	about	the	nonexistent	book.	If	you
check	in	MySQL,	there	will	be	no	rows	in	the	sales	table	as	the	function	rolled	back
when	the	exception	was	thrown.

Finally,	let’s	try	the	following	code	instead.	This	one	will	add	three	valid	books	so	that	the
queries	are	always	successful	and	the	try	block	can	go	until	the	end,	where	we	will
commit	the	changes:

try	{

				addSale(1,	[1,	2,	3]);

}	catch	(Exception	$e)	{

				echo	'Error	adding	sale:	'	.	$e->getMessage();

}

Test	it,	and	you	will	see	how	there	is	no	message	printed	on	your	browser.	Then,	go	to

your	database	to	make	sure	that	there	is	a	new	sales	row	and	there	are	three	books	linked
to	it.

Summary
In	this	chapter,	we	learned	the	importance	of	databases	and	how	to	use	them	from	our	web
application:	from	setting	up	the	connection	using	PDO	and	creating	and	fetching	data	on
demand	to	constructing	more	complex	queries	that	fulfill	our	needs.	With	all	of	this,	our
application	looks	way	more	useful	now	than	when	it	was	completely	static.

In	the	next	chapter,	we	will	discover	how	to	apply	the	most	important	design	patterns	for
web	applications	through	Model	View	Controller	(MVC).	You	will	gain	a	sense	of
clarity	in	your	code	when	you	organize	your	application	in	this	way.

Chapter	6.	Adapting	to	MVC
Web	applications	are	more	complex	than	what	we	have	built	so	far.	The	more	functionality
you	add,	the	more	difficult	the	code	is	to	maintain	and	understand.	It	is	for	this	reason	that
structuring	your	code	in	an	organized	way	is	crucial.	You	could	design	your	own	structure,
but	as	with	OOP,	there	already	exist	some	design	patterns	that	try	to	solve	this	problem.

MVC	(model-view-controller)	has	been	the	favorite	pattern	for	web	developers.	It	helps
us	separate	the	different	parts	of	a	web	application,	leaving	the	code	easy	to	understand
even	for	beginners.	We	will	try	to	refactor	our	bookstore	example	to	use	the	MVC	pattern,
and	you	will	realize	how	quickly	you	can	add	new	functionality	after	that.

In	this	chapter,	you	will	learn	the	following:

Using	Composer	to	manage	dependencies
Designing	a	router	for	your	application
Organizing	your	code	into	models,	views,	and	controllers
Twig	as	the	template	engine
Dependency	injection

The	MVC	pattern
So	far,	each	time	we	have	had	to	add	a	feature,	we	added	a	new	PHP	file	with	a	mixture	of
PHP	and	HTML	for	that	specific	page.	For	chunks	of	code	with	a	single	purpose,	and
which	we	have	to	reuse,	we	created	functions	and	added	them	to	the	functions	file.	Even
for	very	small	web	applications	like	ours,	the	code	starts	becoming	very	confusing,	and
the	ability	to	reuse	code	is	not	as	helpful	as	it	could	be.	Now	imagine	an	application	with	a
large	number	of	features:	that	would	be	pretty	much	chaos	itself.

The	problems	do	not	stop	here.	In	our	code,	we	have	mixed	HTML	and	PHP	code	in	a
single	file.	That	will	give	us	a	lot	of	trouble	when	trying	to	change	the	design	of	the	web
application,	or	even	if	we	want	to	perform	a	very	small	change	across	all	pages,	such	as
changing	the	menu	or	footer	of	the	page.	The	more	complex	the	application,	the	more
problems	we	will	encounter.

MVC	came	up	as	a	pattern	to	help	us	divide	the	different	parts	of	the	application.	These
parts	are	known	as	models,	views,	and	controllers.	Models	manage	the	data	and/or	the
business	logic,	views	contain	the	templates	for	our	responses	(for	example,	HTML	pages),
and	controllers	orchestrate	requests,	deciding	what	data	to	use	and	how	to	render	the
appropriate	template.	We	will	go	through	them	in	later	sections	of	this	chapter.

Using	Composer
Even	though	this	is	not	a	necessary	component	when	implementing	the	MVC	pattern,
Composer	has	been	an	indispensable	tool	for	any	PHP	web	application	over	the	last	few
years.	The	main	goal	of	this	tool	is	to	help	you	manage	the	dependencies	of	your
application,	that	is,	the	third-party	libraries	(of	code)	that	we	need	to	use	in	our
application.	We	can	achieve	that	by	just	creating	a	configuration	file	that	lists	them,	and	by
running	a	command	in	your	command	line.

You	need	to	install	Composer	on	your	development	machine	(see	Chapter	1,	Setting	Up
the	Environment).	Make	sure	that	you	have	it	by	executing	the	following	command:

$	composer	–version

This	should	return	the	version	of	your	Composer	installation.	If	it	does	not,	return	to	the
installation	section	to	fix	the	problem.

Managing	dependencies
As	we	stated	earlier,	the	main	goal	of	Composer	is	to	manage	dependencies.	For	example,
we’ve	already	implemented	our	configuration	reader,	the	Config	class,	but	if	we	knew	of
someone	that	implemented	a	better	version	of	it,	we	could	just	use	theirs	instead	of
reinventing	the	wheel;	just	make	sure	that	they	allow	you	to	do	so!

Note
Open	source

Open	source	refers	to	the	code	that	developers	write	and	share	with	the	community	in
order	to	be	used	by	others	without	restrictions.	There	are	actually	different	types	of
licenses,	and	some	give	you	more	flexibility	than	others,	but	the	basic	idea	is	that	we	can
reuse	the	libraries	that	other	developers	have	written	in	our	applications.	That	helps	the
community	to	grow	in	knowledge,	as	we	can	learn	what	others	have	done,	improve	it,	and
share	it	afterwards.

We’ve	already	implemented	a	decent	configuration	reader,	but	there	are	other	elements	of
our	application	that	need	to	be	done.	Let’s	take	advantage	of	Composer	to	reuse	someone
else’s	libraries.	There	are	a	couple	of	ways	of	adding	a	dependency	to	our	project:
executing	a	command	in	our	command	line,	or	editing	the	configuration	file	manually.	As
we	still	do	not	have	Composer’s	configuration	file,	let’s	use	the	first	option.	Execute	the
following	command	in	the	root	directory	of	your	application:

$	composer	require	monolog/monolog

This	command	will	show	the	following	result:

Using	version	^1.17	for	monolog/monolog

./composer.json	has	been	created

Loading	composer	repositories	with	package	information

Updating	dependencies	(including	require-dev)

		-	Installing	psr/log	(1.0.0)

				Downloading:	100%

		-	Installing	monolog/monolog	(1.17.2)

				Downloading:	100%

...

Writing	lock	file

Generating	autoload	files

With	this	command,	we	asked	Composer	to	add	the	library	monolog/monolog	as	a
dependency	of	our	application.	Having	executed	that,	we	can	now	see	some	changes	in
our	directory:

We	have	a	new	file	named	composer.json.	This	is	the	configuration	file	where	we
can	add	our	dependencies.
We	have	a	new	file	named	composer.lock.	This	is	a	file	that	Composer	uses	in	order
to	track	the	dependencies	that	have	already	been	installed	and	their	versions.
We	have	a	new	directory	named	vendor.	This	directory	contains	the	code	of	the

dependencies	that	Composer	downloaded.

The	output	of	the	command	also	shows	us	some	extra	information.	In	this	case,	it	says	that
it	downloaded	two	libraries	or	packages,	even	though	we	asked	for	only	one.	The	reason	is
that	the	package	that	we	needed	also	contained	other	dependencies	that	were	resolved	by
Composer.	Also	note	the	version	that	Composer	downloaded;	as	we	did	not	specify	any
version,	Composer	took	the	most	recent	one	available,	but	you	can	always	try	to	write	the
specific	version	that	you	need.

We	will	need	another	library,	in	this	case	twig/twig.	Let’s	add	it	to	our	dependencies	list
with	the	following	command:

$	composer	require	twig/twig

This	command	will	show	the	following	result:

Using	version	^1.23	for	twig/twig

./composer.json	has	been	updated

Loading	composer	repositories	with	package	information

Updating	dependencies	(including	require-dev)

		-	Installing	twig/twig	(v1.23.1)

				Downloading:	100%

Writing	lock	file

Generating	autoload	files

If	we	check	the	composer.json	file,	we	will	see	the	following	content:

{

				"require":	{

								"monolog/monolog":	"^1.17",

								"twig/twig":	"^1.23"

				}

}

The	file	is	just	a	JSON	map	that	contains	the	configuration	of	our	application;	in	this	case,
the	list	of	the	two	dependencies	that	we	installed.	As	you	can	see,	the	dependencies’	name
follows	a	pattern:	two	words	separated	by	a	slash.	The	first	of	the	words	refers	to	the
vendor	that	developed	the	library.	The	second	of	them	is	the	name	of	the	library	itself.	The
dependency	has	a	version,	which	could	be	the	exact	version	number—as	in	this	case—or	it
could	contain	wildcard	characters	or	tag	names.	You	can	read	more	about	this	at
https://getcomposer.org/doc/articles/aliases.md.

Finally,	if	you	would	like	to	add	another	dependency,	or	edit	the	composer.json	file	in
any	other	way,	you	should	run	composer	update	in	your	command	line,	or	wherever	the
composer.json	file	is,	in	order	to	update	the	dependencies.

https://getcomposer.org/doc/articles/aliases.md

Autoloader	with	PSR-4
In	the	previous	chapters,	we	also	added	an	autoloader	to	our	application.	As	we	are	now
using	someone	else’s	code,	we	need	to	know	how	to	load	their	classes	too.	Soon,
developers	realized	that	this	scenario	without	a	standard	would	be	virtually	impossible	to
manage,	and	they	came	out	with	some	standards	that	most	developers	follow.	You	can	find
a	lot	of	information	on	this	topic	at	http://www.php-fig.org.

Nowadays,	PHP	has	two	main	standards	for	autoloading:	PSR-0	and	PSR-4.	They	are
very	similar,	but	we	will	be	implementing	the	latter,	as	it	is	the	most	recent	standard
published.	This	standard	basically	follows	what	we’ve	already	introduced	when	talking
about	namespaces:	the	namespace	of	a	class	must	be	the	same	as	the	directory	where	it	is,
and	the	name	of	the	class	should	be	the	name	of	the	file,	followed	by	the	extension	.php.
For	example,	the	file	in	src/Domain/Book.php	contains	the	class	Book	inside	the
namespace	Bookstore\Domain.

Applications	using	Composer	should	follow	one	of	those	standards,	and	they	should	note
in	their	respective	composer.json	file	which	one	they	are	using.	This	means	that
Composer	knows	how	to	autoload	its	own	application	files,	so	we	will	not	need	to	take
care	of	it	when	we	download	external	libraries.	To	specify	that,	we	edit	our
composer.json	file,	and	add	the	following	content:

{

				"require":	{

								"monolog/monolog":	"^1.17",

								"twig/twig":	"^1.23"

				},

				"autoload":	{

								"psr-4":	{

												"Bookstore\\":	"src"

								}

				}

}

The	preceding	code	means	that	we	will	use	PSR-4	in	our	application,	and	that	all	the
namespaces	that	start	with	Bookstore	should	be	found	inside	the	src/	directory.	This	is
exactly	what	our	autoloader	was	doing	already,	but	reduced	to	a	couple	of	lines	in	a
configuration	file.	We	can	safely	remove	our	autoloader	and	any	reference	to	it	now.

Composer	generates	some	mappings	that	help	to	speed	up	the	loading	of	classes.	In	order
to	update	those	maps	with	the	new	information	added	to	the	configuration	file,	we	need	to
run	the	composer	update	command	that	we	ran	earlier.	This	time,	the	output	will	tell	us
that	there	is	no	package	to	update,	but	the	autoload	files	will	be	generated	again:

$	composer	update

Loading	composer	repositories	with	package	information

Updating	dependencies	(including	require-dev)

Nothing	to	install	or	update

Writing	lock	file

Generating	autoload	files

http://www.php-fig.org

Adding	metadata
In	order	to	know	where	to	find	the	libraries	that	you	define	as	dependencies,	Composer
keeps	a	repository	of	packages	and	versions,	known	as	Packagist.	This	repository	keeps	a
lot	of	useful	information	for	developers,	such	as	all	the	versions	available	for	a	given
package,	the	authors,	some	description	of	what	the	package	does	(or	a	website	pointing	to
that	information),	and	the	dependencies	that	this	package	will	download.	You	can	also
browse	the	packages,	searching	by	name	or	categories.

But	how	does	Packagist	know	about	this?	It	is	all	thanks	to	the	composer.json	file	itself.
In	there,	you	can	define	all	the	metadata	of	your	application	in	a	format	that	Composer
understands.	Let’s	see	an	example.	Add	the	following	content	to	your	composer.json	file:

{

				"name":	"picahielos/bookstore",

				"description":	"Manages	an	online	bookstore.",

				"minimum-stability":	"stable",

				"license":	"Apache-2.0",

				"type":	"project",

				"authors":	[

								{

												"name":	"Antonio	Lopez",

												"email":	"antonio.lopez.zapata@gmail.com"

								}

],

				//	...

}

The	configuration	file	now	contains	the	name	of	the	package	following	the	Composer
convention:	vendor	name,	slash,	and	the	package	name—in	this	case,
picahielos/bookstore.	We	also	add	a	description,	license,	authors,	and	other	metadata.	If
you	have	your	code	in	a	pubic	repository	such	as	GitHub,	adding	this	composer.json	file
will	allow	you	to	go	to	Packagist	and	insert	the	URL	of	your	repository.	Packagist	will	add
your	code	as	a	new	package,	extracting	the	info	from	your	composer.json	file.	It	will
show	the	available	versions	based	on	your	tags	or	branches.	In	order	to	learn	more	about
it,	we	encourage	you	to	visit	the	official	documentation	at	https://getcomposer.org/doc/04-
schema.md.

https://getcomposer.org/doc/04-schema.md

The	index.php	file
In	MVC	applications,	we	usually	have	one	file	that	gets	all	the	requests,	and	routes	them
to	the	specific	controller	depending	on	the	URL.	This	logic	can	generally	be	found	in	the
index.php	file	in	our	root	directory.	We	already	have	one,	but	as	we	are	adapting	our
features	to	the	MVC	pattern,	we	will	not	need	the	current	index.php	anymore.	Hence,	you
can	safely	replace	it	with	the	following:

<?php

require_once	__DIR__	.	'/vendor/autoload.php';

The	only	thing	that	this	file	will	do	now	is	include	the	file	that	handles	all	the	autoloading
from	the	Composer	code.	Later,	we	will	initialize	everything	here,	such	as	database
connections,	configuration	readers,	and	so	on,	but	right	now,	let’s	leave	it	empty.

Working	with	requests
As	you	might	recall	from	previous	chapters,	the	main	purpose	of	a	web	application	is	to
process	HTTP	requests	coming	from	the	client	and	return	a	response.	If	that	is	the	main
goal	of	your	application,	managing	requests	and	responses	should	be	an	important	part	of
your	code.

PHP	is	a	language	that	can	be	used	for	scripts,	but	its	main	usage	is	in	web	applications.
Due	to	this,	the	language	comes	ready	with	a	lot	of	helpers	for	managing	requests	and
responses.	Still,	the	native	way	is	not	ideal,	and	as	good	OOP	developers,	we	should	come
up	with	a	set	of	classes	that	help	with	that.	The	main	elements	for	this	small	project—still
inside	your	application—are	the	request	and	the	router.	Let’s	start!

The	request	object
As	we	start	our	mini	framework,	we	need	to	change	our	directory	structure	a	bit.	We	will
create	the	src/Core	directory	for	all	the	classes	related	to	the	framework.	As	the
configuration	reader	from	the	previous	chapters	is	also	part	of	the	framework	(rather	than
functionality	for	the	user),	we	should	move	the	Config.php	file	to	this	directory	too.

The	first	thing	to	consider	is	what	a	request	looks	like.	If	you	remember	Chapter	2,	Web
Applications	with	PHP,	a	request	is	basically	a	message	that	goes	to	a	URL,	and	has	a
method—GET	or	POST	for	now.	The	URL	is	at	the	same	time	composed	of	two	parts:	the
domain	of	the	web	application,	that	is,	the	name	of	your	server,	and	the	path	of	the	request
inside	the	server.	For	example,	if	you	try	to	access	http://bookstore.com/my-books,	the
first	part,	http://bookstore.com,	would	be	the	domain	and	/my-books	would	be	the	path.
In	fact,	http	would	not	be	part	of	the	domain,	but	we	do	not	need	that	level	of	granularity
for	our	application.	You	can	get	this	information	from	the	global	array	$_SERVER	that	PHP
populates	for	each	request.

Our	Request	class	should	have	a	property	for	each	of	those	three	elements,	followed	by	a
set	of	getters	and	some	other	helpers	that	will	be	useful	for	the	user.	Also,	we	should
initialize	all	the	properties	from	$_SERVER	in	the	constructor.	Let’s	see	what	it	would	look
like:

<?php

namespace	Bookstore\Core;

class	Request	{

				const	GET	=	'GET';

				const	POST	=	'POST';

				private	$domain;

				private	$path;

				private	$method;

				public	function	__construct()	{

								$this->domain	=	$_SERVER['HTTP_HOST'];

								$this->path	=	$_SERVER['REQUEST_URI'];

								$this->method	=	$_SERVER['REQUEST_METHOD'];

				}

				public	function	getUrl():	string	{

								return	$this->domain	.	$this->path;

				}

				public	function	getDomain():	string	{

								return	$this->domain;

				}

				public	function	getPath():	string	{

								return	$this->path;

				}

				public	function	getMethod():	string	{

								return	$this->method;

				}

				public	function	isPost():	bool	{

								return	$this->method	===	self::POST;

				}

				public	function	isGet():	bool	{

								return	$this->method	===	self::GET;

				}

}

We	can	see	in	the	preceding	code	that	other	than	the	getters	for	each	property,	we	added
the	methods	getUrl,	isPost,	and	isGet.	The	user	could	find	the	same	information	using
the	already	existing	getters,	but	as	they	will	be	needed	a	lot,	it	is	always	good	to	make	it
easier	for	the	user.	Also	note	that	the	properties	are	coming	from	the	values	of	the
$_SERVER	array:	HTTP_HOST,	REQUEST_URI,	and	REQUEST_METHOD.

Filtering	parameters	from	requests
Another	important	part	of	a	request	is	the	information	that	comes	from	the	user,	that	is,	the
GET	and	POST	parameters,	and	the	cookies.	As	with	the	$_SERVER	global	array,	this
information	comes	from	$_POST,	$_GET,	and	$_COOKIE,	but	it	is	always	good	to	avoid
using	them	directly,	without	filtering,	as	the	user	could	send	malicious	code.

We	will	now	implement	a	class	that	will	represent	a	map—key-value	pairs—that	can	be
filtered.	We	will	call	it	FilteredMap,	and	will	include	it	in	our	namespace,
Bookstore\Core.	We	will	use	it	to	contain	the	parameters	GET	and	POST	and	the	cookies
as	two	new	properties	in	our	Request	class.	The	map	will	contain	only	one	property,	the
array	of	data,	and	will	have	some	methods	to	fetch	information	from	it.	To	construct	the
object,	we	need	to	send	the	array	of	data	as	an	argument	to	the	constructor:

<?php

namespace	Bookstore\Core;

class	FilteredMap	{

				private	$map;

				public	function	__construct(array	$baseMap)	{

								$this->map	=	$baseMap;

				}

				

				public	function	has(string	$name):	bool	{

								return	isset($this->map[$name]);

				}

				public	function	get(string	$name)	{

								return	$this->map[$name]	??	null;

				}

}

This	class	does	not	do	much	so	far.	We	could	have	the	same	functionality	with	a	normal
array.	The	utility	of	this	class	comes	when	we	add	filters	while	fetching	data.	We	will
implement	three	filters,	but	you	can	add	as	many	as	you	need:

public	function	getInt(string	$name)	{

				return	(int)	$this->get($name);

}

public	function	getNumber(string	$name)	{

				return	(float)	$this->get($name);

}

public	function	getString(string	$name,	bool	$filter	=	true)	{

				$value	=	(string)	$this->get($name);

				return	$filter	?	addslashes($value)	:	$value;

}

These	three	methods	in	the	preceding	code	allow	the	user	to	get	parameters	of	a	specific
type.	Let’s	say	that	the	developer	needs	to	get	the	ID	of	the	book	from	the	request.	The

best	option	is	to	use	the	getInt	method	to	make	sure	that	the	returned	value	is	a	valid
integer,	and	not	some	malicious	code	that	can	mess	up	our	database.	Also	note	the
function	getString,	where	we	use	the	addSlashed	method.	This	method	adds	slashes	to
some	of	the	suspicious	characters,	such	as	slashes	or	quotes,	trying	to	prevent	malicious
code	with	it.

Now	we	are	ready	to	get	the	GET	and	POST	parameters	as	well	as	the	cookies	from	our
Request	class	using	our	FilteredMap.	The	new	code	would	look	like	the	following:

<?php

namespace	Bookstore\Core;

class	Request	{

				//	...

				private	$params;

				private	$cookies;

				public	function	__construct()	{

								$this->domain	=	$_SERVER['HTTP_HOST'];

								$this->path	=	explode('?',	$_SERVER['REQUEST_URI'])[0];

								$this->method	=	$_SERVER['REQUEST_METHOD'];

								$this->params	=	new	FilteredMap(

												array_merge($_POST,	$_GET)

);

								$this->cookies	=	new	FilteredMap($_COOKIE);

				}

				//	...

				public	function	getParams():	FilteredMap	{

								return	$this->params;

				}

				public	function	getCookies():	FilteredMap	{

								return	$this->cookies;

				}

}

With	this	new	addition,	a	developer	could	get	the	POST	parameter	price	with	the
following	line	of	code:

$price	=	$request->getParams()->getNumber('price');

This	is	way	safer	than	the	usual	call	to	the	global	array:

$price	=	$_POST['price'];

Mapping	routes	to	controllers
If	you	can	recall	from	any	URL	that	you	use	daily,	you	will	probably	not	see	any	PHP	file
as	part	of	the	path,	like	we	have	with	http://localhost:8000/init.php.	Websites	try	to
format	their	URLs	to	make	them	easier	to	remember	instead	of	depending	on	the	file	that
should	handle	that	request.	Also,	as	we’ve	already	mentioned,	all	our	requests	go	through
the	same	file,	index.php,	regardless	of	their	path.	Because	of	this,	we	need	to	keep	a	map
of	the	URL	paths,	and	who	should	handle	them.

Sometimes,	we	have	URLs	that	contain	parameters	as	part	of	their	path,	which	is	different
from	when	they	contain	the	GET	or	POST	parameters.	For	example,	to	get	the	page	that
shows	a	specific	book,	we	might	include	the	ID	of	the	book	as	part	of	the	URL,	such	as
/book/12	or	/book/3.	The	ID	will	change	for	each	different	book,	but	the	same	controller
should	handle	all	of	these	requests.	To	achieve	this,	we	say	that	the	URL	contains	an
argument,	and	we	could	represent	it	by	/book/:id,	where	id	is	the	argument	that
identifies	the	ID	of	the	book.	Optionally,	we	could	specify	the	kind	of	value	this	argument
can	take,	for	example,	number,	string,	and	so	on.

Controllers,	the	ones	in	charge	of	processing	requests,	are	defined	by	a	method’s	class.
This	method	takes	as	arguments	all	the	arguments	that	the	URL’s	path	defines,	such	as	the
ID	of	the	book.	We	group	controllers	by	their	functionality,	that	is,	a	BookController
class	will	contain	the	methods	related	to	requests	about	books.

Having	defined	all	the	elements	of	a	route—a	URL-controller	relationship—we	are	ready
to	create	our	routes.json	file,	a	configuration	file	that	will	keep	this	map.	Each	entry	of
this	file	should	contain	a	route,	the	key	being	the	URL,	and	the	value,	a	map	of
information	about	the	controller.	Let’s	see	an	example:

{

		"books/:page":	{

				"controller":	"Book",

				"method":	"getAllWithPage",

				"params":	{

						"page":	"number"

				}

		}

}

The	route	in	the	preceding	example	refers	to	all	the	URLs	that	follow	the	pattern
/books/:page,	with	page	being	any	number.	Thus,	this	route	will	match	URLs	such	as
/books/23	or	/books/2,	but	it	should	not	match	/books/one	or	/books.	The	controller
that	will	handle	this	request	should	be	the	getAllWithPage	method	from	BookController;
we	will	append	Controller	to	all	the	class	names.	Given	the	parameters	that	we	defined,
the	definition	of	the	method	should	be	something	like	the	following:

public	function	getAllWithPage(int	$page):	string	{

				//...

}

There	is	one	last	thing	we	should	consider	when	defining	a	route.	For	some	endpoints,	we

should	enforce	the	user	to	be	authenticated,	such	as	when	the	user	is	trying	to	access	their
own	sales.	We	could	define	this	rule	in	several	ways,	but	we	chose	to	do	it	as	part	of	the
route,	adding	the	entry	"login":	true	as	part	of	the	controller’s	information.	With	that	in
mind,	let’s	add	the	rest	of	the	routes	that	define	all	the	views	that	we	expect	to	have:

{

//...

		"books":	{

				"controller":	"Book",

				"method":	"getAll"

		},

		"book/:id":	{

				"controller":	"Book",

				"method":	"get",

				"params":	{

						"id":	"number"

				}

		},

		"books/search":	{

				"controller":	"Book",

				"method":	"search"

		},	

		"login":	{

				"controller":	"Customer",

				"method":	"login"

		},

		"sales":	{

				"controller":	"Sales",

				"method":	"getByUser"	,

				"login":	true

		},

		"sales/:id":	{

				"controller":	"Sales",

				"method":	"get",

				"login":	true,

				"params":	{

						"id":	"number"

				}

		},

		"my-books":	{

				"controller":	"Book",

				"method":	"getByUser",

				"login":	true

		}

}

These	routes	define	all	the	pages	we	need;	we	can	get	all	the	books	in	a	paginated	way	or
specific	books	by	their	ID,	we	can	search	books,	list	the	sales	of	the	user,	show	a	specific
sale	by	its	ID,	and	list	all	the	books	that	a	certain	user	has	borrowed.	However,	we	are	still
lacking	some	of	the	endpoints	that	our	application	should	be	able	to	handle.	For	all	those
actions	that	are	trying	to	modify	data	rather	than	requesting	it,	that	is,	borrowing	a	book	or
buying	it,	we	need	to	add	endpoints	too.	Add	the	following	to	your	routes.json	file:

{

		//	...

		"book/:id/buy":	{

				"controller":	"Sales",

				"method":	"add",

				"login":	true

				"params":	{

						"id":	"number"

				}

		},

		"book/:id/borrow":	{

				"controller":	"Book",

				"method":	"borrow",

				"login":	true

				"params":	{

						"id":	"number"

				}

		},

		"book/:id/return":	{

				"controller":	"Book",

				"method":	"returnBook",

				"login":	true

				"params":	{

						"id":	"number"

				}

		}

}

The	router
The	router	will	be	by	far	the	most	complicated	piece	of	code	in	our	application.	The	main
goal	is	to	receive	a	Request	object,	decide	which	controller	should	handle	it,	invoke	it
with	the	necessary	parameters,	and	return	the	response	from	that	controller.	The	main	goal
of	this	section	is	to	understand	the	importance	of	the	router	rather	than	its	detailed
implementation,	but	we	will	try	to	describe	each	of	its	parts.	Copy	the	following	content	as
your	src/Core/Router.php	file:

<?php

namespace	Bookstore\Core;

use	Bookstore\Controllers\ErrorController;

use	Bookstore\Controllers\CustomerController;

class	Router	{

				private	$routeMap;

				private	static	$regexPatters	=	[

								'number'	=>	'\d+',

								'string'	=>	'\w'

];

				public	function	__construct()	{

								$json	=	file_get_contents(

												__DIR__	.	'/../../config/routes.json'

);

								$this->routeMap	=	json_decode($json,	true);

				}

				public	function	route(Request	$request):	string	{

								$path	=	$request->getPath();

								foreach	($this->routeMap	as	$route	=>	$info)	{

												$regexRoute	=	$this->getRegexRoute($route,	$info);

												if	(preg_match("@^/$regexRoute$@",	$path))	{

																return	$this->executeController(

																				$route,	$path,	$info,	$request

);

												}

								}

								$errorController	=	new	ErrorController($request);

								return	$errorController->notFound();

				}

}

The	constructor	of	this	class	reads	from	the	routes.json	file,	and	stores	the	content	as	an
array.	Its	main	method,	route,	takes	a	Request	object	and	returns	a	string,	which	is	what
we	will	send	as	output	to	the	client.	This	method	iterates	all	the	routes	from	the	array,
trying	to	match	each	with	the	path	of	the	given	request.	Once	it	finds	one,	it	tries	to
execute	the	controller	related	to	that	route.	If	none	of	the	routes	are	a	good	match	to	the
request,	the	router	will	execute	the	notFound	method	of	the	ErrorController,	which	will

then	return	an	error	page.

URLs	matching	with	regular	expressions
While	matching	a	URL	with	the	route,	we	need	to	take	care	of	the	arguments	for	dynamic
URLs,	as	they	do	not	let	us	perform	a	simple	string	comparison.	PHP—and	other
languages—has	a	very	strong	tool	for	performing	string	comparisons	with	dynamic
content:	regular	expressions.	Being	an	expert	in	regular	expressions	takes	time,	and	it	is
outside	the	scope	of	this	book,	but	we	will	give	you	a	brief	introduction	to	them.

A	regular	expression	is	a	string	that	contains	some	wildcard	characters	that	will	match	the
dynamic	content.	Some	of	the	most	important	ones	are	as	follows:

^:	This	is	used	to	specify	that	the	matching	part	should	be	the	start	of	the	whole	string
$:	This	is	used	to	specify	that	the	matching	part	should	be	the	end	of	the	whole	string
\d:	This	is	used	to	match	a	digit
\w:	This	is	used	to	match	a	word
+:	This	is	used	for	following	a	character	or	expression,	to	let	that	character	or
expression	to	appear	at	least	once	or	many	times
*:	This	is	used	for	following	a	character	or	expression,	to	let	that	character	or
expression	to	appear	zero	or	many	times
.:	This	is	used	to	match	any	single	character

Let’s	see	some	examples:

The	pattern	.*	will	match	anything,	even	an	empty	string
The	pattern	.+	will	match	anything	that	contains	at	least	one	character
The	pattern	^\d+$	will	match	any	number	that	has	at	least	one	digit

In	PHP,	we	have	different	functions	to	work	with	regular	expressions.	The	easiest	of	them,
and	the	one	that	we	will	use,	is	pregmatch.	This	function	takes	a	pattern	as	its	first
argument	(delimited	by	two	characters,	usually	@	or	/),	the	string	that	we	are	trying	to
match	as	the	second	argument,	and	optionally,	an	array	where	PHP	stores	the	occurrences
found.	The	function	returns	a	Boolean	value,	being	true	if	there	was	a	match,	false
otherwise.	We	use	it	as	follows	in	our	Route	class:

preg_match("@^/$regexRoute$@",	$path)

The	$path	variable	contains	the	path	of	the	request,	for	example,	/books/2.	We	match
using	a	pattern	that	is	delimited	by	@,	has	the	^	and	$	wildcards	to	force	the	pattern	to
match	the	whole	string,	and	contains	the	concatenation	of	/	and	the	variable	$regexRoute.
The	content	of	this	variable	is	given	by	the	following	method;	add	this	as	well	to	your
Router	class:

private	function	getRegexRoute(

				string	$route,

				array	$info

):	string	{

				if	(isset($info['params']))	{

								foreach	($info['params']	as	$name	=>	$type)	{

												$route	=	str_replace(

																':'	.	$name,	self::$regexPatters[$type],	$route

);

								}

				}

				return	$route;

}

The	preceding	method	iterates	the	parameters	list	coming	from	the	information	of	the
route.	For	each	parameter,	the	function	replaces	the	name	of	the	parameter	inside	the	route
by	the	wildcard	character	corresponding	to	the	type	of	parameter—check	the	static	array,
$regexPatterns.	To	illustrate	the	usage	of	this	function,	let’s	see	some	examples:

The	route	/books	will	be	returned	without	a	change,	as	it	does	not	contain	any
argument
The	route	books/:id/borrow	will	be	changed	to	books/\d+/borrow,	as	the	URL
argument,	id,	is	a	number

Extracting	the	arguments	of	the	URL
In	order	to	execute	the	controller,	we	need	three	pieces	of	data:	the	name	of	the	class	to
instantiate,	the	name	of	the	method	to	execute,	and	the	arguments	that	the	method	needs	to
receive.	We	already	have	the	first	two	as	part	of	the	route	$info	array,	so	let’s	focus	our
efforts	on	finding	the	third	one.	Add	the	following	method	to	the	Router	class:

private	function	extractParams(

				string	$route,

				string	$path

):	array	{

				$params	=	[];

				$pathParts	=	explode('/',	$path);

				$routeParts	=	explode('/',	$route);

				foreach	($routeParts	as	$key	=>	$routePart)	{

								if	(strpos($routePart,	':')	===	0)	{

												$name	=	substr($routePart,	1);

												$params[$name]	=	$pathParts[$key+1];

								}

				}

				return	$params;

}

This	last	method	expects	that	both	the	path	of	the	request	and	the	URL	of	the	route	follow
the	same	pattern.	With	the	explode	method,	we	get	two	arrays	that	should	match	each	of
their	entries.	We	iterate	them,	and	for	each	entry	in	the	route	array	that	looks	like	a
parameter,	we	fetch	its	value	in	the	URL.	For	example,	if	we	had	the	route
/books/:id/borrow	and	the	path	/books/12/borrow,	the	result	of	this	method	would	be
the	array	[‘id’	=>	12].

Executing	the	controller
We	end	this	section	by	implementing	the	method	that	executes	the	controller	in	charge	of	a

given	route.	We	already	have	the	name	of	the	class,	the	method,	and	the	arguments	that	the
method	needs,	so	we	could	make	use	of	the	call_user_func_array	native	function	that,
given	an	object,	a	method	name,	and	the	arguments	for	the	method,	invokes	the	method	of
the	object	passing	the	arguments.	We	have	to	make	use	of	it	as	the	number	of	arguments	is
not	fixed,	and	we	cannot	perform	a	normal	invocation.

But	we	are	still	missing	a	behavior	introduced	when	creating	our	routes.json	file.	There
are	some	routes	that	force	the	user	to	be	logged	in,	which,	in	our	case,	means	that	the	user
has	a	cookie	with	the	user	ID.	Given	a	route	that	enforces	authorization,	we	will	check
whether	our	request	contains	the	cookie,	in	which	case	we	will	set	it	to	the	controller	class
through	setCustomerId.	If	the	user	does	not	have	a	cookie,	instead	of	executing	the
controller	for	the	current	route,	we	will	execute	the	showLogin	method	of	the
CustomerController	class,	which	will	render	the	template	for	the	login	form.	Let’s	see
how	everything	would	look	on	adding	the	last	method	of	our	Router	class:

private	function	executeController(

				string	$route,

				string	$path,

				array	$info,

				Request	$request

):	string	{

				$controllerName	=	'\Bookstore\Controllers\\'

								.	$info['controller']	.	'Controller';

				$controller	=	new	$controllerName($request);

				if	(isset($info['login'])	&&	$info['login'])	{

								if	($request->getCookies()->has('user'))	{

												$customerId	=	$request->getCookies()->get('user');

												$controller->setCustomerId($customerId);

								}	else	{

												$errorController	=	new	CustomerController($request);

												return	$errorController->login();

								}

				}

				$params	=	$this->extractParams($route,	$path);

				return	call_user_func_array(

								[$controller,	$info['method']],	$params

);

}

We	have	already	warned	you	about	the	lack	of	security	in	our	application,	as	this	is	just	a
project	with	didactic	purposes.	So,	avoid	copying	the	authorization	system	implemented
here.

M	for	model
Imagine	for	a	moment	that	our	bookstore	website	is	quite	successful,	so	we	think	of
building	a	mobile	app	to	increase	our	market.	Of	course,	we	would	want	to	use	the	same
database	that	we	use	for	our	website,	as	we	need	to	sync	the	books	that	people	borrow	or
buy	from	both	apps.	We	do	not	want	to	be	in	a	position	where	two	people	buy	the	same
last	copy	of	a	book!

Not	only	the	database,	but	the	queries	used	to	get	books,	update	them,	and	so	on,	have	to
be	the	same	too,	otherwise	we	would	end	up	with	unexpected	behavior.	Of	course,	one
apparently	easy	option	would	be	to	replicate	the	queries	in	both	codebases,	but	that	has	a
huge	maintainability	problem.	What	if	we	change	one	single	field	of	our	database?	We
need	to	apply	the	same	change	to	at	least	two	different	codebases.	That	does	not	seem	to
be	useful	at	all.

Business	logic	plays	an	important	role	here	too.	Think	of	it	as	decisions	you	need	to	take
that	affect	your	business.	In	our	case,	that	a	premium	customer	is	able	to	borrow	10	books
and	a	normal	one	only	3,	is	business	logic.	This	logic	should	be	put	in	a	common	place
too,	because,	if	we	want	to	change	it,	we	will	have	the	same	problems	as	with	our	database
queries.

We	hope	that	by	now	we’ve	convinced	you	that	data	and	business	logic	should	be
separated	from	the	rest	of	the	code	in	order	to	make	it	reusable.	Do	not	worry	if	it	is	hard
for	you	to	define	what	should	go	as	part	of	the	model	or	as	part	of	the	controller;	a	lot	of
people	struggle	with	this	distinction.	As	our	application	is	very	simple,	and	it	does	not
have	a	lot	of	business	logic,	we	will	just	focus	on	adding	all	the	code	related	to	MySQL
queries.

As	you	can	imagine,	for	an	application	integrated	with	MySQL,	or	any	other	database
system,	the	database	connection	is	an	important	element	of	a	model.	We	chose	to	use	PDO
in	order	to	interact	with	MySQL,	and	as	you	might	remember,	instantiating	that	class	was
a	bit	of	a	pain.	Let’s	create	a	singleton	class	that	returns	an	instance	of	PDO	to	make	things
easier.	Add	this	code	to	src/Core/Db.php:

<?php

namespace	Bookstore\Core;

use	PDO;

class	Db	{

				private	static	$instance;

				private	static	function	connect():	PDO	{

								$dbConfig	=	Config::getInstance()->get('db');

								return	new	PDO(

												'mysql:host=127.0.0.1;dbname=bookstore',

												$dbConfig['user'],

												$dbConfig['password']

);

				}

				public	static	function	getInstance(){

								if	(self::$instance	==	null)	{

												self::$instance	=	self::connect();

								}

								return	self::$instance;

				}

}

This	class,	defined	in	the	preceding	code	snippet,	just	implements	the	singleton	pattern
and	wraps	the	creation	of	a	PDO	instance.	From	now	on,	in	order	to	get	a	database
connection,	we	just	need	to	write	Db::getInstance().

Although	it	might	not	be	true	for	all	models,	in	our	application,	they	will	always	have	to
access	the	database.	We	could	create	an	abstract	class	where	all	models	extend.	This	class
could	contain	a	$db	protected	property	that	will	be	set	on	the	constructor.	With	this,	we
avoid	duplicating	the	same	constructor	and	property	definition	across	all	our	models.	Copy
the	following	class	into	src/Models/AbstractModel.php:

<?php

namespace	Bookstore\Models;

use	PDO;

abstract	class	AbstractModel	{

				private	$db;

				public	function	__construct(PDO	$db)	{

								$this->db	=	$db;

				}

}

Finally,	to	finish	the	setup	of	the	models,	we	could	create	a	new	exception	(as	we	did	with
the	NotFoundException	class)	that	represents	an	error	from	the	database.	It	will	not
contain	any	code,	but	we	will	be	able	to	differentiate	where	an	exception	is	coming	from.
We	will	save	it	in	src/Exceptions/DbException.php:

<?php

namespace	Bookstore\Exceptions;

use	Exception;

class	DbException	extends	Exception	{

}

Now	that	we’ve	set	the	ground,	we	can	start	writing	our	models.	It	is	up	to	you	to	organize
your	models,	but	it	is	a	good	idea	to	mimic	the	domain	objects	structure.	In	this	case,	we
would	have	three	models:	CustomerModel,	BookModel,	and	SalesModel.	In	the	following
sections,	we	will	explain	the	contents	of	each	of	them.

The	customer	model
Let’s	start	with	the	easiest	one.	As	our	application	is	still	very	primitive,	we	will	not	allow
the	creation	of	new	costumers,	and	work	with	the	ones	we	inserted	manually	into	the
database	instead.	That	means	that	the	only	thing	we	need	to	do	with	customers	is	to	query
them.	Let’s	create	a	CustomerModel	class	in	src/Models/CustomerModel.php	with	the
following	content:

<?php

namespace	Bookstore\Models;

use	Bookstore\Domain\Customer;

use	Bookstore\Domain\Customer\CustomerFactory;

use	Bookstore\Exceptions\NotFoundException;

class	CustomerModel	extends	AbstractModel	{

				public	function	get(int	$userId):	Customer	{

								$query	=	'SELECT	*	FROM	customer	WHERE	customer_id	=	:user';

								$sth	=	$this->db->prepare($query);

								$sth->execute(['user'	=>	$userId]);

								$row	=	$sth->fetch();

								if	(empty($row))	{

												throw	new	NotFoundException();

								}

								return	CustomerFactory::factory(

												$row['type'],

												$row['id'],

												$row['firstname'],

												$row['surname'],

												$row['email']

);

				}

				public	function	getByEmail(string	$email):	Customer	{

								$query	=	'SELECT	*	FROM	customer	WHERE	email	=	:user';

								$sth	=	$this->db->prepare($query);

								$sth->execute(['user'	=>	$email]);

								$row	=	$sth->fetch();

								if	(empty($row))	{

												throw	new	NotFoundException();

								}

								return	CustomerFactory::factory(

												$row['type'],

												$row['id'],

												$row['firstname'],

												$row['surname'],

												$row['email']

);

				}

}

The	CustomerModel	class,	which	extends	from	the	AbstractModel	class,	contains	two
methods;	both	of	them	return	a	Customer	instance,	one	of	them	when	providing	the	ID	of
the	customer,	and	the	other	one	when	providing	the	e-mail.	As	we	already	have	the
database	connection	as	the	$db	property,	we	just	need	to	prepare	the	statement	with	the
given	query,	execute	the	statement	with	the	arguments,	and	fetch	the	result.	As	we	expect
to	get	a	customer,	if	the	user	provided	an	ID	or	an	e-mail	that	does	not	belong	to	any
customer,	we	will	need	to	throw	an	exception—in	this	case,	a	NotFoundException	is	just
fine.	If	we	find	a	customer,	we	use	our	factory	to	create	the	object	and	return	it.

The	book	model
Our	BookModel	class	gives	us	a	bit	more	of	work.	Customers	had	a	factory,	but	it	is	not
worth	having	one	for	books.	What	we	use	for	creating	them	from	MySQL	rows	is	not	the
constructor,	but	a	fetch	mode	that	PDO	has,	and	that	allows	us	to	map	a	row	into	an
object.	To	do	so,	we	need	to	adapt	the	Book	domain	object	a	bit:

The	names	of	the	properties	have	to	be	the	same	as	the	names	of	the	fields	in	the
database
There	is	no	need	for	a	constructor	or	setters,	unless	we	need	them	for	other	purposes
To	go	with	encapsulation,	properties	should	be	private,	so	we	will	need	getters	for	all
of	them

The	new	Book	class	should	look	like	the	following:

<?php

namespace	Bookstore\Domain;

class	Book	{

				private	$id;

				private	$isbn;

				private	$title;

				private	$author;

				private	$stock;

				private	$price;

				public	function	getId():	int	{

								return	$this->id;

				}

				public	function	getIsbn():	string	{

								return	$this->isbn;

				}

				public	function	getTitle():	string	{

								return	$this->title;

				}

				public	function	getAuthor():	string	{

								return	$this->author;

				}

				public	function	getStock():	int	{

								return	$this->stock;

				}

				public	function	getCopy():	bool	{

								if	($this->stock	<	1)	{

												return	false;

								}	else	{

												$this->stock--;

												return	true;

								}

				}

				public	function	addCopy()	{

								$this->stock++;

				}

				public	function	getPrice():	float	{

								return	$this->price;

				}

}

We	retained	the	getCopy	and	addCopy	methods	even	though	they	are	not	getters,	as	we
will	need	them	later.	Now,	when	fetching	a	group	of	rows	from	MySQL	with	the	fetchAll
method,	we	can	send	two	parameters:	the	constant	PDO::FETCH_CLASS	that	tells	PDO	to
map	rows	to	a	class,	and	the	name	of	the	class	that	we	want	to	map	to.	Let’s	create	the
BookModel	class	with	a	simple	get	method	that	fetches	a	book	from	the	database	with	a
given	ID.	This	method	will	return	either	a	Book	object	or	throw	an	exception	in	case	the	ID
does	not	exist.	Save	it	as	src/Models/BookModel.php:

<?php

namespace	Bookstore\Models;

use	Bookstore\Domain\Book;

use	Bookstore\Exceptions\DbException;

use	Bookstore\Exceptions\NotFoundException;

use	PDO;

class	BookModel	extends	AbstractModel	{

				const	CLASSNAME	=	'\Bookstore\Domain\Book';

				public	function	get(int	$bookId):	Book	{

								$query	=	'SELECT	*	FROM	book	WHERE	id	=	:id';

								$sth	=	$this->db->prepare($query);

								$sth->execute(['id'	=>	$bookId]);

								$books	=	$sth->fetchAll(

												PDO::FETCH_CLASS,	self::CLASSNAME

);

								if	(empty($books))	{

												throw	new	NotFoundException();

								}

								return	$books[0];

				}

}

There	are	advantages	and	disadvantages	of	using	this	fetch	mode.	On	one	hand,	we	avoid
a	lot	of	dull	code	when	creating	objects	from	rows.	Usually,	we	either	just	send	all	the
elements	of	the	row	array	to	the	constructor	of	the	class,	or	use	setters	for	all	its	properties.
If	we	add	more	fields	to	the	MySQL	table,	we	just	need	to	add	the	properties	to	our
domain	class,	instead	of	changing	everywhere	where	we	were	instantiating	the	objects.	On
the	other	hand,	you	are	forced	to	use	the	same	names	for	the	fields	in	both	the	table’s	as

well	as	the	class’	properties,	which	means	high	coupling	(always	a	bad	idea).	This	also
causes	some	conflicts	when	following	conventions,	because	in	MySQL,	it	is	common	to
use	book_id,	but	in	PHP,	the	property	is	$bookId.

Now	that	we	know	how	this	fetch	mode	works,	let’s	add	three	other	methods	that	fetch
data	from	MySQL.	Add	the	following	code	to	your	model:

public	function	getAll(int	$page,	int	$pageLength):	array	{

				$start	=	$pageLength	*	($page	-	1);

				$query	=	'SELECT	*	FROM	book	LIMIT	:page,	:length';

				$sth	=	$this->db->prepare($query);

				$sth->bindParam('page',	$start,	PDO::PARAM_INT);

				$sth->bindParam('length',	$pageLength,	PDO::PARAM_INT);

				$sth->execute();

				return	$sth->fetchAll(PDO::FETCH_CLASS,	self::CLASSNAME);

}

public	function	getByUser(int	$userId):	array	{

				$query	=	<<<SQL

SELECT	b.*

FROM	borrowed_books	bb	LEFT	JOIN	book	b	ON	bb.book_id	=	b.id

WHERE	bb.customer_id	=	:id

SQL;

				$sth	=	$this->db->prepare($query);

				$sth->execute(['id'	=>	$userId]);

				return	$sth->fetchAll(PDO::FETCH_CLASS,	self::CLASSNAME);

}

public	function	search(string	$title,	string	$author):	array	{

				$query	=	<<<SQL

SELECT	*	FROM	book

WHERE	title	LIKE	:title	AND	author	LIKE	:author

SQL;

				$sth	=	$this->db->prepare($query);

				$sth->bindValue('title',	"%$title%");

				$sth->bindValue('author',	"%$author%");

				$sth->execute();

				return	$sth->fetchAll(PDO::FETCH_CLASS,	self::CLASSNAME);

}

The	methods	added	are	as	follows:

getAll	returns	an	array	of	all	the	books	for	a	given	page.	Remember	that	LIMIT
allows	you	to	return	a	specific	number	of	rows	with	an	offset,	which	can	work	as	a
paginator.
getByUser	returns	all	the	books	that	a	given	customer	has	borrowed—we	will	need	to
use	a	join	query	for	this.	Note	that	we	return	b.*,	that	is,	only	the	fields	of	the	book
table,	skipping	the	rest	of	the	fields.
Finally,	there	is	a	method	to	search	by	either	title	or	author,	or	both.	We	can	do	that
using	the	operator	LIKE	and	enclosing	the	patterns	with	%.	If	we	do	not	specify	one	of

the	parameters,	we	will	try	to	match	the	field	with	%%,	which	matches	everything.

So	far,	we	have	been	adding	methods	to	fetch	data.	Let’s	add	methods	that	will	allow	us	to
modify	the	data	in	our	database.	For	the	book	model,	we	will	need	to	be	able	to	borrow
books	and	return	them.	Here	is	the	code	for	those	two	actions:

public	function	borrow(Book	$book,	int	$userId)	{

				$query	=	<<<SQL

INSERT	INTO	borrowed_books	(book_id,	customer_id,	start)

VALUES(:book,	:user,	NOW())

SQL;

				$sth	=	$this->db->prepare($query);

				$sth->bindValue('book',	$book->getId());

				$sth->bindValue('user',	$userId);

				if	(!$sth->execute())	{

								throw	new	DbException($sth->errorInfo()[2]);

				}

				$this->updateBookStock($book);

}

public	function	returnBook(Book	$book,	int	$userId)	{

				$query	=	<<<SQL

UPDATE	borrowed_books	SET	end	=	NOW()

WHERE	book_id	=	:book	AND	customer_id	=	:user	AND	end	IS	NULL	

SQL;

				$sth	=	$this->db->prepare($query);

				$sth->bindValue('book',	$book->getId());

				$sth->bindValue('user',	$userId);

				if	(!$sth->execute())	{

								throw	new	DbException($sth->errorInfo()[2]);

				}

				$this->updateBookStock($book);

}

private	function	updateBookStock(Book	$book)	{

				$query	=	'UPDATE	book	SET	stock	=	:stock	WHERE	id	=	:id';

				$sth	=	$this->db->prepare($query);

				$sth->bindValue('id',	$book->getId());

				$sth->bindValue('stock',	$book->getStock());

				if	(!$sth->execute())	{

								throw	new	DbException($sth->errorInfo()[2]);

				}

}

When	borrowing	a	book,	you	are	adding	a	row	to	the	borrower_books	table.	When
returning	books,	you	do	not	want	to	remove	that	row,	but	rather	to	set	the	end	date	in	order
to	keep	a	history	of	the	books	that	a	user	has	been	borrowing.	Both	methods	need	to
change	the	stock	of	the	borrowed	book:	when	borrowing	it,	reducing	the	stock	by	one,	and
when	returning	it,	increasing	the	stock.	That	is	why,	in	the	last	code	snippet,	we	created	a
private	method	to	update	the	stock	of	a	given	book,	which	will	be	used	from	both	the
borrow	and	returnBook	methods.

