
DIVE INTO HTML5DIVE INTO HTML5

BYBY

MARK PILGRIMMARK PILGRIM

WITH ILLUSTRATIONS FROM THE PUBLIC DOMAINWITH ILLUSTRATIONS FROM THE PUBLIC DOMAIN

❧❧

ive Into HTML5 seeks to elaborate on a hand-pied Selection of features from

the HTML5 specification and other fine Standards. e final manuscript has

been published on paper by O’Reilly, under the Google Press imprint. Buy the

printed Work — artfully titled “HTML5: Up & Running” — and be the first in

your Community to receive it. Your kind and sincere Feedba is always welcome. e Work

shall remain online under the CC-BY-3.0 License.

diveintohtml5.org DIVE INTO HTML5

Introduction: Five ings You Should Know About HTML5 0

A ite Biased History of HTML5 1

Detecting HTML5 Features: It’s Elementary, My Dear Watson 2

What Does It All Mean? 3

Let’s Call It a Draw(ing Surface) 4

Video in a Flash (Without at Other ing) 5

You Are Here (And So Is Everybody Else) 6

A Place To Put Your Stuff 7

Let’s Take is Offline 8

A Form of Madness 9

“Distributed,” “Extensibility,” And Other Fancy Words 10

e All-In-One Almost-Alphabetical No-Bullshit Guide to Detecting Everything 11

HTML5 Peeks, Pokes and Pointers 12

TABLE OF CONTENTSTABLE OF CONTENTS

❧❧

“If you’re good at something, never do it for free.” —e Joker

(but that doesn’t mean you should keep it to yourself)

Copyright MMIX–MMX Mark Pilgrim

diveintohtml5.org DIVE INTO HTML5

powered by Google™ Search

diveintohtml5.org DIVE INTO HTML5

1. It’s not one big thing i

2. You don’t need to throw anything away ii

3. It’s easy to get started iii

4. It already works iv

5. It’s here to stay v

Diving In i

MIME types ii

A long digression into how standards are made iii

An unbroken line iv

A timeline of HTML development from 1997 to 2004 v

Everything you know about XHTML is wrong vi

A competing vision vii

WHAT Working Group? viii

Ba to the W3C ix

Postscript x

You are here: Home ‣ Dive Into HTML5 ‣

TABLE OF CONTENTSTABLE OF CONTENTS

Introduction: Five ings You Should Know About HTML5

A ite Biased History of HTML5

diveintohtml5.org TABLE OF CONTENTS

Further Reading xi

Diving In i

Detection Teniques ii

Modernizr, an HTML5 Detection Library iii

Canvas iv

Canvas Text v

Video vi

Video Formats vii

Local Storage viii

Web Workers ix

Offline Web Applications x

Geolocation xi

Input Types xii

Placeholder Text xiii

Form Autofocus xiv

Microdata xv

Further Reading xvi

Diving In i

e Doctype ii

e Root Element iii

Detecting HTML5 Features: It’s Elementary, My Dear Watson

What Does It All Mean?

diveintohtml5.org TABLE OF CONTENTS

e <head> Element iv

Character Encoding v

Friends & (Link) Relations vi

New Semantic Elements in HTML5 vii

A long digression into how browsers handle unknown elements viii

Headers ix

Articles x

Dates and Times xi

Navigation xii

Footers xiii

Further Reading xiv

Diving In i

Simple Shapes ii

Canvas Coordinates iii

Paths iv

Text v

Gradients vi

Images vii

What About IE? viii

A Complete, Live Example ix

Further Reading x

Let’s Call It a Draw(ing Surface)

diveintohtml5.org TABLE OF CONTENTS

Diving In i

Video Containers ii

Video Codecs iii

Audio Codecs iv

What Works on the Web v

Licensing Issues with H.264 Video vi

Encoding Ogg Video with Firefogg vii

Bat Encoding Ogg Video with ffmpeg2theora viii

Encoding H.264 Video with HandBrake ix

Bat Encoding H.264 Video with HandBrake x

Encoding WebM Video with ffmpeg xi

At Last, e Markup xii

What About IE? xiii

Issues on iPhones and iPads xiv

Issues on Android devices xv

A Complete, Live Example xvi

Further Reading xvii

Diving In i

e Geolocation API ii

Show Me e Code iii

Video in a Flash (Without at Other ing)

You Are Here (And So Is Everybody Else)

diveintohtml5.org TABLE OF CONTENTS

Handling Errors iv

Choices! I Demand Choices! v

What About IE? vi

geo.js to the Rescue vii

A Complete, Live Example viii

Further Reading ix

Diving In i

A Brief History of Local Storage Has Before HTML5 ii

Introducing HTML5 Storage iii

Using HTML5 Storage iv

HTML5 Storage in Action v

Beyond Named Key-Value Pairs: Competing Visions vi

Further Reading vii

Diving In i

e Cae Manifest ii

e Flow of Events iii

e fine art of debugging, a.k.a. “Kill me! Kill me now!” iv

Let’s Build One! v

Further Reading vi

A Place To Put Your Stuff

Let’s Take is Offline

A Form of Madness

diveintohtml5.org TABLE OF CONTENTS

Diving In i

Placeholder Text ii

Autofocus Fields iii

Email Addresses iv

Web Addresses v

Numbers as Spinboxes vi

Numbers as Sliders vii

Date Piers viii

Sear Boxes ix

Color Piers x

Form Validation xi

Required Fields xii

Further Reading xiii

Diving In i

What is Microdata? ii

e Microdata Data Model iii

Marking Up People iv

Marking Up Organizations v

Marking Up Events vi

Marking Up Reviews vii

Further Reading viii

“Distributed,” “Extensibility,” And Other Fancy Words

diveintohtml5.org TABLE OF CONTENTS

Further Reading i

e All-In-One Almost-Alphabetical No-Bullshit Guide to Detecting Everything

HTML5 Peeks, Pokes and Pointers

❧❧

“If you’re good at something, never do it for free.” —e Joker

(but that doesn’t mean you should keep it to yourself)

Copyright MMIX–MMX Mark Pilgrim

powered by Google™ Search

diveintohtml5.org TABLE OF CONTENTS

You are here: Home ‣ Dive Into HTML5 ‣

INTRODUCTION:INTRODUCTION:
FIVE THINGS YOU SHOULDFIVE THINGS YOU SHOULD

KNOW ABOUT HTML5KNOW ABOUT HTML5

show table of contents

❧❧

1. It’s not one big thing1. It’s not one big thing

You may well ask: “How can I start using HTML5 if older

browsers don’t support it?” But the question itself is

misleading. HTML5 is not one big thing; it is a collection

of individual features. So you can’t detect “HTML5

support,” because that doesn’t make any sense. But you can

detect support for individual features, like canvas, video, or

geolocation.

You may think of HTML as tags and angle braets. at’s an important part of it, but it’s

not the whole story. e HTML5 specification also defines how those angle braets interact

with JavaScript, through the Document Object Model (DOM). HTML5 doesn’t just define a

<video> tag; there is also a corresponding DOM API for video objects in the DOM. You can

use this API to detect support for different video formats, play a video, pause, mute audio,

tra how mu of the video has been downloaded, and everything else you need to build a

ri user experience around the <video> tag itself.
diveintohtml5.org FIVE THINGS YOU SHOULD KNOW ABOUT HTML5

Chapter 2 and Appendix A will tea you how to properly detect support for ea new

HTML5 feature.

2. You don’t need to throw anything2. You don’t need to throw anything
awayaway

Love it or hate it, you can’t deny that HTML 4 is the most successful

markup format ever. HTML5 builds on that success. You don’t need to

throw away your existing markup. You don’t need to relearn things you

already know. If your web application worked yesterday in HTML 4, it

will still work today in HTML5. Period.

Now, if you want to improve your web applications, you’ve come to

the right place. Here’s a concrete example: HTML5 supports all the

form controls from HTML 4, but it also includes new input controls.

Some of these are long-overdue additions like sliders and date piers; others are more subtle.

For example, the email input type looks just like a text box, but mobile browsers will

customize their onscreen keyboard to make it easier to type email addresses. Older browsers

that don’t support the email input type will treat it as a regular text field, and the form still

works with no markup anges or scripting has. is means you can start improving your

web forms today , even if some of your visitors are stu on IE 6.

Read all the gory details about HTML5 forms in Chapter 9.

3. It’s easy to get started3. It’s easy to get started

“Upgrading” to HTML5 can be as simple as anging your

doctype. e doctype should already be on the first line of

every HTML page. Previous versions of HTML defined a

lot of doctypes, and oosing the right one could be triy.

diveintohtml5.org FIVE THINGS YOU SHOULD KNOW ABOUT HTML5

In HTML5, there is only one doctype:

<!DOCTYPE html>

Upgrading to the HTML5 doctype won’t break your

existing markup, because all the tags defined in HTML 4 are still supported in HTML5. But it

will allow you to use — and validate — new semantic elements like <article>,

<section>, <header>, and <footer>. You’ll learn all about these new elements in

Chapter 3.

4. It already works4. It already works

Whether you want to draw on a canvas, play video, design

beer forms, or build web applications that work offline,

you’ll find that HTML5 is already well-supported. Firefox,

Safari, Chrome, Opera, and mobile browsers already

support canvas (Chapter 4), video (Chapter 5), geolocation

(Chapter 6), local storage (Chapter 7), and more. Google

already supports microdata annotations (Chapter 10). Even

Microso — rarely known for blazing the trail of standards

support — will be supporting most HTML5 features in the

upcoming Internet Explorer 9.

Ea apter of this book includes the all-too-familiar browser

compatibility arts. But more importantly, ea apter includes a frank

discussion of your options if you need to support older browsers.

HTML5 features like geolocation (Chapter 6) and video (Chapter 5) were

first provided by browser plugins like Gears or Flash. Other features,

like canvas (Chapter 4), can be emulated entirely in JavaScript. is book will tea you how

to target the native features of modern browsers, without leaving older browsers behind.

5. It’s here to stay5. It’s here to stay

diveintohtml5.org FIVE THINGS YOU SHOULD KNOW ABOUT HTML5

Tim Berners-Lee invented the world wide web in the early 1990s. He later founded the W3C

to act as a steward of web standards, whi the organization has done for more than 15 years.

Here is what the W3C had to say about the future of web standards, in July 2009:

Today the Director announces that when the XHTML 2 Working Group arter

expires as seduled at the end of 2009, the arter will not be renewed. By doing

so, and by increasing resources in the HTML Working Group, W3C hopes to

accelerate the progress of HTML5 and clarify W3C’s position regarding the future

of HTML.

HTML5 is here to stay. Let’s dive in.

❧❧

DID YOU KNOW?DID YOU KNOW?

In association with Google Press, O’Reilly is

distributing this book in a variety of formats, including

paper, ePub, Mobi, and DRM-free PDF. e paid

edition is called “HTML5: Up & Running,” and it is

available now.

If you liked this introduction and want to show your

appreciation, you can buy “HTML5: Up & Running”

with this affiliate link or buy an electronic edition

directly from O’Reilly. You’ll get a book, and I’ll get a

bu. I do not currently accept direct donations.

Copyright MMIX–MMX Mark Pilgrim

powered by Google™ Search

diveintohtml5.org FIVE THINGS YOU SHOULD KNOW ABOUT HTML5

diveintohtml5.org FIVE THINGS YOU SHOULD KNOW ABOUT HTML5

You are here: Home ‣ Dive Into HTML5 ‣

№№11. .
HOW DID WE GET HERE?HOW DID WE GET HERE?

show table of contents

❧❧

DIVING INDIVING IN

ecently, I stumbled across a quote from a Mozilla developer about the tension

inherent in creating standards:

Implementations and specifications have to do a delicate dance together.

You don’t want implementations to happen before the specification is finished,

because people start depending on the details of implementations and that

constrains the specification. However, you also don’t want the specification to be

finished before there are implementations and author experience with those

implementations, because you need the feedba. ere is unavoidable tension here,

but we just have to muddle on through.

Keep this quote in the ba of your mind, and let me explain how HTML5 came to be.

diveintohtml5.org HOW DID WE GET HERE?

❧❧

MIME TYPESMIME TYPES

is book is about HTML5, not previous versions of HTML, and not any version of XHTML.

But to understand the history of HTML5 and the motivations behind it, you need to

understand a few tenical details first. Specifically, MIME types.

Every time your web browser requests a page, the web server sends “headers” before it sends

the actual page markup. ese headers are normally invisible, although there are web

development tools that will make them visible if you’re interested. But the headers are

important, because they tell your browser how to interpret the page markup that follows. e

most important header is called Content-Type, and it looks like this:

Content-Type: text/html

“text/html” is called the “content type” or “ MIME type” of the page. is header is the only

thing that determines what a particular resource truly is, and therefore how it should be

rendered. Images have their own MIME types (image/jpeg for JPEG images, image/png
for PNG images, and so on). JavaScript files have their own MIME type. CSS stylesheets have

their own MIME type. Everything has its own MIME type. e web runs on MIME types.

Of course, reality is more complicated than that. e first generation of web servers (and I’m

talking web servers from 1993) didn’t send the Content-Type header because it didn’t exist

yet. (It wasn’t invented until 1994.) For compatibility reasons that date all the way ba to

1993, some popular web browsers will ignore the Content-Type header under certain

circumstances. (is is called “content sniffing.”) But as a general rule of thumb, everything

you’ve ever looked at on the web — HTML pages, images, scripts, videos, PDFs, anything

diveintohtml5.org HOW DID WE GET HERE?

with a URL — has been served to you with a specific MIME type in the Content-Type
header.

Tu that under your hat. We’ll come ba to it.

❧❧

A LONG DIGRESSION INTO HOWA LONG DIGRESSION INTO HOW
STANDARDS ARE MADESTANDARDS ARE MADE

Why do we have an element?

at’s not a question you hear every

day. Obviously someone must have

created it. ese things don’t just appear

out of nowhere. Every element, every

aribute, every feature of HTML that

you’ve ever used — someone created

them, decided how they should work,

and wrote it all down. ese people are

not gods, nor are they flawless. ey’re

just people. Smart people, to be sure. But

just people.

One of the great things about standards

that are developed “out in the open” is

that you can go ba in time and answer

these kinds of questions. Discussions occur on mailing lists, whi are usually arived and

publicly searable. So I decided to do a bit of “email araeology” to try to answer the

question, “Why do we have an element?” I had to go ba to before there was an

organization called the World Wide Web Consortium (W3C). I went ba to the earliest days

of the web, when you could count the number of web servers with both hands and maybe a

couple of toes.

diveintohtml5.org HOW DID WE GET HERE?

(ere are a number of typographical errors in the following quotes. I have decided to leave

them intact for historical accuracy.)

On February 25, 1993, Marc Andreessen wrote:

I’d like to propose a new, optional HTML tag:

IMG

Required argument is SRC="url".

is names a bitmap or pixmap file for the browser to aempt to pull over the

network and interpret as an image, to be embedded in the text at the point of the

tag’s occurrence.

An example is:

(ere is no closing tag; this is just a standalone tag.)

is tag can be embedded in an anor like anything else; when that happens, it

becomes an icon that’s sensitive to activation just like a regular text anor.

Browsers should be afforded flexibility as to whi image formats they support.

Xbm and Xpm are good ones to support, for example. If a browser cannot interpret

a given format, it can do whatever it wants instead (X Mosaic will pop up a

default bitmap as a placeholder).

is is required functionality for X Mosaic; we have this working, and we’ll at

least be using it internally. I’m certainly open to suggestions as to how this should

be handled within HTML; if you have a beer idea than what I’m presenting now,

please let me know. I know this is hazy wrt image format, but I don’t see an

alternative than to just say “let the browser do what it can” and wait for the

perfect solution to come along (MIME, someday, maybe).

diveintohtml5.org HOW DID WE GET HERE?

Xbm and Xpm were popular graphics formats on Unix systems.

“Mosaic” was one of the earliest web browsers. (“X Mosaic” was the version that ran on Unix

systems.) When he wrote this message in early 1993, Marc Andreessen had not yet founded

the company that made him famous, Mosaic Communications Corporation, nor had he started

work on that company’s flagship product, “Mosaic Netscape.” (You may know them beer by

their later names, “Netscape Corporation” and “Netscape Navigator.”)

“MIME, someday, maybe” is a reference to content negotiation, a feature of HTTP where a

client (like a web browser) tells the server (like a web server) what types of resources it

supports (like image/jpeg) so the server can return something in the client’s preferred

format. e Original HTTP as defined in 1991 (the only version that was implemented in

February 1993) did not have a way for clients to tell servers what kinds of images they

supported, thus the design dilemma that Marc faced.

A few hours later, Tony Johnson replied:

I have something very similar in Midas 2.0 (in use here at SLAC, and due for

public release any week now), except that all the names are different, and it has an

extra argument NAME="name". It has almost exactly the same functionality as your

proposed IMG tag. e.g.

<ICON name="NoEntry" href="http://note/foo/bar/NoEntry.xbm">

e idea of the name parameter was to allow the browser to have a set of “built

in” images. If the name mates a “built in” image it would use that instead of

having to go out and fet the image. e name could also act as a hint for “line

mode” browsers as to what kind of a symbol to put in place of the image.

I don’t mu care about the parameter or tag names, but it would be sensible if we

used the same things. I don’t mu care for abbreviations, ie why not IMAGE= and

SOURCE=. I somewhat prefer ICON since it imlies that the IMAGE should be

smallish, but maybe ICON is an overloaded word?

Midas was another early web browser, a contemporary of X Mosaic. It was cross-platform; it

ran on both Unix and VMS. “SLAC” refers to the Stanford Linear Accelerator Center , now the

diveintohtml5.org HOW DID WE GET HERE?

SLAC National Accelerator Laboratory, that hosted the first web server in the United States (in

fact the first web server outside Europe). When Tony wrote this message, SLAC was an old-

timer on the WWW, having hosted five pages on its web server for a whopping 441 days.

Tony continued:

While we are on the subject of new tags, I have another, somewhat similar tag,

whi I would like to support in Midas 2.0. In principle it is:

<INCLUDE HREF="...">

e intention here would be that the second document is to be included into the

first document at the place where the tag occured. In principle the referenced

document could be anything, but the main purpose was to allow images (in this

case arbitrary sized) to be embedded into documents. Again the intention would be

that when HTTP2 comes along the format of the included document would be up

for separate negotiation.

“HTTP2” is a reference to Basic HTTP as defined in 1992 . At this point, in early 1993, it was

still largely unimplemented. e dra known as “HTTP2” evolved and was eventually

standardized as “HTTP 1.0” (albeit not for another three years). HTTP 1.0 did include request

headers for content negotiation, a.k.a. “MIME, someday, maybe.”

Tony continued:

An alternative I was considering was:

See photo

I don’t mu like adding more functionality to the <A> tag, but the idea here is to

maintain compatibility with browsers that can not honour the INCLUDE parameter.

e intention is that browsers whi do understand INCLUDE, replace the anor

text (in this case “See photo”) with the included document (picture), while older or

dumber browsers ignore the INCLUDE tag completely.

is proposal was never implemented, although the idea of providing text if an image is

diveintohtml5.org HOW DID WE GET HERE?

missing is an important accessibility tenique that was missing from Marc’s initial
proposal. Years later, this feature was bolted on as the aribute, whi Netscape

promptly broke by erroneously treating it as a tooltip .

A few hours aer Tony posted his message, Tim Berners-Lee responded:

I had imagined that figues would be reprented as

Figure

where the relation ship values mean

EMBED Embed this here when presenting it
PRESENT Present this whenever the source document is
presented

Note that you can have various combinations of these, and if the browser doesn’t

support either one, it doesn’t break.

[I] see that using this as a method for selectable icons means nesting anors.

Hmmm. But I hadn’t wanted a special tag.

is proposal was never implemented, but the rel aribute is still around.

Jim Davis added:

It would be nice if there was a way to specify the content type, e.g.

<IMG HREF="http://nsa.gov/pub/sounds/gorby.au" CONTENT-
TYPE=audio/basic>

But I am completely willing to live with the requirement that I specify the content

type by file extension.

is proposal was never implemented, but Netscape did later add support for embedding of

diveintohtml5.org HOW DID WE GET HERE?

media objects with the <embed> element.

Jay C. Weber asked:

While images are at the top of my list of desired medium types in a WWW

browser, I don’t think we should add idiosyncratic hooks for media one at a time.

Whatever happened to the enthusiasm for using the MIME typing meanism?

Marc Andreessen replied:

is isn’t a substitute for the upcoming use of MIME as a standard document

meanism; this provides a necessary and simple implementation of functionality

that’s needed independently from MIME.

Jay C. Weber responded:

Let’s temporarily forget about MIME, if it clouds the issue. My objection was to

the discussion of “how are we going to support embedded images” rather than

“how are we going to support embedded objections in various media”.

Otherwise, next week someone is going to suggest ‘lets put in a new tag <AUD
SRC="file://foobar.com/foo/bar/blargh.snd">‘ for audio.

ere shouldn’t be mu cost in going with something that generalizes.

With the benefit of hindsight, it appears that Jay’s concerns were well founded. It took a lile

more than a week, but HTML5 did finally add new <video> and <audio> elements.

Responding to Jay’s original message, Dave Ragge said:

True indeed! I want to consider a whole range of possible image/line art types,

along with the possibility of format negotiation. Tim’s note on supporting cliable

areas within images is also important.

Later in 1993, Dave Ragge proposed HTML+ as an evolution of the HTML standard. e

proposal was never implemented, and it was superseded by HTML 2.0. HTML 2.0 was a

diveintohtml5.org HOW DID WE GET HERE?

“retro-spec,” whi means it formalized features already in common use. “is specification

brings together, clarifies, and formalizes a set of features that roughly corresponds to the

capabilities of HTML in common use prior to June 1994.”

Dave later wrote HTML 3.0, based on his earlier HTML+ dra. Outside of the W3C’s own

reference implementation, Arena), HTML 3.0 was never implemented, and it was superseded

by HTML 3.2, another “retro-spec”: “ HTML 3.2 adds widely deployed features su as tables,

applets and text flow around images, while providing full bawards compatibility with the

existing standard HTML 2.0.”

Dave later co-authored HTML 4.0, developed HTML Tidy , and went on to help with XHTML,

XForms, MathML, and other modern W3C specifications.

Geing ba to 1993, Marc replied to Dave:

Actually, maybe we should think about a general-purpose procedural graphics

language within whi we can embed arbitrary hyperlinks aaed to icons,

images, or text, or anything. Has anyone else seen Intermedia’s capabilities wrt

this?

Intermedia was a hypertext project from Brown University. It was developed from 1985 to

1991 and ran on A/UX, a Unix-like operating system for early Macintosh computers.

e idea of a “general-purpose procedural graphics language” did eventually cat on. Modern

browsers support both SVG (declarative markup with embedded scripting) and <canvas> (a

procedural direct-mode graphics API), although the laer started as a proprietary extension

before being “retro-specced” by the WHATWG.

Bill Janssen replied:

Other systems to look at whi have this (fairly valuable) notion are Andrew and

Slate. Andrew is built with _insets_, ea of whi has some interesting type, su

as text, bitmap, drawing, animation, message, spreadsheet, etc. e notion of

arbitrary recursive embedding is present, so that an inset of any kind can be

embedded in any other kind whi supports embedding. For example, an inset can

be embedded at any point in the text of the text widget, or in any rectangular area

diveintohtml5.org HOW DID WE GET HERE?

in the drawing widget, or in any cell of the spreadsheet.

“Andrew” is a reference to the Andrew User Interface System (although at that time it was

simply known as the Andrew Project).

Meanwhile, omas Fine had a different idea :

Here’s my opinion. e best way to do images in WWW is by using MIME. I’m

sure postscript is already a supported subtype in MIME, and it deals very nicely

with mixing text and graphics.

But it isn’t cliable, you say? Yes your right. I suspect there is already an answer

to this in display postscript. Even if there isn’t the addition to standard postscript is

trivial. Define an anor command whi specifies the URL and uses the current

path as a closed region for the buon. Since postscript deals so well with paths,

this makes arbitrary buon shapes trivial.

Display Postscript was an on-screen rendering tenology co-developed by Adobe and NeXT.

is proposal was never implemented, but the idea that the best way to fix HTML is to

replace it with something else altogether still pops up from time to time.

Tim Berners-Lee, Mar 2, 1993:

HTTP2 allows a document to contain any type whi the user has said he can

handle, not just registered MIME types. So one can experiment. Yes I think there is

a case for postscript with hypertext. I don’t know whether display postcript has

enough. I know Adobe are trying to establish their own postscript-based “PDF”

whi will have links, and be readable by their proprietory brand of viewers.

I thought that a generic overlaying language for anors (Hytime based?) would

allow the hypertext and the graphics/video standards to evolve separately, whi

would help both.

Let the IMG tag be INCLUDE and let it refer to an arbitrary document type. Or

EMBED if INCLUDE sounds like a cpp include whi people will expect to provide

diveintohtml5.org HOW DID WE GET HERE?

SGML source code to be parsed inline — not what was intended.

HyTime was an early, SGML-based hypertext document system. It loomed large in early

discussions of HTML, and later XML.

Tim’s proposal for an <INCLUDE> tag was never implemented, although you can see eoes

of it in <object>, <embed>, and the <iframe> element.

Finally, on Mar 12, 1993, Marc Andreessen revisited the thread :

Ba to the inlined image thread again — I’m geing close to releasing Mosaic

v0.10, whi will support inlined GIF and XBM images/bitmaps, as mentioned

previously. …

We’re not prepared to support INCLUDE/EMBED at this point. … So we’re probably

going to go with (not ICON, since not all inlined images can

be meaningfully called icons). For the time being, inlined images won’t be

explicitly content-type’d; down the road, we plan to support that (along with the

general adaptation of MIME). Actually, the image reading routines we’re currently

using figure out the image format on the fly, so the filename extension won’t even

be significant.

❧❧

AN UNBROKEN LINEAN UNBROKEN LINE

I am extraordinarily fascinated with all aspects of this almost-17-year-old conversation that led

to the creation of an HTML element that has been used on virtually every web page ever

published. Consider:

diveintohtml5.org HOW DID WE GET HERE?

HTTP still exists. HTTP successfully evolved from 0.9

into 1.0 and later 1.1. And still it evolves.

HTML still exists. at rudimentary data format — it

didn’t even support inline images! — successfully

evolved into 2.0, 3.2, 4.0. HTML is an unbroken line. A

twisted, knoed, snarled line, to be sure. ere were

plenty of “dead branes” in the evolutionary tree,

places where standards-minded people got ahead of

themselves (and ahead of authors and implementors).

But still. Here we are, in 2010, and web pages from

1990 still render in modern browsers. I just loaded one

up in the browser of my state-of-the-art Android

mobile phone, and I didn’t even get prompted to

“please wait while importing legacy format…”

HTML has always been a conversation between

browser makers, authors, standards wonks, and other

people who just showed up and liked to talk about angle braets. Most of the

successful versions of HTML have been “retro-specs,” cating up to the world while

simultaneously trying to nudge it in the right direction. Anyone who tells you that

HTML should be kept “pure” (presumably by ignoring browser makers, or ignoring

authors, or both) is simply misinformed. HTML has never been pure, and all aempts to

purify it have been spectacular failures, mated only by the aempts to replace it.

None of the browsers from 1993 still exist in any recognizable form. Netscape Navigator

was abandoned in 1998 and rewrien from scrat to create the Mozilla Suite, whi was

then forked to create Firefox. Internet Explorer had its humble “beginnings” in “Microso

Plus! for Windows 95,” where it was bundled with some desktop themes and a pinball

game. (But of course that browser can be traced ba further too .)

Some of the operating systems from 1993 still exist, but none of them are relevant to the

modern web. Most people today who “experience” the web do so on a PC running

Windows 2000 or later, a Mac running Mac OS X, a PC running some flavor of Linux,

or a handheld device like an iPhone. In 1993, Windows was at version 3.1 (and

competing with OS/2), Macs were running System 7, and Linux was distributed via

Usenet. (Want to have some fun? Find a graybeard and whisper “Trumpet Winso” or

“MacPPP.”)

Some of the same people are still around and still involved in what we now simply call

“web standards.” at’s aer almost 20 years. And some were involved in predecessors

diveintohtml5.org HOW DID WE GET HERE?

of HTML, going ba into the 1980s and before.

Speaking of predecessors… With the eventual popularity of HTML and the web, it is

easy to forget the contemporary formats and systems that informed its design. Andrew?

Intermedia? HyTime? And HyTime was not some rinky-dink academic resear project; it

was an ISO standard. It was approved for military use. It was Big Business. And you can

read about it yourself… on this HTML page, in your web browser .

But none of this answers the original question: why do we have an element? Why not

an <icon> element? Or an <include> element? Why not a hyperlink with an include
aribute, or some combination of rel values? Why an element? ite simply, because

Marc Andreessen shipped one, and shipping code wins.

at’s not to say that all shipping code wins; aer all, Andrew and Intermedia and HyTime

shipped code too. Code is necessary but not sufficient for success. And I certainly don’t mean

to say that shipping code before a standard will produce the best solution. Marc’s
element didn’t mandate a common graphics format; it didn’t define how text flowed around

it; it didn’t support text alternatives or fallba content for older browsers. And 17 years later,

we’re still struggling with content sniffing , and it’s still a source of crazy security

vulnerabilities. And you can trace that all the way ba, 17 years, through the Great Browser

Wars, all the way ba to February 25, 1993, when Marc Andreessen oandedly remarked,

“MIME, someday, maybe,” and then shipped his code anyway.

e ones that win are the ones that ship.

❧❧

A TIMELINE OF HTML DEVELOPMENTA TIMELINE OF HTML DEVELOPMENT
FROM 1997 TO 2004FROM 1997 TO 2004

In December 1997, the World Wide Web Consortium (W3C) published HTML 4.0 and

promptly shut down the HTML Working Group. Less than two months later, a separate W3C

Working Group published XML 1.0. A mere three months aer that, the people who ran the

W3C held a workshop called “Shaping the Future of HTML” to answer the question, “Has
diveintohtml5.org HOW DID WE GET HERE?

W3C given up on HTML?” is was their answer:

In discussions, it was agreed that further extending HTML 4.0 would be difficult, as

would converting 4.0 to be an XML application. e proposed way to break free of

these restrictions is to make a fresh start with the next generation of HTML based

upon a suite of XML tag-sets.

e W3C re-artered the HTML Working Group to create this “suite of XML tag-sets.” eir

first step, in December 1998, was a dra of an interim specification that simply reformulated

HTML in XML without adding any new elements or aributes. is specification later became

known as “XHTML 1.0.” It defined a new MIME type for XHTML documents,

application/xhtml+xml. However, to ease the migration of existing HTML 4 pages, it

also included Appendix C, that “summarizes design guidelines for authors who wish their

XHTML documents to render on existing HTML user agents.” Appendix C said you were

allowed to author so-called “XHTML” pages but still serve them with the text/html MIME

type.

eir next target was web forms. In August 1999, the same HTML Working Group published

a first dra of XHTML Extended Forms. ey set the expectations in the first paragraph :

Aer careful consideration, the HTML Working Group has decided that the goals

for the next generation of forms are incompatible with preserving bawards

compatibility with browsers designed for earlier versions of HTML. It is our

objective to provide a clean new forms model (“XHTML Extended Forms”) based

on a set of well-defined requirements. e requirements described in this document

are based on experience with a very broad spectrum of form applications.

A few months later, “ XHTML Extended Forms” was renamed “XForms” and moved to its own

Working Group. at group worked in parallel with the HTML Working Group and finally

published the first edition of XForms 1.0 in October 2003.

Meanwhile, with the transition to XML complete, the HTML Working Group set their sights

on creating “the next generation of HTML.” In May 2001, they published the first edition of

XHTML 1.1, that added only a few minor features on top of XHTML 1.0, but also eliminated

the “Appendix C” loophole. Starting with version 1.1, all XHTML documents were to be

served with a MIME type of application/xhtml+xml.

diveintohtml5.org HOW DID WE GET HERE?

❧❧

EVERYTHING YOU KNOW ABOUTEVERYTHING YOU KNOW ABOUT
XHTML IS WRONGXHTML IS WRONG

Why are MIME types important? Why do I keep coming ba to them? ree words: draconian

error handling. Browsers have always been “forgiving” with HTML. If you create an HTML

page but forget the </head> tag, browsers will display the page anyway. (Certain tags

implicitly trigger the end of the <head> and the start of the <body>.) You are supposed to

nest tags hierarically — closing them in last-in-first-out order — but if you create markup

like <i></i>, browsers will just deal with it (somehow) and move on without

displaying an error message.

As you might expect, the fact that “broken” HTML markup still

worked in web browsers led authors to create broken HTML

pages. A lot of broken pages. By some estimates, over 99% of

HTML pages on the web today have at least one error in them.

But because these errors don’t cause browsers to display visible

error messages, nobody ever fixes them.

e W3C saw this as a fundamental problem with the web, and

they set out to correct it. XML, published in 1997, broke from

the tradition of forgiving clients and mandated that all programs

that consumed XML must treat so-called “well-formedness”

errors as fatal. is concept of failing on the first error became

known as “draconian error handling,” aer the Greek leader

Draco who instituted the death penalty for relatively minor

infractions of his laws. When the W3C reformulated HTML as

an XML vocabulary, they mandated that all documents served

with the new application/xhtml+xml MIME type would be subject to draconian error

handling. If there was even a single well-formedness error in your XHTML page — su as

forgeing the </head> tag or improperly nesting start and end tags — web browsers would

diveintohtml5.org HOW DID WE GET HERE?

have no oice but to stop processing and display an error message to the end user.

is idea was not universally popular. With an estimated error rate of 99% on existing pages,

the ever-present possibility of displaying errors to the end user, and the dearth of new

features in XHTML 1.0 and 1.1 to justify the cost, web authors basically ignored

application/xhtml+xml. But that doesn’t mean they ignored XHTML altogether. Oh,

most definitely not. Appendix C of the XHTML 1.0 specification gave the web authors of the

world a loophole: “Use something that looks kind of like XHTML syntax, but keep serving it

with the text/html MIME type.” And that’s exactly what thousands of web developers did:

they “upgraded” to XHTML syntax but kept serving it with a text/html MIME type.

Even today, millions of web pages claim to be XHTML. ey start with the XHTML doctype

on the first line, use lowercase tag names, use quotes around aribute values, and add a

trailing slash aer empty elements like
 and <hr />. But only a tiny fraction of

these pages are served with the application/xhtml+xml MIME type that would trigger

XML’s draconian error handling. Any page served with a MIME type of text/html —

regardless of doctype, syntax, or coding style — will be parsed using a “forgiving” HTML

parser, silently ignoring any markup errors, and never alerting end users (or anyone else) even

if the page is tenically broken.

XHTML 1.0 included this loophole, but XHTML 1.1 closed it, and the never-finalized XHTML

2.0 continued the tradition of requiring draconian error handling. And that’s why there are

billions of pages that claim to be XHTML 1.0, and only a handful that claim to be XHTML

1.1 (or XHTML 2.0). So are you really using XHTML? Che your MIME type. (Actually, if

you don’t know what MIME type you’re using, I can prey mu guarantee that you’re still

using text/html.) Unless you’re serving your pages with a MIME type of

application/xhtml+xml, your so-called “ XHTML” is XML in name only.

❧❧

A COMPETING VISIONA COMPETING VISION

In June 2004, the W3C held the Workshop on Web Applications and Compound Documents .

Present at this workshop were representatives of three browser vendors, web development
diveintohtml5.org HOW DID WE GET HERE?

companies, and other W3C members. A group of interested parties, including the Mozilla

Foundation and Opera Soware, gave a presentation on their competing vision of the future

of the web: an evolution of the existing HTML 4 standard to include new features for modern

web application developers.

e following seven principles represent what we believe to be the most critical

requirements for this work.

Bawards compatibility, clear migration path

Web application tenologies should be based on tenologies authors are

familiar with, including HTML, CSS, DOM, and JavaScript.

Basic Web application features should be implementable using behaviors,

scripting, and style sheets in IE6 today so that authors have a clear migration

path. Any solution that cannot be used with the current high-market-share

user agent without the need for binary plug-ins is highly unlikely to be

successful.

Well-defined error handling

Error handling in Web applications must be defined to a level of detail where

User Agents do not have to invent their own error handling meanisms or

reverse engineer other User Agents’.

Users should not be exposed to authoring errors

Specifications must specify exact error recovery behaviour for ea possible

error scenario. Error handling should for the most part be defined in terms of

graceful error recovery (as in CSS), rather than obvious and catastrophic

failure (as in XML).

Practical use

Every feature that goes into the Web Applications specifications must be

justified by a practical use case. e reverse is not necessarily true: every use

case does not necessarily warrant a new feature.

Use cases should preferably be based on real sites where the authors

previously used a poor solution to work around the limitation.

Scripting is here to stay

But should be avoided where more convenient declarative markup can be

used.

Scripting should be device and presentation neutral unless scoped in a device-

specific way (e.g. unless included in XBL).

diveintohtml5.org HOW DID WE GET HERE?

Device-specific profiling should be avoided

Authors should be able to depend on the same features being implemented in

desktop and mobile versions of the same UA.

Open process

e Web has benefited from being developed in an open environment. Web

Applications will be core to the web, and its development should also take

place in the open. Mailing lists, arives and dra specifications should

continuously be visible to the public.

In a straw poll, the workshop participants were asked, “Should the W3C develop declarative

extension to HTML and CSS and imperative extensions to DOM, to address medium level

Web Application requirements, as opposed to sophisticated, fully-fledged OS-level APIs?

(proposed by Ian Hison, Opera Soware)” e vote was 11 to 8 against. In their summary of

the workshop, the W3C wrote, “At present, W3C does not intend to put any resources into the

third straw-poll topic: extensions to HTML and CSS for Web Applications, other than

tenologies being developed under the arter of current W3C Working Groups.”

