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Preface
This	book	will	introduce	you	to	many	advanced	features	of	the	Python
programming	language.	The	focus	is	on	creating	the	highest	quality	Python
programs	possible.	This	requires	exploring	design	alternatives	and	determining
which	design	offers	the	best	performance	while	still	being	a	good	fit	for	the
problem	that	is	being	solved.

The	majority	of	this	book	showcases	a	number	of	alternatives	for	a	given	design.
Some	will	offer	better	performance,	while	some	will	appear	simpler	or	be	a
better	solution	to	the	problem	domain.	It's	essential	to	locate	the	best	algorithms
alongside	optimal	data	structures	in	order	to	create	the	most	value	with	the	least
computer	processing.	Time	is	money,	and	programs	that	save	time	will	create
more	value	for	their	users.	Python	makes	a	number	of	internal	features	directly
available	to	our	application	programs.	This	means	that	our	programs	can	be	very
tightly	integrated	with	existing	Python	features.	We	can	leverage	numerous
Python	features	by	ensuring	that	our	object-oriented	designs	(OODs)	integrate
well.

As	we	explore	different	algorithms	and	data	structures,	we'll	discover	different
memory	and	performance	alternatives.	It's	an	important	OOD	skill	to	be	able	to
work	through	alternate	solutions	in	order	to	properly	optimize	the	final
application.	One	of	the	more	important	themes	of	this	book	is	that	there's	no
single	best	approach	to	any	problem.

As	many	of	the	examples	as	possible	have	full	type	hints.	A	few	of	the	examples
rely	on	packages	outside	the	standard	library,	where	you'll	find	that	type	hints	are
either	missing	or	are	incomplete.	The	examples	have	to	be	processed	with	the
mypy	tool	to	confirm	the	types	are	used	consistently.

As	we	move	toward	achieving	mastery	of	object-oriented	Python,	we'll	spend	a
great	deal	of	time	reading	Python	code	from	a	variety	of	sources.	We'll	observe
wide	variability	even	within	the	Python	standard	library	modules.	Rather	than
presenting	examples	that	are	all	perfectly	consistent,	we've	opted	for	some
inconsistency;	the	lack	of	consistency	will	help	to	read	kinds	of	code,	as	seen	in



various	open	source	projects	encountered	in	the	wild.



Who	this	book	is	for
This	book	uses	advanced	Python.	You'll	need	to	be	relatively	familiar	with
Python	3.	It	helps	to	learn	a	programming	language	when	you	have	a	problem	of
your	own	to	solve.

If	you	are	a	skilled	programmer	in	other	languages,	then	you	may	find	this	book
useful	if	you	want	to	switch	to	Python.	Note	that	this	book	doesn't	introduce	any
syntax	or	other	foundational	concepts.

Python	2	programmers	may	find	this	particularly	helpful	when	they	switch	to
Python	3.	We	won't	cover	any	of	the	conversion	utilities	(such	as	the	2to3	tool)
or	any	of	the	coexistence	libraries	(such	as	the	six	module).	This	book	is	focused
on	new	developments	entirely	in	Python	3.



What	this	book	covers
In	this	book,	we'll	cover	three	broad	areas	of	advanced	Python	topics.	Each	topic
will	be	broken	into	a	series	of	chapters	examining	a	variety	of	details.

Section	1,	Tighter	Integration	via	Special	Methods,	looks	at	object-oriented
programming	(OOP)	techniques	in	depth	and	how	we	can	more	tightly
integrate	the	class	definitions	of	our	applications	with	Python's	built-in	features.
This	section	consists	of	nine	chapters,	which	are	as	follows:

Chapter	1,	Preliminaries,	Tools,	and	Techniques,	covers	some	preliminary
topics,	such	as	unittest,	doctest,	docstring,	and	some	special	method	names.
Chapter	2,	The	_init_()	Method,	provides	us	with	a	detailed	description	and
implementation	of	the	_init_()	method.	We	will	examine	different	forms	of
initialization	for	simple	objects.	Following	this,	we	can	explore	more
complex	objects	that	involve	collections	and	containers.
Chapter	3,	Integrating	Seamlessly	–	Basic	Special	Methods,	explains,	in
detail,	how	we	can	expand	a	simple	class	definition	to	add	special	methods.
We'll	need	to	take	a	look	at	the	default	behavior	inherited	from	the	object	so
that	we	can	understand	what	overrides	are	required	and	when	they're
actually	required.
Chapter	4,	Attribute	Access,	Properties,	and	Descriptors,	explores	how
default	processing	works	in	some	detail.	Here,	we	will	learn	how	to	decide
where	and	when	to	override	the	default	behavior.	We	will	also	explore
descriptors	and	gain	a	much	deeper	understanding	of	how	Python's	internals
work.
Chapter	5,	The	ABCs	of	Consistent	Design,	examines	the	abstract	base	classes
in	the	collections.abc	module.	In	this	chapter,	we'll	look	at	the	general
concepts	behind	the	various	containers	and	collections	that	we	might	want
to	revise	or	extend.	Similarly,	we'll	look	at	the	concepts	behind	the	numbers
that	we	might	want	to	implement.
Chapter	6,	Using	Callables	and	Contexts,	uncovers	several	ways	to	create
context	managers	using	the	tools	in	contextlib.	We'll	demonstrate	a	number
of	variant	designs	for	callable	objects.	This	will	show	you	why	a	stateful
callable	object	is	sometimes	more	useful	than	a	simple	function.	We'll	also
explore	how	to	use	some	of	the	existing	Python	context	managers	before	we



dive	in	and	write	our	own	context	manager.
Chapter	7,	Creating	Containers	and	Collections,	focuses	on	the	basics	of
container	classes.	We'll	review	the	variety	of	special	methods	that	are
involved	in	creating	a	container	and	the	various	features	that	containers
offer.	We'll	address	extending	built-in	containers	to	add	features.	We'll	also
look	at	wrapping	built-in	containers	and	delegating	methods	through	the
wrapper	to	the	underlying	container.
Chapter	8,	Creating	Numbers,	covers	these	essential	arithmetic	operators:	+,	-,
*,	/,	//,	%,	and	**.	We'll	also	explore	these	comparison	operators:	<,	>,	<=,	>=,
==,	and	!=.	We'll	finish	by	summarizing	some	of	the	design	considerations
that	go	into	extending	or	creating	new	numbers.
Chapter	9,	Decorators	and	Mixins	–	Cross-Cutting	Aspects,	covers	simple
function	decorators,	function	decorators	with	arguments,	class	decorators,
and	method	decorators.

Section	2,	Object	Serialization	and	Persistence,	explores	a	persistent	object	that
has	been	serialized	to	a	storage	medium;	perhaps	it's	transformed	to	JSON	and
written	to	the	filesystem.	An	ORM	layer	can	store	the	object	in	a	database.	This
section	examines	the	alternatives	for	handling	persistence.	It	contains	five
chapters,	which	are	as	follows:

Chapter	10,	Serializing	and	Saving	–	JSON,	YAML,	Pickle,	CSV,	and	XML,
covers	simple	persistence	using	libraries	focused	on	various	data
representations	such	as	JSON,	YAML,	pickle,	XML,	and	CSV.
Chapter	11,	Storing	and	Retrieving	Objects	via	Shelve,	explains	basic
database	operations	with	Python	modules,	such	as	shelve	(and	dbm).
Chapter	12,	Storing	and	Retrieving	Objects	via	SQLite,	uncovers	the	more
complex	world	of	SQL	and	the	relational	database.	Because	SQL	features
don't	match	OOP	features	well,	we	have	an	impedance	mismatch	problem.
A	common	solution	is	to	use	ORM	to	allow	us	to	persist	a	large	domain	of
objects.	The	SQLAlchemy	package	will	be	used	as	an	example	of	the	many
ORMs	that	are	available.
Chapter	13,	Transmitting	and	Sharing	Objects,	looks	at	the	HTTP	protocol,
JSON,	YAML,	and	XML	representations	to	transmit	an	object.
Chapter	14,	Configuration	Files	and	Persistence,	covers	various	ways	in
which	a	Python	application	can	work	with	a	configuration	file.
Chapter	15,	Design	Principles	and	Patterns,	reviews	the	SOLID	design
principles.	These	can	help	organize	high-quality,	maintainable	Python
software	by	following	some	best	practices.