The	sales	model
Now	we	need	to	add	the	last	model	to	our	application:	the	SalesModel.	Using	the	same
fetch	mode	that	we	used	with	books,	we	need	to	adapt	the	domain	class	as	well.	We	need
to	think	a	bit	more	in	this	case,	as	we	will	be	doing	more	than	just	fetching.	Our
application	has	to	be	able	to	create	new	sales	on	demand,	containing	the	ID	of	the
customer	and	the	books.	We	can	already	add	books	with	the	current	implementation,	but
we	need	to	add	a	setter	for	the	customer	ID.	The	ID	of	the	sale	will	be	given	by	the
autoincrement	ID	in	MySQL,	so	there	is	no	need	to	add	a	setter	for	it.	The	final
implementation	would	look	as	follows:

<?php

namespace	Bookstore\Domain;

class	Sale	{

				private	$id;

				private	$customer_id;

				private	$books;

				private	$date;

				public	function	setCustomerId(int	$customerId)	{

								$this->customer_id	=	$customerId;

				}

				public	function	getId():	int	{

								return	$this->id;

				}

				public	function	getCustomerId():	int	{

								return	$this->customer_id;

				}

				public	function	getBooks():	array	{

								return	$this->books;

				}

				public	function	getDate():	string	{

								return	$this->date;

				}

				public	function	addBook(int	$bookId,	int	$amount	=	1)	{

								if	(!isset($this->books[$bookId]))	{

												$this->books[$bookId]	=	0;

								}

								$this->books[$bookId]	+=	$amount;

				}

				public	function	setBooks(array	$books)	{

								$this->books	=	$books;

				}

}

The	SalesModel	will	be	the	most	difficult	one	to	write.	The	problem	with	this	model	is

that	it	includes	manipulating	different	tables:	sale	and	sale_book.	For	example,	when
getting	the	information	of	a	sale,	we	need	to	get	the	information	from	the	sale	table,	and
then	the	information	of	all	the	books	in	the	sale_book	table.	You	could	argue	about
whether	to	have	one	unique	method	that	fetches	all	the	necessary	information	related	to	a
sale,	or	to	have	two	different	methods,	one	to	fetch	the	sale	and	the	other	to	fetch	the
books,	and	let	the	controller	to	decide	which	one	to	use.

This	actually	starts	a	very	interesting	discussion.	On	one	hand,	we	want	to	make	things
easier	for	the	controller—having	one	unique	method	to	fetch	the	entire	Sale	object.	This
makes	sense	as	the	controller	does	not	need	to	know	about	the	internal	implementation	of
the	Sale	object,	which	lowers	coupling.	On	the	other	hand,	forcing	the	model	to	always
fetch	the	whole	object,	even	if	we	only	need	the	information	in	the	sale	table,	is	a	bad
idea.	Imagine	if	the	sale	contains	a	lot	of	books;	fetching	them	from	MySQL	will	decrease
performance	unnecessarily.

You	should	think	how	your	controllers	need	to	manage	sales.	If	you	will	always	need	the
entire	object,	you	can	have	one	method	without	being	concerned	about	performance.	If
you	only	need	to	fetch	the	entire	object	sometimes,	maybe	you	could	add	both	methods.
For	our	application,	we	will	have	one	method	to	rule	them	all,	since	that	is	what	we	will
always	need.

Note
Lazy	loading

As	with	any	other	design	challenge,	other	developers	have	already	given	a	lot	of	thought
to	this	problem.	They	came	up	with	a	design	pattern	named	lazy	load.	This	pattern
basically	lets	the	controller	think	that	there	is	only	one	method	to	fetch	the	whole	domain
object,	but	we	will	actually	be	fetching	only	what	we	need	from	database.

The	model	fetches	the	most	used	information	for	the	object	and	leaves	the	rest	of	the
properties	that	need	extra	database	queries	empty.	Once	the	controller	uses	a	getter	of	a
property	that	is	empty,	the	model	automatically	fetches	that	data	from	the	database.	We	get
the	best	of	both	worlds:	there	is	simplicity	for	the	controller,	but	we	do	not	spend	more
time	than	necessary	querying	unused	data.

Add	the	following	as	your	src/Models/SaleModel.php	file:

<?php

namespace	Bookstore\Models;

use	Bookstore\Domain\Sale;

use	Bookstore\Exceptions\DbException;

use	PDO;

class	SaleModel	extends	AbstractModel	{

				const	CLASSNAME	=	'\Bookstore\Domain\Sale';

				public	function	getByUser(int	$userId):	array	{

								$query	=	'SELECT	*	FROM	sale	WHERE	s.customer_id	=	:user';

								$sth	=	$this->db->prepare($query);

								$sth->execute(['user'	=>	$userId]);

								return	$sth->fetchAll(PDO::FETCH_CLASS,	self::CLASSNAME);

				}

				public	function	get(int	$saleId):	Sale	{

								$query	=	'SELECT	*	FROM	sale	WHERE	id	=	:id';

								$sth	=	$this->db->prepare($query);

								$sth->execute(['id'	=>	$saleId]);

								$sales	=	$sth->fetchAll(PDO::FETCH_CLASS,	self::CLASSNAME);

								if	(empty($sales))	{

												throw	new	NotFoundException('Sale	not	found.');

								}

								$sale	=	array_pop($sales);

								$query	=	<<<SQL

SELECT	b.id,	b.title,	b.author,	b.price,	sb.amount	as	stock,	b.isbn

FROM	sale	s

LEFT	JOIN	sale_book	sb	ON	s.id	=	sb.sale_id

LEFT	JOIN	book	b	ON	sb.book_id	=	b.id

WHERE	s.id	=	:id

SQL;

								$sth	=	$this->db->prepare($query);

								$sth->execute(['id'	=>	$saleId]);

								$books	=	$sth->fetchAll(

												PDO::FETCH_CLASS,	BookModel::CLASSNAME

);

								$sale->setBooks($books);

								return	$sale;

				}

}

Another	tricky	method	in	this	model	is	the	one	that	takes	care	of	creating	a	sale	in	the
database.	This	method	has	to	create	a	sale	in	the	sale	table,	and	then	add	all	the	books	for
that	sale	to	the	sale_book	table.	What	would	happen	if	we	have	a	problem	when	adding
one	of	the	books?	We	would	leave	a	corrupted	sale	in	the	database.	To	avoid	that,	we	need
to	use	transactions,	starting	with	one	at	the	beginning	of	the	model’s	or	the	controller’s
method,	and	either	rolling	back	in	case	of	error,	or	committing	it	at	the	end	of	the	method.

In	the	same	method,	we	also	need	to	take	care	of	the	ID	of	the	sale.	We	do	not	set	the	ID
of	the	sale	when	creating	the	sale	object,	because	we	rely	on	the	autoincremental	field	in
the	database.	But	when	inserting	the	books	into	sale_book,	we	do	need	the	ID	of	the	sale.
For	that,	we	need	to	request	the	PDO	for	the	last	inserted	ID	with	the	lastInsertId
method.	Let’s	add	then	the	create	method	into	your	SaleModel:

public	function	create(Sale	$sale)	{

				$this->db->beginTransaction();

				$query	=	<<<SQL

INSERT	INTO	sale(customer_id,	date)

VALUES(:id,	NOW())

SQL;

				$sth	=	$this->db->prepare($query);

				if	(!$sth->execute(['id'	=>	$sale->getCustomerId()]))	{

								$this->db->rollBack();

								throw	new	DbException($sth->errorInfo()[2]);

				}

				$saleId	=	$this->db->lastInsertId();

				$query	=	<<<SQL

INSERT	INTO	sale_book(sale_id,	book_id,	amount)

VALUES(:sale,	:book,	:amount)

SQL;

				$sth	=	$this->db->prepare($query);

				$sth->bindValue('sale',	$saleId);

				foreach	($sale->getBooks()	as	$bookId	=>	$amount)	{

								$sth->bindValue('book',	$bookId);

								$sth->bindValue('amount',	$amount);

								if	(!$sth->execute())	{

												$this->db->rollBack();

												throw	new	DbException($sth->errorInfo()[2]);

								}

				}

				$this->db->commit();

}

One	last	thing	to	note	from	this	method	is	that	we	prepare	a	statement,	bind	a	value	to	it
(the	sale	ID),	and	then	bind	and	execute	the	same	statement	as	many	times	as	the	books	in
the	array.	Once	you	have	a	statement,	you	can	bind	the	values	as	many	times	as	you	want.
Also,	you	can	execute	the	same	statement	as	many	times	as	you	want,	and	the	values	stay
the	same.

V	for	view
The	view	is	the	layer	that	takes	care	of	the…	view.	In	this	layer,	you	find	all	the	templates
that	render	the	HTML	that	the	user	gets.	Although	the	separation	between	views	and	the
rest	of	the	application	is	easy	to	see,	that	does	not	make	views	an	easy	part.	In	fact,	you
will	have	to	learn	a	new	technology	in	order	to	write	views	properly.	Let’s	get	into	the
details.

Introduction	to	Twig
In	our	first	attempt	at	writing	views,	we	mixed	up	PHP	and	HTML	code.	We	already	know
that	the	logic	should	not	be	mixed	in	the	same	place	as	HTML,	but	that	is	not	the	end	of
the	story.	When	rendering	HTML,	we	need	some	logic	there	too.	For	example,	if	we	want
to	print	a	list	of	books,	we	need	to	repeat	a	certain	block	of	HTML	for	each	book.	And
since	a	priori	we	do	not	know	the	number	of	books	to	print,	the	best	option	would	be	a
foreach	loop.

One	option	that	a	lot	of	people	take	is	minimizing	the	amount	of	logic	that	you	can	include
in	a	view.	You	could	set	some	rules,	such	as	we	should	only	include	conditionals	and
loops,	which	is	a	reasonable	amount	of	logic	needed	to	render	basic	views.	The	problem	is
that	there	is	not	a	way	of	enforcing	this	kind	of	rule,	and	other	developers	can	easily	start
adding	heavy	logic	in	there.	While	some	people	are	OK	with	that,	assuming	that	no	one
will	do	it,	others	prefer	to	implement	more	restrictive	systems.	That	was	the	beginning	of
template	engines.

You	could	think	of	a	template	engine	as	another	language	that	you	need	to	learn.	Why
would	you	do	that?	Because	this	new	“language”	is	more	limited	than	PHP.	These
languages	usually	allow	you	to	perform	conditionals	and	simple	loops,	and	that	is	it.	The
developer	is	not	able	to	add	PHP	to	that	file,	since	the	template	engine	will	not	treat	it	as
PHP	code.	Instead,	it	will	just	print	the	code	to	the	output—the	response’	body—as	if	it
was	plain	text.	Also,	as	it	is	specially	oriented	to	write	templates,	the	syntax	is	usually
easier	to	read	when	mixed	with	HTML.	Almost	everything	is	an	advantage.

The	inconvenience	of	using	a	template	engine	is	that	it	takes	some	time	to	translate	the
new	language	to	PHP,	and	then	to	HTML.	This	can	be	quite	time	consuming,	so	it	is	very
important	that	you	choose	a	good	template	engine.	Most	of	them	also	allow	you	to	cache
templates,	improving	the	performance.	Our	choice	is	a	quite	light	and	widely	used	one:
Twig.	As	we’ve	already	added	the	dependency	in	our	Composer	file,	we	can	use	it	straight
away.

Setting	up	Twig	is	quite	easy.	On	the	PHP	side,	you	just	need	to	specify	the	location	of	the
templates.	A	common	convention	is	to	use	the	views	directory	for	that.	Create	the
directory,	and	add	the	following	two	lines	into	your	index.php:

$loader	=	new	Twig_Loader_Filesystem(__DIR__	.	'/views');

$twig	=	new	Twig_Environment($loader);

The	book	view
In	these	sections,	as	we	work	with	templates,	it	would	be	nice	to	see	the	result	of	your
work.	We	have	not	yet	implemented	any	controllers,	so	we	will	force	our	index.php	to
render	a	specific	template,	regardless	of	the	request.	We	can	start	rendering	the	view	of	a
single	book.	For	that,	let’s	add	the	following	code	at	the	end	of	your	index.php,	after
creating	your	twig	object:

$bookModel	=	new	BookModel(Db::getInstance());

$book	=	$bookModel->get(1);

$params	=	['book'	=>	$book];

echo	$twig->loadTemplate('book.twig')->render($params);

In	the	preceding	code,	we	request	the	book	with	ID	1	to	the	BookModel,	get	the	book
object,	and	create	an	array	where	the	book	key	has	the	value	of	the	book	object.	After	that,
we	tell	Twig	to	load	the	template	book.twig	and	to	render	it	by	sending	the	array.	This
takes	the	template	and	injects	the	$book	object,	so	that	you	are	able	to	use	it	inside	the
template.

Let’s	now	create	our	first	template.	Write	the	following	code	into	view/book.twig.	By
convention,	all	Twig	templates	should	have	the	.twig	extension:

<h2>{{	book.title	}}</h2>

<h3>{{	book.author	}}</h3>

<hr>

<p>

				ISBN	{{	book.isbn	}}

</p>

<p>

				Stock	{{	book.stock	}}

</p>

<p>

				Price	{{	book.price|number_format(2)	}}	€

</p>

<hr>

<h3>Actions</h3>

<form	method="post"	action="/book/{{	book.id	}}/borrow">

				<input	type="submit"	value="Borrow">

</form>

<form	method="post"	action="/book/{{	book.id	}}/buy">

				<input	type="submit"	value="Buy">

</form>

Since	this	is	your	first	Twig	template,	let’s	go	step	by	step.	You	can	see	that	most	of	the
content	is	HTML:	some	headers,	a	couple	of	paragraphs,	and	two	forms	with	two	buttons.
You	can	recognize	the	Twig	part,	since	it	is	enclosed	by	{{	}}.	In	Twig,	everything	that	is

between	those	curly	brackets	will	be	printed	out.	The	first	one	that	we	find	contains
book.title.	Do	you	remember	that	we	injected	the	book	object	when	rendering	the
template?	We	can	access	it	here,	just	not	with	the	usual	PHP	syntax.	To	access	an	object’s
property,	use	.	instead	of	->.	So,	this	book.title	will	return	the	value	of	the	title
property	of	the	book	object,	and	the	{{	}}	will	make	Twig	print	it	out.	The	same	applies	to
the	rest	of	the	template.

There	is	one	that	does	a	bit	more	than	just	access	an	object’s	property.	The
book.price|number_format(2)	gets	the	price	of	the	book	and	sends	it	as	an	argument
(using	the	pipe	symbol)	to	the	function	number_format,	which	has	already	got	2	as	another
argument.	This	bit	of	code	basically	formats	the	price	to	two	digital	figures.	In	Twig,	you
also	have	some	functions,	but	they	are	mostly	reduced	to	formatting	the	output,	which	is
an	acceptable	amount	of	logic.

Are	you	convinced	now	about	how	clean	it	is	to	use	a	template	engine	for	your	views?
You	can	try	it	in	your	browser:	accessing	any	path,	your	web	server	should	execute	the
index.php	file,	forcing	the	template	book.twig	to	be	rendered.

Layouts	and	blocks
When	you	design	your	web	application,	usually	you	would	want	to	share	a	common	layout
across	most	of	your	views.	In	our	case,	we	want	to	always	have	a	menu	at	the	top	of	the
view	that	allows	us	to	go	to	the	different	sections	of	the	website,	or	even	to	search	books
from	wherever	the	user	is.	As	with	models,	we	want	to	avoid	code	duplication,	since	if	we
were	to	copy	and	paste	the	layout	everywhere,	updating	it	would	be	a	nightmare.	Instead,
Twig	comes	with	the	ability	to	define	layouts.

A	layout	in	Twig	is	just	another	template	file.	Its	content	is	just	the	common	HTML	code
that	we	want	to	display	across	all	views	(in	our	case,	the	menu	and	search	bar),	and
contains	some	tagged	gaps	(blocks	in	Twig’s	world),	where	you	will	be	able	to	inject	the
specific	HTML	of	each	view.	You	can	define	one	of	those	blocks	with	the	tag	{%	block
%}.	Let’s	see	what	our	views/layout.twig	file	would	look	like:

<html>

<head>

				<title>{%	block	title	%}{%	endblock	%}</title>

</head>

<body>

				<div	style="border:	solid	1px">

								Books

								My	Sales

								My	Books

								<hr>

								<form	action="/books/search"	method="get">

												<label>Title</label>

												<input	type="text"	name="title">

												<label>Author</label>

												<input	type="text"	name="author">

												<input	type="submit"	value="Search">

								</form>

				</div>

				{%	block	content	%}{%	endblock	%}

</body>

</html>

As	you	can	see	in	the	preceding	code,	blocks	have	a	name	so	that	templates	using	the
layout	can	refer	to	them.	In	our	layout,	we	defined	two	blocks:	one	for	the	title	of	the	view
and	the	other	for	the	content	itself.	When	a	template	uses	the	layout,	we	just	need	to	write
the	HTML	code	for	each	of	the	blocks	defined	in	the	layout,	and	Twig	will	do	the	rest.
Also,	to	let	Twig	know	that	our	template	wants	to	use	the	layout,	we	use	the	tag	{%
extends	%}	with	the	layout	filename.	Let’s	update	views/book.twig	to	use	our	new
layout:

{%	extends	'layout.twig'	%}

{%	block	title	%}

				{{	book.title	}}

{%	endblock	%}

{%	block	content	%}

<h2>{{	book.title	}}</h2>

//...

</form>

{%	endblock	%}

At	the	top	of	the	file,	we	add	the	layout	that	we	need	to	use.	Then,	we	open	a	block	tag
with	the	reference	name,	and	we	write	inside	it	the	HTML	that	we	want	to	use.	You	can
use	anything	valid	inside	a	block,	either	Twig	code	or	plain	HTML.	In	our	template,	we
used	the	title	of	the	book	as	the	title	block,	which	refers	to	the	title	of	the	view,	and	we
put	all	the	previous	HTML	inside	the	content	block.	Note	that	everything	in	the	file	is
inside	a	block	now.	Try	it	in	your	browser	now	to	see	the	changes.

Paginated	book	list
Let’s	add	another	view,	this	time	for	a	paginated	list	of	books.	In	order	to	see	the	result	of
your	work,	update	the	content	of	index.php,	replacing	the	code	of	the	previous	section
with	the	following:

$bookModel	=	new	BookModel(Db::getInstance());

$books	=	$bookModel->getAll(1,	3);

$params	=	['books'	=>	$books,	'currentPage'	=>	2];

echo	$twig->loadTemplate('books.twig')->render($params);

In	the	preceding	snippet,	we	force	the	application	to	render	the	books.twig	template,
sending	an	array	of	books	from	page	number	1,	and	showing	3	books	per	page.	This	array,
though,	might	not	always	return	3	books,	maybe	because	there	are	only	2	books	in	the
database.	We	should	then	use	a	loop	to	iterate	the	list	instead	of	assuming	the	size	of	the
array.	In	Twig,	you	can	emulate	a	foreach	loop	using	{%	for	<element>	in	<array>	%}
in	order	to	iterate	an	array.	Let’s	use	it	for	your	views/books.twig:

{%	extends	'layout.twig'	%}

{%	block	title	%}

				Books

{%	endblock	%}

{%	block	content	%}

<table>

				<thead>

								<th>Title</th>

								<th>Author</th>

								<th></th>

				</thead>

{%	for	book	in	books	%}

				<tr>

								<td>{{	book.title	}}</td>

								<td>{{	book.author	}}</td>

								<td>View</td>

				</tr>

{%	endfor	%}

</table>

{%	endblock	%}

We	can	also	use	conditionals	in	a	Twig	template,	which	work	the	same	as	the	conditionals
in	PHP.	The	syntax	is	{%	if	<boolean	expression>	%}.	Let’s	use	it	to	decide	if	we
should	show	the	previous	and/or	following	links	on	our	page.	Add	the	following	code	at
the	end	of	the	content	block:

{%	if	currentPage	!=	1	%}

				Previous

{%	endif	%}

{%	if	not	lastPage	%}

				Next

{%	endif	%}

The	last	thing	to	note	from	this	template	is	that	we	are	not	restricted	to	using	only
variables	when	printing	out	content	with	{{	}}.	We	can	add	any	valid	Twig	expression
that	returns	a	value,	as	we	did	with	{{	currentPage	+	1	}}.

The	sales	view
We	have	already	shown	you	everything	that	you	will	need	for	using	templates,	and	now
we	just	have	to	finish	adding	all	of	them.	The	next	one	in	the	list	is	the	template	that
shows	the	list	of	sales	for	a	given	user.	Update	your	index.php	file	with	the	following
hack:

$saleModel	=	new	SaleModel(Db::getInstance());

$sales	=	$saleModel->getByUser(1);

$params	=	['sales'	=>	$sales];

echo	$twig->loadTemplate('sales.twig')->render($params);

The	template	for	this	view	will	be	very	similar	to	the	one	listing	the	books:	a	table
populated	with	the	content	of	an	array.	The	following	is	the	content	of	views/sales.twig:

{%	extends	'layout.twig'	%}

{%	block	title	%}

				My	sales

{%	endblock	%}

{%	block	content	%}

<table>

				<thead>

								<th>Id</th>

								<th>Date</th>

				</thead>

{%	for	sale	in	sales	%}

				<tr>

								<td>{{	sale.id}}</td>

								<td>{{	sale.date	}}</td>

								<td>View</td>

				</tr>

{%	endfor	%}

</table>

{%	endblock	%}

The	other	view	related	to	sales	is	where	we	want	to	display	all	the	content	of	a	specific
one.	This	sale,	again,	will	be	similar	to	the	books	list,	as	we	will	be	listing	the	books
related	to	that	sale.	The	hack	to	force	the	rendering	of	this	template	is	as	follows:

$saleModel	=	new	SaleModel(Db::getInstance());

$sale	=	$saleModel->get(1);

$params	=	['sale'	=>	$sale];

echo	$twig->loadTemplate('sale.twig')->render($params);

And	the	Twig	template	should	be	placed	in	views/sale.twig:

{%	extends	'layout.twig'	%}

{%	block	title	%}

				Sale	{{	sale.id	}}

{%	endblock	%}

{%	block	content	%}

<table>

				<thead>

								<th>Title</th>

								<th>Author</th>

								<th>Amount</th>

								<th>Price</th>

								<th></th>

				</thead>

				{%	for	book	in	sale.books	%}

								<tr>

												<td>{{	book.title	}}</td>

												<td>{{	book.author	}}</td>

												<td>{{	book.stock	}}</td>

												<td>{{	(book.price	*	book.stock)|number_format(2)	}}	€</td>

												<td>View</td>

								</tr>

				{%	endfor	%}

</table>

{%	endblock	%}

The	error	template
We	should	add	a	very	simple	template	that	will	be	shown	to	the	user	when	there	is	an	error
in	our	application,	rather	than	showing	a	PHP	error	message.	This	template	will	just
expect	the	errorMessage	variable,	and	it	could	look	like	the	following.	Save	it	as
views/error.twig:

{%	extends	'layout.twig'	%}

{%	block	title	%}

				Error

{%	endblock	%}

{%	block	content	%}

				<h2>Error:	{{	errorMessage	}}</h2>

{%	endblock	%}

Note	that	even	the	error	page	extends	from	the	layout,	as	we	want	the	user	to	be	able	to	do
something	else	when	this	happens.

The	login	template
Our	last	template	will	be	the	one	that	allows	the	user	to	log	in.	This	template	is	a	bit
different	from	the	others,	as	it	will	be	used	in	two	different	scenarios.	In	the	first	one,	the
user	accesses	the	login	view	for	the	first	time,	so	we	need	to	show	the	form.	In	the	second
one,	the	user	has	already	tried	to	log	in,	and	there	was	an	error	when	doing	so,	that	is,	the
e-mail	address	was	not	found.	In	this	case,	we	will	add	an	extra	variable	to	the	template,
errorMessage,	and	we	will	add	a	conditional	to	show	its	contents	only	when	this	variable
is	defined.	You	can	use	the	operator	is	defined	to	check	that.	Add	the	following	template
as	views/login.twig:

{%	extends	'layout.twig'	%}

{%	block	title	%}

				Login

{%	endblock	%}

{%	block	content	%}

				{%	if	errorMessage	is	defined	%}

								{{	errorMessage	}}

				{%	endif	%}

				<form	action="/login"	method="post">

								<label>Email</label>

								<input	type="text"	name="email">

								<input	type="submit">

				</form>

{%	endblock	%}

C	for	controller
It	is	finally	time	for	the	director	of	the	orchestra.	Controllers	represent	the	layer	in	our
application	that,	given	a	request,	talks	to	the	models	and	builds	the	views.	They	act	like
the	manager	of	a	team:	they	decide	what	resources	to	use	depending	on	the	situation.

As	we	stated	when	explaining	models,	it	is	sometimes	difficult	to	decide	if	some	piece	of
logic	should	go	into	the	controller	or	the	model.	At	the	end	of	the	day,	MVC	is	a	pattern,
like	a	recipe	that	guides	you,	rather	than	an	exact	algorithm	that	you	need	to	follow	step
by	step.	There	will	be	scenarios	where	the	answer	is	not	straightforward,	so	it	will	be	up	to
you;	in	these	cases,	just	try	to	be	consistent.	The	following	are	some	common	scenarios
that	might	be	difficult	to	localize:

The	request	points	to	a	path	that	we	do	not	support.	This	scenario	is	already	covered
in	our	application,	and	it	is	the	router	that	should	take	care	of	it,	not	the	controller.
The	request	tries	to	access	an	element	that	does	not	exist,	for	example,	a	book	ID	that
is	not	in	the	database.	In	this	case,	the	controller	should	ask	the	model	if	the	book
exists,	and	depending	on	the	response,	render	a	template	with	the	book’s	contents,	or
another	with	a	“Not	found”	message.
The	user	tries	to	perform	an	action,	such	as	buying	a	book,	but	the	parameters	coming
from	the	request	are	not	valid.	This	is	a	tricky	one.	One	option	is	to	get	all	the
parameters	from	the	request	without	checking	them,	sending	them	straight	to	the
model,	and	leaving	the	task	of	sanitizing	the	information	to	the	model.	Another
option	is	that	the	controller	checks	that	the	parameters	provided	make	sense,	and	then
gives	them	to	the	model.	There	are	other	solutions,	like	building	a	class	that	checks	if
the	parameters	are	valid,	which	can	be	reused	in	different	controllers.	In	this	case,	it
will	depend	on	the	amount	of	parameters	and	logic	involved	in	the	sanitization.	For
requests	receiving	a	lot	of	data,	the	third	option	looks	like	the	best	of	them,	as	we	will
be	able	to	reuse	the	code	in	different	endpoints,	and	we	are	not	writing	controllers
that	are	too	long.	But	in	requests	where	the	user	sends	one	or	two	parameters,
sanitizing	them	in	the	controller	might	be	good	enough.

Now	that	we’ve	set	the	ground,	let’s	prepare	our	application	to	use	controllers.	The	first
thing	to	do	is	to	update	our	index.php,	which	has	been	forcing	the	application	to	always
render	the	same	template.	Instead,	we	should	be	giving	this	task	to	the	router,	which	will
return	the	response	as	a	string	that	we	can	just	print	with	echo.	Update	your	index.php
file	with	the	following	content:

<?php

use	Bookstore\Core\Router;

use	Bookstore\Core\Request;

require_once	__DIR__	.	'/vendor/autoload.php';

$router	=	new	Router();

$response	=	$router->route(new	Request());

echo	$response;

As	you	might	remember,	the	router	instantiates	a	controller	class,	sending	the	request
object	to	the	constructor.	But	controllers	have	other	dependencies	as	well,	such	as	the
template	engine,	the	database	connection,	or	the	configuration	reader.	Even	though	this	is
not	the	best	solution	(you	will	improve	it	once	we	cover	dependency	injection	in	the	next
section),	we	could	create	an	AbstractController	that	would	be	the	parent	of	all
controllers,	and	will	set	those	dependencies.	Copy	the	following	as
src/Controllers/AbstractController.php:

<?php

namespace	Bookstore\Controllers;

use	Bookstore\Core\Config;

use	Bookstore\Core\Db;

use	Bookstore\Core\Request;

use	Monolog\Logger;

use	Twig_Environment;

use	Twig_Loader_Filesystem;

use	Monolog\Handler\StreamHandler;

abstract	class	AbstractController	{

				protected	$request;

				protected	$db;

				protected	$config;

				protected	$view;

				protected	$log;

				public	function	__construct(Request	$request)	{

								$this->request	=	$request;

								$this->db	=	Db::getInstance();

								$this->config	=	Config::getInstance();

								$loader	=	new	Twig_Loader_Filesystem(

												__DIR__	.	'/../../views'

);

								$this->view	=	new	Twig_Environment($loader);

								$this->log	=	new	Logger('bookstore');

								$logFile	=	$this->config->get('log');

								$this->log->pushHandler(

												new	StreamHandler($logFile,	Logger::DEBUG)

);

				}

				public	function	setCustomerId(int	$customerId)	{

								$this->customerId	=	$customerId;

				}

}

When	instantiating	a	controller,	we	will	set	some	properties	that	will	be	useful	when
handling	requests.	We	already	know	how	to	instantiate	the	database	connection,	the
configuration	reader,	and	the	template	engine.	The	fourth	property,	$log,	will	allow	the
developer	to	write	logs	to	a	given	file	when	necessary.	We	will	use	the	Monolog	library

for	that,	but	there	are	many	other	options.	Notice	that	in	order	to	instantiate	the	logger,	we
get	the	value	of	log	from	the	configuration,	which	should	be	the	path	to	the	log	file.	The
convention	is	to	use	the	/var/log/	directory,	so	create	the	/var/log/bookstore.log	file,
and	add	"log":	"/var/log/bookstore.log"	to	your	configuration	file.

Another	thing	that	is	useful	to	some	controllers—but	not	all	of	them—is	the	information
about	the	user	performing	the	action.	As	this	is	only	going	to	be	available	for	certain
routes,	we	should	not	set	it	when	constructing	the	controller.	Instead,	we	have	a	setter	for
the	router	to	set	the	customer	ID	when	available;	in	fact,	the	router	does	that	already.

Finally,	a	handy	helper	method	that	we	could	use	is	one	that	renders	a	given	template	with
parameters,	as	all	the	controllers	will	end	up	rendering	one	template	or	the	other.	Let’s	add
the	following	protected	method	to	the	AbstractController	class:

protected	function	render(string	$template,	array	$params):	string	{

				return	$this->view->loadTemplate($template)->render($params);

}

The	error	controller
Let’s	start	by	creating	the	easiest	of	the	controllers:	the	ErrorController.	This	controller
does	not	do	much;	it	just	renders	the	error.twig	template	sending	the	“Page	not	found!”
message.	As	you	might	remember,	the	router	uses	this	controller	when	it	cannot	match	the
request	to	any	of	the	other	defined	routes.	Save	the	following	class	in
src/Controllers/ErrorController.php:

<?php

namespace	Bookstore\Controllers;

class	ErrorController	extends	AbstractController	{

				public	function	notFound():	string	{

								$properties	=	['errorMessage'	=>	'Page	not	found!'];

								return	$this->render('error.twig',	$properties);

				}

}

The	login	controller
The	second	controller	that	we	have	to	add	is	the	one	that	manages	the	login	of	the
customers.	If	we	think	about	the	flow	when	a	user	wants	to	authenticate,	we	have	the
following	scenarios:

The	user	wants	to	get	the	login	form	in	order	to	submit	the	necessary	information	and
log	in.
The	user	tries	to	submit	the	form,	but	we	could	not	get	the	e-mail	address.	We	should
render	the	form	again,	letting	them	know	about	the	problem.
The	user	submits	the	form	with	an	e-mail,	but	it	is	not	a	valid	one.	In	this	case,	we
should	show	the	login	form	again	with	an	error	message	explaining	the	situation.
The	user	submits	a	valid	e-mail,	we	set	the	cookie,	and	we	show	the	list	of	books	so
the	user	can	start	searching.	This	is	absolutely	arbitrary;	you	could	choose	to	send
them	to	their	borrowed	books	page,	their	sales,	and	so	on.	The	important	thing	here	is
to	notice	that	we	will	be	redirecting	the	request	to	another	controller.

There	are	up	to	four	possible	paths.	We	will	use	the	request	object	to	decide	which	of
them	to	use	in	each	case,	returning	the	corresponding	response.	Let’s	create,	then,	the
CustomerController	class	in	src/Controllers/CustomerController.php	with	the
login	method,	as	follows:

<?php

namespace	Bookstore\Controllers;

use	Bookstore\Exceptions\NotFoundException;

use	Bookstore\Models\CustomerModel;

class	CustomerController	extends	AbstractController	{

				public	function	login(string	$email):	string	{

								if	(!$this->request->isPost())	{

												return	$this->render('login.twig',	[]);

								}

								$params	=	$this->request->getParams();

								if	(!$params->has('email'))	{

												$params	=	['errorMessage'	=>	'No	info	provided.'];

												return	$this->render('login.twig',	$params);

								}

								$email	=	$params->getString('email');

								$customerModel	=	new	CustomerModel($this->db);

								try	{

												$customer	=	$customerModel->getByEmail($email);

								}	catch	(NotFoundException	$e)	{

												$this->log->warn('Customer	email	not	found:	'	.	$email);

												$params	=	['errorMessage'	=>	'Email	not	found.'];

												return	$this->render('login.twig',	$params);

								}

								setcookie('user',	$customer->getId());

								$newController	=	new	BookController($this->request);

								return	$newController->getAll();

				}

}

As	you	can	see,	there	are	four	different	returns	for	the	four	different	cases.	The	controller
itself	does	not	do	anything,	but	orchestrates	the	rest	of	the	components,	and	makes
decisions.	First,	we	check	if	the	request	is	a	POST,	and	if	it	is	not,	we	will	assume	that	the
user	wants	to	get	the	form.	If	it	is,	we	will	check	for	the	e-mail	in	the	parameters,	returning
an	error	if	the	e-mail	is	not	there.	If	it	is,	we	will	try	to	find	the	customer	with	that	e-mail,
using	our	model.	If	we	get	an	exception	saying	that	there	is	no	such	customer,	we	will
render	the	form	with	a	“Not	found”	error	message.	If	the	login	is	successful,	we	will	set
the	cookie	with	the	ID	of	the	customer,	and	will	execute	the	getAll	method	of
BookController	(still	to	be	written),	returning	the	list	of	books.

At	this	point,	you	should	be	able	to	test	the	login	feature	of	your	application	end	to	end
with	the	browser.	Try	to	access	http://localhost:8000/login	to	see	the	form,	adding
random	e-mails	to	get	the	error	message,	and	adding	a	valid	e-mail	(check	your	customer
table	in	MySQL)	to	log	in	successfully.	After	this,	you	should	see	the	cookie	with	the
customer	ID.

The	book	controller
The	BookController	class	will	be	the	largest	of	our	controllers,	as	most	of	the	application
relies	on	it.	Let’s	start	by	adding	the	easiest	methods,	the	ones	that	just	retrieve
information	from	the	database.	Save	this	as	src/Controllers/BookController.php:

<?php

namespace	Bookstore\Controllers;

use	Bookstore\Models\BookModel;

class	BookController	extends	AbstractController	{

				const	PAGE_LENGTH	=	10;

				public	function	getAllWithPage($page):	string	{

								$page	=	(int)$page;

								$bookModel	=	new	BookModel($this->db);

								$books	=	$bookModel->getAll($page,	self::PAGE_LENGTH);

								$properties	=	[

												'books'	=>	$books,

												'currentPage'	=>	$page,

												'lastPage'	=>	count($books)	<	self::PAGE_LENGTH

];

								return	$this->render('books.twig',	$properties);

				}

				public	function	getAll():	string	{

								return	$this->getAllWithPage(1);

				}

				public	function	get(int	$bookId):	string	{

								$bookModel	=	new	BookModel($this->db);

								try	{

												$book	=	$bookModel->get($bookId);

								}	catch	(\Exception	$e)	{

												$this->log->error(

																'Error	getting	book:	'	.	$e->getMessage()

);

												$properties	=	['errorMessage'	=>	'Book	not	found!'];

												return	$this->render('error.twig',	$properties);

								}

								$properties	=	['book'	=>	$book];

								return	$this->render('book.twig',	$properties);

				}

				public	function	getByUser():	string	{

								$bookModel	=	new	BookModel($this->db);

								$books	=	$bookModel->getByUser($this->customerId);

								$properties	=	[

												'books'	=>	$books,

												'currentPage'	=>	1,

												'lastPage'	=>	true

];

								return	$this->render('books.twig',	$properties);

				}

}

There’s	nothing	too	special	in	this	preceding	code	so	far.	The	getAllWithPage	and	getAll
methods	do	the	same	thing,	one	with	the	page	number	given	by	the	user	as	a	URL
argument,	and	the	other	setting	the	page	number	as	1—the	default	case.	They	ask	the
model	for	the	list	of	books	to	be	displayed	and	passed	to	the	view.	The	information	of	the
current	page—and	whether	or	not	we	are	on	the	last	page—is	also	sent	to	the	template	in
order	to	add	the	“previous”	and	“next”	page	links.

The	get	method	will	get	the	ID	of	the	book	that	the	customer	is	interested	in.	It	will	try	to
fetch	it	using	the	model.	If	the	model	throws	an	exception,	we	will	render	the	error
template	with	a	“Book	not	found”	message.	Instead,	if	the	book	ID	is	valid,	we	will	render
the	book	template	as	expected.

The	getByUser	method	will	return	all	the	books	that	the	authenticated	customer	has
borrowed.	We	will	make	use	of	the	customerId	property	that	we	set	from	the	router.	There
is	no	sanity	check	here,	since	we	are	not	trying	to	get	a	specific	book,	but	rather	a	list,
which	could	be	empty	if	the	user	has	not	borrowed	any	books	yet—but	that	is	not	an	issue.

Another	getter	controller	is	the	one	that	searches	for	a	book	by	its	title	and/or	author.	This
method	will	be	triggered	when	the	user	submits	the	form	in	the	layout	template.	The	form
sends	both	the	title	and	the	author	fields,	so	the	controller	will	ask	for	both.	The	model
is	ready	to	use	the	arguments	that	are	empty,	so	we	will	not	perform	any	extra	checking
here.	Add	the	method	to	the	BookController	class:

public	function	search():	string	{

				$title	=	$this->request->getParams()->getString('title');

				$author	=	$this->request->getParams()->getString('author');

				$bookModel	=	new	BookModel($this->db);

				$books	=	$bookModel->search($title,	$author);

				$properties	=	[

								'books'	=>	$books,

								'currentPage'	=>	1,

								'lastPage'	=>	true

];

				return	$this->render('books.twig',	$properties);

}

Your	application	cannot	perform	any	actions,	but	at	least	you	can	finally	browse	the	list	of
books,	and	click	on	any	of	them	to	view	the	details.	We	are	finally	getting	something	here!

Borrowing	books
Borrowing	and	returning	books	are	probably	the	actions	that	involve	the	most	logic,
together	with	buying	a	book,	which	will	be	covered	by	a	different	controller.	This	is	a
good	place	to	start	logging	the	user’s	actions,	since	it	will	be	useful	later	for	debugging
purposes.	Let’s	see	the	code	first,	and	then	discuss	it	briefly.	Add	the	following	two
methods	to	your	BookController	class:

public	function	borrow(int	$bookId):	string	{

				$bookModel	=	new	BookModel($this->db);

				try	{

								$book	=	$bookModel->get($bookId);

				}	catch	(NotFoundException	$e)	{

								$this->log->warn('Book	not	found:	'	.	$bookId);

								$params	=	['errorMessage'	=>	'Book	not	found.'];

								return	$this->render('error.twig',	$params);

				}

				if	(!$book->getCopy())	{

								$params	=	[

												'errorMessage'	=>	'There	are	no	copies	left.'

];

								return	$this->render('error.twig',	$params);

				}

				try	{

								$bookModel->borrow($book,	$this->customerId);

				}	catch	(DbException	$e)	{

								$this->log->error(

												'Error	borrowing	book:	'	.	$e->getMessage()

);

								$params	=	['errorMessage'	=>	'Error	borrowing	book.'];

								return	$this->render('error.twig',	$params);

				}

				return	$this->getByUser();

}

public	function	returnBook(int	$bookId):	string	{

				$bookModel	=	new	BookModel($this->db);

				try	{

								$book	=	$bookModel->get($bookId);

				}	catch	(NotFoundException	$e)	{

								$this->log->warn('Book	not	found:	'	.	$bookId);

								$params	=	['errorMessage'	=>	'Book	not	found.'];

								return	$this->render('error.twig',	$params);

				}

				$book->addCopy();

				try	{

								$bookModel->returnBook($book,	$this->customerId);

				}	catch	(DbException	$e)	{

								$this->log->error(

												'Error	returning	book:	'	.	$e->getMessage()

);

								$params	=	['errorMessage'	=>	'Error	returning	book.'];

								return	$this->render('error.twig',	$params);

				}

				return	$this->getByUser();

}

As	we	mentioned	earlier,	one	of	the	new	things	here	is	that	we	are	logging	user	actions,
like	when	trying	to	borrow	or	return	a	book	that	is	not	valid.	Monolog	allows	you	to	write
logs	with	different	priority	levels:	error,	warning,	and	notices.	You	can	invoke	methods
such	as	error,	warn,	or	notice	to	refer	to	each	of	them.	We	use	warnings	when	something
unexpected,	yet	not	critical,	happens,	for	example,	trying	to	borrow	a	book	that	is	not
there.	Errors	are	used	when	there	is	an	unknown	problem	from	which	we	cannot	recover,
like	an	error	from	the	database.

The	modus	operandi	of	these	two	methods	is	as	follows:	we	get	the	book	object	from	the
3database	with	the	given	book	ID.	As	usual,	if	there	is	no	such	book,	we	return	an	error
page.	Once	we	have	the	book	domain	object,	we	make	use	of	the	helpers	addCopy	and
getCopy	in	order	to	update	the	stock	of	the	book,	and	send	it	to	the	model,	together	with
the	customer	ID,	to	store	the	information	in	the	database.	There	is	also	a	sanity	check
when	borrowing	a	book,	just	in	case	there	are	no	more	books	available.	In	both	cases,	we
return	the	list	of	books	that	the	user	has	borrowed	as	the	response	of	the	controller.

The	sales	controller
We	arrive	at	the	last	of	our	controllers:	the	SalesController.	With	a	different	model,	it
will	end	up	doing	pretty	much	the	same	as	the	methods	related	to	borrowed	books.	But	we
need	to	create	the	sale	domain	object	in	the	controller	instead	of	getting	it	from	the
model.	Let’s	add	the	following	code,	which	contains	a	method	for	buying	a	book,	add,	and
two	getters:	one	that	gets	all	the	sales	of	a	given	user	and	one	that	gets	the	info	of	a
specific	sale,	that	is,	getByUser	and	get	respectively.	Following	the	convention,	the	file
will	be	src/Controllers/SalesController.php:

<?php

namespace	Bookstore\Controllers;

use	Bookstore\Domain\Sale;

use	Bookstore\Models\SaleModel;

class	SalesController	extends	AbstractController	{

				public	function	add($id):	string	{

								$bookId	=	(int)$id;

								$salesModel	=	new	SaleModel($this->db);

								$sale	=	new	Sale();

								$sale->setCustomerId($this->customerId);

								$sale->addBook($bookId);

								try	{

												$salesModel->create($sale);

								}	catch	(\Exception	$e)	{

												$properties	=	[

																'errorMessage'	=>	'Error	buying	the	book.'

];

												$this->log->error(

																'Error	buying	book:	'	.	$e->getMessage()

);

												return	$this->render('error.twig',	$properties);

								}

								return	$this->getByUser();

				}

				public	function	getByUser():	string	{

								$salesModel	=	new	SaleModel($this->db);

								$sales	=	$salesModel->getByUser($this->customerId);

								$properties	=	['sales'	=>	$sales];

								return	$this->render('sales.twig',	$properties);

				}

				public	function	get($saleId):	string	{

								$salesModel	=	new	SaleModel($this->db);

								$sale	=	$salesModel->get($saleId);

								$properties	=	['sale'	=>	$sale];

								return	$this->render('sale.twig',	$properties);

				}

}

Dependency	injection
At	the	end	of	the	chapter,	we	will	cover	one	of	the	most	interesting	and	controversial	of
the	topics	that	come	with,	not	only	the	MVC	pattern,	but	OOP	in	general:	dependency
injection.	We	will	show	you	why	it	is	so	important,	and	how	to	implement	a	solution	that
suits	our	specific	application,	even	though	there	are	quite	a	few	different	implementations
that	can	cover	different	necessities.

Why	is	dependency	injection	necessary?
We	still	need	to	cover	the	way	to	unit	test	your	code,	hence	you	have	not	experienced	it	by
yourself	yet.	But	one	of	the	signs	of	a	potential	source	of	problems	is	when	you	use	the
new	statement	in	your	code	to	create	an	instance	of	a	class	that	does	not	belong	to	your
code	base—also	known	as	a	dependency.	Using	new	to	create	a	domain	object	like	Book	or
Sale	is	fine.	Using	it	to	instantiate	models	is	also	acceptable.	But	manually	instantiating,
which	something	else,	such	as	the	template	engine,	the	database	connection,	or	the	logger,
is	something	that	you	should	avoid.	There	are	different	reasons	that	support	this	idea:

If	you	want	to	use	a	controller	from	two	different	places,	and	each	of	these	places
needs	a	different	database	connection	or	log	file,	instantiating	those	dependencies
inside	the	controller	will	not	allow	us	to	do	that.	The	same	controller	will	always	use
the	same	dependency.
Instantiating	the	dependencies	inside	the	controller	means	that	the	controller	is	fully
aware	of	the	concrete	implementation	of	each	of	its	dependencies,	that	is,	the
controller	knows	that	we	are	using	PDO	with	the	MySQL	driver	and	the	location	of
the	credentials	for	the	connection.	This	means	a	high	level	of	coupling	in	your
application—so,	bad	news.
Replacing	one	dependency	with	another	that	implements	the	same	interface	is	not
easy	if	you	are	instantiating	the	dependency	explicitly	everywhere,	as	you	will	have
to	search	all	these	places,	and	change	the	instantiation	manually.

For	all	these	reasons,	and	more,	it	is	always	good	to	provide	the	dependencies	that	a	class
such	as	a	controller	needs	instead	of	letting	it	create	its	own.	This	is	something	that
everybody	agrees	with.	The	problem	comes	when	implementing	a	solution.	There	are
different	options:

We	have	a	constructor	that	expects	(through	arguments)	all	the	dependencies	that	the
controller,	or	any	other	class,	needs.	The	constructor	will	assign	each	of	the
arguments	to	the	properties	of	the	class.
We	have	an	empty	constructor,	and	instead,	we	add	as	many	setter	methods	as	the
dependencies	of	the	class.
A	hybrid	of	both,	where	we	set	the	main	dependencies	through	a	constructor,	and	set
the	rest	of	the	dependencies	via	setters.
Sending	an	object	that	contains	all	the	dependencies	as	a	unique	argument	for	the
constructor,	and	the	controller	gets	the	dependencies	that	it	needs	from	that	container.

Each	solution	has	its	pros	and	cons.	If	we	have	a	class	with	a	lot	of	dependencies,	injecting
all	of	them	via	the	constructor	would	make	it	counterintuitive,	so	it	would	be	better	if	we
inject	them	using	setters,	even	though	a	class	with	a	lot	of	dependencies	looks	like	bad
design.	If	we	have	just	one	or	two	dependencies,	using	the	constructor	could	be
acceptable,	and	we	will	write	less	code.	For	classes	with	several	dependencies,	but	not	all
of	them	mandatory,	using	the	hybrid	version	could	be	a	good	solution.	The	fourth	option
makes	it	easier	when	injecting	the	dependencies	as	we	do	not	need	to	know	what	each
object	expects.	The	problem	is	that	each	class	should	know	how	to	fetch	its	dependency,

that	is,	the	dependency	name,	which	is	not	ideal.

Implementing	our	own	dependency	injector
Open	source	solutions	for	dependency	injectors	are	already	available,	but	we	think	that	it
would	be	a	good	experience	to	implement	a	simple	one	by	yourself.	The	idea	of	our
dependency	injector	is	a	class	that	contains	instances	of	the	dependencies	that	your	code
needs.	This	class,	which	is	basically	a	map	of	dependency	names	to	dependency	instances,
will	have	two	methods:	a	getter	and	a	setter	of	dependencies.	We	do	not	want	to	use	a
static	property	for	the	dependencies	array,	as	one	of	the	goals	is	to	be	able	to	have	more
than	one	dependency	injector	with	a	different	set	of	dependencies.	Add	the	following	class
to	src/Utils/DependencyInjector.php:

<?php

namespace	Bookstore\Utils;

use	Bookstore\Exceptions\NotFoundException;

class	DependencyInjector	{

				private	$dependencies	=	[];

				public	function	set(string	$name,	$object)	{

								$this->dependencies[$name]	=	$object;

				}

				public	function	get(string	$name)	{

								if	(isset($this->dependencies[$name]))	{

												return	$this->dependencies[$name];

								}

								throw	new	NotFoundException(

												$name	.	'	dependency	not	found.'

);

				}

}

Having	a	dependency	injector	means	that	we	will	always	use	the	same	instance	of	a	given
class	every	time	we	ask	for	it,	instead	of	creating	one	each	time.	That	means	that	singleton
implementations	are	not	needed	anymore;	in	fact,	as	mentioned	in	Chapter	4,	Creating
Clean	Code	with	OOP,	it	is	preferable	to	avoid	them.	Let’s	get	rid	of	them,	then.	One	of
the	places	where	we	were	using	it	was	in	our	configuration	reader.	Replace	the	existing
code	with	the	following	in	the	src/Core/Config.php	file:

<?php

namespace	Bookstore\Core;

use	Bookstore\Exceptions\NotFoundException;

class	Config	{

				private	$data;

				public	function	__construct()	{

								$json	=	file_get_contents(

												__DIR__	.	'/../../config/app.json'

);

								$this->data	=	json_decode($json,	true);

				}

				public	function	get($key)	{

								if	(!isset($this->data[$key]))	{

												throw	new	NotFoundException("Key	$key	not	in	config.");

								}

								return	$this->data[$key];

				}

}

The	other	place	where	we	were	making	use	of	the	singleton	pattern	was	in	the	DB	class.	In
fact,	the	purpose	of	the	class	was	only	to	have	a	singleton	for	our	database	connection,	but
if	we	are	not	making	use	of	it,	we	can	remove	the	entire	class.	So,	delete	your
src/Core/DB.php	file.

Now	we	need	to	define	all	these	dependencies	and	add	them	to	our	dependency	injector.
The	index.php	file	is	a	good	place	to	have	the	dependency	injector	before	we	route	the
request.	Add	the	following	code	just	before	instantiating	the	Router	class:

$config	=	new	Config();

$dbConfig	=	$config->get('db');

$db	=	new	PDO(

				'mysql:host=127.0.0.1;dbname=bookstore',

				$dbConfig['user'],

				$dbConfig['password']

);

$loader	=	new	Twig_Loader_Filesystem(__DIR__	.	'/../../views');

$view	=	new	Twig_Environment($loader);

$log	=	new	Logger('bookstore');

$logFile	=	$config->get('log');

$log->pushHandler(new	StreamHandler($logFile,	Logger::DEBUG));

$di	=	new	DependencyInjector();

$di->set('PDO',	$db);

$di->set('Utils\Config',	$config);

$di->set('Twig_Environment',	$view);

$di->set('Logger',	$log);

$router	=	new	Router($di);

//...