Faced with this decision, the people who had proposed evolving HTML and HTML forms had

only two oices: give up, or continue their work outside of the W3C. ey ose the laer

and registered the whatwg.org domain, and in June 2004, the WHAT Working Group was

born.

❧❧

WHAT WORKING GROUP?WHAT WORKING GROUP?

diveintohtml5.org HOW DID WE GET HERE?

What the he is the WHAT Working Group? I’ll let them

explain it for themselves :

e Web Hypertext Applications Tenology Working Group

is a loose, unofficial, and open collaboration of Web

browser manufacturers and interested parties. e group

aims to develop specifications based on HTML and related

tenologies to ease the deployment of interoperable Web

Applications, with the intention of submiing the results to

a standards organisation. is submission would then form

the basis of work on formally extending HTML in the

standards tra.

e creation of this forum follows from several months of

work by private e-mail on specifications for su

tenologies. e main focus up to this point has been

extending HTML4 Forms to support features requested by

authors, without breaking bawards compatibility with

existing content. is group was created to ensure that future

development of these specifications will be completely open,

through a publicly-arived, open mailing list.

e key phrase here is “without breaking baward compatibility.” XHTML (minus the

Appendix C loophole) is not bawardly compatible with HTML. It requires an entirely new

MIME type, and it mandates draconian error handling for all content served with that MIME

type. XForms is not bawardly compatible with HTML forms, because it can only be used in

documents that are served with the new XHTML MIME type, whi means that XForms also

mandates draconian error handling. All roads lead to MIME.

Instead of scrapping over a decade’s worth of investment in HTML and making 99% of

existing web pages unusable, the WHAT Working Group decided to take a different approa:

documenting the “forgiving” error-handling algorithms that browsers actually used. Web

browsers have always been forgiving of HTML errors, but nobody had ever bothered to write

down exactly how they did it. NCSA Mosaic had its own algorithms for dealing with broken

pages, and Netscape tried to mat them. en Internet Explorer tried to mat Netscape. en

Opera and Firefox tried to mat Internet Explorer. en Safari tried to mat Firefox. And so

diveintohtml5.org HOW DID WE GET HERE?

on, right up to the present day. Along the way, developers burned thousands and thousands of

hours trying to make their products compatible with their competitors’.

If that sounds like an insane amount of work, that’s because it is. Or rather, it was. It took

five years, but (modulo a few obscure edge cases) the WHAT Working Group successfully

documented how to parse HTML in a way that is compatible with existing web content.

Nowhere in the final algorithm is there a step that mandates that the HTML consumer should

stop processing and display an error message to the end user.

While all that reverse-engineering was going on, the WHAT working group was quietly

working on a few other things, too. One of them was a specification, initially dubbed Web

Forms 2.0, that added new types of controls to HTML forms. (You’ll learn more about web

forms in A Form of Madness.) Another was a dra specification called “Web Applications

1.0,” that included major new features like a direct-mode drawing canvas and native support

for audio and video without plugins.

❧❧

BACK TO THE W3CBACK TO THE W3C

For two and a half years, the W3C and

the WHAT Working Group largely

ignored ea other. While the WHAT

Working Group focused on web forms and

new HTML features, the W3C HTML

Working Group was busy with version 2.0

of XHTML. But by October 2006, it was

clear that the WHAT Working Group had

pied up serious momentum, while

XHTML 2 was still languishing in dra

form, unimplemented by any major

browser. In October 2006, Tim Berners-

Lee, the founder of the W3C itself,

announced that the W3C would work together with the WHAT Working Group to evolve
diveintohtml5.org HOW DID WE GET HERE?

HTML.

Some things are clearer with hindsight of several years. It is necessary to evolve

HTML incrementally. e aempt to get the world to swit to XML, including

quotes around aribute values and slashes in empty tags and namespaces all at

once didn’t work. e large HTML-generating public did not move, largely because

the browsers didn’t complain. Some large communities did shi and are enjoying

the fruits of well-formed systems, but not all. It is important to maintain HTML

incrementally, as well as continuing a transition to well-formed world, and

developing more power in that world.

e plan is to arter a completely new HTML group. Unlike the previous one, this

one will be artered to do incremental improvements to HTML, as also in parallel

xHTML. It will have a different air and staff contact. It will work on HTML and

xHTML together. We have strong support for this group, from many people we

have talked to, including browser makers.

ere will also be work on forms. is is a complex area, as existing HTML forms

and XForms are both form languages. HTML forms are ubiquitously deployed, and

there are many implementations and users of XForms. Meanwhile, the Webforms

submission has suggested sensible extensions to HTML forms. e plan is,

informed by Webforms, to extend HTML forms.

One of the first things the newly re-artered W3C HTML Working Group decided was to

rename “Web Applications 1.0” to “HTML5.” And here we are, diving into HTML5.

❧❧

POSTSCRIPTPOSTSCRIPT

In October 2009, the W3C shut down the XHTML 2 Working Group and issued this statement

to explain their decision:

diveintohtml5.org HOW DID WE GET HERE?

When W3C announced the HTML and XHTML 2 Working Groups in Mar 2007,

we indicated that we would continue to monitor the market for XHTML 2. W3C

recognizes the importance of a clear signal to the community about the future of

HTML.

While we recognize the value of the XHTML 2 Working Group’s contributions over

the years, aer discussion with the participants, W3C management has decided to

allow the Working Group’s arter to expire at the end of 2009 and not to renew it.

e ones that win are the ones that ship.

❧❧

FURTHER READINGFURTHER READING

e History of the Web , an old dra by Ian Hison

HTML/History, by Miael Smith, Henri Sivonen, and others

A Brief History of HTML , by Sco Reynen

❧❧

is has been “How Did We Get Here?” e full table of contents has more if you’d like to

keep reading.

DID YOU KNOW?DID YOU KNOW?

In association with Google Press, O’Reilly is

distributing this book in a variety of formats, including

paper, ePub, Mobi, and DRM-free PDF. e paid

edition is called “HTML5: Up & Running,” and it is

available now. is apter is included in the paid

edition.
diveintohtml5.org HOW DID WE GET HERE?

If you liked this apter and want to show your

appreciation, you can buy “HTML5: Up & Running”

with this affiliate link or buy an electronic edition

directly from O’Reilly. You’ll get a book, and I’ll get a

bu. I do not currently accept direct donations.

Copyright MMIX–MMX Mark Pilgrim

powered by Google™ Search

diveintohtml5.org HOW DID WE GET HERE?

You are here: Home ‣ Dive Into HTML5 ‣

№№22. .
DETECTING DETECTING HTML5HTML5

FEATURESFEATURES

show table of contents

❧❧

DIVING INDIVING IN

ou may well ask: “How can I start using HTML5 if older browsers don’t

support it?” But the question itself is misleading. HTML5 is not one big thing;

it is a collection of individual features. So you can’t detect “HTML5 support,”

because that doesn’t make any sense. But you can detect support for

individual features, like canvas, video, or geolocation.

❧❧

DETECTION TECHNIQUESDETECTION TECHNIQUES

When your browser renders a web page, it constructs a Document Object Model (DOM), a

collection of objects that represent the HTML elements on the page. Every element — every
diveintohtml5.org DETECTING HTML5 FEATURES

<p>, every <div>, every — is represented in the DOM by a different object. (ere

are also global objects, like window and document, that aren’t tied to specific elements.)

All DOM objects share a set of common properties, but

some objects have more than others. In browsers that

support HTML5 features, certain objects will have

unique properties. A qui peek at the DOM will tell

you whi features are supported.

ere are four basic teniques for detecting whether a

browser supports a particular feature. From simplest to

most complex:

1. Che if a certain property exists on a global

object (su as window or navigator).

Example: testing for geolocation support

2. Create an element, then e if a certain

property exists on that element.

Example: testing for canvas support

3. Create an element, e if a certain method exists on that element, then call the

method and e the value it returns.

Example: testing whi video formats are supported

4. Create an element, set a property to a certain value, then e if the property has

retained its value.

Example: testing whi <input> types are supported

❧❧

diveintohtml5.org DETECTING HTML5 FEATURES

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Dive Into HTML5</title>
<script src="modernizr.min.js"></script>
</head>
<body>
...
</body>
</html>

MODERNIZR, AN HTML5 DETECTIONMODERNIZR, AN HTML5 DETECTION
LIBRARYLIBRARY

Modernizr is an open source, MIT-licensed JavaScript library that detects support for many

HTML5 & CSS3 features. At the time of writing, the latest version is 1.5. You should always

use the latest version. To use it, include the following <script> element at the top of your

page.

 ↜ ↜ It goes to It goes to

your <head>your <head>

Modernizr runs automatically. ere is no modernizr_init() function to call. When it runs,

it creates a global object called Modernizr, that contains a set of Boolean properties for

ea feature it can detect. For example, if your browser supports the canvas API, the

Modernizr.canvas property will be true. If your browser does not support the canvas

API, the Modernizr.canvas property will be false.

if (Modernizr.canvas) {
// let's draw some shapes!
} else {
// no native canvas support available :(
}

❧❧
diveintohtml5.org DETECTING HTML5 FEATURES

Your browser supports the canvas API.

CANVASCANVAS

HTML5 defines the <canvas> element as “a

resolution-dependent bitmap canvas that can be

used for rendering graphs, game graphics, or

other visual images on the fly.” A canvas is a

rectangle in your page where you can use

JavaScript to draw anything you want. HTML5

defines a set of functions (“the canvas API”) for

drawing shapes, defining paths, creating gradients,

and applying transformations.

Cheing for the canvas API uses detection tenique #2. If your browser supports the canvas

API, the DOM object it creates to represent a <canvas> element will have a

getContext() method. If your browser doesn’t support the canvas API, the DOM object it

creates for a <canvas> element will only have the set of common properties, but not

anything canvas-specific.

function supports_canvas() {
return !!document.createElement('canvas').getContext;
}

is function starts by creating a dummy <canvas> element. But the element is never

aaed to your page, so no one will ever see it. It’s just floating in memory, going nowhere

and doing nothing, like a canoe on a lazy river.

return !!document.createElement('canvas').getContext;

As soon as you create the dummy <canvas> element, you test for the presence of a

getContext() method. is method will only exist if your browser supports the canvas

API.

return !!document.createElement('canvas').getContext;

diveintohtml5.org DETECTING HTML5 FEATURES

Finally, you use the double-negative tri to force the result to a Boolean value (true or

false).

return !!document.createElement('canvas').getContext;

is function will detect support for most of the canvas API, including shapes, paths,

gradients & paerns. It will not detect the third-party explorercanvas library that

implements the canvas API in Microso Internet Explorer.

Instead of writing this function yourself, you can use Modernizr to detect support for the

canvas API.

↶↶ check for canvas support check for canvas support

if (Modernizr.canvas) {
// let's draw some shapes!
} else {
// no native canvas support available :(
}

ere is a separate test for the canvas text API, whi I will demonstrate next.

❧❧

CANVAS TEXTCANVAS TEXT

diveintohtml5.org DETECTING HTML5 FEATURES

Your browser supports the canvas text API.

Even if your browser supports the

canvas API, it might not support

the canvas text API. e canvas

API grew over time, and the text

functions were added late in the

game. Some browsers shipped

with canvas support before the

text API was complete.

Cheing for the canvas text API

uses detection tenique #2. If

your browser supports the canvas

API, the DOM object it creates to represent a <canvas> element will have the

getContext() method. If your browser doesn’t support the canvas API, the DOM object it

creates for a <canvas> element will only have the set of common properties, but not

anything canvas-specific.

function supports_canvas_text() {
if (!supports_canvas()) { return false; }
var dummy_canvas = document.createElement('canvas');
var context = dummy_canvas.getContext('2d');
return typeof context.fillText == 'function';
}

e function starts by eing for canvas support , using the supports_canvas() function

you just saw in the previous section. If your browser doesn’t support the canvas API, it

certainly won’t support the canvas text API!

if (!supports_canvas()) { return false; }

Next, you create a dummy <canvas> element and get its drawing context. is is guaranteed

to work, because the supports_canvas() function already eed that the

getContext() method exists on all canvas objects.

var dummy_canvas = document.createElement('canvas');
var context = dummy_canvas.getContext('2d');

diveintohtml5.org DETECTING HTML5 FEATURES

Finally, you e whether the drawing context has a fillText() function. If it does, the

canvas text API is available. Hooray!

return typeof context.fillText == 'function';

Instead of writing this function yourself, you can use Modernizr to detect support for the

canvas text API.

↶↶ check for canvas text support check for canvas text support

if (Modernizr.canvastext) {
// let's draw some text!
} else {
// no native canvas text support available :(
}

❧❧

VIDEOVIDEO

HTML5 defines a new element called <video> for embedding video in your web pages.

Embedding video used to be impossible without third-party plugins su as Apple

iTime® or Adobe Flash®.

e <video> element is designed to be usable without any

detection scripts. You can specify multiple video files, and

browsers that support HTML5 video will oose one based

on what video formats they support. (See “A gentle

introduction to video encoding” part 1: container formats

and part 2: lossy video codecs to learn about different video

formats.)

diveintohtml5.org DETECTING HTML5 FEATURES

Your browser does not support

HTML5 video. :(

Browsers that don’t support HTML5 video will ignore the

<video> element completely, but you can use this to your

advantage and tell them to play video through a third-party

plugin instead. Kroc Camen has designed a solution called

Video for Everybody! that uses HTML5 video where

available, but falls ba to iTime or Flash in older

browsers. is solution uses no JavaScript whatsoever, and

it works in virtually every browser, including mobile

browsers.

If you want to do more with video than plop it on your page and play it, you’ll need to use

JavaScript. Cheing for video support uses detection tenique #2. If your browser supports

HTML5 video, the DOM object it creates to represent a <video> element will have a

canPlayType() method. If your browser doesn’t support HTML5 video, the DOM object it

creates for a <video> element will have only the set of properties common to all elements.

You can e for video support using this function:

function supports_video() {
return !!document.createElement('video').canPlayType;
}

Instead of writing this function yourself, you can use Modernizr to detect support for HTML5

video.

↶↶ check for check for HTML5HTML5 video support video support

if (Modernizr.video) {
// let's play some video!
} else {
// no native video support available :(
// maybe check for QuickTime or Flash instead
}

In the Video apter , I’ll explain another solution that uses these detection teniques to

convert <video> elements to Flash-based video players, for the benefit of browsers that

don’t support HTML5 video.
diveintohtml5.org DETECTING HTML5 FEATURES

Your browser does not support any

video formats. :(

ere is a separate test for detecting whi video formats your browser can play, whi I will

demonstrate next.

❧❧

VIDEO FORMATSVIDEO FORMATS

Video formats are like wrien languages. An English newspaper may convey the same

information as a Spanish newspaper, but if you can only read English, only one of them will

be useful to you! To play a video, your browser needs to understand the “language” in whi

the video was wrien.

e “language” of a video is called a “codec” — this is

the algorithm used to encode the video into a stream of

bits. ere are dozens of codecs in use all over the

world. Whi one should you use? e unfortunate

reality of HTML5 video is that browsers can’t agree on

a single codec. However, they seem to have narrowed it

down to two. One codec costs money (because of patent

licensing), but it works in Safari and on the iPhone.

(is one also works in Flash if you use a solution like

Video for Everybody!) e other codec is free and works

in open source browsers like Chromium and Mozilla

Firefox.

Cheing for video format support uses detection tenique #3. If your browser supports

HTML5 video, the DOM object it creates to represent a <video> element will have a

canPlayType() method. is method will tell you whether the browser supports a

particular video format.

is function es for the patent-encumbered format supported by Macs and iPhones.

function supports_h264_baseline_video() {
diveintohtml5.org DETECTING HTML5 FEATURES

if (!supports_video()) { return false; }
var v = document.createElement("video");
return v.canPlayType('video/mp4; codecs="avc1.42E01E,
mp4a.40.2"');
}

e function starts by eing for HTML5 video support, using the supports_video()
function you just saw in the previous section. If your browser doesn’t support HTML5 video,

it certainly won’t support any video formats!

if (!supports_video()) { return false; }

en the function creates a dummy <video> element (but doesn’t aa it to the page, so it

won’t be visible) and calls the canPlayType() method. is method is guaranteed to be

there, because the supports_video() function just eed for it.

var v = document.createElement("video");

A “video format” is really a combination of different things. In tenical terms, you’re asking

the browser whether it can play H.264 Baseline video and AAC LC audio in an MPEG-4

container. (I’ll explain what all that means in the Video apter . You might also be interested

in reading A gentle introduction to video encoding.)

return v.canPlayType('video/mp4; codecs="avc1.42E01E, mp4a.40.2"
');

e canPlayType() function doesn’t return true or false. In recognition of how

complex video formats are, the function returns a string:

"probably" if the browser is fairly confident it can play this format

"maybe" if the browser thinks it might be able to play this format

"" (an empty string) if the browser is certain it can’t play this format

is second function es for the open video format supported by Mozilla Firefox and other

open source browsers. e process is exactly the same; the only difference is the string you

pass in to the canPlayType() function. In tenical terms, you’re asking the browser
diveintohtml5.org DETECTING HTML5 FEATURES

whether it can play eora video and Vorbis audio in an Ogg container.

function supports_ogg_theora_video() {
if (!supports_video()) { return false; }
var v = document.createElement("video");
return v.canPlayType('video/ogg; codecs="theora, vorbis"');
}

Finally, WebM is a newly open-sourced (and non-patent-encumbered) video codec that will be

included in the next version of major browsers, including Chrome, Firefox, and Opera. You

can use the same tenique to detect support for open WebM video.

function supports_webm_video() {
if (!supports_video()) { return false; }
var v = document.createElement("video");
return v.canPlayType('video/webm; codecs="vp8, vorbis"');
}

Instead of writing this function yourself, you can use Modernizr (1.5 or later) to detect support

for different HTML5 video formats.

↶↶ check for check for HTML5HTML5 video formats video formats

if (Modernizr.video) {
// let's play some video! but what kind?
if (Modernizr.video.webm) {
// try WebM
} else if (Modernizr.video.ogg) {
// try Ogg Theora + Vorbis in an Ogg container
} else if (Modernizr.video.h264){
// try H.264 video + AAC audio in an MP4 container
}
}

diveintohtml5.org DETECTING HTML5 FEATURES

☞

Your browser does

not support HTML5

storage. :(

❧❧

LOCAL STORAGELOCAL STORAGE

HTML5 storage provides a way for web sites to store information on

your computer and retrieve it later. e concept is similar to cookies,

but it’s designed for larger quantities of information. Cookies are

limited in size, and your browser sends them ba to the web server

every time it requests a new page (whi takes extra time and precious

bandwidth). HTML5 storage stays on your computer, and web sites can

access it with JavaScript aer the page is loaded.

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: Is local storage really part of HTML5? Why

is it in a separate specification?

A: e short answer is yes, local storage is part

of HTML5. e slightly longer answer is that

local storage used to be part of the main

HTML5 specification, but it was split out into a

separate specification because some people in

the HTML5 Working Group complained that

HTML5 was too big. If that sounds like slicing

a pie into more pieces to reduce the total

diveintohtml5.org DETECTING HTML5 FEATURES

number of calories… well, welcome to the

way world of standards.

Cheing for HTML5 storage support uses detection tenique #1. If your browser supports

HTML5 storage, there will be a localStorage property on the global window object. If

your browser doesn’t support HTML5 storage, the localStorage property will be

undefined. Due to an unfortunate bug in older versions of Firefox, this test will raise an

exception if cookies are disabled, so the entire test is wrapped in a try..catch statement.

function supports_local_storage() {
try {
return 'localStorage' in window && window['localStorage'] !==
null;
} catch(e){
return false;
}
}

Instead of writing this function yourself, you can use Modernizr (1.1 or later) to detect support

for HTML5 local storage.

↶↶ check for check for HTML5HTML5 local storage local storage

if (Modernizr.localstorage) {
// window.localStorage is available!
} else {
// no native support for local storage :(
// maybe try Gears or another third-party solution
}

Note that JavaScript is case-sensitive. e Modernizr aribute is called localstorage (all

lowercase), but the DOM property is called window.localStorage (mixed case).

diveintohtml5.org DETECTING HTML5 FEATURES

☞

Your browser supports web workers.

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: How secure is my HTML5 storage database?

Can anyone read it?

A: Anyone who has physical access to your

computer can probably look at (or even

ange) your HTML5 storage database. Within

your browser, any web site can read and

modify its own values, but sites can’t access

values stored by other sites. is is called a

same-origin restriction.

❧❧

WEB WORKERSWEB WORKERS

Web Workers provide a standard way for browsers to

run JavaScript in the baground. With web workers,

you can spawn multiple “threads” that all run at the

same time, more or less. (ink of how your

computer can run multiple applications at the same time, and you’re most of the way there.)

ese “baground threads” can do complex mathematical calculations, make network requests,

or access local storage while the main web page responds to the user scrolling, cliing, or

typing.

Cheing for web workers uses detection tenique #1. If your browser supports the Web

Worker API, there will be a Worker property on the global window object. If your browser

doesn’t support the Web Worker API, the Worker property will be undefined.

diveintohtml5.org DETECTING HTML5 FEATURES

Your browser supports offline web

applications.

function supports_web_workers() {
return !!window.Worker;
}

Instead of writing this function yourself, you can use Modernizr (1.1 or later) to detect support

for web workers.

↶↶ check for web workers check for web workers

if (Modernizr.webworkers) {
// window.Worker is available!
} else {
// no native support for web workers :(
// maybe try Gears or another third-party solution
}

Note that JavaScript is case-sensitive. e Modernizr aribute is called webworkers (all

lowercase), but the DOM object is called window.Worker (with a capital “W” in “Worker”).

❧❧

OFFLINE WEB APPLICATIONSOFFLINE WEB APPLICATIONS

Reading static web pages offline is easy: connect to the

Internet, load a web page, disconnect from the Internet,

drive to a secluded cabin, and read the web page at

your leisure. (To save time, you may wish to skip the

step about the cabin.) But what about web applications

like Gmail or Google Docs? anks to HTML5, anyone

(not just Google!) can build a web application that

works offline.

Offline web applications start out as online web

diveintohtml5.org DETECTING HTML5 FEATURES

applications.applications. e first time you visit an offline-enabled

web site, the web server tells your browser whi files

it needs in order to work offline. ese files can be anything — HTML, JavaScript, images,

even videos. Once your browser downloads all the necessary files, you can revisit the web

site even if you’re not connected to the Internet. Your browser will notice that you’re offline

and use the files it has already downloaded. When you get ba online, any anges you’ve

made can be uploaded to the remote web server.

Cheing for offline support uses detection tenique #1. If your browser supports offline web

applications, there will be an applicationCache property on the global window object. If

your browser doesn’t support offline web applications, the applicationCache property will

be undefined. You can e for offline support with the following function:

function supports_offline() {
return !!window.applicationCache;
}

Instead of writing this function yourself, you can use Modernizr (1.1 or later) to detect support

for offline web applications.

↶↶ check for offline support check for offline support

if (Modernizr.applicationcache) {
// window.applicationCache is available!
} else {
// no native support for offline :(
// maybe try Gears or another third-party solution
}

Note that JavaScript is case-sensitive. e Modernizr aribute is called applicationcache
(all lowercase), but the DOM object is called window.applicationCache (mixed case).

❧❧

diveintohtml5.org DETECTING HTML5 FEATURES

☞

GEOLOCATIONGEOLOCATION

Geolocation is the art of figuring out where you are in the world and (optionally) sharing that

information with people you trust. ere is more than one way to figure out where you are —

your IP address, your wireless network connection, whi cell tower your phone is talking to,

or dedicated GPS hardware that calculates latitude and longitude from information sent by

satellites in the sky.

Your browser does not

support geolocation. :(

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: Is geolocation part of HTML5? Why are you

talking about it?

A: Geolocation support is being added to

browsers right now, along with support for

new HTML5 features. Strictly speaking,

geolocation is being standardized by the

Geolocation Working Group , whi is separate

from the HTML5 Working Group. But I’m

going to talk about geolocation in this book
diveintohtml5.org DETECTING HTML5 FEATURES

anyway, because it’s part of the evolution of

the web that’s happening now.

Cheing for geolocation support uses detection tenique #1. If your browser supports the

geolocation API, there will be a geolocation property on the global navigator object. If

your browser doesn’t support the geolocation API, the geolocation property will be

undefined. Here’s how to e for geolocation support:

function supports_geolocation() {
return !!navigator.geolocation;
}

Instead of writing this function yourself, you can use Modernizr to detect support for the

geolocation API.

↶↶ check for geolocation support check for geolocation support

if (Modernizr.geolocation) {
// let's find out where you are!
} else {
// no native geolocation support available :(
// maybe try Gears or another third-party solution
}

If your browser does not support the geolocation API natively, there is still hope. Gears is an

open source browser plugin from Google that works on Windows, Mac, Linux, Windows

Mobile, and Android. It provides features for older browsers that do not support all the fancy

new stuff we’ve discussed in this apter. One of the features that Gears provides is a

geolocation API. It’s not the same as the navigator.geolocation API, but it serves the

same purpose.

ere are also device-specific geolocation APIs on older mobile phone platforms, including

BlaBerry, Nokia, Palm, and OMTP BONDI.
diveintohtml5.org DETECTING HTML5 FEATURES

Your browser supports the following

HTML5 input types: search, tel

e apter on geolocation will go into excruciating detail about how to use all of these

different APIs.

❧❧

INPUT TYPESINPUT TYPES

You know all about web forms, right? Make a

<form>, add a few <input type="text"> elements

and maybe an <input type="password">, and

finish it off with an <input type="submit">
buon.

You don’t know the half of it. HTML5 defines over a

dozen new input types that you can use in your forms.

1. <input type="search"> for sear boxes

2. <input type="number"> for spinboxes

3. <input type="range"> for sliders

4. <input type="color"> for color piers

5. <input type="tel"> for telephone numbers

6. <input type="url"> for web addresses

7. <input type="email"> for email addresses

8. <input type="date"> for calendar date piers

9. <input type="month"> for months

10. <input type="week"> for weeks

11. <input type="time"> for timestamps

12. <input type="datetime"> for precise, absolute date+time stamps

13. <input type="datetime-local"> for local dates and times

Cheing for HTML5 input types uses detection tenique #4. First, you create a dummy

<input> element in memory. e default input type for all <input> elements is "text".

diveintohtml5.org DETECTING HTML5 FEATURES

is will prove to be vitally important.

var i = document.createElement("input");

Next, set the type aribute on the dummy <input> element to the input type you want to

detect.

i.setAttribute("type", "color");

If your browser supports that particular input type, the type property will retain the value

you set. If your browser doesn’t support that particular input type, it will ignore the value

you set and the type property will still be "text".

return i.type !== "text";

Instead of writing 13 separate functions yourself, you can use Modernizr to detect support for

all the new input types defined in HTML5. Modernizr reuses a single <input> element to

efficiently detect support for all 13 input types. en it builds a hash called

Modernizr.inputtypes, that contains 13 keys (the HTML5 type aributes) and 13

Boolean values (true if supported, false if not).

↶↶ check for native date picker check for native date picker

if (!Modernizr.inputtypes.date) {
// no native support for <input type="date"> :(
// maybe build one yourself with Dojo or jQueryUI
}

❧❧

PLACEHOLDER TEXTPLACEHOLDER TEXT

Besides new input types , HTML5

diveintohtml5.org DETECTING HTML5 FEATURES

Your browser supports placeholder textincludes several small tweaks to

existing forms. One improvement

is the ability to set placeholder

text in an input field. Placeholder text is displayed inside the input field as long as the field is

empty and not focused. As soon you cli on (or tab to) the input field, the placeholder text

disappears. e apter on web forms has screenshots if you’re having trouble visualizing it.

Cheing for placeholder support uses detection tenique #2. If your browser supports

placeholder text in input fields, the DOM object it creates to represent an <input> element

will have a placeholder property (even if you don’t include a placeholder aribute in

your HTML). If your browser doesn’t support placeholder text, the DOM object it creates for

an <input> element will not have a placeholder property.

function supports_input_placeholder() {
var i = document.createElement('input');
return 'placeholder' in i;
}

Instead of writing this function yourself, you can use Modernizr (1.1 or later) to detect support

for placeholder text.

↶↶ check for placeholder text check for placeholder text

if (Modernizr.input.placeholder) {
// your placeholder text should already be visible!
} else {
// no placeholder support :(
// fall back to a scripted solution
}

❧❧

FORM AUTOFOCUSFORM AUTOFOCUS
diveintohtml5.org DETECTING HTML5 FEATURES

Your browser supports form

autofocus.

Web sites can use JavaScript to focus the first input field of a

web form automatically. For example, the home page of

Google.com will autofocus the input box so you can type your

sear keywords without having to position the cursor in the

sear box. While this is convenient for most people, it can be

annoying for power users or people with special needs. If you

press the space bar expecting to scroll the page, the page will not

scroll because the focus is already in a form input field. (It types

a space in the field instead of scrolling.) If you focus a different

input field while the page is still loading, the site’s autofocus

script may “helpfully” move the focus ba to the original input

field upon completion, disrupting your flow and causing you to

type in the wrong place.

Because the autofocusing is done with JavaScript, it can be triy to handle all of these edge

cases, and there is lile recourse for people who don’t want a web page to “steal” the focus.

To solve this problem, HTML5 introduces an autofocus aribute on all web form controls.

e autofocus aribute does exactly what it says on the tin: it moves the focus to a

particular input field. But because it’s just markup instead of a script, the behavior will be

consistent across all web sites. Also, browser vendors (or extension authors) can offer users a

way to disable the autofocusing behavior.

Cheing for autofocus support uses detection tenique #2. If your browser supports

autofocusing web form controls, the DOM object it creates to represent an <input> element

will have an autofocus property (even if you don’t include the autofocus aribute in

your HTML). If your browser doesn’t support autofocusing web form controls, the DOM

object it creates for an <input> element will not have an autofocus property. You can

detect autofocus support with this function:

function supports_input_autofocus() {
var i = document.createElement('input');
return 'autofocus' in i;
}

Instead of writing this function yourself, you can use Modernizr (1.1 or later) to detect support
diveintohtml5.org DETECTING HTML5 FEATURES

Your browser does not support the HTML5

microdata API. :(

for autofocused form fields.

↶↶ check for autofocus support check for autofocus support

if (Modernizr.input.autofocus) {
// autofocus works!
} else {
// no autofocus support :(
// fall back to a scripted solution
}

❧❧

MICRODATAMICRODATA

Microdata is a standardized way to provide

additional semantics in your web pages. For

example, you can use microdata to declare that a

photograph is available under a specific Creative

Commons license. As you’ll see in the

distributed extensibility apter, you can use

microdata to mark up an “About Me” page.

Browsers, browser extensions, and sear engines

can convert your HTML5 microdata markup into

a vCard, a standard format for sharing contact

information. You can also define your own

microdata vocabularies.

e HTML5 microdata standard includes both HTML markup (primarily for sear engines)

and a set of DOM functions (primarily for browsers). ere’s no harm in including microdata

markup in your web pages. It’s nothing more than a few well-placed aributes, and sear

engines that don’t understand the microdata aributes will just ignore them. But if you need

to access or manipulate microdata through the DOM, you’ll need to e whether the
diveintohtml5.org DETECTING HTML5 FEATURES

browser supports the microdata DOM API.

Cheing for HTML5 microdata API support uses detection tenique #1. If your browser

supports the HTML5 microdata API, there will be a getItems() function on the global

document object. If your browser doesn’t support microdata, the getItems() function will

be undefined.

function supports_microdata_api() {
return !!document.getItems;
}

Modernizr does not yet support eing for the microdata API, so you’ll need to use the

function like the one listed above.

FURTHER READINGFURTHER READING

Specifications and standards:

the <canvas> element

the <video> element

<input> types

the <input placeholder> aribute

the <input autofocus> aribute

HTML5 storage

Web Workers

Offline web applications

Geolocation API

JavaScript libraries:

Modernizr, an HTML5 detection library

geo.js, a geolocation API wrapper

Other articles and tutorials:

diveintohtml5.org DETECTING HTML5 FEATURES

Video for Everybody!

A gentle introduction to video encoding

Video type parameters

e All-In-One Almost-Alphabetical No-Bullshit Guide to Detecting Everything

❧❧

is has been “Detecting HTML5 Features.” e full table of contents has more if you’d like to

keep reading.

DID YOU KNOW?DID YOU KNOW?

In association with Google Press, O’Reilly is

distributing this book in a variety of formats, including

paper, ePub, Mobi, and DRM-free PDF. e paid

edition is called “HTML5: Up & Running,” and it is

available now. is apter is included in the paid

edition.

If you liked this apter and want to show your

appreciation, you can buy “HTML5: Up & Running”

with this affiliate link or buy an electronic edition

directly from O’Reilly. You’ll get a book, and I’ll get a

bu. I do not currently accept direct donations.

Copyright MMIX–MMX Mark Pilgrim

powered by Google™ Search

diveintohtml5.org DETECTING HTML5 FEATURES

You are here: Home ‣ Dive Into HTML5 ‣

№№33. .
WHAT DOES IT ALL MEAN?WHAT DOES IT ALL MEAN?

show table of contents

❧❧

DIVING INDIVING IN

his apter will take an HTML page that has absolutely nothing wrong with it,

and improve it. Parts of it will become shorter. Parts will become longer. All of

it will become more semantic. It’ll be awesome.

Here is the page in question. Learn it. Live it. Love it. Open it in a new tab and don’t come

ba until you’ve hit “View Source” at least once.

❧❧

THE DOCTYPETHE DOCTYPE

From the top:

<!DOCTYPE html
diveintohtml5.org WHAT DOES IT ALL MEAN?

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

is is called the “doctype.” ere’s a long history — and a bla art — behind the doctype.

While working on Internet Explorer 5 for Mac, the developers at Microso found themselves

with a surprising problem. e upcoming version of their browser had improved its standards

support so mu, older pages no longer rendered properly. Or rather, they rendered properly

(according to specifications), but people expected them to render improperly . e pages

themselves had been authored based on the quirks of the dominant browsers of the day,

primarily Netscape 4 and Internet Explorer 4. IE5/Mac was so advanced, it actually broke the

web.

Microso came up with a novel solution. Before rendering a page, IE5/Mac looked at the

“doctype,” whi is typically the first line of the HTML source (even before the <html>
element). Older pages (that relied on the rendering quirks of older browsers) generally didn’t

have a doctype at all. IE5/Mac rendered these pages like older browsers did. In order to

“activate” the new standards support, web page authors had to opt in, by supplying the right

doctype before the <html> element.

is idea spread like wildfire, and soon all major browsers had two modes: “quirks mode” and

“standards mode.” Of course, this being the web, things quily got out of hand. When

Mozilla tried to ship version 1.1 of their browser, they discovered that there were pages being

rendered in “standards mode” that were actually relying on one specific quirk. Mozilla had

just fixed its rendering engine to eliminate this quirk, and thousands of pages broke all at

once. us was created — and I am not making this up — “almost standards mode.”

In his seminal work, Activating Browser Modes with Doctype , Henri Sivonen summarizes the

different modes:

irks Mode

In the irks mode, browsers violate contemporary Web format specifications

in order to avoid “breaking” pages authored according to practices that were

prevalent in the late 1990s.

Standards Mode

In the Standards mode, browsers try to give conforming documents the

specification-wise correct treatment to the extent implemented in a particular

diveintohtml5.org WHAT DOES IT ALL MEAN?

browser. HTML5 calls this mode the “no quirks mode.”

Almost Standards Mode

Firefox, Safari, Chrome, Opera (since 7.5) and IE8 also have a mode known as

“Almost Standards mode,” that implements the vertical sizing of table cells

traditionally and not rigorously according to the CSS2 specification. HTML5

calls this mode the “limited quirks mode.”

(You should read the rest of Henri’s article, because I’m simplifying immensely here. Even in

IE5/Mac, there were a few older doctypes that didn’t count as far as opting into standards

support. Over time, the list of quirks grew, and so did the list of doctypes that triggered

“quirks mode.” e last time I tried to count, there were 5 doctypes that triggered “almost

standards mode,” and 73 that triggered “quirks mode.” But I probably missed some, and I’m

not even going to talk about the crazy shit that Internet Explorer 8 does to swit between its

four — four! — different rendering modes. Here’s a flowart. Kill it. Kill it with fire.)

Now then. Where were we? Ah yes, the doctype:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

at happens to be one of the 15 doctypes that trigger “standards mode” in all modern

browsers. ere is nothing wrong with it. If you like it, you can keep it. Or you can ange it

to the HTML5 doctype, whi is shorter and sweeter and also triggers “standards mode” in all

modern browsers.

is is the HTML5 doctype:

<!DOCTYPE html>

at’s it. Just 15 aracters. It’s so easy, you can type it by hand and not screw it up.

❧❧

diveintohtml5.org WHAT DOES IT ALL MEAN?

THE ROOT ELEMENTTHE ROOT ELEMENT

An HTML page is a series of nested elements. e

entire structure of the page is like a tree. Some

elements are “siblings,” like two branes that extend

from the same tree trunk. Some elements can be

“ildren” of other elements, like a smaller bran

that extends from a larger bran. (It works the

other way too; an element that contains other

elements is called the “parent” node of its immediate

ild elements, and the “ancestor” of its

grandildren.) Elements that have no ildren are

called “leaf” nodes. e outer-most element, whi is

the ancestor of all other elements on the page, is

called the “root element.” e root element of an

HTML page is always <html>.

In this example page, the root element looks like

this:

<html xmlns="http://www.w3.org/1999/xhtml"
lang="en"
xml:lang="en">

ere is nothing wrong with this markup. Again, if you like it, you can keep it. It is valid

HTML5. But parts of it are no longer necessary in HTML5, so you can save a few bytes by

removing them.

e first thing to discuss is the xmlns aribute. is is a vestige of XHTML 1.0. It says that

elements in this page are in the XHTML namespace, http://www.w3.org/1999/xhtml.