Section	3,	Object-Oriented	Testing	and	Debugging,	shows	you	how	to	gather	data
to	support	and	debug	your	own	high-performance	programs.	It	includes
information	on	creating	the	best	possible	documentation	in	order	to	reduce	the
confusion	and	complexity	of	the	support.	This	section	contains	the	final	five
chapters,	which	are	as	follows:

Chapter	16,	The	Logging	and	Warning	Modules,	looks	at	using	the	logging
and	warning	modules	to	create	audit	information,	as	well	as	debugging.
Additionally,	we'll	take	a	significant	step	beyond	using	the	print()	function.
Chapter	17,	Designing	for	Testability,	covers	designing	for	testability	and
demonstrates	how	to	use	unittest	and	doctest.
Chapter	18,	Coping	with	the	Command	Line,	looks	at	using	the
argparse	module	to	parse	options	and	arguments.	We'll	take	this	a	step	further
and	use	the	command	design	pattern	to	create	program	components	that	can
be	combined	and	expanded	without	resorting	to	writing	shell	scripts.
Chapter	19,	Module	and	Package	Design,	covers	module	and	package	design.
This	is	a	higher-level	set	of	considerations;	we'll	take	a	look	at	related
classes	in	a	module	and	related	modules	in	a	package.
Chapter	20,	Quality	and	Documentation,	explores	how	we	can	document	our
design	to	create	some	kind	of	trust	that	our	software	is	correct	and	has	been
properly	implemented.



To	get	the	most	out	of	this	book
In	order	to	compile	and	run	the	examples	included	in	this	book,	you	will	require
the	following	software:

Python	Version	3.7	or	higher,	with	the	standard	suite	of	libraries:
We'll	use	mypy	to	check	type	hints	(http://mypy-lang.org).

We'll	take	a	look	at	these	additional	packages:
PyYAML	(http://pyyaml.org).
SQLAlchemy	(http://www.sqlalchemy.org):	When	building	this,	check	the
installation	guide	carefully.	In	particular,	refer	to	https://docs.sqlalchemy.
org/en/12/intro.html#installing-the-c-extensions	for	information	on
simplifying	the	installation	by	disabling	the	C	extension.	
Flask	(http://flask.pocoo.org).
Requests	(https://2.python-requests.org/en/master/).
Jinja	(http://jinja.pocoo.org/).
PyTest	(https://docs.pytest.org/en/latest/).
Sphinx	(http://sphinx-doc.org).

Optionally,	you	might	want	to	use	the	Black	tool	to	format	your	code
consistently	(https://black.readthedocs.io/en/stable/).
Additionally,	the	overall	test	suite	for	this	book's	code	is	run	using	the	tox
tool	(https://tox.readthedocs.io/en/latest/).

http://mypy-lang.org
http://pyyaml.org
http://www.sqlalchemy.org
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
http://flask.pocoo.org
https://2.python-requests.org/en/master/
http://jinja.pocoo.org/
https://docs.pytest.org/en/latest/
http://sphinx-doc.org
https://black.readthedocs.io/en/stable/
https://tox.readthedocs.io/en/latest/


Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packt.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packt.com/support
and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packt.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of	the	following:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Mastering-Object-Oriented-Python-Second-Edition.	In	case	there's	an	update	to
the	code,	it	will	be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/


Code	in	Action
Visit	the	following	link	to	see	the	code	being	executed:

http://bit.ly/2XIu8Tk

http://bit.ly/2XIu8Tk


Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"Mount	the	downloaded	WebStorm-10*.dmg	disk	image
file	as	another	disk	in	your	system."

A	block	of	code	is	set	as	follows:

def	F(n:	int)	->	int:

				if	n	in	(0,	1):

								return	1

				else:

								return	F(n-1)	+	F(n-2)

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:

def	factorial(n:	int)	->	int:

				"""Compute	n!	recursively.