There	are	a	few	changes	that	we	need	to	make	now.	The	most	important	of	them	refers	to
the	AbstractController,	the	class	that	will	make	heavy	use	of	the	dependency	injector.
Add	a	property	named	$di	to	that	class,	and	replace	the	constructor	with	the	following:

public	function	__construct(

				DependencyInjector	$di,

				Request	$request

)	{

				$this->request	=	$request;

				$this->di	=	$di;

				$this->db	=	$di->get('PDO');

				$this->log	=	$di->get('Logger');

				$this->view	=	$di->get('Twig_Environment');

				$this->config	=	$di->get('Utils\Config');

				$this->customerId	=	$_COOKIE['id'];

}

The	other	changes	refer	to	the	Router	class,	as	we	are	sending	it	now	as	part	of	the
constructor,	and	we	need	to	inject	it	to	the	controllers	that	we	create.	Add	a	$di	property	to
that	class	as	well,	and	change	the	constructor	to	the	following	one:

public	function	__construct(DependencyInjector	$di)	{

				$this->di	=	$di;

				$json	=	file_get_contents(__DIR__	.	'/../../config/routes.json');

				$this->routeMap	=	json_decode($json,	true);

}

Also	change	the	content	of	the	executeController	and	route	methods:

public	function	route(Request	$request):	string	{

				$path	=	$request->getPath();

				foreach	($this->routeMap	as	$route	=>	$info)	{

								$regexRoute	=	$this->getRegexRoute($route,	$info);

								if	(preg_match("@^/$regexRoute$@",	$path))	{

												return	$this->executeController(

																$route,	$path,	$info,	$request

);

								}

				}

				$errorController	=	new	ErrorController(

								$this->di,

								$request

);

				return	$errorController->notFound();

}

private	function	executeController(

				string	$route,

				string	$path,

				array	$info,

				Request	$request

):	string	{

				$controllerName	=	'\Bookstore\Controllers\\'	

								.	$info['controller']	.	'Controller';

				$controller	=	new	$controllerName($this->di,	$request);

				if	(isset($info['login'])	&&	$info['login'])	{

								if	($request->getCookies()->has('user'))	{

												$customerId	=	$request->getCookies()->get('user');

												$controller->setCustomerId($customerId);

								}	else	{

												$errorController	=	new	CustomerController(

																$this->di,

																$request

);

												return	$errorController->login();

								}

				}

				$params	=	$this->extractParams($route,	$path);

				return	call_user_func_array(

								[$controller,	$info['method']],	$params

);

}

There	is	one	last	place	that	you	need	to	change.	The	login	method	of
CustomerController	was	instantiating	a	controller	too,	so	we	need	to	inject	the
dependency	injector	there	as	well:

$newController	=	new	BookController($this->di,	$this->request);

Summary
In	this	chapter,	you	learned	what	MVC	is,	and	how	to	write	an	application	that	follows
that	pattern.	You	also	know	how	to	use	a	router	to	route	requests	to	controllers,	Twig	to
write	templates,	and	Composer	to	manage	your	dependencies	and	autoloader.	You	were
introduced	to	dependency	injection,	and	you	even	built	your	own	implementation,	even
though	it	is	a	very	controversial	topic	with	many	different	points	of	view.

In	the	next	chapter,	we	will	go	through	one	of	the	most	important	parts	needed	when
writing	good	code	and	good	applications:	unit	testing	your	code	to	get	quick	feedback
from	it.

Chapter	7.	Testing	Web	Applications
We	are	pretty	sure	you	have	heard	the	term	“bug”	when	speaking	about	applications.
Sentences	such	as	“We	found	a	bug	in	the	application	that…”	followed	by	some	very
undesirable	behavior	are	more	common	than	you	think.	Writing	code	is	not	the	only	task
of	a	developer;	testing	it	is	crucial	too.	You	should	not	release	a	version	of	your
application	that	has	not	been	tested.	However,	could	you	imagine	having	to	test	your	entire
application	every	time	you	change	a	line?	It	would	be	a	nightmare!

Well,	we	are	not	the	first	ones	to	have	this	issue,	so,	luckily	enough,	developers	have
already	found	a	pretty	good	solution	to	this	problem.	In	fact,	they	found	more	than	one
solution,	turning	testing	into	a	very	hot	topic	of	discussion.	Even	being	a	test	developer
has	become	quite	a	common	role.	In	this	chapter,	we	will	introduce	you	to	one	of	the
approaches	of	testing	your	code:	unit	tests.

In	this	chapter,	you	will	learn	about:

How	unit	tests	work
Configuring	PHPUnit	to	test	your	code
Writing	tests	with	assertions,	data	providers,	and	mocks
Good	and	bad	practices	when	writing	unit	tests

The	necessity	for	tests
When	you	work	on	a	project,	chances	are	that	you	are	not	the	only	developer	who	will
work	with	this	code.	Even	in	the	case	where	you	are	the	only	one	who	will	ever	change	it,
if	you	do	this	a	few	weeks	after	creating	it,	you	will	probably	not	remember	all	the	places
that	this	piece	of	code	is	affected.	Okay,	let’s	assume	that	you	are	the	only	developer	and
your	memory	is	beyond	limits;	would	you	be	able	to	verify	that	a	change	on	a	frequently
used	object,	such	as	a	request,	will	always	work	as	expected?	More	importantly,	would
you	like	to	do	it	every	single	time	you	make	a	tiny	change?

Types	of	tests
While	writing	your	application,	making	changes	to	the	existing	code,	or	adding	new
features,	it	is	very	important	to	get	good	feedback.	How	do	you	know	that	the	feedback
you	get	is	good	enough?	It	should	accomplish	the	AEIOU	principles:

Automatic:	Getting	the	feedback	should	be	as	painless	as	possible.	Getting	it	by
running	just	one	command	is	always	preferable	to	having	to	test	your	application
manually.
Extensive:	We	should	be	able	to	cover	as	many	use	cases	as	possible,	including	edge
cases	that	are	difficult	to	foresee	when	writing	code.
Immediate:	You	should	get	it	as	soon	as	possible.	This	means	that	the	feedback	that
you	get	just	after	introducing	a	change	is	way	better	than	the	feedback	that	you	get
after	your	code	is	in	production.
Open:	The	results	should	be	transparent,	and	also,	the	tests	should	give	us	insight	to
other	developers	as	to	how	to	integrate	or	operate	with	the	code.
Useful:	It	should	answer	questions	such	as	“Will	this	change	work?”,	“Will	it	break
the	application	unexpectedly?”,	or	“Is	there	any	edge	case	that	does	not	work
properly?”.

So,	even	though	the	concept	is	quite	weird	at	the	beginning,	the	best	way	to	test	your	code
is…	with	more	code.	Exactly!	We	will	write	code	with	the	goal	of	testing	the	code	of	our
application.	Why?	Well,	it	is	the	best	way	we	know	to	satisfy	all	the	AEIU	principles,	and
it	has	the	following	advantages:

We	can	execute	the	tests	by	just	running	one	command	from	our	command	line	or
even	from	our	favorite	IDE.	There	is	no	need	to	manually	test	your	application	via	a
browser	continually.
We	need	to	write	the	test	just	once.	At	the	beginning,	it	may	be	a	bit	painful,	but	once
the	code	is	written,	you	will	not	need	to	repeat	it	again	and	again.	This	means	that
after	some	work,	we	will	be	able	to	test	every	single	case	effortlessly.	If	we	had	to
test	it	manually,	along	with	all	the	use	cases	and	edge	cases,	it	would	be	a	nightmare.
You	do	not	need	to	have	the	whole	application	working	in	order	to	know	whether
your	code	works.	Imagine	that	you	are	writing	your	router:	in	order	to	know	whether
it	works,	you	will	have	to	wait	until	your	application	works	in	a	browser.	Instead,	you
can	write	your	tests	and	run	them	as	soon	as	you	finish	your	class.
When	writing	your	tests,	you	will	be	provided	with	feedback	on	what	is	failing.	This
is	very	useful	to	know	when	a	specific	function	of	the	router	does	not	work	and	the
reason	for	the	failure,	which	is	better	than	getting	a	500	error	on	our	browser.

We	hope	that	by	now	we	have	sold	you	on	the	idea	that	writing	tests	is	indispensable.	This
was	the	easy	part,	though.	The	problem	is	that	we	know	several	different	approaches.	Do
we	write	tests	that	test	the	entire	application	or	tests	that	test	specific	parts?	Do	we	isolate
the	tested	area	from	the	rest?	Do	we	want	to	interact	with	the	database	or	with	other
external	resources	while	testing?	Depending	on	your	answers,	you	will	decide	on	which
type	of	tests	you	want	to	write.	Let’s	discuss	the	three	main	approaches	that	developers

agree	with:

Unit	tests:	These	are	tests	that	have	a	very	focused	scope.	Their	aim	is	to	test	a	single
class	or	method,	isolating	them	from	the	rest	of	code.	Take	your	Sale	domain	class	as
an	example:	it	has	some	logic	regarding	the	addition	of	books,	right?	A	unit	test
might	just	instantiate	a	new	sale,	add	books	to	the	object,	and	verify	that	the	array	of
books	is	valid.	Unit	tests	are	super	fast	due	to	their	reduced	scope,	so	you	can	have
several	different	scenarios	of	the	same	functionality	easily,	covering	all	the	edge
cases	you	can	imagine.	They	are	also	isolated,	which	means	that	we	will	not	care	too
much	about	how	all	the	pieces	of	our	application	are	integrated.	Instead,	we	will
make	sure	that	each	piece	works	perfectly	fine.
Integration	tests:	These	are	tests	with	a	wider	scope.	Their	aim	is	to	verify	that	all
the	pieces	of	your	application	work	together,	so	their	scope	is	not	limited	to	a	class	or
function	but	rather	includes	a	set	of	classes	or	the	whole	application.	There	is	still
some	isolation	in	case	we	do	not	want	to	use	a	real	database	or	depend	on	some	other
external	web	service.	An	example	in	our	application	would	be	to	simulate	a	Request
object,	send	it	to	the	router,	and	verify	that	the	response	is	as	expected.
Acceptance	tests:	These	are	tests	with	an	even	wider	scope.	They	try	to	test	a	whole
functionality	from	the	user’s	point	of	view.	In	web	applications,	this	means	that	we
can	launch	a	browser	and	simulate	the	clicks	that	the	user	would	make,	asserting	the
response	in	the	browser	each	time.	And	yes,	all	of	this	through	code!	These	tests	are
slower	to	run,	as	you	can	imagine,	because	their	scope	is	larger	and	working	with	a
browser	slows	them	down	quite	a	lot	too.

So,	with	all	these	types	of	tests,	which	one	should	you	write?	The	answer	is	all	of	them.
The	trick	is	to	know	when	and	how	many	of	each	type	you	should	write.	One	good
approach	is	to	write	a	lot	of	unit	tests,	covering	absolutely	everything	in	your	code,	then
writing	fewer	integration	tests	to	make	sure	that	all	the	components	of	your	application
work	together,	and	finally	writing	acceptance	tests	but	testing	only	the	main	flows	of	your
application.	The	following	test	pyramid	represents	this	idea:

The	reason	is	simple:	your	real	feedback	will	come	from	your	unit	tests.	They	will	tell	you
if	you	messed	up	something	with	your	changes	as	soon	as	you	finish	writing	them	because
executing	unit	tests	is	easy	and	fast.	Once	you	know	that	all	your	classes	and	functions

behave	as	expected,	you	need	to	verify	that	they	can	work	together.	However,	for	this,	you
do	not	need	to	test	all	the	edge	cases	again;	you	already	did	this	when	writing	unit	tests.
Here,	you	need	to	write	just	a	few	integration	tests	that	confirm	that	all	the	pieces
communicate	properly.	Finally,	to	make	sure	that	not	only	that	the	code	works	but	also	the
user	experience	is	the	desired	one,	we	will	write	acceptance	tests	that	emulate	a	user	going
through	the	different	views.	Here,	tests	are	very	slow	and	only	possible	once	the	flow	is
complete,	so	the	feedback	comes	later.	We	will	add	acceptance	tests	to	make	sure	that	the
main	flows	work,	but	we	do	not	need	to	test	every	single	scenario	as	we	already	did	this
with	integration	and	unit	tests.

Unit	tests	and	code	coverage
Now	that	you	know	what	tests	are,	why	we	need	them,	and	which	types	of	tests	we	have,
we	will	focus	the	rest	of	the	chapter	on	writing	good	unit	tests	as	they	will	be	the	ones	that
will	occupy	most	of	your	time.

As	we	explained	before,	the	idea	of	a	unit	test	is	to	make	sure	that	a	piece	of	code,	usually
a	class	or	method,	works	as	expected.	As	the	amount	of	code	that	a	method	contains
should	be	small,	running	the	test	should	take	almost	no	time.	Taking	advantage	of	this,	we
will	run	several	tests,	trying	to	cover	as	many	use	cases	as	possible.

If	this	is	not	the	first	time	you’ve	heard	about	unit	tests,	you	might	know	the	concept	of
code	coverage.	This	concept	refers	to	the	amount	of	code	that	our	tests	execute,	that	is,
the	percentage	of	tested	code.	For	example,	if	your	application	has	10,000	lines	and	your
tests	test	a	total	of	7,500	lines,	your	code	coverage	is	75%.	There	are	tools	that	show
marks	on	your	code	to	indicate	whether	a	certain	line	is	tested	or	not,	which	is	very	useful
in	order	to	identify	which	parts	of	your	application	are	not	tested	and	thus	warn	you	that	it
is	more	dangerous	to	change	them.

However,	code	coverage	is	a	double-edge	sword.	Why	is	this	so?	This	is	because
developers	tend	to	get	obsessed	with	code	coverage,	aiming	for	a	100%	coverage.
However,	you	should	be	aware	that	code	coverage	is	just	a	consequence,	not	your	goal.
Your	goal	is	to	write	unit	tests	that	verify	all	the	use	cases	of	certain	pieces	of	code	in
order	to	make	you	feel	safer	each	time	that	you	have	to	change	this	code.	This	means	that
for	a	given	method,	it	might	not	be	enough	to	write	one	test	because	the	same	line	with
different	input	values	may	behave	differently.	However,	if	your	focus	was	on	code
coverage,	writing	one	test	would	satisfy	it,	and	you	might	not	need	to	write	any	more	tests.

Integrating	PHPUnit
Writing	tests	is	a	task	that	you	could	do	by	yourself;	you	just	need	to	write	code	that
throws	exceptions	when	conditions	are	not	met	and	then	run	the	script	any	time	you	need.
Luckily,	other	developers	were	not	satisfied	with	this	manual	process,	so	they
implemented	tools	to	help	us	automate	this	process	and	get	good	feedback.	The	most	used
in	PHP	is	PHPUnit.	PHPUnit	is	a	framework	that	provides	a	set	of	tools	to	write	tests	in
an	easier	manner,	gives	us	the	ability	to	run	tests	automatically,	and	delivers	useful
feedback	to	the	developer.

In	order	to	use	PHPUnit,	traditionally,	we	installed	it	on	our	laptop.	In	doing	so,	we	added
the	classes	of	the	framework	to	include	the	path	of	PHP	and	also	the	executable	to	run	the
tests.	This	was	less	than	ideal	as	we	forced	developers	to	install	one	more	tool	on	their
development	machine.	Nowadays,	Composer	(refer	to	Chapter	6,	Adapting	to	MVC,	in
order	to	refresh	your	memory)	helps	us	in	including	PHPUnit	as	a	dependency	of	the
project.	This	means	that	running	Composer,	which	you	will	do	for	sure	in	order	to	get	the
rest	of	the	dependencies,	will	get	PHPUnit	too.	Add,	then,	the	following	into
composer.json:

{

//...

				"require":	{

								"monolog/monolog":	"^1.17",

								"twig/twig":	"^1.23"

				},

				"require-dev":	{

								"phpunit/phpunit":	"5.1.3"

				},

				"autoload":	{

								"psr-4":	{

												"Bookstore\\":	"src"

								}

				}

}

Note	that	this	dependency	is	added	as	require-dev.	This	means	that	the	dependency	will
be	downloaded	only	when	we	are	on	a	development	environment,	but	it	will	not	be	part	of
the	application	that	we	will	deploy	on	production	as	we	do	not	need	to	run	tests	there.	To
get	the	dependency,	as	always,	run	composer	update.

A	different	approach	is	to	install	PHPUnit	globally	so	that	all	the	projects	on	your
development	environment	can	use	it	instead	of	installing	it	locally	each	time.	You	can	read
about	how	to	install	tools	globally	with	Composer	at	https://akrabat.com/global-
installation-of-php-tools-with-composer/.

https://akrabat.com/global-installation-of-php-tools-with-composer/

The	phpunit.xml	file
PHPUnit	needs	a	phpunit.xml	file	in	order	to	define	the	way	we	want	to	run	the	tests.
This	file	defines	a	set	of	rules	like	where	the	tests	are,	what	code	are	the	tests	testing,	and
so	on.	Add	the	following	file	in	your	root	directory:

<?xml	version="1.0"	encoding="UTF-8"?>

<phpunit	backupGlobals="false"

									backupStaticAttributes="false"

									colors="true"

									convertErrorsToExceptions="true"

									convertNoticesToExceptions="true"

									convertWarningsToExceptions="true"

									processIsolation="false"

									stopOnFailure="false"

									syntaxCheck="false"

									bootstrap="vendor/autoload.php"

>

<testsuites>

<testsuite	name="Bookstore	Test	Suite">

<directory>./tests/</directory>

</testsuite>

</testsuites>

<filter>

<whitelist>

<directory>./src</directory>

</whitelist>

</filter>

</phpunit>

This	file	defines	quite	a	lot	of	things.	The	most	important	are	explained	as	follows:

Setting	convertErrorsToExceptions,	convertNoticesToExceptions,	and
convertWarningsToExceptions	to	true	will	make	your	tests	fail	if	there	is	a	PHP
error,	warning,	or	notice.	The	goal	is	to	make	sure	that	your	code	does	not	contain
minor	errors	on	edge	cases,	which	are	always	the	source	of	potential	problems.
The	stopOnFailure	tells	PHPUnit	whether	it	should	continue	executing	the	rest	of
tests	or	not	when	there	is	a	failed	test.	In	this	case,	we	want	to	run	all	of	them	to
know	how	many	tests	are	failing	and	why.
The	bootstrap	defines	which	file	we	should	execute	before	starting	to	run	the	tests.
The	most	common	usage	is	to	include	the	autoloader,	but	you	could	also	include	a
file	that	initializes	some	dependencies,	such	as	databases	or	configuration	readers.
The	testsuites	defines	the	directories	where	PHPUnit	will	look	for	tests.	In	our
case,	we	defined	./tests,	but	we	could	add	more	if	we	had	them	in	different
directories.
The	whitelist	defines	the	list	of	directories	that	contain	the	code	that	we	are	testing.
This	can	be	useful	to	generate	output	related	to	the	code	coverage.

When	running	the	tests	with	PHPUnit,	just	make	sure	that	you	run	the	command	from	the
same	directory	where	the	phpunit.xml	file	is.	We	will	show	you	how	in	the	next	section.

Your	first	test
Right,	that’s	enough	preparations	and	theory;	let’s	write	some	code.	We	will	write	tests	for
the	basic	customer,	which	is	a	domain	object	with	little	logic.	First	of	all,	we	need	to
refactor	the	Unique	trait	as	it	still	contains	some	unnecessary	code	after	integrating	our
application	with	MySQL.	We	are	talking	about	the	ability	to	assign	the	next	available	ID,
which	is	now	handled	by	the	autoincremental	field.	Remove	it,	leaving	the	code	as
follows:

<?php

namespace	Bookstore\Utils;

trait	Unique	{

				protected	$id;

				public	function	setId(int	$id)	{

								$this->id	=	$id;

				}

				public	function	getId():	int	{

								return	$this->id;

				}

}

The	tests	will	be	inside	the	tests/	directory.	The	structure	of	directories	should	be	the
same	as	in	the	src/	directory	so	that	it	is	easier	to	identify	where	each	test	should	be.	The
file	and	the	class	names	need	to	end	with	Test	so	that	PHPUnit	knows	that	a	file	contains
tests.	Knowing	this,	our	test	should	be	in	tests/Domain/Customer/BasicTest.php,	as
follows:

<?php

namespace	Bookstore\Tests\Domain\Customer;

use	Bookstore\Domain\Customer\Basic;

use	PHPUnit_Framework_TestCase;

class	BasicTest	extends	PHPUnit_Framework_TestCase	{

				public	function	testAmountToBorrow()	{

								$customer	=	new	Basic(1,	'han',	'solo',	'han@solo.com');

								$this->assertSame(

												3,

												$customer->getAmountToBorrow(),

												'Basic	customer	should	borrow	up	to	3	books.'

);

				}

}

As	you	can	note,	the	BasicTest	class	extends	from	PHPUnit_Framework_TestCase.	All
test	classes	have	to	extend	from	this	class.	This	class	comes	with	a	set	of	methods	that
allow	you	to	make	assertions.	An	assertion	in	PHPUnit	is	just	a	check	performed	on	a

value.	Assertions	can	be	comparisons	to	other	values,	a	verification	of	some	attributes	of
the	values,	and	so	on.	If	an	assertion	is	not	true,	the	test	will	be	marked	as	failed,
outputting	the	proper	error	message	to	the	developer.	The	example	shows	an	assertion
using	the	assertSame	method,	which	will	compare	two	values,	expecting	that	both	of
them	are	exactly	the	same.	The	third	argument	is	an	error	message	that	the	assertion	will
show	in	case	it	fails.

Also,	note	that	the	function	names	that	start	with	test	are	the	ones	executed	with
PHPUnit.	In	this	example,	we	have	one	unique	test	named	testAmountToBorrow	that
instantiates	a	basic	customer	and	verifies	that	the	amount	of	books	that	the	customer	can
borrow	is	3.	In	the	next	section,	we	will	show	you	how	to	run	this	test	and	get	feedback
from	it.

Optionally,	you	could	use	any	function	name	if	you	add	the	@test	annotation	in	the
method’s	DocBlock,	as	follows:

/**

	*	@test

	*/

public	function	thisIsATestToo()	{

		//...

}

Running	tests
In	order	to	run	the	tests	you	wrote,	you	need	to	execute	the	script	that	Composer	generated
in	vendor/bin.	Remember	always	to	run	from	the	root	directory	of	the	project	so	that
PHPUnit	can	find	your	phpunit.xml	configuration	file.	Then,	type
./vendor/bin/phpunit.

When	executing	this	program,	we	will	get	the	feedback	given	by	the	tests.	The	output
shows	us	that	there	is	one	test	(one	method)	and	one	assertion	and	whether	these	were
satisfactory.	This	output	is	what	you	would	like	to	see	every	time	you	run	your	tests,	but
you	will	get	more	failed	tests	than	you	would	like.	Let’s	take	a	look	at	them	by	adding	the
following	test:

public	function	testFail()	{

				$customer	=	new	Basic(1,	'han',	'solo',	'han@solo.com');

				$this->assertSame(

								4,

								$customer->getAmountToBorrow(),

								'Basic	customer	should	borrow	up	to	3	books.'

);

}

This	test	will	fail	as	we	are	checking	whether	getAmountToBorrow	returns	4,	but	you	know
that	it	always	returns	3.	Let’s	run	the	tests	and	take	a	look	at	what	kind	of	output	we	get.

We	can	quickly	note	that	the	output	is	not	good	due	to	the	red	color.	It	shows	us	that	there
is	a	failure,	pointing	to	the	class	and	test	method	that	failed.	The	feedback	points	out	the
type	of	failure	(as	3	is	not	identical	to	4)	and	optionally,	the	error	message	we	added	when
invoking	the	assert	method.

Writing	unit	tests
Let’s	start	digging	into	all	the	features	that	PHPUnit	offers	us	in	order	to	write	tests.	We
will	divide	these	features	in	different	subsections:	setting	up	a	test,	assertions,	exceptions,
and	data	providers.	Of	course,	you	do	not	need	to	use	all	of	these	tools	each	time	you	write
a	test.

The	start	and	end	of	a	test
PHPUnit	gives	you	the	opportunity	to	set	up	a	common	scenario	for	each	test	in	a	class.
For	this,	you	need	to	use	the	setUp	method,	which,	if	present,	is	executed	each	time	that	a
test	of	this	class	is	executed.	The	instance	of	the	class	that	invokes	the	setUp	and	test
methods	is	the	same,	so	you	can	use	the	properties	of	the	class	to	save	the	context.	One
common	use	would	be	to	create	the	object	that	we	will	use	for	our	tests	in	case	this	is
always	the	same.	For	an	example,	write	the	following	code	in
tests/Domain/Customer/BasicTest.php:

<?php

namespace	Bookstore\Tests\Domain\Customer;

use	Bookstore\Domain\Customer\Basic;

use	PHPUnit_Framework_TestCase;

class	BasicTest	extends	PHPUnit_Framework_TestCase	{

				private	$customer;

				public	function	setUp()	{

								$this->customer	=	new	Basic(

												1,	'han',	'solo',	'han@solo.com'

);

				}

				public	function	testAmountToBorrow()	{

								$this->assertSame(

												3,

												$this->customer->getAmountToBorrow(),

												'Basic	customer	should	borrow	up	to	3	books.'

);

				}

}

When	testAmountToBorrow	is	invoked,	the	$customer	property	is	already	initialized
through	the	execution	of	the	setUp	method.	If	the	class	had	more	than	one	test,	the	setUp
method	would	be	executed	each	time.

Even	though	it	is	less	common	to	use,	there	is	another	method	used	to	clean	up	the
scenario	after	the	test	is	executed:	tearDown.	This	works	in	the	same	way,	but	it	is
executed	after	each	test	of	this	class	is	executed.	Possible	uses	would	be	to	clean	up
database	data,	close	connections,	delete	files,	and	so	on.

Assertions
You	have	already	been	introduced	to	the	concept	of	assertions,	so	let’s	just	list	the	most
common	ones	in	this	section.	For	the	full	list,	we	recommend	you	to	visit	the	official
documentation	at	https://phpunit.de/manual/current/en/appendixes.assertions.html	as	it	is
quite	extensive;	however,	to	be	honest,	you	will	probably	not	use	many	of	them.

The	first	type	of	assertion	that	we	will	see	is	the	Boolean	assertion,	that	is,	the	one	that
checks	whether	a	value	is	true	or	false.	The	methods	are	as	simple	as	assertTrue	and
assertFalse,	and	they	expect	one	parameter,	which	is	the	value	to	assert,	and	optionally,
a	text	to	display	in	case	of	failure.	In	the	same	BasicTest	class,	add	the	following	test:

public	function	testIsExemptOfTaxes()	{

				$this->assertFalse(

								$this->customer->isExemptOfTaxes(),

								'Basic	customer	should	be	exempt	of	taxes.'

);

}

This	test	makes	sure	that	a	basic	customer	is	never	exempt	of	taxes.	Note	that	we	could	do
the	same	assertion	by	writing	the	following:

$this->assertSame(

				$this->customer->isExemptOfTaxes(),

				false,

				'Basic	customer	should	be	exempt	of	taxes.'

);

A	second	group	of	assertions	would	be	the	comparison	assertions.	The	most	famous	ones
are	assertSame	and	assertEquals.	You	have	already	used	the	first	one,	but	are	you	sure
of	its	meaning?	Let’s	add	another	test	and	run	it:

public	function	testGetMonthlyFee()	{

				$this->assertSame(

								5,

								$this->customer->getMonthlyFee(),

								'Basic	customer	should	pay	5	a	month.'

);

}

The	result	of	the	test	is	shown	in	the	following	screenshot:

https://phpunit.de/manual/current/en/appendixes.assertions.html

The	test	failed!	The	reason	is	that	assertSame	is	the	equivalent	to	comparing	using
identity,	that	is,	without	using	type	juggling.	The	result	of	the	getMonthlyFee	method	is
always	a	float,	and	we	will	compare	it	with	an	integer,	so	it	will	never	be	the	same,	as	the
error	message	tells	us.	Change	the	assertion	to	assertEquals,	which	compares	using
equality,	and	the	test	will	pass	now.

When	working	with	objects,	we	can	use	an	assertion	to	check	whether	a	given	object	is	an
instance	of	the	expected	class	or	not.	When	doing	so,	remember	to	send	the	full	name	of
the	class	as	this	is	a	quite	common	mistake.	Even	better,	you	could	get	the	class	name
using	::class,	for	example,	Basic::class.	Add	the	following	test	in
tests/Domain/Customer/CustomerFactoryTest.php:

<?php

namespace	Bookstore\Tests\Domain\Customer;

use	Bookstore\Domain\Customer\CustomerFactory;

use	PHPUnit_Framework_TestCase;

class	CustomerFactoryTest	extends	PHPUnit_Framework_TestCase	{

				public	function	testFactoryBasic()	{

								$customer	=	CustomerFactory::factory(

												'basic',	1,	'han',	'solo',	'han@solo.com'

);

								$this->assertInstanceOf(

Basic::class,

												$customer,

												'basic	should	create	a	Customer\Basic	object.'

);

				}

}

This	test	creates	a	customer	using	the	customer	factory.	As	the	type	of	customer	was
basic,	the	result	should	be	an	instance	of	Basic,	which	is	what	we	are	testing	with
assertInstanceOf.	The	first	argument	is	the	expected	class,	the	second	is	the	object	that
we	are	testing,	and	the	third	is	the	error	message.	This	test	also	helps	us	to	note	the
behavior	of	comparison	assertions	with	objects.	Let’s	create	a	basic	customer	object	as
expected	and	compare	it	with	the	result	of	the	factory.	Then,	run	the	test,	as	follows:

$expectedBasicCustomer	=	new	Basic(1,	'han',	'solo',	'han@solo.com');

$this->assertSame(

				$customer,

				$expectedBasicCustomer,

				'Customer	object	is	not	as	expected.'

);

The	result	of	this	test	is	shown	in	the	following	screenshot:

The	test	failed	because	when	you	compare	two	objects	with	identity	comparison,	you
comparing	the	object	reference,	and	it	will	only	be	the	same	if	the	two	objects	are	exactly
the	same	instance.	If	you	create	two	objects	with	the	same	properties,	they	will	be	equal
but	never	identical.	To	fix	the	test,	change	the	assertion	as	follows:

$expectedBasicCustomer	=	new	Basic(1,	'han',	'solo',	'han@solo.com');

$this->assertEquals(

				$customer,

				$expectedBasicCustomer,

				'Customer	object	is	not	as	expected.'

);

Let’s	now	write	the	tests	for	the	sale	domain	object	at	tests/Domain/SaleTest.php.	This
class	is	very	easy	to	test	and	allows	us	to	use	some	new	assertions,	as	follows:

<?php

namespace	Bookstore\Tests\Domain\Customer;

use	Bookstore\Domain\Sale;

use	PHPUnit_Framework_TestCase;

class	SaleTest	extends	PHPUnit_Framework_TestCase	{

				public	function	testNewSaleHasNoBooks()	{

								$sale	=	new	Sale();

								$this->assertEmpty(

												$sale->getBooks(),

												'When	new,	sale	should	have	no	books.'

);

				}

				public	function	testAddNewBook()	{

								$sale	=	new	Sale();

								$sale->addBook(123);

								$this->assertCount(

												1,

												$sale->getBooks(),

												'Number	of	books	not	valid.'

);

								$this->assertArrayHasKey(

												123,

												$sale->getBooks(),

												'Book	id	could	not	be	found	in	array.'

);

								$this->assertSame(

												$sale->getBooks()[123],

												1,

												'When	not	specified,	amount	of	books	is	1.'

);

				}

}

We	added	two	tests	here:	one	makes	sure	that	for	a	new	sale	instance,	the	list	of	books
associated	with	it	is	empty.	For	this,	we	used	the	assertEmpty	method,	which	takes	an
array	as	an	argument	and	will	assert	that	it	is	empty.	The	second	test	is	adding	a	book	to
the	sale	and	then	making	sure	that	the	list	of	books	has	the	correct	content.	For	this,	we
will	use	the	assertCount	method,	which	verifies	that	the	array,	that	is,	the	second
argument,	has	as	many	elements	as	the	first	argument	provided.	In	this	case,	we	expect
that	the	list	of	books	has	only	one	entry.	The	second	assertion	of	this	test	is	verifying	that
the	array	of	books	contains	a	specific	key,	which	is	the	ID	of	the	book,	with	the
assertArrayHasKey	method,	in	which	the	first	argument	is	the	key,	and	the	second	one	is
the	array.	Finally,	we	will	check	with	the	already	known	assertSame	method	that	the

amount	of	books	inserted	is	1.

Even	though	these	two	new	assertion	methods	are	useful	sometimes,	all	the	three
assertions	of	the	last	test	can	be	replaced	by	just	an	assertSame	method,	comparing	the
whole	array	of	books	with	the	expected	one,	as	follows:

$this->assertSame(

				[123	=>	1],

				$sale->getBooks(),

				'Books	array	does	not	match.'

);

The	suite	of	tests	for	the	sale	domain	object	would	not	be	enough	if	we	were	not	testing
how	the	class	behaves	when	adding	multiple	books.	In	this	case,	using	assertCount	and
assertArrayHasKey	would	make	the	test	unnecessarily	long,	so	let’s	just	compare	the
array	with	an	expected	one	via	the	following	code:

public	function	testAddMultipleBooks()	{

				$sale	=	new	Sale();

				$sale->addBook(123,	4);

				$sale->addBook(456,	2);

				$sale->addBook(456,	8);

				$this->assertSame(

								[123	=>	4,	456	=>	10],

								$sale->getBooks(),

								'Books	are	not	as	expected.'

);

}

Expecting	exceptions
Sometimes,	a	method	is	expected	to	throw	an	exception	for	certain	unexpected	use	cases.
When	this	happens,	you	could	try	to	capture	this	exception	inside	the	test	or	take
advantage	of	another	tool	that	PHPUnit	offers:	expecting	exceptions.	To	mark	a	test	to
expect	a	given	exception,	just	add	the	@expectedException	annotation	followed	by	the
exception’s	class	full	name.	Optionally,	you	can	use	@expectedExceptionMessage	to
assert	the	message	of	the	exception.	Let’s	add	the	following	tests	to	our
CustomerFactoryTest	class:

/**

	*	@expectedException	\InvalidArgumentException

	*	@expectedExceptionMessage	Wrong	type.

	*/

public	function	testCreatingWrongTypeOfCustomer()	{

				$customer	=	CustomerFactory::factory(

								'deluxe',	1,	'han',	'solo',	'han@solo.com'

);

}

In	this	test	we	will	try	to	create	a	deluxe	customer	with	our	factory,	but	as	this	type	of
customer	does	not	exist,	we	will	get	an	exception.	The	type	of	the	expected	exception	is
InvalidArgumentException,	and	the	error	message	is	“Wrong	type”.	If	you	run	the	tests,
you	will	see	that	they	pass.

If	we	defined	an	expected	exception	and	the	exception	is	never	thrown,	the	test	will	fail;
expecting	exceptions	is	just	another	type	of	assertion.	To	see	this	happen,	add	the
following	to	your	test	and	run	it;	you	will	get	a	failure,	and	PHPUnit	will	complain	saying
that	it	expected	the	exception,	but	it	was	never	thrown:

/**

	*	@expectedException	\InvalidArgumentException

	*/

public	function	testCreatingCorrectCustomer()	{

				$customer	=	CustomerFactory::factory(

								'basic',	1,	'han',	'solo',	'han@solo.com'

);

}

Data	providers
If	you	think	about	the	flow	of	a	test,	most	of	the	time,	we	invoke	a	method	with	an	input
and	expect	an	output.	In	order	to	cover	all	the	edge	cases,	it	is	natural	that	we	will	repeat
the	same	action	with	a	set	of	inputs	and	expected	outputs.	PHPUnit	gives	us	the	ability	to
do	so,	thus	removing	a	lot	of	duplicated	code.	This	feature	is	called	data	providing.

A	data	provider	is	a	public	method	defined	in	the	test	class	that	returns	an	array	with	a
specific	schema.	Each	entry	of	the	array	represents	a	test	in	which	the	key	is	the	name	of
the	test—optionally,	you	could	use	numeric	keys—and	the	value	is	the	parameter	that	the
test	needs.	A	test	will	declare	that	it	needs	a	data	provider	with	the	@dataProvider
annotation,	and	when	executing	tests,	the	data	provider	injects	the	arguments	that	the	test
method	needs.	Let’s	consider	an	example	to	make	it	easier.	Write	the	following	two
methods	in	your	CustomerFactoryTest	class:

public	function	providerFactoryValidCustomerTypes()	{

				return	[

								'Basic	customer,	lowercase'	=>	[

												'type'	=>	'basic',

												'expectedType'	=>	'\Bookstore\Domain\Customer\Basic'

],

								'Basic	customer,	uppercase'	=>	[

												'type'	=>	'BASIC',

												'expectedType'	=>	'\Bookstore\Domain\Customer\Basic'

],

								'Premium	customer,	lowercase'	=>	[

												'type'	=>	'premium',

												'expectedType'	=>	'\Bookstore\Domain\Customer\Premium'

],

								'Premium	customer,	uppercase'	=>	[

												'type'	=>	'PREMIUM',

												'expectedType'	=>	'\Bookstore\Domain\Customer\Premium'

]

];

}

/**

	*	@dataProvider	providerFactoryValidCustomerTypes

	*	@param	string	$type

	*	@param	string	$expectedType

	*/

public	function	testFactoryValidCustomerTypes(

				string	$type,

				string	$expectedType

)	{

				$customer	=	CustomerFactory::factory(

								$type,	1,	'han',	'solo',	'han@solo.com'

);

				$this->assertInstanceOf(

								$expectedType,

								$customer,

								'Factory	created	the	wrong	type	of	customer.'

);

}

The	test	here	is	testFactoryValidCustomerTypes,	which	expects	two	arguments:	$type
and	$expectedType.	The	test	uses	them	to	create	a	customer	with	the	factory	and	verify
the	type	of	the	result,	which	we	already	did	by	hardcoding	the	types.	The	test	also	declares
that	it	needs	the	providerFactoryValidCustomerTypes	data	provider.	This	data	provider
returns	an	array	of	four	entries,	which	means	that	the	test	will	be	executed	four	times	with
four	different	sets	of	arguments.	The	name	of	each	test	is	the	key	of	each	entry—for
example,	“Basic	customer,	lowercase”.	This	is	very	useful	in	case	a	test	fails	because	it
will	be	displayed	as	part	of	the	error	messages.	Each	entry	is	a	map	with	two	values,	type
and	expectedType,	which	are	the	names	of	the	arguments	of	the	test	method.	The	values
of	these	entries	are	the	values	that	the	test	method	will	get.

The	bottom	line	is	that	the	code	we	wrote	would	be	the	same	as	if	we	wrote
testFactoryValidCustomerTypes	four	times,	hardcoding	$type	and	$expectedType	each
time.	Imagine	now	that	the	test	method	contains	tens	of	lines	of	code	or	we	want	to
repeat	the	same	test	with	tens	of	datasets;	do	you	see	how	powerful	it	is?

Testing	with	doubles
So	far,	we	tested	classes	that	are	quite	isolated;	that	is,	they	do	not	have	much	interaction
with	other	classes.	Nevertheless,	we	have	classes	that	use	several	classes,	such	as
controllers.	What	can	we	do	with	these	interactions?	The	idea	of	unit	tests	is	to	test	a
specific	method	and	not	the	whole	code	base,	right?

PHPUnit	allows	you	to	mock	these	dependencies;	that	is,	you	can	provide	fake	objects	that
look	similar	to	the	dependencies	that	the	tested	class	needs,	but	they	do	not	use	code	from
those	classes.	The	goal	of	this	is	to	provide	a	dummy	instance	that	the	class	can	use	and
invoke	its	methods	without	the	side	effect	of	what	these	invocations	might	have.	Imagine
as	an	example	the	case	of	the	models:	if	the	controller	uses	a	real	model,	then	when
invoking	methods	from	it,	the	model	would	access	the	database	each	time,	making	the
tests	quite	unpredictable.

If	we	use	a	mock	as	the	model	instead,	the	controller	can	invoke	its	methods	as	many
times	as	needed	without	any	side	effect.	Even	better,	we	can	make	assertions	of	the
arguments	that	the	mock	received	or	force	it	to	return	specific	values.	Let’s	take	a	look	at
how	to	use	them.

Injecting	models	with	DI
The	first	thing	we	need	to	understand	is	that	if	we	create	objects	using	new	inside	the
controller,	we	will	not	be	able	to	mock	them.	This	means	that	we	need	to	inject	all	the
dependencies—for	example,	using	a	dependency	injector.	We	will	do	this	for	all	of	the
dependencies	but	one:	the	models.	In	this	section,	we	will	test	the	borrow	method	of	the
BookController	class,	so	we	will	show	the	changes	that	this	method	needs.	Of	course,	if
you	want	to	test	the	rest	of	the	code,	you	should	apply	these	same	changes	to	the	rest	of
the	controllers.

The	first	thing	to	do	is	to	add	the	BookModel	instance	to	the	dependency	injector	in	our
index.php	file.	As	this	class	also	has	a	dependency,	PDO,	use	the	same	dependency
injector	to	get	an	instance	of	it,	as	follows:

$di->set('BookModel',	new	BookModel($di->get('PDO')));

Now,	in	the	borrow	method	of	the	BookController	class,	we	will	change	the	new
instantiation	of	the	model	to	the	following:

public	function	borrow(int	$bookId):	string	{

				$bookModel	=	$this->di->get('BookModel');

				try	{

//...

Customizing	TestCase
When	writing	your	unit	test’s	suite,	it	is	quite	common	to	have	a	customized	TestCase
class	from	which	all	tests	extend.	This	class	always	extends	from
PHPUnit_Framework_TestCase,	so	we	still	get	all	the	assertions	and	other	methods.	As	all
tests	have	to	import	this	class,	let’s	change	our	autoloader	so	that	it	can	recognize
namespaces	from	the	tests	directory.	After	this,	run	composer	update,	as	follows:

"autoload":	{

				"psr-4":	{

								"Bookstore\\Tests\\":	"tests",

								"Bookstore\\":	"src"

				}

}

With	this	change,	we	will	tell	Composer	that	all	the	namespaces	starting	with
Bookstore\Tests	will	be	located	under	the	tests	directory,	and	the	rest	will	follow	the
previous	rules.

Let’s	add	now	our	customized	TestCase	class.	The	only	helper	method	we	need	right	now
is	one	to	create	mocks.	It	is	not	really	necessary,	but	it	makes	things	cleaner.	Add	the
following	class	in	tests/AbstractTestClase.php:

<?php

namespace	Bookstore\Tests;

use	PHPUnit_Framework_TestCase;

use	InvalidArgumentException;

abstract	class	AbstractTestCase	extends	PHPUnit_Framework_TestCase	{

				protected	function	mock(string	$className)	{

								if	(strpos($className,	'\\')	!==	0)	{

												$className	=	'\\'	.	$className;

								}

								if	(!class_exists($className))	{

												$className	=	'\Bookstore\\'	.	trim($className,	'\\');

												if	(!class_exists($className))	{

																throw	new	InvalidArgumentException(

																				"Class	$className	not	found."

);

												}

								}

								return	$this->getMockBuilder($className)

												->disableOriginalConstructor()

												->getMock();

				}

}

This	method	takes	the	name	of	a	class	and	tries	to	figure	out	whether	the	class	is	part	of
the	Bookstore	namespace	or	not.	This	will	be	handy	when	mocking	objects	of	our	own

codebase	as	we	will	not	have	to	write	Bookstore	each	time.	After	figuring	out	what	the
real	full	class	name	is,	it	uses	the	mock	builder	from	PHPUnit	to	create	one	and	then
returns	it.

More	helpers!	This	time,	they	are	for	controllers.	Every	single	controller	will	always	need
the	same	dependencies:	logger,	database	connection,	template	engine,	and	configuration
reader.	Knowing	this,	let’s	create	a	ControllerTestCase	class	from	where	all	the	tests
covering	controllers	will	extend.	This	class	will	contain	a	setUp	method	that	creates	all	the
common	mocks	and	sets	them	in	the	dependency	injector.	Add	it	as	your
tests/ControllerTestCase.php	file,	as	follows:

<?php

namespace	Bookstore\Tests;

use	Bookstore\Utils\DependencyInjector;

use	Bookstore\Core\Config;

use	Monolog\Logger;

use	Twig_Environment;

use	PDO;

abstract	class	ControllerTestCase	extends	AbstractTestCase	{

				protected	$di;

				public	function	setUp()	{

								$this->di	=	new	DependencyInjector();

								$this->di->set('PDO',	$this->mock(PDO::class));

								$this->di->set('Utils\Config',	$this->mock(Config::class));

								$this->di->set(

												'Twig_Environment',

												$this->mock(Twig_Environment::class)

);

								$this->di->set('Logger',	$this->mock(Logger::class));

				}

}

Using	mocks
Well,	we’ve	had	enough	of	the	helpers;	let’s	start	with	the	tests.	The	difficult	part	here	is
how	to	play	with	mocks.	When	you	create	one,	you	can	add	some	expectations	and	return
values.	The	methods	are:

expects:	This	specifies	the	amount	of	times	the	mock’s	method	is	invoked.	You	can
send	$this->never(),	$this->once(),	or	$this->any()	as	an	argument	to	specify	0,
1,	or	any	invocations.
method:	This	is	used	to	specify	the	method	we	are	talking	about.	The	argument	that	it
expects	is	just	the	name	of	the	method.
with:	This	is	a	method	used	to	set	the	expectations	of	the	arguments	that	the	mock
will	receive	when	it	is	invoked.	For	example,	if	the	mocked	method	is	expected	to	get
basic	as	the	first	argument	and	123	as	the	second,	the	with	method	will	be	invoked
as	with("basic",	123).	This	method	is	optional,	but	if	we	set	it,	PHPUnit	will
throw	an	error	in	case	the	mocked	method	does	not	get	the	expected	arguments,	so	it
works	as	an	assertion.
will:	This	is	used	to	define	what	the	mock	will	return.	The	two	most	common	usages
are	$this->returnValue($value)	or	$this->throwException($exception).	This
method	is	also	optional,	and	if	not	invoked,	the	mock	will	always	return	null.

Let’s	add	the	first	test	to	see	how	it	would	work.	Add	the	following	code	to	the
tests/Controllers/BookControllerTest.php	file:

<?php

namespace	Bookstore\Tests\Controllers;

use	Bookstore\Controllers\BookController;

use	Bookstore\Core\Request;

use	Bookstore\Exceptions\NotFoundException;

use	Bookstore\Models\BookModel;

use	Bookstore\Tests\ControllerTestCase;

use	Twig_Template;

class	BookControllerTest	extends	ControllerTestCase	{

				private	function	getController(

								Request	$request	=	null

):	BookController	{

								if	($request	===	null)	{

												$request	=	$this->mock('Core\Request');

								}

								return	new	BookController($this->di,	$request);

				}

				public	function	testBookNotFound()	{

								$bookModel	=	$this->mock(BookModel::class);

								$bookModel

												->expects($this->once())

												->method('get')

												->with(123)

												->will(

																$this->throwException(

																				new	NotFoundException()

)

);

								$this->di->set('BookModel',	$bookModel);

								$response	=	"Rendered	template";

								$template	=	$this->mock(Twig_Template::class);

								$template

												->expects($this->once())

												->method('render')

												->with(['errorMessage'	=>	'Book	not	found.'])

												->will($this->returnValue($response));

								$this->di->get('Twig_Environment')

												->expects($this->once())

												->method('loadTemplate')

												->with('error.twig')

												->will($this->returnValue($template));

								$result	=	$this->getController()->borrow(123);

								$this->assertSame(

												$result,

												$response,

												'Response	object	is	not	the	expected	one.'

);

				}

}

The	first	thing	the	test	does	is	to	create	a	mock	of	the	BookModel	class.	Then,	it	adds	an
expectation	that	goes	like	this:	the	get	method	will	be	called	once	with	one	argument,	123,
and	it	will	throw	NotFoundException.	This	makes	sense	as	the	test	tries	to	emulate	a
scenario	in	which	we	cannot	find	the	book	in	the	database.

The	second	part	of	the	test	consists	of	adding	the	expectations	of	the	template	engine.	This
is	a	bit	more	complex	as	there	are	two	mocks	involved.	The	loadTemplate	method	of
Twig_Environment	is	expected	to	be	called	once	with	the	error.twig	argument	as	the
template	name.	This	mock	should	return	Twig_Template,	which	is	another	mock.	The
render	method	of	this	second	mock	is	expected	to	be	called	once	with	the	correct	error
message,	returning	the	response,	which	is	a	hardcoded	string.	After	all	the	dependencies
are	defined,	we	just	need	to	invoke	the	borrow	method	of	the	controller	and	expect	a
response.

Remember	that	this	test	does	not	have	only	one	assertion,	but	four:	the	assertSame
method	and	the	three	mock	expectations.	If	any	of	them	are	not	accomplished,	the	test	will
fail,	so	we	can	say	that	this	method	is	quite	robust.

With	our	first	test,	we	verified	that	the	scenario	in	which	the	book	is	not	found	works.
There	are	two	more	scenarios	that	fail	as	well:	when	there	are	not	enough	copies	of	the
book	to	borrow	and	when	there	is	a	database	error	when	trying	to	save	the	borrowed	book.
However,	you	can	see	now	that	all	of	them	share	a	piece	of	code	that	mocks	the	template.
Let’s	extract	this	code	to	a	protected	method	that	generates	the	mocks	when	it	is	given

the	template	name,	the	parameters	are	sent	to	the	template,	and	the	expected	response	is
received.	Run	the	following:

protected	function	mockTemplate(

				string	$templateName,

				array	$params,

				$response

)	{

				$template	=	$this->mock(Twig_Template::class);

				$template

								->expects($this->once())

								->method('render')

								->with($params)

								->will($this->returnValue($response));

				$this->di->get('Twig_Environment')

								->expects($this->once())

								->method('loadTemplate')

								->with($templateName)

								->will($this->returnValue($template));

}

public	function	testNotEnoughCopies()	{

				$bookModel	=	$this->mock(BookModel::class);

				$bookModel

								->expects($this->once())

								->method('get')

								->with(123)

								->will($this->returnValue(new	Book()));

				$bookModel

								->expects($this->never())

								->method('borrow');

				$this->di->set('BookModel',	$bookModel);

				$response	=	"Rendered	template";

				$this->mockTemplate(

								'error.twig',

								['errorMessage'	=>	'There	are	no	copies	left.'],

								$response

);

				$result	=	$this->getController()->borrow(123);

				$this->assertSame(

								$result,

								$response,

								'Response	object	is	not	the	expected	one.'

);

}

public	function	testErrorSaving()	{

				$controller	=	$this->getController();

				$controller->setCustomerId(9);

				$book	=	new	Book();

				$book->addCopy();

				$bookModel	=	$this->mock(BookModel::class);

				$bookModel

								->expects($this->once())

								->method('get')

								->with(123)

								->will($this->returnValue($book));

				$bookModel

								->expects($this->once())

								->method('borrow')

								->with(new	Book(),	9)

								->will($this->throwException(new	DbException()));

				$this->di->set('BookModel',	$bookModel);

				$response	=	"Rendered	template";

				$this->mockTemplate(

								'error.twig',

								['errorMessage'	=>	'Error	borrowing	book.'],

								$response

);

				$result	=	$controller->borrow(123);

				$this->assertSame(

								$result,

								$response,

								'Response	object	is	not	the	expected	one.'

);

}

The	only	novelty	here	is	when	we	expect	that	the	borrow	method	is	never	invoked.	As	we
do	not	expect	it	to	be	invoked,	there	is	no	reason	to	use	the	with	nor	will	method.	If	the
code	actually	invokes	this	method,	PHPUnit	will	mark	the	test	as	failed.