But elements in HTML5 are always in this namespace, so you no longer need to declare it

explicitly. Your HTML5 page will work exactly the same in all browsers, whether this aribute

is present or not.

diveintohtml5.org WHAT DOES IT ALL MEAN?

Dropping the xmlns aribute leaves us with this root element:

<html lang="en" xml:lang="en">

e two aributes here, lang and xml:lang, both define the language of this HTML page.

(en stands for “English.” Not writing in English? Find your language code.) Why two

aributes for the same thing? Again, this is a vestige of XHTML. Only the lang aribute has

any effect in HTML5. You can keep the xml:lang aribute if you like, but if you do, you

need to ensure that it contains the same value as the lang aribute.

To ease migration to and from XHTML, authors may specify an aribute in no

namespace with no prefix and with the literal localname "xml:lang" on HTML

elements in HTML documents, but su aributes must only be specified if a lang
aribute in no namespace is also specified, and both aributes must have the same

value when compared in an ASCII case-insensitive manner. e aribute in no

namespace with no prefix and with the literal localname "xml:lang" has no effect on

language processing.

Are you ready to drop it? It’s OK, just let it go. Going, going… gone! at leaves us with this

root element:

<html lang="en">

And that’s all I have to say about that.

❧❧

THE <HEAD> ELEMENTTHE <HEAD> ELEMENT

diveintohtml5.org WHAT DOES IT ALL MEAN?

e first ild of the root element is usually the <head> element. e <head> element

contains metadata — information about the page, rather than the body of the page itself. (e

body of the page is, unsurprisingly, contained in the <body> element.) e <head> element

itself is rather boring, and it hasn’t anged in any interesting way in HTML5. e good stuff

is what’s inside the <head> element. And for that, we turn once again to our example page:

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-
8" />
<title>My Weblog</title>
<link rel="stylesheet" type="text/css" href="style-original.css"
/>
<link rel="alternate" type="application/atom+xml"
title="My Weblog feed"
href="/feed/" />
<link rel="search" type="application/opensearchdescription+xml"
title="My Weblog search"
href="opensearch.xml" />
<link rel="shortcut icon" href="/favicon.ico" />
</head>

First up: the <meta> element.

❧❧

CHARACTER ENCODINGCHARACTER ENCODING
diveintohtml5.org WHAT DOES IT ALL MEAN?

When you think of “text,” you probably think of “aracters and symbols I see on my

computer screen.” But computers don’t deal in aracters and symbols; they deal in bits and

bytes. Every piece of text you’ve ever seen on a computer screen is actually stored in a

particular aracter encoding . ere are hundreds of different aracter encodings , some

optimized for particular languages like Russian or Chinese or English, and others that can be

used for multiple languages. Roughly speaking, the aracter encoding provides a mapping

between the stuff you see on your screen and the stuff your computer actually stores in

memory and on disk.

In reality, it’s more complicated than that. e same aracter might appear in more than one

encoding, but ea encoding might use a different sequence of bytes to actually store the

aracter in memory or on disk. So, you can think of the aracter encoding as a kind of

decryption key for the text. Whenever someone gives you a sequence of bytes and claims it’s

“text,” you need to know what aracter encoding they used so you can decode the bytes into

aracters and display them (or process them, or whatever).

So, how does your browser actually determine the aracter encoding of the stream of bytes

that a web server sends? I’m glad you asked. If you’re familiar with HTTP headers, you may

have seen a header like this:

Content-Type: text/html; charset="utf-8"

Briefly, this says that the web server thinks it’s sending you an HTML document, and that it

thinks the document uses the UTF-8 aracter encoding. Unfortunately, in the whole

magnificent soup of the World Wide Web, few authors actually have control over their HTTP

server. ink Blogger: the content is provided by individuals, but the servers are run by

Google. So HTML 4 provided a way to specify the aracter encoding in the HTML document

itself. You’ve probably seen this too:

<meta http-equiv="Content-Type" content="text/html;
charset=utf-8">

Briefly, this says that the web author thinks they have authored an HTML document using the

UTF-8 aracter encoding.

Both of these teniques still work in HTML5. e HTTP header is the preferred method, and
diveintohtml5.org WHAT DOES IT ALL MEAN?

☞

it overrides the <meta> tag if present. But not everyone can set HTTP headers, so the

<meta> tag is still around. In fact, it got a lile easier in HTML5. Now it looks like this:

<meta charset="utf-8" />

is works in all browsers. How did this shortened syntax come about? Here is the best

explanation I could find:

e rationale for the <meta charset=""> aribute combination is that UAs

already implement it, because people tend to leave things unquoted, like:

<META HTTP-EQUIV=Content-Type CONTENT=text/html; charset=ISO-
8859-1>

ere are even a few <meta charset> test cases if you don’t believe that browsers already

do this.

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: I never use funny aracters. Do I still need

to declare my aracter encoding?

A: Yes! You should always specify a aracter

encoding on every HTML page you serve. Not

specifying an encoding can lead to security

vulnerabilities.

To sum up: aracter encoding is complicated, and it has not been made any easier by decades

of poorly wrien soware used by copy-and-paste–educated authors. You should always

specify a aracter encoding on every HTML document, or bad things will happen. You can

do it with the HTTP Content-Type header, the <meta http-equiv> declaration, or the

shorter <meta charset> declaration, but please do it. e web thanks you.
diveintohtml5.org WHAT DOES IT ALL MEAN?

shorter <meta charset> declaration, but please do it. e web thanks you.

❧❧

FRIENDS & (LINK) RELATIONSFRIENDS & (LINK) RELATIONS

Regular links (<a href>) simply point to another page. Link relations are a way to explain

why you’re pointing to another page. ey finish the sentence “I’m pointing to this other page

because…”

…it’s a stylesheet containing CSS rules that your browser should apply to this document.

…it’s a feed that contains the same content as this page, but in a standard subscribable

format.

…it’s a translation of this page into another language.

…it’s the same content as this page, but in PDF format.

…it’s the next apter of an online book of whi this page is also a part.

And so on. HTML5 breaks link relations into two categories:

Two categories of links can be created using the link element. Links to external

resources are links to resources that are to be used to augment the current

document, and hyperlink links are links to other documents. …

e exact behavior for links to external resources depends on the exact

relationship, as defined for the relevant link type.

Of the examples I just gave, only the first (rel="stylesheet") is a link to an external

resource. e rest are hyperlinks to other documents. You may wish to follow those links, or

you may not, but they’re not required in order to view the current page.

Most oen, link relations are seen on <link> elements within the <head> of a page. Some

link relations can also be used on <a> elements, but this is uncommon even when allowed.

HTML5 also allows some relations on <area> elements, but this is even less common.

(HTML 4 did not allow a rel aribute on <area> elements.) See the full art of link

diveintohtml5.org WHAT DOES IT ALL MEAN?

☞

relations to e where you can use specific rel values.

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: Can I make up my own link relations?

A: ere seems to be an infinite supply of

ideas for new link relations. In an aempt to

prevent people from just making shit up , the

WHATWG maintains a registry of proposed

rel values and defines the process for geing

them accepted.

REL = STYLESHEETREL = STYLESHEET

Let’s look at the first link relation in our example page:

<link rel="stylesheet" href="style-original.css" type="text/css"
/>

is is the most frequently used link relation in the world (literally). <link
rel="stylesheet"> is for pointing to CSS rules that are stored in a separate file. One

small optimization you can make in HTML5 is to drop the type aribute. ere’s only one

stylesheet language for the web, CSS, so that’s the default value for the type aribute. is

works in all browsers. (I suppose someone could invent a new stylesheet language someday,

but if that happens, just add the type aribute ba.)

<link rel="stylesheet" href="style-original.css" />

REL = ALTERNATEREL = ALTERNATE

diveintohtml5.org WHAT DOES IT ALL MEAN?

Continuing with our example page:

<link rel="alternate"
type="application/atom+xml"
title="My Weblog feed"
href="/feed/" />

is link relation is also quite common. <link rel="alternate">, combined with either

the RSS or Atom media type in the type aribute, enables something called “feed

autodiscovery.” It allows syndicated feed readers (like Google Reader) to discover that a site

has a news feed of the latest articles. Most browsers also support feed autodiscovery by

displaying a special icon next to the URL. (Unlike with rel="stylesheet", the type
aribute maers here. Don’t drop it!)

e rel="alternate" link relation has always been a strange hybrid of use cases, even in

HTML 4. In HTML5, its definition has been clarified and extended to more accurately describe

existing web content. As you just saw, using rel="alternate" in conjunction with

type=application/atom+xml indicates an Atom feed for the current page. But you can

also use rel="alternate" in conjunction with other type aributes to indicate the same

content in another format, like PDF.

HTML5 also puts to rest a long-standing confusion about how to link to translations of

documents. HTML 4 says to use the lang aribute in conjunction with rel="alternate"
to specify the language of the linked document, but this is incorrect. e HTML 4 Errata

document lists four outright errors in the HTML 4 specification. One of these outright errors

is how to specify the language of a document linked with rel="alternate" e correct

way, described in the HTML 4 Errata and now in HTML5, is to use the hreflang aribute.

Unfortunately, these errata were never re-integrated into the HTML 4 spec, because no one in

the W3C HTML Working Group was working on HTML anymore.

OTHER LINK RELATIONS IN HTML5OTHER LINK RELATIONS IN HTML5

rel="arives" “indicates that the referenced document describes a collection of records,

documents, or other materials of historical interest. A blog’s index page could link to an index

of the blog’s past posts with rel="arives".”

diveintohtml5.org WHAT DOES IT ALL MEAN?

rel="author" is used to link to information about the author of the page. is can be a

mailto: address, though it doesn’t have to be. It could simply link to a contact form or

“about the author” page.

rel="external" “indicates that the link is leading to a document that is not part of the site that

the current document forms a part of.” I believe it was first popularized by WordPress, whi

uses it on links le by commenters.

HTML 4 defined rel="start", rel="prev",

and rel="next" to define relations between

pages that are part of a series (like apters of

a book, or even posts on a blog). e only one

that was ever used correctly was rel="next".

People used rel="previous" instead of

rel="prev"; they used rel="begin" and

rel="first" instead of rel="start"; they

used rel="end" instead of rel="last". Oh,

and — all by themselves — they made up

rel="up" to point to a “parent” page.

HTML5 includes rel="first", whi was the

most common variation of the different ways to

say “first page in a series.” (rel="start" is a

non-conforming synonym, provided for baward compatibility.) It also includes rel="prev"
and rel="next", just like HTML 4, and supports rel="previous" for baward

compatibility, as well as rel="last" (the last in a series, mirroring rel="first") and

rel="up".

e best way to think of rel="up" is to look at your breadcrumb navigation (or at least

imagine it). Your home page is probably the first page in your breadcrumbs, and the current

page is at the tail end. rel="up" points to the next-to-last page in the breadcrumbs.

rel="icon" is the second most popular link relation , aer rel="stylesheet". It is usually

found together with shortcut, like so:

<link rel="shortcut icon" href="/favicon.ico">
diveintohtml5.org WHAT DOES IT ALL MEAN?

All major browsers support this usage to associate a small icon with the page. Usually it’s

displayed in the browser’s location bar next to the URL, or in the browser tab, or both.

Also new in HTML5: the sizes aribute can be used in conjunction with the icon
relationship to indicate the size of the referenced icon.

rel="license" was invented by the microformats community. It “indicates that the referenced

document provides the copyright license terms under whi the current document is provided.

”

rel="nofollow" “indicates that the link is not endorsed by the original author or publisher of

the page, or that the link to the referenced document was included primarily because of a

commercial relationship between people affiliated with the two pages.” It was invented by

Google and standardized within the microformats community. WordPress adds

rel="nofollow" to links added by commenters. e thinking was that if “nofollow” links

did not pass on PageRank, spammers would give up trying to post spam comments on

weblogs. at didn’t happen, but rel="nofollow" persists.

rel="noreferrer" “indicates that no referrer information is to be leaked when following the

link.” No shipping browser currently supports this, but support was recently added to WebKit

nightlies, so it will eventually be showing up in Safari, Google Chrome, and other WebKit-

based browsers. [rel="noreferrer" test case]

rel="pingba" specifies the address of a “pingba” server. As explained in the Pingba

specification, “e pingba system is a way for a blog to be automatically notified when

other Web sites link to it. … It enables reverse linking — a way of going ba up a ain of

links rather than merely drilling down.” Blogging systems, notably WordPress, implement the

pingba meanism to notify authors that you have linked to them when creating a new blog

post.

rel="prefet" “indicates that preemptively feting

and caing the specified resource is likely to be

beneficial, as it is highly likely that the user will

require this resource.” Sear engines sometimes add

<link rel="prefetch" href="URL of top

diveintohtml5.org WHAT DOES IT ALL MEAN?

search result"> to the sear results page if they

feel that the top result is wildly more popular than

any other. For example: using Firefox, sear Google

for CNN, view the page source, and sear for the

keyword prefetch. Mozilla Firefox is the only

current browser that supports rel="prefetch".

rel="sear" “indicates that the referenced document

provides an interface specifically for searing the document and its related resources.”

Specifically, if you want rel="search" to do anything useful, it should point to an

OpenSear document that describes how a browser could construct a URL to sear the

current site for a given keyword. OpenSear (and rel="search" links that point to

OpenSear description documents) has been supported in Microso Internet Explorer since

version 7 and Mozilla Firefox since version 2.

rel="sidebar" “indicates that the referenced document, if retrieved, is intended to be shown in a

secondary browsing context (if possible), instead of in the current browsing context.” What

does that mean? In Opera and Mozilla Firefox, it means “when I cli this link, prompt the

user to create a bookmark that, when selected from the Bookmarks menu, opens the linked

document in a browser sidebar.” (Opera actually calls it the “panel” instead of the “sidebar.”)

Internet Explorer, Safari, and Chrome ignore rel="sidebar" and just treat it as a regular

link. [rel="sidebar" test case]

rel="tag" “indicates that the tag that the referenced document represents applies to the current

document.” Marking up “tags” (category keywords) with the rel aribute was invented by

Tenorati to help them categorize blog posts. Early blogs and tutorials thus referred to them

as “Tenorati tags.” (You read that right: a commercial company convinced the entire world to

add metadata that made the company’s job easier. Nice work if you can get it!) e syntax

was later standardized within the microformats community, where it was simply called

rel="tag". Most blogging systems that allow associating categories, keywords, or tags with

individual posts will mark them up with rel="tag" links. Browsers do not do anything

special with them; they’re really designed for sear engines to use as a signal of what the

page is about.

❧❧
diveintohtml5.org WHAT DOES IT ALL MEAN?

<section>

<nav>

<article>

<aside>

NEW SEMANTIC ELEMENTS INNEW SEMANTIC ELEMENTS IN
HTML5HTML5

HTML5 is not just about making existing markup shorter (although it does a fair amount of

that). It also defines new semantic elements.

e section element represents a generic document or application section.

A section, in this context, is a thematic grouping of content, typically with a

heading. Examples of sections would be apters, the tabbed pages in a

tabbed dialog box, or the numbered sections of a thesis. A Web site's home

page could be split into sections for an introduction, news items, contact

information.

e nav element represents a section of a page that links to other pages or

to parts within the page: a section with navigation links. Not all groups of

links on a page need to be in a nav element — only sections that consist of

major navigation blos are appropriate for the nav element. In particular, it

is common for footers to have a short list of links to common pages of a

site, su as the terms of service, the home page, and a copyright page. e

footer element alone is sufficient for su cases, without a nav element.

e article element represents a component of a page that consists of a

self-contained composition in a document, page, application, or site and that

is intended to be independently distributable or reusable, e.g. in syndication.

is could be a forum post, a magazine or newspaper article, a Web log

entry, a user-submied comment, an interactive widget or gadget, or any

other independent item of content.

e aside element represents a section of a page that consists of content

that is tangentially related to the content around the aside element, and

whi could be considered separate from that content. Su sections are oen

represented as sidebars in printed typography. e element can be used for

typographical effects like pull quotes or sidebars, for advertising, for groups
diveintohtml5.org WHAT DOES IT ALL MEAN?

<hgroup>

<header>

<footer>

<time>

<mark>

of nav elements, and for other content that is considered separate from the

main content of the page.

e hgroup element represents the heading of a section. e element is

used to group a set of h1–h6 elements when the heading has multiple

levels, su as subheadings, alternative titles, or taglines.

e header element represents a group of introductory or navigational aids.

A header element is intended to usually contain the section’s heading (an

h1–h6 element or an hgroup element), but this is not required. e

header element can also be used to wrap a section’s table of contents, a

sear form, or any relevant logos.

e footer element represents a footer for its nearest ancestor sectioning

content or sectioning root element. A footer typically contains information

about its section su as who wrote it, links to related documents, copyright

data, and the like. Footers don’t necessarily have to appear at the end of a

section, though they usually do. When the footer element contains entire

sections, they represent appendices, indexes, long colophons, verbose license

agreements, and other su content.

e time element represents either a time on a 24 hour clo, or a precise

date in the proleptic Gregorian calendar, optionally with a time and a time-

zone offset.

e mark element represents a run of text in one document marked or

highlighted for reference purposes.

I know you’re anxious to start using these new elements, otherwise you wouldn’t be reading

this apter. But first we need to take a lile detour.

❧❧

diveintohtml5.org WHAT DOES IT ALL MEAN?

A LONG DIGRESSION INTO HOWA LONG DIGRESSION INTO HOW
BROWSERS HANDLE UNKNOWNBROWSERS HANDLE UNKNOWN

ELEMENTSELEMENTS

Every browser has a master list of HTML elements that it supports. For example, Mozilla

Firefox’s list is stored in nsElementTable.cpp. Elements not in this list are treated as

“unknown elements.” ere are two fundamental problems with unknown elements:

1. How should the element be styled? By default, <p> has spacing on the top and boom,

<blockquote> is indented with a le margin, and <h1> is displayed in a larger font.

But what default styles should be applied to unknown elements?

2. What should the element’s DOM look like? Mozilla’s nsElementTable.cpp includes

information about what kinds of other elements ea element can contain. If you

include markup like <p><p>, the second paragraph element implicitly closes the first

one, so the elements end up as siblings, not parent-and-ild. But if you write

<p>, the span does not close the paragraph, because Firefox knows that <p> is

a blo element that can contain the inline element . So, the ends up as

a ild of the <p> in the DOM.

Different browsers answer these questions in different ways. (Shoing, I know.) Of the major

browsers, Microso Internet Explorer’s answer to both questions is the most problematic, but

every browser needs a lile bit of help here.

e first question should be relatively simple to answer: don’t give any special styling to

unknown elements. Just let them inherit whatever CSS properties are in effect wherever they

appear on the page, and let the page author specify all styling with CSS. And that works,

mostly, but there’s one lile gota you need to be aware of.

PROFESSOR MARKUP SAYSPROFESSOR MARKUP SAYS

All browsers render unknown elements inline, i.e. as if they

had a display:inline CSS rule.

diveintohtml5.org WHAT DOES IT ALL MEAN?

ere are several new elements defined in HTML5 whi are blo-level elements. at is,

they can contain other blo-level elements, and HTML5-compliant browsers will style them

as display:block by default. If you want to use these elements in older browsers, you will

need to define the display style manually:

article,aside,details,figcaption,figure,
footer,header,hgroup,menu,nav,section {
display:block;
}

(is code is lied from Ri Clark’s HTML5 Reset Stylesheet, whi does many other things

that are beyond the scope of this apter.)

But wait, it gets worse! Prior to version 9, Internet Explorer did not apply any styling on

unknown elements. For example, if you had this markup:

<style type="text/css">
article { display: block; border: 1px solid red }
</style>
...
<article>
<h1>Welcome to Initech</h1>
<p>This is your first day.</p>
</article>

Internet Explorer (up to and including IE 8) will not treat the <article> element as a blo-

level element, nor will it put a red border around the article. All the style rules are simply

ignored. As I write this, Internet Explorer 9 is still in beta , but Microso has stated (and

diveintohtml5.org WHAT DOES IT ALL MEAN?

developers have verified) that Internet Explorer 9 will not have this problem.

e second problem is the DOM that browsers create when they encounter unknown

elements. Again, the most problematic browser is Internet Explorer. If IE doesn’t explicitly

recognize the element name, it will insert the element into the DOM as an empty node with

no ildren. All the elements that you would expect to be direct ildren of the unknown

element will actually be inserted as siblings instead.

Here is some righteous ASCII art to illustrate the difference. is is the DOM that HTML5

dictates:

article
|
+--h1 (child of article)
| |
| +--text node "Welcome to Initech"
|
+--p (child of article, sibling of h1)
|
+--text node "This is your "
|
+--span
| |
| +--text node "first day"
|
+--text node "."

But this is the DOM that Internet Explorer actually creates:

article (no children)
h1 (sibling of article)
|
+--text node "Welcome to Initech"
p (sibling of h1)
|
+--text node "This is your "

diveintohtml5.org WHAT DOES IT ALL MEAN?

|
+--span
| |
| +--text node "first day"
|
+--text node "."

ere is a wonderous workaround for this problem. If you create a dummy <article>
element with JavaScript before you use it in your page, Internet Explorer will magically

recognize the <article> element and let you style it with CSS. ere is no need to ever

insert the dummy element into the DOM. Simply creating the element once (per page) is

enough to tea IE to style the element it doesn’t recognize.

<html>
<head>
<style>
article { display: block; border: 1px solid red }
</style>
<script>document.createElement("article");</script>
</head>
<body>
<article>
<h1>Welcome to Initech</h1>
<p>This is your first day.</p>
</article>
</body>
</html>

is works in all versions of Internet Explorer, all the way ba to IE 6! We can extend this

tenique to create dummy copies of all the new HTML5 elements at once — again, they’re

never inserted into the DOM, so you’ll never see these dummy elements — and then just start

using them without having to worry too mu about non-HTML5-capable browsers.

Remy Sharp has done just that, with his aptly named HTML5 enabling script. e script has

gone through 14 revisions at the time of writing, but this is the basic idea:

diveintohtml5.org WHAT DOES IT ALL MEAN?

<!--[if lt IE 9]>
<script>
var e = ("abbr,article,aside,audio,canvas,datalist,details," +
"figure,footer,header,hgroup,mark,menu,meter,nav,output," +
"progress,section,time,video").split(',');
for (var i = 0; i < e.length; i++) {
document.createElement(e[i]);
}
</script>
<![endif]-->

e <!--[if lt IE 9]> and <![endif]--> bits are conditional comments. Internet

Explorer interprets them like an if statement: “if the current browser is a version of Internet

Explorer less than version 9, then execute this blo.” Every other browser will treat the entire

blo as an HTML comment. e net result is that Internet Explorer (up to and including

version 8) will execute this script, but other browsers will ignore the script altogether. is

makes your page load faster in browsers that don’t need this ha.

e JavaScript code itself is relatively straightforward. e variable e ends up as an array of

strings like "abbr", "article", "aside", and so on. en we loop through this array and

create ea of the named elements by calling document.createElement(). But since we

ignore the return value, the elements are never inserted into the DOM. But this is enough to

get Internet Explorer to treat these elements the way we want them to be treated, once we

actually use them later in the page.

at “later” bit is important. is script needs to be at the top of your page, preferably in

your <head> element, not at the boom. at way, Internet Explorer will execute the script

before it parses your tags and aributes. If you put this script at the boom of your page, it

will be too late. Internet Explorer will have already misinterpreted your markup and

constructed the wrong DOM, and it won’t go ba and adjust it just because of this script.

Remy Sharp has “minified” this script and hosted it on Google Project Hosting . (In case you

were wondering, the script itself is open source and MIT-licensed, so you can use it in any

project.) If you like, you can even “hotlink” the script by pointing directly to the hosted

version, like this:

diveintohtml5.org WHAT DOES IT ALL MEAN?

<head>
<meta charset="utf-8" />
<title>My Weblog</title>
<!--[if lt IE 9]>
<script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"
></script>
<![endif]-->
</head>

Now we’re ready to start using the new semantic elements in HTML5.

❧❧

HEADERSHEADERS

Let’s go ba to our example page. Specifically, let’s look at

just the headers:

<div id="header">
<h1>My Weblog</h1>
<p class="tagline">A lot of effort went
into making this effortless.</p>
</div>

…

<div class="entry">
<h2>Travel day</h2>
</div>

…

<div class="entry">

diveintohtml5.org WHAT DOES IT ALL MEAN?

<h2>I'm going to Prague!</h2>
</div>

ere is nothing wrong with this markup. If you like it, you can keep it. It is valid HTML5.

But HTML5 provides some additional semantic elements for headers and sections.

First off, let’s get rid of that <div id="header">. is is a common paern, but it doesn’t

mean anything. e div element has no defined semantics, and the id aribute has no

defined semantics. (User agents are not allowed to infer any meaning from the value of the

id aribute.) You could ange this to <div id="shazbot"> and it would have the same

semantic value, i.e., nothing.

HTML5 defines a <header> element for this purpose. e HTML5 specification has real-

world examples of using the <header> element. Here is what it would look like on our

example page:

<header>
<h1>My Weblog</h1>
<p class="tagline">A lot of effort went into making this
effortless.</p>
…
</header>

at’s good. It tells anyone who wants to know that this is a header. But what about that

tagline? Another common paern, whi up until now had no standard markup. It’s a difficult

thing to mark up. A tagline is like a subheading, but it’s “aaed” to the primary heading.

at is, it’s a subheading that doesn’t create its own section.

Header elements like <h1> and <h2> give your page structure. Taken together, they create an

outline that you can use to visualize (or navigate) your page. Screenreaders use document

outlines to help blind users navigate through your page. ere are online tools and browser

extensions that can help you visualize your document’s outline.

In HTML 4, <h1>–<h6> elements were the only way to create a document outline. e

outline on the example page looks like this:

diveintohtml5.org WHAT DOES IT ALL MEAN?

My Weblog (h1)
|
+--Travel day (h2)
|
+--I'm going to Prague! (h2)

at’s fine, but it means that there’s no way to mark up the tagline “A lot of effort went into

making this effortless.” If we tried to mark it up as an <h2>, it would add a phantom node to

the document outline:

My Weblog (h1)
|
+--A lot of effort went into making this effortless. (h2)
|
+--Travel day (h2)
|
+--I'm going to Prague! (h2)

But that’s not the structure of the document. e tagline does not represent a section; it’s just

a subheading.

Perhaps we could mark up the tagline as an <h2> and mark up ea article title as an <h3>?

No, that’s even worse:

My Weblog (h1)
|
+--A lot of effort went into making this effortless. (h2)
|
+--Travel day (h3)
|
+--I'm going to Prague! (h3)

Now we still have a phantom node in our document outline, but it has “stolen” the ildren

that rightfully belong to the root node. And herein lies the problem: HTML 4 does not

provide a way to mark up a subheading without adding it to the document outline. No maer

how we try to shi things around, “A lot of effort went into making this effortless” is going to

diveintohtml5.org WHAT DOES IT ALL MEAN?

end up in that graph. And that’s why we ended up with semantically meaningless markup like

<p class="tagline">.

HTML5 provides a solution for this: the <hgroup> element. e <hgroup> element acts as a

wrapper for two or more related heading elements. What does “related” mean? It means that,

taken together, they only create a single node in the document outline.

Given this markup:

<header>
<hgroup>
<h1>My Weblog</h1>
<h2>A lot of effort went into making this effortless.</h2>
</hgroup>
…
</header>

…

<div class="entry">
<h2>Travel day</h2>
</div>

…

<div class="entry">
<h2>I'm going to Prague!</h2>
</div>

is is the document outline that is created:

My Weblog (h1 of its hgroup)
|
+--Travel day (h2)
|
+--I'm going to Prague! (h2)

diveintohtml5.org WHAT DOES IT ALL MEAN?

You can test your own pages in the HTML5 Outliner to ensure that you’re using the heading

elements properly.

❧❧

ARTICLESARTICLES

Continuing with our example page, let’s see what we can do about this markup:

<div class="entry">
<p class="post-date">October 22, 2009</p>
<h2>
<a href="#"
rel="bookmark"
title="link to this post">
Travel day

</h2>
…
</div>

Again, this is valid HTML5. But HTML5 provides a more specific element for the common

case of marking up an article on a page — the aptly named <article> element.

<article>
<p class="post-date">October 22, 2009</p>
<h2>
<a href="#"
rel="bookmark"
title="link to this post">
Travel day

</h2>

diveintohtml5.org WHAT DOES IT ALL MEAN?

…
</article>

Ah, but it’s not quite that simple. ere is one more ange you should make. I’ll show it to

you first, then explain it:

<article>
<header>
<p class="post-date">October 22, 2009</p>
<h1>
<a href="#"
rel="bookmark"
title="link to this post">
Travel day

</h1>
</header>
…
</article>

Did you cat that? I anged the <h2> element to an <h1>, and wrapped it inside a

<header> element. You’ve already seen the <header> element in action. Its purpose is to

wrap all the elements that form the article’s header (in this case, the article’s publication date

and title). But…but…but… shouldn’t you only have one <h1> per document? Won’t this screw

up the document outline? No, but to understand why not, we need to ba up a step.

In HTML 4, the only way to create a document outline was with the <h1>–<h6> elements. If

you only wanted one root node in your outline, you had to limit yourself to one <h1> in

your markup. But the HTML5 specification defines an algorithm for generating a document

outline that incorporates the new semantic elements in HTML5. e HTML5 algorithm says

that an <article> element creates a new section, that is, a new node in the document

outline. And in HTML5, ea section can have its own <h1> element.

is is a drastic ange from HTML 4, and here’s why it’s a good thing. Many web pages are

really generated by templates. A bit of content is taken from one source and inserted into the

page up here; a bit of content is taken from another source and inserted into the page down

diveintohtml5.org WHAT DOES IT ALL MEAN?

there. Many tutorials are structured the same way. “Here’s some HTML markup. Just copy it

and paste it into your page.” at’s fine for small bits of content, but what if the markup

you’re pasting is an entire section? In that case, the tutorial will read something like this:

“Here’s some HTML markup. Just copy it, paste it into a text editor, and fix the heading tags

so they mat the nesting level of the corresponding heading tags in the page you’re pasting

it into.”

Let me put it another way. HTML 4 has no generic heading element. It has six strictly

numbered heading elements, <h1>–<h6>, whi must be nested in exactly that order. at

kind of sus, especially if your page is “assembled” instead of “authored.” And this is the

problem that HTML5 solves with the new sectioning elements and the new rules for the

existing heading elements. If you’re using the new sectioning elements, I can give you this

markup:

<article>
<header>
<h1>A syndicated post</h1>
</header>
<p>Lorem ipsum blah blah…</p>
</article>

and you can copy it and paste it anywhere in your page without modification. e fact that it

contains an <h1> element is not a problem, because the entire thing is contained within an

<article>. e <article> element defines a self-contained node in the document outline,

the <h1> element provides the title for that outline node, and all the other sectioning

elements on the page will remain at whatever nesting level they were at before.

PROFESSOR MARKUP SAYSPROFESSOR MARKUP SAYS

As with all things on the web, reality is a lile more

complicated than I’m leing on. e new “explicit”

sectioning elements (like <h1> wrapped in <article>)

may interact in unexpected ways with the old “implicit”

sectioning elements (<h1>–<h6> by themselves). Your life

will be simpler if you use one or the other, but not both. If

you must use both on the same page, be sure to e the
diveintohtml5.org WHAT DOES IT ALL MEAN?

result in the HTML5 Outliner and verify that your

document outline makes sense.

❧❧

DATES AND TIMESDATES AND TIMES

is is exciting, right? I mean, it’s not “skiing down Mount

Everest naked while reciting the Star Spangled Banner

bawards” exciting, but it’s prey exciting as far as semantic

markup goes. Let’s continue with our example page. e next

line I want to highlight is this one:

<div class="entry">
<p class="post-date">October 22, 2009</p>
<h2>Travel day</h2>
</div>

Same old story, right? A common paern — designating the

publication date of an article — that has no semantic markup

to ba it up, so authors resort to generic markup with custom

class aributes. Again, this is valid HTML5. You’re not required to ange it. But HTML5

does provide a specific solution for this case: the <time> element.

<time datetime="2009-10-22" pubdate>October 22, 2009</time>

ere are three parts to a <time> element:

1. A maine-readable timestamp

2. Human-readable text content

3. An optional pubdate flag

diveintohtml5.org WHAT DOES IT ALL MEAN?

In this example, the datetime aribute only specifies a date, not a time. e format is a

four-digit year, two-digit month, and two-digit day, separated by dashes:

<time datetime="2009-10-22" pubdate>October 22, 2009</time>

If you want to include a time too, add the leer T aer the date, then the time in 24-hour

format, then a timezone offset.

<time datetime="2009-10-22T13:59:47-04:00" pubdate>
October 22, 2009 1:59pm EDT
</time>

(e date/time format is prey flexible. e HTML5 specification contains examples of valid

date/time strings.)

Notice I anged the text content — the stuff between <time> and </time> — to mat the

maine-readable timestamp. is is not actually required. e text content can be anything

you like, as long as you provide a maine-readable date/timestamp in the datetime
aribute. So this is valid HTML5:

<time datetime="2009-10-22">last Thursday</time>

And this is also valid HTML5:

<time datetime="2009-10-22"></time>

e final piece of the puzzle here is the pubdate aribute. It’s a Boolean aribute, so just

add it if you need it, like this:

<time datetime="2009-10-22" pubdate>October 22, 2009</time>

If you dislike “naked” aributes, this is also equivalent:

<time datetime="2009-10-22" pubdate="pubdate">October 22,
2009</time>

diveintohtml5.org WHAT DOES IT ALL MEAN?

What does the pubdate aribute mean? It means one of two things. If the <time> element

is in an <article> element, it means that this timestamp is the publication date of the

article. If the <time> element is not in an <article> element, it means that this timestamp

is the publication date of the entire document.

Here’s the entire article, reformulated to take full advantage of HTML5:

<article>
<header>
<time datetime="2009-10-22" pubdate>
October 22, 2009
</time>
<h1>
<a href="#"
rel="bookmark"
title="link to this post">
Travel day

</h1>
</header>
<p>Lorem ipsum dolor sit amet…</p>
</article>

❧❧

NAVIGATIONNAVIGATION

One of the most important parts of any

web site is the navigation bar. CNN.com

has “tabs” along the top of ea page that

link to the different news sections — “Te,”

“Health,” “Sports,” &c. Google sear results

pages have a similar strip at the top of the

diveintohtml5.org WHAT DOES IT ALL MEAN?

page to try your sear in different Google

services — “Images,” “Video,” “Maps,” &c.

And our example page has a navigation bar

in the header that includes links to different

sections of our hypothetical site — “home,”

“blog,” “gallery,” and “about.”

is is how the navigation bar was

originally marked up:

<div id="nav">

home
blog
gallery
about

</div>

Again, this is valid HTML5. But while it’s marked up as a list of four items, there is nothing

about the list that tells you that it’s part of the site navigation. Visually, you could guess that

by the fact that it’s part of the page header, and by reading the text of the links. But

semantically, there is nothing to distinguish this list of links from any other.

Who cares about the semantics of site navigation? For one, people with disabilities. Why is

that? Consider this scenario: your motion is limited, and using a mouse is difficult or

impossible. To compensate, you might use a browser add-on that allows you to jump to (or

jump past) major navigation links. Or consider this: if your sight is limited, you might use a

dedicated program called a “screenreader” that uses text-to-spee to speak and summarize

web pages. Once you get past the page title, the next important pieces of information about a

page are the major navigation links. If you want to navigate quily, you’ll tell your

screenreader to jump to the navigation bar and start reading. If you want to browse quily,

you might tell your screenreader to jump over the navigation bar and start reading the main

content. Either way, being able to determine navigation links programmatically is important.

So, while there’s nothing wrong with using <div id="nav"> to mark up your site

diveintohtml5.org WHAT DOES IT ALL MEAN?

☞

navigation, there’s nothing particularly right about it either. It’s suboptimal in ways that affect

real people. HTML5 provides a semantic way to mark up navigation sections: the <nav>
element.

<nav>

home
blog
gallery
about

</nav>

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: Are skip links compatible with the <nav>
element? Do I still need skip links in HTML5?

A: Skip links allow readers to skip over

navigation sections. ey are helpful for

disabled users who use third-party soware to

read a web page aloud and navigate it without

a mouse. (Learn how and why to provide skip

links.)

Once screenreaders are updated to recognize the

<nav> element, skip links will become

obsolete, since the screenreader soware will

be able to automatically offer to skip over a

navigation section marked up with the <nav>
element. However, it will be a while before all

the disabled users on the web upgrade to

HTML5-savvy screenreader soware, so you

should continue to provide your own skip links

to jump over <nav> sections.
diveintohtml5.org WHAT DOES IT ALL MEAN?

❧❧

FOOTERSFOOTERS

At long last, we have arrived at the end of our example page. e last thing I want to talk

about is the last thing on the page: the footer. e footer was originally marked up like this:

<div id="footer">
<p>§</p>
<p>© 2001–9 Mark Pilgrim</p>
</div>

is is valid HTML5. If you like it, you can keep it. But HTML5 provides a more specific

element for this: the <footer> element.

<footer>
<p>§</p>
<p>© 2001–9 Mark Pilgrim</p>
</footer>

What’s appropriate to put in a <footer> element? Probably whatever you’re puing in a

<div id="footer"> now. OK, that’s a circular answer. But really, that’s it. e HTML5

specification says, “A footer typically contains information about its section su as who wrote

it, links to related documents, copyright data, and the like.” at’s what’s in this example page:

a short copyright statement and a link to an about-the-author page. Looking around at some

popular sites, I see lots of footer potential.