				:param	n:	an	integer	>=	0

				:returns:	n!

				Because	of	Python's	stack	limitation,	this	won't

				compute	a	value	larger	than	about	1000!.

				>>>	factorial(5)

				120

				"""

Any	command-line	input	or	output	is	written	as	follows:

$	python3	-m	pip	install	--upgrade	pip

$	python3	-m	pip	install	black

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Select	System	info	from	the	Administration	panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.





Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	If	you	have	questions	about	any	aspect	of	this	book,	mention
the	book	title	in	the	subject	of	your	message	and	email	us	at
customercare@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packt.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packt.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/


Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packt.com.

http://www.packt.com/


Section	1:	Tighter	Integration	Via
Special	Methods
We'll	extend	the	core	object-oriented	programming	techniques	to	allow	for
increased	integration	of	the	classes	we	create	with	other	features	of	Python.

The	following	chapters	will	be	covered	in	this	section:

Chapter	1,	Preliminaries,	Tools,	and	Techniques
Chapter	2,	The	__init__()	Method
Chapter	3,	Integrating	Seamlessly	–	Basic	Special	Methods
Chapter	4,	Attribute	Access,	Properties,	and	Descriptors
Chapter	5,	The	ABCs	of	Consistent	Design
Chapter	6,	Using	Callables	and	Contexts
Chapter	7,	Creating	Containers	and	Collections
Chapter	8,	Creating	Numbers
Chapter	9,	Decorators	and	Mixins	–	Cross-Cutting	Aspects



Preliminaries,	Tools,	and	Techniques
To	make	the	design	issues	in	the	balance	of	the	book	more	clear,	we	need	to	look
at	some	the	problems	that	serve	as	motivation.	One	of	these	is	using	object-
oriented	programming	(OOP)	for	simulation.	Simulation	was	one	of	the	early
problem	domains	for	OOP.	This	is	an	area	where	OOP	works	out	particularly
elegantly.

We've	chosen	a	problem	domain	that's	relatively	simple:	the	strategies	for
playing	the	game	of	blackjack.	We	don't	want	to	endorse	gambling;	indeed,	a	bit
of	study	will	show	that	the	game	is	stacked	heavily	against	the	player.	This
should	reveal	that	most	casino	gambling	is	little	more	than	a	tax	on	the
innumerate.

The	first	section	of	this	chapter	will	review	the	rules	of	the	game	of	Blackjack.
After	looking	at	the	card	game,	the	bulk	of	this	chapter	will	provide	some
background	in	tools	that	are	essential	for	writing	complete	Python	programs	and
packages.	We'll	look	at	the	following	concepts:

The	Python	runtime	environment	and	how	the	special	method	names
implement	the	language	features
Integrated	Development	Environments	(IDEs)
Using	the	pylint	or	black	tools	to	create	a	uniform	style
Using	type	hints	and	the	mypy	tool	to	establish	proper	use	of	functions,
classes,	and	variables
Using	timeit	for	performance	testing
Using	unittest,	doctest,	and	pytest	for	unit	testing
Using	sphinx	and	RST-based	markup	to	create	usable	documentation

While	some	of	these	tools	are	part	of	the	Python	standard	library,	most	of	them
are	outside	the	library.	We'll	discuss	installation	of	tools	when	we	talk	about	the
Python	runtime	in	general.

This	book	will	try	to	avoid	digressing	into	the	foundations	of	Python	OOP.	We're
assuming	that	you've	already	read	Packt's	Python3	Object-Oriented
Programming.	We	don't	want	to	repeat	things	that	are	nicely	stated	elsewhere.



We	will	focus	on	Python	3.

We'll	refer	to	a	number	of	common	object-oriented	design	patterns	and	will	try	to
avoid	repeating	the	presentation	in	Packt's	Learning	Python	Design	Patterns.