We	already	tested	and	found	that	all	the	scenarios	that	can	fail	have	failed.	Let’s	add	a	test
now	where	a	user	can	successfully	borrow	a	book,	which	means	that	we	will	return	valid
books	and	customers	from	the	database,	the	save	method	will	be	invoked	correctly,	and
the	template	will	get	all	the	correct	parameters.	The	test	looks	as	follows:

public	function	testBorrowingBook()	{

				$controller	=	$this->getController();

				$controller->setCustomerId(9);

				$book	=	new	Book();

				$book->addCopy();

				$bookModel	=	$this->mock(BookModel::class);

				$bookModel

								->expects($this->once())

								->method('get')

								->with(123)

								->will($this->returnValue($book));

				$bookModel

								->expects($this->once())

								->method('borrow')

								->with(new	Book(),	9);

				$bookModel

								->expects($this->once())

								->method('getByUser')

								->with(9)

								->will($this->returnValue(['book1',	'book2']));

				$this->di->set('BookModel',	$bookModel);

				$response	=	"Rendered	template";

				$this->mockTemplate(

								'books.twig',

								[

												'books'	=>	['book1',	'book2'],

												'currentPage'	=>	1,

												'lastPage'	=>	true

],

								$response

);

				$result	=	$controller->borrow(123);

				$this->assertSame(

								$result,

								$response,

								'Response	object	is	not	the	expected	one.'

);

}

So	this	is	it.	You	have	written	one	of	the	most	complex	tests	you	will	need	to	write	during
this	book.	What	do	you	think	of	it?	Well,	as	you	do	not	have	much	experience	with	tests,
you	might	be	quite	satisfied	with	the	result,	but	let’s	try	to	analyze	it	a	bit	further.

Database	testing
This	will	be	the	most	controversial	of	the	sections	of	this	chapter	by	far.	When	it	comes	to
database	testing,	there	are	different	schools	of	thought.	Should	we	use	the	database	or	not?
Should	we	use	our	development	database	or	one	in	memory?	It	is	quite	out	of	the	scope	of
the	book	to	explain	how	to	mock	the	database	or	prepare	a	fresh	one	for	each	test,	but	we
will	try	to	summarize	some	of	the	techniques	here:

We	will	mock	the	database	connection	and	write	expectations	to	all	the	interactions
between	the	model	and	the	database.	In	our	case,	this	would	mean	that	we	would
inject	a	mock	of	the	PDO	object.	As	we	will	write	the	queries	manually,	chances	are
that	we	might	introduce	a	wrong	query.	Mocking	the	connection	would	not	help	us
detect	this	error.	This	solution	would	be	good	if	we	used	ORM	instead	of	writing	the
queries	manually,	but	we	will	leave	this	topic	out	of	the	book.
For	each	test,	we	will	create	a	brand	new	database	in	which	we	add	the	data	we
would	like	to	have	for	the	specific	test.	This	approach	might	take	a	lot	of	time,	but	it
assures	you	that	you	will	be	testing	against	a	real	database	and	that	there	is	no
unexpected	data	that	might	make	our	tests	fail;	that	is,	the	tests	are	fully	isolated.	In
most	of	the	cases,	this	would	be	the	preferable	approach,	even	though	it	might	not	be
the	one	that	performs	faster.	To	solve	this	inconvenience,	we	will	create	in-memory
databases.
Tests	run	against	an	already	existing	database.	Usually,	at	the	beginning	of	the	test	we
start	a	transaction	that	we	roll	back	at	the	end	of	the	test,	leaving	the	database	without
any	change.	This	approach	emulates	a	real	scenario,	in	which	we	can	find	all	sorts	of
data	and	our	code	should	always	behave	as	expected.	However,	using	a	shared
database	always	has	some	side	effects;	for	example,	if	we	want	to	introduce	changes
to	the	database	schema,	we	will	have	to	apply	them	to	the	database	before	running
the	tests,	but	the	rest	of	the	applications	or	developers	that	use	the	database	are	not
yet	ready	for	these	changes.

In	order	to	keep	things	small,	we	will	try	to	implement	a	mixture	of	the	second	and	third
options.	We	will	use	our	existing	database,	but	after	starting	the	transaction	of	each	test,
we	will	clean	all	the	tables	involved	with	the	test.	This	looks	as	though	we	need	a
ModelTestCase	to	handle	this.	Add	the	following	into	tests/ModelTestCase.php:

<?php

namespace	Bookstore\Tests;

use	Bookstore\Core\Config;

use	PDO;

abstract	class	ModelTestCase	extends	AbstractTestCase	{

				protected	$db;

				protected	$tables	=	[];

				public	function	setUp()	{

								$config	=	new	Config();

								$dbConfig	=	$config->get('db');

								$this->db	=	new	PDO(

												'mysql:host=127.0.0.1;dbname=bookstore',

												$dbConfig['user'],

												$dbConfig['password']

);

								$this->db->beginTransaction();

								$this->cleanAllTables();

				}

				public	function	tearDown()	{

								$this->db->rollBack();

				}

				protected	function	cleanAllTables()	{

								foreach	($this->tables	as	$table)	{

												$this->db->exec("delete	from	$table");

								}

				}

}

The	setUp	method	creates	a	database	connection	with	the	same	credentials	found	in	the
config/app.yml	file.	Then,	we	will	start	a	transaction	and	invoke	the	cleanAllTables
method,	which	iterates	the	tables	in	the	$tables	property	and	deletes	all	the	content	from
them.	The	tearDown	method	rolls	back	the	transaction.

Note
Extending	from	ModelTestCase

If	you	write	a	test	extending	from	this	class	that	needs	to	implement	either	the	setUp	or
tearDown	method,	always	remember	to	invoke	the	ones	from	the	parent.

Let’s	write	tests	for	the	borrow	method	of	the	BookModel	class.	This	method	uses	books
and	customers,	so	we	would	like	to	clean	the	tables	that	contain	them.	Create	the	test
class	and	save	it	in	tests/Models/BookModelTest.php:

<?php

namespace	Bookstore\Tests\Models;

use	Bookstore\Models\BookModel;

use	Bookstore\Tests\ModelTestCase;

class	BookModelTest	extends	ModelTestCase	{

				protected	$tables	=	[

								'borrowed_books',

								'customer',

								'book'

];

				protected	$model;

				public	function	setUp()	{

								parent::setUp();

								$this->model	=	new	BookModel($this->db);

				}

}

Note	how	we	also	overrode	the	setUp	method,	invoking	the	one	in	the	parent	and	creating
the	model	instance	that	all	tests	will	use,	which	is	safe	to	do	as	we	will	not	keep	any
context	on	this	object.	Before	adding	the	tests	though,	let’s	add	some	more	helpers	to
ModelTestCase:	one	to	create	book	objects	given	an	array	of	parameters	and	two	to	save
books	and	customers	in	the	database.	Run	the	following	code:

protected	function	buildBook(array	$properties):	Book	{

				$book	=	new	Book();

				$reflectionClass	=	new	ReflectionClass(Book::class);

				foreach	($properties	as	$key	=>	$value)	{

								$property	=	$reflectionClass->getProperty($key);

								$property->setAccessible(true);

								$property->setValue($book,	$value);

				}

				return	$book;

}

protected	function	addBook(array	$params)	{

				$default	=	[

								'id'	=>	null,

								'isbn'	=>	'isbn',

								'title'	=>	'title',

								'author'	=>	'author',

								'stock'	=>	1,

								'price'	=>	10.0,

];

				$params	=	array_merge($default,	$params);

				$query	=	<<<SQL

insert	into	book	(id,	isbn,	title,	author,	stock,	price)

values(:id,	:isbn,	:title,	:author,	:stock,	:price)

SQL;

				$this->db->prepare($query)->execute($params);

}

protected	function	addCustomer(array	$params)	{

				$default	=	[

								'id'	=>	null,

								'firstname'	=>	'firstname',

								'surname'	=>	'surname',

								'email'	=>	'email',

								'type'	=>	'basic'

];

				$params	=	array_merge($default,	$params);

				$query	=	<<<SQL

insert	into	customer	(id,	firstname,	surname,	email,	type)

values(:id,	:firstname,	:surname,	:email,	:type)

SQL;

				$this->db->prepare($query)->execute($params);

}

As	you	can	note,	we	added	default	values	for	all	the	fields,	so	we	are	not	forced	to	define
the	whole	book/customer	each	time	we	want	to	save	one.	Instead,	we	just	sent	the	relevant
fields	and	merged	them	to	the	default	ones.

Also,	note	that	the	buildBook	method	used	a	new	concept,	reflection,	to	access	the	private
properties	of	an	instance.	This	is	way	beyond	the	scope	of	the	book,	but	if	you	are
interested,	you	can	read	more	at	http://php.net/manual/en/book.reflection.php.

We	are	now	ready	to	start	writing	tests.	With	all	these	helpers,	adding	tests	will	be	very
easy	and	clean.	The	borrow	method	has	different	use	cases:	trying	to	borrow	a	book	that	is
not	in	the	database,	trying	to	use	a	customer	not	registered,	and	borrowing	a	book
successfully.	Let’s	add	them	as	follows:

/**

	*	@expectedException	\Bookstore\Exceptions\DbException

	*/

public	function	testBorrowBookNotFound()	{

				$book	=	$this->buildBook(['id'	=>	123]);

				$this->model->borrow($book,	123);

}

/**

	*	@expectedException	\Bookstore\Exceptions\DbException

	*/

public	function	testBorrowCustomerNotFound()	{

				$book	=	$this->buildBook(['id'	=>	123]);

				$this->addBook(['id'	=>	123]);

				$this->model->borrow($book,	123);

}

public	function	testBorrow()	{

				$book	=	$this->buildBook(['id'	=>	123,	'stock'	=>	12]);

				$this->addBook(['id'	=>	123,	'stock'	=>	12]);

				$this->addCustomer(['id'	=>	123]);

				$this->model->borrow($book,	123);

}

Impressed?	Compared	to	the	controller	tests,	these	tests	are	way	simpler,	mainly	because
their	code	performs	only	one	action,	but	also	thanks	to	all	the	methods	added	to
ModelTestCase.	Once	you	need	to	work	with	other	objects,	such	as	sales,	you	can	add
addSale	or	buildSale	to	this	same	class	to	make	things	cleaner.

http://php.net/manual/en/book.reflection.php

Test-driven	development
You	might	realize	already	that	there	is	no	unique	way	to	do	things	when	talking	about
developing	an	application.	It	is	out	of	the	scope	of	this	book	to	show	you	all	of	them—and
by	the	time	you	are	done	reading	these	lines,	more	techniques	will	have	been	incorporated
already—but	there	is	one	approach	that	is	very	useful	when	it	comes	to	writing	good,
testable	code:	test-driven	development	(TDD).

This	methodology	consists	of	writing	the	unit	tests	before	writing	the	code	itself.	The	idea,
though,	is	not	to	write	all	the	tests	at	once	and	then	write	the	class	or	method	but	rather	to
do	it	in	a	progressive	way.	Let’s	consider	an	example	to	make	it	easier.	Imagine	that	your
Sale	class	is	yet	to	be	implemented	and	the	only	thing	we	know	is	that	we	have	to	be	able
to	add	books.	Rename	your	src/Domain/Sale.php	file	to	src/Domain/Sale2.php	or	just
delete	it	so	that	the	application	does	not	know	about	it.

Note
Is	all	this	verbosity	necessary?

You	will	note	in	this	example	that	we	will	perform	an	excessive	amount	of	steps	to	come
up	with	a	very	simple	piece	of	code.	Indeed,	they	are	too	many	for	this	example,	but	there
will	be	times	when	this	amount	is	just	fine.	Finding	these	moments	comes	with
experience,	so	we	recommend	you	to	practice	first	with	simple	examples.	Eventually,	it
will	come	naturally	to	you.

The	mechanics	of	TDD	consist	of	four	steps,	as	follows:

1.	 Write	a	test	for	some	functionality	that	is	not	yet	implemented.
2.	 Run	the	unit	tests,	and	they	should	fail.	If	they	do	not,	either	your	test	is	wrong,	or

your	code	already	implements	this	functionality.
3.	 Write	the	minimum	amount	of	code	to	make	the	tests	pass.
4.	 Run	the	unit	tests	again.	This	time,	they	should	pass.

We	do	not	have	the	sale	domain	object,	so	the	first	thing,	as	we	should	start	from	small
things	and	then	move	on	to	bigger	things,	is	to	assure	that	we	can	instantiate	the	sale
object.	Write	the	following	unit	test	in	tests/Domain/SaleTest.php	as	we	will	write	all
the	existing	tests,	but	using	TDD;	you	can	remove	the	existing	tests	in	this	file.

<?php

namespace	Bookstore\Tests\Domain;

use	Bookstore\Domain\Sale;

use	PHPUnit_Framework_TestCase;

class	SaleTest	extends	PHPUnit_Framework_TestCase	{

				public	function	testCanCreate()	{

								$sale	=	new	Sale();

				}

}

Run	the	tests	to	make	sure	that	they	are	failing.	In	order	to	run	one	specific	test,	you	can
mention	the	file	of	the	test	when	running	PHPUnit,	as	shown	in	the	following	script:

Good,	they	are	failing.	That	means	that	PHP	cannot	find	the	object	to	instantiate	it.	Let’s
now	write	the	minimum	amount	of	code	required	to	make	this	test	pass.	In	this	case,
creating	the	class	would	be	enough,	and	you	can	do	this	through	the	following	lines	of
code:

<?php

namespace	Bookstore\Domain;

class	Sale	{

}

Now,	run	the	tests	to	make	sure	that	there	are	no	errors.

This	is	easy,	right?	So,	what	we	need	to	do	is	repeat	this	process,	adding	more
functionality	each	time.	Let’s	focus	on	the	books	that	a	sale	holds;	when	created,	the
book’s	list	should	be	empty,	as	follows:

public	function	testWhenCreatedBookListIsEmpty()	{

				$sale	=	new	Sale();

				$this->assertEmpty($sale->getBooks());

}

Run	the	tests	to	make	sure	that	they	fail—they	do.	Now,	write	the	following	method	in	the
class:

public	function	getBooks():	array	{

return	[];

}

Now,	if	you	run…	wait,	what?	We	are	forcing	the	getBooks	method	to	return	an	empty
array	always?	This	is	not	the	implementation	that	we	need—nor	the	one	we	deserve—so
why	do	we	do	it?	The	reason	is	the	wording	of	step	3:	“Write	the	minimum	amount	of
code	to	make	the	tests	pass.”.	Our	test	suite	should	be	extensive	enough	to	detect	this	kind
of	problem,	and	this	is	our	way	to	make	sure	it	does.	This	time,	we	will	write	bad	code	on
purpose,	but	next	time,	we	might	introduce	a	bug	unintentionally,	and	our	unit	tests	should
be	able	to	detect	it	as	soon	as	possible.	Run	the	tests;	they	will	pass.

Now,	let’s	discuss	the	next	functionality.	When	adding	a	book	to	the	list,	we	should	see
this	book	with	amount	1.	The	test	should	be	as	follows:

public	function	testWhenAddingABookIGetOneBook()	{

				$sale	=	new	Sale();

				$sale->addBook(123);

				$this->assertSame(

								$sale->getBooks(),

								[123	=>	1]

);

}

This	test	is	very	useful.	Not	only	does	it	force	us	to	implement	the	addBook	method,	but
also	it	helps	us	fix	the	getBooks	method—as	it	is	hardcoded	right	now—to	always	return
an	empty	array.	As	the	getBooks	method	now	expects	two	different	results,	we	cannot
trick	the	tests	any	more.	The	new	code	for	the	class	should	be	as	follows:

class	Sale	{

				private	$books	=	[];

				public	function	getBooks():	array	{

								return	$this->books;

				}

				public	function	addBook(int	$bookId)	{

								$this->books[123]	=	1;

				}

}

A	new	test	we	can	write	is	the	one	that	allows	you	to	add	more	than	one	book	at	a	time,
sending	the	amount	as	the	second	argument.	The	test	would	look	similar	to	the	following:

public	function	testSpecifyAmountBooks()	{

				$sale	=	new	Sale();

				$sale->addBook(123,	5);

				$this->assertSame(

								$sale->getBooks(),

								[123	=>	5]

);

}

Now,	the	tests	do	not	pass,	so	we	need	to	fix	them.	Let’s	refactor	addBook	so	that	it	can
accept	a	second	argument	as	the	amount	:

public	function	addBook(int	$bookId,	int	$amount	=	1)	{

				$this->books[123]	=	$amount;

}

The	next	functionality	we	would	like	to	add	is	the	same	book	invoking	the	method	several
times,	keeping	track	of	the	total	amount	of	books	added.	The	test	could	be	as	follows:

public	function	testAddMultipleTimesSameBook()	{

				$sale	=	new	Sale();

				$sale->addBook(123,	5);

				$sale->addBook(123);

				$sale->addBook(123,	5);

				$this->assertSame(

								$sale->getBooks(),

								[123	=>	11]

);

}

This	test	will	fail	as	the	current	execution	will	not	add	all	the	amounts	but	will	instead
keep	the	last	one.	Let’s	fix	it	by	executing	the	following	code:

public	function	addBook(int	$bookId,	int	$amount	=	1)	{

				if	(!isset($this->books[123]))	{

								$this->books[123]	=	0;

				}

				$this->books[123]	+=	$amount;

}

Well,	we	are	almost	there.	There	is	one	last	test	we	should	add,	which	is	the	ability	to	add
more	than	one	different	book.	The	test	is	as	follows:

public	function	testAddDifferentBooks()	{

				$sale	=	new	Sale();

				$sale->addBook(123,	5);

				$sale->addBook(456,	2);

				$sale->addBook(789,	5);

				$this->assertSame(

								$sale->getBooks(),

								[123	=>	5,	456	=>	2,	789	=>	5]

);

}

This	test	fails	due	to	the	hardcoded	book	ID	in	our	implementation.	If	we	did	not	do	this,
the	test	would	have	already	passed.	Let’s	fix	it	then;	run	the	following:

public	function	addBook(int	$bookId,	int	$amount	=	1)	{

				if	(!isset($this->books[$bookId]))	{

								$this->books[$bookId]	=	0;

				}

				$this->books[$bookId]	+=	$amount;

}

We	are	done!	Does	it	look	familiar?	It	is	the	same	code	we	wrote	on	our	first
implementation	except	for	the	rest	of	the	properties.	You	can	now	replace	the	sale	domain
object	with	the	previous	one,	so	you	have	all	the	functionalities	needed.

Theory	versus	practice
As	mentioned	before,	this	is	a	quite	long	and	verbose	process	that	very	few	experienced
developers	follow	from	start	to	end	but	one	that	most	of	them	encourage	people	to	follow.
Why	is	this	so?	When	you	write	all	your	code	first	and	leave	the	unit	tests	for	the	end,
there	are	two	problems:

Firstly,	in	too	many	cases	developers	are	lazy	enough	to	skip	tests,	telling	themselves
that	the	code	already	works,	so	there	is	no	need	to	write	the	tests.	You	already	know
that	one	of	the	goals	of	tests	is	to	make	sure	that	future	changes	do	not	break	the
current	features,	so	this	is	not	a	valid	reason.
Secondly,	the	tests	written	after	the	code	usually	test	the	code	rather	than	the
functionality.	Imagine	that	you	have	a	method	that	was	initially	meant	to	perform	an
action.	After	writing	the	method,	we	will	not	perform	the	action	perfectly	due	to	a
bug	or	bad	design;	instead,	we	will	either	do	too	much	or	leave	some	edge	cases
untreated.	When	we	write	the	test	after	writing	the	code,	we	will	test	what	we	see	in
the	method,	not	what	the	original	functionality	was!

If	you	instead	force	yourself	to	write	the	tests	first	and	then	the	code,	you	make	sure	that
you	always	have	tests	and	that	they	test	what	the	code	is	meant	to	do,	leading	to	a	code
that	performs	as	expected	and	is	fully	covered.	Also,	by	doing	it	in	small	intervals,	you	get
quick	feedback	and	don’t	have	to	wait	for	hours	to	know	whether	all	the	tests	and	code
you	wrote	make	sense	at	all.	Even	though	this	idea	is	quite	simple	and	makes	a	lot	of
sense,	many	novice	developers	find	it	hard	to	implement.

Experienced	developers	have	written	code	for	several	years,	so	they	have	already
internalized	all	of	this.	This	is	the	reason	why	some	of	them	prefer	to	either	write	several
tests	before	starting	with	the	code	or	the	other	way	around,	that	is,	writing	code	and	then
testing	it	as	they	are	more	productive	this	way.	However,	if	there	is	something	that	all	of
them	have	in	common	it	is	that	their	applications	will	always	be	full	of	tests.

Summary
In	this	chapter,	you	learned	the	importance	of	testing	your	code	using	unit	tests.	You	now
know	how	to	configure	PHPUnit	on	your	application	so	that	you	can	not	only	run	your
tests	but	also	get	good	feedback.	You	got	a	good	introduction	on	how	to	write	unit	tests
properly,	and	now,	it	is	safer	for	you	to	introduce	changes	in	your	application.

In	the	next	chapter,	we	will	study	some	existing	frameworks,	which	you	can	use	instead	of
writing	your	own	every	time	you	start	an	application.	In	this	way,	not	only	will	you	save
time	and	effort,	but	also	other	developers	will	be	able	to	join	you	and	understand	your
code	easily.

Chapter	8.	Using	Existing	PHP
Frameworks
In	the	same	way	that	you	wrote	your	framework	with	PHP,	other	people	did	it	too.	It	did
not	take	long	for	people	to	realize	that	entire	frameworks	were	reusable	too.	Of	course,
one	man’s	meat	is	another	man’s	poison,	and	as	with	many	other	examples	in	the	IT	world,
loads	of	frameworks	started	to	appear.	You	will	never	hear	about	most	of	them,	but	a
handful	of	these	frameworks	got	quite	a	lot	of	users.

As	we	write,	there	are	four	or	five	main	frameworks	that	most	PHP	developers	know	of:
Symfony	and	Zend	Framework	were	the	main	characters	of	this	last	PHP	generation,	but
Laravel	is	also	there,	providing	a	lightweight	and	fast	framework	for	those	who	need
fewer	features.	Due	to	the	nature	of	this	book,	we	will	focus	on	the	latest	ones,	Silex	and
Laravel,	as	they	are	quick	enough	to	learn	in	a	chapter—or	at	least	their	basics	are.

In	this	chapter,	you	will	learn	about:

The	importance	of	frameworks
Other	features	of	frameworks
Working	with	Laravel
Writing	applications	with	Silex

Reviewing	frameworks
In	Chapter	6,	Adapting	to	MVC,	we	barely	introduced	the	idea	of	frameworks	using	the
MVC	design	pattern.	In	fact,	we	did	not	explain	what	a	framework	is;	we	just	developed	a
very	simple	one.	If	you	are	looking	for	a	definition,	here	it	is:	a	framework	is	the	structure
that	you	choose	to	build	your	program	on.	Let’s	discuss	this	in	more	detail.

The	purpose	of	frameworks
When	you	write	an	application,	you	need	to	add	your	models,	views,	and	controllers	if	you
use	the	MVC	design	pattern,	which	we	really	encourage	you	to	do.	These	three	elements,
together	with	the	JavaScript	and	CSS	files	that	complete	your	views,	are	the	ones	that
differentiate	your	application	from	others.	There	is	no	way	you	can	skip	on	writing	them.

On	the	other	hand,	there	is	a	set	of	classes	that,	even	though	you	need	them	for	the	correct
functioning	of	your	application,	they	are	common	to	all	other	applications,	or	at	least,	they
are	very	similar.	Examples	of	these	classes	are	the	ones	we	have	in	the	src/Core	directory,
such	as	the	router,	the	configuration	reader,	and	so	on.

The	purpose	of	frameworks	is	clear	and	necessary:	they	add	some	structure	to	your
application	and	connect	the	different	elements	of	it.	In	our	example,	it	helped	us	route	the
HTTP	requests	to	the	correct	controller,	connect	to	the	database,	and	generate	dynamic
HTML	as	the	response.	However,	the	idea	that	has	to	strive	is	the	reusability	of
frameworks.	If	you	had	to	write	the	framework	each	time	you	start	an	application,	would
that	be	okay?

So,	in	order	for	a	framework	to	be	useful,	it	must	be	easy	to	reuse	in	different
environments.	This	means	that	the	framework	has	to	be	downloaded	from	a	source,	and	it
has	to	be	easy	to	install.	Download	and	install	a	dependency?	It	seems	Composer	is	going
to	be	useful	again!	Even	though	this	was	quite	different	some	years	ago,	nowadays,	all	the
main	frameworks	can	be	installed	using	Composer.	We	will	show	you	how	to	in	a	bit.

The	main	parts	of	a	framework
If	we	open	source	our	framework	so	that	other	developers	can	make	use	of	it,	we	need	to
structure	our	code	in	a	way	that	is	intuitive.	We	need	to	reduce	the	learning	curve	as	much
as	we	can;	nobody	wants	to	spend	weeks	on	learning	how	to	work	with	a	framework.

As	MVC	is	the	de	facto	web	design	pattern	used	in	web	applications,	most	frameworks
will	separate	the	three	layers,	model,	view,	and	controller,	in	three	different	directories.
Depending	on	the	framework,	they	will	be	under	a	src/	directory,	even	though	it	is	quite
common	to	find	the	views	outside	of	this	directory,	as	we	did	with	our	own.	Nevertheless,
most	frameworks	will	give	you	enough	flexibility	to	decide	where	to	place	each	of	the
layers.

The	rest	of	the	classes	that	complete	the	frameworks	used	to	be	all	grouped	in	a	separate
directory—for	example,	src/Core.	It	is	important	to	separate	these	elements	from	yours
so	that	you	do	not	mix	the	code	and	modify	a	core	class	unintentionally,	thus	messing	up
the	whole	framework.	Even	better,	this	last	generation	of	PHP	frameworks	used	to
incorporate	the	core	components	as	independent	modules,	which	will	be	required	via
Composer.	In	doing	so,	the	framework’s	composer.json	file	will	require	all	the	different
components,	such	as	routers,	configuration,	database	connections,	loggers,	template
engine,	and	so	on,	and	Composer	will	download	them	in	the	vendor/	directory,	making
them	available	with	the	autogenerated	autoloader.

Separating	the	different	components	in	different	codebases	has	many	benefits.	First	of	all,
it	allows	different	teams	of	developers	to	work	in	an	isolated	way	with	the	different
components.	Maintaining	them	is	also	easier	as	the	code	is	separated	enough	not	to	affect
each	other.	Finally,	it	allows	the	end	user	to	choose	which	components	to	get	for	his
application	in	an	attempt	to	customize	the	framework,	leaving	out	those	heavy
components	that	are	not	used.

Either	the	framework	is	organized	in	independent	modules	or	everything	is	together;
however,	there	are	always	the	same	common	components,	which	are:

The	router:	This	is	the	class	that,	given	an	HTTP	request,	finds	the	correct
controller,	instantiates	it,	and	executes	it,	returning	the	HTTP	response.
The	request:	This	contains	a	handful	of	methods	that	allows	you	to	access
parameters,	cookies,	headers,	and	so	on.	This	is	mostly	used	by	the	router	and	sent	to
the	controller.
The	configuration	handler:	This	allows	you	to	get	the	correct	configuration	file,
read	it,	and	use	its	contents	to	configure	the	rest	of	the	components.
The	template	engine:	This	merges	HTML	with	content	from	the	controller	in	order
to	render	the	template	with	the	response.
The	logger:	This	adds	entries	to	a	log	file	with	the	errors	or	other	messages	that	we
consider	important.
The	dependency	injector:	This	manages	all	the	dependencies	that	your	classes	need.
Maybe	the	framework	does	not	have	a	dependency	injector,	but	it	has	something
similar—that	is,	a	service	locator—which	tries	to	help	you	in	a	similar	way.

The	way	you	can	write	and	run	your	unit	tests:	Most	of	the	time,	the	frameworks
include	PHPUnit,	but	there	are	more	options	in	the	community.

Other	features	of	frameworks
Most	frameworks	have	more	than	just	the	features	that	we	described	in	the	previous
section,	even	though	these	are	enough	to	build	simple	applications	as	you	already	did	by
yourself.	Still,	most	web	applications	have	a	lot	more	common	features,	so	the
frameworks	tried	to	implement	generic	solutions	to	each	of	them.	Thanks	to	this,	we	do
not	have	to	reinvent	the	wheel	with	features	that	virtually	all	medium	and	big	web
applications	need	to	implement.	We	will	try	to	describe	some	of	the	most	useful	ones	so
that	you	have	a	better	idea	when	choosing	a	framework.

Authentication	and	roles
Most	websites	enforce	users	to	authenticate	in	order	to	perform	some	action.	The	reason
for	this	is	to	let	the	system	know	whether	the	user	trying	to	perform	certain	action	has	the
right	to	do	so.	Therefore,	managing	users	and	their	roles	is	something	that	you	will
probably	end	up	implementing	in	all	your	web	applications.	The	problem	comes	when
way	too	many	people	try	to	attack	your	system	in	order	to	get	the	information	of	other
users	or	performing	actions	authenticated	as	someone	else,	which	is	called
impersonification.	It	is	for	this	reason	that	your	authentication	and	authorization	systems
should	be	as	secure	as	possible—a	task	that	is	never	easy.

Several	frameworks	include	a	pretty	secure	way	of	managing	users,	permissions,	and
sessions.	Most	of	the	time,	you	can	manage	this	through	a	configuration	file	probably	by
pointing	the	credentials	to	a	database	where	the	framework	can	add	the	user	data,	your
customized	roles,	and	some	other	customizations.	The	downside	is	that	each	framework
has	its	own	way	of	configuring	it,	so	you	will	have	to	dig	into	the	documentation	of	the
framework	you	are	using	at	this	time.	Still,	it	will	save	you	more	time	than	if	you	had	to
implement	it	by	yourself.

ORM
Object-relational	mapping	(ORM)	is	a	technique	that	converts	data	from	a	database	or
any	other	data	storage	into	objects.	The	main	goal	is	to	separate	the	business	logic	as	much
as	possible	from	the	structure	of	the	database	and	to	reduce	the	complexity	of	your	code.
When	using	ORM,	you	will	probably	never	write	a	query	in	MySQL;	instead,	you	will	use
a	chain	of	methods.	Behind	the	scenes,	ORM	will	write	the	query	with	each	method
invocation.

There	are	good	and	bad	things	when	using	ORM.	On	one	hand,	you	do	not	have	to
remember	all	the	SQL	syntax	all	the	time	and	only	the	correct	methods	to	invoke,	which
can	be	easier	if	you	work	with	an	IDE	that	can	autocomplete	methods.	It	is	also	good	to
abstract	your	code	from	the	type	of	storage	system,	because	even	though	it	is	not	very
common,	you	might	want	to	change	it	later.	If	you	use	ORM,	you	probably	have	to	change
only	the	type	of	connection,	but	if	you	were	writing	raw	queries,	you	would	have	a	lot	of
work	to	do	in	order	to	migrate	your	code.

The	arguable	downside	of	using	ORM	could	be	that	it	may	be	quite	difficult	to	write
complicated	queries	using	method	chains,	and	you	will	end	up	writing	them	manually.	You
are	also	at	the	mercy	of	ORM	in	order	to	speed	up	the	performance	of	your	queries,
whereas	when	writing	them	manually,	it	is	you	who	can	choose	better	what	and	how	to	use
when	querying.	Finally,	something	that	OOP	purists	complain	about	quite	a	lot	is	that
using	ORM	fills	your	code	with	a	large	amount	of	dummy	objects,	similar	to	the	domain
objects	that	you	already	know.

As	you	can	see,	using	ORM	is	not	always	an	easy	decision,	but	just	in	case	you	choose	to
use	it,	most	of	the	big	frameworks	include	one.	Take	your	time	in	deciding	whether	or	not
to	use	one	in	your	applications;	in	case	you	do,	choose	wisely	which	one.	You	might	end
up	requiring	an	ORM	different	from	the	one	that	the	framework	provides.

Cache
The	bookstore	is	a	pretty	good	example	that	may	help	in	describing	the	cache	feature.	It
has	a	database	of	books	that	is	queried	every	time	that	someone	either	lists	all	the	books	or
asks	for	the	details	of	a	specific	one.	Most	of	the	time	the	information	related	to	books	will
be	the	same;	the	only	change	would	be	the	stock	of	the	books	from	time	to	time.	We	could
say	that	our	system	has	way	more	reads	than	writes,	where	reads	means	querying	for	data
and	writes	means	updating	it.	In	this	kind	of	system,	it	seems	like	a	waste	of	time	and
resources	to	access	the	database	each	time,	knowing	that	most	of	the	time,	we	will	get	the
same	results.	This	feeling	increases	if	we	do	some	expensive	transformation	to	the	data
that	we	retrieve.

A	cache	layer	allows	the	application	to	store	temporary	data	in	a	storage	system	faster
than	our	database,	usually	in	memory	rather	than	disk.	Even	though	cache	systems	are
getting	more	complex,	they	usually	allow	you	to	store	data	by	key-value	pairs,	as	in	an
array.

The	idea	is	not	to	access	the	database	for	data	that	we	know	is	the	same	as	the	last	time	we
accessed	it	in	order	to	save	time	and	resources.	Implementations	can	vary	quite	a	lot,	but
the	main	flow	is	as	follows:

1.	 You	try	to	access	a	certain	piece	of	data	for	the	first	time.	We	ask	the	cache	whether	a
certain	key	is	there,	which	it	is	not.

2.	 You	query	the	database,	getting	back	the	result.	After	processing	it—and	maybe
transforming	it	to	your	domain	objects—you	store	the	result	in	the	cache.	The	key
would	be	the	same	you	used	in	step	1,	and	the	value	would	be	the	object/array/JSON
that	you	generated.

3.	 You	try	to	access	the	same	piece	of	data	again.	You	ask	the	cache	whether	the	key	is
there;	here,	it	is,	so	you	do	not	need	to	access	the	database	at	all.

It	seems	easy,	right?	The	main	problem	with	caches	comes	when	we	need	to	invalidate	a
certain	key.	How	and	when	should	we	do	it?	There	are	a	couple	of	approaches	that	are
worth	mentioning:

You	will	set	an	expiration	time	to	the	key-value	pair	in	the	cache.	After	this	time
passes,	the	cache	will	remove	the	key-value	pair	automatically,	so	you	will	have	to
query	the	database	again.	Even	though	this	system	might	work	for	some	applications,
it	does	not	for	ours.	If	the	stock	changes	to	0	before	the	cache	expires,	the	user	will
see	books	that	they	cannot	borrow	or	buy.
The	data	never	expires,	but	each	time	we	make	a	change	in	the	database,	we	will
identify	which	keys	in	the	cache	are	affected	by	this	change	and	then	purge	them.
This	is	ideal	since	the	data	will	be	in	the	cache	until	it	is	no	longer	valid,	whether	this
is	2	seconds	or	3	weeks.	The	downside	is	that	identifying	these	keys	could	be	a	hard
task	depending	on	your	data	structure.	If	you	miss	deleting	some	of	them,	you	will
have	corrupted	data	in	your	cache,	which	is	quite	difficult	to	debug	and	detect.

You	can	see	that	cache	is	a	double-edged	sword,	so	we	would	recommend	you	to	only	use

it	when	necessary	and	not	just	because	your	framework	comes	with	it.	As	with	ORM,	if
you	are	not	convinced	by	the	cache	system	that	your	framework	provides,	using	a	different
one	should	not	be	difficult.	In	fact,	your	code	should	not	be	aware	of	which	cache	system
you	are	using	except	when	creating	the	connection	object.

Internationalization
English	is	not	the	only	language	out	there,	and	you	would	like	to	make	your	website	as
accessible	as	possible.	Depending	on	your	target,	it	would	be	a	good	idea	to	have	your
website	translated	to	other	languages	too,	but	how	do	you	do	this?	We	hope	that	by	now
you	did	not	answer:	“Copy-pasting	all	the	templates	and	translating	them”.	This	is	way	too
inefficient;	when	making	a	little	change	in	a	template,	you	need	to	replicate	the	change
everywhere.

There	are	tools	that	can	be	integrated	with	either	controllers	and/or	template	engines	in
order	to	translate	strings.	You	usually	keep	a	file	for	each	language	that	you	have,	in	which
you	will	add	all	the	strings	that	need	to	be	translated	plus	their	translation.	One	of	the	most
common	formats	for	this	is	PO	files,	in	which	you	have	a	map	of	key-value	pairs	with
originally	translated	pairs.	Later	on,	you	will	invoke	a	translate	method	sending	the
original	string,	which	will	return	the	translated	string	depending	on	the	language	you
selected.

When	writing	templates,	it	might	be	tiring	to	invoke	the	translation	each	time	you	want	to
display	a	string,	but	you	will	end	up	with	only	one	template,	which	is	much	easier	to
maintain	than	any	other	option.

Usually,	internationalization	is	very	much	tied	to	the	framework	that	you	use;	however,	if
you	have	the	opportunity	to	use	the	system	of	your	choice,	pay	special	attention	to	its
performance,	the	translation	files	it	uses,	and	how	it	manages	strings	with	parameters—
that	is,	how	we	can	ask	the	system	to	translate	messages	such	as	“Hello	%s,	who	are	you?”
in	which	“%s”	needs	to	be	injected	each	time.

Types	of	frameworks
Now	that	you	know	quite	a	lot	about	what	a	framework	can	offer	you,	you	are	in	a
position	to	decide	what	kind	of	framework	you	would	like	to	use.	In	order	to	make	this
decision,	it	might	be	useful	to	know	what	kinds	of	frameworks	are	available.	This
categorization	is	nothing	official,	just	some	guidelines	that	we	offer	you	to	make	your
choice	easier.

Complete	and	robust	frameworks
This	type	of	framework	comes	with	the	whole	package.	It	contains	all	the	features	that	we
discussed	earlier,	so	it	will	allow	you	to	develop	very	complete	applications.	Usually,
these	frameworks	allow	you	to	create	applications	very	easily	with	just	a	few
configuration	files	that	define	things	such	as	how	to	connect	to	a	database,	what	kind	of
roles	you	need,	or	whether	you	want	to	use	a	cache.	Other	than	this,	you	will	just	have	to
add	your	controllers,	views,	and	models,	which	saves	you	a	lot	of	time.

The	problem	with	these	frameworks	is	the	learning	curve.	Given	all	the	features	they
contain,	you	need	to	spend	quite	a	lot	of	time	on	learning	how	to	use	each	one,	which	is
usually	not	very	pleasant.	In	fact,	most	companies	looking	for	web	developers	require	that
you	have	experience	with	the	framework	they	use;	otherwise,	it	will	be	a	bad	investment
for	them.

Another	thing	you	should	consider	when	choosing	these	frameworks	is	whether	they	are
structured	in	modules	or	come	as	a	huge	monolith.	In	the	first	case,	you	will	be	able	to
choose	which	modules	to	use	that	add	a	lot	of	flexibility.	On	the	other	hand,	if	you	have	to
stick	with	all	of	them,	it	might	make	your	application	slow	even	if	you	do	not	use	all	of
the	features.

Lightweight	and	flexible	frameworks
Even	when	working	on	a	small	application,	you	would	like	to	use	a	framework	to	save	you
a	lot	of	time	and	pain,	but	you	should	avoid	using	one	of	the	larger	frameworks	as	they
will	be	too	much	to	handle	for	what	you	really	need.	In	this	case,	you	should	choose	a
lightweight	framework,	one	that	contains	very	few	features,	similar	to	what	we
implemented	in	previous	chapters.

The	benefit	of	these	frameworks	is	that	even	though	you	get	the	basic	features	such	as
routing,	you	are	completely	free	to	implement	the	login	system,	cache	layer,	or
internationalization	system	that	suits	your	specific	application	better.	In	fact,	you	could
build	a	more	complete	framework	using	this	one	as	the	base	and	then	adding	all	the
complements	you	need,	making	it	completely	customized.

As	you	can	note,	both	types	have	their	pros	and	cons.	It	will	be	up	to	you	to	choose	the
correct	one	each	time,	depending	on	your	needs,	the	time	that	you	can	spend,	and	the
experience	that	you	have	with	each	one.

An	overview	of	famous	frameworks
You	already	have	a	good	idea	about	what	a	framework	can	offer	and	what	types	there	are.
Now,	it	is	time	to	review	some	of	the	most	important	ones	out	there	so	that	you	get	an	idea
of	where	to	start	looking	for	your	next	PHP	web	application.	Note	that	with	the	release	of
PHP	7,	there	will	be	quite	a	lot	of	new	or	improved	PHP	frameworks.	Try	to	always	be	in
the	loop!

Symfony	2
Symfony	has	been	one	of	the	most	favorite	frameworks	of	developers	during	the	last	10
years.	After	reinventing	itself	for	its	version	2,	Symfony	entered	the	generation	of
frameworks	by	modules.	In	fact,	it	is	quite	common	to	find	other	projects	using	Symfony
2	components	mixed	up	with	some	other	framework	as	you	just	need	to	add	the	name	of
the	module	in	your	Composer	file	to	use	it.

You	can	start	applications	with	Symfony	2	by	just	executing	a	command.	Symfony	2
creates	all	the	directories,	empty	configuration	files,	and	so	on	ready	for	you.	You	can	also
add	empty	controllers	from	the	command	line.	They	use	Doctrine	2	as	ORM,	which	is
probably	one	of	the	most	reliable	ORMs	that	PHP	can	offer	nowadays.	For	the	template
engine,	you	will	find	Twig,	which	is	the	same	as	what	we	used	in	our	framework.

In	general,	this	is	a	very	attractive	framework	with	a	huge	community	behind	it	giving
support;	plus,	a	lot	of	companies	also	use	it.	It	is	always	worth	at	least	checking	the	list	of
modules	in	case	you	do	not	want	to	use	the	whole	framework	but	want	to	take	advantage
of	some	bits	of	it.

Zend	Framework	2
The	second	big	PHP	framework,	at	least	since	last	year,	is	Zend	Framework	2.	As	with
Symfony,	it	has	been	out	there	for	quite	a	long	time	too.	Also,	as	with	any	other	modern
framework,	it	is	built	in	an	OOP	way,	trying	to	implement	all	the	good	design	patterns
used	for	web	applications.	It	is	composed	of	multiple	components	that	you	can	reuse	in
other	projects,	such	as	their	well-known	authentication	system.	It	lacks	some	elements,
such	as	a	template	engine—usually	they	mix	PHP	and	HTML—and	ORM,	but	you	can
easily	integrate	the	ones	that	you	prefer.

There	is	a	lot	of	work	going	on	in	order	to	release	Zend	Framework	3,	which	will	come
with	support	for	PHP	7,	performance	improvements,	and	some	other	new	components.	We
recommend	you	to	keep	an	eye	on	it;	it	could	be	a	good	candidate.

Other	frameworks
Even	though	Symfony	and	Zend	Framework	are	the	two	big	players,	more	and	more	PHP
frameworks	have	appeared	in	these	last	years,	evolving	quite	fast	and	bringing	to	the	game
more	interesting	features.	Names	such	as	CodeIgniter,	Yii,	PHPCake,	and	others	will	start
to	sound	familiar	as	soon	as	you	start	browsing	PHP	projects.	As	some	of	them	came	into
play	later	than	Symfony	and	Zend	Framework,	they	implement	some	new	features	that	the
others	do	not	have,	such	as	components	related	to	JavaScript	and	jQuery,	integration	with
Selenium	for	UI	testing,	and	others.

Even	though	it	is	always	a	good	thing	to	have	diversification	simply	because	you	will
probably	get	exactly	what	you	need	from	one	or	the	other,	be	smart	when	choosing	your
framework.	The	community	plays	an	important	role	here	because	if	you	have	any
problem,	it	will	help	you	to	fix	it	or	you	can	just	help	evolve	the	framework	with	each	new
PHP	release.

The	Laravel	framework
Even	though	Symfony	and	Zend	Framework	have	been	the	big	players	for	quite	a	long
time,	during	this	last	couple	of	years,	a	third	framework	came	into	play	that	has	grown	in
popularity	so	much	that	nowadays	it	is	the	favorite	framework	among	developers.
Simplicity,	elegant	code,	and	high	speed	of	development	are	the	trump	cards	of	this
“framework	for	artisans”.	In	this	section,	you	will	have	a	glance	at	what	Laravel	can	do,
taking	the	first	steps	to	create	a	very	simple	application.

Installation
Laravel	comes	with	a	set	of	command-line	tools	that	will	make	your	life	easier.	Because	of
this,	it	is	recommended	to	install	it	globally	instead	of	per	project—that	is,	to	have	Laravel
as	another	program	in	your	environment.	You	can	still	do	this	with	Composer	by	running
the	following	command:

$	composer	global	require	"laravel/installer"

This	command	should	download	the	Laravel	installer	to	~/.composer/vendor.	In	order	to
be	able	to	use	the	executable	from	the	command	line,	you	will	need	to	run	something
similar	to	this:

$	sudo	ln	-s	~/.composer/vendor/bin/laravel	/usr/bin/laravel

Now,	you	are	able	to	use	the	laravel	command.	To	ensure	that	everything	went	all	right,
just	run	the	following:

$	laravel	–version

If	everything	went	OK,	this	should	output	the	version	installed.

Project	setup
Yes,	we	know.	Every	single	tutorial	starts	by	creating	a	blog.	However,	we	are	building
web	applications,	and	this	is	the	easiest	approach	we	can	take	that	adds	some	value	to	you.
Let’s	start	then;	execute	the	following	command	wherever	you	want	to	add	your
application:

$	laravel	new	php-blog

This	command	will	output	something	similar	to	what	Composer	does,	simply	because	it
fetches	dependencies	using	Composer.	After	a	few	seconds,	the	application	will	hopefully
tell	you	that	everything	was	installed	successfully	and	that	you	are	ready	to	go.

Laravel	created	a	new	php-blog	directory	with	quite	a	lot	of	content.	You	should	have
something	similar	to	the	directory	structure	shown	in	the	following	screenshot:

Let’s	set	up	the	database.	The	first	thing	you	should	do	is	update	the	.env	file	with	the
correct	database	credentials.	Update	the	DB_DATABASE	values	with	your	own;	here’s	an
example:

DB_HOST=localhost

DB_DATABASE=php_blog

DB_USERNAME=root

DB_PASSWORD=

You	will	also	need	to	create	the	php_blog	database.	Do	it	with	just	one	command,	as
follows:

$	mysql	-u	root	-e	"CREATE	SCHEMA	php_blog"

With	Laravel,	you	have	a	migrations	system;	that	is,	you	keep	all	the	database	schema
changes	under	database/migrations	so	that	anyone	else	using	your	code	can	quickly	set
up	their	database.	The	first	step	is	to	run	the	following	command,	which	will	create	a
migrations	file	for	the	blogs	table:

$	php	artisan	make:migration	create_posts_table	--create=posts

Open	the	generated	file,	which	should	be	something	similar	to
database/migrations/<date>_create_posts_table.php.	The	up	method	defines	the
table	blogs	with	an	autoincremental	ID	and	timestamp	field.	We	would	like	to	add	a	title,
the	content	of	the	post,	and	the	user	ID	that	created	it.	Replace	the	up	method	with	the
following:

public	function	up()

{

				Schema::create('posts',	function	(Blueprint	$table)	{

								$table->increments('id');

								$table->timestamps();

								$table->string('title');

								$table->text('content');

								$table->integer('user_id')->unsigned();

								$table->foreign('user_id')

												->references('id')->on('users');

				});

}

Here,	the	title	will	be	a	string,	whereas	the	content	is	a	text.	The	difference	is	in	the	length
of	these	fields,	string	being	a	simple	VARCHAR	and	text	a	TEXT	data	type.	For	the	user	ID	we
defined	INT	UNSIGNED,	which	references	the	id	field	of	the	users	table.	Laravel	already
defined	the	users	table	when	creating	the	project,	so	you	do	not	have	to	worry	about	it.	If
you	are	interested	in	how	it	looks,	check	the
database/migrations/2014_10_12_000000_create_users_table.php	file.	You	will	note
that	a	user	is	composed	by	an	ID,	a	name,	the	unique	e-mail,	and	the	password.

So	far,	we	have	just	written	the	migration	files.	In	order	to	apply	them,	you	need	to	run	the
following	command:

$	php	artisan	migrate

If	everything	went	as	expected,	you	should	have	a	blogs	table	now	similar	to	the
following:

To	finish	with	all	the	preparations,	we	need	to	create	a	model	for	our	blogs	table.	This
model	will	extend	from	Illuminate\Database\Eloquent\Model,	which	is	the	ORM	that
Laravel	uses.	To	generate	this	model	automatically,	run	the	following	command:

$	php	artisan	make:model	Post

The	name	of	the	model	should	be	the	same	as	that	of	the	database	table	but	in	singular.
After	running	this	command,	you	can	find	the	empty	model	in	app/Post.php.

Adding	the	first	endpoint
Let’s	add	a	quick	endpoint	just	to	understand	how	routes	work	and	how	to	link	controllers
with	templates.	In	order	to	avoid	database	access,	let’s	build	the	add	new	post	view,	which
will	display	a	form	that	allows	the	user	to	add	a	new	post	with	a	title	and	text.	Let’s	start
by	adding	the	route	and	controller.	Open	the	app/Http/routes.php	file	and	add	the
following:

Route::group(['middleware'	=>	['web']],	function	()	{

				Route::get('/new',	function	()	{

								return	view('new');

				});

});

These	three	very	simple	lines	say	that	for	the	/new	endpoint,	we	want	to	reply	with	the	new
view.	Later	on,	we	will	complicate	things	here	in	the	controller,	but	for	now,	let’s	focus	on
the	views.

Laravel	uses	Blade	as	the	template	engine	instead	of	Twig,	but	the	way	they	work	is	quite
similar.	They	can	also	define	layouts	from	where	other	templates	can	extend.	The	place	for
your	layouts	is	in	resources/views/layouts.	Create	an	app.blade.php	file	with	the
following	content	inside	this	directory,	as	follows:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>PHP	Blog</title>

				<link	rel="stylesheet"	href="{{	URL::asset('css/layout.css')	}}"	

type="text/css">

				@yield('css')

</head>

<body>

<div	class="navbar">

				

								New	article

								Articles

				

</div>

<div	class="content">

@yield('content')

</div>

</body>

</html>

This	is	just	a	normal	layout	with	a	title,	some	CSS,	and	an	ul	list	of	sections	in	the	body,
which	will	be	used	as	the	navigation	bar.	There	are	two	important	elements	to	note	here
other	than	the	HTML	code	that	should	already	sound	familiar:

To	define	a	block,	Blade	uses	the	@yield	annotation	followed	by	the	name	of	the
block.	In	our	layout,	we	defined	two	blocks:	css	and	content.
There	is	a	feature	that	allows	you	to	build	URLs	in	templates.	We	want	to	include	the
CSS	file	in	public/css/layout.css,	so	we	will	use	URL::asset	to	build	this	URL.	It

is	also	helpful	to	include	JS	files.