CNN has a footer that contains a copyright statement, links to translations, and links to

terms of service, privacy, “about us,” “contact us,” and “help” pages. All totally

diveintohtml5.org WHAT DOES IT ALL MEAN?

appropriate <footer> material.

Google has a famously sparse home page, but at the boom of it are links to

“Advertising Programs,” “Business Solutions,” and “About Google”; a copyright statement;

and a link to Google’s privacy policy. All of that could be wrapped in a <footer>.

My weblog has a footer with links to my other sites, plus a copyright statement.

Definitely appropriate for a <footer> element. (Note that the links themselves should

not be wrapped in a <nav> element, because they are not site navigation links; they are

just a collection of links to my other projects on other sites.)

“Fat footers” are all the rage these days. Take a look at the footer on the W3C site. It contains

three columns, labeled “Navigation,” “Contact W3C,” and “W3C Updates.” e markup looks

like this, more or less:

<div id="w3c_footer">
<div class="w3c_footer-nav">
<h3>Navigation</h3>

Home
Standards
Participate
Membership
About W3C

</div>
<div class="w3c_footer-nav">
<h3>Contact W3C</h3>

Contact
Help and FAQ
Donate
Site Map

</div>
<div class="w3c_footer-nav">
<h3>W3C Updates</h3>

diveintohtml5.org WHAT DOES IT ALL MEAN?

Twitter
Identi.ca

</div>
<p class="copyright">Copyright © 2009 W3C</p>
</div>

To convert this to semantic HTML5, I would make the following anges:

Convert the outer <div id="w3c_footer"> to a <footer> element.

Convert the first two instances of <div class="w3c_footer-nav"> to <nav>
elements, and the third instance to a <section> element.

Convert the <h3> headers to <h1>, since they’ll now ea be inside a sectioning

element. e <nav> element creates a section in the document outline, just like the

<article> element.

e final markup might look something like this:

<footer>
<nav>
<h1>Navigation</h1>

Home
Standards
Participate
Membership
About W3C

</nav>
<nav>
<h1>Contact W3C</h1>

Contact
Help and FAQ
Donate
Site Map

diveintohtml5.org WHAT DOES IT ALL MEAN?

</nav>
<section>
<h1>W3C Updates</h1>

Twitter
Identi.ca

</section>
<p class="copyright">Copyright © 2009 W3C</p>
</footer>

❧❧

FURTHER READINGFURTHER READING

Example pages used throughout this apter:

Original (HTML 4)

Modified (HTML5)

On aracter encoding:

e Absolute Minimum Every Soware Developer Absolutely, Positively Must Know

About Unicode and Character Sets (No Excuses!) by Joel Spolsky

On the Goodness of Unicode , On Character Strings , and Characters vs. Bytes by Tim

Bray

On enabling new HTML5 in Internet Explorer:

How to style unknown elements in IE by Sjoerd Visser

HTML5 shiv by John Resig

HTML5 enabling script by Remy Sharp

diveintohtml5.org WHAT DOES IT ALL MEAN?

On standards modes and doctype sniffing:

Activating Browser Modes with Doctype by Henri Sivonen. is is the only article you

should read on the subject. Any article on doctypes that doesn’t reference Henri’s work

is guaranteed to be out of date, incomplete, or wrong.

HTML5-aware validator:

html5.validator.nu

❧❧

is has been “What Does It All Mean?” e full table of contents has more if you’d like to

keep reading.

DID YOU KNOW?DID YOU KNOW?

In association with Google Press, O’Reilly is

distributing this book in a variety of formats, including

paper, ePub, Mobi, and DRM-free PDF. e paid

edition is called “HTML5: Up & Running,” and it is

available now. is apter is included in the paid

edition.

If you liked this apter and want to show your

appreciation, you can buy “HTML5: Up & Running”

with this affiliate link or buy an electronic edition

directly from O’Reilly. You’ll get a book, and I’ll get a

bu. I do not currently accept direct donations.

Copyright MMIX–MMX Mark Pilgrim

diveintohtml5.org WHAT DOES IT ALL MEAN?

powered by Google™ Search

diveintohtml5.org WHAT DOES IT ALL MEAN?

You are here: Home ‣ Dive Into HTML5 ‣

№№44. .
LET’S CALL IT ALET’S CALL IT A

DRAW(ING SURFACE)DRAW(ING SURFACE)

show table of contents

❧❧

DIVING INDIVING IN

TML 5 defines the <canvas> element as “a resolution-dependent bitmap canvas

whi can be used for rendering graphs, game graphics, or other visual images

on the fly.” A canvas is a rectangle in your page where you can use JavaScript

to draw anything you want.

BASIC <CANVAS> SUPPORTBASIC <CANVAS> SUPPORT

IEIE** FIREFOXFIREFOX SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID
7.0+ 3.0+ 3.0+ 3.0+ 10.0+ 1.0+ 1.0+

* Internet Explorer support requires the third-party explorercanvas library.

So what does a canvas look like? Nothing, really. A <canvas> element has no content and

no border of its own.

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

 ↜ ↜ Invisible canvas Invisible canvas

e markup looks like this:

<canvas width="300" height="225"></canvas>

Let’s add a doed border so we can see what we’re dealing with.

 ↜ ↜ Canvas with border Canvas with border

You can have more than one <canvas> element on the same page. Ea canvas will show up

in the DOM, and ea canvas maintains its own state. If you give ea canvas an id aribute,

you can access them just like any other element.

Let’s expand that markup to include an id aribute:

<canvas id="a" width="300" height="225"></canvas>

Now you can easily find that <canvas> element in the DOM.

var a_canvas = document.getElementById("a");

❧❧

SIMPLE SHAPESSIMPLE SHAPES
diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

And then there’s this And then there’s this ⇝⇝

IEIE** FIREFOXFIREFOX SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID
7.0+ 3.0+ 3.0+ 3.0+ 10.0+ 1.0+ 1.0+

* Internet Explorer support requires the third-party explorercanvas library.

Every canvas starts out blank. at’s boring! Let’s draw something.

 ⇜ ⇜ Click to draw on thisClick to draw on this

canvascanvas

e onclick handler called this function:

function draw_b() {
var b_canvas = document.getElementById("b");
var b_context = b_canvas.getContext("2d");
b_context.fillRect(50, 25, 150, 100);
}

e 1ST line of the function is nothing special; it just finds the <canvas> element in the

DOM.

function draw_b() {
var b_canvas =
document.getElementById("b");

var b_context = b_canvas.getContext("2d");
b_context.fillRect(50, 25, 150, 100);
}

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

☞

☞

Every canvas has a drawing context, whi is

where all the fun stuff happens. Once you’ve

found a <canvas> element in the DOM (by

using document.getElementById() or any

other method you like), you call its

getContext() method. You must pass the

string "2d" to the getContext() method.

Q: Is there a 3-D canvas?

A: Not yet. Individual vendors have

experimented with their own three-

dimensional canvas APIs, but none of them have been standardized.

e HTML5 specification notes, “A future version of this specification

will probably define a 3d context.”

So, you have a <canvas> element, and you have its drawing context. e drawing context is

where all the drawing methods and properties are defined. ere’s a whole group of properties

and methods devoted to drawing rectangles:

e fillStyle property can be a CSS color, a paern, or a gradient. (More on

gradients shortly.) e default fillStyle is solid bla, but you can set it to whatever

you like. Ea drawing context remembers its own properties as long as the page is

open, unless you do something to reset it.

fillRect(x, y, width, height) draws a rectangle filled with the current fill

style.

e strokeStyle property is like fillStyle — it can be a CSS color, a paern, or a

gradient.

strokeRect(x, y, width, height) draws an rectangle with the current stroke

style. strokeRect doesn’t fill in the middle; it just draws the edges.

clearRect(x, y, width, height) clears the pixels in the specified rectangle.

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

☞

Draw a rectangle Draw a rectangle ⇝ ⇝

Q: Can I “reset” a canvas?

A: Yes. Seing the width or height of a

<canvas> element will erase its contents and

reset all the properties of its drawing context

to their default values. You don’t even need to

ange the width; you can simply set it to its

current value, like this:

var b_canvas =
document.getElementById("b");
b_canvas.width =
b_canvas.width;

Geing ba to that code sample in the previous example…

var b_canvas =
document.getElementById("b");
var b_context =
b_canvas.getContext("2d");
b_context.fillRect(50, 25, 150, 100);

Calling the fillRect() method draws the rectangle and fills it with the current fill style,

whi is bla until you ange it. e rectangle is bounded by its upper-le corner (50, 25),

its width (150), and its height (100). To get a beer picture of how that works, let’s look at

the canvas coordinate system.

❧❧

CANVAS COORDINATESCANVAS COORDINATES

e canvas is a two-dimensional grid. e coordinate (0, 0) is at the upper-le corner of the

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

canvas. Along the X-axis, values increase towards the right edge of the canvas. Along the Y-

axis, values increase towards the boom edge of the canvas.

Canvas coordinates diagram Canvas coordinates diagram ↷↷

at coordinate diagram was drawn with a <canvas> element. It comprises

a set of off-white vertical lines

a set of off-white horizontal lines

two bla horizontal lines

two small bla diagonal lines that form an arrow

two bla vertical lines

two small bla diagonal lines that form another arrow

the leer “x”

the leer “y”

the text “(0, 0)” near the upper-le corner

the text “(500, 375)” near the lower-right corner

a dot in the upper-le corner, and another in the lower-right corner

First, we need to define the <canvas> element itself. e <canvas> element defines the

width and height, and the id so we can find it later.

<canvas id="c" width="500" height="375"></canvas>
diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

en we need a script to find the <canvas> element in the DOM and get its drawing

context.

var c_canvas = document.getElementById("c");
var context = c_canvas.getContext("2d");

Now we can start drawing lines.

❧❧

PATHSPATHS

IEIE** FIREFOXFIREFOX SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID
7.0+ 3.0+ 3.0+ 3.0+ 10.0+ 1.0+ 1.0+

* Internet Explorer support requires the third-party explorercanvas library.

Imagine you’re drawing a picture in ink. You don’t want to just

dive in and start drawing with ink, because you might make a

mistake. Instead, you sket the lines and curves with a pencil, and

once you’re happy with it, you trace over your sket in ink.

Ea canvas has a path. Defining the path is like drawing with a

pencil. You can draw whatever you like, but it won’t be part of the

finished product until you pi up the quill and trace over your

path in ink.

To draw straight lines in pencil, you use the following two

methods:

1. moveTo(x, y) moves the pencil to the specified starting point.

2. lineTo(x, y) draws a line to the specified ending point.

e more you call moveTo() and lineTo(), the bigger the path gets. ese are “pencil”

methods — you can call them as oen as you like, but you won’t see anything on the canvas
diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

for (var x = 0.5; x < 500; x += 10) {
context.moveTo(x, 0);
context.lineTo(x, 375);
}

for (var y = 0.5; y < 375; y += 10) {
context.moveTo(0, y);
context.lineTo(500, y);
}

until you call one of the “ink” methods.

Let’s begin by drawing the off-white grid.

 ⇜ ⇜ Draw vertical Draw vertical

lineslines

 ⇜ ⇜ Draw horizontal Draw horizontal

lineslines

ose were all “pencil” methods. Nothing has actually been drawn on the canvas yet. We need

an “ink” method to make it permanent.

context.strokeStyle = "#eee";
context.stroke();

stroke() is one of the “ink” methods. It takes the complex path you defined with all those

moveTo() and lineTo() calls, and actually draws it on the canvas. e strokeStyle
controls the color of the lines. is is the result:

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

☞

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: Why did you start x and y at 0.5? Why

not 0?

A: Imagine ea pixel as a large square. e

whole-number coordinates (0, 1, 2…) are the

edges of the squares. If you draw a one-unit-

wide line between whole-number coordinates,

it will overlap opposite sides of the pixel

square, and the resulting line will be drawn

two pixels wide. To draw a line that is only

one pixel wide, you need to shi the

coordinates by 0.5 perpendicular to the line's

direction.

For example, if you try to draw a line from

(1, 0) to (1, 3), the browser will draw a

line covering 0.5 screen pixels on either side of

x=1. e screen can’t display half a pixel, so it

expands the line to cover a total of two pixels:

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

But, if you try to draw a line from (1.5, 0)
to (1.5, 3), the browser will draw a line

covering 0.5 screen pixels on either side of

x=1.5, whi results in a true 1-pixel-wide

line:

anks to Jason Johnson for providing these

diagrams.

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

context.moveTo(60, 0);
context.lineTo(60, 153);
context.moveTo(60, 173);
context.lineTo(60, 375);
context.moveTo(65, 370);
context.lineTo(60, 375);
context.lineTo(55, 370);

Now let’s draw the horizontal arrow. All the lines and curves on a path are drawn in the

same color (or gradient — yes, we’ll get to those soon). We want to draw the arrow in a

different color ink — bla instead of off-white — so we need to start a new path.

A new path A new path ↷↷
context.beginPath();
context.moveTo(0, 40);
context.lineTo(240, 40);
context.moveTo(260, 40);
context.lineTo(500, 40);
context.moveTo(495, 35);
context.lineTo(500, 40);
context.lineTo(495, 45);

e vertical arrow looks mu the same. Since the vertical arrow is the same color as the

horizontal arrow, we do not need to start another new path. e two arrows will be part of

the same path.

 ↜ ↜ Not a new path Not a new path

I said these arrows were going to be bla, but the strokeStyle is still off-white. (e

fillStyle and strokeStyle don’t get reset when you start a new path.) at’s OK,

because we’ve just run a series of “pencil” methods. But before we draw it for real, in “ink,”

we need to set the strokeStyle to bla. Otherwise, these two arrows will be off-white, and

we’ll hardly be able to see them! e following lines ange the color to bla and draw the

lines on the canvas:

context.strokeStyle = "#000";
context.stroke();

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

is is the result:

❧❧

TEXTTEXT

IEIE** FIREFOXFIREFOX†† SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID
7.0+ 3.0+ 3.0+ 3.0+ 10.0+ 1.0+ 1.0+

* Internet Explorer support requires the third-party explorercanvas library.

† Mozilla Firefox 3.0 support requires a compatibility shim.

In addition to drawing lines on a canvas , you can also draw text on a canvas. Unlike text on

the surrounding web page, there is no box model. at means none of the familiar CSS layout

teniques are available: no floats, no margins, no padding, no word wrapping. (Maybe you

think that’s a good thing!) You can set a few font aributes, then you pi a point on the

canvas and draw your text there.

e following font aributes are available on the drawing context:

font can be anything you would put in a CSS font rule. at includes font style, font

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

context.font = "bold 12px sans-serif";
context.fillText("x", 248, 43);

variant, font weight, font size, line height, and font family.

textAlign controls text alignment. It is similar (but not identical) to a CSS text-
align rule. Possible values are start, end, left, right, and center.

textBaseline controls where the text is drawn relative to the starting point. Possible

values are top, hanging, middle, alphabetic, ideographic, or bottom.

textBaseline is triy, because text is triy (English text isn’t, but you can draw any

Unicode aracter you like on a canvas, and Unicode is triy). e HTML5 specification

explains the different text baselines :

e top of the em square is roughly at the top of the glyphs in a font, the hanging

baseline is where some glyphs like आ are anored, the middle is half-way

between the top of the em square and the boom of the em square, the alphabetic

baseline is where aracters like Á, ÿ, f, and Ω are anored, the ideographic

baseline is where glyphs like 私 and 達 are anored, and the boom of the em

square is roughly at the boom of the glyphs in a font. e top and boom of the

bounding box can be far from these baselines, due to glyphs extending far outside

the em square.

For simple alphabets like English, you can safely sti with top, middle, or bottom for the

textBaseline property.

Let’s draw some text! Text drawn inside the canvas inherits the font size and style of the

<canvas> element itself, but you can override this by seing the font property on the

drawing context.

 ↜ ↜ Change the font Change the font

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

☞

context.fillText("x", 248, 43);
context.fillText("y", 58, 165);

context.font = "bold 12px sans-serif";
context.fillText("x", 248, 43);
context.fillText("y", 58, 165);

stylestyle

e fillText() method draws the actual text.

 ⇜ ⇜ Draw the text Draw the text

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: Can I use relative font sizes to draw text on

a canvas?

A: Yes. Like every other HTML element on

your page, the <canvas> element itself has a

computed font size based on your page’s CSS

rules. If you set the context.font property

to a relative font size like 1.5em or 150%,

your browser multiplies this by the computed

font size of the <canvas> element itself.

For the text in the upper-le corner, let’s say I want the top of the text to be at y=5. But I’m

lazy — I don’t want to measure the height of the text and calculate the baseline. Instead, I can

set textBaseline to top and pass in the upper-le coordinate of the text’s bounding box.

context.textBaseline = "top";
context.fillText("(0 , 0)", 8, 5);

Now for the text in the lower-right corner. Let’s say I want the boom-right corner of the

text to be at coordinates (492,370) — just a few pixels away from the boom-right corner

of the canvas — but I don’t want to measure the width or height of the text. I can set

textAlign to right and textBaseline to bottom, then call fillText() with the

boom-right coordinates of the text’s bounding box.
diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

context.fillRect(0, 0, 3, 3);
context.fillRect(497, 372, 3, 3);

context.textAlign = "right";
context.textBaseline = "bottom";
context.fillText("(500 , 375)", 492, 370);

And this is the result:

Oops! We forgot the dots in the corners. We’ll see how to draw circles a lile later. For now,

I’ll eat a lile and draw them as rectangles.

 ⇜ ⇜ Draw two “dots” Draw two “dots”

And that’s all she wrote! Here is the final product:

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

❧❧

GRADIENTSGRADIENTS

IEIE** FIREFOXFIREFOX SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID

linear gradients 7.0+ 3.0+ 3.0+ 3.0+ 10.0+ 1.0+ 1.0+
radial gradients · 3.0+ 3.0+ 3.0+ 10.0+ 1.0+ 1.0+

* Internet Explorer support requires the third-party explorercanvas library.

Earlier in this apter, you learned how to draw a rectangle filled with a solid color , then a

line stroked with a solid color. But shapes and lines aren’t limited to solid colors. You can do

all kinds of magic with gradients. Let’s look at an example.

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

e markup looks the same as any other canvas.

<canvas id="d" width="300" height="225"></canvas>

First, we need to find the <canvas> element and its drawing context.

var d_canvas = document.getElementById("d");
var context = d_canvas.getContext("2d");

Once we have the drawing context, we can start to define a gradient. A gradient is a smooth

transition between two or more colors. e canvas drawing context supports two types of

gradients:

1. createLinearGradient(x0, y0, x1, y1) paints along a line from (x0, y0) to (x1,

y1).

2. createRadialGradient(x0, y0, r0, x1, y1, r1) paints along a cone between

two circles. e first three parameters represent the start circle, with origin (x0, y0) and

radius r0. e last three parameters represent the end circle, with origin (x1, y1) and

radius r1.

Let’s make a linear gradient. Gradients can be any size, but I’ll make this gradient be 300

pixels wide, like the canvas.

Create a gradient object Create a gradient object ↷↷
var my_gradient = context.createLinearGradient(0, 0, 300, 0);

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

Because the y values (the 2ND and 4TH parameters) are both 0, this gradient will shade evenly

from le to right.

Once we have a gradient object, we can define the gradient’s colors. A gradient has two or

more color stops. Color stops can be anywhere along the gradient. To add a color stop, you

need to specify its position along the gradient. Gradient positions can be anywhere between 0

to 1.

Let’s define a gradient that shades from bla to white.

my_gradient.addColorStop(0, "black");
my_gradient.addColorStop(1, "white");

Defining a gradient doesn’t draw anything on the canvas. It’s just an object tued away in

memory somewhere. To draw a gradient, you set your fillStyle to the gradient and draw

a shape, like a rectangle or a line.

Fill style is a gradient Fill style is a gradient ↷↷
context.fillStyle = my_gradient;
context.fillRect(0, 0, 300, 225);

And this is the result:

Suppose you want a gradient that shades from top to boom. When you create the gradient

object, keep the x values (1ST and 3RD parameters) constant, and make the y values (2ND and

4TH parameters) range from 0 to the height of the canvas.

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

x values are 0, y values vary x values are 0, y values vary ↷↷
var my_gradient = context.createLinearGradient(0, 0, 0, 225);
my_gradient.addColorStop(0, "black");
my_gradient.addColorStop(1, "white");
context.fillStyle = my_gradient;
context.fillRect(0, 0, 300, 225);

And this is the result:

You can also create gradients along a diagonal.

both x and y values vary both x and y values vary ↷↷
var my_gradient = context.createLinearGradient(0, 0, 300, 225);
my_gradient.addColorStop(0, "black");
my_gradient.addColorStop(1, "white");
context.fillStyle = my_gradient;
context.fillRect(0, 0, 300, 225);

And this is the result:

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

A <canvas> element A <canvas> element ⇝ ⇝

❧❧

IMAGESIMAGES

IEIE** FIREFOXFIREFOX SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID
7.0+ 3.0+ 3.0+ 3.0+ 10.0+ 1.0+ 1.0+

* Internet Explorer support requires the third-party explorercanvas library.

Here is a cat:

 ⇜ ⇜ An element An element

Here is the same cat, drawn on a canvas:

e canvas drawing context defines a drawImage() method for drawing an image on a

canvas. e method can take three, five, or nine arguments.

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

drawImage(image, dx, dy) takes an image and draws it on the canvas. e given

coordinates (dx, dy) will be the upper-le corner of the image. Coordinates (0, 0)
would draw the image at the upper-le corner of the canvas.

drawImage(image, dx, dy, dw, dh) takes an image, scales it to a width of dw
and a height of dh, and draws it on the canvas at coordinates (dx, dy).

drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh) takes an image, clips it

to the rectangle (sx, sy, sw, sh), scales it to dimensions (dw, dh), and draws it

on the canvas at coordinates (dx, dy).

e HTML5 specification explains the drawImage() parameters:

e source rectangle is the rectangle [within the source image] whose corners are

the four points (sx, sy), (sx+sw, sy), (sx+sw, sy+sh), (sx, sy+sh).

e destination rectangle is the rectangle [within the canvas] whose corners are the

four points (dx, dy), (dx+dw, dy), (dx+dw, dy+dh), (dx, dy+dh).

To draw an image on a canvas, you need an image. e image can be an existing
element, or you can create an Image() object with JavaScript. Either way, you need to

ensure that the image is fully loaded before you can draw it on the canvas.

If you’re using an existing element, you can safely draw it on the canvas during the

window.onload event.

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

↶↶ using an element using an element

<img id="cat" src="images/cat.png" alt="sleeping cat"
width="177" height="113">
<canvas id="e" width="177" height="113"></canvas>
<script>
window.onload = function() {
var canvas = document.getElementById("e");
var context = canvas.getContext("2d");
var cat = document.getElementById("cat");
context.drawImage(cat, 0, 0);
};
</script>

If you’re creating the image object entirely in JavaScript, you can safely draw the image on

the canvas during the Image.onload event.

using an Image() object using an Image() object ↷↷
<canvas id="e" width="177" height="113"></canvas>
<script>
var canvas = document.getElementById("e");
var context = canvas.getContext("2d");
var cat = new Image();
cat.src = "images/cat.png";
cat.onload = function() {
context.drawImage(cat, 0, 0);
};
</script>

e optional 3RD and 4TH parameters to the drawImage() method control image scaling. is

is the same image, scaled to half its width and height and drawn repeatedly at different

coordinates within a single canvas.

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

cat.onload = function() {
for (var x = 0, y = 0;
x < 500 && y < 375;
x += 50, y += 37) {
context.drawImage(cat, x, y, 88, 56);
}
};

Here is the script that produces the “multicat” effect:

 ⇜ ⇜ Scale the Scale the

imageimage

All this effort raises a legitimate question: why would you want to draw an image on a

canvas in the first place? What does the extra complexity of image-on-a-canvas buy you over

an element and some CSS rules? Even the “multicat” effect could be replicated with 10

overlapping elements.

e simple answer is, for the same reason you might want to draw text on a canvas . e

canvas coordinates diagram included text, lines, and shapes; the text-on-a-canvas was just one

part of a larger work. A more complex diagram could easily use drawImage() to include

icons, sprites, or other graphics.

❧❧
diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

WHAT ABOUT IE?WHAT ABOUT IE?

Microso Internet Explorer (up to and including version 8, the current version at time of

writing) does not support the canvas API. However, Internet Explorer does support a

Microso-proprietary tenology called VML, whi can do many of the same things as the

<canvas> element. And thus, excanvas.js was born.

Explorercanvas (excanvas.js) is an open source, Apae-licensed JavaScript library that

implements the canvas API in Internet Explorer. To use it, include the following <script>
element at the top of your page.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Dive Into HTML5</title>
<!--[if IE]>
<script src="excanvas.js"></script>
<![endif]-->
</head>
<body>
...
</body>
</html>

e <!--[if IE]> and <![endif]--> bits are conditional comments. Internet Explorer

interprets them like an if statement: “if the current browser is any version of Internet

Explorer, then execute this blo.” Every other browser will treat the entire blo as an HTML

comment. e net result is that Internet Explorer will download the excanvas.js script and

execute it, but other browsers will ignore the script altogether (not download it, not execute it,

not anything). is makes your page load faster in browsers that implement the canvas API

natively.

Once you include the excanvas.js in the <head> of your page, you don’t need to do

anything else to accomodate Internet Explorer. Just include <canvas> elements in your
diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

markup, or create them dynamically with JavaScript. Follow the instructions in this apter to

get the drawing context of a <canvas> element, and you can draw shapes, text, and paerns.

Well… not quite. ere are a few limitations:

1. Gradients can only be linear. Radial gradients are not supported.

2. Paerns must be repeating in both directions.

3. Clipping regions are not supported.

4. Non-uniform scaling does not correctly scale strokes.

5. It’s slow. is should not come as a raging sho to anyone, since Internet Explorer's

JavaScript parser is slower than other browsers to begin with. Once you start drawing

complex shapes via a JavaScript library that translates commands to a completely

different tenology, things are going to get bogged down. You won’t notice the

performance degradation in simple examples like drawing a few lines and transforming

an image, but you’ll see it right away once you start doing canvas-based animation and

other crazy stuff.

ere is one more caveat about using excanvas.js, and it’s a problem that I ran into while

creating the examples in this apter. ExplorerCanvas initializes its own faux-canvas interface

automatically whenever you include the excanvas.js script in your HTML page. But that

doesn’t mean that Internet Explorer is ready to use it immediately. In certain situations, you

can run into a race condition where the faux-canvas interface is almost , but not quite, ready

to use. e primary symptom of this state is that Internet Explorer will complain that

“object doesn’t support this property or method” whenever you try to do

anything with a <canvas> element, su as get its drawing context.

e easiest solution to this is to defer all of your canvas-related manipulation until aer the

onload event fires. is may be a while — if your page has a lot of images or videos, they

will delay the onload event — but it will give ExplorerCanvas time to work its magic.

❧❧

A COMPLETE, LIVE EXAMPLEA COMPLETE, LIVE EXAMPLE

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

Halma is a centuries-old board game. Many variations exist. In this example, I’ve created a

solitaire version of Halma with 9 pieces on a 9 × 9 board. In the beginning of the game, the

pieces form a 3 × 3 square in the boom-le corner of the board. e object of the game is

to move all the pieces so they form a 3 × 3 square in the upper-right corner of the board, in

the least number of moves.

ere are two types of legal moves in Halma:

Take a piece and move it to any adjacent empty square. An “empty” square is one that

does not currently have a piece in it. An “adjacent” square is immediately north, south,

east, west, northwest, northeast, southwest, or southeast of the piece’s current position.

(e board does not wrap around from one side to the other. If a piece is in the le-

most column, it can not move west, northwest, or southwest. If a piece is in the boom-

most row, it can not move south, southeast, or southwest.)

Take a piece and hop over an adjacent piece, and possibly repeat. at is, if you hop

over an adjacent piece, then hop over another piece adjacent to your new position, that

counts as a single move. In fact, any number of hops still counts as a single move.

(Since the goal is to minimize the total number of moves, doing well in Halma involves

constructing, and then using, long ains of staggered pieces so that other pieces can hop

over them in long sequences.)

Here is the game itself. You can also play it on a separate page if you want to poke at it

with your browser’s developer tools.

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

Moves: Moves: 00

How does it work? I’m so glad you asked. I won’t show all the code here. (You can see it at

diveintohtml5.org/examples/halma.js.) I’ll skip over most of the gameplay code itself, but I

want to highlight a few parts of the code that deal with actually drawing on the canvas and

responding to mouse clis on the canvas element.

During page load, we initialize the game by seing the dimensions of the <canvas> itself

and storing a reference to its drawing context.

gCanvasElement.width = kPixelWidth;
gCanvasElement.height = kPixelHeight;
gDrawingContext = gCanvasElement.getContext("2d");

en we do something you haven’t seen yet: we add an event listener to the <canvas>
element to listen for cli events.

gCanvasElement.addEventListener("click", halmaOnClick, false);

e halmaOnClick() function gets called when the user clis anywhere within the canvas.

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

Its argument is a MouseEvent object that contains information about where the user clied.

function halmaOnClick(e) {
var cell = getCursorPosition(e);

// the rest of this is just gameplay logic
for (var i = 0; i < gNumPieces; i++) {
if ((gPieces[i].row == cell.row) &&
(gPieces[i].column == cell.column)) {
clickOnPiece(i);
return;
}
}
clickOnEmptyCell(cell);
}

e next step is to take the MouseEvent object and calculate whi square on the Halma

board just got clied. e Halma board takes up the entire canvas, so every cli is

somewhere on the board. We just need to figure out where. is is triy, because mouse

events are implemented differently in just about every browser.

function getCursorPosition(e) {
var x;
var y;
if (e.pageX != undefined && e.pageY != undefined) {
x = e.pageX;
y = e.pageY;
}
else {
x = e.clientX + document.body.scrollLeft +
document.documentElement.scrollLeft;
y = e.clientY + document.body.scrollTop +
document.documentElement.scrollTop;
}

At this point, we have x and y coordinates that are relative to the document (that is, the entire

HTML page). at’s not quite useful yet. We want coordinates relative to the canvas.

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

x -= gCanvasElement.offsetLeft;
y -= gCanvasElement.offsetTop;

Now we have x and y coordinates that are relative to the canvas. at is, if x is 0 and y is 0

at this point, we know that the user just clied the top-le pixel of the canvas.

From here, we can calculate whi Halma square the user clied, and then act accordingly.

var cell = new Cell(Math.floor(y/kPieceHeight),
Math.floor(x/kPieceWidth));
return cell;
}

Whew! Mouse events are tough. But you can use the same logic (in fact, this exact code) in

all of your own canvas-based applications. Remember: mouse cli → document-relative

coordinates → canvas-relative coordinates → application-specific code.

OK, let’s look at the main drawing routine. Because the graphics are so simple, I’ve osen to

clear and redraw the board in its entirety every time anything anges within the game. is

is not strictly necessary. e canvas drawing context will retain whatever you have previously

drawn on it, even if the user scrolls the canvas out of view or anges to another tab and

then comes ba later. If you’re developing a canvas-based application with more complicated

graphics (su as an arcade game), you can optimize performance by traing whi regions of

the canvas are “dirty” and redrawing just the dirty regions. But that is outside the scope of this

book.

gDrawingContext.clearRect(0, 0, kPixelWidth, kPixelHeight);

e board-drawing routine should look familiar. It’s similar to how we drew the canvas

coordinates diagram earlier in this apter.

gDrawingContext.beginPath();

/* vertical lines */
for (var x = 0; x <= kPixelWidth; x += kPieceWidth) {
gDrawingContext.moveTo(0.5 + x, 0);

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

gDrawingContext.lineTo(0.5 + x, kPixelHeight);
}

/* horizontal lines */
for (var y = 0; y <= kPixelHeight; y += kPieceHeight) {
gDrawingContext.moveTo(0, 0.5 + y);
gDrawingContext.lineTo(kPixelWidth, 0.5 + y);
}

/* draw it! */
gDrawingContext.strokeStyle = "#ccc";
gDrawingContext.stroke();

e real fun begins when we go to draw ea of the individual pieces. A piece is a circle,

something we haven’t drawn before. Furthermore, if the user selects a piece in anticipation of

moving it, we want to draw that piece as a filled-in circle. Here, the argument p represents a

piece, whi has row and column properties that denote the piece’s current location on the

board. We use some in-game constants to translate (column, row) into canvas-relative (x,
y) coordinates, then draw a circle, then (if the piece is selected) fill in the circle with a solid

color.

function drawPiece(p, selected) {
var column = p.column;
var row = p.row;
var x = (column * kPieceWidth) + (kPieceWidth/2);
var y = (row * kPieceHeight) + (kPieceHeight/2);
var radius = (kPieceWidth/2) - (kPieceWidth/10);

at’s the end of the game-specific logic. Now we have (x, y) coordinates, relative to the

canvas, for the center of the circle we want to draw. ere is no circle() method in the

canvas API, but there is an arc() method. And really, what is a circle but an arc that goes

all the way around? Do you remember your basic geometry? e arc() method takes a

center point (x, y), a radius, a start and end angle (in radians), and a direction flag (false
for clowise, true for counter-clowise). You can use the Math module that’s built into

JavaScript to calculate radians.

gDrawingContext.beginPath();
diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

gDrawingContext.arc(x, y, radius, 0, Math.PI * 2, false);
gDrawingContext.closePath();

But wait! Nothing has been drawn yet. Like moveTo() and lineTo, the arc() method is a

“pencil” method. To actually draw the circle, we need to set the strokeStyle and call

stroke() to trace it in “ink.”

gDrawingContext.strokeStyle = "#000";
gDrawingContext.stroke();

What if the piece is selected? We can re-use the same path we created to draw the outline of

the piece, to fill in the circle with a solid color.

if (selected) {
gDrawingContext.fillStyle = "#000";
gDrawingContext.fill();
}

And that’s… well, that’s prey mu it. e rest of the program is game-specific logic —

distinguishing between valid and invalid moves, keeping tra of the number of moves,

detecting whether the game is over. With 9 circles, a few straight lines, and 1 onclick
handler, we’ve created an entire game in <canvas>. Huzzah!

❧❧

FURTHER READINGFURTHER READING

Canvas tutorial on Mozilla Developer Center

HTML5 canvas — the basics, by Mihai Sucan

CanvasDemos.com: demos, tools, and tutorials for the HTML canvas element

e canvas element in the HTML5 dra standard

❧❧
diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

is has been “Let’s Call It A Draw(ing Surface).” e full table of contents has more if you’d

like to keep reading.

DID YOU KNOW?DID YOU KNOW?

In association with Google Press, O’Reilly is

distributing this book in a variety of formats, including

paper, ePub, Mobi, and DRM-free PDF. e paid

edition is called “HTML5: Up & Running,” and it is

available now. is apter is included in the paid

edition.

If you liked this apter and want to show your

appreciation, you can buy “HTML5: Up & Running”

with this affiliate link or buy an electronic edition

directly from O’Reilly. You’ll get a book, and I’ll get a

bu. I do not currently accept direct donations.

Copyright MMIX–MMX Mark Pilgrim

powered by Google™ Search

diveintohtml5.org LET’S CALL IT A DRAW(ING SURFACE)

☞

You are here: Home ‣ Dive Into HTML5 ‣

№№66. .
YOU ARE HEREYOU ARE HERE

(AND SO IS EVERYBODY(AND SO IS EVERYBODY
ELSE)ELSE)

show table of contents

❧❧

DIVING INDIVING IN

eolocation is the art of figuring out where you are in the world and

(optionally) sharing that information with people you trust. ere is more than

one way to figure out where you are — your IP address, your wireless network

connection, whi cell tower your phone is talking to, or dedicated GPS

hardware that calculates latitude and longitude from information sent by satellites in the sky.

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: Geolocation sounds scary. Can I turn it off?

A: Privacy is an obvious concern when you’re

talking about sharing your physical location

with a remote web server. e geolocation API

explicitly states: “User Agents must not send

diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

location information to Web sites without the

express permission of the user.” In other words,

sharing your location is always opt-in. If you

don’t want to, you don’t have to.

❧❧

THE GEOLOCATION APITHE GEOLOCATION API

e geolocation API lets you share your location with trusted web sites. e latitude and

longitude are available to JavaScript on the page, whi in turn can send it ba to the remote

web server and do fancy location-aware things like finding local businesses or showing your

location on a map.

As you can see from the following table, the geolocation API is supported by most browsers

on the desktop and mobile devices. Additionally, some older browsers and devices can be

supported by wrapper libraries, as we’ll see later in this apter.

GEOLOCATION GEOLOCATION APIAPI SUPPORT SUPPORT

IEIE FIREFOXFIREFOX SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID
· 3.5+ 5.0+ 5.0+ 10.6+ 3.0+ 2.0+

Along with support for the standard geolocation API, there are a plethora of device-specific

APIs on other mobile platforms. I’ll cover all that later in this apter.

❧❧

SHOW ME THE CODESHOW ME THE CODE

e geolocation API centers around a new property on the global navigator object:
diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

function get_location() {
if (Modernizr.geolocation) {
navigator.geolocation.getCurrentPosition(show_map);
} else {
// no native support; maybe try Gears?
}
}

navigator.geolocation.

e simplest use of the geolocation API looks like this:

function get_location() {
navigator.geolocation.getCurrentPosition(show_map);
}

at has no detection, no error handling, and no options. Your web application should

probably include at least the first two of those. To detect support for the geolocation API, you

can use Modernizr:

 ⇜ ⇜ I CAN I CAN

HAS GEO?HAS GEO?