We'll	cover	the	following	topics	in	this	chapter:

About	the	Blackjack	game
The	Python	runtime	and	special	methods
Interaction,	scripting	and	tools
Selecting	an	IDE
Consistency	and	style
Type	hints	and	the	mypy	program
Performance	–	the	timeit	module
Testing	–	unittest	and	doctest
Documentation	–	sphinx	and	RST	markup
Installing	components



Technical	requirements
The	code	files	for	this	chapter	can	be	found	at	https://git.io/fj2UB.

https://git.io/fj2UB


About	the	Blackjack	game
Many	of	the	examples	in	the	book	will	center	on	simulations	of	a	process	with	a
number	of	moderately	complex	state	changes.	The	card	game	of	Blackjack
involves	a	few	rules	and	a	few	state	changes	during	play.	If	you're	unfamiliar
with	the	game	of	Blackjack,	here's	an	overview.

The	objective	of	the	game	is	to	accept	cards	from	the	dealer	to	create	a	hand	that
has	a	point	total	that	is	between	the	dealer's	total	and	twenty-one.	The	dealer's
hand	is	only	partially	revealed,	forcing	the	player	to	make	a	decision	without
knowing	the	dealer's	total	or	the	subsequent	cards	from	the	deck.

The	number	cards	(2	to	10)	have	point	values	equal	to	the	number.	The	face
cards	(Jack,	Queen,	and	King)	are	worth	10	points.	The	Ace	is	worth	either
eleven	points	or	one	point.	When	using	an	ace	as	eleven	points,	the	value	of	the
hand	is	soft.	When	using	an	ace	as	one	point,	the	value	is	hard.

A	hand	with	an	Ace	and	a	seven,	therefore,	has	a	hard	total	of	eight	and	a	soft
total	of	18.	This	leads	the	player	to	choose	to	take	extra	cards.	If	the	dealer	is
showing	a	face	card,	it's	very	likely	the	dealer	is	holding	twenty	points,	and	the
player	may	not	want	to	risk	taking	another	card.

Each	suit	has	four	two-card	combinations	that	total	21.	These	are	all	called
Blackjack,	even	though	only	one	of	the	four	combinations	involves	a	Jack.	These
combinations	often	provide	a	bonus	payout,	because	there	are	only	four	of	them
available.

Most	of	the	game	is	about	proper	choice	of	cards.	There	is,	of	course,	a	betting
element.	The	distinction	between	playing	and	betting	is	made	somewhat	more
complicated	by	the	provision	to	split	one	hand	into	two	hands.	This	is	allowed
when	the	player's	two	cards	have	the	same	rank.	This	option	will	be	detailed	in
the	next	section	on	how	the	game	is	played.



Playing	the	game
The	mechanics	of	play	generally	work	as	follows.	The	details	can	vary,	but	the
outline	is	similar:

First,	the	player	and	dealer	each	get	two	cards.	The	player,	of	course,	knows
the	value	of	both	of	their	cards.	They're	dealt	face	up	in	a	casino.
One	of	the	dealer's	cards	is	revealed	to	the	player.	It's	displayed	face	up.
The	player,	therefore,	knows	a	little	bit	about	the	dealer's	hand,	but	not
everything.	This	is	typical	of	more	complex	simulations	where	partial
information	is	available	and	statistical	modeling	is	required	to	make
appropriate	decisions.
If	the	dealer	has	an	Ace	showing,	the	player	is	offered	the	opportunity	to
place	an	additional	insurance	bet.	This	is	a	special	case,	and	is	typical	of
more	complex	simulations	where	there	are	exceptions.
For	the	balance	of	the	game,	the	player	can	elect	to	receive	cards,	or	stop
receiving	cards.	There	are	four	choices	available:

The	player	can	hit,	which	means	take	another	card.
They	player	can	or	stand	or	stand	pat	with	the	cards	dealt.
If	the	player's	cards	match,	the	hand	can	be	split.	This	entails	an
additional	bet,	and	the	two	hands	are	played	separately.	
The	player	can	double	their	bet	before	taking	one	last	card.	This	is
called	doubling	down.