As	you	saw,	we	included	a	layout.css	file.	CSS	and	JS	files	are	stored	under	the	public
directory.	Create	yours	in	public/css/layout.css	with	the	following	code:

.content	{

				position:	fixed;

				top:	50px;

				width:	100%

}

.navbar	ul	{

				position:	fixed;

				top:	0;

				width:	100%;

				list-style-type:	none;

				margin:	0;

				padding:	0;

				overflow:	hidden;

				background-color:	#333;

}

.navbar	li	{

				float:	left;

				border-right:	1px	solid	#bbb;

}

.navbar	li:last-child	{

				border-right:	none;

}

.navbar	li	a	{

				display:	block;

				color:	white;

				text-align:	center;

				padding:	14px	16px;

				text-decoration:	none;

}

.navbar	li	a:hover	{

				background-color:	#111;

}

Now,	we	can	focus	on	our	view.	Templates	are	stored	in	resources/views,	and,	as	with
layouts,	they	need	the	.blade.php	file	extension.	Create	your	view	in
resources/views/new.blade.php	with	the	following	content:

@extends('layouts.app')

@section('css')

				<link	rel="stylesheet"	href="{{	URL::asset('css/new.css')	}}"	

type="text/css">

@endsection

@section('content')

				<h2>Add	new	post</h2>

				<form	method="post"	action="/new">

								<div	class="component">

												<label	for="title">Title</label>

												<input	type="text"	name="title"/>

								</div>

								<div	class="component">

												<label>Text</label>

												<textarea	rows="20"	name="content"></textarea>

								</div>

								<div	class="component">

												<button	type="submit">Save</button>

								</div>

				</form>

@endsection

The	syntax	is	quite	intuitive.	This	template	extends	from	the	layouts’	one	and	defines	two
sections	or	blocks:	css	and	content.	The	CSS	file	included	follows	the	same	format	as	the
previous	one.	You	can	create	it	in	public/css/new.css	with	content	similar	to	the
following:

label	{

				display:	block;

}

input	{

				width:	80%;

}

button	{

				font-size:	30px;

				float:	right;

				margin-right:	20%;

}

textarea	{

				width:	80%;

}

.component	{

				padding:	10px;

}

The	rest	of	the	template	just	defines	the	POST	form	pointing	to	the	same	URL	with	title
and	text	fields.	Everything	is	ready	to	test	it	in	your	browser!	Try	accessing
http://localhost:8080/new	or	the	port	number	of	your	choice.	You	should	see
something	similar	to	the	following	screenshot:

Managing	users
As	explained	before,	user	authentication	and	authorization	is	one	of	the	features	that	most
frameworks	contain.	Laravel	makes	our	lives	very	easy	by	providing	the	user	model	and
the	registration	and	authentication	controllers.	It	is	quite	easy	to	make	use	of	them:	you
just	need	to	add	the	routes	pointing	to	the	already	existing	controllers	and	add	the	views.
Let’s	begin.

There	are	five	routes	that	you	need	to	consider	here.	There	are	two	that	belong	to	the
registration	step,	one	to	get	the	form	and	another	one	for	the	form	to	submit	the
information	provided	by	the	user.	The	other	three	are	related	to	the	authentication	part:	one
to	get	the	form,	one	to	post	the	form,	and	one	for	the	logout.	All	five	of	them	are	included
in	the	Auth\AuthController	class.	Add	to	your	routes.php	file	the	following	routes:

//	Registration	routes…

Route::get('auth/register',	'Auth\AuthController@getRegister');

Route::post('auth/register',	'Auth\AuthController@postRegister');

//	Authentication	routes…

Route::get('/login',	'Auth\AuthController@getLogin');

Route::post('login',	'Auth\AuthController@postLogin');

Route::get('logout',	'Auth\AuthController@getLogout');

Note	how	we	defined	these	routes.	As	opposed	to	the	one	that	we	created	previously,	the
second	argument	of	these	is	a	string	with	the	concatenation	of	the	controller’s	class	name
and	method.	This	is	a	better	way	to	create	routes	because	it	separates	the	logic	to	a
different	class	that	can	later	be	reused	and/or	unit	tested.

If	you	are	interested,	you	can	browse	the	code	for	this	controller.	You	will	find	a	complex
design,	where	the	functions	the	routes	will	invoke	are	actually	part	of	two	traits	that	the
AuthController	class	uses:	RegistersUsers	and	AuthenticatesUsers.	Checking	these
methods	will	enable	you	to	understand	what	goes	on	behind	the	scenes.

Each	get	route	expects	a	view	to	render.	For	the	user’s	registration,	we	need	to	create	a
template	in	resources/views/auth/register.blade.php,	and	for	the	login	view,	we
need	a	template	in	resources/views/auth/login.blade.php.	As	soon	as	we	send	the
correct	POST	parameters	to	the	correct	URL,	we	can	add	any	content	that	we	think
necessary.

User	registration
Let’s	start	with	the	registration	form;	this	form	needs	four	POST	parameters:	name,	e-
mail,	password,	and	password	confirmation,	and	as	the	route	says,	we	need	to	submit	it	to
/auth/register.	The	template	could	look	similar	to	the	following:

@extends('layouts.app')

@section('css')

				<link	rel="stylesheet"	href="{{	URL::asset('css/register.css')	}}"	

type="text/css">

@endsection

@section('content')

				<h2>Account	registration</h2>

				<form	method="post"	action="/auth/register">

								{{	csrf_field()	}}

								<div	class="component">

												<label	for="name">Name</label>

												<input	type="text"	name="name"	

																			value="{{	old('name')	}}"	/>

								</div>

								<div	class="component">

												<label>Email</label>

												<input	type="email"	name="email"

																			value="{{	old('email')	}}"/>

								</div>

								<div	class="component">

												<label>Password</label>

												<input	type="password"	name="password"	/>

								</div>

								<div	class="component">

												<label>Password	confirmation</label>

												<input	type="password"	name="password_confirmation"	/>

								</div>

								<div	class="component">

												<button	type="submit">Create</button>

								</div>

				</form>

@endsection

This	template	is	quite	similar	to	the	form	for	new	posts:	it	extends	the	layout,	adds	a	CSS
file,	and	populates	the	content	section	with	a	form.	The	new	addition	here	is	the	use	of	the
old	function	that	retrieves	the	value	submitted	on	the	previous	request	in	case	that	the
form	was	not	valid	and	we	showed	it	back	to	the	user.

Before	we	try	it,	we	need	to	add	a	register.css	file	with	the	styles	for	this	form.	A
simple	one	could	be	as	follows:

div.content	{

				text-align:	center;

}

label	{

				display:	block;

}

input	{

				width:	250px;

}

button	{

				font-size:	20px;

}

.component	{

				padding:	10px;

}

Finally,	we	should	edit	the	layout	in	order	to	add	a	link	on	the	menu	pointing	to	the

registration	and	login	pages.	This	is	as	simple	as	adding	the	following	li	elements	at	the
end	of	the	ul	tag:

<li	class="right">Sign	up

<li	class="right">Sign	in

Add	also	the	style	for	the	right	class	at	the	end	of	layout.css:

div.alert	{

				color:	red;

}

To	make	things	even	more	useful,	we	could	add	the	information	for	what	went	wrong
when	submitting	the	form.	Laravel	flashes	the	errors	into	the	session,	and	they	can	be
accessed	via	the	errors	template	variable.	As	this	is	common	to	all	forms	and	not	only	to
the	registration	one,	we	could	add	it	to	the	app.blade.php	layout,	as	follows:

<div	class="content">

				@if	(count($errors)	>	0)

								<div	class="alert">

												Whoops!	Something	went	wrong!

												@foreach	($errors->all()	as	$error)

																<p>{{	$error	}}</p>

												@endforeach

								</div>

				@endif

@yield('content')

In	this	piece	of	code,	we	will	use	Blade’s	@if	conditional	and	@foreach	loop.	The	syntax
is	the	same	as	PHP;	the	only	difference	is	the	@	prefix.

Now,	we	are	ready	to	go.	Launch	your	application	and	click	on	the	registration	link	on	the
right-hand	side	of	the	menu.	Attempt	to	submit	the	form,	but	leave	some	fields	blank	so
that	we	can	note	how	the	errors	are	displayed.	The	result	should	be	something	similar	to
this:

One	thing	that	we	should	customize	is	where	the	user	will	be	redirected	once	the
registration	is	successful.	In	this	case,	we	can	redirect	them	to	the	login	page.	In	order	to
achieve	this,	you	need	to	change	the	value	of	the	$redirectTo	property	of
AuthController.	So	far,	we	only	have	the	new	post	page,	but	later,	you	could	add	any
path	that	you	want	via	the	following:

protected	$redirectPath=	'/new;

User	login
The	user’s	login	has	a	few	more	changes	other	than	the	registration.	We	not	only	need	to
add	the	login	view,	we	should	also	modify	the	menu	in	the	layout	in	order	to	acknowledge
the	authenticated	user,	remove	the	register	link,	and	add	a	logout	one.	The	template,	as
mentioned	earlier,	has	to	be	saved	in	resources/views/auth/login.blade.php.	The
form	needs	an	e-mail	and	password	and	optionally	a	checkbox	for	the	remember	me
functionality.	An	example	could	be	the	following:

@extends('layouts.app')

@section('css')

				<link	rel="stylesheet"	href="{{	URL::asset('css/register.css')	}}"	

type="text/css">

@endsection

@section('content')

				<h2>Login</h2>

				<form	method="POST"	action="/login">

								{!!	csrf_field()	!!}

								<div	class="component">

												<label>Email</label>

												<input	type="email"	name="email"

																			value="{{	old('email')	}}">

								</div>

								<div	class="component">

												<label>Password</label>

												<input	type="password"	name="password">

								</div>

								<div	class="component">

												<input	class="checkbox"	type="checkbox"	name="remember">																	

												Remember	Me

								</div>

								<div	class="component">

												<button	type="submit">Login</button>

								</div>

				</form>

@endsection

The	layout	has	to	be	changed	slightly.	Where	we	displayed	the	links	to	register	and	log	in
users,	now	we	need	to	check	whether	there	is	a	user	already	authenticated;	if	so,	we	should
rather	show	a	logout	link.	You	can	get	the	authenticated	user	through	the	Auth::user()
method	even	from	the	view.	If	the	result	is	not	empty,	it	means	that	the	user	was
authenticated	successfully.	Change	the	two	links	using	the	following	code:

				New	article

				Articles

				@if	(Auth::user()	!==	null)

								<li	class="right">

												Logout

								

				@else

								<li	class="right">

												Sign	up

								

								<li	class="right">

												Sign	in

								

				@endif

Protected	routes
This	last	part	of	the	user	management	session	is	probably	the	most	important	one.	One	of
the	main	goals	when	authenticating	users	is	to	authorize	them	to	certain	content—that	is,
to	allow	them	to	visit	certain	pages	that	unauthenticated	users	cannot.	In	Laravel,	you	can

define	which	routes	are	protected	in	this	way	by	just	adding	the	auth	middleware.	Update
the	new	post	route	with	the	following	code:

Route::get('/new',	['middleware'	=>	'auth',	function	()	{

				return	view('new');

}]);

Everything	is	ready!	Try	to	access	the	new	post	page	after	logging	out;	you	will	be
redirected	automatically	to	the	login	page.	Can	you	feel	how	powerful	a	framework	can
be?

Setting	up	relationships	in	models
As	we	mentioned	before,	Laravel	comes	with	an	ORM,	Eloquent	ORM,	which	makes
dealing	with	models	a	very	easy	task.	In	our	simple	database,	we	defined	one	table	for
posts,	and	we	already	had	another	one	for	users.	Posts	contain	the	ID	of	the	user	that	owns
it—that	is,	user_id.	It	is	good	practice	to	use	the	singular	of	the	name	of	the	table
followed	by	_id	so	that	Eloquent	will	know	where	to	look.	This	was	all	we	did	regarding
the	foreign	key.

We	should	also	mention	this	relationship	on	the	model	side.	Depending	on	the	type	of	the
relationship	(one	to	one,	one	to	many,	or	many	to	many),	the	code	will	be	slightly
different.	In	our	case,	we	have	a	one-to-many	relationship	because	one	user	can	have
many	posts.	To	say	so	in	Laravel,	we	need	to	update	both	the	Post	and	the	User	models.
The	User	model	needs	to	specify	that	it	has	many	posts,	so	you	need	to	add	a	posts
method	with	the	following	content:

public	function	posts()	{

				return	$this->hasMany('App\Post');

}

This	method	says	that	the	model	for	users	has	many	posts.	The	other	change	that	needs	to
be	made	in	Post	is	similar:	we	need	to	add	a	user	method	that	defines	the	relationship.
The	method	should	be	similar	to	this	one:

public	function	user()	{

				return	$this->belongsTo('App\User');

}

It	looks	like	very	little,	but	this	is	the	whole	configuration	that	we	need.	In	the	next
section,	you	will	see	how	easy	it	is	to	save	and	query	using	these	two	models.

Creating	complex	controllers
Even	though	the	title	of	this	section	mentions	complex	controllers,	you	will	note	that	we
can	create	complete	and	powerful	controllers	with	very	little	code.	Let’s	start	by	adding
the	code	that	will	manage	the	creation	of	posts.	This	controller	needs	to	be	linked	to	the
following	route:

Route::post('/new',	'Post\PostController@createPost');

As	you	can	imagine,	now,	we	need	to	create	the	Post\PostController	class	with	the
createPost	method	in	it.	Controllers	should	be	stored	in	app/Http/Controllers,	and	if
they	can	be	organized	in	folders,	it	would	be	even	better.	Save	the	following	class	in
app/Http/Controllers/Post/PostController.php:

<?php

namespace	App\Http\Controllers\Post;

use	App\Http\Controllers\Controller;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Auth;

use	Illuminate\Support\Facades\Validator;

use	App\Post;

class	PostController	extends	Controller	{

				public	function	createPost(Request	$request)	{

								

				}

}

So	far,	the	only	two	things	we	can	note	from	this	class	are:

Controllers	extend	from	the	App\Http\Controllers\Controller	class,	which
contains	some	general	helpers	for	all	the	controllers.
Methods	of	controllers	can	get	the	Illuminate\Http\Request	argument	as	the	user’s
request.	This	object	will	contain	elements	such	as	the	posted	parameters,	cookies,	and
so	on.	This	is	very	similar	to	the	one	we	created	in	our	own	application.

The	first	thing	we	need	to	do	in	this	kind	of	controller	is	check	whether	the	parameters
posted	are	correct.	For	this,	we	will	use	the	following	code:

public	function	createPost(Request	$request)	{

				$validator	=	Validator::make($request->all(),	[

								'title'	=>	'required|max:255',

								'content'	=>	'required|min:20',

]);

				if	($validator->fails())	{

								return	redirect()->back()

												->withInput()

												->withErrors($validator);

				}

}

The	first	thing	we	did	is	create	a	validator.	For	this,	we	used	the	Validator::make
function	and	sent	two	arguments:	the	first	one	contains	all	the	parameters	from	the	request,
and	the	second	one	is	an	array	with	the	expected	fields	and	their	constraints.	Note	that	we
expect	two	required	fields:	title	and	content.	Here,	the	first	one	can	be	up	to	255
characters	long,	and	the	second	one	needs	to	be	at	least	20	characters	long.

Once	the	validator	object	is	created,	we	can	check	whether	the	data	posted	by	the	user
matches	the	requirements	with	the	fails	method.	If	it	returns	true—that	is,	the	validation
fails—we	will	redirect	the	user	back	to	the	previous	page	with	redirect()->back().	To
perform	this	invocation,	we	will	add	two	more	method	calls:	withInput	will	send	the
submitted	values	so	that	we	can	display	them	again,	and	withErrors	will	send	the	errors
the	same	way	AuthController	did.

At	this	point,	it	would	be	helpful	to	the	user	if	we	show	the	previously	submitted	title	and
text	in	case	the	post	is	not	valid.	For	this,	use	the	already	known	old	method	in	the	view:

{{--...--}}

				<input	type="text"	name="title"	

											value="{{	old('title')	}}"/>

</div>

<div	class="component">

				<label>Text</label>

				<textarea	rows="20"	name="content">

								{{	old('content')	}}

				</textarea>

{{--...--}}

At	this	point,	we	can	already	test	how	the	controller	behaves	when	the	post	does	not	match
the	required	validations.	If	you	miss	any	of	the	parameters	or	they	do	not	have	correct
lengths,	you	will	get	an	error	page	similar	to	the	following	one:

Let’s	now	add	the	logic	to	save	the	post	in	case	it	is	valid.	If	you	remember	the	interaction
with	the	models	from	our	previous	application,	you	will	be	gladly	surprised	at	how	easy	it
is	to	work	with	them	here.	Take	a	look	at	the	following:

public	function	createPost(Request	$request)	{

				$validator	=	Validator::make($request->all(),	[

								'title'	=>	'required|max:255',

								'content'	=>	'required|min:20',

]);

				if	($validator->fails())	{

								return	redirect()->back()

												->withInput()

												->withErrors($validator);

				}

				$post	=	new	Post();

				$post->title	=	$request->title;

				$post->content	=	$request->content;

				Auth::user()->posts()->save($post);

				return	redirect('/new');

}

The	first	thing	we	will	do	is	create	a	post	object	setting	the	title	and	content	from	the
request	values.	Then,	given	the	result	of	Auth::user(),	which	gives	us	the	instance	of	the
currently	authenticated	user	model,	we	will	save	the	post	that	we	just	created	through
posts()->save($post).	If	we	wanted	to	save	the	post	without	the	information	of	the	user,
we	could	use	$post->save().	Really,	that	is	all.

Let’s	quickly	add	another	endpoint	to	retrieve	the	list	of	posts	for	a	given	user	so	that	we
can	take	a	look	at	how	Eloquent	ORM	allows	us	to	fetch	data	easily.	Add	the	following
route:

Route::get('/',	['middleware'	=>	'auth',	function	()	{

				$posts	=	Auth::user()

								->posts()

								->orderBy('created_at')

								->get();

				return	view('posts',	['posts'	=>	$posts]);

}]);

The	way	we	retrieve	data	is	very	similar	to	how	we	save	it.	We	need	the	instance	of	a
model—in	this	case,	the	authenticated	user—and	we	will	add	a	concatenation	of	method
invocations	that	will	internally	generate	the	query	to	execute.	In	this	case,	we	will	ask	for
the	posts	ordered	by	the	creation	date.	In	order	to	send	information	to	the	view,	we	need	to
pass	a	second	argument,	which	will	be	an	array	of	parameter	names	and	values.

Add	the	following	template	as	resources/views/posts.blade.php,	which	will	display
the	list	of	posts	for	the	authenticated	user	as	a	table.	Note	how	we	will	use	the	$post
object,	which	is	an	instance	of	the	model,	in	the	following	code:

@extends('layouts.app')

@section('css')

				<link	rel="stylesheet"	href="{{	URL::asset('css/posts.css')	}}"	

type="text/css">

@endsection

@section('content')

				<h2>Your	posts</h2>

				<table>

				@foreach	($posts	as	$post)

								<tr>

												<td>{{	$post->title	}}</td>

												<td>{{	$post->created_at	}}</td>

												<td>{{	str_limit($post->content,	100)	}}</td>

								</tr>

				@endforeach

				</table>

@endsection

The	lists	of	posts	are	finally	displayed.	The	result	should	be	something	similar	to	the
following	screenshot:

Adding	tests
In	a	very	short	time,	we	created	an	application	that	allows	you	to	register,	log	in,	and
create	and	list	posts	from	scratch.	We	will	end	this	section	by	talking	about	how	to	test
your	Laravel	application	with	PHPUnit.

It	is	extremely	easy	to	write	tests	in	Laravel	as	it	has	a	very	nice	integration	with	PHPUnit.
There	is	already	a	phpunit.xml	file,	a	customized	TestCase	class,	customized	assertions,
and	plenty	of	helpers	in	order	to	test	with	the	database.	It	also	allows	you	to	test	routes,
emulating	the	HTTP	request	instead	of	testing	the	controllers.	We	will	visit	all	these
features	while	testing	the	creation	of	new	posts.

First	of	all,	we	need	to	remove	tests/ExampleTest.php	because	it	tested	the	home	page,
and	as	we	modified	it,	it	will	fail.	Do	not	worry;	this	is	an	example	test	that	helps
developers	to	start	testing,	and	making	it	fail	is	not	a	problem	at	all.

Now,	we	need	to	create	our	new	test.	To	do	this,	we	can	either	add	the	file	manually	or	use
the	command	line	and	run	the	following	command:

$	php	artisan	make:test	NewPostTest

This	command	creates	the	tests/NewPostTest.php	file,	which	extends	from	TestCase.	If
you	open	it,	you	will	note	that	there	is	already	a	dummy	test,	which	you	can	also	remove.
Either	way,	you	can	run	PHPUnit	to	make	sure	everything	passes.	You	can	do	it	in	the
same	way	we	did	previously,	as	follows:

$./vendor/bin/phpunit

The	first	test	we	can	add	is	one	where	we	try	to	add	a	new	post	but	the	data	passed	by	the
POST	parameters	is	not	valid.	In	this	case,	we	should	expect	that	the	response	contains
errors	and	old	data,	so	the	user	can	edit	it	instead	of	rewriting	everything	again.	Add	the
following	test	to	the	NewPostTest	class:

<?php

class	NewPostTest	extends	TestCase

{

				public	function	testWrongParams()	{

								$user	=	factory(App\User::class)

												->make(['email'	=>	'test@user.laravel']);

								$this->be($user);

								$this->call(

												'POST',

												'/new',

												['title'	=>	'the	title',	'content'	=>	'ojhkjhg']

);

								$this->assertSessionHasErrors('content');

								$this->assertHasOldInput();

				}

}

The	first	thing	we	can	note	in	the	test	is	the	creation	of	a	user	instance	using	a	factory.
You	can	pass	an	array	with	any	parameter	that	you	want	to	set	to	the	make	invocation;
otherwise,	defaults	will	be	used.	After	we	get	the	user	instance,	we	will	send	it	to	the	be
method	to	let	Laravel	know	that	we	want	that	user	to	be	the	authorized	one	for	this	test.

Once	we	set	the	grounds	for	the	test,	we	will	use	the	call	helper	that	will	emulate	a	real
HTTP	request.	To	this	method,	we	have	to	send	the	HTTP	method	(in	this	case,	POST),
the	route	to	request,	and	optionally	the	parameters.	Note	that	the	call	method	returns	the
response	object	in	case	you	need	it.

We	will	send	a	title	and	the	content,	but	this	second	one	is	not	long	enough,	so	we	will
expect	some	errors.	Laravel	comes	with	several	customized	assertions,	especially	when
testing	these	kinds	of	responses.	In	this	case,	we	could	use	two	of	them:
assertSessionHasErrors,	which	checks	whether	there	are	any	flash	errors	in	the	session
(in	particular,	the	ones	for	the	content	parameter),	and	assertHasOldInput,	which	checks
whether	the	response	contains	old	data	in	order	to	show	it	back	to	the	user.

The	second	test	that	we	would	like	to	add	is	the	case	where	the	user	posts	valid	data	so
that	we	can	save	the	post	in	the	database.	This	test	is	trickier	as	we	need	to	interact	with
the	database,	which	is	usually	a	not	a	very	pleasant	experience.	However,	Laravel	gives	us
enough	tools	to	help	us	in	this	task.	The	first	and	most	important	is	to	let	PHPUnit	know
that	we	want	to	use	database	transactions	for	each	test.	Then,	we	need	to	persist	the
authenticated	user	in	the	database	as	the	post	has	a	foreign	key	pointing	to	it.	Finally,	we
should	assert	that	the	post	is	saved	in	the	database	correctly.	Add	the	following	code	to	the
NewPostTest	class:

use	DatabaseTransactions;

//...

public	function	testNewPost()	{

				$postParams	=	[

								'title'	=>	'the	title',

								'content'	=>	'In	a	place	far	far	away.'

];

				$user	=	factory(App\User::class)

								->make(['email'	=>	'test@user.laravel']);

				$user->save();

				$this->be($user);

				$this->call('POST',	'/new',	$postParams);

				$this->assertRedirectedTo('http://localhost/new');

				$this->seeInDatabase('posts',	$postParams);

}

The	DatabaseTransactions	trait	will	make	the	test	to	start	a	transaction	at	the	beginning
and	then	roll	it	back	once	the	test	is	done,	so	we	will	not	leave	the	database	with	data	from
tests.	Saving	the	authenticated	user	in	the	database	is	also	an	easy	task	as	the	result	of	the

factory	is	an	instance	of	the	user’s	model,	and	we	can	just	invoke	the	save	method	on	it.

The	assertRedirectedTo	assertion	will	make	sure	that	the	response	contains	the	valid
headers	that	redirect	the	user	to	the	specified	URL.	More	interestingly,	seeInDatabase
will	verify	that	there	is	an	entity	in	the	posts	table,	which	is	the	first	argument,	with	the
data	provided	in	the	array,	which	is	the	second	argument.

There	are	quite	a	lot	of	assertions,	but	as	you	can	note,	they	are	extremely	useful,	reducing
what	could	be	a	long	test	to	a	very	few	lines.	We	recommend	you	to	visit	the	official
documentation	for	the	full	list.

The	Silex	microframework
After	a	taste	of	what	Laravel	can	offer	you,	you	most	likely	do	not	want	to	hear	about
minimalist	microframeworks.	Still,	we	think	it	is	good	to	know	more	than	one	framework.
You	can	get	to	know	different	approaches,	be	more	versatile,	and	everyone	will	want	you
in	their	team.

We	chose	Silex	because	it	is	a	microframework,	which	is	very	different	from	Laravel,	and
also	because	it	is	part	of	the	Symfony	family.	With	this	introduction	to	Silex,	you	will
learn	how	to	use	your	second	framework,	which	is	of	a	totally	different	type,	and	you	will
be	one	step	closer	to	knowing	Symfony	as	well,	which	is	one	of	the	big	players.

What	is	the	benefit	of	microframeworks?	Well,	they	provide	the	very	basics—that	is,	a
router,	a	simple	dependency	injector,	request	helpers,	and	so	on,	but	this	is	the	end	of	it.
You	have	plenty	of	room	to	choose	and	build	what	you	really	need,	including	external
libraries	or	even	your	own	ones.	This	means	that	you	can	have	a	framework	specially
customized	for	each	different	project.	In	fact,	Silex	provides	a	handful	of	built-in	service
providers	that	you	can	integrate	very	easily,	from	template	engines	to	logging	or	security.

Installation
There’s	no	news	here.	Composer	does	everything	for	you,	as	it	does	with	Laravel.	Execute
the	following	command	on	your	command	line	at	the	root	of	your	new	project	in	order	to
include	Silex	in	your	composer.json	file:

$	composer	require	silex/silex

You	may	require	more	dependencies,	but	let’s	add	them	when	we	need	them.

Project	setup
Silex’s	most	important	class	is	Silex\Application.	This	class,	which	extends	from
Pimple	(a	lightweight	dependency	injector),	manages	almost	anything.	You	can	use	it	as
an	array	as	it	implements	the	ArrayAccess	interface,	or	you	could	invoke	its	methods	to
add	dependencies,	register	services,	and	so	on.	The	first	thing	to	do	is	to	instantiate	it	in
your	public/index.php	file,	as	follows:

<?php

use	Silex\Application;

require_once	__DIR__	.	'/../vendor/autoload.php';

$app	=	new	Application();

Managing	configuration
One	of	the	first	things	we	like	to	do	is	load	the	configuration.	We	could	do	something	very
simple,	such	as	including	a	file	with	PHP	or	JSON	content,	but	let’s	make	use	of	one	of
the	service	providers,	ConfigServiceProvider.	Let’s	add	it	with	Composer	via	the
following	line:

$	composer	require	igorw/config-service-provider

This	service	allows	us	to	have	multiple	configuration	files,	one	for	each	environment	we
need.	Imagining	that	we	want	to	have	two	environments,	prod	and	dev,	this	means	we
need	two	files:	one	in	config/prod.json	and	one	in	config/dev.json.	The
config/dev.json	file	would	look	similar	to	this:

{

		"debug":	true,

		"cache":	false,

		"database":	{

				"user":	"dev",

				"password":	""

		}

}

The	config/prod.json	file	would	look	similar	to	this:

{

		"debug":	false,

		"cache":	true,

		"database	":	{

				"user":	"root",

				"password":	"fsd98na9nc"

		}

}

In	order	to	work	in	a	development	environment,	you	will	need	to	set	the	correct	value	to
the	environment	variable	by	running	the	following	command:

export	APP_ENV=dev

The	APP_ENV	environment	variable	will	be	the	one	telling	us	which	environment	we	are	in.
Now,	it	is	time	to	use	this	service	provider.	In	order	to	register	it	by	reading	from	the
configuration	file	of	the	current	environment,	add	the	following	lines	to	your	index.php
file:

$env	=	getenv('APP_ENV')	?:	'prod';

$app->register(

				new	Igorw\Silex\ConfigServiceProvider(

								__DIR__	.	"/../config/$env.json"

)

);

The	first	thing	we	did	here	is	to	get	the	environment	from	the	environment	variable.	By
default,	we	set	it	to	prod.	Then,	we	invoked	register	from	the	$app	object	to	add	an
instance	of	ConfigServiceProvider	by	passing	the	correct	configuration	file	path.	From
now	on,	the	$app	“array”	will	contain	three	entries:	debug,	cache,	and	db	with	the	content
of	the	configuration	files.	We	will	be	able	to	access	them	whenever	we	have	access	to
$app,	which	will	be	mostly	everywhere.

Setting	the	template	engine
Another	of	the	handy	service	providers	is	Twig.	As	you	might	remember,	Twig	is	the
template	engine	that	we	used	in	our	own	framework,	and	it	is,	in	fact,	from	the	same
people	that	developed	Symfony	and	Silex.	You	also	already	know	how	to	add	the
dependency	with	Composer;	simply	run	the	following:

$	composer	require	twig/twig

To	register	the	service,	we	will	need	to	add	the	following	lines	in	our	public/index.php
file:

$app->register(

				new	Silex\Provider\TwigServiceProvider(),

				['twig.path'	=>	__DIR__	.	'/../views']

);

Also,	create	the	views/	directory	where	we	will	later	store	our	templates.	Now,	you	have
the	Twig_Environment	instance	available	by	just	accessing	$app['twig'].

Adding	a	logger
The	last	one	of	the	service	providers	that	we	will	register	for	now	is	the	logger.	This	time,
the	library	to	use	is	Monolog,	and	you	can	include	this	via	the	following:

$	composer	require	monolog/monolog

The	quickest	way	to	register	a	service	is	by	just	providing	the	path	of	the	log	file,	which
can	be	done	as	follows:

$app->register(

				new	Silex\Provider\MonologServiceProvider(),

				['monolog.logfile'	=>	__DIR__	.	'/../app.log']

);

If	you	would	like	to	add	more	information	to	this	service	provider,	such	as	what	level	of
logs	you	want	to	save,	the	name	of	the	log,	and	so	on,	you	can	add	them	to	the	array
together	with	the	log	file.	Take	a	look	at	the	documentation	at
http://silex.sensiolabs.org/doc/providers/monolog.html	for	the	full	list	of	parameters
available.

As	with	the	template	engine,	from	now	on,	you	can	access	the	Monolog\Logger	instance
from	the	Application	object	by	accessing	$app['monolog'].

http://silex.sensiolabs.org/doc/providers/monolog.html

Adding	the	first	endpoint
It	is	time	to	see	how	the	router	works	in	Silex.	We	would	like	to	add	a	simple	endpoint	for
the	home	page.	As	we	already	mentioned,	the	$app	instance	can	manage	almost	anything,
including	routes.	Add	the	following	code	at	the	end	of	the	public/index.php	file:

$app->get('/',	function(Application	$app)	{

				return	$app['twig']->render('home.twig');

});

This	is	a	similar	way	of	adding	routes	to	the	one	that	Laravel	follows.	We	invoked	the	get
method	as	it	is	a	GET	endpoint,	and	we	passed	the	route	string	and	the	Application
instance.	As	we	mentioned	here,	$app	also	acts	as	a	dependency	injector—in	fact,	it
extends	from	one:	Pimple—so	you	will	notice	the	Application	instance	almost
everywhere.	The	result	of	the	anonymous	function	will	be	the	response	that	we	will	send
to	the	user—in	this	case,	a	rendered	Twig	template.

Right	now,	this	will	not	do	the	trick.	In	order	to	let	Silex	know	that	you	are	done	setting	up
your	application,	you	need	to	invoke	the	run	method	at	the	very	end	of	the
public/index.php	file.	Remember	that	if	you	need	to	add	anything	else	to	this	file,	it	has
to	be	before	this	line:

$app->run();

You	have	already	worked	with	Twig,	so	we	will	not	spend	too	much	time	on	this.	The	first
thing	to	add	is	the	views/home.twig	template:

{%	extends	"layout.twig"	%}

{%	block	content	%}

				<h1>Hi	visitor!</h1>

{%	endblock	%}

Now,	as	you	might	have	already	guessed,	we	will	add	the	views/layout.twig	template,
as	follows:

<html>

<head>

				<title>Silex	Example</title>

</head>

<body>

{%	block	content	%}

{%	endblock	%}

</body>

</html>

Try	accessing	the	home	page	of	your	application;	you	should	get	the	following	result:

Accessing	the	database
For	this	section,	we	will	write	an	endpoint	that	will	create	recipes	for	our	cookbook.	Run
the	following	MySQL	queries	in	order	to	set	up	the	cookbook	database	and	create	the
empty	recipes	table:

mysql>	CREATE	SCHEMA	cookbook;

Query	OK,	1	row	affected	(0.00	sec)

mysql>	USE	cookbook;

Database	changed

mysql>	CREATE	TABLE	recipes(

				->	id	INT	UNSIGNED	NOT	NULL	AUTO_INCREMENT	PRIMARY	KEY,

				->	name	VARCHAR(255)	NOT	NULL,

				->	ingredients	TEXT	NOT	NULL,

				->	instructions	TEXT	NOT	NULL,

				->	time	INT	UNSIGNED	NOT	NULL);

Query	OK,	0	rows	affected	(0.01	sec)

Silex	does	not	come	with	any	ORM	integration,	so	you	will	need	to	write	your	SQL
queries	by	hand.	However,	there	is	a	Doctrine	service	provider	that	gives	you	a	simpler
interface	than	the	one	PDO	offers,	so	let’s	try	to	integrate	it.	To	install	this,	run	the
following	command:

$	composer	require	"doctrine/dbal:~2.2"

Now,	we	are	ready	to	register	the	service	provider.	As	with	the	rest	of	services,	add	the
following	code	to	your	public/index.php	before	the	route	definitions:

$app->register(new	Silex\Provider\DoctrineServiceProvider(),	[

				'dbs.options'	=>	[

								[

												'driver'				=>	'pdo_mysql',

												'host'						=>	'127.0.0.1',

												'dbname'				=>	'cookbook',

												'user'						=>	$app['database']['user'],

												'password'		=>	$app['database']['password']

]

]

]);

When	registering,	you	need	to	provide	the	options	for	the	database	connection.	Some	of
them	will	be	the	same	regardless	of	the	environment,	such	as	the	driver	or	even	the	host,
but	some	will	come	from	the	configuration	file,	such	as	$app['database']['user'].
From	now	on,	you	can	access	the	database	connection	via	$app['db'].

With	the	database	set	up,	let’s	add	the	routes	that	will	allow	us	to	add	and	fetch	recipes.	As
with	Laravel,	you	can	specify	either	the	anonymous	function,	as	we	already	did,	or	a
controller	and	method	to	execute.	Replace	the	current	route	with	the	following	three
routes:

$app->get(

				'/',

				'CookBook\\Controllers\\RecipesController::getAll'

);

$app->post(

				'/recipes',

				'CookBook\\Controllers\\RecipesController::create'

);

$app->get(

				'/recipes',

				'CookBook\\Controllers\\RecipesController::getNewForm'

);

As	you	can	observe,	there	will	be	a	new	controller,
CookBook\Controllers\RecipesController,	which	will	be	placed	in
src/Controllers/RecipesController.php.	This	means	that	you	need	to	change	the
autoloader	in	Composer.	Edit	your	composer.json	file	with	the	following:

"autoload":	{

				"psr-4":	{"CookBook\\":	"src/"}

}

Now,	let’s	add	the	controller	class,	as	follows:

<?php

namespace	CookBook\Controllers;

class	Recipes	{

				

}

The	first	method	we	will	add	is	the	getNewForm	method,	which	will	just	render	the	add	a
new	recipe	page.	The	method	looks	similar	to	this:

public	function	getNewForm(Application	$app):	string	{

				return	$app['twig']->render('new_recipe.twig');

}

The	method	will	just	render	new_recipe.twig.	An	example	of	this	template	could	be	as
follows:

{%	extends	"layout.twig"	%}

{%	block	content	%}

				<h1>Add	recipe</h1>

				<form	method="post">

								<div>

												<label	for="name">Name</label>

												<input	type="text"	name="name"

																			value="{{	name	is	defined	?	name	:	""	}}"	/>

								</div>

								<div>

												<label	for="ingredients">Ingredients</label>

												<textarea	name="ingredients">

																{{	ingredients	is	defined	?	ingredients	:	""	}}

												</textarea>

								</div>

								<div>

												<label	for="instructions">Instructions</label>

												<textarea	name="instructions">

																{{	instructions	is	defined	?	instructions	:	""	}}

												</textarea>

								</div>

								<div>

												<label	for="time">Time	(minutes)</label>

												<input	type="number"	name="time"

																			value="{{	time	is	defined	?	time	:	""	}}"	/>

								</div>

								<div>

												<button	type="submit">Save</button>

								</div>

				</form>

{%	endblock	%}

This	template	sends	the	name,	ingredients,	instructions,	and	the	time	that	it	takes	to
prepare	the	dish.	The	endpoint	that	will	get	this	form	needs	to	get	the	response	object	in
order	to	extract	this	information.	In	the	same	way	that	we	could	get	the	Application
instance	as	an	argument,	we	can	get	the	Request	one	too	if	we	specify	it	in	the	method
definition.	Accessing	the	POST	parameters	is	as	easy	as	invoking	the	get	method	by
sending	the	name	of	the	parameter	or	calling	$request->request->all()	to	get	all	of
them	as	an	array.	Add	the	following	method	that	checks	whether	all	the	data	is	valid	and
renders	the	form	again	if	it	is	not,	sending	the	submitted	data	and	errors:

public	function	create(Application	$app,	Request	$request):	string	{

				$params	=	$request->request->all();

				$errors	=	[];

				if	(empty($params['name']))	{

								$errors[]	=	'Name	cannot	be	empty.';

				}

				if	(empty($params['ingredients']))	{

								$errors[]	=	'Ingredients	cannot	be	empty.';

				}

				if	(empty($params['instructions']))	{

								$errors[]	=	'Instructions	cannot	be	empty.';

				}

				if	($params['time']	<=	0)	{

								$errors[]	=	'Time	has	to	be	a	positive	number.';

				}

				

				if	(!empty($errors))	{

								$params	=	array_merge($params,	['errors'	=>	$errors]);

								return	$app['twig']->render('new_recipe.twig',	$params);

				}

}

The	layout.twig	template	needs	to	be	edited	too	in	order	to	show	the	errors	returned.	We
can	do	this	by	executing	the	following:

{#	...	#}

{%	if	errors	is	defined	%}

				<p>Something	went	wrong!</p>

				

				{%	for	error	in	errors	%}

								{{	error	}}

				{%	endfor	%}

				

{%	endif	%}

{%	block	content	%}

{#	...	#}

At	this	point,	you	can	already	try	to	access	http://localhost/recipes,	fill	the	form
leaving	something	empty,	submitting,	and	getting	the	form	back	with	the	errors.	It	should
look	something	similar	to	this	(with	some	extra	CSS	styles):

The	continuation	of	the	controller	should	allow	us	to	store	the	correct	data	as	a	new	recipe
in	the	database.	To	do	so,	it	would	be	a	good	idea	to	create	a	separate	class,	such	as
CookBook\Models\RecipeModel;	however,	to	speed	things	up,	let’s	add	the	following	few
lines	that	would	go	into	the	model	to	the	controller.	Remember	that	we	have	the	Doctrine
service	provider,	so	there	is	no	need	to	use	PDO	directly:

$sql	=	'INSERT	INTO	recipes	(name,	ingredients,	instructions,	time)	'

				.	'VALUES(:name,	:ingredients,	:instructions,	:time)';

$result	=	$app['db']->executeUpdate($sql,	$params);

if	(!$result)	{

				$params	=	array_merge($params,	['errors'	=>	$errors]);

				return	$app['twig']->render('new_recipe.twig',	$params);

}

return	$app['twig']->render('home.twig');

Doctrine	also	helps	when	fetching	data.	To	see	it	working,	check	the	third	and	final
method,	in	which	we	will	fetch	all	the	recipes	in	order	to	show	the	user:

public	function	getAll(Application	$app):	string	{

				$recipes	=	$app['db']->fetchAll('SELECT	*	FROM	recipes');

				return	$app['twig']->render(

								'home.twig',

								['recipes'	=>	$recipes]

);

}

With	only	one	line,	we	performed	a	query.	It	is	not	as	clean	as	the	Eloquent	ORM	of
Laravel,	but	at	least	it	is	much	less	verbose	than	using	raw	PDO.	Finally,	you	can	update
your	home.twig	template	with	the	following	content	in	order	to	display	the	recipes	that	we
just	fetched	from	the	database:

{%	extends	"layout.twig"	%}

{%	block	content	%}

				<h1>Hi	visitor!</h1>

				<p>Check	our	recipes!</p>

				<table>

								<th>Name</th>

								<th>Time</th>

								<th>Ingredients</th>

								<th>Instructions</th>

				{%	for	recipe	in	recipes	%}

								<tr>

												<td>{{	recipe.name	}}</td>

												<td>{{	recipe.time	}}</td>

												<td>{{	recipe.ingredients	}}</td>

												<td>{{	recipe.instructions	}}</td>

								</tr>

				{%	endfor	%}

				</table>

{%	endblock	%}

Silex	versus	Laravel
Even	though	we	did	some	similar	comparison	before	starting	the	chapter,	it	is	time	to
recapitulate	what	we	said	and	compare	it	with	what	you	noted	by	yourself.	Laravel
belongs	to	the	type	of	framework	that	allows	you	to	create	great	things	with	very	little
work.	It	contains	all	the	components	that	you,	as	a	web	developer,	will	ever	need.	There
has	to	be	some	good	reason	for	how	fast	it	became	the	most	popular	framework	of	the
year!

On	the	other	hand,	Silex	is	a	microframework,	which	by	itself	does	very	little.	It	is	just	the
skeleton	on	which	you	can	build	the	framework	that	you	exactly	need.	It	already	provides
quite	a	lot	of	service	providers,	and	we	did	not	discuss	even	half	of	them;	we	recommend
you	to	visit	http://silex.sensiolabs.org/doc/providers.html	for	the	full	list.	However,	if	you
prefer,	you	can	always	add	other	dependencies	with	Composer	and	use	them.	If,	for	some
reason,	you	stop	liking	the	ORM	or	the	template	engine	that	you	use,	or	it	just	happens
that	a	new	and	better	one	appears	in	the	community,	switching	them	should	be	easy.	On
the	other	hand,	when	working	with	Laravel,	you	will	probably	stick	to	what	it	comes	with
it.

There	is	always	an	occasion	for	each	framework,	and	we	would	like	to	encourage	you	to
be	open	to	all	the	possibilities	that	there	are	out	there,	keep	up	to	date,	and	explore	new
frameworks	or	technologies	from	time	to	time.

http://silex.sensiolabs.org/doc/providers.html

Summary
In	this	chapter,	you	learned	how	important	it	is	to	know	some	of	the	most	important
frameworks.	You	also	learned	the	basics	of	two	famous	ones:	Laravel	and	Silex.	Now,	you
are	ready	to	either	use	your	framework	or	to	use	these	two	for	your	next	application.	With
this,	you	also	have	the	capacity	to	take	any	other	similar	framework	and	understand	it
easily.

In	the	next	chapter,	we	will	study	what	REST	APIs	are	and	how	to	write	one	with	Laravel.
This	will	expand	your	set	of	skills	and	give	you	more	flexibility	for	when	you	need	to
decide	which	approach	to	take	when	designing	and	writing	applications.

Chapter	9.	Building	REST	APIs
Most	non-developers	probably	think	that	creating	applications	means	building	either
software	for	your	PC	or	Mac,	games,	or	web	pages,	because	that	is	what	they	can	see	and
use.	But	once	you	join	the	developers’	community,	either	by	your	own	or	professionally,
you	will	eventually	realize	how	much	work	is	done	for	applications	and	tools	that	do	not
have	a	user	interface.

Have	you	ever	wondered	how	someone’s	website	can	access	your	Facebook	profile,	and
later	on,	post	an	automatic	message	on	your	wall?	Or	how	websites	manage	to
send/receive	information	in	order	to	update	the	content	of	the	page,	without	refreshing	or
submitting	any	form?	All	of	these	features,	and	many	more	interesting	ones,	are	possible
thanks	to	the	integration	of	applications	working	“behind	the	scenes”.	Knowing	how	to
use	them	will	open	the	doors	for	creating	more	interesting	and	useful	web	applications.

In	this	chapter,	you	will	learn	the	following:

Introduction	to	APIs	and	REST	APIs,	and	their	use
The	foundation	of	REST	APIs
Using	third-party	APIs
Tools	for	REST	API	developers
Designing	and	writing	REST	APIs	with	Laravel
Different	ways	of	testing	your	REST	APIs

Introducing	APIs
API	stands	for	Application	Program	Interface.	Its	goal	is	to	provide	an	interface	so	that
other	programs	can	send	commands	that	will	trigger	some	process	inside	the	application,
possibly	returning	some	output.	The	concept	might	seem	a	bit	abstract,	but	in	fact,	there
are	APIs	virtually	in	everything	which	is	somehow	related	to	computers.	Let’s	see	some
real	life	examples:

Operating	systems	or	OS,	like	Windows	or	Linux,	are	the	programs	that	allow	you	to
use	computers.	When	you	use	any	application	from	your	computer,	it	most	probably
needs	to	talk	to	the	OS	in	one	way	or	another,	for	example	by	requesting	a	certain
file,	sending	some	audio	to	the	speakers,	and	so	on.	All	these	interactions	between	the
application	and	the	OS	are	possible	thanks	to	the	APIs	that	the	OS	provides.	In	this
way,	the	application	need	not	interact	with	the	hardware	straight	away,	which	is	a
very	tiring	task.
To	interact	with	the	user,	a	mobile	application	provides	a	GUI.	The	interface	captures
all	the	events	that	the	user	triggers,	like	clicking	or	typing,	in	order	to	send	them	to
the	server.	The	GUI	communicates	with	the	server	using	an	API	in	the	same	way	the
program	communicates	with	the	OS	as	explained	earlier.
When	you	create	a	website	that	needs	to	display	tweets	from	the	user’s	Twitter
account,	you	need	to	communicate	with	Twitter.	They	provide	an	API	that	can	be
accessed	via	HTTP.	Once	authenticated,	by	sending	the	correct	HTTP	requests,	you
can	update	and/or	retrieve	data	from	their	application.

As	you	can	see,	there	are	different	places	where	APIs	are	useful.	In	general,	when	you
have	a	system	that	should	be	accessed	externally,	you	need	to	provide	potential	users	an
API.	When	we	say	externally,	we	mean	from	another	application	or	library,	but	it	can	very
well	be	inside	the	same	machine.

Introducing	REST	APIs
REST	APIs	are	a	specific	type	of	APIs.	They	use	HTTP	as	the	protocol	to	communicate
with	them,	so	you	can	imagine	that	they	will	be	the	most	used	ones	by	web	applications.
In	fact,	they	are	not	very	different	from	the	websites	that	you’ve	already	built,	since	the
client	sends	an	HTTP	request,	and	the	server	replies	with	an	HTTP	response.	The
difference	here	is	that	REST	APIs	make	heavy	use	of	HTTP	status	codes	to	understand
what	the	response	is,	and	instead	of	returning	HTML	resources	with	CSS	and	JS,	the
response	uses	JSON,	XML,	or	any	other	document	format	with	just	information,	and	not	a
graphic	user	interface.

Let’s	take	an	example.	The	Twitter	API,	once	authenticated,	allows	developers	to	get	the
tweets	of	a	given	user	by	sending	an	HTTP	GET	request	to
https://api.twitter.com/1.1/statuses/user_timeline.json.	The	response	to	this
request	is	an	HTTP	message	with	a	JSON	map	of	tweets	as	the	body	and	the	status	code
200.	We’ve	already	mentioned	status	code	in	Chapter	2,	Web	Applications	with	PHP,	but
we	will	review	them	shortly.

The	REST	API	also	allows	developers	to	post	tweets	on	behalf	of	the	user.	If	you	were
already	authenticated,	as	in	the	previous	example,	you	just	need	to	send	a	POST	request	to
https://api.twitter.com/1.1/statuses/update.json	with	the	appropriate	POST
parameters	in	the	body,	like	the	text	that	you	want	to	tweet.	Even	though	this	request	is	not
a	GET,	and	thus,	you	are	not	requesting	data	but	rather	sending	it,	the	response	of	this
request	is	quite	important	too.	The	server	will	use	the	status	codes	of	the	response	to	let
the	requester	know	if	the	tweet	was	posted	successfully,	or	if	they	could	not	understand
the	request,	there	was	an	internal	server	error,	the	authentication	was	not	valid,	and	so	on.
Each	of	these	scenarios	has	a	different	status	code,	which	is	the	same	across	all
applications.	This	makes	it	very	easy	to	communicate	with	different	APIs,	since	you	will
not	need	to	learn	a	new	list	of	status	code	each	time.	The	server	can	also	add	some	extra
information	to	the	body	in	order	to	throw	some	light	on	why	the	error	happened,	but	that
will	depend	on	the	application.

You	can	imagine	that	these	REST	APIs	are	provided	to	developers	so	they	can	integrate
them	with	their	applications.	They	are	not	user-friendly,	but	HTTP-friendly.

The	foundations	of	REST	APIs
Even	though	REST	APIs	do	not	have	an	official	standard,	most	developers	agree	on	the
same	foundation.	It	helps	that	HTTP,	which	is	the	protocol	that	this	technology	uses	to
communicate,	does	have	a	standard.	In	this	section,	we	will	try	to	describe	how	REST
APIs	should	work.

HTTP	request	methods
We’ve	already	introduced	the	idea	of	HTTP	methods	in	Chapter	2,	Web	Applications	with
PHP.	We	explained	that	an	HTTP	method	is	just	the	verb	of	the	request,	which	defines
what	kind	of	action	it	is	trying	to	perform.	We’ve	already	defined	this	method	when
working	with	HTML	forms:	the	form	tag	can	get	an	optional	attribute,	method,	which	will
make	the	form	submit	with	that	specific	HTTP	method.

You	will	not	use	forms	when	working	with	REST	APIs,	but	you	can	still	specify	the
method	of	the	request.	In	fact,	two	requests	can	go	to	the	same	endpoint	with	the	same
parameters,	headers,	and	so	on,	and	yet	have	completely	different	behaviors	due	to	their
methods,	which	makes	them	a	very	important	part	of	the	request.

As	we	are	giving	so	much	importance	to	HTTP	methods	in	order	to	identify	what	a	request
is	trying	to	do,	it	is	natural	that	we	will	need	a	handful	of	them.	So	far,	we	have	introduced
GET	and	POST,	but	there	are	actually	eight	different	methods:	GET,	POST,	PUT,
DELETE,	OPTIONS,	HEAD,	TRACE,	and	CONNECT.	You	will	usually	work	with	just
four	of	them.	Let’s	look	at	them	in	detail.

GET
When	a	request	uses	the	GET	method,	it	means	that	it	is	requesting	for	information	about
a	given	entity.	The	endpoint	should	contain	information	of	what	that	entity	is,	like	the	ID
of	a	book.	GET	can	also	be	used	to	query	for	a	list	of	objects,	either	all	of	them,	filtered,	or
paginated.