What you do without geolocation support is up to you. I’ll explain the Gears fallba option

in a minute, but first I want to talk about what happens during that call to

getCurrentPosition(). As I mentioned at the beginning of this apter , geolocation

support is opt-in . at means your browser will never force you to reveal your current

physical location to a remote server. e user experience differs from browser to browser. In

Mozilla Firefox, calling the getCurrentPosition() function of the geolocation API will

cause the browser to pop up an “infobar” at the top of the browser window. e infobar looks

like this:

ere’s a lot going on here. You, as the end user,

are told that a website wants to know your location

are told whi website wants to know your location

can cli through to Mozilla’s “Location-Aware Browsing” help page whi explains what

the he is going on

diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

can oose to share your location

can oose not to share your location

can tell your browser to remember your oice (either way, share or don’t share) so you

never see this infobar again on this website

Furthermore, this infobar is

non-modal, so it won’t prevent you from switing to another browser window or tab

tab-specific, so it will disappear if you swit to another browser window or tab and

reappear when you swit ba to the original tab

unconditional, so there is no way for a website to bypass it

bloing, so there is no ance that the website can determine your location while it’s

waiting for your answer

You just saw the JavaScript code that causes this infobar to appear. It’s a single function call

whi takes a callba function (whi I called show_map). e call to

getCurrentPosition() will return immediately, but that doesn’t mean that you have

access to the user’s location. e first time you are guaranteed to have location information is

in the callba function. e callba function looks like this:

function show_map(position) {
var latitude = position.coords.latitude;
var longitude = position.coords.longitude;
// let's show a map or do something interesting!
}

e callba function will be called with a single parameter, an object with two properties:

coords and timestamp. e timestamp is just that, the date and time when the location was

calculated. (Since this is all happening asynronously, you can’t really know when that will

happen in advance. It might take some time for the user to read the infobar and agree to

share their location. Devices with dedicated GPS hardware may take some more time to

connect to a GPS satellite. And so on.) e coords object has properties like latitude and

longitude whi are exactly what they sound like: the user’s physical location in the world.

POSITION OBJECTPOSITION OBJECT

Property Type Notes

coords.latitude double decimal degrees

coords.longitude double decimal degrees

diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

coords.altitude double or null meters above the reference ellipsoid

coords.accuracy double meters

coords.altitudeAccuracy double or null meters

coords.heading double or null degrees clowise from true north

coords.speed double or null meters/second

timestamp DOMTimeStamp like a Date() object

Only three of the properties are guaranteed to be there

(coords.latitude, coords.longitude, and

coords.accuracy). e rest might come ba null,

depending on the capabilities of your device and the baend

positioning server that it talks to. e heading and speed
properties are calculated based on the user’s previous position,

if possible.

❧❧

HANDLING ERRORSHANDLING ERRORS

Geolocation is complicated. ings can go wrong. I’ve mentioned the “user consent” angle

already. If your web application wants the user’s location but the user doesn’t want to give it

to you, you’re screwed. e user always wins. But what does that look like in code? It looks

like the second argument to the getCurrentPosition() function: an error handling

callba function.

navigator.geolocation.getCurrentPosition(
show_map, handle_error)

If anything goes wrong, your error callba function will be called with a PositionError
object.

POSITIONERROR OBJECTPOSITIONERROR OBJECT

Property Type Notes

code short an enumerated value
diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

☞

message DOMString not intended for end users

e code property will be one of

PERMISSION_DENIED (1) if the user clis that “Don’t Share” buon or otherwise

denies you access to their location.

POSITION_UNAVAILABLE (2) if the network is down or the positioning satellites can’t

be contacted.

TIMEOUT (3) if the network is up but it takes too long to calculate the user’s position.

How long is “too long”? I’ll show you how to define that in the next section.

UNKNOWN_ERROR (0) if anything else goes wrong.

↶↶ Be gracious in defeat Be gracious in defeat

function handle_error(err) {
if (err.code == 1) {
// user said no!
}
}

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: Does the geolocation API work on the

International Space Station, on the moon, or on

other planets?

A: e geolocation specification states , “e

geographic coordinate reference system used by

the aributes in this interface is the World

Geodetic System (2d) [WGS84]. No other

reference system is supported.” e

International Space Station is orbiting Earth, so

astronauts on the station can describe their

location by latitude, longitude, and altitude.

However, the World Geodetic System is Earth-

centric, so it can’t be used to describe locations

on the moon or on other planets.

diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

❧❧

CHOICES! I DEMAND CHOICES!CHOICES! I DEMAND CHOICES!

Some popular mobile devices — like the iPhone and Android phones — support two methods

of figuring out where you are. e first method triangulates your position based on your

relative proximity to different cellular towers operated by your phone carrier. is method is

fast and doesn’t require any dedicated GPS hardware, but it only gives you a rough idea of

where you are. Depending on how many cell towers are in your area, “a rough idea” could be

as lile as one city blo or as mu as a kilometer in every direction.

e second method actually uses dedicated

GPS hardware on your device to talk to

dedicated GPS positioning satellites that are

orbiting the Earth. GPS can usually pinpoint

your location within a few meters. e

downside is that the dedicated GPS ip on

your device draws a lot of power, so phones

and other general purpose mobile devices

usually turn off the ip until it’s needed.

at means there will be a startup delay

while the ip is initializing its connection

with the GPS satellites in the sky. If you’ve ever used Google Maps on an iPhone or other

smartphone, you’ve seen both methods in action. First you see a large circle that

approximates your position (finding the nearest cell tower), then a smaller circle (triangulating

with other cell towers), then a single dot with an exaction position (given by GPS satellites).

e reason I mention this is that, depending on your web application, you may not need high

accuracy. If you’re just looking for nearby movie listings, a “low accuracy” location is

probably good enough. ere aren’t that many movie theaters, even in dense cities, and you’ll

probably be listing more than one of them anyway. On the other hand, if you’re giving turn

by turn directions in real time, you really do need to know exactly where the user is so you
diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

by turn directions in real time, you really do need to know exactly where the user is so you

can say “turn right in 20 meters” or whatever.

e getCurrentPosition() function has an optional third argument, a

PositionOptions object. ere are three properties you can set in a PositionOptions
object. All the properties are optional. You can set any or all or none of them.

POSITIONOPTIONS OBJECTPOSITIONOPTIONS OBJECT

Property Type Default Notes

enableHighAccuracy Boolean false true might be slower

timeout long (no default) in milliseconds

maximumAge long 0 in milliseconds

e enableHighAccuracy property is exactly what it sounds like. If true, and the device

can support it, and the user consents to sharing their exact location, then the device will try to

provide it. Both iPhones and Android phones have separate permissions for low- and high-

accuracy positioning, so it is possible that calling getCurrentPosition() with

enableHighAccuracy:true will fail, but calling with enableHighAccuracy:false
would succeed.

e timeout property is the number of milliseconds your web application is willing to wait

for a position. is timer doesn’t start counting down until aer the user gives permission to

even try to calculate their position. You’re not timing the user; you’re timing the network.

e maximumAge property allows the device to answer immediately with a caed position.

For example, let’s say you call getCurrentPosition() for the first time, the user

consents, and your success callba function is called with a position that was calculated at

exactly 10:00 AM. Exactly one minute later, at 10:01 AM, you call getCurrentPosition()
again with a maximumAge property of 75000.

navigator.geolocation.getCurrentPosition(
success_callback, error_callback, {maximumAge: 75000});

What you’re saying is that you don’t necessarily need the user’s current location. You would

be satisfied with knowing where they were 75 seconds ago (75000 milliseconds). e device

knows where the user was 60 seconds ago (60000 milliseconds), because it calculated their

location aer the first time you called getCurrentPosition(). So the device doesn’t

bother to recalculate the user’s current location. It just returns exactly the same information it

diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

returned the first time: same latitude and longitude, same accuracy, and same timestamp (10:00

AM).

Before you ask for the user’s location, you should think about

just how mu accuracy you need, and set

enableHighAccuracy accordingly. If you need to find their

location more than once, you should think about how old the

information could be and still be useful, and set maximumAge
accordingly. If you need to find their location continuously ,

then getCurrentPosition() is not for you. You need to

upgrade to watchPosition().

e watchPosition() function has the same structure as

getCurrentPosition(). It takes two callba functions, a

required one for success and an optional one for error

conditions, and it can also take an optional

PositionOptions object that has all the same properties

you just learned about. e difference is that your callba

function will be called every time the user’s location anges .

ere is no need to actively poll their position. e device will

determine the optimal polling interval, and it will call your

callba function whenever it determines that the user’s

position has anged. You can use this to update a visible

marker on a map, provide instructions on where to go next, or whatever you like. It’s entirely

up to you.

e watchPosition() function itself returns a number. You should probably store this

number somewhere. If you ever want to stop wating the user’s location ange, you can

call the clearWatch() method and pass it this number, and the device will stop calling your

callba function. If you’ve ever used the setInterval() and clearInterval()
functions in JavaScript, this works the same way.

❧❧

WHAT ABOUT IE?WHAT ABOUT IE?

diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Dive Into HTML5</title>
</head>
<body>
...
<script src="gears_init.js"></script>
<script src="geo.js"></script>

Internet Explorer does not support the W3C geolocation API that I’ve just described. But

don’t despair! Gears is an open source browser plugin from Google that works on Windows,

Mac, Linux, Windows Mobile, and Android. It provides features for older browsers. One of

the features that Gears provides is a geolocation API. It’s not quite the same as the W3C

geolocation API, but it serves the same purpose.

While we’re on the subject of legacy platforms, I should point out that many older mobile

phone platforms had their own device-specific geolocation APIs. BlaBerry, Nokia, Palm, and

OMTP BONDI all provide their own geolocation APIs. Of course, they all work differently

from Gears, whi in turn works differently from the W3C geolocation API. Wheeeeee!

❧❧

GEO.JS TO THE RESCUEGEO.JS TO THE RESCUE

geo.js is an open source, MIT-licensed JavaScript library that smooths over the differences

between the W3C geolocation API, the Gears API, and the APIs provided by mobile

platforms. To use it, you’ll need to add two <script> elements at the boom of your page.

(Tenically, you could put them anywhere, but scripts in your <head> will make your page

load more slowly. So don’t do that!)

e first script is gears_init.js, whi initializes Gears if it’s installed. e second script

is geo.js.

 ⇜ ⇜ Don’t let it go Don’t let it go

diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

<script src="geo.js"></script>
</body>
</html>

to your <head>to your <head>

Now you’re ready to use whiever geolocation API is installed.

if (geo_position_js.init()) {
geo_position_js.getCurrentPosition(geo_success, geo_error);
}

Let’s take that one step at a time. First, you need to explicitly call an init() function. e

init() function returns true if a supported geolocation API is available.

if (geo_position_js.init()) {

Calling the init() function does not actually find your location. It just verifies that finding

your location is possible. To actually find your location, you need to call the

getCurrentPosition() function.

geo_position_js.getCurrentPosition(geo_success, geo_error);

e getCurrentPosition() function will trigger your browser to ask for your permission

to find and share your location. If geolocation is being provided by Gears, this will pop up a

dialog asking if your trust the web site to use Gears. If your browser natively supports the

geolocation API, the dialog will look different. For example, Firefox 3.5 natively supports the

geolocation API. If you try to find your location in Firefox 3.5, it will display an infobar at

the top of the page asking whether you want to share your location with this web site.

e getCurrentPosition() function takes two callba functions as arguments. If the

getCurrentPosition() function was successful in finding your location — that is, you

gave your permission and the geolocation API actually worked its magic — it will call the

function passed in as the first argument. In this example, the success callba function is

called geo_success.

geo_position_js.getCurrentPosition(geo_success, geo_error);

e success callba function takes a single argument, whi contains the position

information.

diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

↶↶ Success callback Success callback

function geo_success(p) {
alert("Found you at latitude " + p.coords.latitude +
", longitude " + p.coords.longitude);
}

If the getCurrentPosition() function could not find your location — either because you

declined to give your permission, or the geolocation API failed for some reason — it will call

the function passed in as the second argument. In this example, the failure callba function is

called geo_error.

geo_position_js.getCurrentPosition(geo_success, geo_error);

e failure callba function takes no arguments.

↶↶ Failure callback Failure callback

function geo_error() {
alert("Could not find you!");
}

geo.js does not currently support the watchPosition() function. If you need continuous

location information, you’ll need to actively poll getCurrentPosition() yourself.

❧❧

A COMPLETE, LIVE EXAMPLEA COMPLETE, LIVE EXAMPLE

Here is a live example of using geo.js to aempt to get your location and display a map of

your immediate surroundings:

diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

Your browser does not

support geolocation. :(

How does it work? Let’s take a look. On page load, this page calls

geo_position_js.init() to determine whether geolocation is available through any of

the interfaces that geo.js supports. If so, it sets up a link you can cli to look up your

location. Cliing that link calls the lookup_location() function, shown here:

function lookup_location() {
geo_position_js.getCurrentPosition(show_map, show_map_error);
}

If you give your consent to tra your location, and the baend service was actually able to

determine your location, geo.js calls the first callba function, show_map(), with a single

argument, loc. e loc object has a coords property whi contains latitude, longitude, and

accuracy information. (is example doesn’t use the accuracy information.) e rest of the

show_map() function uses the Google Maps API to set up an embedded map.

function show_map(loc) {
$("#geo-wrapper").css({'width':'320px','height':'350px'});
var map = new GMap2(document.getElementById("geo-wrapper"));
var center = new GLatLng(loc.coords.latitude,
loc.coords.longitude);
map.setCenter(center, 14);
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());

diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

map.addOverlay(new GMarker(center, {draggable: false, title:
"You are here (more or less)"}));
}

If geo.js is unable to determine your location, it calls the second callba function,

show_map_error().

function show_map_error() {
$("#live-geolocation").html('Unable to determine your
location.');
}

❧❧

FURTHER READINGFURTHER READING

W3C geolocation API

Gears

BlaBerry geolocation API

Nokia geolocation API

Palm geolocation API

OMTP BONDI geolocation API

geo.js, the geolocation API wrapper script

❧❧

is has been “You Are Here (And So Is Everybody Else).” e full table of contents has more

if you’d like to keep reading.

DID YOU KNOW?DID YOU KNOW?

In association with Google Press, O’Reilly is

distributing this book in a variety of formats, including

paper, ePub, Mobi, and DRM-free PDF. e paid
diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

paper, ePub, Mobi, and DRM-free PDF. e paid

edition is called “HTML5: Up & Running,” and it is

available now. is apter is included in the paid

edition.

If you liked this apter and want to show your

appreciation, you can buy “HTML5: Up & Running”

with this affiliate link or buy an electronic edition

directly from O’Reilly. You’ll get a book, and I’ll get a

bu. I do not currently accept direct donations.

Copyright MMIX–MMX Mark Pilgrim

powered by Google™ Search

diveintohtml5.org YOU ARE HERE (AND SO IS EVERYBODY ELSE)

You are here: Home ‣ Dive Into HTML5 ‣

№№77. .
THE PAST, PRESENT &THE PAST, PRESENT &

FUTURE OF LOCAL STORAGEFUTURE OF LOCAL STORAGE
FOR WEB APPLICATIONSFOR WEB APPLICATIONS

show table of contents

❧❧

DIVING INDIVING IN

ersistent local storage is one of the areas where native client applications have

held an advantage over web applications. For native applications, the operating

system typically provides an abstraction layer for storing and retrieving

application-specific data like preferences or runtime state. ese values may be

stored in the registry, INI files, XML files, or some other place according to platform

convention. If your native client application needs local storage beyond key/value pairs, you

can embed your own database, invent your own file format, or any number of other

solutions.

Historically, web applications have had none of these luxuries. Cookies were invented early in

the web’s history, and indeed they can be used for persistent local storage of small amounts

of data. But they have three potentially dealbreaking downsides:

diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

Cookies are included with every HTTP request, thereby slowing down your web

application by needlessly transmiing the same data over and over

Cookies are included with every HTTP request, thereby sending data unencrypted over

the internet (unless your entire web application is served over SSL)

Cookies are limited to about 4 KB of data — enough to slow down your application (see

above), but not enough to be terribly useful

What we really want is

a lot of storage space

on the client

that persists beyond a page refresh

and isn’t transmied to the server

Before HTML5, all aempts to aieve this were ultimately unsatisfactory in different ways.

❧❧

A BRIEF HISTORY OF LOCALA BRIEF HISTORY OF LOCAL
STORAGE HACKS BEFORE HTML5STORAGE HACKS BEFORE HTML5

In the beginning, there was only Internet Explorer. Or at least, that’s what Microso wanted

the world to think. To that end, as part of the First Great Browser Wars , Microso invented a

great many things and included them in their browser-to-end-all-browser-wars, Internet

Explorer. One of these things was called DHTML Behaviors, and one of these behaviors was

called userData.

userData allows web pages to store up to 64 KB of data per domain, in a hierarical XML-

based structure. (Trusted domains, su as intranet sites, can store 10 times that amount. And

hey, 640 KB ought to be enough for anybody .) IE does not present any form of permissions

dialog, and there is no allowance for increasing the amount of storage available.

In 2002, Adobe introduced a feature in Flash 6 that gained the unfortunate and misleading
diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

name of “Flash cookies.” Within the Flash environment, the feature is properly known as Local

Shared Objects. Briefly, it allows Flash objects to store up to 100 KB of data per domain. Brad

Neuberg developed an early prototype of a Flash-to-JavaScript bridge called AMASS (AJAX

Massive Storage System), but it was limited by some of Flash’s design quirks. By 2006, with

the advent of ExternalInterface in Flash 8, accessing LSOs from JavaScript became an order of

magnitude easier and faster. Brad rewrote AMASS and integrated it into the popular Dojo

Toolkit under the moniker dojox.storage. Flash gives ea domain 100 KB of storage “for

free.” Beyond that, it prompts the user for ea order of magnitude increase in data storage (1

Mb, 10 Mb, and so on).

In 2007, Google launed Gears, an open source browser plugin aimed at providing additional

capabilities in browsers. (We’ve previously discussed Gears in the context of providing a

geolocation API in Internet Explorer . Gears provides an API to an embedded SQL database

based on SQLite. Aer obtaining permission from the user once, Gears can store unlimited

amounts of data per domain in SQL database tables.

In the meantime, Brad Neuberg and others continued to ha away on dojox.storage to

provide a unified interface to all these different plugins and APIs. By 2009, dojox.storage
could auto-detect (and provide a unified interface on top of) Adobe Flash, Gears, Adobe AIR,

and an early prototype of HTML5 storage that was only implemented in older versions of

Firefox.

As you survey these solutions, a paern emerges: all of them are either specific to a single

browser, or reliant on a third-party plugin. Despite heroic efforts to paper over the differences

(in dojox.storage), they all expose radically different interfaces, have different storage

limitations, and present different user experiences. So this is the problem that HTML5 set out

to solve: to provide a standardized API, implemented natively and consistently in multiple

browsers, without having to rely on third-party plugins.

❧❧

INTRODUCING HTML5 STORAGEINTRODUCING HTML5 STORAGE

diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

What I will refer to as “ HTML5 Storage” is a specification named Web Storage, whi was at

one time part of the HTML5 specification proper, but was split out into its own specification

for uninteresting political reasons. Certain browser vendors also refer to it as “Local Storage”

or “DOM Storage.” e naming situation is made even more complicated by some related,

similarly-named, emerging standards that I’ll discuss later in this apter.

So what is HTML5 Storage? Simply put, it’s a way for web pages to store named key/value

pairs locally, within the client web browser. Like cookies, this data persists even aer you

navigate away from the web site, close your browser tab, exit your browser, or what have

you. Unlike cookies, this data is never transmied to the remote web server (unless you go

out of your way to send it manually). Unlike all previous aempts at providing persistent

local storage, it is implemented natively in web browsers, so it is available even when third-

party browser plugins are not.

Whi browsers? Well, the latest version of prey mu every browser supports HTML5

Storage… even Internet Explorer!

HTML5HTML5 STORAGE SUPPORT STORAGE SUPPORT

IEIE FIREFOXFIREFOX SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID
8.0+ 3.5+ 4.0+ 4.0+ 10.5+ 2.0+ 2.0+

From your JavaScript code, you’ll access HTML5 Storage through the localStorage object

on the global window object. Before you can use it, you should detect whether the browser

supports it.

↶↶ check for check for HTML5HTML5 Storage Storage

function supports_html5_storage() {
try {
return 'localStorage' in window && window['localStorage'] !==
null;
} catch (e) {
return false;
}
}

diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

Instead of writing this function yourself, you can use Modernizr to detect support for HTML5

Storage.

if (Modernizr.localstorage) {
// window.localStorage is available!
} else {
// no native support for HTML5 storage :(
// maybe try dojox.storage or a third-party solution
}

❧❧

USING HTML5 STORAGEUSING HTML5 STORAGE

HTML5 Storage is based on named key/value pairs. You store data based on a named key,

then you can retrieve that data with the same key. e named key is a string. e data can be

any type supported by JavaScript, including strings, Booleans, integers, or floats. However, the

data is actually stored as a string. If you are storing and retrieving anything other than

strings, you will need to use functions like parseInt() or parseFloat() to coerce your

retrieved data into the expected JavaScript datatype.

interface Storage {
getter any getItem(in DOMString key);
setter creator void setItem(in DOMString key, in any data);
};

Calling setItem() with a named key that already exists will silently overwrite the previous

value. Calling getItem() with a non-existent key will return null rather than throw an

exception.

Like other JavaScript objects, you can treat the localStorage object as an associative array.

Instead of using the getItem() and setItem() methods, you can simply use square

braets. For example, this snippet of code:

diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

var foo = localStorage.getItem("bar");
// ...
localStorage.setItem("bar", foo);

…could be rewrien to use square braet syntax instead:

var foo = localStorage["bar"];
// ...
localStorage["bar"] = foo;

ere are also methods for removing the value for a given named key, and clearing the entire

storage area (that is, deleting all the keys and values at once).

interface Storage {
deleter void removeItem(in DOMString key);
void clear();
};

Calling removeItem() with a non-existent key will do nothing.

Finally, there is a property to get the total number of values in the storage area, and to iterate

through all of the keys by index (to get the name of ea key).

interface Storage {
readonly attribute unsigned long length;
getter DOMString key(in unsigned long index);
};

If you call key() with an index that is not between 0–(length-1), the function will return

null.

TRACKING CHANGES TO THE HTML5 STORAGE AREATRACKING CHANGES TO THE HTML5 STORAGE AREA

If you want to keep tra programmatically of when the storage area anges, you can trap

the storage event. e storage event is fired on the window object whenever

diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

setItem(), removeItem(), or clear() is called and actually anges something . For

example, if you set an item to its existing value or call clear() when there are no named

keys, the storage event will not fire, because nothing actually anged in the storage area.

e storage event is supported everywhere the localStorage object is supported, whi

includes Internet Explorer 8. IE 8 does not support the W3C standard addEventListener
(although that will finally be added in IE 9). erefore, to hook the storage event, you’ll

need to e whi event meanism the browser supports. (If you’ve done this before with

other events, you can skip to the end of this section. Trapping the storage event works the

same as every other event you’ve ever trapped. If you prefer to use jery or some other

JavaScript library to register your event handlers, you can do that with the storage event,

too.)

if (window.addEventListener) {
window.addEventListener("storage", handle_storage, false);
} else {
window.attachEvent("onstorage", handle_storage);
};

e handle_storage callba function will be called with a StorageEvent object, except

in Internet Explorer where the event object is stored in window.event.

function handle_storage(e) {
if (!e) { e = window.event; }
}

At this point, the variable e will be a StorageEvent object, whi has the following useful

properties.

STORAGEEVENT OBJECTSTORAGEEVENT OBJECT

PROPERTYPROPERTY TYPETYPEDESCRIPTIONDESCRIPTION

key string the named key that was added, removed, or modified

oldValue any the previous value (now overwrien), or null if a new item was added

newValue any the new value, or null if an item was removed

url* string the page whi called a method that triggered this ange

* Note: the url property was originally called uri. Some browsers shipped with that property before the specification anged.

diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

For maximum compatibility, you should e whether the url property exists, and if not, e for the uri property instead.

e storage event is not cancelable. From within the handle_storage callba function,

there is no way to stop the ange from occurring. It’s simply a way for the browser to tell

you, “hey, this just happened. ere’s nothing you can do about it now; I just wanted to let

you know.”

LIMITATIONS IN CURRENT BROWSERSLIMITATIONS IN CURRENT BROWSERS

In talking about the history of local storage has using third-party plugins, I made a point of

mentioning the limitations of ea tenique, su as storage limits. I just realized that I

haven’t mentioned anything about the limitations of the now-standardized HTML5 Storage. I’ll

give you the answers first, then explain them. e answers, in order of importance, are “5

megabytes,” “QUOTA_EXCEEDED_ERR,” and “no.”

“5 megabytes” is how mu storage space ea origin gets by default. is is surprisingly

consistent across browsers, although it is phrased as no more than a suggestion in the HTML5

Storage specification. One thing to keep in mind is that you’re storing strings, not data in its

original format. If you’re storing a lot of integers or floats, the difference in representation

can really add up. Ea digit in that float is being stored as a aracter, not in the usual

representation of a floating point number.

“QUOTA_EXCEEDED_ERR” is the exception that will get thrown if you exceed your storage

quota of 5 megabytes. “No” is the answer to the next obvious question, “Can I ask the user

for more storage space?” At time of writing, no browser supports any meanism for web

developers to request more storage space. Some browsers (like Opera) allow the user to

control ea site’s storage quota, but it is purely a user-initiated action, not something that

you as a web developer can build into your web application.

❧❧

HTML5 STORAGE IN ACTIONHTML5 STORAGE IN ACTION

diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

Let’s see HTML5 Storage in action. Recall the Halma game we constructed in the canvas

apter. ere’s a small problem with the game: if you close the browser window mid-game,

you’ll lose your progress. But with HTML5 Storage, we can save the progress locally, within

the browser itself. Here is a live demonstration. Make a few moves, then close the browser

tab, then re-open it. If your browser supports HTML5 Storage, the demonstration page should

magically remember your exact position within the game, including the number of moves

you’ve made, the position of ea of the pieces on the board, and even whether a particular

piece is selected.

How does it work? Every time a ange occurs within the game, we call this function:

function saveGameState() {
if (!supportsLocalStorage()) { return false; }
localStorage["halma.game.in.progress"] = gGameInProgress;
for (var i = 0; i < kNumPieces; i++) {
localStorage["halma.piece." + i + ".row"] = gPieces[i].row;
localStorage["halma.piece." + i + ".column"] =
gPieces[i].column;
}
localStorage["halma.selectedpiece"] = gSelectedPieceIndex;
localStorage["halma.selectedpiecehasmoved"] =
gSelectedPieceHasMoved;
localStorage["halma.movecount"] = gMoveCount;
return true;
}

As you can see, it uses the localStorage object to save whether there is a game in

progress (gGameInProgress, a Boolean). If so, it iterates through the pieces (gPieces, a

JavaScript Array) and saves the row and column number of ea piece. en it saves some

additional game state, including whi piece is selected (gSelectedPieceIndex, an integer),

whether the piece is in the middle of a potentially long series of hops

(gSelectedPieceHasMoved, a Boolean), and the total number of moves made so far

(gMoveCount, an integer).

On page load, instead of automatically calling a newGame() function that would reset these

variables to hard-coded values, we call a resumeGame() function instead. Using HTML5

diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

Storage, the resumeGame() function es whether a state about a game-in-progress is

stored locally. If so, it restores those values using the localStorage object.

function resumeGame() {
if (!supportsLocalStorage()) { return false; }
gGameInProgress = (localStorage["halma.game.in.progress"] ==
"true");
if (!gGameInProgress) { return false; }
gPieces = new Array(kNumPieces);
for (var i = 0; i < kNumPieces; i++) {
var row = parseInt(localStorage["halma.piece." + i + ".row"]);
var column = parseInt(localStorage["halma.piece." + i +
".column"]);
gPieces[i] = new Cell(row, column);
}
gNumPieces = kNumPieces;
gSelectedPieceIndex =
parseInt(localStorage["halma.selectedpiece"]);
gSelectedPieceHasMoved =
localStorage["halma.selectedpiecehasmoved"] == "true";
gMoveCount = parseInt(localStorage["halma.movecount"]);
drawBoard();
return true;
}

e most important part of this function is the caveat that I mentioned earlier in this apter,

whi I’ll repeat here: Data is stored as strings. If you are storing something other than a

string, you’ll need to coerce it yourself when you retrieve it. For example, the flag for

whether there is a game in progress (gGameInProgress) is a Boolean. In the

saveGameState() function, we just stored it and didn’t worry about the datatype:

localStorage["halma.game.in.progress"] = gGameInProgress;

But in the resumeGame() function, we need to treat the value we got from the local storage

area as a string and manually construct the proper Boolean value ourselves:

diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

gGameInProgress = (localStorage["halma.game.in.progress"]
== "true");

Similarly, the number of moves is stored in gMoveCount as an integer. In the

saveGameState() function, we just stored it:

localStorage["halma.movecount"] = gMoveCount;

But in the resumeGame() function, we need to coerce the value to an integer, using the

parseInt() function built into JavaScript:

gMoveCount = parseInt(localStorage["halma.movecount"]);

❧❧

BEYOND NAMED KEY-VALUE PAIRS:BEYOND NAMED KEY-VALUE PAIRS:
COMPETING VISIONSCOMPETING VISIONS

While the past is liered with has and workarounds , the present condition of HTML5

Storage is surprisingly rosy. A new API has been standardized and implemented across all

major browsers, platforms, and devices. As a web developer, that’s just not something you

see every day, is it? But there is more to life than “5 megabytes of named key/value pairs,”

and the future of persistent local storage is… how shall I put it… well, there are competing

visions.

One vision is an acronym that you probably know already: SQL. In 2007, Google launed

Gears, an open source cross-browser plugin whi included an embedded database based on

SQLite. is early prototype later influenced the creation of the Web SQL Database

specification. Web SQL Database (formerly known as “WebDB”) provides a thin wrapper

around a SQL database, allowing you to do things like this from JavaScript:

diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

↶↶ actual working code in 4 browsers actual working code in 4 browsers

openDatabase('documents', '1.0', 'Local document storage',
5*1024*1024, function (db) {
db.changeVersion('', '1.0', function (t) {
t.executeSql('CREATE TABLE docids (id, name)');
}, error);
});

As you can see, most of the action resides in the string you pass to the executeSql
method. is string can be any supported SQL statement, including SELECT, UPDATE,

INSERT, and DELETE statements. It’s just like baend database programming, except you’re

doing it from JavaScript! Oh joy!

e Web SQL Database specification has been implemented by four browsers and platforms.

WEB SQL DATABASE SUPPORTWEB SQL DATABASE SUPPORT

IEIE FIREFOXFIREFOX SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID
· · 4.0+ 4.0+ 10.5+ 3.0+ 2.0+

Of course, if you’ve used more than one database product in your life, you are aware that

“SQL” is more of a marketing term than a hard-and-fast standard. (Some would say the same

of “HTML5,” but never mind that.) Sure, there is an actual SQL specification (it’s called SQL-

92), but there is no database server in the world that conforms to that and only that

specification. ere’s Oracle’s SQL, Microso’s SQL, MySQL’s SQL, PostgreSQL’s SQL, and

SQLite’s SQL. Indeed, ea of these products adds new SQL features over time, so even

saying “SQLite’s SQL” is not sufficient to pin down exactly what you’re talking about. You

need to say “the version of SQL that shipped with SQLite version X.Y.Z.”

All of whi brings us to the following disclaimer, currently residing at the top of the Web

SQL Database specification:

is specification has reaed an impasse: all interested implementors have used

the same SQL baend (Sqlite), but we need multiple independent implementations

to proceed along a standardisation path. Until another implementor is interested in

implementing this spec, the description of the SQL dialect has been le as simply
diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

a reference to Sqlite, whi isn't acceptable for a standard.

It is against this badrop that I will introduce you to another competing vision for advanced,

persistent, local storage for web applications: the Indexed Database API, formerly known as

“WebSimpleDB,” now affectionately known as “IndexedDB.”

e Indexed Database API exposes what’s called an object store . An object store shares many

concepts with a SQL database. ere are “databases” with “records,” and ea record has a set

number of “fields.” Ea field has a specific datatype, whi is defined when the database is

created. You can select a subset of records, then enumerate them with a “cursor.” Changes to

the object store are handled within “transactions.”

If you’ve done any SQL database programming, these terms probably sound familiar. e

primary difference is that the object store has no structured query language. You don’t

construct a statement like "SELECT * from USERS where ACTIVE = 'Y'". Instead, you

use methods provided by the object store to open a cursor on the database named “USERS,”

enumerate through the records, filter out records for inactive users, and use accessor methods

to get the values of ea field in the remaining records. An early walk-through of IndexedDB

is a good tutorial of how IndexedDB works, giving side-by-side comparisons of IndexedDB

and Web SQL Database.

At time of writing, IndexedDB has only been implemented in a beta version of Firefox 4 . (By

contrast, Mozilla has stated that they will never implement Web SQL Database .) Google has

stated that they are considering IndexedDB support for Chromium and Google Chrome. And

even Microso has said that IndexedDB “is a great solution for the web .”

So what can you, as a web developer, do with IndexedDB? At the moment, virtually nothing

beyond some tenology demos. A year from now? Maybe something. Che the “Further

Reading” section for links to some good tutorials to get you started.

❧❧

FURTHER READINGFURTHER READING

diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

HTML5 storage:

HTML5 Storage specification

Introduction to DOM Storage on MSDN

Web Storage: easier, more powerful client-side data storage on Opera Developer

Community

DOM Storage on Mozilla Developer Center. (Note: most of this page is devoted to

Firefox’s prototype implementation of a globalStorage object, a non-standard

precursor to localStorage. Mozilla added support for the standard localStorage
interface in Firefox 3.5.)

Unlo local storage for mobile Web applications with HTML5 , a tutorial on IBM

DeveloperWorks

Early work by Brad Neuberg et. al. (pre-HTML5):

Internet Explorer Has Native Support for Persistence⁈⁈ (about the userData object in

IE)

Dojo Storage, part of a larger tutorial about the (now-defunct) Dojo Offline library

dojox.storage.manager API reference

dojox.storage Subversion repository

Web SQL Database:

Web SQL Database specification

Introducing Web SQL Databases

Web Database demonstration

persistence.js, an “asynronous JavaScript ORM” built on top of Web SQL Database and

Gears

IndexedDB:

Indexed Database API specification

Beyond HTML5: Database APIs and the Road to IndexedDB

Firefox 4: An early walk-through of IndexedDB

diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

❧❧

is has been “e Past, Present & Future of Local Storage for Web Applications.” e full

table of contents has more if you’d like to keep reading.

DID YOU KNOW?DID YOU KNOW?

In association with Google Press, O’Reilly is

distributing this book in a variety of formats, including

paper, ePub, Mobi, and DRM-free PDF. e paid

edition is called “HTML5: Up & Running,” and it is

available now. is apter is included in the paid

edition.

If you liked this apter and want to show your

appreciation, you can buy “HTML5: Up & Running”

with this affiliate link or buy an electronic edition

directly from O’Reilly. You’ll get a book, and I’ll get a

bu. I do not currently accept direct donations.

Copyright MMIX–MMX Mark Pilgrim

powered by Google™ Search

diveintohtml5.org THE PAST, PRESENT & FUTURE OF LOCAL STORAGE FOR WEB APPLICATIONS

You are here: Home ‣ Dive Into HTML5 ‣

№№88. .
LET’S TAKE THIS OFFLINELET’S TAKE THIS OFFLINE

show table of contents

❧❧

DIVING INDIVING IN

hat is an offline web application? At first glance, it sounds like a contradiction

in terms. Web pages are things you download and render. Downloading

implies a network connection. How can you download when you’re offline?

Of course, you can’t. But you can download when you’re online. And that’s

how HTML5 offline applications work.

At its simplest, an offline web application is a list of URLs — HTML, CSS, JavaScript, images,

or any other kind of resource. e home page of the offline web application points to this list,

called a manifest file, whi is just a text file located elsewhere on the web server. A web

browser that implements HTML5 offline applications will read the list of URLs from the

manifest file, download the resources, cae them locally, and automatically keep the local

copies up to date as they ange. When the time comes that you try to access the web

application without a network connection, your web browser will automatically swit over to

the local copies instead.

From there, most of the work is up to you, the web developer. ere’s a flag in the DOM that

diveintohtml5.org LET’S TAKE THIS OFFLINE

will tell you whether you’re online or offline. ere are events that fire when your offline

status anges (one minute you’re offline and the next minute you’re online, or vice-versa).

But that’s prey mu it. If your application creates data or saves state, it’s up to you to store

that data locally while you’re offline and synronize it with the remote server once you’re

ba online. In other words, HTML5 can take your web application offline. What you do once

you’re there is up to you.

OFFLINE SUPPORTOFFLINE SUPPORT

IEIE FIREFOXFIREFOX SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID
· ✓ ✓ ✓ · ✓ ✓

❧❧

THE CACHE MANIFESTTHE CACHE MANIFEST

An offline web application revolves around a cae manifest file. What’s a manifest file? It’s a

list of all of the resources that your web application might need to access while it’s

disconnected from the network. In order to bootstrap the process of downloading and caing

these resources, you need to point to the manifest file, using a manifest aribute on your

<html> element.

<!DOCTYPE HTML>
<html manifest="/cache.manifest">
<body>
...
</body>
</html>

Your cae manifest file can be located anywhere on your web server, but it must be served

with the content type text/cache-manifest. If you are running an Apae-based web

server, you can probably just put an AddType directive in the .htaccess file at the root of

your web directory:

AddType text/cache-manifest .manifest
diveintohtml5.org LET’S TAKE THIS OFFLINE

☞

en make sure that the name of your cae manifest file ends with .manifest. If you use

a different web server or a different configuration of Apae, consult your server’s

documentation on controlling the Content-Type header.