The	final	evaluation	of	the	hand	works	as	follows:

If	the	player	went	over	21,	the	hand	is	a	bust,	the	player	loses,	and	the
dealer's	face-down	card	is	irrelevant.	This	provides	an	advantage	to	the
dealer.
If	the	player's	total	is	21	or	under,	then	the	dealer	takes	cards	according	to	a
simple,	fixed	rule.	The	dealer	must	hit	a	hand	that	totals	less	than	18;	the
dealer	must	stand	on	a	hand	that	totals	18	or	more.
If	the	dealer	goes	bust,	the	player	wins.
If	both	the	dealer	and	player	are	21	or	under,	the	hands	are	compared.	The
higher	total	is	the	winner.	In	the	event	of	a	tie,	the	game	is	a	push,	neither	a
win	nor	a	loss.	If	the	player	wins	with	21,	they	win	a	larger	payout,	usually



1.5	times	the	bet.

The	rules	can	vary	quite	a	bit.	We'll	elide	these	details	to	focus	on	the	Python
code	required	for	simulation.



Blackjack	player	strategies
In	the	case	of	blackjack,	there	are	actually	two	kinds	of	strategies	that	the	player
must	use:

A	strategy	for	deciding	what	play	to	make:	take	insurance,	hit,	stand,	split,
or	double	down.
A	strategy	for	deciding	what	amount	to	bet.	A	common	statistical	fallacy
leads	players	to	raise	and	lower	their	bets	in	an	attempt	to	preserve	their
winnings	and	minimize	their	losses.	These	are	interesting,	stateful
algorithms	in	spite	of	the	underlying	fallacies.

These	two	sets	of	strategies	are,	of	course,	prime	examples	of	the	Strategy
design	pattern.



Object	design	for	simulating
Blackjack
We'll	use	elements	of	the	game,	such	as	the	player,	hand,	and	card,	as	examples
for	object	modeling.	We	won't	design	the	entire	simulation.	We'll	focus	on
elements	of	this	game	because	they	have	some	nuance,	but	aren't	terribly
complex.

The	cards	are	relatively	simple,	immutable	objects.	There	are	a	variety	of
modeling	techniques	available.	Cards	fall	into	a	simple	class	hierarchy	of	the
number	cards,	face	cards,	and	the	Ace.		There	are	simple	containers,	including
hands	of	card	instances,	and	decks	of	cards	as	well.	These	are	stateful	collections
with	cards	being	added	and	removed.	There	are	a	number	of	ways	to	implement
this	in	Python	and	we'll	look	at	many	alternatives.	We	also	need	to	look	at	the
player	as	a	whole.	A	player	will	have	a	sequence	of	hands,	as	well	as	a	betting
strategy	and	a	Blackjack	play	strategy.	This	is	a	rather	complex	composite
object.



The	Python	runtime	and	special
methods
One	of	the	essential	concepts	for	mastering	object-oriented	Python	is	to
understand	how	object	methods	are	implemented.	Let's	look	at	a	relatively
simple	Python	interaction:

>>>	f	=	[1,	1,	2,	3]

>>>	f	+=	[f[-1]	+	f[-2]]

>>>	f

[1,	1,	2,	3,	5]

We've	created	a	list,	f,	with	a	sequence	of	values.	We	then	mutated	this	list	using
the	+=	operator	to	append	a	new	value.	The	f[-1]	+	f[-2]	expression	computes	the
new	value	to	be	appended.

The	value	of	f[-1]	is	implemented	using	the	list	object's	__getitem__()	method.
This	is	a	core	pattern	of	Python:	the	simple	operator-like	syntax	is	implemented
by	special	methods.	The	special	methods	have	names	surrounded	with	__	to
make	them	distinctive.	For	simple	prefix	and	suffix	syntax,	the	object	is	obvious;
f[-1]	is	implemented	as	f.__getitem__(-1).

The	additional	operation	is	similarly	implemented	by	the	__add__()	special
method.	In	the	case	of	a	binary	operator,	Python	will	try	both	operands	to	see
which	one	offers	the	special	method.	In	this	example,	both	operands	are	integers,
and	both	will	provide	a	suitable	implementation.	In	the	case	of	mixed	types,	the
implementation	of	the	binary	operator	may	coerce	one	value	into	another	type.
f[-1]	+	f[-2],	then,	is	implemented	as	f.__getitem__(-1).__add__(f.__getitem__(-2)).