GET	requests	can	add	extra	information	to	the	request	when	needed.	For	example,	if	we
are	try	to	retrieve	all	the	books	that	contain	the	string	“rings”,	or	if	we	want	the	page
number	2	of	the	full	list	of	books.	As	you	already	know,	this	extra	information	is	added	to
the	query	string	as	GET	parameters,	which	is	a	list	of	key-value	pairs	concatenated	by	an
ampersand	(&).	So,	that	means	that	the	request	for	http://bookstore.com/books?
year=2001&page3	is	probably	used	for	getting	the	second	page	of	the	list	of	books
published	during	2001.

REST	APIs	have	extensive	documentation	on	the	available	endpoints	and	parameters,	so	it
should	be	easy	for	you	to	learn	to	query	properly.	Still,	even	though	it	will	be	documented,
you	should	expect	parameters	with	intuitive	names,	like	the	ones	in	the	example.

POST	and	PUT
POST	is	the	second	type	of	HTTP	method	that	you	already	know	about.	You	used	it	in
forms	with	the	intention	of	“posting”	data,	that	is,	trying	to	update	a	resource	on	the	server
side.	When	you	wanted	to	add	or	update	a	new	book,	you	sent	a	POST	request	with	the
data	of	the	book	as	the	POST	parameters.

POST	parameters	are	sent	in	a	format	similar	to	the	GET	parameters,	but	instead	of	being
part	of	the	query	string,	they	are	included	as	part	of	the	request’s	body.	Forms	in	HTML
are	already	doing	that	for	you,	but	when	you	need	to	talk	to	a	REST	API,	you	should
know	how	to	do	this	by	yourself.	In	the	next	section,	we	will	show	you	how	to	perform

POST	using	tools	other	than	forms.	Also	note	that	you	can	add	any	data	to	the	body	of	the
request;	it	is	quite	common	to	send	JSON	in	the	body	instead	of	POST	parameters.

The	PUT	method	is	quite	similar	to	the	POST	method.	This	too	tries	to	add	or	update	data
on	the	server	side,	and	for	this	purpose,	it	also	adds	extra	information	on	the	body	of	the
request.	Why	should	we	have	two	different	methods	that	do	the	same	thing?	There	are
actually	two	main	differences	between	these	methods:

PUT	requests	either	create	a	resource	or	update	it,	but	the	affected	resource	is	the	one
defined	by	the	endpoint	and	nothing	else.	That	means	that	if	we	want	to	update	a
book,	the	endpoint	should	state	that	the	resource	is	a	book,	and	specify	it,	for
example,	http://bookstore.com/books/8734.	On	the	other	hand,	if	you	do	not
identify	the	resource	to	be	created	or	updated	in	the	endpoint,	or	you	affect	other
resources	at	the	same	time,	you	should	use	POST	requests.
Idempotent	is	a	complicated	word	for	a	simple	concept.	An	idempotent	HTTP
method	is	one	that	can	be	called	many	times,	and	the	result	will	always	be	the	same.
For	example,	if	you	are	trying	to	update	the	title	of	a	book	to	“Don	Quixote”,	it	does
not	matter	how	many	times	you	call	it,	the	result	will	always	be	the	same:	the
resource	will	have	the	title	“Don	Quixote”.	On	the	other	hand,	non-idempotent
methods	might	return	different	results	when	executing	the	same	request.	An	example
could	be	an	endpoint	that	increases	the	stock	of	some	book.	Each	time	you	call	it,	you
will	increase	the	stock	more	and	more,	and	thus,	the	result	is	not	the	same.	PUT
requests	are	idempotent,	whereas	POST	requests	are	not.

Even	with	this	explanation	in	mind,	misusing	POST	and	PUT	is	quite	a	common	mistake
among	developers,	especially	when	they	lack	enough	experience	in	developing	REST
APIs.	Since	forms	in	HTML	only	send	data	with	POST	and	not	PUT,	the	first	one	is	more
popular.	You	might	find	REST	APIs	where	all	the	endpoints	that	update	data	are	POST,
even	though	some	of	them	should	be	PUT.

DELETE
The	DELETE	HTTP	method	is	quite	self-explanatory.	It	is	used	when	you	want	to	delete	a
resource	on	the	server.	As	with	PUT	requests,	DELETE	endpoints	should	identify	the
specific	resource	to	be	deleted.	An	example	would	be	when	we	want	to	remove	one	book
from	our	database.	We	could	send	a	DELETE	request	to	an	endpoint	similar	to
http://bookstore.com/books/23942.

DELETE	requests	just	delete	resources,	and	they	are	already	determined	by	the	URL.
Still,	if	you	need	to	send	extra	information	to	the	server,	you	could	use	the	body	of	the
request	as	you	do	with	POST	or	PUT.	In	fact,	you	can	always	send	information	within	the
body	of	the	request,	including	GET	requests,	but	that	does	not	mean	it	is	a	good	practice	to
do	so.

Status	codes	in	responses
If	HTTP	methods	are	very	important	for	requests,	status	codes	are	almost	indispensable
for	responses.	With	just	one	number,	the	client	will	know	what	happened	with	the	request.
This	is	especially	useful	when	you	know	that	status	codes	are	a	standard,	and	they	are
extensively	documented	on	the	Internet.

We’ve	already	described	the	most	important	ones	in	Chapter	2,	Web	Applications	with
PHP,	but	let’s	list	them	again,	adding	a	few	more	that	are	important	for	REST	APIs.	For
the	full	list	of	status	codes,	you	can	visit	https://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html.

2xx	–	success
All	the	status	codes	that	start	with	2	are	used	for	responses	where	the	request	was
processed	successfully,	regardless	of	whether	it	was	a	GET	or	POST.	Some	of	the	most
commonly	used	ones	in	this	category	are	as	follows:

200	OK:	It	is	the	generic	“everything	was	OK”	response.	If	you	were	asking	for	a
resource,	you	will	get	it	in	the	body	of	the	response,	and	if	you	were	updating	a
resource,	this	will	mean	that	the	new	data	has	been	successfully	saved.
201	created:	It	is	the	response	used	when	resources	are	created	successfully	with
POST	or	PUT.
202	accepted:	This	response	means	that	the	request	has	been	accepted,	but	it	has	not
been	processed	yet.	This	might	be	useful	when	the	client	needs	a	straightforward
response	for	a	very	heavy	operation:	the	server	sends	the	accepted	response,	and	then
starts	processing	it.

3xx	–	redirection
Even	though	you	might	think	there	is	only	one	type	of	redirection,	there	are	a	few
refinements:

301	moved	permanently:	This	means	that	the	resource	has	been	moved	to	a	different
URL,	so	from	then	on,	you	should	try	to	access	it	through	the	URL	provided	in	the
body	of	the	response.
303	see	other:	This	means	that	the	request	has	been	processed	but,	in	order	to	see	the
response,	you	need	to	access	the	URL	provided	in	the	body	of	the	response.

4xx	–	client	error
This	category	has	status	codes	describing	what	went	wrong	due	to	the	client’s	request:

400	bad	request:	This	is	a	generic	response	to	a	malformed	request,	that	is,	there	is	a
syntax	error	in	the	endpoint,	or	some	of	the	expected	parameters	were	not	provided.
401	unauthorized:	This	means	the	client	has	not	been	authenticated	successfully	yet,
and	the	resource	that	it	is	trying	to	access	needs	this	authentication.
403	forbidden:	This	error	message	means	that	even	though	the	client	has	been
authenticated,	it	does	not	have	enough	permissions	to	access	that	resource.
404	not	found:	The	specific	resource	has	not	been	found.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

405	method	not	allowed:	This	means	that	the	endpoint	exists,	but	it	does	not	accept
the	HTTP	method	used	on	the	request,	for	example,	we	were	trying	to	use	PUT,	but
the	endpoint	only	accepts	POST	requests.

5xx	–	server	error
There	are	up	to	11	different	errors	on	the	server	side,	but	we	are	only	interested	in	one:	the
500	internal	server	error.	You	could	use	this	status	code	when	something	unexpected,
like	a	database	error,	happens	while	processing	the	request.

REST	API	security
REST	APIs	are	a	powerful	tool	since	they	allow	developers	to	retrieve	and/or	update	data
from	the	server.	But	with	great	power	comes	great	responsibility,	and	when	designing	a
REST	API,	you	should	think	about	making	your	data	as	secure	as	possible.	Imagine—
anyone	could	post	tweets	on	your	behalf	with	a	simple	HTTP	request!

Similar	to	using	web	applications,	there	are	two	concepts	here:	authentication	and
authorization.	Authenticating	someone	is	identifying	who	he	or	she	is,	that	is,	linking	his
or	her	request	to	a	user	in	the	database.	On	the	other	hand,	authorizing	someone	is	to	allow
that	specific	user	to	perform	certain	actions.	You	could	think	of	authentication	as	the	login
of	the	user,	and	authorization	as	giving	permissions.

REST	APIs	need	to	manage	these	two	concepts	very	carefully.	Just	because	a	developer
has	been	authenticated	does	not	mean	he	can	access	all	the	data	on	the	server.	Sometimes,
users	can	access	only	their	own	data,	whereas	sometimes	you	would	like	to	implement	a
roles	system	where	each	role	has	different	access	levels.	It	always	depends	on	the	type	of
application	you	are	building.

Although	authorization	happens	on	the	server	side,	that	is,	it’s	the	server’s	database	that
will	decide	whether	a	given	user	can	access	a	certain	resource	or	not,	authentications	have
to	be	triggered	by	the	client.	This	means	that	the	client	has	to	know	what	authentication
system	the	REST	API	is	using	in	order	to	proceed	with	the	authentication.	Each	REST
API	will	implement	its	own	authentication	system,	but	there	are	some	well	known
implementations.

Basic	access	authentication
Basic	access	authentication—BA	for	short—is,	as	its	name	suggests,	basic.	The	client	adds
the	information	about	the	user	in	the	headers	of	each	request,	that	is,	username	and
password.	The	problem	is	that	this	information	is	only	encoded	using	BASE64	but	not
encrypted,	making	it	extremely	easy	for	an	intruder	to	decode	the	header	and	obtain	the
password	in	plain	text.	If	you	ever	have	to	use	it,	since,	to	be	honest,	it	is	a	very	easy	way
of	implementing	some	sort	of	authentication,	we	would	recommend	you	to	use	it	with
HTTPS.

In	order	to	use	this	method,	you	need	to	concatenate	the	username	and	password	like
username:password,	encode	the	resultant	string	using	Base64,	and	add	the	authorization
header	as:

Authorization:	Basic	<encoded-string>

OAuth	2.0
If	basic	authentication	was	very	simple,	and	insecure,	OAuth	2.0	is	the	most	secure	system
that	REST	APIs	use	in	order	to	authenticate,	and	so	was	the	previous	OAuth	1.0.	There	are
actually	different	versions	of	this	standard,	but	all	of	them	work	on	the	same	foundation:

1.	 There	are	no	usernames	and	passwords.	Instead,	the	provider	of	the	REST	API
assigns	a	pair	of	credentials—a	token	and	the	secret—to	the	developer.

2.	 In	order	to	authenticate,	the	developer	needs	to	send	a	POST	request	to	the	“token”
endpoint,	which	is	different	in	each	REST	API	but	has	the	same	concept.	This	request
has	to	include	the	encoded	developer	credentials.

3.	 The	server	replies	to	the	previous	request	with	a	session	token.	This	(and	not	the
credentials	mentioned	in	the	first	step)	is	to	be	included	in	each	request	that	you	make
to	the	REST	API.	The	session	token	expires	for	security	reasons,	so	you	will	have	to
repeat	the	second	step	again	when	that	happens.

Even	though	this	standard	is	kind	of	recent	(2012	onwards),	several	big	companies	like
Google	or	Facebook	have	already	implemented	it	for	their	REST	APIs.	It	might	look	a	bit
overcomplicated,	but	you	will	soon	get	to	use	it,	and	even	implement	it.

Using	third-party	APIs
That	was	enough	theory	about	REST	APIs;	it	is	time	to	dive	into	a	real	world	example.	In
this	section,	we	will	write	a	small	PHP	application	that	interacts	with	Twitter’s	REST	API;
that	includes	requesting	developer	credentials,	authenticating,	and	sending	requests.	The
goal	is	to	give	you	your	first	experience	in	working	with	REST	APIs,	and	showing	you
that	it	is	easier	than	you	could	expect.	It	will	also	help	you	to	understand	better	how	they
work,	so	it	will	be	easier	to	build	your	own	later.

Getting	the	application’s	credentials
REST	APIs	usually	have	the	concept	of	application.	An	application	is	like	an	account	on
their	development	site	that	identifies	who	uses	the	API.	The	credentials	that	you	will	use
to	access	the	API	will	be	linked	to	this	application,	which	means	that	you	can	have
multiple	applications	linked	to	the	same	account.

Assuming	that	you	have	a	Twitter	account,	go	to	https://apps.twitter.com	in	order	to	create
a	new	application.	Click	on	the	Create	New	App	button	in	order	to	access	the	form	for
application	details.	The	fields	are	very	self-explanatory—just	a	name	for	the	application,
the	description,	and	the	website	URL.	The	callback	URL	is	not	necessary	here,	since	that
will	be	used	only	for	applications	that	require	access	to	someone	else’s	account.	Agree
with	the	terms	and	conditions	in	order	to	proceed.

Once	you	have	been	redirected	to	your	application’s	page,	you	will	see	all	sort	of
information	that	you	can	edit.	Since	this	is	just	an	example,	let’s	go	straight	to	what
matters:	the	credentials.	Click	on	the	Keys	and	Access	Tokens	tab	to	see	the	values	of
Consumer	key	(API	key)	and	Consumer	Secret	(API	secret).	There	is	nothing	else	that
we	need	from	here.	You	can	save	them	on	your	filesystem,	as	~/.twitter_php7.json,	for
example:

{

				"key":	"iTh4Mzl0EAPn9HAm98hEhAmVEXS",

				"secret":	"PfoWM9yq4Bh6rGbzzJhr893j4r4sMIAeVRaPMYbkDer5N6F"

}

Tip
Securing	your	credentials

Securing	your	REST	API	credentials	should	be	taken	seriously.	In	fact,	you	should	take
care	of	all	kinds	of	credentials,	like	the	database	ones.	But	the	difference	is	that	you	will
usually	host	your	database	in	your	server,	which	makes	things	slightly	more	difficult	to
whoever	wants	to	attack.	On	the	other	hand,	the	third-party	REST	API	is	not	part	of	your
system,	and	someone	with	your	credentials	can	use	your	account	freely	on	your	behalf.

Never	include	your	credentials	in	your	code	base,	especially	if	you	have	your	code	in
GitHub	or	some	other	repository.	One	solution	would	be	to	have	a	file	in	your	server,
outside	your	code,	with	the	credentials;	if	that	file	is	encrypted,	that	is	even	better.	And	try
to	refresh	your	credentials	regularly,	which	you	can	probably	do	on	the	provider’s	website.

https://apps.twitter.com

Setting	up	the	application
Our	application	will	be	extremely	simple.	It	will	consist	of	one	class	that	will	allow	us	to
fetch	tweets.	This	will	be	managed	by	our	app.php	script.

As	we	have	to	make	HTTP	requests,	we	can	either	write	our	own	functions	that	use	cURL
(a	set	of	PHP	native	functions),	or	make	use	of	the	famous	PHP	library,	Guzzle.	This
library	can	be	found	in	Packagist,	so	we	will	use	Composer	to	include	it:

$	composer	require	guzzlehttp/guzzle

We	will	have	a	Twitter	class,	which	will	get	the	credentials	from	the	constructor,	and	one
public	method:	fetchTwits.	For	now,	just	create	the	skeleton	so	that	we	can	work	with	it;
we	will	implement	such	methods	in	later	sections.	Add	the	following	code	to
src/Twitter.php:

<?php

namespace	TwitterApp;

class	Twitter	{

				private	$key;

				private	$secret;

				public	function	__construct(String	$key,	String	$secret)	{

								$this->key	=	$key;

								$this->secret	=	$secret;

				}

				public	function	fetchTwits(string	name,	int	$count):	array	{

								return	[];

				}

}

Since	we	set	the	namespace	TwitterApp,	we	need	to	update	our	composer.json	file	with
the	following	addition.	Remember	to	run	composer	update	to	update	the	autoloader.

"autoload":	{

				"psr-4":	{"TwitterApp\\":	"src"}

}

Finally,	we	will	create	a	basic	app.php	file,	which	includes	the	Composer	autoloader,
reads	the	credentials	file,	and	creates	a	Twitter	instance:

<?php

use	TwitterApp\Twitter;

require	__DIR__	.	'/vendor/autoload.php';

$path	=	$_SERVER['HOME']	.	'/.twitter_php7.json';

$jsonCredentials	=	file_get_contents($path);

$credentials	=	json_decode($jsonCredentials,	true);

$twitter	=	new	Twitter($credentials['key'],	$credentials['secret']);

Requesting	an	access	token
In	a	real	world	application,	you	would	probably	want	to	separate	the	code	related	to
authentication	from	the	one	that	deals	with	operations	like	fetching	or	posting	data.	To
keep	things	simple	here,	we	will	let	the	Twitter	class	know	how	to	authenticate	by	itself.

Let’s	start	by	adding	a	$client	property	to	the	class	which	will	contain	an	instance	of
Guzzle’s	Client	class.	This	instance	will	contain	the	base	URI	of	the	Twitter	API,	which
we	can	have	as	the	constant	TWITTER_API_BASE_URI.	Instantiate	this	property	in	the
constructor	so	that	the	rest	of	the	methods	can	make	use	of	it.	You	can	also	add	an
$accessToken	property	which	will	contain	the	access	token	returned	by	the	Twitter	API
when	authenticating.	All	these	changes	are	highlighted	here:

<?php

namespace	TwitterApp;

use	Exception;

use	GuzzleHttp\Client;

class	Twitter	{

				const	TWITTER_API_BASE_URI	=	'https://api.twitter.com';

				private	$key;

				private	$secret;

				private	$accessToken;

				private	$client;

				public	function	__construct(String	$key,	String	$secret)	{

								$this->key	=	$key;

								$this->secret	=	$secret;

								$this->client	=	new	Client(

												['base_uri'	=>	self::TWITTER_API_BASE_URI]

);

				}

				//...

}

The	next	step	would	be	to	write	a	method	that,	given	the	key	and	secret	are	provided,
requests	an	access	token	to	the	provider.	More	specifically:

Concatenate	the	key	and	the	secret	with	a	:.	Encode	the	result	using	Base64.
Send	a	POST	request	to	/oauth2/token	with	the	encoded	credentials	as	the
Authorization	header.	Also	include	a	Content-Type	header	and	a	body	(check	the
code	for	more	information).

We	now	invoke	the	post	method	of	Guzzle’s	client	instance	sending	two	arguments:	the
endpoint	string	(/oauth2/token)	and	an	array	with	options.	These	options	include	the
headers	and	the	body	of	the	request,	as	you	will	see	shortly.	The	response	of	this

invocation	is	an	object	that	identifies	the	HTTP	response.	You	can	extract	the	content
(body)	of	the	response	with	getBody.	Twitter’s	API	response	is	a	JSON	with	some
arguments.	The	one	that	you	care	about	the	most	is	the	access_token,	the	token	that	you
will	need	to	include	in	each	subsequent	request	to	the	API.	Extract	it	and	save	it.	The	full
method	looks	as	follows:

private	function	requestAccessToken()	{

				$encodedString	=	base64_encode(

								$this->key	.	':'	.	$this->secret

);

				$headers	=	[

								'Authorization'	=>	'Basic	'	.	$encodedString,

								'Content-Type'	=>	'application/x-www-form-urlencoded;charset=UTF-8'

];

				$options	=	[

								'headers'	=>	$headers,

								'body'	=>	'grant_type=client_credentials'

];

				$response	=	$this->client->post(self::	OAUTH_ENDPOINT,	$options);

				$body	=	json_decode($response->getBody(),	true);

				$this->accessToken	=	$body['access_token'];

}

You	can	already	try	this	code	by	adding	these	two	lines	at	the	end	of	the	constructor:

$this->requestAccessToken();

var_dump($this->accessToken);

Run	the	application	in	order	to	see	the	access	token	given	by	the	provider	using	the
following	command.	Remember	to	remove	the	preceding	two	lines	in	order	to	proceed
with	the	section.

$	php	app.php

Keep	in	mind	that,	even	though	having	a	key	and	secret	and	getting	an	access	token	is	the
same	across	all	OAuth	authentications,	the	specific	way	of	encoding,	the	endpoint	used,
and	the	response	received	from	the	provider	are	exclusive	from	Twitter’s	API.	It	could	be
that	several	others	are	exactly	the	same,	but	always	check	the	documentation	for	each	one.

Fetching	tweets
We	finally	arrive	to	the	section	where	we	actually	make	use	of	the	API.	We	will
implement	the	fetchTwits	method	in	order	to	get	a	list	of	the	last	N	number	of	tweets	for
a	given	user.	In	order	to	perform	requests,	we	need	to	add	the	Authorization	header	to
each	one,	this	time	with	the	access	token.	Since	we	want	to	make	this	class	as	reusable	as
possible,	let’s	extract	this	to	a	private	method:

private	function	getAccessTokenHeaders():	array	{

				if	(empty($this->accessToken))	{

								$this->requestAccessToken();

				}

				return	['Authorization'	=>	'Bearer	'	.	$this->accessToken];

}

As	you	can	see,	the	preceding	method	also	allows	us	to	fetch	the	access	token	from	the
provider.	This	is	useful,	since	if	we	make	more	than	one	request,	we	will	just	request	the
access	token	once,	and	we	have	one	unique	place	to	do	so.	Add	now	the	following	method
implementation:

const	GET_TWITS	=	'/1.1/statuses/user_timeline.json';

//...

public	function	fetchTwits(string	$name,	int	$count):	array	{

				$options	=	[

								'headers'	=>	$this->getAccessTokenHeaders(),

								'query'	=>	[

												'count'	=>	$count,

												'screen_name'	=>	$name

]

];

				$response	=	$this->client->get(self::GET_TWITS,	$options);

				$responseTwits	=	json_decode($response->getBody(),	true);

				$twits	=	[];

				foreach	($responseTwits	as	$twit)	{

								$twits[]	=	[

												'created_at'	=>	$twit['created_at'],

												'text'	=>	$twit['text'],

												'user'	=>	$twit['user']['name']

];

				}

				return	$twits;

}

The	first	part	of	the	preceding	method	builds	the	options	array	with	the	access	token
headers	and	the	query	string	arguments—in	this	case,	with	the	number	of	tweets	to
retrieve	and	the	user.	We	perform	the	GET	request	and	decode	the	JSON	response	into	an
array.	This	array	contains	a	lot	of	information	that	we	might	not	need,	so	we	iterate	it	in
order	to	extract	those	fields	that	we	really	want—in	this	example,	the	date,	the	text,	and
the	user.

In	order	to	test	the	application,	just	invoke	the	fetchTwits	method	at	the	end	of	the
app.php	file,	specifying	the	Twitter	ID	of	one	of	the	people	you	are	following,	or	yourself.

$twits	=	$twitter->fetchTwits('neiltyson',	10);

var_dump($twits);

You	should	get	a	response	similar	to	ours,	shown	in	the	following	screenshot:

One	thing	to	keep	in	mind	is	that	access	tokens	expire	after	some	time,	returning	an	HTTP
response	with	a	4xx	status	code	(usually,	401	unauthorized).	Guzzle	throws	an	exception
when	the	status	code	is	either	4xx	or	5xx,	so	it	is	easy	manage	these	scenarios.	You	could
add	this	code	when	performing	the	GET	request:

try	{

				$response	=	$this->client->get(self::GET_TWITS,	$options);

}	catch	(ClientException	$e)	{

				if	($e->getCode()	==	401)	{

								$this->requestAccessToken();

								$response	=	$this->client->get(self::GET_TWITS,	$options);

				}	else	{

								throw	$e;

				}

}

The	toolkit	of	the	REST	API	developer
While	you	are	developing	your	own	REST	API,	or	writing	an	integration	for	a	third-party
one,	you	might	want	to	test	it	before	you	start	writing	your	code.	There	are	a	handful	of
tools	that	will	help	you	with	this	task,	whether	you	want	to	use	your	browser,	or	you	are	a
fan	of	the	command	line.

Testing	APIs	with	browsers
There	are	actually	several	add-ons	that	allow	you	to	perform	HTTP	requests	from
browsers,	depending	on	which	one	you	use.	Some	famous	names	are	Advanced	Rest	Client
for	Chrome	and	RESTClient	for	Firefox.	At	the	end	of	the	day,	all	those	clients	allow	you
to	perform	the	same	HTTP	requests,	where	you	can	specify	the	URL,	the	method,	the
headers,	the	body,	and	so	on.	These	clients	will	also	show	you	all	the	details	you	can
imagine	from	the	response,	including	the	status	code,	the	time	spent,	and	the	body.	The
following	screenshot	displays	an	example	of	a	request	using	Chrome’s	Advanced	Rest
Client:

If	you	want	to	test	GET	requests	with	your	own	API,	and	all	that	you	need	is	the	URL,
that	is,	you	do	not	need	to	send	any	headers,	you	can	just	use	your	browser	as	if	you	were
trying	to	access	any	other	website.	If	you	do	so,	and	if	you	are	working	with	JSON
responses,	you	can	install	another	add-on	to	your	browser	that	will	help	you	in	viewing

your	JSON	in	a	more	“beautiful”	way.	Look	for	JSONView	on	any	browser	for	a	really
handy	one.

Testing	APIs	using	the	command	line
Some	people	feel	more	comfortable	using	the	command	line;	so	luckily,	for	them	there	are
tools	that	allow	them	to	perform	any	HTTP	request	from	their	consoles.	We	will	give	a
brief	introduction	to	one	of	the	most	famous	ones:	cURL.	This	tool	has	quite	a	lot	of
features,	but	we	will	focus	only	on	the	ones	that	you	will	be	using	more	often:	the	HTTP
method,	post	parameters,	and	headers:

-X	<method>:	This	specifies	the	HTTP	method	to	use
--data:	This	adds	the	parameters	specified,	which	can	be	added	as	key-value	pairs,
JSON,	plain	text,	and	so	on
--header:	This	adds	a	header	to	the	request

The	following	is	an	example	of	the	way	to	send	a	POST	request	with	cURL:

curl	-X	POST	--data	"text=This	is	sparta!"	\

>	--header	"Authorization:	Bearer	8s8d7bf8asdbf8sbdf8bsa"	\

>		https://api.twitter.com/1.1/statuses/update.json

{"errors":[{"code":89,"message":"Invalid	or	expired	token."}]}

If	you	are	using	a	Unix	system,	you	will	probably	be	able	to	format	the	resulting	JSON	by
appending	|	python	-m	json.tool	so	that	it	gets	easier	to	read:

$	curl	-X	POST	--data	"text=This	is	sparta!"	\

>	--header	"Authorization:	Bearer	8s8d7bf8asdbf8sbdf8bsa"	\

>		https://api.twitter.com/1.1/statuses/update.json	\

>	|	python	-m	json.tool

{

				"errors":	[

								{

												"code":	89,

												"message":	"Invalid	or	expired	token."

								}

]

}

cURL	is	quite	a	powerful	tool	that	lets	you	do	quite	a	few	tricks.	If	you	are	interested,	go
ahead	and	check	the	documentation	or	some	tutorial	on	how	to	use	all	its	features.

Best	practices	with	REST	APIs
We’ve	already	gone	through	some	of	the	best	practices	when	writing	REST	APIs,	like
using	HTTP	methods	properly,	or	choosing	the	correct	status	code	for	your	responses.	We
also	described	two	of	the	most	used	authentication	systems.	But	there	is	still	a	lot	to	learn
about	creating	proper	REST	APIs.	Remember	that	they	are	meant	to	be	used	by
developers	like	yourself,	so	they	will	always	be	grateful	if	you	do	things	properly,	and
make	their	lives	easier.	Ready?

Consistency	in	your	endpoints
When	deciding	how	to	name	your	endpoints,	try	keeping	them	consistent.	Even	though
you	are	free	to	choose,	there	is	a	set	of	spoken	rules	that	will	make	your	endpoints	more
intuitive	and	easy	to	understand.	Let’s	list	some	of	them:

For	starters,	an	endpoint	should	point	to	a	specific	resource	(for	example,	books	or
tweets),	and	you	should	make	that	clear	in	your	endpoint.	If	you	have	an	endpoint
that	returns	the	list	of	all	books,	do	not	name	it	/library,	as	it	is	not	obvious	what	it
will	be	returning.	Instead,	name	it	/books	or	/books/all.
The	name	of	the	resource	can	be	either	plural	or	singular,	but	make	it	consistent.	If
sometimes	you	use	/books	and	sometimes	/user,	it	might	be	confusing,	and	people
will	probably	make	mistakes.	We	personally	prefer	to	use	the	plural	form,	but	that	is
totally	up	to	you.
When	you	want	to	retrieve	a	specific	resource,	do	it	by	specifying	the	ID	whenever
possible.	IDs	must	be	unique	in	your	system,	and	any	other	parameter	might	point	to
two	different	entities.	Specify	the	ID	next	to	the	name	of	the	resource,	such	as
/books/249234-234-23-42.
If	you	can	understand	what	an	endpoint	does	by	just	the	HTTP	method,	there	is	no
need	to	add	this	information	as	part	of	the	endpoint.	For	example,	if	you	want	to	get	a
book,	or	you	want	to	delete	it,	/books/249234-234-23-42	along	with	the	HTTP
methods	GET	and	DELETE	are	more	than	enough.	If	it	is	not	obvious,	state	it	as	a
verb	at	the	end	of	the	endpoint,	like	/employee/9218379182/promote.

Document	as	much	as	you	can
The	title	says	everything.	You	are	probably	not	going	to	be	the	one	using	the	REST	API,
others	will.	Obviously,	even	if	you	design	a	very	intuitive	set	of	endpoints,	developers	will
still	need	to	know	the	whole	set	of	available	endpoints,	what	each	of	them	does,	what
optional	parameters	are	available,	and	so	on.

Write	as	much	documentation	as	possible,	and	keep	it	up	to	date.	Take	a	look	at	other
documented	APIs	to	gather	ideas	on	how	to	display	the	information.	There	are	plenty	of
templates	and	tools	that	will	help	you	deliver	a	well-presented	documentation,	but	you	are
the	one	that	has	to	be	consistent	and	methodical.	Developers	have	a	special	hate	towards
documenting	anything,	but	we	also	like	to	find	clear	and	beautifully	presented
documentation	when	we	need	to	use	someone	else’s	APIs.

Filters	and	pagination
One	of	the	common	usages	of	an	API	is	to	list	resources	and	filter	them	by	some	criteria.
We	already	saw	an	example	when	we	were	building	our	own	bookstore;	we	wanted	to	get
the	list	of	books	that	contained	a	certain	string	in	their	titles	or	authors.

Some	developers	try	to	have	beautiful	endpoints,	which	a	priori	is	a	good	thing	to	do.
Imagine	that	you	want	to	filter	just	by	title,	you	might	end	up	having	an	endpoint	like
/books/title/<string>.	We	add	also	the	ability	to	filter	by	author,	and	we	now	get	two
more	endpoints:	/books/title/<string>/author/<string>	and
/books/author/<string>.	Now	let’s	add	the	description	too—do	you	see	where	we	are
going?

Even	though	some	developers	do	not	like	to	use	query	strings	as	arguments,	there	is
nothing	wrong	with	it.	In	fact,	if	you	use	them	properly,	you	will	end	up	with	cleaner
endpoints.	You	want	to	get	books?	Fine,	just	use	/books,	and	add	whichever	filter	you
need	using	the	query	string.

Pagination	occurs	when	you	have	way	too	many	resources	of	the	same	type	to	retrieve	all
at	once.	You	should	think	of	pagination	as	another	optional	filter	to	be	specified	as	a	GET
parameter.	You	should	have	pages	with	a	default	size,	let’s	say	10	books,	but	it	is	a	good
idea	to	give	the	developers	the	ability	to	define	their	own	size.	In	this	case,	developers	can
specify	the	length	and	the	number	of	pages	to	retrieve.

API	versioning
Your	API	is	a	reflection	of	what	your	application	can	do.	Chances	are	that	your	code	will
evolve,	improving	the	already	existing	features	or	adding	new	ones.	Your	API	should	be
updated	too,	exposing	those	new	features,	updating	existing	endpoints,	or	even	removing
some	of	them.

Imagine	now	that	someone	else	is	using	your	REST	API,	and	their	whole	website	relies	on
it.	If	you	change	your	existing	endpoints,	their	website	will	stop	working!	They	will	not	be
happy	at	all,	and	will	try	to	find	someone	else	that	can	do	what	you	were	doing.	Not	a
good	scenario,	but	then,	how	do	you	improve	your	API?

The	solution	is	to	use	versioning.	When	you	release	a	new	version	of	the	API,	do	not	nuke
down	the	existing	one;	you	should	give	some	time	to	the	users	to	upgrade	their
integrations.	And	how	can	two	different	versions	of	the	API	coexist?	You	already	saw	one
of	the	options—the	one	that	we	recommend	you:	by	specifying	the	version	of	the	API	to
use	as	part	of	the	endpoint.	Do	you	remember	the	endpoint	of	the	Twitter	API
/1.1/statuses/user_timeline.json?	The	1.1	refers	to	the	version	that	we	want	to	use.

Using	HTTP	cache
If	the	main	feature	of	REST	APIs	is	that	they	make	heavy	use	of	HTTP,	why	not	take
advantage	of	HTTP	cache?	Well,	there	are	actual	reasons	for	not	using	it,	but	most	of	them
are	due	to	a	lack	of	knowledge	about	using	it	properly.	It	is	out	of	the	scope	of	this	book	to
explain	every	single	detail	of	its	implementation,	but	let’s	try	to	give	a	short	introduction
to	the	topic.	Plenty	of	resources	on	the	Internet	can	help	you	to	understand	the	parts	that
you	are	more	interested	in.

HTTP	responses	can	be	divided	as	public	and	private.	Public	responses	are	shared	between
all	users	of	the	API,	whereas	the	private	ones	are	meant	to	be	unique	for	each	user.	You
can	specify	which	type	of	response	is	yours	using	the	Cache-Control	header,	allowing	the
response	to	be	cached	if	the	method	of	the	request	was	a	GET.	This	header	can	also	expose
the	expiration	of	the	cache,	that	is,	you	can	specify	the	duration	for	which	your	response
will	remain	the	same,	and	thus,	can	be	cached.

Other	systems	rely	on	generating	a	hash	of	the	representation	of	a	resource,	and	add	it	as
the	ETag	(Entity	tag)	header	in	order	to	know	if	the	resource	has	changed	or	not.	In	a
similar	way,	you	can	set	the	Last-Modified	header	to	let	the	client	know	when	was	the
last	time	that	the	given	resource	changed.	The	idea	behind	those	systems	is	to	identify
when	the	client	already	contains	valid	data.	If	so,	the	provider	does	not	process	the
request,	but	returns	an	empty	response	with	the	status	code	304	(not	modified)	instead.
When	the	client	gets	that	response,	it	uses	its	cached	content.

Creating	a	REST	API	with	Laravel
In	this	section,	we	will	build	a	REST	API	with	Laravel	from	scratch.	This	REST	API	will
allow	you	to	manage	different	clients	at	your	bookstore,	not	only	via	the	browser,	but	via
the	UI	as	well.	You	will	be	able	to	perform	pretty	much	the	same	actions	as	before,	that	is,
listing	books,	buying	them,	borrowing	for	free,	and	so	on.

Once	the	REST	API	is	done,	you	should	remove	all	the	business	logic	from	the	bookstore
that	you	built	during	the	previous	chapters.	The	reason	is	that	you	should	have	one	unique
place	where	you	can	actually	manipulate	your	databases	and	the	REST	API,	and	the	rest	of
the	applications,	like	the	web	one,	should	able	to	communicate	with	the	REST	API	for
managing	data.	In	doing	so,	you	will	be	able	to	create	other	applications	for	different
platforms,	like	mobile	apps,	that	will	use	the	REST	API	too,	and	both	the	website	and	the
mobile	app	will	always	be	synchronized,	since	they	will	be	using	the	same	sources.

As	with	our	previous	Laravel	example,	in	order	to	create	a	new	project,	you	just	need	to
run	the	following	command:

$	laravel	new	bookstore_api

Setting	OAuth2	authentication
The	first	thing	that	we	are	going	to	implement	is	the	authentication	layer.	We	will	use
OAuth2	in	order	to	make	our	application	more	secure	than	basic	authentication.	Laravel
does	not	provide	support	for	OAuth2	out	of	the	box,	but	there	is	a	service	provider	which
does	that	for	us.

Installing	OAuth2Server
To	install	OAuth2,	add	it	as	a	dependency	to	your	project	using	Composer:

$	composer	require	"lucadegasperi/oauth2-server-laravel:5.1.*"

This	service	provider	needs	quite	a	few	changes.	We	will	go	through	them	without	going
into	too	much	detail	on	how	things	work	exactly.	If	you	are	more	interested	in	the	topic,	or
if	you	want	to	create	your	own	service	providers	for	Laravel,	we	recommend	you	to	go
though	the	extensive	official	documentation.

To	start	with,	we	need	to	add	the	new	OAuth2Server	service	provider	to	the	array	of
providers	in	the	config/app.php	file.	Add	the	following	lines	at	the	end	of	the	providers
array:

/*

	*	OAuth2	Server	Service	Providers…

	*/

								

LucaDegasperi\OAuth2Server\Storage\FluentStorageServiceProvider::class,							

LucaDegasperi\OAuth2Server\OAuth2ServerServiceProvider::class,

In	the	same	way,	you	need	to	add	a	new	alias	to	the	aliases	array	in	the	same	file:

'Authorizer'	=>	LucaDegasperi\OAuth2Server\Facades\Authorizer::class,

Let’s	move	to	the	app/Http/Kernel.php	file,	where	we	need	to	make	some	changes	too.
Add	the	following	entry	to	the	$middleware	array	property	of	the	Kernel	class:

\LucaDegasperi\OAuth2Server\Middleware\OAuthExceptionHandlerMiddleware::cla

ss,

Add	the	following	key-value	pairs	to	the	$routeMiddleware	array	property	of	the	same
class:

'oauth'	=>	\LucaDegasperi\OAuth2Server\Middleware\OAuthMiddleware::class,

'oauth-user'	=>	

\LucaDegasperi\OAuth2Server\Middleware\OAuthUserOwnerMiddleware::class,

'oauth-client'	=>	

\LucaDegasperi\OAuth2Server\Middleware\OAuthClientOwnerMiddleware::class,

'check-authorization-params'	=>	

\LucaDegasperi\OAuth2Server\Middleware\CheckAuthCodeRequestMiddleware::clas

s,

'csrf'	=>	\App\Http\Middleware\VerifyCsrfToken::class,

We	added	a	CSRF	token	verifier	to	the	$routeMiddleware,	so	we	need	to	remove	the	one
already	defined	in	$middlewareGroups,	since	they	are	incompatible.	Use	the	following

line	to	do	so:

\App\Http\Middleware\VerifyCsrfToken::class,

Setting	up	the	database
Let’s	set	up	the	database	now.	In	this	section,	we	will	assume	that	you	already	have	the
bookstore	database	in	your	environment.	If	you	do	not	have	it,	go	back	to	Chapter	5,
Using	Databases,	to	create	it	in	order	to	proceed	with	this	setup.

The	first	thing	to	do	is	to	update	the	database	credentials	in	the	.env	file.	They	should	look
something	similar	to	the	following	lines,	but	with	your	username	and	password:

DB_HOST=localhost

DB_DATABASE=bookstore

DB_USERNAME=root

DB_PASSWORD=

In	order	to	prepare	the	configuration	and	database	migration	files	from	the	OAuth2Server
service	provider,	we	need	to	publish	it.	In	Laravel,	you	do	it	by	executing	the	following
command:

$	php	artisan	vendor:publish

Now	the	database/migrations	directory	contains	all	the	necessary	migration	files	that
will	create	the	necessary	tables	related	to	OAuth2	in	our	database.	To	execute	them,	we
run	the	following	command:

$	php	artisan	migrate

We	need	to	add	at	least	one	client	to	the	oauth_clients	table,	which	is	the	table	that
stores	the	key	and	secrets	for	all	clients	that	want	to	connect	to	our	REST	API.	This	new
client	will	be	the	one	that	you	will	use	during	the	development	process	in	order	to	test
what	you	have	done.	We	can	set	a	random	ID—the	key—and	the	secret	as	follows:

mysql>	INSERT	INTO	oauth_clients(id,	secret,	name)

				->	VALUES('iTh4Mzl0EAPn90sK4EhAmVEXS',

				->	'PfoWM9yq4Bh6rGbzzJhr8oDDsNZwGlsMIAeVRaPM',

				->	'Toni');

Query	OK,	1	row	affected,	1	warning	(0.00	sec)

Enabling	client-credentials	authentication
Since	we	published	the	plugins	in	vendor	in	the	previous	step,	now	we	have	the
configuration	files	for	the	OAuth2Server.	This	plugin	allows	us	different	authentication
systems	(all	of	them	with	OAuth2),	depending	on	our	necessities.	The	one	that	we	are
interested	in	for	our	project	is	the	client_credentials	type.	To	let	Laravel	know,	add	the
following	lines	at	the	end	of	the	array	in	the	config/oauth2.php	file:

'grant_types'	=>	[

					'client_credentials'	=>	[

								'class'	=>	

												'\League\OAuth2\Server\Grant\ClientCredentialsGrant',

								'access_token_ttl'	=>	3600

]

]

These	preceding	lines	grant	access	to	the	client_credentials	type,	which	are	managed
by	the	ClientCredentialsGrant	class.	The	access_token_ttl	value	refers	to	the	time
period	of	the	access	token,	that	is,	for	how	long	someone	can	use	it.	In	this	case,	it	is	set	to
1	hour,	that	is,	3,600	seconds.

Finally,	we	need	to	enable	a	route	so	we	can	post	our	credentials	in	exchange	for	an	access
token.	Add	the	following	route	to	the	routes	file	in	app/Http/routes.php:

Route::post('oauth/access_token',	function()	{

				return	Response::json(Authorizer::issueAccessToken());

});

Requesting	an	access	token
It	is	time	to	test	what	we	have	done	so	far.	To	do	so,	we	need	to	send	a	POST	request	to
the	/oauth/access_token	endpoint	that	we	enabled	just	now.	This	request	needs	the
following	POST	parameters:

client_id	with	the	key	from	the	database
client_secret	with	the	secret	from	the	database
grant_type	to	specify	the	type	of	authentication	that	we	are	trying	to	perform,	in	this
case	client_credentials

The	request	issued	using	the	Advanced	REST	Client	add-on	from	Chrome	looks	as
follows:

The	response	that	you	should	get	should	have	the	same	format	as	this	one:

{

				"access_token":	"MPCovQda354d10zzUXpZVOFzqe491E7ZHQAhSAax"

				"token_type":	"Bearer"

				"expires_in":	3600

}

Note	that	this	is	a	different	way	of	requesting	for	an	access	token	than	what	the	Twitter
API	does,	but	the	idea	is	still	the	same:	given	a	key	and	a	secret,	the	provider	gives	us	an
access	token	that	will	allow	us	to	use	the	API	for	some	time.

Preparing	the	database
Even	though	we’ve	already	done	the	same	in	the	previous	chapter,	you	might	think:	“Why
do	we	start	by	preparing	the	database?”.	We	could	argue	that	you	first	need	to	know	the
kind	of	endpoints	you	want	to	expose	in	your	REST	API,	and	only	then	you	can	start
thinking	about	what	your	database	should	look	like.	But	you	could	also	think	that,	since
we	are	working	with	an	API,	each	endpoint	should	manage	one	resource,	so	first	you	need
to	define	the	resources	you	are	dealing	with.	This	code	first	versus	database/model	first	is
an	ongoing	war	on	the	Internet.	But	whichever	way	you	think	is	better,	the	fact	is	that	we
already	know	what	the	users	will	need	to	do	with	our	REST	API,	since	we	already	built
the	UI	previously;	so	it	does	not	really	matter.

We	need	to	create	four	tables:	books,	sales,	sales_books,	and	borrowed_books.
Remember	that	Laravel	already	provides	a	users	table,	which	we	can	use	as	our
customers.	Run	the	following	four	commands	to	create	the	migrations	files:

$	php	artisan	make:migration	create_books_table	--create=books

$	php	artisan	make:migration	create_sales_table	--create=sales

$	php	artisan	make:migration	create_borrowed_books_table	\

--create=borrowed_books

$	php	artisan	make:migration	create_sales_books_table	\

--create=sales_books

Now	we	have	to	go	file	by	file	to	define	what	each	table	should	look	like.	We	will	try	to
replicate	the	data	structure	from	Chapter	5,	Using	Databases,	as	much	as	possible.
Remember	that	the	migration	files	can	be	found	inside	the	database/migrations
directory.	The	first	file	that	we	can	edit	is	the	create_books_table.php.	Replace	the
existing	empty	up	method	by	the	following	one:

public	function	up()

{

				Schema::create('books',	function	(Blueprint	$table)	{

								$table->increments('id');

								$table->string('isbn')->unique();

								$table->string('title');

								$table->string('author');

								$table->smallInteger('stock')->unsigned();

								$table->float('price')->unsigned();

				});

}

The	next	one	in	the	list	is	create_sales_table.php.	Remember	that	this	one	has	a	foreign
key	pointing	to	the	users	table.	You	can	use	references(field)->on(tablename)	to
define	this	constraint.

public	function	up()

{

				Schema::create('sales',	function	(Blueprint	$table)	{

								$table->increments('id');

								$table->string('user_id')->references('id')->on('users');

								$table->timestamps();

				});

}

The	create_sales_books_table.php	file	contains	two	foreign	keys:	one	pointing	to	the
ID	of	the	sale,	and	one	to	the	ID	of	the	book.	Replace	the	existing	up	method	by	the
following	one:

public	function	up()

{

				Schema::create('sales_books',	function	(Blueprint	$table)	{

								$table->increments('id');

								$table->integer('sale_id')->references('id')->on('sales');

								$table->integer('book_id')->references('id')->on('books');

								$table->smallInteger('amount')->unsigned();

				});

}

Finally,	edit	the	create_borrowed_books_table.php	file,	which	has	the	book_id	foreign
key	and	the	start	and	end	timestamps:

public	function	up()

{

				Schema::create('borrowed_books',	function	(Blueprint	$table)	{

								$table->increments('id');

								$table->integer('book_id')->references('id')->on('books');

								$table->string('user_id')->references('id')->on('users');

								$table->timestamp('start');

								$table->timestamp('end');

				});

}

The	migration	files	are	ready	so	we	just	need	to	migrate	them	in	order	to	create	the
database	tables.	Run	the	following	command:

$	php	artisan	migrate

Also,	add	some	books	to	the	database	manually	so	that	you	can	test	later.	For	example:

mysql>	INSERT	INTO	books	(isbn,title,author,stock,price)	VALUES

				->	("9780882339726","1984","George	Orwell",12,7.50),

				->	("9789724621081","1Q84","Haruki	Murakami",9,9.75),

				->	("9780736692427","Animal	Farm","George	Orwell",8,3.50),

				->	("9780307350169","Dracula","Bram	Stoker",30,10.15),

				->	("9780753179246","19	minutes","Jodi	Picoult",0,10);

Query	OK,	5	rows	affected	(0.01	sec)

Records:	5		Duplicates:	0		Warnings:	0

Setting	up	the	models
The	next	thing	to	do	on	the	list	is	to	add	the	relationships	that	our	data	has,	that	is,	to
translate	the	foreign	keys	from	the	database	to	the	models.	First	of	all,	we	need	to	create
those	models,	and	for	that	we	just	run	the	following	commands:

$	php	artisan	make:model	Book

$	php	artisan	make:model	Sale

$	php	artisan	make:model	BorrowedBook

$	php	artisan	make:model	SalesBook

Now	we	have	to	go	model	by	model,	and	add	the	one	to	one	and	one	to	many	relationships
as	we	did	in	the	previous	chapter.	For	BookModel,	we	will	only	specify	that	the	model	does
not	have	timestamps,	since	they	come	by	default.	To	do	so,	add	the	following	highlighted
line	to	your	app/Book.php	file:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Book	extends	Model

{

				public	$timestamps	=	false;

}

For	the	BorrowedBook	model,	we	need	to	specify	that	it	has	one	book,	and	it	belongs	to	a
user.	We	also	need	to	specify	the	fields	we	will	fill	once	we	need	to	create	the	object—in
this	case,	book_id	and	start.	Add	the	following	two	methods	in	app/BorrowedBook.php:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	BorrowedBook	extends	Model

{

				protected	$fillable	=	['user_id',	'book_id',	'start'];

				public	$timestamps	=	false;

				public	function	user()	{

								return	$this->belongsTo('App\User');

				}

				public	function	book()	{

								return	$this->hasOne('App\Book');

				}

}

Sales	can	have	many	“sale	books”	(we	know	it	might	sound	a	little	awkward),	and	they
also	belong	to	just	one	user.	Add	the	following	to	your	app/Sale.php:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Sale	extends	Model

{

				protected	$fillable	=	['user_id'];

				public	function	books()	{

								return	$this->hasMany('App\SalesBook');

				}

				public	function	user()	{

								return	$this->belongsTo('App\User');

				}

}

Like	borrowed	books,	sale	books	can	have	one	book	and	belong	to	one	sale	instead	of	to
one	user.	The	following	lines	should	be	added	to	app/SalesBook.php:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	SaleBook	extends	Model

{

				public	$timestamps	=	false;

				protected	$fillable	=	['book_id',	'sale_id',	'amount'];

				public	function	sale()	{

								return	$this->belongsTo('App\Sale');

				}

				public	function	books()	{

								return	$this->hasOne('App\Book');

				}

}

Finally,	the	last	model	that	we	need	to	update	is	the	User	model.	We	need	to	add	the
opposite	relationship	to	the	belongs	we	used	earlier	in	Sale	and	BorrowedBook.	Add	these
two	functions,	and	leave	the	rest	of	the	class	intact:

<?php

namespace	App;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

class	User	extends	Authenticatable

{

				//...

				public	function	sales()	{

								return	$this->hasMany('App\Sale');

				}

				public	function	borrowedBooks()	{

								return	$this->hasMany('App\BorrowedBook');

				}

}

Designing	endpoints
In	this	section,	we	need	to	come	up	with	the	list	of	endpoints	that	we	want	to	expose	to	the
REST	API	clients.	Keep	in	mind	the	“rules”	explained	in	the	Best	practices	with	REST
APIs	section.	In	short,	keep	the	following	rules	in	mind:

One	endpoint	interacts	with	one	resource
A	possible	schema	could	be	<API	version>/<resource	name>/<optional
id>/<optional	action>

Use	GET	parameters	for	filtering	and	pagination

So	what	will	the	user	need	to	do?	We	already	have	a	good	idea	about	that,	since	we
created	the	UI.	A	brief	summary	would	be	as	follows:

List	all	the	available	books	with	some	filtering	(by	title	and	author),	and	paginated
when	necessary.	Also	retrieve	the	information	on	a	specific	book,	given	the	ID.
Allow	the	user	to	borrow	a	specific	book	if	available.	In	the	same	way,	the	user
should	be	able	to	return	books,	and	list	the	history	of	borrowed	books	too	(filtered	by
date	and	paginated).
Allow	the	user	to	buy	a	list	of	books.	This	could	be	improved,	but	for	now	let’s	force
the	user	to	buy	books	with	just	one	request,	including	the	full	list	of	books	in	the
body.	Also,	list	the	sales	of	the	user	following	the	same	rules	as	that	with	borrowed
books.