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: My web application spans more than one

page. Do I need a manifest aribute in ea

page, or can I just put it in the home page?

A: Every page of your web application needs a

manifest aribute that points to the cae

manifest for the entire application.

OK, so every one of your HTML pages points to your cae manifest file, and your cae

manifest file is being served with the proper Content-Type header. But what goes in the

manifest file? is is where things get interesting.

e first line of every cae manifest file is this:

CACHE MANIFEST

Aer that, all manifest files are divided into three parts: the “explicit” section, the “fallba”

section, and the “online whitelist” section. Ea section has a header, on its own line. If the

manifest file doesn’t have any section headers, all the listed resources are implicitly in the

“explicit” section. Try not to dwell on the terminology, lest your head explode.

Here is a valid manifest file. It lists three resources: a CSS file, a JavaScript file, and a JPEG

image.

diveintohtml5.org LET’S TAKE THIS OFFLINE

☞

CACHE MANIFEST
/clock.css
/clock.js
/clock-face.jpg

is cae manifest file has no section headers, so all the listed resources are in the “explicit”

section by default. Resources in the “explicit” section will get downloaded and caed locally,

and will be used in place of their online counterparts whenever you are disconnected from the

network. us, upon loading this cae manifest file, your browser would download

clock.css, clock.js, and clock-face.jpg from the root directory of your web server.

en you could unplug your network cable and refresh the page, and all of those resources

would be available offline.

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: Do I need to list my HTML pages in my

cae manifest?

A: Yes and no. If your entire web application is

contained in a single page, just make sure that

page points to the cae manifest using the

manifest aribute. When you navigate to an

HTML page with a manifest aribute, the

page itself is assumed to be part of the web

application, so you don’t need to list it in the

manifest file itself. However, if your web

application spans multiple pages, you should

list all of the HTML pages in the manifest file,

otherwise the browser would not know that

there are other HTML pages that need to be

downloaded and caed.

diveintohtml5.org LET’S TAKE THIS OFFLINE

NETWORK SECTIONSNETWORK SECTIONS

Here is a slightly more complicated example. Suppose you want your clo application to

tra visitors, using a traing.cgi script that is loaded dynamically from an
aribute. Caing this resource would defeat the purpose of traing, so this resource should

never be caed and never be available offline. Here is how you do that:

CACHE MANIFEST
NETWORK:
/tracking.cgi
CACHE:
/clock.css
/clock.js
/clock-face.jpg

is cae manifest file includes section headers. e line marked NETWORK: is the beginning

of the “online whitelist” section. Resources in this section are never caed and are not

available offline. (Aempting to load them while offline will result in an error.) e line

marked CACHE: is the beginning of the “explicit” section. e rest of the cae manifest file

is the same as the previous example. Ea of the three resources listed will be caed and

available offline.

FALLBACK SECTIONSFALLBACK SECTIONS

ere is one more type of section in a cae manifest file: a fallba section. In a fallba

section, you can define substitutions for online resources that, for whatever reason, can’t be

caed or weren’t caed successfully. e HTML5 specification offers this clever example of

using a fallba section:

CACHE MANIFEST
FALLBACK:
/ /offline.html
NETWORK:
*

diveintohtml5.org LET’S TAKE THIS OFFLINE

What does this do? First, consider a site that contains millions of pages, like Wikipedia. You

couldn’t possibly download the entire site, nor would you want to. But suppose you could

make part of it available offline. But how would you decide whi pages to cae? How

about this: every page you ever look at on a hypothetical offline-enabled Wikipedia would be

downloaded and caed. at would include every encyclopedia entry that you ever visited,

every talk page (where you can have makeshi discussions about a particular encyclopedia

entry), and every edit page (whi you can actually make anges to the particular entry).

at’s what this cae manifest does. Suppose every HTML page (entry, talk page, edit page,

history page) on Wikipedia pointed to this cae manifest file. When you visit any page that

points to a cae manifest, your browser says “hey, this page is part of an offline web

application, is it one I know about?” If your browser hasn’t ever downloaded this particular

cae manifest file, it will set up a new offline “appcae” (short for “application cae”),

download all the resources listed in the cae manifest, and then add the current page to the

appcae. If your browser does know about this cae manifest, it will simply add the current

page to the existing appcae. Either way, the page you just visited ends up in the appcae.

is is important. It means that you can have an offline web application that “lazily” adds

pages as you visit them. You don’t need to list every single one of your HTML pages in your

cae manifest.

Now look at the fallba section. e fallba section in this cae manifest only has a single

line. e first part of the line (before the space) is not a URL. It’s really a URL paern. e

single aracter (/) will mat any page on your site, not just the home page. When you try

to visit a page while you’re offline, your browser will look for it in the appcae. If your

browser finds the page in the appcae (because you visited it while online, and the page was

implicitly added to the appcae at that time), then your browser will display the caed copy

of the page. If your browser doesn’t find the page in the appcae, instead of displaying an

error message, it will display the page /offline.html, as specified in the second half of

that line in the fallba section.

Finally, let’s examine the network section. e network section in this cae manifest also has

just a single line, a line that contains just a single aracter (*). is aracter has special

meaning in a network section. It’s called the “online whitelist wildcard flag.” at’s a fancy

way of saying that anything that isn’t in the appcae can still be downloaded from the

original web address, as long as you have an internet connection. is is important for an

“open-ended” offline web application. It means that, while you’re browsing this hypothetical

diveintohtml5.org LET’S TAKE THIS OFFLINE

offline-enabled Wikipedia online, your browser will fet images and videos and other

embedded resources normally, even if they are on a different domain. (is is common in

large websites, even if they aren’t part of an offline web application. HTML pages are

generated and served locally, while images and videos are served from a CDN on another

domain.) Without this wildcard flag, our hypothetical offline-enabled Wikipedia would behave

strangely when you were online — specifically, it wouldn’t load any externally-hosted images

or videos!

Is this example complete? No. Wikipedia is more than HTML files. It uses common CSS,

JavaScript, and images on ea page. Ea of these resources would need to be listed

explicitly in the CACHE: section of the manifest file, in order for pages to display and behave

properly offline. But the point of the fallba section is that you can have an “open-ended”

offline web application that extends beyond the resources you’ve listed explicitly in the

manifest file.

❧❧

THE FLOW OF EVENTSTHE FLOW OF EVENTS

So far, I’ve talked about offline web applications, the cae manifest, and the offline

application cae (“appcae”) in vague, semi-magical terms. ings are downloaded, browsers

make decisions, and everything Just Works. You know beer than that, right? I mean, this is

web development we’re talking about. Nothing ever Just Works.

First, let’s talk about the flow of events. Specifically, DOM events. When your browser visits

a page that points to a cae manifest, it fires off a series of events on the

window.applicationCache object. I know this looks complicated, but trust me, this is the

simplest version I could come up with that didn’t leave out important information.

1. As soon as it notices a manifest aribute on the <html> element, your browser fires

a checking event. (All the events listed here are fired on the

window.applicationCache object.) e checking event is always fired, regardless

of whether you have previously visited this page or any other page that points to the

diveintohtml5.org LET’S TAKE THIS OFFLINE

same cae manifest.

2. If your browser has never seen this cae manifest before…

It will fire a downloading event, then start to download the resources listed in

the cae manifest.

While it’s downloading, your browser will periodically fire progress events,

whi contain information on how many files have been downloaded already and

how many files are still queued to be downloaded.

Aer all resources listed in the cae manifest have been downloaded successfully,

the browser fires one final event, cached. is is your signal that the offline web

application is fully caed and ready to be used offline. at’s it; you’re done.

3. On the other hand, if you have previously visited this page or any other page that

points to the same cae manifest, then your browser already knows about this cae

manifest. It may already have some resources in the appcae. It may have the entire

working offline web application in the appcae. So now the question is, has the cae

manifest anged since the last time your browser eed it?

If the answer is no, the cae manifest has not anged, your browser will

immediately fire a noupdate event. at’s it; you’re done.

If the answer is yes, the cae manifest has anged, your browser will fire a

downloading event and start re-downloading every single resource listed in the

cae manifest.

While it’s downloading, your browser will periodically fire progress events,

whi contain information on how many files have been downloaded already and

how many files are still queued to be downloaded.

Aer all resources listed in the cae manifest have been re-downloaded

successfully, the browser fires one final event, updateready. is is your signal

that the new version of your offline web application is fully caed and ready to

be used offline. e new version is not yet in use. To “hot-swap” to the new version

without forcing the user to reload the page, you can manually call the

window.applicationCache.swapCache() function.

If, at any point in this process, something goes horribly wrong, your browser will fire an

error event and stop. Here is a hopelessly abbreviated list of things that could go wrong:

diveintohtml5.org LET’S TAKE THIS OFFLINE

e cae manifest returned an HTTP error 404 (Page Not Found) or 410 (Permanently

Gone).

e cae manifest was found and hadn’t anged, but the HTML page that pointed to

the manifest failed to download properly.

e cae manifest anged while the update was being run.

e cae manifest was found and had anged, but the browser failed to download one

of the resources listed in the cae manifest.

THE FINE ART OF DEBUGGING,THE FINE ART OF DEBUGGING,
A.K.A. “KILL ME! KILL ME NOW!”A.K.A. “KILL ME! KILL ME NOW!”

I want to call out two important points here. e first is something you just read, but I bet it

didn’t really sink in, so here it is again: if even a single resource listed in your cae

manifest file fails to download properly, the entire process of caing your offline web

application will fail. Your browser will fire the error event, but there is no indication of

what the actual problem was. is can make debugging offline web applications even more

frustrating than usual.

e second important point is something that is not, tenically speaking, an error, but it will

look like a serious browser bug until you realize what’s going on. It has to do with exactly

how your browser es whether a cae manifest file has anged. is is a three-phase

process. is is boring but important, so pay aention.

1. Via normal HTTP semantics, your browser will e whether the cae manifest has

expired. Just like any other file being served over HTTP, your web server will typically

include meta-information about the file in the HTTP response headers. Some of these

HTTP headers (Expires and Cache-Control) tell your browser how it is allowed to

cae the file without ever asking the server whether it has anged. is kind of

caing has nothing to do with offline web applications. It happens for prey mu

every HTML page, stylesheet, script, image, or other resource on the web.

2. If the cae manifest has expired (according to its HTTP headers), then your browser

will ask the server whether there is a new version, and if so, the browser will download

it. To do this, your browser issues an HTTP request that includes that last-modified date

of the cae manifest, whi your web server included in the HTTP response headers
diveintohtml5.org LET’S TAKE THIS OFFLINE

the last time your browser downloaded the manifest file. If the web server determines

that the manifest file hasn’t anged since that date, it will simply return a 304 (Not
Modified) status. Again, none of this is specific to offline web applications. is

happens for essentially every kind of resource on the web.

3. If the web server thinks the manifest file has anged since that date, it will return an

HTTP 200 (OK) status code, followed by the contents of the new file, along with new

Cache-Control headers and a new last-modified date, so that steps 1 and 2 will work

properly the next time. (HTTP is cool; web servers are always planning for the future. If

your web server absolutely must send you a file, it does everything it can to ensure that

it doesn’t need to send it twice for no reason.) Once it’s downloaded the new cae

manifest file, your browser will e the contents against the copy it downloaded last

time. If the contents of the cae manifest file are the same as they were last time, your

browser won’t re-download any of the resources listed in the manifest.

Any one of these steps can trip you up while you’re developing and testing your offline web

application. For example, say you deploy one version of your cae manifest file, then 10

minutes later, you realize you need to add another resource to it. No problem, right? Just add

another line and redeploy. Bzzt. Here’s what will happen: you reload the page, your browser

notices the manifest aribute, it fires the checking event, and then… nothing. Your

browser stubbornly insists that the cae manifest file has not anged. Why? Because, by

default, your web server is probably configured to tell browsers to cae static files for a few

hours (via HTTP semantics, using Cache-Control headers). at means your browser will

never get past step 1 of that three-phase process. Sure, the web server knows that the file has

anged, but your browser never even gets around to asking the web server. Why? Because

the last time your browser downloaded the cae manifest, the web server told it to cae the

resource for a few hours (via HTTP semantics, using Cache-Control headers). And now, 10

minutes later, that’s exactly what your browser is doing.

To be clear, this is not a bug, it’s a feature. Everything is working exactly the way it’s

supposed to. If web servers didn’t have a way to tell browsers (and intermediate proxies) to

cae things, the web would collapse overnight. But that’s no comfort to you aer you spend

a few hours trying to figure out why your browser won’t notice your updated cae manifest.

(And even beer, if you wait long enough, it will mysteriously starts working again! Because

the HTTP cae expired! Just like it’s supposed to! Kill me! Kill me now!)

So here’s one thing you should absolutely do: reconfigure your web server so that your cae

diveintohtml5.org LET’S TAKE THIS OFFLINE

manifest file is not caeable by HTTP semantics. If you’re running an Apae-based web

server, these two lines in your .htaccess file will do the tri:

ExpiresActive On
ExpiresDefault "access"

at will actually disable caing for every file in that directory and all subdirectories. at’s

probably not what you want in production, so you should either qualify this with a <Files>
directive so it only affects your cae manifest file, or create a subdirectory that contains

nothing but this .htaccess file and your cae manifest file. As usual, configuration details

vary by web server, so consult your server’s documentation for how to control HTTP caing

headers.

Once you’ve disabled HTTP caing on the cae manifest file itself, you’ll still have times

where you’ve anged one of the resources in the appcae, but it’s still at the same URL on

your web server. Here, step 2 of the three-phase process will screw you. If your cae

manifest file hasn’t anged, the browser will never notice that one of the previously caed

resources has anged. Consider the following example:

CACHE MANIFEST
rev 42
clock.js
clock.css

If you ange clock.css and redeploy it, you won’t see the anges, because the cae

manifest file itself hasn’t anged. Every time you make a ange to one of the resources in

your offline web application, you’ll need to ange the cae manifest file itself. is can be

as simple as anging a single aracter. e easiest way I’ve found to accomplish this is to

include a comment line with a revision number. Change the revision number in the comment,

then the web server will return the newly anged cae manifest file, your browser will

notice that the contents of the file have anged, and it will ki off the process to re-

download all the resources listed in the manifest.

CACHE MANIFEST
rev 43
clock.js

diveintohtml5.org LET’S TAKE THIS OFFLINE

clock.css

❧❧

LET’S BUILD ONE!LET’S BUILD ONE!

Remember the Halma game that we introduced in the canvas apter and later improved by

saving state with persistent local storage ? Let’s take our Halma game offline.

To do that, we need a manifest that lists all the resources the game needs. Well, there’s the

main HMTL page, a single JavaScript file that contains all the game code, and… that’s it.

ere are no images, because all the drawing is done programmatically via the canvas API.

All the necessary CSS styles are in a <style> element at the top of the HTML page. So this

is our cae manifest:

CACHE MANIFEST
halma.html
../halma-localstorage.js

A word about paths. I’ve created an offline/ subdirectory in the examples/ directory, and

this cae manifest file lives inside the subdirectory. Because the HTML page will need one

minor addition to work offline (more on that in a minute), I’ve created a separate copy of the

HTML file, whi also lives in the offline/ subdirectory. But because there are no anges

to the JavaScript code itself since we added local storage support, I’m literally reusing the

same .js file, whi lives in the parent directory (examples/). Altogether, the files look like

this:

/examples/localstorage-halma.html
/examples/halma-localstorage.js
/examples/offline/halma.manifest
/examples/offline/halma.html

In the cae manifest file (/examples/offline/halma.manifest), we want to reference

two files. First, the offline version of the HTML file (/examples/offline/halma.html).
diveintohtml5.org LET’S TAKE THIS OFFLINE

two files. First, the offline version of the HTML file (/examples/offline/halma.html).

Since these two files are in the same directory, it is listed in the manifest file without any

path prefix. Second, the JavaScript file whi lives in the parent directory

(/examples/halma-localstorage.js). is is listed in the manifest file using relative

URL notation: ../halma-localstorage.js. is is just like you might use a relative URL

in an aribute. As you’ll see in the next example, you can also use absolute

paths (that start at the root of the current domain) or even absolute URLs (that point to

resources on other domains).

Now, in the HTML file, we need to add the manifest aribute that points to the cae

manifest file.

<!DOCTYPE html>
<html lang="en" manifest="halma.manifest">

And that’s it! When an offline-capable browser first loads the offline-enabled HTML page, it

will download the linked cae manifest file and start downloading all the referenced

resources and storing them in the offline application cae. From then on, the offline

application algorithm takes over whenever you revisit the page. You can play the game

offline, and since it remembers its state locally, you can leave and come ba as oen as you

like.

❧❧

FURTHER READINGFURTHER READING

Standards:

Offline web applications in the HTML5 specification

Browser vendor documentation:

Offline resources in Firefox

HTML5 offline application cae, part of the Safari client-side storage and offline

diveintohtml5.org LET’S TAKE THIS OFFLINE

applications programming guide

Tutorials and demos:

Gmail for mobile HTML5 series: using appcae to laun offline - part 1

Gmail for mobile HTML5 series: using appcae to laun offline - part 2

Gmail for mobile HTML5 series: using appcae to laun offline - part 3

Debugging HTML5 offline application cae

an HTML5 offline image editor and uploader application

❧❧

is has been “Let’s Take is Offline.” e full table of contents has more if you’d like to

keep reading.

DID YOU KNOW?DID YOU KNOW?

In association with Google Press, O’Reilly is

distributing this book in a variety of formats, including

paper, ePub, Mobi, and DRM-free PDF. e paid

edition is called “HTML5: Up & Running,” and it is

available now. is apter is included in the paid

edition.

If you liked this apter and want to show your

appreciation, you can buy “HTML5: Up & Running”

with this affiliate link or buy an electronic edition

directly from O’Reilly. You’ll get a book, and I’ll get a

bu. I do not currently accept direct donations.

Copyright MMIX–MMX Mark Pilgrim

diveintohtml5.org LET’S TAKE THIS OFFLINE

powered by Google™ Search

diveintohtml5.org LET’S TAKE THIS OFFLINE

You are here: Home ‣ Dive Into HTML5 ‣

№№99. .
A FORM OF MADNESSA FORM OF MADNESS

show table of contents

❧❧

DIVING INDIVING IN

verybody knows about web forms, right? Make a <form>, a few <input
type="text"> elements, maybe an <input type="password">, finish it

off with an <input type="submit"> buon, and you’re done.

You don’t know the half of it. HTML5 defines over a dozen new input types that you can use

in your forms. And when I say “use,” I mean you can use them right now — without any

shims, has, or workarounds. Now don’t get too excited; I don’t mean to say that all of these

exciting new features are actually supported in every browser. Oh goodness no, I don’t mean

that at all. In modern browsers, yes, your forms will ki all kinds of ass. But in legacy

browsers, your forms will still work, albeit with less ass kiing. Whi is to say, all of these

features degrade gracefully in every browser. Even IE 6.

❧❧

diveintohtml5.org A FORM OF MADNESS

☞

PLACEHOLDER TEXTPLACEHOLDER TEXT

PLACEHOLDER SUPPORTPLACEHOLDER SUPPORT

IEIE FIREFOXFIREFOX SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID
· 3.7+ 4.0+ 4.0+ · 4.0+ ·

e first improvement HTML5 brings to web forms is the ability to set placeholder text in an

input field. Placeholder text is displayed inside the input field as long as the field is empty

and not focused. As soon as you cli on (or tab to) the input field, the placeholder text

disappears.

You’ve probably seen placeholder text before. For example, Mozilla Firefox includes

placeholder text in the location bar that reads “Sear Bookmarks and History”:

When you cli on (or tab to) the location bar, the placeholder text disappears:

Here’s how you can include placeholder text in your own web forms:

<form>
<input name="q" placeholder="Search Bookmarks and History">
<input type="submit" value="Search">
</form>

Browsers that don’t support the placeholder aribute will simply ignore it. No harm, no

foul. See whether your browser supports placeholder text .

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: Can I use HTML markup in the
diveintohtml5.org A FORM OF MADNESS

☞ placeholder aribute? I want to insert an

image, or maybe ange the colors.

A: e placeholder aribute can only

contain text, not HTML markup. However,

there are some vendor-specific CSS extensions

that allow you to style the placeholder text in

some browsers.

❧❧

AUTOFOCUS FIELDSAUTOFOCUS FIELDS

AUTOFOCUS SUPPORTAUTOFOCUS SUPPORT

IEIE FIREFOXFIREFOX SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID
· · 4.0+ 3.0+ 10.0+ · ·

Web sites can use JavaScript to focus the first input field of a

web form automatically. For example, the home page of

Google.com will autofocus the input box so you can type your

sear keywords. While this is convenient for most people, it

can be annoying for power users or people with special needs. If

you press the space bar expecting to scroll the page, the page

will not scroll because the focus is already in a form input field.

(It types a space in the field instead of scrolling.) If you focus a

different input field while the page is still loading, the site’s

autofocus script may “helpfully” move the focus ba to the

original input field, disrupting your flow and causing you to type in the wrong place.

Because the autofocusing is done with JavaScript, it can be triy to handle all of these edge

cases, and there is lile recourse for people who don’t want a web page to “steal” the focus.

diveintohtml5.org A FORM OF MADNESS

To solve this problem, HTML5 introduces an autofocus aribute on all web form controls.

e autofocus aribute does exactly what it says on the tin: as soon as the page loads, it

moves the input focus to a particular input field. But because it’s just markup instead of

script, the behavior will be consistent across all web sites. Also, browser vendors (or

extension authors) can offer users a way to disable the autofocusing behavior.

Here’s how you can set a form field to autofocus:

<form>
<input name="q" autofocus>
<input type="submit" value="Search">
</form>

Browsers that don’t support the autofocus aribute will simply ignore it. See whether your

browser supports autofocus fields.

What’s that? You say you want your autofocus fields to work in all browsers, not just these

fancy-pants HTML5 browsers? You can keep your current autofocus script. Just make two

small anges:

1. Add the autofocus aribute to your HTML markup

2. Detect whether the browser supports the autofocus aribute, and only run your own

autofocus script if the browser doesn’t support autofocus natively.

↶↶ Autofocus with fallback Autofocus with fallback

<form name="f">
<input id="q" autofocus>
<script>
if (!("autofocus" in document.createElement("input"))) {
document.getElementById("q").focus();
}
</script>
<input type="submit" value="Go">
</form>

diveintohtml5.org A FORM OF MADNESS

…

See an example of autofocus with fallba.

SETTING FOCUS AS EARLY AS POSSIBLESETTING FOCUS AS EARLY AS POSSIBLE

Lots of web pages wait until window.onload fires to set focus. But the window.onload
event doesn’t fire until aer all your images have loaded. If your page has a lot of images,

su a naive script could potentially re-focus the field aer the user has started interacting

with another part of your page. is is why power users hate autofocus scripts.

e example in the previous section placed the auto-focus script immediately aer the form

field that it references. is is the optimal solution, but it may offend your sensibilities to put

a blo of JavaScript code in the middle of your page. (Or, more mundanely, your ba-end

systems may just not be that flexible.) If you can’t insert a script in the middle of your page,

you should set focus during a custom event like jery’s $(document).ready() instead of

window.onload.

↶↶ Autofocus with jQuery fallback Autofocus with jQuery fallback

<head>
<script src=jquery.min.js></script>
<script>
$(document).ready(function() {
if (!("autofocus" in document.createElement("input"))) {
$("#q").focus();
}
});
</script>
</head>
<body>
<form name="f">
<input id="q" autofocus>
<input type="submit" value="Go">
</form>

diveintohtml5.org A FORM OF MADNESS

See an example of autofocus with jery fallba.

jery fires its custom ready event as soon as the page DOM is available — that is, it waits

until the page text is loaded, but it doesn’t wait until all the images are loaded. is is not an

optimal approa — if the page is unusually large or the network connection is unusually

slow, a user could still start interacting with the page before your focus script executes. But it

is still far beer than waiting until the window.onload event fires.

If you are willing and able to insert a single script statement in your page markup, there is a

middle ground that is less offensive than the first option and more optimal than the second.

You can use jery’s custom events to define your own event, say autofocus_ready. en

you can trigger this event manually, immediately aer the autofocus form field is available.

anks to E. M. Sternberg for teaing me about this tenique.

↶↶ Autofocus with a custom event Autofocus with a custom event

fallbackfallback

<head>
<script src=jquery.min.js></script>
<script>
$(document).bind('autofocus_ready', function() {
if (!("autofocus" in document.createElement("input"))) {
$("#q").focus();
}
});
</script>
</head>
<body>
<form name="f">
<input id="q" autofocus>
<script>$(document).trigger('autofocus_ready');</script>
<input type="submit" value="Go">
</form>

See an example of autofocus with a custom event fallba .
diveintohtml5.org A FORM OF MADNESS

is is as optimal as the first approa; it will set focus to the form field as soon as

tenically possible, while the text of the page is still loading. But it transfers the bulk of

your application logic (focusing the form field) out of the body of the page and into the head.

is example relies on jery, but the concept of custom events is not unique to jery.

Other JavaScript libraries like YUI and Dojo offer similar capabilities.

To sum up:

Seing focus properly is important.

If at all possible, let the browser do it by seing the autofocus aribute on the form

field you want to have focus.

If you code a fallba for older browsers, detect support for the autofocus aribute to

make sure your fallba is only executed in older browsers.

Set focus as early as possible. Insert the focus script into your markup immediately aer

the form field. If that offends you, use a JavaScript library that supports custom events,

and trigger a custom event immediately aer the form field markup. If that’s not

possible, use something like jery’s $(document).ready() event.

Under no circumstances should you wait until window.onload to set focus.

❧❧

EMAIL ADDRESSESEMAIL ADDRESSES

For over a decade, web forms comprised just a few kinds of fields. e most common kinds

were

Field Type HTML Code Notes

ebox <input type="checkbox"> can be toggled on or off

radio buon <input type="radio"> can be grouped with other inputs

password field <input type="password"> eos dots instead of aracters as you type

drop-down lists <select><option>…
file pier <input type="file"> pops up an “open file” dialog

diveintohtml5.org A FORM OF MADNESS

submit buon <input type="submit">
plain text <input type="text"> the type aribute can be omied

All of these input types still work in HTML5. If you’re “upgrading to HTML5” (perhaps by

anging your DOCTYPE), you don’t need to make a single ange to your web forms.

Hooray for baward compatibility!

However, HTML5 defines 13 new field types, and for reasons that will become clear in a

moment, there is no reason not to start using them.

e first of these new input types is for email addresses. It looks like this:

<form>
<input type="email">
<input type="submit" value="Go">
</form>

I was about to write a sentence that started with “in browsers that don’t support

type="email"…” but I stopped myself. Why? Because I’m not sure what it would mean to

say that a browser doesn’t support type="email". All browsers “support” type="email".

ey may not do anything special with it (you’ll see a few examples of special treatment in a

moment), but browsers that don’t recognize type="email" will treat it as type="text"
and render it as a plain text field.

I can not emphasize how important this is. e web has millions of forms that ask you to

enter an email address, and all of them use <input type="text">. You see a text box,

you type your email address in the text box, and that’s that. Along comes HTML5, whi

defines type="email". Do browsers freak out? No. Every single browser on Earth treats an

unknown type aribute as type="text" — even IE 6. So you can “upgrade” your web

forms to use type="email" right now.

What would it mean to say that a browser DID support type="email"? Well, it can mean

any number of things. e HTML5 specification doesn’t mandate any particular user interface

for the new input types. Opera styles the form field with a small email icon. Other HTML5

browsers like Safari and Chrome simply render it as a text box — exactly like type="text"
— so your users will never know the difference (unless they view-source).

diveintohtml5.org A FORM OF MADNESS

And then there’s the iPhone.

e iPhone does not have a physical keyboard. All “typing” is done by tapping on an on-

screen keyboard that pops up at appropriate times, like when you focus a form field in a web

page. Apple did something clever in the iPhone’s web browser. It recognizes several of the

new HTML5 input types, and dynamically anges the on-screen keyboard to optimize for

that kind of input.

For example, email addresses are text, right? Sure, but they’re a special kind of text. For

example, virtually all email addresses contain the @ sign and at least one period (.), but

they’re unlikely to contain any spaces. So when you use an iPhone and focus an <input
type="email"> element, you get an on-screen keyboard that contains a smaller-than-usual

space bar, plus dedicated keys for the @ and . aracters.

Test type="email" for yourself.

To sum up: there’s no downside to converting all your email address form fields to

type="email" immediately. Virtually no one will even notice, except iPhone users, who

probably won’t notice either. But the ones who do notice will smile quietly and thank you for

making their web experience just a lile easier.

❧❧
diveintohtml5.org A FORM OF MADNESS

WEB ADDRESSESWEB ADDRESSES

Web addresses — whi standards wonks call URLs, except for a few pedants whi call them

URIs — are another type of specialized text. e syntax of a web address is constrained by the

relevant Internet standards. If someone asks you to enter a web address into a form, they’re

expecting something like “http://www.google.com/”, not “125 Farwood Road.” Forward

slashes are common — even Google’s home page has three of them. Periods are also common,

but spaces are forbidden. And every web address has a domain suffix like “.com” or “.org”.

Behold… (drum roll please)… <input type="url">. On the iPhone, it looks like this:

Test type="url" for yourself.

e iPhone altered its virtual keyboard, just like it did for email addresses, but now optimized

for web addresses instead. e space bar has been completely replaced with three virtual keys:

a period, a forward slash, and a “.com” buon. (You can long-press the “.com” buon to

oose other common suffixes like “.org” or “.net”.)

Browsers that don’t support HTML5 will treat type="url" exactly like type="text", so

there’s no downside to using it for all your web-address-inpuing needs.

diveintohtml5.org A FORM OF MADNESS

❧❧

NUMBERS AS SPINBOXESNUMBERS AS SPINBOXES

Next up: numbers. Asking for a number is triier than asking for an email address or web

address. First of all, numbers are more complicated than you might think. i: pi a

number. -1? No, I meant a number between 1 and 10. 7½? No no, not a fraction, silly. π?

Now you’re just being irrational.

My point is, you don’t oen ask for “just a number.” It’s more likely that you’ll ask for a

number in a particular range. You may only want certain kinds of numbers within that range

— maybe whole numbers but not fractions or decimals, or something more esoteric like

numbers divisible by 10. HTML5 has you covered.

↶↶ Pick a number, (almost) any number Pick a number, (almost) any number

<input type="number"
min="0"
max="10"
step="2"
value="6">

Let’s take that one aribute at a time. (You can follow along with a live example if you like.)

type="number" means that this is a number field.

min="0" specifies the minimum acceptable value for this field.

max="10" is the maximum acceptable value.

step="2", combined with the min value, defines the acceptable numbers in the range:

0, 2, 4, and so on, up to the max value.

value="6" is the default value. is should look familiar. It’s the same aribute name

you’ve always used to specify values for form fields. (I mention it here to drive home

the point that HTML5 builds on previous versions of HTML. You don’t need to relearn

how to do stuff you’re already doing.)

diveintohtml5.org A FORM OF MADNESS

at’s the markup side of a number field. Keep in mind that all of those aributes are

optional. If you have a minimum but no maximum, you can specify a min aribute but no

max aribute. e default step value is 1, and you can omit the step aribute unless you

need a different step value. If there’s no default value, then the value aribute can be the

empty string or even omied altogether.

But HTML5 doesn’t stop there. For the same low, low price of free, you get these handy

JavaScript methods as well:

input.stepUp(n) increases the field’s value by n.

input.stepDown(n) decreases the field’s value by n.

input.valueAsNumber returns the current value as a floating point number. (e

input.value property is always a string.)

Having trouble visualizing it? Well, the exact interface of a number control is up to your

browser, and different browser vendors have implemented support in different ways. On the

iPhone, where input is difficult to begin with, the browser once again optimizes the virtual

keyboard for numeric input.

In the desktop version of Opera, the same type="number" field is rendered as a “spinbox”

control, with lile up and down arrows that you can cli to ange the value.

diveintohtml5.org A FORM OF MADNESS

Opera respects the min, max, and step aributes, so you’ll always end up with an acceptable

numeric value. If you bump up the value to the maximum, the up arrow in the spinbox is

greyed out.

As with all the other input types I’ve discussed in this apter, browsers that don’t support

type="number" will treat it as type="text". e default value will show up in the field

(since it’s stored in the value aribute), but the other aributes like min and max will be

ignored. You’re free to implement them yourself, or you could reuse a JavaScript framework

that has already implemented spinbox controls. Just e for the native HTML5 support first,

like this:

if (!Modernizr.inputtypes.number) {
// no native support for type=number fields
// maybe try Dojo or some other JavaScript framework
}

❧❧

NUMBERS AS SLIDERSNUMBERS AS SLIDERS

Spinboxes are not the only way to represent numeric input. You’ve probably also seen “slider”

controls that look like this:

diveintohtml5.org A FORM OF MADNESS

Test type="range" for yourself.

You can now have slider controls in your web forms, too. e markup looks eerily similar to

spinbox controls:

↶↶ The spitting image The spitting image

<input type="range"
min="0"
max="10"
step="2"
value="6">

All the available aributes are the same as type="number" — min, max, step, value —

and they mean the same thing. e only difference is the user interface. Instead of a field for

typing, browsers are expected to render type="range" as a slider control. At time of

writing, the latest versions of Safari, Chrome, and Opera all do this. (Sadly, the iPhone renders

it as a simple text box. It doesn’t even optimize its on-screen keyboard for numeric input.)

All other browsers simply treat the field as type="text", so there’s no reason you can’t

start using it immediately.

❧❧

DATE PICKERSDATE PICKERS

HTML 4 did not include a date pier control. JavaScript frameworks have pied up the sla

(Dojo, jery UI, YUI, Closure Library), but of course ea of these solutions requires “buying

into” the framework on whi the date pier is built.

HTML5 finally defines a way to include a native date pier control without having to script

it yourself. In fact, it defines six: date, month, week, time, date + time, and date + time -

diveintohtml5.org A FORM OF MADNESS

timezone.

So far, support is… sparse.

DATE PICKER SUPPORTDATE PICKER SUPPORT

INPUT TYPEINPUT TYPE OPERAOPERA EVERY OTHER BROWSEREVERY OTHER BROWSER

type="date" 9.0+ ·
type="month" 9.0+ ·
type="week" 9.0+ ·
type="time" 9.0+ ·
type="datetime" 9.0+ ·
type="datetime-local" 9.0+ ·

is is how Opera renders <input type="date">:

If you need a time to go with that date, Opera also supports <input type="datetime">:

If you only need a month + year (perhaps a credit card expiration date), Opera can render a

<input type="month">:

diveintohtml5.org A FORM OF MADNESS

Less common, but also available, is the ability to pi a specific week of a year with <input
type="week">:

Last but not least, you can pi a time with <input type="time">:

It’s likely that other browsers will eventually support these input types. But just like

type="email" and the other input types, these form fields will be rendered as plain text

boxes in browsers that don’t recognize type="date" and the other variants. If you like, you

can simply use <input type="date"> and friends, make Opera users happy, and wait for

other browsers to cat up. More realistically, you can use <input type="date">, detect

whether the browser has native support for date piers, and fall ba to a scripted solution

of your oice (Dojo, jery UI, YUI, Closure Library, or some other solution).

↶↶ Date picker with fallback Date picker with fallback

<form>
<input type="date">
</form>

diveintohtml5.org A FORM OF MADNESS

<form>
<input name="q" type="search">
<input type="submit" value="Find">
</form>

...
<script>
var i = document.createElement("input");
i.setAttribute("type", "date");
if (i.type == "text") {
// No native date picker support :(
// Use Dojo/jQueryUI/YUI/Closure to create one,
// then dynamically replace that <input> element.
}
</script>

❧❧

SEARCH BOXESSEARCH BOXES

OK, this one is subtle. Well, the idea is simple enough, but the implementations may require

some explanation. Here goes…

Sear. Not just Google Sear or Yahoo Sear. (Well, those too.) ink of any sear box,

on any page, on any site. Amazon has a sear box. Newegg has a sear box. Most blogs

have a sear box. How are they marked up? <input type="text">, just like every other

text box on the web. Let’s fix that.

 ⇜ ⇜ New-age search New-age search

boxbox

Test <input type="search"> in your own browser . In some browsers, you won’t notice

any difference from a regular text box. But if you’re using Safari on Mac OS X, it will look

like this:

diveintohtml5.org A FORM OF MADNESS

Can you spot the difference? e input box has rounded corners! I know, I know, you can

hardly contain your excitement. But wait, there’s more! When you actually start typing into

the type="search" box, Safari inserts a small “x” buon on the right side of the box.

Cliing the “x” clears the contents of the field. (Google Chrome, whi shares mu

tenology with Safari under the hood, also exhibits this behavior.) Both of these small

tweaks are done to mat the look and feel of native sear boxes in iTunes and other Mac

OS X client applications.

Apple.com uses <input type="search"> for their site-sear box, to help give their site a

“Mac-like” feel. But there’s nothing Mac-specific about it. It’s just markup, so ea browser on

ea platform can oose to render it according to platform-specific conventions. As with all

the other new input types, browsers that don’t recognize type="search" will treat it like

type="text", so there is absolutely no reason not to start using type="search" for all

your sear boxes today.

PROFESSOR MARKUP SAYSPROFESSOR MARKUP SAYS

By default, Safari will not apply even the most

basic CSS styles to <input
type="search"> fields. If you want to force

Safari to treat your sear field like a normal

text field (so you can apply your own CSS

styles), add this rule to your stylesheet:

diveintohtml5.org A FORM OF MADNESS

input[type="search"]
{
-webkit-appearance:
textfield;
}

anks to John Lein for teaing me this tri.

❧❧

COLOR PICKERSCOLOR PICKERS

HTML5 also defines <input type="color">, whi lets you pi a color and returns the

color’s hexadecimal representation. No browser supports it yet, whi is a shame, because I’ve

always loved the Mac OS color pier . Maybe someday.

❧❧

FORM VALIDATIONFORM VALIDATION

FORM VALIDATION SUPPORTFORM VALIDATION SUPPORT

IEIE FIREFOXFIREFOX SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID
· 4.0+ 5.0+ 6.0+ 9.0+ · ·

In this apter, I’ve talked about new input types and new features like auto-focus form fields,

but I haven’t mentioned what is perhaps the most exciting part of HTML5 forms: automatic

input validation. Consider the common problem of entering an email address into a web

diveintohtml5.org A FORM OF MADNESS

form. You probably have some client-side validation in JavaScript, followed by server-side

validation in PHP or Python or some other server-side scripting language. HTML5 can never

replace your server-side validation, but it might someday replace your client-side validation.

ere are two big problems with validating email addresses in JavaScript:

1. A surprising number of your visitors (probably around 10%) won’t have JavaScript

enabled

2. You’ll get it wrong

Seriously, you’ll get it wrong. Determining whether a random string of aracters is a valid

email address is unbelievably complicated. e harder you look, the more complicated it gets.

Did I mention it’s really, really complicated? Wouldn’t it be easier to offload the entire

headae to your browser?

Opera validates type=“email” Opera validates type=“email” ↷↷

at screenshot is from Opera 10, although the functionality has been present since Opera 9.

e only markup involved is seing the type aribute to "email". When an Opera user

tries to submit a form with an <input type="email"> field, Opera automatically offers

RFC-compliant email validation, even if scripting is disabled.

HTML5 also offers validation of web addresses entered into <input type="url"> fields,

and numbers in <input type="number"> fields. e validation of numbers even takes into

account the min and max aributes, so browsers will not let you submit the form if you

enter a number that is too large.

diveintohtml5.org A FORM OF MADNESS

ere is no markup required to activate HTML5 form validation; it is on by default. To turn it

off, use the novalidate aribute.

Don’t validate me Don’t validate me ↷↷
<form novalidate>
<input type="email" id="addr">
<input type="submit" value="Subscribe">
</form>

Browsers are slowly implementing support for HTML5 form validation. Firefox 4 will have

complete support. Unfortunately, Safari and Chrome have shipped an incomplete

implementation that may trip you up: they validate form controls, but they don’t offer any

visible feedba when a form field fails validation. In other words, if you enter an invalid (or

improperly formaed) date in a type="date" field, Safari and Chrome will not submit the

form, but they won’t tell you why they didn’t submit the form. (ey will set focus to the

field that contains the invalid value, but they don’t display an error message like Opera or

Firefox 4.)

❧❧

REQUIRED FIELDSREQUIRED FIELDS

<INPUT REQUIRED> SUPPORT<INPUT REQUIRED> SUPPORT

IEIE FIREFOXFIREFOX SAFARISAFARI CHROMECHROME OPERAOPERA IPHONEIPHONE ANDROIDANDROID
· 4.0+ · · 9.0+ · ·

HTML5 form validation isn’t limited to the type of ea field. You can also specify that

certain fields are required. Required fields must have a value before you can submit the form.

e markup for required fields is as simple as can be:

<form>

diveintohtml5.org A FORM OF MADNESS

<input id="q" required>
<input type="submit" value="Search">
</form>

Test <input required> in your own browser . Browsers may alter the default appearance

of required fields. For example, this is what a required field looks like in Mozilla Firefox 4.0:

Furthermore, if you aempt to submit the form without filling in the required value, Firefox

will pop up an infobar telling you that the field is mandatory and can not be le blank.

❧❧

FURTHER READINGFURTHER READING

Specifications and standards:

<input> types

the <input placeholder> aribute

the <input autofocus> aribute

the <form novalidate> aribute

e <input required> aribute

HTML5 Forms in Mozilla Firefox 4.0+

JavaScript libraries:

Modernizr, an HTML5 detection library

Useful articles:
diveintohtml5.org A FORM OF MADNESS

Forward inking Form Validation

❧❧

is has been “A Form of Madness.” e full table of contents has more if you’d like to keep

reading.

DID YOU KNOW?DID YOU KNOW?

In association with Google Press, O’Reilly is

distributing this book in a variety of formats, including

paper, ePub, Mobi, and DRM-free PDF. e paid

edition is called “HTML5: Up & Running,” and it is

available now. is apter is included in the paid

edition.

If you liked this apter and want to show your

appreciation, you can buy “HTML5: Up & Running”

with this affiliate link or buy an electronic edition

directly from O’Reilly. You’ll get a book, and I’ll get a

bu. I do not currently accept direct donations.

Copyright MMIX–MMX Mark Pilgrim

powered by Google™ Search

diveintohtml5.org A FORM OF MADNESS

You are here: Home ‣ Dive Into HTML5 ‣

№№1010. .
“DISTRIBUTED,”“DISTRIBUTED,”
“EXTENSIBILITY,”“EXTENSIBILITY,”

&&
OTHER FANCY WORDSOTHER FANCY WORDS

show table of contents

❧❧

DIVING INDIVING IN

here are over 100 elements in HTML5. Some are purely semantic, others are

just containers for scripted APIs. roughout the history of HTML, standards

wonks have argued about whi elements should be included in the language.

Should HTML include a <figure> element? A <person> element? How

about a <rant> element? Decisions are made, specs are wrien, authors author, implementors

implement, and the web lures ever forward.

Of course, HTML can’t please everyone. No standard can. Some ideas don’t make the cut. For

example, there is no <person> element in HTML5. (ere’s no <rant> element either, damn

it!) ere’s nothing stopping you from including a <person> element in a web page, but it

won’t validate, it won’t work consistently across browsers , and it might conflict with future
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

HTML specs if we want to add it later.

Right, so if making up your own elements isn’t the answer, what’s a semantically inclined

web author to do? ere have been aempts to extend previous versions of HTML. e most

popular method is microformats, whi uses the class and rel aributes in HTML 4.

Another option is RDFa, whi was originally designed to be used in XHTML but is now

being ported to HTML as well.

Microformats and RDFa ea have their strengths and weaknesses. ey take radically

different approaes towards the same goal: extending web pages with additional semantics

that are not part of the core HTML language. I don’t intend to turn this apter into a format

flamewar. (at would definitely require a <rant> element!) Instead, I want to focus on a

third option whi is part of, and tightly integrated into, HTML5 itself: microdata.

❧❧

WHAT IS MICRODATA?WHAT IS MICRODATA?

Ea word in the following sentence is important, so pay aention.

PROFESSOR MARKUP SAYSPROFESSOR MARKUP SAYS

Microdata annotates the DOM with scoped name/value pairs

from custom vocabularies.

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

Now what does that mean? Let’s start from the end and work bawards. Microdata centers

around custom vocabularies. ink of “the set of all HTML5 elements” as one vocabulary. is

vocabulary includes elements to represent a section or an article , but it doesn’t include

elements to represent a person or an event. If you want to represent a person on a web page,

you’ll need to define your own vocabulary. Microdata lets you do this. Anyone can define a

microdata vocabulary and start embedding custom properties in their own web pages.

e next thing to know about microdata is that it works with name/value pairs. Every

microdata vocabulary defines a set of named properties. For example, a Person vocabulary

could define properties like name and photo. To include a specific microdata property on

your web page, you provide the property name in a specific place. Depending on where you

declare the property name, microdata has rules about how to extract the property value. (More

on this in the next section.)

Along with named properties, microdata relies heavily on the concept of “scoping.” e

simplest way to think of microdata scoping is to think about the natural parent-ild

relationship of elements in the DOM. e <html> element usually contains two ildren,

<head> and <body>. e <body> element usually contains multiple ildren, ea of whi

may have ild elements of their own. For example, your page might include an <h1>
element within an <hgroup> element within a <header> element within the <body>
element. A data table might contain <td> within <tr> within <table> (within <body>).

Microdata re-uses the hierarical structure of the DOM itself to provide a way to say “all the

properties within this element are taken from this vocabulary.” is allows you to use more

than one microdata vocabulary on the same page. You can even nest microdata vocabularies

within other vocabularies, all by re-using the natural structure of the DOM. (I’ll show multiple

examples of nested vocabularies throughout this apter.)

Now, I’ve already toued on the DOM, but let me elaborate on that. Microdata is about

applying additional semantics to data that’s already visible on your web page . Microdata is

not designed to be a standalone data format. It’s a complement to HTML. As you’ll see in the

next section, microdata works best when you’re already using HTML correctly, but the HTML

vocabulary isn’t quite expressive enough. Microdata is great for fine-tuning the semantics of

data that’s already in the DOM. If the data you’re semanti-fying isn’t in the DOM, you

should step ba and re-evaluate whether microdata is the right solution.

Does this sentence make more sense now? “Microdata annotates the DOM with scoped

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

name/value pairs from custom vocabularies.” I hope so. Let’s see it in action.

❧❧

THE MICRODATA DATA MODELTHE MICRODATA DATA MODEL

Defining your own microdata vocabulary is easy. First, you need a namespace, whi is just a

URL. e namespace URL could actually point to a working web page, although that’s not

strictly required. Let’s say I want to create a microdata vocabulary that describes a person. If I

own the data-vocabulary.org domain, I’ll use the URL http://data-
vocabulary.org/Person as the namespace for my microdata vocabulary. at’s an easy

way to create a globally unique identifier: pi a URL on a domain that you control.

In this vocabulary, I need to define some named properties. Let’s start with three basic

properties:

name (your full name)

photo (a link to a picture of you)

url (a link to a site associated with you, like a weblog or a Google profile)

Some of these properties are URLs, others are plain text. Ea of them lends itself to a natural

form of markup, even before you start thinking about microdata or vocabularies or whatnot.

Imagine that you have a profile page or an “about” page. Your name is probably marked up as

a heading, like an <h1> element. Your photo is probably an element, since you want

people to see it. And any URLs associated your profile are probably already marked up as

hyperlinks, because you want people to be able to cli them. For the sake of discussion, let’s

say your entire profile is also wrapped in a <section> element to separate it from the rest

of the page content. us:

↶↶ It’s all about me It’s all about me

<section>
<h1>Mark Pilgrim</h1>
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

<p></p>
<p>weblog</p>
</section>

Microdata’s data model is name/value pairs. A microdata property name (like name or photo
or url in this example) is always declared on an HTML element. e corresponding property

value is then taken from the element’s DOM. For most HTML elements, the property value is

simply the text content of the element. But there are a handful of exceptions.

WHERE DO MICRODATA PROPERTY VALUES COME FROM?WHERE DO MICRODATA PROPERTY VALUES COME FROM?

Element Value

<meta> content aribute

<audio>
<embed>
<iframe>

<source>
<video>

src aribute

<a>
<area>
<link>

href aribute

<object> data aribute

<time> datetime aribute

all other elements text content

“Adding microdata” to your page is a maer of adding a few aributes to the HTML

elements you already have. e first thing you always do is declare whi microdata

vocabulary you’re using, by adding an itemtype aribute. e second thing you always do

is declare the scope of the vocabulary, using an itemscope aribute. In this example, all the

data we want to semanti-fy is in a <section> element, so we’ll declare the itemtype and

itemscope aributes on the <section> element.

<section itemscope itemtype="http://data-vocabulary.org/Person">

Your name is the first bit of data within the <section> element. It’s wrapped in an <h1>
element. e <h1> element doesn’t have any special processing in the HTML5 microdata data
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

model, so it falls under the “all other elements” rule where the microdata property value is

simply the text content of an element. (is would work equally well if your name was

wrapped in a <p>, <div>, or element.)

<h1 itemprop="name">Mark Pilgrim</h1>

In English, this says “here is the name property of the http://data-
vocabulary.org/Person vocabulary, and the value of the property is Mark Pilgrim.”

Next up: the photo property. is is supposed to be a URL. According to the HTML5

microdata data model, the “value” of an element is its src aribute. Hey look, the

URL of your profile photo is already in an aribute. All you need to do is

declare that the element is the photo property.

<p><img itemprop="photo"
src="http://www.example.com/photo.jpg"
alt="[me smiling]"></p>

In English, this says “here is the photo property of the http://data-
vocabulary.org/Person vocabulary, and the value of the property is

http://www.example.com/photo.jpg.

Finally, the url property is also a URL. According to the HTML5 microdata data model, the

“value” of an <a> element is its href aribute. And once again, this fits perfectly with your

existing markup. All you need to do is say that your existing <a> element is the url
property:

dive into mark

In English, this says “here is the url property of the http://data-
vocabulary.org/Person vocabulary, and the value of the property is

http://diveintomark.org/.

Of course, if your markup looks a lile different, that’s not a problem. You can add microdata

properties and values to any HTML markup, even really gnarly 20th-century-era, tables-for-

layout, Oh-God-why-did-I-agree-to-maintain-this markup. While I don’t recommend this kind

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

of markup, it is still common, and you can still add microdata to it.

↶↶ For the love of God, don’t do this For the love of God, don’t do this

<TABLE>
<TR><TD>Name<TD>Mark Pilgrim
<TR><TD>Link<TD>
http://diveintomark.org/
</TABLE>

For marking up the name property, just add an itemprop aribute on the table cell that

contains the name. Table cells have no special rules in the microdata property value table, so

they get the default value, “the microdata property is the text content.”

<TR><TD>Name<TD itemprop="name">Mark Pilgrim

Adding the url property looks triier. is markup doesn’t use the <a> element properly.

Instead of puing the link target in the href aribute, it has nothing useful in the href
aribute and uses Javascript in the onclick aribute to call a function (not shown) that

extracts the URL and navigates to it. For extra “holy fu, please stop doing that” bonus

points, let’s pretend that the function also opens the link in a tiny popup window with no

scroll bars. Wasn’t the internet fun last century?

Anyway, you can still convert this into a microdata property, you just need to be a lile

creative. Using the <a> element directly is out of the question. e link target isn’t in the

href aribute, and there’s no way to override the rule that says “in an <a> element, look for

the microdata property value in the href aribute.” But you can add a wrapper element

around the entire mess, and use that to add the url microdata property.

↶↶ This is what you get for subverting This is what you get for subverting

HTMLHTML

<TABLE itemscope itemtype="http://data-vocabulary.org/Person">
<TR><TD>Name<TD>Mark Pilgrim
<TR><TD>Link<TD>
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

http://diveintomark.org/

</TABLE>

Since the element has no special processing, it uses the default rule, “the microdata

property is the text content.” “Text content” doesn’t mean “all the markup inside this element”

(like you would get with, say, the innerHTML DOM property). It means “just the text,

ma’am.” In this case, http://diveintomark.org/, the text content of the <a> element

inside the element.

To sum up: you can add microdata properties to any markup. If you’re using HTML correctly,

you’ll find it easier to add microdata than if your HTML markup sus, but it can always be

done.

❧❧

MARKING UP PEOPLEMARKING UP PEOPLE

By the way, the starter examples in the previous section weren’t completely made up. ere

really is a microdata vocabulary for marking up information about people, and it really is that

easy. Let’s take a closer look.

e easiest way to integrate microdata into a personal website is on your “about” page. You

do have an “about” page, don’t you? If not, you can follow along as I extend this sample

“about” page with additional semantics. e final result is here: person-plus-microdata.html.

Let’s look at the raw markup first, before any microdata properties have been added:

<section>
<img width="204" height="250"
src="http://diveintohtml5.org/examples/2000_05_mark.jpg"
alt="[Mark Pilgrim, circa 2000]">

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

<h1>Contact Information</h1>
<dl>
<dt>Name</dt>
<dd>Mark Pilgrim</dd>

<dt>Position</dt>
<dd>Developer advocate for Google, Inc.</dd>

<dt>Mailing address</dt>
<dd>
100 Main Street

Anytown, PA 19999

USA
</dd>
</dl>
<h1>My Digital Footprints</h1>

weblog
Google
profile
Reddit.com
profile
Twitter

</section>

e first thing you always need to do is declare the vocabulary you’re using, and the scope of

the properties you want to add. You do this by adding the itemtype and itemscope
aributes on the outermost element that contains the other elements that contain the actual

data. In this case, that’s a <section> element.

<section itemscope itemtype="http://data-vocabulary.org/Person">

[Follow along! Before: person.html, aer: person-plus-microdata.html]

Now you can start defining microdata properties from the http://data-
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

vocabulary.org/Person vocabulary. But what are those properties? As it happens, you

can see the list of properties by navigating to data-vocabulary.org/Person in your browser. e

microdata specification does not require this, but I’d say it’s certainly a “best practice.” Aer

all, if you want developers to actually use your microdata vocabulary, you need to document

it. And where beer to put your documentation than the vocabulary URL itself?

PERSON VOCABULARYPERSON VOCABULARY

Property Description

name Name

nickname Niname

photo An image link

title e person’s title (for example, “Financial Manager”)

role e person’s role (for example, “Accountant”)

url Link to a web page, su as the person’s home page

affiliation e name of an organization with whi the person is associated (for

example, an employer)

friend Identifies a social relationship between the person described and another

person

contact Identifies a social relationship between the person described and another

person

acquaintance Identifies a social relationship between the person described and another

person

address e location of the person. Can have the subproperties street-address,

locality, region, postal-code, and country-name.

e first thing in this sample “about” page is a picture of me. Naturally, it’s marked up with

an element. To declare that this element is my profile picture, all we need to

do is add itemprop="photo" to the element.

<img itemprop="photo" width="204" height="250"
src="http://diveintohtml5.org/examples/2000_05_mark.jpg"
alt="[Mark Pilgrim, circa 2000]">

[Follow along! Before: person.html, aer: person-plus-microdata.html]

Where’s the microdata property value? It’s already there, in the src aribute. If you recall
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

Boring Boring ⇝⇝

from the HTML5 microdata data model, the “value” of an element is its src aribute.

Every element has a src aribute — otherwise it would just be a broken image —

and the src is always a URL. See? If you’re using HTML correctly, microdata is easy.

Furthermore, this element isn’t alone on the page. It’s a ild element of the

<section> element, the one we just declared with the itemscope aribute. Microdata

reuses the parent-ild relationship of elements on the page to define the scoping of microdata

properties. In plain English, we’re saying, “is <section> element represents a person. Any

microdata properties you might find on the ildren of the <section> element are

properties of that person.” If it helps, you can think of the <section> element has the

subject of a sentence. e itemprop aribute represents the verb of the sentence, something

like “is pictured at.” e microdata property value represents the object of the sentence.

is person [explicit, from <section itemscope itemtype="...">]

is pictured at [explicit, from]

http://diveintohtml5.org/examples/2000_05_mark.jpg [implicit, from

 aribute]

e subject only needs to be defined once, by puing itemscope and itemtype aributes

on the outermost <section> element. e verb is defined by puing the

itemprop="photo" aribute on the element. e object of the sentence doesn’t

need any special markup at all, because the HTML5 microdata data model says that the

property value of an element is its src aribute.

Moving on to the next bit of markup, we see an <h1> header and the beginnings of a <dl>
list. Neither the <h1> nor the <dl> need to be marked up with microdata. Not every piece of

HTML needs to be a microdata property. Microdata is about the properties themselves, not the

markup or headers surrounding the properties. is <h1> isn’t a property; it’s just a header.

Similarly, the <dt> that says “Name” isn’t a property; it’s just a label.

↶↶ Boring Boring

<h1>Contact Information</h1>
<dl>

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

Boring Boring ⇝⇝ <dt>Name</dt>
<dd>Mark Pilgrim</dd>

So where is the real information? It’s in the <dd> element, so that’s where we need to put the

itemprop aribute. Whi property is it? It’s the name property. Where is the property

value? It’s the text within the <dd> element. Does that need to be marked up? the HTML5

microdata data model says no, <dd> elements have no special processing, so the property

value is just the text within the element.

↶↶ That’s my name, don’t wear it out That’s my name, don’t wear it out

<dd itemprop="name">Mark Pilgrim</dd>

[Follow along! Before: person.html, aer: person-plus-microdata.html]

What did we just say, in English? “is person’s name is Mark Pilgrim.” Well OK then.

Onward.

e next two properties are a lile triy. is is the markup, pre-microdata:

<dt>Position</dt>
<dd>Developer advocate for Google, Inc.</dd>

If you look at the definition of the Person vocabulary, the text “Developer advocate for

Google, Inc.” actually encompasses two properties: title (“Developer advocate”) and

affiliation (“Google, Inc.”). How can you express that in microdata? e short answer is,

you can’t. Microdata doesn’t have a way to break up runs of text into separate properties. You

can’t say “the first 18 aracters of this text is one microdata property, and the last 12

aracters of this text is another microdata property.”

But all is not lost. Imagine that you wanted to style the text “Developer advocate” in a

different font from the text “Google, Inc.” CSS can’t do that either. So what would you do?

You would first need to wrap the different bits of text in dummy elements, like , then

apply different CSS rules to ea element.

is tenique is also useful for microdata. ere are two distinct pieces of information here:

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

a title and an affiliation. If you wrap ea piece in a dummy element, you

can declare that ea is a separate microdata property.

<dt>Position</dt>
<dd>Developer advocate for
Google, Inc.</dd>

[Follow along! Before: person.html, aer: person-plus-microdata.html]

Tada! “is person’s title is 'Developer advocate.' is person is employed by Google, Inc.” Two

sentences, two microdata properties. A lile more markup, but a worthwhile tradeoff.

e same tenique is useful for marking up street addresses. e Person vocabulary defines

an address property, whi itself is a microdata item. at means the address has its own

vocabulary (http://data-vocabulary.org/Address) and defines its own properties. e

Address vocabulary defines 5 properties: street-address, locality, region, postal-
code, and country-name.

If you’re a programmer, you are probably familiar with dot notation to define objects and

their properties. ink of the relationship like this:

Person
Person.address
Person.address.street-address
Person.address.locality
Person.address.region
Person.address.postal-code
Person.address.country-name

In this example, the entire street address is contained in a single <dd> element. (Once again,

the <dt> element is just a label, so it plays no role in adding semantics with microdata.)

Notating the address property is easy. Just add an itemprop aribute on the <dd>
element.

<dt>Mailing address</dt>
<dd itemprop="address">

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

[Follow along! Before: person.html, aer: person-plus-microdata.html]

But remember, the address property is itself a microdata item. at means we need to add the

itemscope and itemtype aributes too.

<dt>Mailing address</dt>
<dd itemprop="address" itemscope
itemtype="http://data-vocabulary.org/Address">

[Follow along! Before: person.html, aer: person-plus-microdata.html]

We’ve seen all of this before, but only for top-level items. A <section> element defines

itemtype and itemscope, and all the elements within the <section> element that define

microdata properties are “scoped” within that specific vocabulary. But this is the first time

we’ve seen nested scopes — defining a new itemtype and itemscope (on the <dd>
element) within an existing one (on the <section> element). is nested scope works

exactly like the HTML DOM. e <dd> element has a certain number of ild elements, all

of whi are scoped to the vocabulary defined on the <dd> element. Once the <dd> element

is closed with a corresponding </dd> tag, the scope reverts to the vocabulary defined by the

parent element (<section>, in this case).

e properties of the Address suffer the same problem we encountered with the title and

affiliation properties. ere’s just one long run of text, but we want to break it up into

five separate microdata properties. e solution is the same: wrap ea distinct piece of

information in a dummy element, then declare microdata properties on ea
element.

<dd itemprop="address" itemscope
itemtype="http://data-vocabulary.org/Address">
100 Main Street

Anytown,
PA
19999
USA
</dd>
</dl>

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

☞

[Follow along! Before: person.html, aer: person-plus-microdata.html]

In English: “is person has a mailing address. e street address part of the mailing address

is '100 Main Street.' e locality part is 'Anytown.' e region is 'PA.' e postal code is '19999.'

e country name is 'USA.'” Easy peasy.

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: Is this mailing address format US-specific?

A: No. e properties of the Address

vocabulary are generic enough that they can

describe most mailing addresses in the world.

Not all addresses will have values for every

property, but that’s OK. Some addresses might

require fiing more than one “line” into a

single property, but that’s OK too. For

example, if your mailing address has a street

address and a suite number, they would both

go into the street-address subproperty:

<p itemprop="address" itemscope
itemtype="http://data-
vocabulary.org/Address">

100 Main Street
Suite 415

...
</p>

ere’s one more thing on this sample “about” page: a list of URLs. e Person vocabulary

has a property for this, called url. A url property can be anything, really. (Well, it has to be
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

a URL, but you probably guessed that.) What I mean is that the url property is loosely

defined. e property can be any sort of URL that you want to associate with a Person: a

weblog, a photo gallery, or a profile on another site like Facebook or Twier.

e other important thing to note here is that a single Person can have multiple url
properties. Tenically, any property can appear more than once, but until now, we haven’t

taken advantage of that. For example, you could have two photo properties, ea pointing to

a different image URL. Here, I want to list four different URLs: my weblog, my Google

profile page, my user profile on Reddit, and my Twier account. In HTML, that’s a list of

links: four <a> elements, ea in their own element. In microdata, ea <a> element

gets an itemprop="url" aribute.

<h1>My Digital Footprints</h1>

<a href="http://diveintomark.org/"
itemprop="url">weblog
<a href="http://www.google.com/profiles/pilgrim"
itemprop="url">Google profile
<a href="http://www.reddit.com/user/MarkPilgrim"
itemprop="url">Reddit.com profile
<a href="http://www.twitter.com/diveintomark"
itemprop="url">Twitter

According to the HTML5 microdata data model, <a> elements have special processing. e

microdata property value is the href aribute, not the ild text content. e text of ea

link is actually ignored by a microdata processor. us, in English, this says “is person has

a URL at http://diveintomark.org/. is person has another URL at

http://www.google.com/profiles/pilgrim. is person has another URL at

http://www.reddit.com/user/MarkPilgrim. is person has another URL at

http://www.twitter.com/diveintomark.”

INTRODUCING GOOGLE RICH SNIPPETSINTRODUCING GOOGLE RICH SNIPPETS

I want to step ba for just a moment and ask, “Why are we doing this?” Are we adding

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

semantics just for the sake of adding semantics? Don’t get me wrong; I enjoy fiddling with

angle braets as mu as the next webhead. But why microdata? Why bother?

ere are two major classes of applications that consume HTML, and by extension, HTML5

microdata:

1. Web browsers

2. Sear engines

For browsers, HTML5 defines a set of DOM APIs for extracting microdata items, properties,

and property values from a web page. As I write this, no browser supports this API. Not a

single one. So that’s… kind of a dead end, at least until browsers cat up and implement the

client-side APIs.

e other major consumer of HTML is sear engines. What could a sear engine do with

microdata properties about a person? Imagine this: instead of simply displaying the page title

and an excerpt of text, the sear engine could integrate some of that structured information

and display it. Full name, job title, employer, address, maybe even a lile thumbnail of a

profile photo. Would that cat your aention? It would cat mine.

Google supports microdata as part of their Ri Snippets program. When Google’s web

crawler parses your page and finds microdata properties that conform to the http://data-
vocabulary.org/Person vocabulary, it parses out those properties and stores them

alongside the rest of the page data. Google even provides a handy tool to see how Google

“sees” your microdata properties. Testing it against our sample microdata-enabled “about”

page yields this output:

Item
Type: http://data-vocabulary.org/person
photo = http://diveintohtml5.org/examples/2000_05_mark.jpg
name = Mark Pilgrim
title = Developer advocate
affiliation = Google, Inc.
address = Item(1)
url = http://diveintomark.org/
url = http://www.google.com/profiles/pilgrim

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

url = http://www.reddit.com/user/MarkPilgrim
url = http://www.twitter.com/diveintomark

Item 1
Type: http://data-vocabulary.org/address
street-address = 100 Main Street
locality = Anytown
region = PA
postal-code = 19999
country-name = USA

It’s all there: the photo property from the aribute, all four URLs from the list

of <a href> aributes, even the address object (listed as “Item 1”) and all five of its

subproperties.

And how does Google use all of this information? at depends. ere’s no hard and fast

rules about how microdata properties should be displayed, whi ones should be displayed, or

whether they should be displayed at all. If someone seares for “Mark Pilgrim,” and Google

determines that this “about” page should rank in the results, and Google decides that the

microdata properties it originally found on that page are worth displaying, then the sear

result listing might look something like this:

About Mark Pilgrim
Anytown PA - Developer advocate - Google, Inc.
Excerpt from the page will show up here.
Excerpt from the page will show up here.
diveintohtml5.org/examples/person-plus-microdata.html - Cached - Similar pages

e first line, “About Mark Pilgrim,” is actually the title of the page, given in the <title>
element. at’s not terribly exciting; Google does that for every page. But the second line is

full of information taken directly from the microdata annotations we added to the page.

“Anytown PA” was part of the mailing address, marked up with the http://data-
vocabulary.org/Address vocabulary. “Developer advocate” and “Google, Inc.” were two

properties from the http://data-vocabulary.org/Person vocabulary (title and

affiliation, respectively).

is is really quite amazing. You don’t need to be a large corporation making special deals

with sear engine vendors to customize your sear result listings. Just take ten minutes and

add a couple of HTML aributes to annotate the data you were already publishing anyway.
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

☞

add a couple of HTML aributes to annotate the data you were already publishing anyway.

ASK PROFESSOR MARKUPASK PROFESSOR MARKUP

Q: I did everything you said, but my Google

sear result listing doesn’t look any different.

What gives?

A: “ Google does not guarantee that markup on

any given page or site will be used in sear

results.” But even if Google decides not to use

your microdata annotations, another sear

engine might. Like the rest of HTML5,

microdata is an open standard that anyone can

implement. It’s your job to provide as mu

data as possible. Let the rest of the world

decide what to do with it. ey might surprise

you!

❧❧

MARKING UP ORGANIZATIONSMARKING UP ORGANIZATIONS

Microdata isn’t limited to a single vocabulary. “About” pages are nice, but you probably only

have one of them. Still hungry for more? Let’s learn how to mark up organizations and

businesses.

Here is a sample page of business listings . Let’s look at the original HTML markup, without

microdata.

<article>
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

<h1>Google, Inc.</h1>
<p>
1600 Amphitheatre Parkway

Mountain View, CA 94043

USA
</p>
<p>650-253-0000</p>
<p>Google.com</p>
</article>

[Follow along! Before: organization.html, aer: organization-plus-microdata.html]

Short and sweet. All the information about the organization is contained within the

<article> element, so let’s start there.

<article itemscope itemtype="http://data-vocabulary.org/Organization"
>

As with marking up people, you need to set the itemscope and itemtype aributes on the

outermost element. In this case, the outermost element is an <article> element. e

itemtype aribute declares the microdata vocabulary you’re using (in this case,

http://data-vocabulary.org/Organization), and the itemscope aribute declares

that all of the properties you set on ild elements relate to this vocabulary.

So what’s in the Organization vocabulary? It’s simple and straightforward. In fact, some of it

should already look familiar.

ORGANIZATION VOCABULARYORGANIZATION VOCABULARY

Property Description

name e name of the organization (for example, “Inite”)

url Link to the organization’s home page

address e location of the organization. Can contain the subproperties street-address,

locality, region, postal-code, and country-name.

tel e telephone number of the organization

geo Specifies the geographical coordinates of the location. Always contains two

subproperties, latitude and longitude.

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

e first bit of markup within the outermost <article> element is an <h1>. is <h1>
element contains the name of a business, so we’ll put an itemprop="name" aribute

directly on the <h1> element.

<h1 itemprop="name">Google, Inc.</h1>

[Follow along! Before: organization.html, aer: organization-plus-microdata.html]

According to the HTML5 microdata data model, <h1> elements don’t need any special

processing. e microdata property value is simply the text content of the <h1> element. In

English, we just said “the name of the Organization is 'Google, Inc.'”

Next up is a street address. Marking up the address of an Organization works exactly the

same way as marking up the address of a Person . First, add an itemprop="address"
aribute to the outermost element of the street address (in this case, a <p> element). at

states that this is the address property of the Organization. But what about the properties of

the address itself? We also need to define the itemtype and itemscope aributes to say

that this is an Address item that has its own properties.

<p itemprop="address" itemscope
itemtype="http://data-vocabulary.org/Address">

[Follow along! Before: organization.html, aer: organization-plus-microdata.html]

Finally, we need to wrap ea distinct piece of information in a dummy element so

we can add the appropriate microdata property name (street-address, locality,

region, postal-code, and country-name) on ea element.

<p itemprop="address" itemscope
itemtype="http://data-vocabulary.org/Address">
1600 Amphitheatre Parkway

Mountain View,
CA
94043

USA
</p>
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

[Follow along! Before: organization.html, aer: organization-plus-microdata.html]

In English, we just said “is organization has an address. e street address part is '1600

Amphitheatre Parkway'. e locality is 'Mountain View'. e region part is 'CA'. e postal

code is '94043'. e name of the country is 'USA'.”

Next up: a telephone number for the Organization. Telephone numbers are notoriously triy,

and the exact syntax is country-specific. (And if you want to call another country, it’s even

worse.) In this example, we have a United States telephone number, in a format suitable for

calling from elsewhere in the United States.

<p itemprop="tel">650-253-0000</p>

[Follow along! Before: organization.html, aer: organization-plus-microdata.html]

(Hey, in case you didn’t notice, the Address vocabulary went out of scope when its <p>
element was closed. Now we’re ba to defining properties in the Organization vocabulary.)

If you want to list more than one telephone number — maybe one for United States

customers and one for international customers — you can do that. Any microdata property can

be repeated. Just make sure ea telephone number is in its own HTML element, separate

from any label you may give it.

<p>
US customers: 650-253-0000

UK customers: 00 + 1* + 6502530000
</p>

According to the HTML5 microdata data model, neither the <p> element nor the
element have special processing. e value of the microdata tel property is simply the text

content. e Organization microdata vocabulary makes no aempt to subdivide the different

parts of a telephone number. e entire tel property is just free-form text. If you want to

put the area code in parentheses, or use spaces instead of dashes to separate the numbers, you

can do that. If a microdata-consuming client wants to parse the telephone number, that’s

entirely up to them.

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

Next, we have another familiar property: url. Just like associating a URL with a Person, you

can associate a URL with an Organization. is could be the company’s home page, a contact

page, product page, or anything else. If it’s a URL about, from, or belonging to the

Organization, mark it up with an itemprop="url" aribute.

<p>Google.com</p>

[Follow along! Before: organization.html, aer: organization-plus-microdata.html]

According to the HTML5 microdata data model, the <a> element has special processing. e

microdata property value is the value of the href aribute, not the link text. In English, this

says “this organization is associated with the URL http://www.google.com/.” It doesn’t

say anything more specific about the association, and it doesn’t include the link text

“Google.com.”

Finally, I want to talk about geolocation. No, not the W3C Geolocation API. is is about

how to mark up the physical location for an Organization, using microdata.

To date, all of our examples have focused on marking up visible data. at is, you have an

<h1> with a company name, so you add an itemprop aribute to the <h1> element to

declare that the (visible) header text is, in fact, the name of an Organization. Or you have an

 element that points to a photo, so you add an itemprop aribute to the
element to declare that the (visible) image is a photo of a Person.

In this example, geolocation information isn’t like that. ere is no visible text that gives the

exact latitude and longitude (to four decimal places!) of the Organization. In fact, the

organization.html example (without microdata) has no geolocation information at all. It has a

link to Google Maps, but even the URL of that link does not contain latitude and longitude

coordinates. (It contains similar information in a Google-specific format.) But even if we had

a link to a hypothetical online mapping service that did take latitude and longitude

coordinates as URL parameters, microdata has no way of separating out the different parts of

a URL. You can’t declare that the first URL query parameter is the latitude and the second

URL query parameter is the longitude and the rest of the query parameters are irrelevant.

To handle edge cases like this, HTML5 provides a way to annotate invisible data. is

tenique should only be used as a last resort. If there is a way to display or render the data

you care about, you should do so. Invisible data that only maines can read tends to “go
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

stale” quily. at is, someone will come along later and update the visible text but forget to

update the invisible data. is happens more oen than you think, and it will happen to you

too.

Still, there are cases where invisible data is unavoidable. Perhaps your boss really wants

maine-readable geolocation information but doesn’t want to cluer up the interface with

pairs of incomprehensible six-digit numbers. Invisible data is the only option. e only saving

grace here is that you can put the invisible data immediately aer the visible text that it

describes, whi may help remind the person who comes along later and updates the visible

text that they need to update the invisible data right aer it.

In this example, we can create a dummy element within the same <article>
element as all the other Organization properties, then put the invisible geolocation data inside

the element.

<span itemprop="geo" itemscope
itemtype="http://data-vocabulary.org/Geo">
<meta itemprop="latitude" content="37.4149" />
<meta itemprop="longitude" content="-122.078" />

</article>

[Follow along! Before: organization.html, aer: organization-plus-microdata.html]

Geolocation information is defined in its own vocabulary, like the address of a Person or

Organization. erefore, this element needs three aributes:

1. itemprop="geo" says that this element represents the geo property of the surrounding

Organization

2. itemtype="http://data-vocabulary.org/Geo" says whi microdata vocabulary

this element’s properties conform to

3. itemscope says that this element is the enclosing element for a microdata item with

its own vocabulary (given in the itemtype aribute). All the properties within this

element are properties of http://data-vocabulary.org/Geo, not the surrounding

http://data-vocabulary.org/Organization.

e next big question that this example answers is, “How do you annotate invisible data?”
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

You use the <meta> element. In previous versions of HTML, you could only use the <meta>
element within the <head> of your page. In HTML5, you can use the <meta> element

anywhere. And that’s exactly what we’re doing here.