We	will	start	straightaway	with	our	list	of	endpoints,	specifying	the	path,	the	HTTP
method,	and	the	optional	parameters.	It	will	also	give	you	an	idea	on	how	to	document
your	REST	APIs.

GET	/books

title:	Optional	and	filters	by	title
author:	Optional	and	filters	by	author
page:	Optional,	default	is	1,	and	specifies	the	page	to	return
page-size:	Optional,	default	is	50,	and	specifies	the	page	size	to	return

GET	/books/<book	id>
POST	/borrowed-books

book-id:	Mandatory	and	specifies	the	ID	of	the	book	to	borrow

GET	/borrowed-books

from:	Optional	and	returns	borrowed	books	from	the	specified	date
page:	Optional,	default	is	1,	and	specifies	the	page	to	return
page-size:	Optional,	default	is	50,	and	specifies	the	number	of	borrowed	books
per	page

PUT	/borrowed-books/<borrowed	book	id>/return
POST	/sales

books:	Mandatory	and	it	is	an	array	listing	the	book	IDs	to	buy	and	their

amounts,	that	is,	{“book-id-1”:	amount,	“book-id-2”:	amount,	…}

GET	/sales

from:	Optional	and	returns	borrowed	books	from	the	specified	date
page:	Optional,	default	is	1,	and	specifies	the	page	to	return
page-size:	Optional,	default	is	50,	and	specifies	the	number	of	sales	per	page

GET	/sales/<sales	id>

We	use	POST	requests	when	creating	sales	and	borrowed	books,	since	we	do	not	know	the
ID	of	the	resource	that	we	want	to	create	a	priori,	and	posting	the	same	request	will	create
multiple	resources.	On	the	other	hand,	when	returning	a	book,	we	do	know	the	ID	of	the
borrowed	book,	and	sending	the	same	request	multiple	times	will	leave	the	database	in	the
same	state.	Let’s	translate	these	endpoints	to	routes	in	app/Http/routes.php:

/*

	*	Books	endpoints.

	*/

Route::get('books',	['middleware'	=>	'oauth',

				'uses'	=>	'BookController@getAll']);

Route::get('books/{id}',	['middleware'	=>	'oauth',

				'uses'	=>	'BookController@get']);

/*

	*	Borrowed	books	endpoints.

	*/

Route::post('borrowed-books',	['middleware'	=>	'oauth',

				'uses'	=>	'BorrowedBookController@borrow']);

Route::get('borrowed-books',	['middleware'	=>	'oauth',

				'uses'	=>	'BorrowedBookController@get']);

Route::put('borrowed-books/{id}/return',	['middleware'	=>	'oauth',

				'uses'	=>	'BorrowedBookController@returnBook']);

/*

	*	Sales	endpoints.

	*/

Route::post('sales',	['middleware'	=>	'oauth',

				'uses'	=>	'SalesController@buy]);

Route::get('sales',	['middleware'	=>	'oauth',

				'uses'	=>	'SalesController@getAll']);

Route::get('sales/{id}',	['middleware'	=>	'oauth',

				'uses'	=>	'SalesController@get']);

In	the	preceding	code,	note	how	we	added	the	middleware	oauth	to	all	the	endpoints.	This
will	require	the	user	to	provide	a	valid	access	token	in	order	to	access	them.

Adding	the	controllers
From	the	previous	section,	you	can	imagine	that	we	need	to	create	three	controllers:
BookController,	BorrowedBookController,	and	SalesController.	Let’s	start	with	the
easiest	one:	returning	the	information	of	a	book	given	the	ID.	Create	the	file
app/Http/Controllers/BookController.php,	and	add	the	following	code:

<?php

namespace	App\Http\Controllers;

use	App\Book;

use	Illuminate\Http\JsonResponse;

use	Illuminate\Http\Response;

class	BookController	extends	Controller	{

				public	function	get(string	$id):	JsonResponse	{

								$book	=	Book::find($id);

				

								if	(empty($book))	{

												return	new	JsonResponse	(

																null,

																JsonResponse::HTTP_NOT_FOUND

);

								}

				

								return	response()->json(['book'	=>	$book]);

				}

}

Even	though	this	preceding	example	is	quite	easy,	it	contains	most	of	what	we	will	need
for	the	rest	of	the	endpoints.	We	try	to	fetch	a	book	given	the	ID	from	the	URL,	and	when
not	found,	we	reply	with	a	404	(not	found)	empty	response—the	constant
Response::HTTP_NOT_FOUND	is	404.	In	case	we	have	the	book,	we	return	it	as	JSON	with
response->json().	Note	how	we	add	the	seemingly	unnecessary	key	book;	it	is	true	that
we	do	not	return	anything	else	and,	since	we	ask	for	the	book,	the	user	will	know	what	we
are	talking	about,	but	as	it	does	not	really	hurt,	it	is	good	to	be	as	explicit	as	possible.

Let’s	test	it!	You	already	know	how	to	get	an	access	token—check	the	Requesting	an
access	token	section.	So	get	one,	and	try	to	access	the	following	URLs:

http://localhost/books/0?access_token=12345

http://localhost/books/1?access_token=12345

Assuming	that	12345	is	your	access	token,	that	you	have	a	book	in	the	database	with	ID	1,
and	you	do	not	have	a	book	with	ID	0,	the	first	URL	should	return	a	404	response,	and	the
second	one,	a	response	something	similar	to	the	following:

{

				"book":	{

								"id":	1

								"isbn":	"9780882339726"

								"title":	"1984"

								"author":	"George	Orwell"

								"stock":	12

								"price":	7.5

				}

}

Let’s	now	add	the	method	to	get	all	the	books	with	filters	and	pagination.	It	looks	quite
verbose,	but	the	logic	that	we	use	is	quite	simple:

public	function	getAll(Request	$request):	JsonResponse	{

				$title	=	$request->get('title',	'');

				$author	=	$request->get('author',	'');

				$page	=	$request->get('page',	1);

				$pageSize	=	$request->get('page-size',	50);

				$books	=	Book::where('title',	'like',	"%$title%")

								->where('author',	'like',	"%$author%")

								->take($pageSize)

								->skip(($page	-	1)	*	$pageSize)

								->get();

				return	response()->json(['books'	=>	$books]);

}

We	get	all	the	parameters	that	can	come	from	the	request,	and	set	the	default	values	of
each	one	in	case	the	user	does	not	include	them	(since	they	are	optional).	Then,	we	use	the
Eloquent	ORM	to	filter	by	title	and	author	using	where(),	and	limiting	the	results	with
take()->skip().	We	return	the	JSON	in	the	same	way	we	did	with	the	previous	method.
In	this	one	though,	we	do	not	need	any	extra	check;	if	the	query	does	not	return	any	book,
it	is	not	really	a	problem.

You	can	now	play	with	your	REST	API,	sending	different	requests	with	different	filters.
The	following	are	some	examples:

http://localhost/books?access_token=12345

http://localhost/books?access_token=12345&title=19&page-size=1

http://localhost/books?access_token=12345&page=2

The	next	controller	in	the	list	is	BorrowedBookController.	We	need	to	add	three	methods:
borrow,	get,	and	returnBook.	As	you	already	know	how	to	work	with	requests,	responses,
status	codes,	and	the	Eloquent	ORM,	we	will	write	the	entire	class	straightaway:

<?php

namespace	App\Http\Controllers;

use	App\Book;

use	App\BorrowedBook;

use	Illuminate\Http\JsonResponse;

use	Illuminate\Http\Request;

use	LucaDegasperi\OAuth2Server\Facades\Authorizer;

class	BorrowedBookController	extends	Controller	{

				public	function	get():	JsonResponse	{

								$borrowedBooks	=	BorrowedBook::where(

												'user_id',	'=',	Authorizer::getResourceOwnerId()

)->get();

								return	response()->json(

												['borrowed-books'	=>	$borrowedBooks]

);

				}

				public	function	borrow(Request	$request):	JsonResponse	{

								$id	=	$request->get('book-id');

								if	(empty($id))	{

												return	new	JsonResponse(

																['error'	=>	'Expecting	book-id	parameter.'],

																JsonResponse::HTTP_BAD_REQUEST

);

								}

								$book	=	Book::find($id);

								if	(empty($book))	{

												return	new	JsonResponse(

																['error'	=>	'Book	not	found.'],

																JsonResponse::HTTP_BAD_REQUEST

);

								}	else	if	($book->stock	<	1)	{

												return	new	JsonResponse(

																['error'	=>	'Not	enough	stock.'],

																JsonResponse::HTTP_BAD_REQUEST

);

								}

								$book->stock--;

								$book->save();

								$borrowedBook	=	BorrowedBook::create(

												[

																'book_id'	=>	$book->id,

																'start'	=>	date('Y-m-d	H:i:s'),

																'user_id'	=>	Authorizer::getResourceOwnerId()

]

);

								return	response()->json(['borrowed-book'	=>	$borrowedBook]);

				}

				public	function	returnBook(string	$id):	JsonResponse	{

								$borrowedBook	=	BorrowedBook::find($id);

								if	(empty($borrowedBook))	{

												return	new	JsonResponse(

																['error'	=>	'Borrowed	book	not	found.'],

																JsonResponse::HTTP_BAD_REQUEST

);

								}

								$book	=	Book::find($borrowedBook->book_id);

								$book->stock++;

								$book->save();

								$borrowedBook->end	=	date('Y-m-d	H:m:s');

								$borrowedBook->save();

								return	response()->json(['borrowed-book'	=>	$borrowedBook]);

				}

}

The	only	thing	to	note	in	the	preceding	code	is	how	we	also	update	the	stock	of	the	book
by	increasing	or	decreasing	the	stock,	and	invoke	the	save	method	to	save	the	changes	in
the	database.	We	also	return	the	borrowed	book	object	as	the	response	when	borrowing	a
book	so	that	the	user	can	know	the	borrowed	book	ID,	and	use	it	when	querying	or
returning	the	book.

You	can	test	how	this	set	of	endpoints	works	with	the	following	use	cases:

Borrow	a	book.	Check	that	you	get	a	valid	response.
Get	the	list	of	borrowed	books.	The	one	that	you	just	created	should	be	there	with	a
valid	starting	date	and	an	empty	end	date.
Get	the	information	of	the	book	you	borrowed.	The	stock	should	be	one	less.
Return	the	book.	Fetch	the	list	of	borrowed	books	to	check	the	end	date	and	the
returned	book	to	check	the	stock.

Of	course,	you	can	always	try	to	trick	the	API	and	ask	for	books	without	stock,	non-
existing	borrowed	books,	and	the	like.	All	these	edge	cases	should	respond	with	the
correct	status	codes	and	error	messages.

We	finish	this	section,	and	the	REST	API,	by	creating	the	SalesController.	This
controller	is	the	one	that	contains	more	logic,	since	creating	a	sale	implies	adding	entries
to	the	sales	books	table,	prior	to	checking	for	enough	stock	for	each	one.	Add	the
following	code	to	app/Html/SalesController.php:

<?php

namespace	App\Http\Controllers;

use	App\Book;

use	App\Sale;

use	App\SalesBook;

use	Illuminate\Http\JsonResponse;

use	Illuminate\Http\Request;

use	LucaDegasperi\OAuth2Server\Facades\Authorizer;

class	SalesController	extends	Controller	{

				public	function	get(string	$id):	JsonResponse	{

								$sale	=	Sale::find($id);

								if	(empty($sale))	{

												return	new	JsonResponse(

																null,

																JsonResponse::HTTP_NOT_FOUND

);

								}

								$sale->books	=	$sale->books()->getResults();

								return	response()->json(['sale'	=>	$sale]);

				}

				public	function	buy(Request	$request):	JsonResponse	{

								$books	=	json_decode($request->get('books'),	true);

								if	(empty($books)	||	!is_array($books))	{

												return	new	JsonResponse(

																['error'	=>	'Books	array	is	malformed.'],

																JsonResponse::HTTP_BAD_REQUEST

);

								}

								$saleBooks	=	[];

								$bookObjects	=	[];

								foreach	($books	as	$bookId	=>	$amount)	{

												$book	=	Book::find($bookId);

												if	(empty($book)	||	$book->stock	<	$amount)	{

																return	new	JsonResponse(

																				['error'	=>	"Book	$bookId	not	valid."],

																				JsonResponse::HTTP_BAD_REQUEST

);

												}

												$bookObjects[]	=	$book;

												$saleBooks[]	=	[

																'book_id'	=>	$bookId,

																'amount'	=>	$amount

];

								}

								$sale	=	Sale::create(

												['user_id'	=>	Authorizer::getResourceOwnerId()]

);

								foreach	($bookObjects	as	$key	=>	$book)	{

												$book->stock	-=	$saleBooks[$key]['amount'];

												$saleBooks[$key]['sale_id']	=	$sale->id;

												SalesBook::create($saleBooks[$key]);

								}

								$sale->books	=	$sale->books()->getResults();

								return	response()->json(['sale'	=>	$sale]);

				}

				public	function	getAll(Request	$request):	JsonResponse	{

								$page	=	$request->get('page',	1);

								$pageSize	=	$request->get('page-size',	50);

								$sales	=	Sale::where(

																'user_id',	'=',	Authorizer::getResourceOwnerId()

)

												->take($pageSize)

												->skip(($page	-	1)	*	$pageSize)

												->get();

								foreach	($sales	as	$sale)	{

												$sale->books	=	$sale->books()->getResults();

								}

								return	response()->json(['sales'	=>	$sales]);

				}

}

In	the	preceding	code,	note	how	we	first	check	the	availability	of	all	the	books	before
creating	the	sales	entry.	This	way,	we	make	sure	that	we	do	not	leave	any	unfinished	sale
in	the	database	when	returning	an	error	to	the	user.	You	could	change	this,	and	use
transactions	instead,	and	if	a	book	is	not	valid,	just	roll	back	the	transaction.

In	order	to	test	this,	we	can	follow	similar	steps	as	we	did	with	borrowed	books.	Just
remember	that	the	books	parameter,	when	posting	a	sale,	is	a	JSON	map;	for	example,
{"1":	2,	"4":	1}	means	that	I	am	trying	to	buy	two	books	with	ID	1	and	one	book	with
ID	4.

Testing	your	REST	APIs
You	have	already	been	testing	your	REST	API	after	finishing	each	controller	by	making
some	request	and	expecting	a	response.	As	you	might	imagine,	this	can	be	handy
sometimes,	but	it	is	for	sure	not	the	way	to	go.	Testing	should	be	automatic,	and	should
cover	as	much	as	possible.	We	will	have	to	think	of	a	solution	similar	to	unit	testing.

In	Chapter	10,	Behavioral	Testing,	you	will	learn	more	methodologies	and	tools	for	testing
an	application	end	to	end,	and	that	will	include	REST	APIs.	However,	due	to	the
simplicity	of	our	REST	API,	we	can	add	some	pretty	good	tests	with	what	Laravel
provides	us	as	well.	Actually,	the	idea	is	very	similar	to	the	tests	that	we	wrote	in	Chapter
8,	Using	Existing	PHP	Frameworks,	where	we	made	a	request	to	some	endpoint,	and
expected	a	response.	The	only	difference	will	be	in	the	kind	of	assertions	that	we	use
(which	can	check	if	a	JSON	response	is	OK),	and	the	way	we	perform	requests.

Let’s	add	some	tests	to	the	set	of	endpoints	related	to	books.	We	need	some	books	in	the
database	in	order	to	query	them,	so	we	will	have	to	populate	the	database	before	each	test,
that	is,	use	the	setUp	method.	Remember	that	in	order	to	leave	the	database	clean	of	test
data,	we	need	to	use	the	trait	DatabaseTransactions.	Add	the	following	code	to
tests/BooksTest.php:

<?php

use	Illuminate\Foundation\Testing\DatabaseTransactions;

use	App\Book;

class	BooksTest	extends	TestCase	{

				use	DatabaseTransactions;

				private	$books	=	[];

				public	function	setUp()	{

								parent::setUp();

								$this->addBooks();

				}

				private	function	addBooks()	{

								$this->books[0]	=	Book::create(

												[

																'isbn'	=>	'293842983648273',

																'title'	=>	'Iliad',

																'author'	=>	'Homer',

																'stock'	=>	12,

																'price'	=>	7.40

]

);

								$this->books[0]->save();

								$this->books[0]	=	$this->books[0]->fresh();

								$this->books[1]	=	Book::create(

												[

																'isbn'	=>	'9879287342342',

																'title'	=>	'Odyssey',

																'author'	=>	'Homer',

																'stock'	=>	8,

																'price'	=>	10.60

]

);

								$this->books[1]->save();

								$this->books[1]	=	$this->books[1]->fresh();

								$this->books[2]	=	Book::create(

												[

																'isbn'	=>	'312312314235324',

																'title'	=>	'The	Illuminati',

																'author'	=>	'Larry	Burkett',

																'stock'	=>	22,

																'price'	=>	5.10

]

);

								$this->books[2]->save();

								$this->books[2]	=	$this->books[2]->fresh();

				}

}

As	you	can	see	in	the	preceding	code,	we	add	three	books	to	the	database,	and	to	the	class
property	$books	too.	We	will	need	them	when	we	want	to	assert	that	a	response	is	valid.
Also	note	the	use	of	the	fresh	method;	this	method	synchronizes	the	model	that	we	have
with	the	content	in	the	database.	We	need	to	do	this	in	order	to	get	the	ID	inserted	in	the
database,	since	we	do	not	know	it	a	priori.

There	is	another	thing	we	need	to	do	before	we	run	each	test:	authenticating	our	client.	We
will	need	to	make	a	POST	request	to	the	access	token	generation	endpoint	sending	valid
credentials,	and	storing	the	access	token	that	we	receive	so	that	it	can	be	used	in	the
remaining	requests.	You	are	free	to	choose	how	to	provide	the	credentials,	since	there	are
different	ways	to	do	it.	In	our	case,	we	just	provide	the	credentials	of	a	client	test	that	we
know	exists	in	the	database,	but	you	might	prefer	to	insert	that	client	into	the	database
each	time.	Update	the	test	with	the	following	code:

<?php

use	Illuminate\Foundation\Testing\DatabaseTransactions;

use	App\Book;

class	BooksTest	extends	TestCase	{

				use	DatabaseTransactions;

				private	$books	=	[];

				private	$accessToken;

				public	function	setUp()	{

								parent::setUp();

								$this->addBooks();

								$this->authenticate();

				}

				//...

				private	function	authenticate()	{

								$this->post(

												'oauth/access_token',

												[

																'client_id'	=>	'iTh4Mzl0EAPn90sK4EhAmVEXS',

																'client_secret'	=>	'PfoWM9yq4Bh6rhr8oDDsNZM',

																'grant_type'	=>	'client_credentials'

]

);

								$response	=	json_decode(

												$this->response->getContent(),	true

);

								$this->accessToken	=	$response['access_token'];

				}

}

In	the	preceding	code,	we	use	the	post	method	in	order	to	send	a	POST	request.	This
method	accepts	a	string	with	the	endpoint,	and	an	array	with	the	parameters	to	be
included.	After	making	a	request,	Laravel	saves	the	response	object	into	the	$response
property.	We	can	JSON-decode	it,	and	extract	the	access	token	that	we	need.

It	is	time	to	add	some	tests.	Let’s	start	with	an	easy	one:	requesting	a	book	given	an	ID.
The	ID	is	used	to	make	the	GET	requests	with	the	ID	of	the	book	(do	not	forget	the	access
token),	and	check	if	the	response	matches	the	expected	one.	Remember	that	we	have	the
$books	array	already,	so	it	will	be	pretty	easy	to	perform	these	checks.

We	will	be	using	two	assertions:	seeJson,	which	compares	the	received	JSON	response
with	the	one	that	we	provide,	and	assertResponseOk,	which	you	already	know	from
previous	tests—it	just	checks	that	the	response	has	a	200	status	code.	Add	this	test	to	the
class:

public	function	testGetBook()	{

				$expectedResponse	=	[

								'book'	=>	json_decode($this->books[1],	true)

];

				$url	=	'books/'	.	$this->books[1]->id

								.	'?'	.	$this->getCredentials();

				$this->get($url)

								->seeJson($expectedResponse)

								->assertResponseOk();

}

private	function	getCredentials():	string	{

				return	'grant_access=client_credentials&access_token='

								.	$this->accessToken;

}

We	use	the	get	method	instead	of	post,	since	this	is	a	GET	request.	Also	note	that	we	use

the	getCredentials	helper,	since	we	will	have	to	use	it	in	each	test.	To	see	another
example,	let’s	add	a	test	that	checks	the	response	when	requesting	the	books	that	contain
the	given	title:

public	function	testGetBooksByTitle()	{

				$expectedResponse	=	[

								'books'	=>	[

												json_decode($this->books[0],	true),

												json_decode($this->books[2],	true)

]

];

				$url	=	'books/?title=Il&'	.	$this->getCredentials();

				$this->get($url)

								->seeJson($expectedResponse)

								->assertResponseOk();

}

The	preceding	test	is	pretty	much	the	same	as	the	previous	one,	isn’t	it?	The	only	changes
are	the	endpoint	and	the	expected	response.	Well,	the	remaining	tests	will	all	follow	the
same	pattern,	since	so	far,	we	can	only	fetch	books	and	filter	them.

To	see	something	different,	let’s	check	how	to	test	an	endpoint	that	creates	resources.
There	are	different	options,	one	of	them	being	to	first	make	the	request,	and	then	going	to
the	database	to	check	that	the	resource	has	been	created.	Another	option,	the	one	that	we
prefer,	is	to	first	send	the	request	that	creates	the	resource,	and	then,	with	the	information
in	the	response,	send	a	request	to	fetch	the	newly	created	resource.	This	is	preferable,
since	we	are	testing	only	the	REST	API,	and	we	do	not	need	to	know	the	specific	schema
that	the	database	is	using.	Also,	if	the	REST	API	changes	its	database,	the	tests	will	keep
passing—and	they	should—since	we	test	through	the	interface	only.

One	good	example	could	be	borrowing	a	book.	The	test	should	first	send	a	POST	in	order
to	borrow	the	book,	specifying	the	book	ID,	then	extract	the	borrowed	book	ID	from	the
response,	and	finally	send	a	GET	request	asking	for	that	borrowed	book.	To	save	time,	you
can	add	the	following	test	to	the	already	existing	tests/BooksTest.php:

public	function	testBorrowBook()	{

				$params	=	['book-id'	=>	$this->books[1]->id];

				$params	=	array_merge($params,	$this->postCredentials());

				$this->post('borrowed-books',	$params)

								->seeJsonContains(['book_id'	=>	$this->books[1]->id])

								->assertResponseOk();

				$response	=	json_decode($this->response->getContent(),	true);

				$url	=	'borrowed-books'	.	'?'	.	$this->getCredentials();

				$this->get($url)

								->seeJsonContains(['id'	=>	$response['borrowed-book']['id']])

								->assertResponseOk();

}

private	function	postCredentials():	array	{

				return	[

								'grant_access'	=>	'client_credentials',

								'access_token'	=>	$this->accessToken

];

}

Summary
In	this	chapter,	you	learned	the	importance	of	REST	APIs	in	the	web	world.	Now	you	are
able	not	only	to	use	them,	but	also	write	your	own	REST	APIs,	which	has	turned	you	into
a	more	resourceful	developer.	You	can	also	integrate	your	applications	with	third-party
APIs	to	give	more	features	to	your	users,	and	for	making	your	websites	more	interesting
and	useful.

In	the	next	and	last	chapter,	we	will	end	this	book	discovering	a	type	of	testing	other	than
unit	testing:	behavioral	testing,	which	improves	the	quality	and	reliability	of	your	web
applications.

Chapter	10.	Behavioral	Testing
In	Chapter	7,	Testing	Web	Applications,	you	learned	how	to	write	unit	tests	in	order	to	test
small	pieces	of	code	in	an	isolated	way.	Even	though	this	is	a	must,	it	is	not	enough	alone
to	make	sure	your	application	works	as	it	should.	The	scope	of	your	test	could	be	so	small
that	even	though	the	algorithm	that	you	test	makes	sense,	it	would	not	be	what	the
business	asked	you	to	create.

Acceptance	tests	were	born	in	order	to	add	this	level	of	security	to	the	business	side,
complementing	the	already	existing	unit	tests.	In	the	same	way,	BDD	originated	from
TDD	in	order	to	write	code	based	on	these	acceptance	tests	in	an	attempt	to	involve
business	and	managers	in	the	development	process.	As	PHP	is	one	of	the	favorite
languages	of	web	developers,	it	is	just	natural	to	find	powerful	tools	to	implement	BDD	in
your	projects.	You	will	be	positively	surprised	by	what	you	can	do	with	Behat	and	Mink,
the	two	most	popular	BDD	frameworks	at	the	moment.

In	this	chapter,	you	will	learn	about:

Acceptance	tests	and	BDD
Writing	features	with	Gherkin
Implementing	and	running	tests	with	Behat
Writing	tests	against	browsers	with	Mink

Behavior-driven	development
We	already	exposed	in	Chapter	7,	Testing	Web	Applications,	the	different	tools	we	can	use
in	order	to	make	our	applications	bug-free,	such	as	automated	tests.	We	described	what
unit	tests	are	and	how	they	can	help	us	achieve	our	goals,	but	this	is	far	from	enough.	In
this	section,	we	will	describe	the	process	of	creating	a	real-world	application,	how	unit
tests	are	not	enough,	and	what	other	techniques	we	can	include	in	this	life	cycle	in	order	to
succeed	in	our	task—in	this	case,	behavioral	tests.

Introducing	continuous	integration
There	is	a	huge	difference	between	developing	a	small	web	application	by	yourself	and
being	part	of	a	big	team	of	developers,	managers,	marketing	people,	and	so	on,	that	works
around	the	same	big	web	application.	Working	on	an	application	used	by	thousands	or
millions	of	users	has	a	clear	risk:	if	you	mess	it	up,	there	will	be	a	huge	number	of
unhappy	affected	users,	which	may	translate	into	sales	going	down,	partnerships
terminated,	and	so	on.

From	this	scenario,	you	can	imagine	that	people	would	be	scared	when	they	have	to
change	anything	in	production.	Before	doing	so,	they	will	make	sure	that	everything
works	perfectly	fine.	For	this	reason,	there	is	always	a	heavy	process	around	all	the
changes	affecting	a	web	application	in	production,	including	loads	of	tests	of	all	kinds.

Some	think	that	by	reducing	the	number	of	times	they	deploy	to	production,	they	can
reduce	the	risk	of	failure,	which	ends	up	with	them	having	releases	every	several	months
with	an	uncountable	number	of	changes.

Now,	imagine	releasing	the	result	of	two	or	three	months	of	code	changes	at	once	and
something	mysteriously	fails	in	production:	do	you	know	where	to	even	start	looking	for
the	cause	of	the	problem?	What	if	your	team	is	good	enough	to	make	perfect	releases,	but
the	end	result	is	not	what	the	market	needs?	You	might	end	up	wasting	months	of	work!

Even	though	there	are	different	approaches	and	not	all	companies	use	them,	let’s	try	to
describe	one	of	the	most	famous	ones	from	the	last	few	years:	continuous	integration
(CI).	The	idea	is	to	integrate	small	pieces	of	work	often	rather	than	big	ones	every	once	in
a	while.	Of	course,	releasing	is	still	a	constraint	in	your	system,	which	means	that	it	takes
a	lot	of	time	and	resources.	CI	tries	to	automatize	this	process	as	much	as	possible,
reducing	the	amount	of	time	and	resources	that	you	need	to	invest.	There	are	huge	benefits
with	this	approach,	which	are	as	follows:

Releases	do	not	take	forever	to	be	done,	and	there	isn’t	an	entire	team	focused	on
releasing	as	this	is	done	automatically.
You	can	release	changes	one	by	one	as	they	come.	If	something	fails,	you	know
exactly	what	the	change	was	and	where	to	start	looking	for	the	error.	You	can	even
revert	the	changes	easily	if	you	need	to.
As	you	release	so	often,	you	can	get	quick	feedback	from	everyone.	You	will	be	able
to	change	your	plans	in	time	if	you	need	to	instead	of	waiting	for	months	to	get	any
feedback	and	wasting	all	the	effort	you	put	on	this	release.

The	idea	seems	perfect,	but	how	do	we	implement	it?	First,	let’s	focus	on	the	manual	part
of	the	process:	developing	the	features	using	a	version	control	system	(VCS).	The
following	diagram	shows	a	very	common	approach:

As	we	already	mentioned,	a	VCS	allows	developers	to	work	on	the	same	codebase,
tracking	all	the	changes	that	everyone	makes	and	helping	on	the	resolution	of	conflicts.	A
VCS	usually	allows	you	to	have	different	branches;	that	is,	you	can	diverge	from	the	main
line	of	development	and	continue	to	do	work	without	messing	with	it.	The	previous	graph
shows	you	how	to	use	branches	to	write	new	features	and	can	be	explained	as	follows:

A:	A	team	needs	to	start	working	on	feature	A.	They	create	a	new	branch	from	the
master,	in	which	they	will	add	all	the	changes	for	this	feature.
B:	A	different	team	also	needs	to	start	working	on	a	feature.	They	create	a	new
branch	from	master,	same	as	before.	At	this	point,	they	are	not	aware	of	what	the	first
team	is	doing	as	they	do	it	on	their	own	branch.
C:	The	second	team	finishes	their	job.	No	one	else	changed	master,	so	they	can
merge	their	changes	straight	away.	At	this	point,	the	CI	process	will	start	the	release
process.
D:	The	first	team	finishes	the	feature.	In	order	to	merge	it	to	master,	they	need	to	first
rebase	their	branch	with	the	new	changes	of	master	and	solve	any	conflicts	that	might
take	place.	The	older	the	branch	is	the	more	chances	of	getting	conflicts	you	will
have,	so	you	can	imagine	that	smaller	and	faster	features	are	preferred.

Now,	let’s	take	a	look	at	how	the	automated	side	of	the	process	looks.	The	following	graph
shows	you	all	the	steps	from	the	merging	into	master	to	production	deployment:

Until	you	merge	your	code	into	master,	you	are	in	the	development	environment.	The	CI
tool	will	listen	to	all	the	changes	on	the	master	branch	of	your	project,	and	for	each	of
them,	it	will	trigger	a	job.	This	job	will	take	care	of	building	the	project	if	necessary	and
then	run	all	the	tests.	If	there	is	any	error	or	test	failure,	it	will	let	everyone	now,	and	the
team	that	triggered	this	job	should	take	care	of	fixing	it.	The	master	branch	is	considered
unstable	at	this	point.

If	all	tests	pass,	the	CI	tool	will	deploy	your	code	into	staging.	Staging	is	an	environment
that	emulates	production	as	much	as	possible;	that	is,	it	has	the	same	server	configuration,
database	structure,	and	so	on.	Once	the	application	is	here,	you	can	run	all	the	tests	that
you	need	until	you	are	confident	to	continue	the	deployment	to	production.	As	you	make
small	changes,	you	do	not	need	to	manually	test	absolutely	everything.	Instead,	you	can
test	your	changes	and	the	main	use	cases	of	your	application.

Unit	tests	versus	acceptance	tests
We	said	that	the	goal	of	CI	is	to	have	a	process	as	automatized	as	possible.	However,	we
still	need	to	manually	test	the	application	in	staging,	right?	Acceptance	tests	to	the	rescue!

Writing	unit	tests	is	nice	and	a	must,	but	they	test	only	small	pieces	of	code	in	an	isolated
way.	Even	if	your	entire	unit	tests	suite	passes,	you	cannot	be	sure	that	your	application
works	at	all	as	you	might	not	integrate	all	the	parts	properly	because	you	are	missing
functionalities	or	the	functionalities	that	you	built	were	not	what	the	business	needed.
Acceptance	tests	test	the	entire	flow	of	a	specific	use	case.

If	your	application	is	a	website,	acceptance	tests	will	probably	launch	a	browser	and
emulate	user	actions,	such	as	clicking	and	typing,	in	order	to	assert	that	the	page	returns
what	is	expected.	Yes,	from	a	few	lines	of	code,	you	can	execute	all	the	tests	that	were
previously	manual	in	an	automated	way.

Now,	imagine	that	you	wrote	acceptance	tests	for	all	the	features	of	your	application.	Once
the	code	is	in	staging,	the	CI	tool	can	automatically	run	all	of	these	tests	and	make	sure
that	the	new	code	does	not	break	any	existing	functionality.	You	can	even	run	them	using
as	many	different	browsers	as	you	need	to	make	sure	that	your	application	works	fine	in
all	of	them.	If	a	test	fails,	the	CI	tool	will	notify	the	team	responsible,	and	they	will	have
to	fix	it.	If	all	the	tests	pass,	the	CI	tool	can	automatically	deploy	your	code	into
production.

Why	do	we	need	to	write	unit	tests	then,	if	acceptance	tests	test	what	the	business	really
cares	about?	There	are	several	reasons	to	keep	both	acceptance	and	unit	tests;	in	fact,	you
should	have	way	more	unit	tests	than	acceptance	tests.

Unit	tests	check	small	pieces	of	code,	which	make	them	orders-of-magnitude	faster
than	acceptance	tests,	which	test	the	whole	flow	against	a	browser.	That	means	that
you	can	run	all	your	unit	tests	in	a	few	seconds	or	minutes,	but	it	will	take	much
longer	to	run	all	your	acceptance	tests.
Writing	acceptance	tests	that	cover	absolutely	all	the	possible	combinations	of	use
cases	is	virtually	impossible.	Writing	unit	tests	that	cover	a	high	percentage	of	use
cases	for	a	given	method	or	piece	of	code	is	rather	easy.	You	should	have	loads	of
unit	tests	testing	as	many	edge	cases	as	possible	but	only	some	acceptance	tests
testing	the	main	use	cases.

When	should	you	run	each	type	of	test	then?	As	unit	tests	are	faster,	they	should	be
executed	during	the	first	stages	of	deployment.	Only	once	we	know	that	they	all	have
passed	do	we	want	to	spend	time	deploying	to	staging	and	running	acceptance	tests.

TDD	versus	BDD
In	Chapter	7,	Testing	Web	Applications,	you	learned	that	TDD	or	test-driven	development
is	the	practice	of	writing	first	the	unit	tests	and	then	the	code	in	an	attempt	to	write	testable
and	cleaner	code	and	to	make	sure	that	your	test	suite	is	always	up	to	date.	With	the
appearance	of	acceptance	tests,	TDD	evolved	to	BDD	or	behavior-driven	development.

BDD	is	quite	similar	to	TDD,	in	that	you	should	write	the	tests	first	and	then	the	code	that
makes	these	tests	pass.	The	only	difference	is	that	with	BDD,	we	write	tests	that	specify
the	desired	behavior	of	the	code,	which	can	be	translated	to	acceptance	tests.	Even	though
it	will	always	depend	on	the	situation,	you	should	write	acceptance	tests	that	test	a	very
specific	part	of	the	application	rather	than	long	use	cases	that	contain	several	steps.	With
BDD,	as	with	TDD,	you	want	to	get	quick	feedback,	and	if	you	write	a	broad	test,	you	will
have	to	write	a	lot	of	code	in	order	to	make	it	pass,	which	is	not	the	goal	that	BDD	wants
to	achieve.

Business	writing	tests
The	whole	point	of	acceptance	tests	and	BDD	is	to	make	sure	that	your	application	works
as	expected,	not	only	your	code.	Acceptance	tests,	then,	should	not	be	written	by
developers	but	by	the	business	itself.	Of	course,	you	cannot	expect	that	managers	and
executives	will	learn	how	to	code	in	order	to	create	acceptance	tests,	but	there	is	a	bunch
of	tools	that	allow	you	to	translate	plain	English	instructions	or	behavioral	specifications
into	acceptance	tests’	code.	Of	course,	these	instructions	have	to	follow	some	patterns.
Behavioral	specifications	have	the	following	parts:

A	title,	which	describes	briefly,	but	in	a	very	clear	way,	what	use	case	the	behavioral
specification	covers.
A	narrative,	which	specifies	who	performs	the	test,	what	the	business	value	is,	and
what	the	expected	outcome	is.	Usually	the	format	of	the	narrative	is	the	following:

In	order	to	<business	value>

As	a	<stakeholder>

I	want	to	<expected	outcome>

A	set	of	scenarios,	which	is	a	description	and	a	set	of	steps	of	each	specific	use	case
that	we	want	to	cover.	Each	scenario	has	a	description	and	a	list	of	instructions	in	the
Given-When-Then	format;	we	will	discuss	more	on	this	in	the	next	section.	A	common
patterns	is:

Scenario:	<short	description>

Given	<set	up	scenario>

When	<steps	to	take>

Then	<expected	outcome>

In	the	next	two	sections,	we	will	discover	two	tools	in	PHP	that	you	can	use	in	order	to
understand	behavioral	scenarios	and	run	them	as	acceptance	tests.

BDD	with	Behat
The	first	of	the	tools	we	will	introduce	is	Behat.	Behat	is	a	PHP	framework	that	can
transform	behavioral	scenarios	into	acceptance	tests	and	then	run	them,	providing
feedback	similar	to	PHPUnit.	The	idea	is	to	match	each	of	the	steps	in	English	with	the
scenarios	in	a	PHP	function	that	performs	some	action	or	asserts	some	results.

In	this	section,	we	will	try	to	add	some	acceptance	tests	to	our	application.	The	application
will	be	a	simple	database	migration	script	that	will	allow	us	to	keep	track	of	the	changes
that	we	will	add	to	our	schema.	The	idea	is	that	each	time	that	you	want	to	change	your
database,	you	will	write	the	changes	on	a	migration	file	and	then	execute	the	script.	The
application	will	check	what	was	the	last	migration	executed	and	will	perform	new	ones.
We	will	first	write	the	acceptance	tests	and	then	introduce	the	code	progressively	as	BDD
suggests.

In	order	to	install	Behat	on	your	development	environment,	you	can	use	Composer.	The
command	is	as	follows:

$	composer	require	behat/behat

Behat	actually	does	not	come	with	any	set	of	assertion	functions,	so	you	will	have	to	either
implement	your	own	by	writing	conditionals	and	throwing	exceptions	or	you	could
integrate	any	library	that	provides	them.	Developers	usually	choose	PHPUnit	for	this	as
they	are	already	used	to	its	assertions.	Add	it,	then,	to	your	project	via	the	following:

$	composer	require	phpunit/phpunit

As	with	PHPUnit,	Behat	needs	to	know	where	your	test	suite	is	located.	You	can	either
have	a	configuration	file	stating	this	and	other	configuration	options,	which	is	similar	to
the	phpunit.xml	configuration	file	for	PHPUnit,	or	you	could	follow	the	conventions	that
Behat	sets	and	skip	the	configuration	step.	If	you	choose	the	second	option,	you	can	let
Behat	create	the	folder	structure	and	PHP	test	class	for	you	with	the	following	command:

$./vendor/bin/behat	--init

After	running	this	command,	you	should	have	a
features/bootstrap/FeatureContext.php	file,	which	is	where	you	need	to	add	the	steps
of	the	PHP	functions’	matching	scenarios.	More	on	this	shortly,	but	first,	let’s	find	out	how
to	write	behavioral	specifications	so	that	Behat	can	understand	them.

Introducing	the	Gherkin	language
Gherkin	is	the	language,	or	rather	the	format,	that	behavioral	specifications	have	to	follow.
Using	Gherkin	naming,	each	behavioral	specification	is	a	feature.	Each	feature	is	added	to
the	features	directory	and	should	have	the	.feature	extension.	Feature	files	should	start
with	the	Feature	keyword	followed	by	the	title	and	the	narrative	in	the	same	format	that
we	already	mentioned	before—that	is,	the	In	order	to–As	a–I	need	to	structure.	In	fact,
Gherkin	will	only	print	these	lines,	but	keeping	it	consistent	will	help	your	developers	and
business	know	what	they	are	trying	to	achieve.

Our	application	will	have	two	features:	one	for	the	setup	of	our	database	to	allow	the
migrations	tool	to	work,	and	the	other	one	for	the	correct	behavior	when	adding
migrations	to	the	database.	Add	the	following	content	to	the	features/setup.feature
file:

Feature:	Setup

		In	order	to	run	database	migrations

		As	a	developer

		I	need	to	be	able	to	create	the	empty	schema	and	migrations	table.

Then,	add	the	following	feature	definition	to	the	features/migrations.feature	file:

Feature:	Migrations

		In	order	to	add	changes	to	my	database	schema

		As	a	developer

		I	need	to	be	able	to	run	the	migrations	script

Defining	scenarios
The	title	and	narrative	of	features	does	not	really	do	anything	more	than	give	information
to	the	person	who	runs	the	tests.	The	real	work	is	done	in	scenarios,	which	are	specific	use
cases	with	a	set	of	steps	to	take	and	some	assertions.	You	can	add	as	many	scenarios	as
you	need	to	each	feature	file	as	long	as	they	represent	different	use	cases	of	the	same
feature.	For	example,	for	setup.feature,	we	can	add	a	couple	of	scenarios:	one	where	it
is	the	first	time	that	the	user	runs	the	script,	so	the	application	will	have	to	set	up	the
database,	and	one	where	the	user	already	executed	the	script	previously,	so	the	application
does	not	need	to	go	through	the	setup	process.

As	Behat	needs	to	be	able	to	translate	the	scenarios	written	in	plain	English	to	PHP
functions,	you	will	have	to	follow	some	conventions.	In	fact,	you	will	see	that	they	are
very	similar	to	the	ones	that	we	already	mentioned	in	the	behavioral	specifications	section.

Writing	Given-When-Then	test	cases
A	scenario	must	start	with	the	Scenario	keyword	followed	by	a	short	description	of	what
use	case	the	scenario	covers.	Then,	you	need	to	add	the	list	of	steps	and	assertions.
Gherkin	allows	you	to	use	four	keywords	for	this:	Given,	When,	Then,	and	And.	In	fact,
they	all	have	the	same	meaning	when	it	comes	to	code,	but	they	add	a	lot	of	semantic
value	to	your	scenarios.	Let’s	consider	an	example;	add	the	following	scenario	at	the	end
of	your	setup.feature	file:

Scenario:	Schema	does	not	exist	and	I	do	not	have	migrations

		Given	I	do	not	have	the	"bdd_db_test"	schema

		And	I	do	not	have	migration	files

		When	I	run	the	migrations	script

		Then	I	should	have	an	empty	migrations	table

		And	I	should	get:

				"""

				Latest	version	applied	is	0.

				"""

This	scenario	tests	what	happens	when	we	do	not	have	any	schema	information	and	run
the	migrations	script.	First,	it	describes	the	state	of	the	scenario:	Given	I	do	not	have	the
bdd_db_test	schema	And	I	do	not	have	migration	files.	These	two	lines	will	be	translated
to	one	method	each,	which	will	remove	the	schema	and	all	migration	files.	Then,	the
scenario	describes	what	the	user	will	do:	When	I	run	the	migrations	script.	Finally,	we	set
the	expectations	for	this	scenario:	Then	I	should	have	an	empty	migrations	table	And	I
should	get	Latest	version	applied	is	0..

In	general,	the	same	step	will	always	start	by	the	same	keyword—that	is,	I	run	the
migrations	script	will	always	be	preceded	by	When.	The	And	keyword	is	a	special	one	as	it
matches	all	the	three	keywords;	its	only	purpose	is	to	have	steps	as	English-friendly	as
possible;	although	if	you	prefer,	you	could	write	Given	I	do	not	have	migration	files.

Another	thing	to	note	in	this	example	is	the	use	of	arguments	as	part	of	the	step.	The	line
And	I	should	get	is	followed	by	a	string	enclosed	by	""".	The	PHP	function	will	get	this
string	as	an	argument,	so	you	can	have	one	unique	step	definition—that	is,	the	function—

for	a	wide	variety	of	situations	just	using	different	strings.

Reusing	parts	of	scenarios
It	is	quite	common	that	for	a	given	feature,	you	always	start	from	the	same	scenario.	For
example,	setup.feature	has	a	scenario	in	which	we	can	run	the	migrations	for	the	first
time	without	any	migration	file,	but	we	will	also	add	another	scenario	in	which	we	want	to
run	the	migrations	script	for	the	first	time	with	some	migration	files	to	make	sure	that	it
will	apply	all	of	them.	Both	scenarios	have	in	common	one	thing:	they	do	not	have	the
database	set	up.

Gherkin	allows	you	to	define	some	steps	that	will	be	applied	to	all	the	scenarios	of	the
feature.	You	can	use	the	Background	keyword	and	a	list	of	steps,	usually	Given.	Add	these
two	lines	between	the	feature	narrative	and	scenario	definition:

Background:

		Given	I	do	not	have	the	"bdd_db_test"	schema

Now,	you	can	remove	the	first	step	from	the	existing	scenario	as	Background	will	take
care	of	it.

Writing	step	definitions
So	far,	we	have	written	features	using	the	Gherkin	language,	but	we	still	have	not
considered	how	any	of	the	steps	in	each	scenario	is	translated	to	actual	code.	The	easiest
way	to	note	this	is	by	asking	Behat	to	run	the	acceptance	tests;	as	the	steps	are	not	defined
anywhere,	Behat	will	print	out	all	the	functions	that	you	need	to	add	to	your
FeatureContext	class.	To	run	the	tests,	just	execute	the	following	command:

$./vendor/bin/behat

The	following	screenshot	shows	the	output	that	you	should	get	if	you	have	no	step
definitions:

As	you	can	note,	Behat	complained	about	some	missing	steps	and	then	printed	in	yellow
the	methods	that	you	could	use	in	order	to	implement	them.	Copy	and	paste	them	into
your	autogenerated	features/bootstrap/FeatureContext.php	file.	The	following
FeatureContext	class	has	already	implemented	all	of	them:

<?php

use	Behat\Behat\Context\Context;

use	Behat\Behat\Context\SnippetAcceptingContext;

use	Behat\Gherkin\Node\PyStringNode;

require_once	__DIR__	.	

'/../../vendor/phpunit/phpunit/src/Framework/Assert/Functions.php';

class	FeatureContext	implements	Context,	SnippetAcceptingContext

{

				private	$db;

				private	$config;

				private	$output;

				public	function	__construct()	{

								$configFileContent	=	file_get_contents(

												__DIR__	.	'/../../config/app.json'

);

								$this->config	=	json_decode($configFileContent,	true);

				}

				private	function	getDb():	PDO	{

								if	($this->db	===	null)	{

												$this->db	=	new	PDO(

																"mysql:host={$this->config['host']};	"

																				.	"dbname=bdd_db_test",

																$this->config['user'],

																$this->config['password']

);

								}

								return	$this->db;

				}

				/**

					*	@Given	I	do	not	have	the	"bdd_db_test"	schema

					*/

				public	function	iDoNotHaveTheSchema()

				{

								$this->executeQuery('DROP	SCHEMA	IF	EXISTS	bdd_db_test');

				}

				/**

					*	@Given	I	do	not	have	migration	files

					*/

				public	function	iDoNotHaveMigrationFiles()

				{

								exec('rm	db/migrations/*.sql	>	/dev/null	2>&1');

				}

				/**

					*	@When	I	run	the	migrations	script

					*/

				public	function	iRunTheMigrationsScript()

				{

								exec('php	migrate.php',	$this->output);

				}

				/**

					*	@Then	I	should	have	an	empty	migrations	table

					*/

				public	function	iShouldHaveAnEmptyMigrationsTable()

				{

								$migrations	=	$this->getDb()

												->query('SELECT	*	FROM	migrations')

												->fetch();

								assertEmpty($migrations);

				}

				private	function	executeQuery(string	$query)

				{

								$removeSchemaCommand	=	sprintf(

												'mysql	-u	%s	%s	-h	%s	-e	"%s"',

												$this->config['user'],

												empty($this->config['password'])

																?	''	:	"-p{$this->config['password']}",

												$this->config['host'],

												$query

);

								exec($removeSchemaCommand);

				}

}

As	you	can	note,	we	read	the	configuration	from	the	config/app.json	file.	This	is	the
same	configuration	file	that	the	application	will	use,	and	it	contains	the	database’s
credentials.	We	also	instantiated	a	PDO	object	to	access	the	database	so	that	we	could	add
or	remove	tables	or	take	a	look	at	what	the	script	did.

Step	definitions	are	a	set	of	methods	with	a	comment	on	each	of	them.	This	comment	is	an
annotation	as	it	starts	with	@	and	is	basically	a	regular	expression	matching	the	plain
English	step	defined	in	the	feature.	Each	of	them	has	its	implementation:	either	removing
a	database	or	migration	files,	executing	the	migrations	script,	or	checking	what	the
migrations	table	contains.

The	parameterization	of	steps
In	the	previous	FeatureContext	class,	we	intentionally	missed	the	iShouldGet	method.
As	you	might	recall,	this	step	has	a	string	argument	identified	by	a	string	enclosed
between	""".	The	implementation	for	this	method	looks	as	follows:

/**

	*	@Then	I	should	get:

	*/

public	function	iShouldGet(PyStringNode	$string)

{

				assertEquals(implode("\n",	$this->output),	$string);

}

Note	how	the	regular	expression	does	not	contain	the	string.	This	happens	when	using
long	strings	with	""".	Also,	the	argument	is	an	instance	of	PyStringNode,	which	is	a	bit
more	complex	than	a	normal	string.	However,	fear	not;	when	you	compare	it	with	a	string,
PHP	will	look	for	the	__toString	method,	which	just	prints	the	content	of	the	string.

Running	feature	tests
In	the	previous	sections,	we	wrote	acceptance	tests	using	Behat,	but	we	have	not	written	a
single	line	of	code	yet.	Before	running	them,	though,	add	the	config/app.json
configuration	file	with	the	credentials	of	your	database	user	so	that	the	FeatureContext
constructor	can	find	it,	as	follows:

{

		"host":	"127.0.0.1",

		"schema":	"bdd_db_test",

		"user":	"root",

		"password":	""

}

Now,	let’s	run	the	acceptance	tests,	expecting	them	to	fail;	otherwise,	our	tests	will	not	be
valid	at	all.	The	output	should	be	something	similar	to	this:

As	expected,	the	Then	steps	failed.	Let’s	implement	the	minimum	code	necessary	in	order
to	make	the	tests	pass.	For	starters,	add	the	autoloader	into	your	composer.json	file	and
run	composer	update:

"autoload":	{

				"psr-4":	{

								"Migrations\\":	"src/"

				}

}

We	would	like	to	implement	a	Schema	class	that	contains	the	helpers	necessary	to	set	up	a
database,	run	migrations,	and	so	on.	Right	now,	the	feature	is	only	concerned	about	the
setup	of	the	database—that	is,	creating	the	database,	adding	the	empty	migrations	table	to
keep	track	of	all	the	migrations	added,	and	the	ability	to	get	the	latest	migration	registered

as	successful.	Add	the	following	code	as	src/Schema.php:

<?php

namespace	Migrations;

use	Exception;

use	PDO;

class	Schema	{

				const	SETUP_FILE	=	__DIR__	.	'/../db/setup.sql';

				const	MIGRATIONS_DIR	=	__DIR__	.	'/../db/migrations/';

				private	$config;

				private	$connection;

				public	function	__construct(array	$config)

				{

								$this->config	=	$config;

				}

				

				private	function	getConnection():	PDO

				{

								if	($this->connection	===	null)	{

												$this->connection	=	new	PDO(

																"mysql:host={$this->config['host']};"

																				.	"dbname={$this->config['schema']}",

																$this->config['user'],

																$this->config['password']

);

								}

								return	$this->connection;

				}

}

Even	though	the	focus	of	this	chapter	is	to	write	acceptance	tests,	let’s	go	through	the
different	implemented	methods:

The	constructor	and	getConnection	just	read	the	configuration	file	in
config/app.json	and	instantiated	the	PDO	object.
The	createSchema	executed	CREATE	SCHEMA	IF	NOT	EXISTS,	so	if	the	schema
already	exists,	it	will	do	nothing.	We	executed	the	command	with	exec	instead	of	PDO
as	PDO	always	needs	to	use	an	existing	database.
The	getLatestMigration	will	first	check	whether	the	migrations	table	exists;	if	not,
we	will	create	it	using	setup.sql	and	then	fetch	the	last	successful	migration.

We	also	need	to	add	the	migrations/setup.sql	file	with	the	query	to	create	the
migrations	table,	as	follows:

CREATE	TABLE	IF	NOT	EXISTS	migrations(

		version	INT	UNSIGNED	NOT	NULL,

		`time`	TIMESTAMP	NOT	NULL	DEFAULT	CURRENT_TIMESTAMP,

		status	ENUM('success',	'error'),

		PRIMARY	KEY	(version,	status)

);

Finally,	we	need	to	add	the	migrate.php	file,	which	is	the	one	that	the	user	will	execute.
This	file	will	get	the	configuration,	instantiate	the	Schema	class,	set	up	the	database,	and
retrieve	the	last	migration	applied.	Run	the	following	code:

<?php

require_once	__DIR__	.	'/vendor/autoload.php';

$configFileContent	=	file_get_contents(__DIR__	.	'/config/app.json');

$config	=	json_decode($configFileContent,	true);

$schema	=	new	Migrations\Schema($config);

$schema->createSchema();

$version	=	$schema->getLatestMigration();

echo	"Latest	version	applied	is	$version.\n";

You	are	now	good	to	run	the	tests	again.	This	time,	the	output	should	be	similar	to	this
screenshot,	where	all	the	steps	are	in	green:

Now	that	our	acceptance	test	is	passing,	we	need	to	add	the	rest	of	the	tests.	To	make
things	quicker,	we	will	add	all	the	scenarios,	and	then	we	will	implement	the	necessary
code	to	make	them	pass,	but	it	would	be	better	if	you	add	one	scenario	at	a	time.	The
second	scenario	of	setup.feature	could	look	as	follows	(remember	that	the	feature
contains	a	Background	section,	in	which	we	clean	the	database):

Scenario:	Schema	does	not	exists	and	I	have	migrations

		Given	I	have	migration	file	1:

				"""

				CREATE	TABLE	test1(id	INT);

				"""

		And	I	have	migration	file	2:

				"""

				CREATE	TABLE	test2(id	INT);

				"""

		When	I	run	the	migrations	script

		Then	I	should	only	have	the	following	tables:

				|	migrations	|

				|	test1						|

				|	test2						|

		And	I	should	have	the	following	migrations:

				|	1	|	success	|

				|	2	|	success	|

		And	I	should	get:

				"""

				Latest	version	applied	is	0.

				Applied	migration	1	successfully.

				Applied	migration	2	successfully.

				"""

This	scenario	is	important	as	it	used	parameters	inside	the	step	definitions.	For	example,
the	I	have	migration	file	step	is	presented	twice,	each	time	with	a	different	migration	file
number.	The	implementation	of	this	step	is	as	follows:

/**

	*	@Given	I	have	migration	file	:version:

	*/

public	function	iHaveMigrationFile(

				string	$version,

				PyStringNode	$file

)	{

				$filePath	=	__DIR__	.	"/../../db/migrations/$version.sql";

				file_put_contents($filePath,	$file->getRaw());

}

The	annotation	of	this	method,	which	is	a	regular	expression,	used	:version	as	a
wildcard.	Any	step	that	starts	with	Given	I	have	migration	file	followed	by	something	else
will	match	this	step	definition,	and	the	“something	else”	bit	will	be	received	as	the
$version	argument	as	a	string.

Here,	we	introduced	yet	another	type	of	argument:	tables.	The	Then	I	should	only	have	the
following	tables	step	defined	a	table	of	two	rows	of	one	column	each,	and	the	Then	I
should	have	the	following	migrations	bit	sent	a	table	of	two	rows	of	two	columns	each.
The	implementation	for	the	new	steps	is	as	follows:

/**

	*	@Then	I	should	only	have	the	following	tables:

	*/

public	function	iShouldOnlyHaveTheFollowingTables(TableNode	$tables)	{

				$tablesInDb	=	$this->getDb()

								->query('SHOW	TABLES')

								->fetchAll(PDO::FETCH_NUM);

				assertEquals($tablesInDb,	array_values($tables->getRows()));

}

/**

	*	@Then	I	should	have	the	following	migrations:

	*/

public	function	iShouldHaveTheFollowingMigrations(

				TableNode	$migrations

)	{

				$query	=	'SELECT	version,	status	FROM	migrations';

				$migrationsInDb	=	$this->getDb()

								->query($query)

								->fetchAll(PDO::FETCH_NUM);

				assertEquals($migrations->getRows(),	$migrationsInDb);

}

The	tables	are	received	as	TableNode	arguments.	This	class	contains	a	getRows	method
that	returns	an	array	with	the	rows	defined	in	the	feature	file.

The	other	feature	that	we	would	like	to	add	is	features/migrations.feature.	This
feature	will	assume	that	the	user	already	has	the	database	set	up,	so	we	will	add	a
Background	section	with	this	step.	We	will	add	one	scenario	in	which	the	migration	file
numbers	are	not	consecutive,	in	which	case	the	application	should	stop	at	the	last
consecutive	migration	file.	The	other	scenario	will	make	sure	that	when	there	is	an	error,
the	application	does	not	continue	the	migration	process.	The	feature	should	look	similar	to
the	following:

Feature:	Migrations

		In	order	to	add	changes	to	my	database	schema

		As	a	developer

		I	need	to	be	able	to	run	the	migrations	script

		Background:

				Given	I	have	the	bdd_db_test

		Scenario:	Migrations	are	not	consecutive

				Given	I	have	migration	3

				And	I	have	migration	file	4:

						"""

						CREATE	TABLE	test4(id	INT);

						"""

				And	I	have	migration	file	6:

						"""

						CREATE	TABLE	test6(id	INT);

						"""

				When	I	run	the	migrations	script

				Then	I	should	only	have	the	following	tables:

						|	migrations	|

						|	test4						|

				And	I	should	have	the	following	migrations:

						|	3	|	success	|

						|	4	|	success	|

				And	I	should	get:

						"""

						Latest	version	applied	is	3.

						Applied	migration	4	successfully.

						"""

		Scenario:	A	migration	throws	an	error

				Given	I	have	migration	file	1:

						"""

						CREATE	TABLE	test1(id	INT);

						"""

				And	I	have	migration	file	2:

						"""

						CREATE	TABLE	test1(id	INT);

						"""

				And	I	have	migration	file	3:

						"""

						CREATE	TABLE	test3(id	INT);

						"""

				When	I	run	the	migrations	script

				Then	I	should	only	have	the	following	tables:

						|	migrations	|

						|	test1						|

				And	I	should	have	the	following	migrations:

						|	1	|	success	|

						|	2	|	error			|

				And	I	should	get:

						"""

						Latest	version	applied	is	0.

						Applied	migration	1	successfully.

						Error	applying	migration	2:	Table	'test1'	already	exists.

						"""

There	aren’t	any	new	Gherkin	features.	The	two	new	step	implementations	look	as
follows:

/**

*	@Given	I	have	the	bdd_db_test

*/

public	function	iHaveTheBddDbTest()

{

				$this->executeQuery('CREATE	SCHEMA	bdd_db_test');

}

/**

	*	@Given	I	have	migration	:version

	*/

public	function	iHaveMigration(string	$version)

{

				$this->getDb()->exec(

								file_get_contents(__DIR__	.	'/../../db/setup.sql')

);

				$query	=	<<<SQL

INSERT	INTO	migrations	(version,	status)

VALUES(:version,	'success')

SQL;

				$this->getDb()

								->prepare($query)

								->execute(['version'	=>	$version]);

}

Now,	it	is	time	to	add	the	needed	implementation	to	make	the	tests	pass.	There	are	only
two	changes	needed.	The	first	one	is	an	applyMigrationsFrom	method	in	the	Schema	class
that,	given	a	version	number,	will	try	to	apply	the	migration	file	for	this	number.	If	the
migration	is	successful,	it	will	add	a	row	in	the	migrations	table,	with	the	new	version
added	successfully.	If	the	migration	failed,	we	would	add	the	record	in	the	migrations
table	as	a	failure	and	then	throw	an	exception	so	that	the	script	is	aware	of	it.	Finally,	if	the
migration	file	does	not	exist,	the	returning	value	will	be	false.	Add	this	code	to	the
Schema	class:

public	function	applyMigrationsFrom(int	$version):	bool

{

				$filePath	=	self::MIGRATIONS_DIR	.	"$version.sql";

				if	(!file_exists($filePath))	{

								return	false;

				}

				$connection	=	$this->getConnection();

				if	($connection->exec(file_get_contents($filePath))	===	false)	{

								$error	=	$connection->errorInfo()[2];

								$this->registerMigration($version,	'error');

								throw	new	Exception($error);

				}

				$this->registerMigration($version,	'success');

				return	true;

}

private	function	registerMigration(int	$version,	string	$status)

{

				$query	=	<<<SQL

INSERT	INTO	migrations	(version,	status)

VALUES(:version,	:status)

SQL;

				$params	=	['version'	=>	$version,	'status'	=>	$status];

				$this->getConnection()->prepare($query)->execute($params);

}

The	other	bit	missing	is	in	the	migrate.php	script.	We	need	to	call	the	newly	created
applyMigrationsFrom	method	with	consecutive	versions	starting	from	the	latest	one,	until
we	get	either	a	false	value	or	an	exception.	We	also	want	to	print	out	information	about
what	is	going	on	so	that	the	user	is	aware	of	what	migrations	were	added.	Add	the
following	code	at	the	end	of	the	migrate.php	script:

do	{

				$version++;

				try	{

								$result	=	$schema->applyMigrationsFrom($version);

								if	($result)	{

												echo	"Applied	migration	$version	successfully.\n";

								}

				}	catch	(Exception	$e)	{

								$error	=	$e->getMessage();

								echo	"Error	applying	migration	$version:	$error.\n";

								exit(1);

				}

}	while	($result);

Now,	run	the	tests	and	voilà!	They	all	pass.	You	now	have	a	library	that	manages	database
migrations,	and	you	are	100%	sure	that	it	works	thanks	to	your	acceptance	tests.

Testing	with	a	browser	using	Mink
So	far,	we	have	been	able	to	write	acceptance	tests	for	a	script,	but	most	of	you	are	reading
this	book	in	order	to	write	nice	and	shiny	web	applications.	How	can	you	take	advantage
of	acceptance	tests	then?	It	is	time	to	introduce	the	second	PHP	tool	of	this	chapter:	Mink.

Mink	is	actually	an	extension	of	Behat,	which	adds	implementations	of	several	steps
related	to	web	browser	testing.	For	example,	if	you	add	Mink	to	your	application,	you	will
be	able	to	add	scenarios	where	Mink	will	launch	a	browser	and	click	or	type	as	requested,
saving	you	a	lot	of	time	and	effort	in	manual	testing.	However,	first,	let’s	take	a	look	at
how	Mink	can	achieve	this.

Types	of	web	drivers
Mink	makes	use	of	web	drivers—that	is,	libraries	that	have	an	API	that	allows	you	to
interact	with	a	browser.	You	can	send	commands,	such	as	go	to	this	page,	click	on	this
link,	fill	this	input	field	with	this	text,	and	so	on,	and	the	web	driver	will	translate	this	into
the	correct	instruction	for	your	browser.	There	are	several	web	drivers,	each	of	them
implemented	following	a	different	approach.	It	is	for	this	reason	that	depending	on	the
web	driver,	you	will	have	some	features	or	others.

Web	drivers	can	be	divided	into	two	groups	depending	on	how	they	work:

Headless	browsers:	These	drivers	do	not	really	launch	a	browser;	they	only	try	to
emulate	one.	They	actually	request	for	the	web	page	and	render	the	HTML	and
JavaScript	code,	so	they	are	aware	of	how	the	page	looks,	but	they	do	not	display	it.
They	have	a	huge	benefit:	they	are	easy	to	install	and	manage,	and	as	they	do	not
have	to	build	the	graphical	representation,	they	are	extremely	fast.	The	disadvantage
is	that	they	have	severe	restrictions	in	terms	of	CSS	and	some	JavaScript
functionalities,	especially	AJAX.
Web	drivers	that	launch	real	browsers	like	a	user	would	do:	These	web	drivers
can	do	almost	anything	and	are	way	more	powerful	than	headless	browsers.	The
problem	is	that	they	can	be	a	bit	tricky	to	install	and	are	very,	very	slow—as	slow	as
a	real	user	trying	to	go	through	the	scenarios.

So,	which	one	should	you	choose?	As	always,	it	will	depend	on	what	your	application	is.
If	you	have	an	application	that	does	not	make	heavy	use	of	CSS	and	JavaScript	and	it	is
not	critical	for	your	business,	you	could	use	headless	browsers.	Instead,	if	the	application
is	the	cornerstone	of	your	business	and	you	need	to	be	absolutely	certain	that	all	the	UI
features	work	as	expected,	you	might	want	to	go	for	web	drivers	that	launch	browsers.

Installing	Mink	with	Goutte
In	this	chapter,	we	will	use	Goutte,	a	headless	web	driver	written	by	the	same	guys	that
worked	on	Symfony,	to	add	some	acceptance	tests	to	the	repositories	page	of	GitHub.	The
required	components	of	your	project	will	be	Behat,	Mink,	and	the	Goutte	driver.	Add	them
with	Composer	via	the	following	commands:

$	composer	require	behat/behat

$	composer	require	behat/mink-extension

$	composer	require	behat/mink-goutte-driver

Now,	execute	the	following	line	to	ask	Behat	to	create	the	basic	directory	structure:

$./vendor/bin/behat	–init

The	only	change	we	will	add	to	the	FeatureContext	class	is	where	it	extends	from.	This
time,	we	will	use	MinkContext	in	order	to	get	all	the	step	definitions	related	to	web
testing.	The	FeatureContext	class	should	look	similar	to	this:

<?php

use	Behat\MinkExtension\Context\MinkContext;

require	__DIR__	.	'/../../vendor/autoload.php';

class	FeatureContext	extends	MinkContext	{

}

Mink	also	needs	some	configuration	in	order	to	let	Behat	know	which	web	driver	we	want
to	use	or	what	the	base	URL	for	our	tests	is.	Add	the	following	information	to	behat.yml:

default:

		extensions:

				Behat\MinkExtension:

						base_url:	"https://github.com"

						sessions:

								default_session:

										goutte:	~

With	this	configuration,	we	let	Behat	know	that	we	are	using	the	Mink	extension,	that
Mink	will	use	Goutte	in	all	the	sessions	(you	could	actually	define	different	sessions	with
different	web	drivers	if	necessary),	and	that	the	base	URL	for	these	tests	is	the	GitHub
one.	Behat	is	already	instructed	to	look	for	the	behat.yml	file	in	the	same	directory	that
we	executed	it	in,	so	there	is	nothing	else	that	we	need	to	do.

Interaction	with	the	browser
Now,	let’s	look	at	the	magic.	If	you	know	the	steps	to	use,	writing	acceptance	tests	with
Mink	will	be	like	a	game.	First,	add	the	following	feature	in	feature/search.feature:

Feature:	Search

		In	order	to	find	repositories

		As	a	website	user

		I	need	to	be	able	to	search	repositories	by	name

		Background:

				Given	I	am	on	"/picahielos"

				And	I	follow	"Repositories"

		Scenario:	Searching	existing	repository

				When	I	fill	in	"zap"	for	"q"

				And	I	press	"Search"

				Then	I	should	see	"picahielos/zap"

		Scenario:	Searching	non-existing	repository

				When	I	fill	in	"yolo"	for	"q"

				And	I	press	"Search"

				Then	I	should	not	see	"picahielos/yolo"

The	first	thing	to	note	is	that	we	have	a	Background	section.	This	section	assumes	that	the
user	visited	the	https://github.com/picahielos	page	and	clicked	on	the	Repositories	link.
Using	I	follow	with	some	string	is	the	equivalent	of	trying	to	find	a	link	with	this	string
and	clicking	on	it.

The	first	scenario	used	the	When	I	fill	<field>	with	<value>	step,	which	basically	tries	to
find	the	input	field	on	the	page	(you	can	either	specify	the	ID	or	name),	and	types	the
value	for	you.	In	this	case,	the	q	field	was	the	search	bar,	and	we	typed	zap.	Then,	similar
to	when	clicking	on	the	links,	the	I	press	<button>	line	will	try	to	find	the	button	by	name,
ID,	or	value,	and	will	click	on	it.	Finally,	Then	I	should	see	followed	by	a	string	will	assert
that	the	given	string	could	be	found	on	the	page.	In	short,	the	test	launched	a	browser,
going	to	the	specified	URL,	clicking	on	the	Repositories	link,	searching	for	the	zap
repository,	and	asserting	that	it	could	find	it.	In	a	similar	way,	the	second	scenario	tried	to
find	a	repository	that	does	not	exist.

If	you	run	the	tests,	they	should	pass,	but	you	will	not	see	any	browser.	Remember	that
Goutte	is	a	headless	browser	web	driver.	However,	check	how	fast	these	tests	are
executed;	in	my	laptop,	it	took	less	than	3	seconds!	Can	you	imagine	anyone	performing
these	two	tests	manually	in	less	than	this	time?

One	last	thing:	having	a	cheat	sheet	of	predefined	Mink	steps	is	one	of	the	handiest	things
to	have	near	your	desk;	you	can	find	one	at	http://blog.lepine.pro/images/2012-03-behat-
cheat-sheet-en.pdf.	As	you	can	see,	we	did	not	write	a	single	line	of	code,	and	we	still
have	two	tests	making	sure	that	the	website	works	as	expected.	Also,	if	you	need	to	add	a
fancier	step,	do	not	worry;	you	can	still	implement	your	step	definitions	as	we	did	in	Behat
previously	while	taking	advantage	of	the	web	driver’s	interface	that	Mink	provides.	We
recommend	you	to	go	through	the	official	documentation	in	order	to	take	a	look	at	the

https://github.com/picahielos
http://blog.lepine.pro/images/2012-03-behat-cheat-sheet-en.pdf

complete	list	of	things	that	you	can	do	with	Mink.

Summary
In	this	concluding	chapter,	you	learned	how	important	it	is	to	coordinate	the	business	with
the	application.	For	this,	you	saw	what	BDD	is	and	how	to	implement	it	with	your	PHP
web	applications	using	Behat	and	Mink.	This	also	gives	you	the	ability	to	test	the	UI	with
web	drivers,	which	you	could	not	do	it	with	unit	tests	and	PHPUnit.	Now,	you	can	make
sure	that	not	only	is	your	application	bug-free	and	secure,	but	also	that	it	does	what	the
business	needs	it	to	do.

Congratulations	on	reaching	the	end	of	the	book!	You	started	as	an	inexperienced
developer,	but	now	you	are	able	to	write	simple	and	complex	websites	and	REST	APIs
with	PHP	and	have	an	extensive	knowledge	of	good	test	practices.	You	have	even	worked
with	a	couple	of	famous	PHP	frameworks,	so	you	are	ready	to	either	start	a	new	project
with	them	or	join	a	team	that	uses	one	of	them.

Now,	you	might	be	wondering:	what	do	I	do	next?	You	already	know	the	theory—well,
some	of	it—so	we	would	recommend	that	you	practice	a	lot.	There	are	several	ways	you
can	do	this:	by	creating	your	own	application,	joining	a	team	working	on	open	source
projects,	or	working	for	a	company.	Try	to	keep	up	to	date	with	new	releases	of	the
language	or	the	tools	and	frameworks,	discover	a	new	framework	from	time	to	time,	and
never	stop	reading.	Expanding	your	set	of	skills	is	always	a	great	idea!

If	you	run	out	of	ideas	on	what	to	read	next,	here	are	some	hints.	We	did	not	go	through
the	frontend	part	too	much,	so	you	might	be	interested	in	reading	about	CSS	and	specially
JavaScript.	JavaScript	has	become	the	main	character	in	these	last	few	years,	so	do	not
miss	it	out.	If	you	are	rather	interested	in	the	backend	side	and	how	to	manage	applications
properly,	try	discovering	new	technologies,	such	as	continuous	integration	tools	similar	to
Jenkins.	Finally,	if	you	prefer	to	focus	on	the	theory	and	“science”	side,	you	can	read
about	how	to	write	quality	code	with	Code	Complete,	Steve	McConnell,	or	how	to	make
good	use	of	design	patterns	with	Design	Patterns:	Elements	of	Reusable	Object-Oriented
Software,	Erich	Gamma,	John	Vlissides,	Ralph	Johnson,	and	Richard	Helm,	a	gang	of
four.

Always	enjoy	and	have	fun	when	developing.	Always!

Index
A

abstract	classes
about	/	Abstract	classes

acceptance	tests
about	/	Types	of	tests
versus	unit	tests	/	Unit	tests	versus	acceptance	tests

aliases
URL	/	Managing	dependencies

anonymous	functions
about	/	Anonymous	functions

Apache
reference	/	The	PHP	built-in	server

API
about	/	Introducing	APIs

APIs
testing,	with	browsers	/	Testing	APIs	with	browsers
testing,	with	command	line	/	Testing	APIs	using	the	command	line

arguments	by	value
versus	arguments	by	reference	/	Function	arguments

arithmetic	operators
about	/	Arithmetic	operators

array	functions
about	/	Other	array	functions

arrays
about	/	Arrays
initializing	/	Initializing	arrays
populating	/	Populating	arrays
accessing	/	Accessing	arrays
isset	function	/	The	empty	and	isset	functions
empty	function	/	The	empty	and	isset	functions
elements,	searching	in	/	Searching	for	elements	in	an	array
ordering	/	Ordering	arrays

assertions
about	/	Assertions
reference	/	Assertions

assignment	operators
about	/	Assignment	operators

authentication
about	/	REST	API	security

authorization
about	/	REST	API	security

autoloader
about	/	Autoloading	classes

autoloading
about	/	Autoloading	classes

B
BDD

versus	TDD	/	TDD	versus	BDD
BDD,	with	Behat

about	/	BDD	with	Behat
Behat

about	/	BDD	with	Behat
behavior-driven	development

about	/	Behavior-driven	development
behavioral	specifications

about	/	Business	writing	tests
best	practices,	REST	APIs

about	/	Best	practices	with	REST	APIs
consistency,	in	endpoints	/	Consistency	in	your	endpoints
documenting	/	Document	as	much	as	you	can
filters	/	Filters	and	pagination
pagination	/	Filters	and	pagination
API	versioning	/	API	versioning
HTTP	cache,	using	/	Using	HTTP	cache

browsers
APIs,	testing	with	/	Testing	APIs	with	browsers

business	writing	tests
about	/	Business	writing	tests

C
cache	layer

about	/	Cache
callable

about	/	Anonymous	functions
casting

about	/	Getting	information	from	the	user
versus	type	juggling	/	Getting	information	from	the	user

C	for	controller
defining	/	C	for	controller
error	controller	/	The	error	controller
login	controller	/	The	login	controller
book	controller	/	The	book	controller
books,	borrowing	/	Borrowing	books
sales	controller	/	The	sales	controller

class
about	/	Classes	and	objects

class	constructors
about	/	Class	constructors

classes
conventions	/	Properties	and	methods	visibility
autoloading	/	Autoloading	classes

class	methods
about	/	Class	methods

class	properties
about	/	Class	properties

code	coverage
about	/	Unit	tests	and	code	coverage

command	line
APIs,	testing	with	/	Testing	APIs	using	the	command	line

comparison	operators
about	/	Comparison	operators

components,	frameworks
router	/	The	main	parts	of	a	framework
request	/	The	main	parts	of	a	framework
configuration	handler	/	The	main	parts	of	a	framework
template	engine	/	The	main	parts	of	a	framework
logger	/	The	main	parts	of	a	framework
dependency	injector	/	The	main	parts	of	a	framework

Composer
reference	/	Installing	Composer
using	/	Using	Composer
dependencies,	managing	/	Managing	dependencies

autoloader,	with	PSR-4	/	Autoloader	with	PSR-4
metadata,	adding	/	Adding	metadata
index.php	file	/	The	index.php	file

conditionals
about	/	Control	structures,	Conditionals

constraints
about	/	Keys	and	constraints

continuous	integration	(CI)
about	/	Introducing	continuous	integration

controllers
about	/	The	MVC	pattern

control	structures
about	/	Control	structures
conditionals	/	Conditionals
switch…case	/	Switch…case
loops	/	Loops

cookies
data,	persisting	with	/	Persisting	data	with	cookies

CSS
about	/	HTML,	CSS,	and	JavaScript

cURL
about	/	Setting	up	the	application

D
data

persisting,	with	cookies	/	Persisting	data	with	cookies
inserting	/	Inserting	data
querying	/	Querying	data
updating	/	Updating	and	deleting	data,	Updating	data
deleting	/	Deleting	data

databases
versus	files	/	Writing	files
about	/	Introducing	databases
MySQL	/	MySQL

databases,	data	types
about	/	Database	data	types
numeric	data	types	/	Numeric	data	types
string	data	types	/	String	data	types
list	of	values	/	List	of	values
date	and	time	data	types	/	Date	and	time	data	types

database	testing
about	/	Database	testing

data	providers
about	/	Data	providers

data	providing
about	/	Data	providers

Data	Source	Name	(DSN)	/	Connecting	to	the	database
data	types

about	/	Data	types
Booleans	/	Data	types
integers	/	Data	types
floats	/	Data	types
strings	/	Data	types
reference	/	Database	data	types

date	and	time	data	types
about	/	Date	and	time	data	types
reference	link	/	Date	and	time	data	types

decrementing	operators
about	/	Incrementing	and	decrementing	operators

DELETE	method	/	DELETE
dependency	injection

defining	/	Dependency	injection
about	/	Dependency	injection
need	for	/	Why	is	dependency	injection	necessary?

dependency	injector
implementing	/	Implementing	our	own	dependency	injector

design	patterns
about	/	Design	patterns
factory	/	Factory
singleton	/	Singleton

DesignPatternsPHP
reference	/	Design	patterns

DI
models,	injecting	with	/	Injecting	models	with	DI

doubles
testing	with	/	Testing	with	doubles

do…while	loop	/	Do…while

E
elements

searching,	in	array	/	Searching	for	elements	in	an	array
Eloquent	JavaScript

reference	/	HTML,	CSS,	and	JavaScript
empty	function

about	/	The	empty	and	isset	functions
encapsulation

about	/	Encapsulation
environment

setting	up,	with	Vagrant	/	Setting	up	the	environment	with	Vagrant
environment	setup,	on	OS	X

about	/	Setting	up	the	environment	on	OS	X
PHP,	installing	/	Installing	PHP
MySQL,	installing	/	Installing	MySQL
Nginx,	installing	/	Installing	Nginx
Composer,	installing	/	Installing	Composer

environment	setup,	on	Ubuntu
about	/	Setting	up	the	environment	on	Ubuntu
PHP,	installing	/	Installing	PHP
MySQL,	installing	/	Installing	MySQL
Nginx,	installing	/	Installing	Nginx

environment	setup,	on	Windows
about	/	Setting	up	the	environment	on	Windows
PHP,	installing	/	Installing	PHP
MySQL,	installing	/	Installing	MySQL
Nginx,	installing	/	Installing	Nginx
Composer,	installing	/	Installing	Composer

escape	characters
about	/	Working	with	strings

exception	handling
try…catch	block	/	The	try…catch	block
finally	block	/	The	finally	block

exceptions
handling	/	Handling	exceptions
catching	/	Catching	different	types	of	exceptions

exit	condition	/	For
expecting	exceptions

about	/	Expecting	exceptions
expression

about	/	Operators

F
factory	design	pattern

about	/	Factory
feature

about	/	Introducing	the	Gherkin	language
features,	frameworks

about	/	Other	features	of	frameworks
authentication	/	Authentication	and	roles
roles	/	Authentication	and	roles
Object-relational	mapping	(ORM)	/	ORM
cache	/	Cache
internationalization	/	Internationalization

feature	tests
running	/	Running	feature	tests

fetch	mode
advantages	/	The	book	model
disadvantages	/	The	book	model

fields
about	/	Schemas	and	tables

fields,	table
NOT	NULL	/	Managing	tables
UNSIGNED	/	Managing	tables
DEFAULT	<value>	/	Managing	tables

files
reading	/	Reading	files
writing	/	Writing	files
versus	databases	/	Writing	files

filesystem
about	/	The	filesystem

filesystem	functions
about	/	Other	filesystem	functions

finally	block
about	/	The	finally	block

foreach	loop	/	Foreach
foreign	key	behaviors	/	Foreign	key	behaviors
foreign	keys

about	/	Foreign	keys
for	loop	/	For
foundations,	REST	APIs

HTTP	request	methods	/	HTTP	request	methods
status	codes,	in	responses	/	Status	codes	in	responses
REST	API	security	/	REST	API	security

framework,	types

about	/	Types	of	frameworks
complete	/	Complete	and	robust	frameworks
robust	/	Complete	and	robust	frameworks
lightweight	/	Lightweight	and	flexible	frameworks
flexible	/	Lightweight	and	flexible	frameworks

frameworks
reviewing	/	Reviewing	frameworks
purpose	/	The	purpose	of	frameworks
parts	/	The	main	parts	of	a	framework
components	/	The	main	parts	of	a	framework
features	/	Other	features	of	frameworks
overview	/	An	overview	of	famous	frameworks
Symfony	2	/	Symfony	2
Zend	Framework	2	/	Zend	Framework	2

function	arguments	/	Function	arguments
functions

about	/	Functions
declaring	/	Function	declaration

functions,	arrays
reference	/	Ordering	arrays,	Other	array	functions

functions,	date	and	time	data	types
DAY()	/	Date	and	time	data	types
MONTH()	/	Date	and	time	data	types
YEAR()	/	Date	and	time	data	types
HOUR()	/	Date	and	time	data	types
MINUTE()	/	Date	and	time	data	types
SECOND()	/	Date	and	time	data	types
CURRENT_DATE()	/	Date	and	time	data	types
CURRENT_TIME()	/	Date	and	time	data	types
NOW()	/	Date	and	time	data	types
DATE_FORMAT()	/	Date	and	time	data	types
DATE_ADD()	/	Date	and	time	data	types

functions,	PDO
beginTransaction	/	Working	with	transactions
commit	/	Working	with	transactions
rollBack	/	Working	with	transactions

functions,	PHP	files
include	/	PHP	files
require	/	PHP	files
include_once	/	PHP	files
require_once	/	PHP	files

functions,	strings
reference	/	Working	with	strings
strlen	/	Working	with	strings

trim	/	Working	with	strings
strtolower	/	Working	with	strings
strtoupper	/	Working	with	strings
str_replace	/	Working	with	strings
substr	/	Working	with	strings
strpos	/	Working	with	strings

G
GET	method	/	GET
getter

about	/	Encapsulation
Gherkin

about	/	Introducing	the	Gherkin	language
Given-When-Then	test	cases

writing	/	Writing	Given-When-Then	test	cases
Goutte

Mink,	installing	with	/	Installing	Mink	with	Goutte
Graphical	User	Interface	(GUI)

about	/	MySQL
Guzzle

about	/	Setting	up	the	application

H
HTML

about	/	HTML,	CSS,	and	JavaScript
HTML	forms

about	/	HTML	forms
HTTP

about	/	The	HTTP	protocol
HTTP	message,	parts

about	/	Parts	of	the	message
URI	/	URL
HTTP	method	/	The	HTTP	method
body	/	Body
headers	/	Headers
status	code	/	The	status	code

HTTP	method
about	/	The	HTTP	method
GET	/	The	HTTP	method
POST	/	The	HTTP	method
PUT	/	The	HTTP	method
DELETE	/	The	HTTP	method
OPTION	/	The	HTTP	method

HTTP	protocol
about	/	The	HTTP	protocol
interchange	of	messages,	example	/	A	simple	example
complex	example	/	A	more	complex	example

HTTP	request	methods
about	/	HTTP	request	methods
GET	/	GET
POST	/	POST	and	PUT
PUT	/	POST	and	PUT
DELETE	/	DELETE

I
500	internal	server	error	/	5xx	–	server	error
Illuminate\Database\Eloquent\Model	/	Project	setup
impersonification

about	/	Authentication	and	roles
incrementing	operators

about	/	Incrementing	and	decrementing	operators
indexes

about	/	Indexes
infinite	loops	/	While
information	hiding

about	/	Encapsulation
inheritance

about	/	Inheritance,	Introducing	inheritance
methods,	overriding	/	Overriding	methods
abstract	classes	/	Abstract	classes

installing
Vagrant	/	Installing	Vagrant
Mink,	with	Goutte	/	Installing	Mink	with	Goutte

integration	tests
about	/	Types	of	tests

interface
about	/	Interfaces

internationalization
about	/	Internationalization

isset	function
about	/	The	empty	and	isset	functions

J
JavaScript

about	/	HTML,	CSS,	and	JavaScript
join	queries

about	/	Joining	tables

K
keys

about	/	Keys	and	constraints
primary	keys	/	Primary	keys
foreign	keys	/	Foreign	keys
unique	keys	/	Unique	keys

L
lambda	functions

about	/	Anonymous	functions
Laravel

versus	Silex	/	Silex	versus	Laravel
Laravel	framework

about	/	The	Laravel	framework
installation	/	Installation
project	setup	/	Project	setup
first	endpoint,	adding	/	Adding	the	first	endpoint
users,	managing	/	Managing	users
relationships,	setting	up	in	models	/	Setting	up	relationships	in	models
complex	controllers,	creating	/	Creating	complex	controllers
tests,	adding	/	Adding	tests

layout
about	/	Layouts	and	blocks

lazy	load
about	/	The	sales	model

left	joins
about	/	Joining	tables

list	of	values
about	/	List	of	values

lists
about	/	Arrays

logical	operators
about	/	Logical	operators

loops
about	/	Control	structures,	Loops
while	loop	/	While
do…while	loop	/	Do…while
for	loop	/	For
foreach	/	Foreach

M
magic	methods

about	/	Magic	methods
__toString	/	Magic	methods
__call	/	Magic	methods
__get	/	Magic	methods

maps
about	/	Arrays

methods
overriding	/	Overriding	methods

methods	visibility
about	/	Properties	and	methods	visibility

M	for	model
defining	/	M	for	model
customer	model	/	The	customer	model
book	model	/	The	book	model
sales	model	/	The	sales	model

Mink
used,	for	testing	with	browser	/	Testing	with	a	browser	using	Mink
installing,	with	Goutte	/	Installing	Mink	with	Goutte
browser	interaction	/	Interaction	with	the	browser

mocks
using	/	Using	mocks

models
about	/	The	MVC	pattern
injecting,	with	DI	/	Injecting	models	with	DI

Monolog
about	/	Adding	a	logger
reference	/	Adding	a	logger

MVC	pattern
defining	/	The	MVC	pattern

MySQL
about	/	MySQL

MySQL	engines
reference	/	Managing	tables

MySQL	server	installer
reference	/	Installing	MySQL,	Installing	MySQL

MySQL	Workbench
reference	/	Installing	MySQL

N
namespaces

about	/	Namespaces
Nginx

reference	/	The	PHP	built-in	server
numeric	data	types

about	/	Numeric	data	types

O
OAuth2	authentication

database,	setting	up	/	Setting	up	the	database
client-credentials	authentication,	enabling	/	Enabling	client-credentials
authentication
access	token,	requesting	/	Requesting	an	access	token

OAuth	2.0
about	/	OAuth	2.0

OAuth2Server
installing	/	Installing	OAuth2Server

Object-relational	mapping	(ORM)
about	/	ORM

objects
about	/	Classes	and	objects

operator	precedence
about	/	Operator	precedence

operators
about	/	Operators
arithmetic	operators	/	Arithmetic	operators
assignment	operators	/	Assignment	operators
comparison	operators	/	Comparison	operators
logical	operators	/	Logical	operators
decrementing	operators	/	Incrementing	and	decrementing	operators
incrementing	operators	/	Incrementing	and	decrementing	operators

optional	arguments	/	Function	arguments
overindexing

about	/	Indexes
overloaded	functions	/	Function	declaration

P
Packagist

about	/	Adding	metadata,	Setting	up	the	application
references	/	Adding	metadata

PDO
using	/	Using	PDO
connecting,	to	database	/	Connecting	to	the	database
queries,	performing	/	Performing	queries
prepared	statements	/	Prepared	statements

PHP
reference	/	Autoloader	with	PSR-4

PHP,	and	HTML
mixing	/	Conditionals

PHP,	in	web	applications
about	/	PHP	in	web	applications
information,	obtaining	from	user	/	Getting	information	from	the	user
HTML	forms	/	HTML	forms
data,	persisting	with	cookies	/	Persisting	data	with	cookies

PHP	built-in	server
about	/	The	PHP	built-in	server

PHP	files
about	/	PHP	files
functions	/	PHP	files

PHP	functions,	filesystem
file_exists	/	Other	filesystem	functions
is_writable	/	Other	filesystem	functions
reference	/	Other	filesystem	functions

PHP	installer
reference	/	Installing	PHP

PHPUnit
about	/	Integrating	PHPUnit
integrating	/	Integrating	PHPUnit

phpunit.xml	file
about	/	The	phpunit.xml	file

Pimple
about	/	Project	setup

polymorphism
about	/	Polymorphism

POST	method	/	POST	and	PUT
prepared	statements	/	Prepared	statements
primary	keys

about	/	Primary	keys
production	web	servers

about	/	The	PHP	built-in	server
project	setup,	Silex	microframework

about	/	Project	setup
configuration,	managing	/	Managing	configuration
template	engine,	setting	/	Setting	the	template	engine
logger,	adding	/	Adding	a	logger

properties	visibility
about	/	Properties	and	methods	visibility

PUT	method	/	POST	and	PUT

Q
queries

grouping	/	Grouping	queries

R
receiver

about	/	A	simple	example
reflection

about	/	Database	testing
reference	/	Database	testing

requests
working	with	/	Working	with	requests
request	object	/	The	request	object
parameters,	filtering	from	/	Filtering	parameters	from	requests
routes,	mapping	to	controllers	/	Mapping	routes	to	controllers
router	/	The	router

REST	API,	creating	with	Laravel
about	/	Creating	a	REST	API	with	Laravel
OAuth2	authentication,	setting	/	Setting	OAuth2	authentication
database,	preparing	/	Preparing	the	database
models,	setting	up	/	Setting	up	the	models
endpoints,	designing	/	Designing	endpoints
controllers,	adding	/	Adding	the	controllers

REST	API	developer
toolkit	/	The	toolkit	of	the	REST	API	developer

REST	APIs
about	/	Introducing	REST	APIs
foundations	/	The	foundations	of	REST	APIs
best	practices	/	Best	practices	with	REST	APIs
testing	/	Testing	your	REST	APIs

REST	API	security
about	/	REST	API	security
basic	access	authentication	/	Basic	access	authentication
OAuth	2.0	/	OAuth	2.0

return	statement	/	The	return	statement
return	type	/	Type	hinting	and	return	types
RFC2068	standard

reference	/	The	HTTP	protocol
router

about	/	The	router
URLs	matching,	with	regular	expressions	/	URLs	matching	with	regular
expressions
arguments,	extracting	of	URL	/	Extracting	the	arguments	of	the	URL
controller,	executing	/	Executing	the	controller

S
scenarios

defining	/	Defining	scenarios
Given-When-Then	test	cases,	writing	/	Writing	Given-When-Then	test	cases
parts,	reusing	of	/	Reusing	parts	of	scenarios

schemas
about	/	Schemas	and	tables,	Understanding	schemas

sender
about	/	A	simple	example

setter
about	/	Encapsulation

Silex
versus	Laravel	/	Silex	versus	Laravel
reference	/	Silex	versus	Laravel

Silex	microframework
about	/	The	Silex	microframework
installation	/	Installation
project	setup	/	Project	setup
first	endpoint,	adding	/	Adding	the	first	endpoint
database,	accessing	/	Accessing	the	database

singleton	design	pattern
about	/	Singleton

spl_autoload_register	function
using	/	Using	the	spl_autoload_register	function

standards,	PHP
PSR-0	/	Autoloader	with	PSR-4
PSR-4	/	Autoloader	with	PSR-4

static	methods
about	/	Static	properties	and	methods

static	properties
about	/	Static	properties	and	methods

status	codes
200	/	The	status	code
401	/	The	status	code
404	/	The	status	code
500	/	The	status	code
reference	/	Status	codes	in	responses

status	codes,	in	responses
about	/	Status	codes	in	responses
2xx	-	success	/	2xx	–	success
3xx	-	redirection	/	3xx	–	redirection
4xx	-	client	error	/	4xx	–	client	error
5xx	-	server	error	/	5xx	–	server	error

step	definitions
writing	/	Writing	step	definitions

steps
parameterization	/	The	parameterization	of	steps

string	data	types
about	/	String	data	types

strings
working	with	/	Working	with	strings

superglobals
about	/	Other	superglobals
reference	/	Other	superglobals

switch…case
about	/	Switch…case

Symfony
about	/	Installing	Mink	with	Goutte

Symfony	2
about	/	Symfony	2

T
tables

about	/	Schemas	and	tables
managing	/	Managing	tables
joining	/	Joining	tables

TDD
versus	BDD	/	TDD	versus	BDD

test-driven	development	(TDD)
about	/	Test-driven	development
theory,	versus	practice	/	Theory	versus	practice

TestCase
customizing	/	Customizing	TestCase

tests
need	for	/	The	necessity	for	tests
types	/	Types	of	tests
unit	tests	/	Types	of	tests
integration	tests	/	Types	of	tests
acceptance	tests	/	Types	of	tests
about	/	Your	first	test
running	/	Running	tests

tests,	features
automatic	/	Types	of	tests
extensive	/	Types	of	tests
immediate	/	Types	of	tests
open	/	Types	of	tests
useful	/	Types	of	tests

third-party	APIs
using	/	Using	third-party	APIs
application’s	credentials,	obtaining	/	Getting	the	application’s	credentials
application,	setting	up	/	Setting	up	the	application
access	token,	requesting	/	Requesting	an	access	token
tweets,	fetching	/	Fetching	tweets

timestamps	/	Persisting	data	with	cookies
tools	installation,	with	Composer

reference	/	Integrating	PHPUnit
traits

about	/	Traits
transactions

working	with	/	Working	with	transactions
try…catch	block

about	/	The	try…catch	block
Twig

about	/	Introduction	to	Twig

Twitter
reference	/	Getting	the	application’s	credentials

type	hinting	/	Type	hinting	and	return	types
type	juggling	/	Data	types

versus	casting	/	Getting	information	from	the	user

U
unique	keys

about	/	Unique	keys
unit	tests

about	/	Types	of	tests,	Unit	tests	and	code	coverage
writing	/	Writing	unit	tests
start	/	The	start	and	end	of	a	test
end	/	The	start	and	end	of	a	test
versus	acceptance	tests	/	Unit	tests	versus	acceptance	tests

user	management,	Laravel	framework
about	/	Managing	users
user	registration	/	User	registration
user	login	/	User	login
protected	routes	/	Protected	routes

V
Vagrant

environment,	setting	up	with	/	Setting	up	the	environment	with	Vagrant
about	/	Introducing	Vagrant
installing	/	Installing	Vagrant
download	page	link	/	Installing	Vagrant
using	/	Using	Vagrant

variable	expanding
about	/	Working	with	strings

variables
about	/	Variables

variable	scope	/	Function	declaration
version	control	systems	(VCS)

about	/	Introducing	continuous	integration
V	for	view

defining	/	V	for	view
Twig,	defining	/	Introduction	to	Twig
book	view	/	The	book	view
layouts	/	Layouts	and	blocks
blocks	/	Layouts	and	blocks
paginated	book	list	/	Paginated	book	list
sales	view	/	The	sales	view
error	template	/	The	error	template
login	template	/	The	login	template

views
about	/	The	MVC	pattern

visibility
about	/	Properties	and	methods	visibility
private	/	Properties	and	methods	visibility
protected	/	Properties	and	methods	visibility
public	/	Properties	and	methods	visibility
working	/	Properties	and	methods	visibility

W
web	applications

about	/	Web	applications
web	drivers

types	/	Types	of	web	drivers
web	forms

submitting	/	A	more	complex	example
web	page

about	/	Web	applications
web	servers

about	/	Web	servers
working	/	How	they	work

website
about	/	Web	applications

while	loop	/	While

X
2xx	-	success	status	codes

200	OK	/	2xx	–	success
201	created	/	2xx	–	success
202	accepted	/	2xx	–	success

3xx	-	redirection	status	codes
301	moved	permanently	/	3xx	–	redirection
303	see	other	/	3xx	–	redirection

4xx	-	client	error	status	codes
400	bad	request	/	4xx	–	client	error
401	unauthorized	/	4xx	–	client	error
403	forbidden	/	4xx	–	client	error
404	not	found	/	4xx	–	client	error
405	method	not	allowed	/	4xx	–	client	error

5xx	-	server	error	/	5xx	–	server	error

Z
Zend	Framework	2

about	/	Zend	Framework	2
ZIP	file,	Nginx

reference	/	Installing	Nginx

	Learning PHP 7
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Setting Up the Environment
	Setting up the environment with Vagrant
	Introducing Vagrant
	Installing Vagrant
	Using Vagrant
	Setting up the environment on OS X
	Installing PHP
	Installing MySQL
	Installing Nginx
	Installing Composer
	Setting up the environment on Windows
	Installing PHP
	Installing MySQL
	Installing Nginx
	Installing Composer
	Setting up the environment on Ubuntu
	Installing PHP
	Installing MySQL
	Installing Nginx
	Summary
	2. Web Applications with PHP
	The HTTP protocol
	A simple example
	Parts of the message
	URL
	The HTTP method
	Body
	Headers
	The status code
	A more complex example
	Web applications
	HTML, CSS, and JavaScript
	Web servers
	How they work
	The PHP built-in server
	Putting things together
	Summary
	3. Understanding PHP Basics
	PHP files
	Variables
	Data types
	Operators
	Arithmetic operators
	Assignment operators
	Comparison operators
	Logical operators
	Incrementing and decrementing operators
	Operator precedence
	Working with strings
	Arrays
	Initializing arrays
	Populating arrays
	Accessing arrays
	The empty and isset functions
	Searching for elements in an array
	Ordering arrays
	Other array functions
	PHP in web applications
	Getting information from the user
	HTML forms
	Persisting data with cookies
	Other superglobals
	Control structures
	Conditionals
	Switch…case
	Loops
	While
	Do…while
	For
	Foreach
	Functions
	Function declaration
	Function arguments
	The return statement
	Type hinting and return types
	The filesystem
	Reading files
	Writing files
	Other filesystem functions
	Summary
	4. Creating Clean Code with OOP
	Classes and objects
	Class properties
	Class methods
	Class constructors
	Magic methods
	Properties and methods visibility
	Encapsulation
	Static properties and methods
	Namespaces
	Autoloading classes
	Using the __autoload function
	Using the spl_autoload_register function
	Inheritance
	Introducing inheritance
	Overriding methods
	Abstract classes
	Interfaces
	Polymorphism
	Traits
	Handling exceptions
	The try…catch block
	The finally block
	Catching different types of exceptions
	Design patterns
	Factory
	Singleton
	Anonymous functions
	Summary
	5. Using Databases
	Introducing databases
	MySQL
	Schemas and tables
	Understanding schemas
	Database data types
	Numeric data types
	String data types
	List of values
	Date and time data types
	Managing tables
	Keys and constraints
	Primary keys
	Foreign keys
	Unique keys
	Indexes
	Inserting data
	Querying data
	Using PDO
	Connecting to the database
	Performing queries
	Prepared statements
	Joining tables
	Grouping queries
	Updating and deleting data
	Updating data
	Foreign key behaviors
	Deleting data
	Working with transactions
	Summary
	6. Adapting to MVC
	The MVC pattern
	Using Composer
	Managing dependencies
	Autoloader with PSR-4
	Adding metadata
	The index.php file
	Working with requests
	The request object
	Filtering parameters from requests
	Mapping routes to controllers
	The router
	URLs matching with regular expressions
	Extracting the arguments of the URL
	Executing the controller
	M for model
	The customer model
	The book model
	The sales model
	V for view
	Introduction to Twig
	The book view
	Layouts and blocks
	Paginated book list
	The sales view
	The error template
	The login template
	C for controller
	The error controller
	The login controller
	The book controller
	Borrowing books
	The sales controller
	Dependency injection
	Why is dependency injection necessary?
	Implementing our own dependency injector
	Summary
	7. Testing Web Applications
	The necessity for tests
	Types of tests
	Unit tests and code coverage
	Integrating PHPUnit
	The phpunit.xml file
	Your first test
	Running tests
	Writing unit tests
	The start and end of a test
	Assertions
	Expecting exceptions
	Data providers
	Testing with doubles
	Injecting models with DI
	Customizing TestCase
	Using mocks
	Database testing
	Test-driven development
	Theory versus practice
	Summary
	8. Using Existing PHP Frameworks
	Reviewing frameworks
	The purpose of frameworks
	The main parts of a framework
	Other features of frameworks
	Authentication and roles
	ORM
	Cache
	Internationalization
	Types of frameworks
	Complete and robust frameworks
	Lightweight and flexible frameworks
	An overview of famous frameworks
	Symfony 2
	Zend Framework 2
	Other frameworks
	The Laravel framework
	Installation
	Project setup
	Adding the first endpoint
	Managing users
	User registration
	User login
	Protected routes
	Setting up relationships in models
	Creating complex controllers
	Adding tests
	The Silex microframework
	Installation
	Project setup
	Managing configuration
	Setting the template engine
	Adding a logger
	Adding the first endpoint
	Accessing the database
	Silex versus Laravel
	Summary
	9. Building REST APIs
	Introducing APIs
	Introducing REST APIs
	The foundations of REST APIs
	HTTP request methods
	GET
	POST and PUT
	DELETE
	Status codes in responses
	2xx – success
	3xx – redirection
	4xx – client error
	5xx – server error
	REST API security
	Basic access authentication
	OAuth 2.0
	Using third-party APIs
	Getting the application's credentials
	Setting up the application
	Requesting an access token
	Fetching tweets
	The toolkit of the REST API developer
	Testing APIs with browsers
	Testing APIs using the command line
	Best practices with REST APIs
	Consistency in your endpoints
	Document as much as you can
	Filters and pagination
	API versioning
	Using HTTP cache
	Creating a REST API with Laravel
	Setting OAuth2 authentication
	Installing OAuth2Server
	Setting up the database
	Enabling client-credentials authentication
	Requesting an access token
	Preparing the database
	Setting up the models
	Designing endpoints
	Adding the controllers
	Testing your REST APIs
	Summary
	10. Behavioral Testing
	Behavior-driven development
	Introducing continuous integration
	Unit tests versus acceptance tests
	TDD versus BDD
	Business writing tests
	BDD with Behat
	Introducing the Gherkin language
	Defining scenarios
	Writing Given-When-Then test cases
	Reusing parts of scenarios
	Writing step definitions
	The parameterization of steps
	Running feature tests
	Testing with a browser using Mink
	Types of web drivers
	Installing Mink with Goutte
	Interaction with the browser
	Summary
	Index