<meta itemprop="latitude" content="37.4149" />

[Follow along! Before: organization.html, aer: organization-plus-microdata.html]

According to the HTML5 microdata data model, the <meta> element has special processing.

e microdata property value is the content aribute. Since this aribute is never visibly

displayed, we have the perfect setup for unlimited quantities of invisible data. With great

power comes great responsibility. In this case, the responsibility is on you to ensure that this

invisible data stays in sync with the visible text around it.

ere is no direct support for the Organization vocabulary in Google Ri Snippets, so I don’t

have any prey sample sear result listings to show you. But organizations feature heavily in

the next two case studies: events and reviews, and those are supported by Google Ri

Snippets.

❧❧

MARKING UP EVENTSMARKING UP EVENTS

Shit happens. Some shit happens at pre-determined times. Wouldn’t it be nice if you could

tell sear engines exactly when shit was about to happen? ere’s an angle braet for that.

Let’s start by looking at a sample sedule of my speaking engagements .

<article>
<h1>Google Developer Day 2009</h1>
<img width="300" height="200"
src="http://diveintohtml5.org/examples/gdd-2009-prague-pilgrim.jpg"
alt="[Mark Pilgrim at podium]">
<p>
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

Google Developer Days are a chance to learn about Google
developer products from the engineers who built them. This
one-day conference includes seminars and “office hours”
on web technologies like Google Maps, OpenSocial, Android,
AJAX APIs, Chrome, and Google Web Toolkit.
</p>
<p>
<time datetime="2009-11-06T08:30+01:00">2009 November 6, 8:30</time>
–
<time datetime="2009-11-06T20:30+01:00">20:30</time>
</p>
<p>
Congress Center

5th května 65

140 21 Praha 4

Czech Republic
</p>
<p><a
href="http://code.google.com/intl/cs/events/developerday/2009/home.htm
l">GDD/Prague home page</p>
</article>

[Follow along! Before: event.html, aer: event-plus-microdata.html]

All the information about the event is contained within the <article> element, so that’s

where we need to put the itemtype and itemscope aributes.

<article itemscope itemtype="http://data-vocabulary.org/Event">

[Follow along! Before: event.html, aer: event-plus-microdata.html]

e URL for the Event vocabulary is http://data-vocabulary.org/Event, whi also

happens to contain a nice lile art describing the vocabulary’s properties. And what are

those properties?

EVENT VOCABULARYEVENT VOCABULARY

Property Description

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

summary e name of the event

url Link to the event details page

location e location or venue of the event. Can optionally be represented by a

nested Organization or Address.

description A description of the event

startDate e starting date and time of the event in ISO date format

endDate e ending date and time of the event in ISO date format

duration e duration date of the event in ISO duration format

eventType e category of the event (for example, “Concert” or “Lecture”). is is a

freeform string, not an enumerated aribute.

geo Specifies the geographical coordinates of the location. Always contains two

subproperties, latitude and longitude.

photo A link to a photo or image related to the event

e event’s name is in an <h1> element. According to the HTML5 microdata data model,

<h1> elements have no special processing. e microdata property value is simply the text

content of the <h1> element. All we need to do is add the itemprop aribute to declare that

this <h1> element contains the name of the event.

<h1 itemprop="summary">Google Developer Day 2009</h1>

[Follow along! Before: event.html, aer: event-plus-microdata.html]

In English, this says, “e name of this event is Google Developer Day 2009.”

is event listing has a photo, whi can be marked up with the photo property. As you

would expect, the photo is already marked up with an element. Like the photo
property in the Person vocabulary, an Event photo is a URL. Since the HTML5 microdata data

model says that the property value of an element is its src aribute, the only thing

we need to do is add the itemprop aribute to the element.

<img itemprop="photo" width="300" height="200"
src="http://diveintohtml5.org/examples/gdd-2009-prague-pilgrim.jpg"
alt="[Mark Pilgrim at podium]">

[Follow along! Before: event.html, aer: event-plus-microdata.html]

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

In English, this says, “e photo for this event is at

http://diveintohtml5.org/examples/gdd-2009-prague-pilgrim.jpg.”

Next up is a longer description of the event, whi is just a pargaraph of freeform text.

<p itemprop="description">Google Developer Days are a chance to
learn about Google developer products from the engineers who built
them. This one-day conference includes seminars and “office
hours” on web technologies like Google Maps, OpenSocial,
Android, AJAX APIs, Chrome, and Google Web Toolkit.</p>

[Follow along! Before: event.html, aer: event-plus-microdata.html]

e next bit is something new. Events generally occur on specific dates and start and end at

specific times. In HTML5, dates and times should be marked up with the <time> element,

and we are already doing that here. So the question becomes, how do we add microdata

propeties to these <time> elements? Looking ba at the HTML5 microdata data model, we

see that the <time> element has special processing. e value of a microdata property on a

<time> element is the value of the datetime aribute. And hey, the startDate and

endDate properties of the Event vocabulary take an ISO-style date, just like the datetime
property of a <time> element. Once again, the semantics of the core HTML vocabulary

dovetail nicely with semantics of our custom microdata vocabulary. Marking up start and end

dates with microdata is as simple as

1. Using HTML correctly in the first place (using <time> elements to mark up dates and

times), and

2. Adding a single itemprop aribute

<p>
<time itemprop="startDate" datetime="2009-11-06T08:30+01:00">2009
November 6, 8:30</time>
–
<time itemprop="endDate" datetime="2009-11-
06T20:30+01:00">20:30</time>
</p>

[Follow along! Before: event.html, aer: event-plus-microdata.html]

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

In English, this says, “is event starts on November 6, 2009, at 8:30 in the morning, and goes

until November 6, 2009, at 20:30 (times local to Prague, GMT+1).”

Next up is the location property. e definition of the Event vocabulary says that this can

be either an Organization or an Address. In this case, the event is being held at a venue that

specializes in conferences, the Congress Center in Prague. Marking it up as an Organization

allows us to include the name of the venue as well as its address.

First, let’s declare that the <p> element that contains the address is the location property of

the Event, and that this element is also its own microdata item that conforms to the

http://data-vocabulary.org/Organization vocabulary.

<p itemprop="location" itemscope
itemtype="http://data-vocabulary.org/Organization">

[Follow along! Before: event.html, aer: event-plus-microdata.html]

Next, mark up the name of the Organization by wrapping the name in a dummy
element and adding an itemprop aribute to the element.

Congress Center

[Follow along! Before: event.html, aer: event-plus-microdata.html]

Due to the microdata scoping rules, this itemprop="name" is defining a property in the

Organization vocabulary, not the Event vocabulary. e <p> element defined the beginning of

the scope of the Organization properties, and that <p> element hasn’t yet been closed with an

</p> tag. Any microdata properties we define here are properties of the most-recently-scoped

vocabulary. Nested vocabularies are like a sta. We haven’t yet popped the sta, so we’re

still talking about properties of the Organization.

In fact, we’re going to add a third vocabulary onto the sta: an Address for the Organization

for the Event.

<span itemprop="address" itemscope

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

itemtype="http://data-vocabulary.org/Address">

[Follow along! Before: event.html, aer: event-plus-microdata.html]

Once again, we want to mark up every piece of the address as a separate microdata property,

so we need a slew of dummy elements to hang our itemprop aributes onto. (If

I’m going too fast for you here, go ba and read about marking up the address of a Person

and marking up the address of an Organization .)

5th května 65

140 21
Praha 4

Czech Republic

[Follow along! Before: event.html, aer: event-plus-microdata.html]

ere are no more properties of the Address, so we close the element that started the

Address scope, and pop the sta.

ere are no more properties of the Organization, so we close the <p> element that started

the Organization scope, and pop the sta again.

</p>

Now we’re ba to defining properties on the Event. e next property is geo, to represent

the physical location of the Event. is uses the same Geo vocabulary that we used to mark

up the physical location of an Organization in the previous section. We need a
element to act as the container; it gets the itemtype and itemscope aributes. Within that

 element, we need two <meta> elements, one for the latitude property and one for

the longitude property.

<span itemprop="geo" itemscope
itemtype="http://data-vocabulary.org/Geo">
<meta itemprop="latitude" content="50.047893" />
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

<meta itemprop="longitude" content="14.4491" />

[Follow along! Before: event.html, aer: event-plus-microdata.html]

And we’ve closed the that contained the Geo properties, so we’re ba to defining

properties on the Event. e last property is the url property, whi should look familiar.

Associating a URL with an Event works the same way as associating a URL with a Person

and associating a URL with an Organization. If you’re using HTML correctly (marking up

hyperlinks with <a href>), then declaring that the hyperlink is a microdata url property is

simply a maer of adding the itemprop aribute.

<p>
<a itemprop="url"
href="http://code.google.com/intl/cs/events/developerday/2009/home.htm
l">
GDD/Prague home page

</p>
</article>

[Follow along! Before: event.html, aer: event-plus-microdata.html]

e sample event page also lists a second event, my speaking engagement at the ConFoo

conference in Montréal. For brevity, I’m not going to go through that markup line by line. It’s

essentially the same as the event in Prague: an Event item with nested Geo and Address

items. I just mention it in passing to reiterate that a single page can have multiple events,

ea marked up with microdata.

THE RETURN OF GOOGLE RICH SNIPPETSTHE RETURN OF GOOGLE RICH SNIPPETS

According to Google’s Ri Snippets Testing Tool , this is the information that Google’s

crawlers will glean from our sample event listing page :

Item
Type: http://data-vocabulary.org/Event
summary = Google Developer Day 2009
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

eventType = conference
photo = http://diveintohtml5.org/examples/gdd-2009-prague-pilgrim.jpg
description = Google Developer Days are a chance to learn about Google
developer products from the engineers who built them. This one-day
conference includes seminars and office hours on web technologies like
Goo...
startDate = 2009-11-06T08:30+01:00
endDate = 2009-11-06T20:30+01:00
location = Item(__1)
geo = Item(__3)
url =
http://code.google.com/intl/cs/events/developerday/2009/home.html

Item
Id: __1
Type: http://data-vocabulary.org/Organization
name = Congress Center
address = Item(__2)

Item
Id: __2
Type: http://data-vocabulary.org/Address
street-address = 5th května 65
postal-code = 140 21
locality = Praha 4
country-name = Czech Republic

Item
Id: __3
Type: http://data-vocabulary.org/Geo
latitude = 50.047893
longitude = 14.4491

As you can see, all the information we added in microdata is there. Properties that are

separate microdata items are given internal IDs (Item(__1), Item(__2) and so on). is is

not part of the microdata specification. It’s just a convention that Google’s testing tool uses to

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

linearize the sample output and show you the grouping of nested items and their properties.

Here is how Google might oose to represent this sample page in its sear results. (Again, I

have to preface this with the disclaimer that this is just an example. Google may ange the

format of their sear results at any time, and there is no guarantee that Google will even pay

aention to your microdata markup. Sorry to sound like a broken record, but our lawyers

make me say these things.)

Mark Pilgrim’s event calendar
Excerpt from the page will show up here.
Excerpt from the page will show up here.
Google Developer Day 2009 Fri, Nov 6 Congress Center, Praha 4, Czech Republic
ConFoo.ca 2010 Wed, Mar 10 Hilton Montreal Bonaventure, Montréal, Québec, Canada
diveintohtml5.org/examples/event-plus-microdata.html - Cached - Similar pages

Aer the page title and auto-generated excerpt text, Google starts using the microdata markup

we added to the page to display a lile table of events. Note the date format: “Fri, Nov 6.”

at is not a string that appeared anywhere in our HTML or microdata markup. We used two

fully qualified ISO-formaed strings, 2009-11-06T08:30+01:00 and 2009-11-
06T20:30+01:00. Google took those two dates, figured out that they were on the same day,

and decided to display a single date in a more friendly format.

Now look at the physical addresses. Google ose to display just the venue name + locality +

country, not the exact street address. is is made possible by the fact that we split up the

address into five subproperties — name, street-address, region, locality, and

country-name — and marked up ea part of the address as a different microdata property.

Google takes advantage of that to show an abbreviated address. Other consumers of the same

microdata markup might make different oices about what to display or how to display it.

ere’s no right or wrong oice here. It’s up to you to provide as mu data as possible, as

accurately as possible. It’s up to the rest of the world to interpret it.

❧❧

MARKING UP REVIEWSMARKING UP REVIEWS

Here’s another example of making the web (and possibly sear result listings) beer through
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

markup: business and product reviews.

is is a short review I wrote of my favorite pizza place near my house. (is is a real

restaurant, by the way. If you’re ever in Apex, NC, I highly recommend it.) Let’s look at the

original markup:

<article>
<h1>Anna’s Pizzeria</h1>
<p>★★★★☆ (4 stars out of 5)</p>
<p>New York-style pizza right in historic downtown Apex</p>
<p>
Food is top-notch. Atmosphere is just right for a “neighborhood
pizza joint.” The restaurant itself is a bit cramped; if you’re
overweight, you may have difficulty getting in and out of your
seat and navigating between other tables. Used to give free
garlic knots when you sat down; now they give you plain bread
and you have to pay for the good stuff. Overall, it’s a winner.
</p>
<p>
100 North Salem Street

Apex, NC 27502

USA
</p>
<p>— reviewed by Mark Pilgrim, last updated March 31, 2010</p>
</article>

[Follow along! Before: review.html, aer: review-plus-microdata.html]

is review is contained in an <article> element, so that’s where we’ll put the itemtype
and itemscope aributes. e namespace URL for this vocabulary is http://data-
vocabulary.org/Review .

<article itemscope itemtype="http://data-vocabulary.org/Review">

[Follow along! Before: review.html, aer: review-plus-microdata.html]

What are the available properties in the Review vocabulary? I’m glad you asked.

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

REVIEW VOCABULARYREVIEW VOCABULARY

Property Description

itemreviewed e name of the item being reviewed. Can be a product, service, business,

&c.

rating A numerical quality rating for the item, on a scale from 1 to 5. Can also be

a nested http://data-vocabulary.org/Rating vocabulary to use a

nonstandard scale.

reviewer e name of the author who wrote the review

dtreviewed e date that the item was reviewed in ISO date format

summary A short summary of the review

description e body of the review

e first property is simple: itemreviewed is just text, and here it’s contained in an <h1>
element, so that’s where we should put the itemprop aribute.

<h1 itemprop="itemreviewed">Anna’s Pizzeria</h1>

[Follow along! Before: review.html, aer: review-plus-microdata.html]

I’m going to skip over the actual rating and come ba to that at the end.

e next two properties are also straightforward. e summary property is a short description

of what you’re reviewing, and the description property is the body of the review.

<p itemprop="summary">New York-style pizza right in historic downtown
Apex</p>
<p itemprop="description">
Food is top-notch. Atmosphere is just right for a “neighborhood
pizza joint.” The restaurant itself is a bit cramped; if you’re
overweight, you may have difficulty getting in and out of your
seat and navigating between other tables. Used to give free
garlic knots when you sat down; now they give you plain bread
and you have to pay for the good stuff. Overall, it’s a winner.
</p>

[Follow along! Before: review.html, aer: review-plus-microdata.html]

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

e location and geo properties aren’t anything we haven’t taled before. (If you’re just

tuning in, e out marking up the address of a Person , marking up the address of an

Organization, and marking up geolocation information from earlier in this apter.)

<p itemprop="location" itemscope
itemtype="http://data-vocabulary.org/Address">
100 North Salem Street

Apex,
NC
27502

USA
</p>
<span itemprop="geo" itemscope
itemtype="http://data-vocabulary.org/Geo">
<meta itemprop="latitude" content="35.730796" />
<meta itemprop="longitude" content="-78.851426" />

[Follow along! Before: review.html, aer: review-plus-microdata.html]

e final line presents a familiar problem: it contains two bits of information in one element.

e name of the reviewer is Mark Pilgrim, and the review date is March 31, 2010.

How do we mark up these two distinct properties? Wrap them in their own elements and put

an itemprop aribute on ea element. In fact, the date in this example should have been

marked up with a <time> element in the first place, so that provides a natural hook on

whi to hang our itemprop aribute. e reviewer name can just be wrapped in a dummy

 element.

<p>— Mark Pilgrim, last updated
<time itemprop="dtreviewed" datetime="2010-03-31">
March 31, 2010
</time>
</p>
</article>

[Follow along! Before: review.html, aer: review-plus-microdata.html]

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

OK, let’s talk ratings. e triiest part of marking up a review is the rating. By default,

ratings in the Review vocabulary are on a scale of 1–5, 1 being “terrible” and 5 being

“awesome.” If you want to use a different scale, you can definitely do that. But let’s talk

about the default scale first.

<p>★★★★☆ (4 stars out of 5)</p>

[Follow along! Before: review.html, aer: review-plus-microdata.html]

If you’re using the default 1–5 scale, the only property you need to mark up is the rating

itself (4, in this case). But what if you want to use a different scale? You can do that; you just

need to declare the limits of the scale you’re using. For example, if you wanted to use a 0–10

point scale, you would still declare the itemprop="rating" property, but instead of giving

the rating value directly, you would use a nested vocabulary of http://data-
vocabulary.org/Rating to declare the worst and best values in your custom scale and

the actual rating value within that scale.

<p itemprop="rating" itemscope
itemtype="http://data-vocabulary.org/Rating">
★★★★★★★★★☆

(9 on a scale of
0 to
10)
</p>

In English, this says “the product I’m reviewing has a rating value of 9 on a scale of 0–10.”

Did I mention that review microdata could affect sear result listings? Oh yes, it can. Here is

the “raw data” that the Google Ri Snippets tool extracted from my microdata-enhanced

review:

Item
Type: http://data-vocabulary.org/Review
itemreviewed = Anna’s Pizzeria
rating = 4
summary = New York-style pizza right in historic downtown Apex
diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

description = Food is top-notch. Atmosphere is just right ...
address = Item(__1)
geo = Item(__2)
reviewer = Mark Pilgrim
dtreviewed = 2010-03-31

Item
Id: __1
Type: http://data-vocabulary.org/Organization
street-address = 100 North Salem Street
locality = Apex
region = NC
postal-code = 27502
country-name = USA

Item
Id: __2
Type: http://data-vocabulary.org/Geo
latitude = 35.730796
longitude = -78.851426

And here (modulo the whims of Google, the phase of the moon, and so on and so forth) is

what my review might look like in a sear result listing:

Anna’s Pizzeria: review
★★★★☆ Review by Mark Pilgrim - Mar 31, 2010
Excerpt from the page will show up here.
Excerpt from the page will show up here.
diveintohtml5.org/examples/review-plus-microdata.html - Cached - Similar pages

Angle braets don’t impress me mu, but I have to admit, that’s prey cool.

❧❧

FURTHER READINGFURTHER READING

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

Microdata resources:

Live microdata playground

HTML5 microdata specification

Google Ri Snippets resources:

About ri snippets and structured data

Marking up contact and social networking information

Businesses & organizations

Events

Reviews

Review ratings

Google Ri Snippets Testing Tool

Google Ri Snippets Tips and Tris

❧❧

is has been ‘“Distributed,” “Extensibility,” & Other Fancy Words.’ e full table of contents

has more if you’d like to keep reading.

DID YOU KNOW?DID YOU KNOW?

In association with Google Press, O’Reilly is

distributing this book in a variety of formats, including

paper, ePub, Mobi, and DRM-free PDF. e paid

edition is called “HTML5: Up & Running,” and it is

available now. is apter is included in the paid

edition.

If you liked this apter and want to show your

appreciation, you can buy “HTML5: Up & Running”

with this affiliate link or buy an electronic edition

directly from O’Reilly. You’ll get a book, and I’ll get a

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

bu. I do not currently accept direct donations.

Copyright MMIX–MMX Mark Pilgrim

powered by Google™ Search

diveintohtml5.org “DISTRIBUTED,” “EXTENSIBILITY,” & OTHER FANCY WORDS

You are here: Home ‣ Dive Into HTML5 ‣

APPENDIX A:APPENDIX A:
THE ALL-IN-ONETHE ALL-IN-ONE

ALMOST-ALPHABETICALALMOST-ALPHABETICAL
NO-BULLSHIT GUIDE TONO-BULLSHIT GUIDE TO
DETECTING EVERYTHINGDETECTING EVERYTHING

❧❧

(Confused? Read Detecting HTML5 Features for a conceptual introduction. Want an all-in-one

library instead? Try Modernizr.)

<audio>#

return !!document.createElement('audio').canPlayType;

<audio> in MP3 format#

var a = document.createElement('audio');
return !!(a.canPlayType &&
a.canPlayType('audio/mpeg;').replace(/no/, ''));

<audio> in Vorbis format#

var a = document.createElement('audio');
return !!(a.canPlayType && a.canPlayType('audio/ogg;
codecs="vorbis"').replace(/no/, ''));

<audio> in WAV format #
diveintohtml5.org THE ALL-IN-ONE ALMOST-ALPHABETICAL NO-BULLSHIT GUIDE TO DETECTING EVERYTHING

var a = document.createElement('audio');
return !!(a.canPlayType && a.canPlayType('audio/wav;
codecs="1"').replace(/no/, ''));

<audio> in AAC format#

var a = document.createElement('audio');
return !!(a.canPlayType && a.canPlayType('audio/mp4;
codecs="mp4a.40.2"').replace(/no/, ''));

<canvas>#

return !!document.createElement('canvas').getContext;

<canvas> text API#

var c = document.createElement('canvas');
return c.getContext && typeof c.getContext('2d').fillText ==
'function';

<command>#

return 'type' in document.createElement('command');

<datalist>#

return 'options' in document.createElement('datalist');

<details>#

return 'open' in document.createElement('details');

<device>#

return 'type' in document.createElement('device');

<form> constraint validation#

return 'noValidate' in document.createElement('form');

<iframe sandbox>#

return 'sandbox' in document.createElement('iframe');

diveintohtml5.org THE ALL-IN-ONE ALMOST-ALPHABETICAL NO-BULLSHIT GUIDE TO DETECTING EVERYTHING

<iframe srcdoc>#

return 'srcdoc' in document.createElement('iframe');

<input autofocus>#

return 'autofocus' in document.createElement('input');

<input placeholder>#

return 'placeholder' in document.createElement('input');

<textarea placeholder>#

return 'placeholder' in document.createElement('textarea');

<input type="color">#

var i = document.createElement('input');
i.setAttribute('type', 'color');
return i.type !== 'text';

<input type="email">#

var i = document.createElement('input');
i.setAttribute('type', 'email');
return i.type !== 'text';

<input type="number">#

var i = document.createElement('input');
i.setAttribute('type', 'number');
return i.type !== 'text';

<input type="range">#

var i = document.createElement('input');
i.setAttribute('type', 'range');
return i.type !== 'text';

<input type="search">#

var i = document.createElement('input');
i.setAttribute('type', 'search');

diveintohtml5.org THE ALL-IN-ONE ALMOST-ALPHABETICAL NO-BULLSHIT GUIDE TO DETECTING EVERYTHING

return i.type !== 'text';

<input type="tel">#

var i = document.createElement('input');
i.setAttribute('type', 'tel');
return i.type !== 'text';

<input type="url">#

var i = document.createElement('input');
i.setAttribute('type', 'url');
return i.type !== 'text';

<input type="date">#

var i = document.createElement('input');
i.setAttribute('type', 'date');
return i.type !== 'text';

<input type="time">#

var i = document.createElement('input');
i.setAttribute('type', 'time');
return i.type !== 'text';

<input type="datetime">#

var i = document.createElement('input');
i.setAttribute('type', 'datetime');
return i.type !== 'text';

<input type="datetime-local">#

var i = document.createElement('input');
i.setAttribute('type', 'datetime-local);
return i.type !== 'text';

<input type="month">#

var i = document.createElement('input');
i.setAttribute('type', 'month');
return i.type !== 'text';

diveintohtml5.org THE ALL-IN-ONE ALMOST-ALPHABETICAL NO-BULLSHIT GUIDE TO DETECTING EVERYTHING

<input type="week">#

var i = document.createElement('input');
i.setAttribute('type', 'week');
return i.type !== 'text';

<meter>#

return 'value' in document.createElement('meter');

<output>#

return 'value' in document.createElement('output');

<progress>#

return 'value' in document.createElement('progress');

<time>#

return 'valueAsDate' in document.createElement('time');

<video>#

return !!document.createElement('video').canPlayType;

<video> captions#

return 'src' in document.createElement('track');

<video poster>#

return 'poster' in document.createElement('video');

<video> in WebM format#

var v = document.createElement('video');
return !!(v.canPlayType && v.canPlayType('video/webm; codecs="vp8,
vorbis"').replace(/no/, ''));

<video> in H.264 format#

var v = document.createElement('video');
return !!(v.canPlayType && v.canPlayType('video/mp4;

diveintohtml5.org THE ALL-IN-ONE ALMOST-ALPHABETICAL NO-BULLSHIT GUIDE TO DETECTING EVERYTHING

codecs="avc1.42E01E, mp4a.40.2"').replace(/no/, ''));

<video> in eora format#

var v = document.createElement('video');
return !!(v.canPlayType && v.canPlayType('video/ogg;
codecs="theora"').replace(/no/, ''));

contentEditable#

return 'isContentEditable' in document.createElement('span');

Cross-document messaging#

return !!window.postMessage;

Drag-and-drop#

return 'draggable' in document.createElement('span');

File API#

return typeof FileReader != 'undefined';

Geolocation#

return !!navigator.geolocation;

History#

return !!(window.history && window.history.pushState);

Local storage#

try {
return 'localStorage' in window && window['localStorage'] !==
null;
} catch(e) {
return false;
}

Microdata#

return !!document.getItems;

diveintohtml5.org THE ALL-IN-ONE ALMOST-ALPHABETICAL NO-BULLSHIT GUIDE TO DETECTING EVERYTHING

Offline web applications#

return !!window.applicationCache;

Server-sent events#

return typeof EventSource !== 'undefined';

Session storage#

try {
return 'sessionStorage' in window && window['sessionStorage'] !==
null;
} catch(e) {
return false;
}

SVG#

return !!(document.createElementNS &&
document.createElementNS('http://www.w3.org/2000/svg',
'svg').createSVGRect);

SVG in text/html#

var e = document.createElement('div');
e.innerHTML = '<svg></svg>';
return !!(window.SVGSVGElement && e.firstChild instanceof
window.SVGSVGElement);

Undo#

return typeof UndoManager !== 'undefined';

IndexedDB#

return !!window.indexedDB;

Web Soets#

return !!window.WebSocket;

Web SQL Database#

diveintohtml5.org THE ALL-IN-ONE ALMOST-ALPHABETICAL NO-BULLSHIT GUIDE TO DETECTING EVERYTHING

return !!window.openDatabase;

Web Workers#

return !!window.Worker;

Widgets: am I in one?#

return typeof widget !== 'undefined';

XMLHpRequest: cross-domain requests#

return "withCredentials" in new XMLHttpRequest;

XMLHpRequest: send as form data#

return !!window.FormData;

XMLHpRequest: upload progress events#

return "upload" in new XMLHttpRequest;

❧❧

FURTHER READINGFURTHER READING

Specifications and standards:

HTML5

Geolocation

Server-Sent Events

WebSimpleDB

Web Soets

Web SQL Database

Web Storage

Web Workers

Widgets
diveintohtml5.org THE ALL-IN-ONE ALMOST-ALPHABETICAL NO-BULLSHIT GUIDE TO DETECTING EVERYTHING

XMLHpRequest Level 2

JavaScript libraries:

Modernizr, an HTML5 detection library

❧❧

is has been “e All-In-One Almost-Alphabetical No-Bullshit Guide to Detecting

Everything.” e full table of contents has more if you’d like to keep reading.

DID YOU KNOW?DID YOU KNOW?

In association with Google Press, O’Reilly is

distributing this book in a variety of formats, including

paper, ePub, Mobi, and DRM-free PDF. e paid

edition is called “HTML5: Up & Running,” and it is

available now. is appendix is included in the paid

edition.

If you liked this appendix and want to show your

appreciation, you can buy “HTML5: Up & Running”

with this affiliate link or buy an electronic edition

directly from O’Reilly. You’ll get a book, and I’ll get a

bu. I do not currently accept direct donations.

Copyright MMIX–MMX Mark Pilgrim

powered by Google™ Search

diveintohtml5.org THE ALL-IN-ONE ALMOST-ALPHABETICAL NO-BULLSHIT GUIDE TO DETECTING EVERYTHING

5 > 2

look ma, no plugins

HTML5 Peeks, Pokes and PointersHTML5 Peeks, Pokes and Pointers
Common abbreviations (you’ll see these throughout this chart):
$new=document.createElement $bool=function(any){return!(any=="no"||!any)}
Most new features can be detected in JavaScript. To test for HTML5 video support, create a <video> element and check for
a property in its DOM: if("canPlayType" in $new("video")){...} See Chapter 2: Detecting HTML5 Features.

New elementsNew elements FormsForms
See Chapter 3: What Does It All Mean? Backward-compatible with HTML 4. See Chapter 9: A Form of

Madness.
Test for support Test for support

<command> "type" in $new("command") Validation "noValidate" in $new("form")
<datalist> "options" in $new("datalist") Regex constraint "pattern" in $new("input")
<details> "open" in $new("details") Placeholder text "placeholder" in $new("input")
<output> "value" in $new("output") Autofocus "autofocus" in $new("input")
<progress> "value" in $new("progress") Required "required" in $new("input")
<meter> "value" in $new("meter") New input types Browsers may customize style or input

methods.
<time> "valueAsDate" in $new("time") type="search" search box

Text annotations <ruby>, <rt>, <rp> type="number" spinbox
Semantics Usable in all browsers. IE < 9 requires a
shim.

type="range" slider

<article>, <aside>, <header>, <hgroup>, <footer>, type="color" color picker
<section>, <nav>, <figure>, <figcaption>, <mark>, type="tel" telephone number
<summary> type="url" web address

Newly
documented

<embed>, <keygen>, <wbr> type="email" email address

Obsolete Still supported, but won’t validate. type="date"/"time"/"month"/"week"/"datetime"
<basefont>, <big>, <center>, , <s>,
<strike>,

Test for new input types All tests follow the same pattern.

<frame>, <frameset>, <noframes>, <applet>,
<dir>,

function() {

<isindex>, <tt>, <u>, <acronym> (use <abbr>) var i = $new("input");

Always quote your attribute values unless you’re a

rockstar. Keep your trailing slashes if you like.

Validation is still cool: html5.validator.nu

 i.setAttribute("type", "search");
 return i.type !== "text";
}

Some browers claim to “support” an input type but offer no default
user interface. Modernizr can detect this.

MultimediaMultimedia
Encode video with Firefogg (Theora), HandBrake (H.264), or Miro Video Encoder (multiple). See Chapter 5: Video on the Web.
<audio> support "canPlayType" in $new("audio")

Vorbis $bool($new("audio").canPlayType('audio/ogg; codecs="vorbis"'))
MP3 $bool($new("audio").canPlayType('audio/mpeg;'))
AAC $bool($new("audio").canPlayType('audio/mp4; codecs="mp4a.40.2"'))

<video> support "canPlayType" in $new("video")
WebM $bool($new("video").canPlayType('video/webm; codecs="vp8, vorbis"'))
Theora $bool($new("video").canPlayType('video/ogg; codecs="theora"'))
H.264 $bool($new("video").canPlayType('video/mp4; codecs="avc1.42E01E, mp4a.40.2"'))

Properties These apply to both <audio> and <video> elements.
src string currentSrc string, read-only
preload string tracks array of TimedTrack objects
currentTime in seconds buffered TimeRanges object, read-only
initialTime in seconds, read-only played TimeRanges object, read-only
duration in seconds, read-only seekable TimeRanges object, read-only
startOffsetTime datetime, read-only networkState enumerated, read-only
paused boolean readyState enumerated, read-only
ended boolean, read-only error.code enumerated, read-only
autoplay boolean

List multiple <source> elements in an <audio> or <video>.loop boolean
diveintohtml5.org HTML5 Peeks, Pokes and Pointers

IsGeolocationPartOfHTML5.com

Math is hard. Let’s go shopping!

HTML5-supporting browsers don’t render children of <video>,

so put your Flash fallback there. Audio and video must be

served with the proper MIME type, so check your Content-Type

headers!

controls boolean
volume 0.0 to 1.0, default = 1.0
muted boolean
playbackRate default = 1.0

OfflineOffline GeolocationGeolocation
See Chapter 8: Let’s Take This Offline. Location sharing is always opt-in. See Chapter 6: You Are Here.
Test for support window.applicationCache Test for support navigator.geolocation
<html manifest> Links to cache manifest. Functions
Cache manifest sections Position getCurrentPosition(callback, err, opt);

CACHE: Always cached. No wildcards. long watchPosition(callback, err, opt);
NETWORK: Never cached. "*" wildcards. void clearWatch(watchId);
FALLBACK: Pairs; second is used offline. void callback(position); Called on success

Events First four are most common. void err(positionError); Called on error
checking always first PositionOptions object
downloading found manifest, fetching stuff timeout in milliseconds
progress still fetching stuff maximumAge also milliseconds
cached all resources cached enableHighAccuracy true or false
noupdate manifest hasn't changed Position object (in callback) has timestamp and coords.
updateready call swapCache() to activate Coordinates object Unsupported properties will be null.
obsolete manifest is 404 (or 410) latitude in decimal degrees
error it all went wrong somewhere longitude also decimal degrees

HTTP semantics still apply to resources listed in

the cache manifest, so check your Expires and

Cache-Control headers. Manifest must be served

as text/cache-manifest, so check your Content-

Type headers too. If any required resource fails to

load, application will not work offline.

altitude meters above the reference ellipsoid
accuracy in meters
altitudeAccuracy also in meters
heading degrees CCW from true north
speed in meters/second

PositionError object (in err callback) has message and code:
TIMEOUT, POSITION_UNAVAILABLE,
PERMISSION_DENIED, or UNKNOWN_ERROR

CanvasCanvas
Paths are like tracing in pencil; nothing is drawn until fill() or stroke()! See Chapter 4: Let’s Call It A Draw(ing) Surface .
Basic support "getContext" in $new("canvas")
Text support typeof $new("canvas").fillText=="function"
Functions Root path is implicit; subpaths must be explicit. drawImage() can also draw video or canvas.

beginPath(); drawImage(image,dx,dy,dw,dh); quadraticCurveTo(cpx,cpy,x,y);
closePath(); rotate(angle); bezierCurveTo(cp1x,cp1y,cp2x,cp2y,x,y);
moveTo(x,y); translate(x,y); arc(x,y,radius,startAngle,endAngle,anticlockwise);
lineTo(x,y); arcTo(x1,y1,x2,y2,radius); getImageData(sx,sy,sw,sh);
rect(x,y,w,h); isPointInPath(x,y); putImageData(imagedata,dx,dy,x,y,w,h);
fill(); fillRect(x,y,w,h); fillText(text,x,y,maxWidth);
stroke(); strokeRect(x,y,w,h); strokeText(text,x,y,maxWidth);
clip(); clearRect(x,y,w,h); measureText(text);
save(); setTransform(a,b,c,d,e,f); createLinearGradient(x0,y0,x1,y1);
restore(); transform(a,b,c,d,e,f); createRadialGradient(x0,y0,r0,x1,y1,r1);
scale(x,y); createImageData(sw,sh); createPattern(image,repetition);

Properties All properties are read/write. fillStyle and strokeStyle can also be a gradient or pattern.
fillStyle CSS color, default = "black" shadowColor CSS color, default = "black"
strokeStyle CSS color, default = "black" shadowOffsetX in pixels, default = 0
font CSS font, default = "10px sans-

serif"
shadowOffsetY in pixels, default = 0

textAlign enumerated, default = "start" shadowBlur in pixels, default = 0
textBaseline enumerated, default = "alphabetic"

Learn about states! A canvas state includes the clipping path,

all properties, and all transformations. save() pushes a state

onto the stack and restore() pops it off.

globalAlpha 0.0 (transparent) to 1.0 (opaque)
lineWidth in pixels, default = 1
lineCap enumerated, default = "butt"
lineJoin enumerated, default = "miter"
miterLimit float, default = 10

Bits & BytesBits & Bytes
diveintohtml5.org HTML5 Peeks, Pokes and Pointers

Serial Number 100930

Doctype <!DOCTYPE html> Triggers standards-based rendering in all browsers. There is no “quirks mode” in
HTML5.

Text encoding <meta charset="utf-8"> Always declare a charset, even if you’re a rockstar. UTF-8 is always a safe
choice.

Optional end tags<html>, <head>, <body>, , <p>, <dt>, <dd>, <colgroup>, <option>, <optgroup>, <rt>, <rp>,
<thead>, <tbody>, <tfoot>, <tr>, <td>. Exception: always close <p> before <table> to avoid IE
weirdness.

Optional start
tags

<html>, <head>, <body>, <tbody>, <colgroup>. Amaze your friends! Skip the <html> tags and still
validate!

New attributes <a media>, <a ping>, <base target>, <style scoped>, <script async>, <ol reversed>
Miscellaneous
tests

See The All-In-One Almost-Alphabetical No-Bullshit Guide to Detecting Everything .

IndexedDB window.indexedDB contentEditable "isContentEditable" in $new("a")
Web Workers window.Worker Drag-and-drop "draggable" in $new("span")
Web Sockets window.WebSocket File API typeof FileReader!=="undefined"
X-doc
messaging

window.postMessage Undo history typeof UndoManager!=="undefined"

Web SQL window.openDatabase <iframe sandbox> "sandbox" in $new("iframe")
Web Storage "localStorage" in window && window["localStorage"] !== null See Chapter 7: Local Storage.
History API window.history && window.history.pushState
Inline SVG function() { var e=$new("div"); e.innerHTML="<svg></svg>";

 return window.SVGSVGElement && e.firstChild instanceof window.SVGSVGElement}

CreditsCredits
Writing Mark Pilgrim References HTML5, HTML-diff, HTML vs. XHTML
Code Modernizr (Paul Irish et. al.) Inspiration Beagle Bros
Typography Chunk, Latin Modern License CC-BY-3.0

diveintohtml5.org HTML5 Peeks, Pokes and Pointers