The	update	of	f	by	the	+=	operator	is	implemented	by	the	__iadd__()	special
method.	Consequently,	f	+=	[x]	is	implemented	as	f.__iadd__([x]).

Throughout	the	first	eight	chapters,	we'll	look	very	closely	at	these	special
methods	and	how	we	can	design	our	classes	to	integrate	very	tightly	with
Python's	built-in	language	features.	Mastering	the	special	methods	is	the	essence
of	mastering	object-oriented	Python.



Interaction,	scripting,	and	tools
Python	is	often	described	as	Batteries	Included	programming.	Everything
required	is	available	directly	as	part	of	a	single	download.	This	provides	the
runtime,	the	standard	library,	and	the	IDLE	editor	as	a	simple	development
environment.

It's	very	easy	to	download	and	install	Python	3.7	and	start	running	it	interactively
on	the	desktop.	The	example	in	the	previous	section	included	the	>>>	prompt
from	interactive	Python.	

If	you're	using	the	Iron	Python	(IPython)	implementation,	the	interaction	will
look	like	this:

In	[1]:	f	=	[1,	1,	2,	3]

In	[3]:	f	+=	[f[-1]	+	f[-2]]

In	[4]:	f

Out[4]:	[1,	1,	2,	3,	5]

The	prompt	is	slightly	different,	but	the	language	is	the	same.	Each	statement	is
evaluated	as	it	is	presented	to	Python.	

This	is	handy	for	some	experimentation.	Our	goal	is	to	build	tools,	frameworks,
and	applications.	While	many	of	the	examples	will	be	shown	in	an	interactive
style,	most	of	the	actual	programming	will	be	via	script	files.

Running	examples	interactively	makes	a	profound	statement.	Well-written
Python	code	should	be	simple	enough	that	it	can	be	run	from	the	command	line.

Good	Python	is	simple.	We	should	be	able	to	demonstrate	a	design	at	the	>>>	prompt.

Interactive	use	is	not	our	goal.	Exercising	code	from	the	>>>	prompt	is	a	quality
test	for	complexity.	If	the	code	is	too	complex	to	exercise	it	from	the	>>>	prompt,
then	refactoring	is	needed.

The	focus	of	this	book	is	on	creating	complete	scripts,	modules,	packages,	and
applications.	Even	though	some	examples	are	shown	in	interactive	mode,	the



objective	is	to	create	Python	files.	These	files	may	be	as	simple	as	a	script	or	as
complex	as	a	directory	with	files	to	create	a	web	application.

Tools	such	as	mypy,	pytest,	and	pylint	work	with	Python	files.	Preparing	script	files
can	be	done	with	almost	any	text	editor.	It's	best,	however,	to	work	with	an	IDE,
where	a	number	of	tools	can	be	provided	to	help	develop	applications	and
scripts.



Selecting	an	IDE
A	common	question	is,	""What	is	the"	"best""	IDE	for	doing	Python	development?""	The	short
answer	to	this	question	is	that	the	IDE	choice	doesn't	matter	very	much.	The
number	of	development	environments	that	support	Python	is	vast	and	they	are	all
very	easy	to	use.	The	long	answer	requires	a	conversation	about	what	attributes
would	rank	an	IDE	as	being	the	best.

The	Spyder	IDE	is	part	of	the	Anaconda	distribution.	This	makes	it	readily
accessible	to	developers	who've	downloaded	Anaconda.	The	IDLE	editor	is	part
of	the	Python	distribution,	and	provides	a	simple	environment	for	using	Python
and	building	scripts.	PyCharm	has	a	commercial	license	as	well	as	a	community
edition,	it	provides	a	large	number	of	features,	and	was	used	to	prepare	all	the
examples	in	this	book.

The	author	makes	use	of	having	both	an	editor,	an	integrated	Python	prompt,	and
unit	test	results	all	readily	available.	PyCharm	works	well	with	the	conda
environments,	avoiding	confusion	over	what	packages	are	installed.	

A	search	on	the	internet	will	provide	a	long	list	of	other	tools.	See	the	IDE
Python	wiki	page	for	numerous	alternatives	(https://wiki.python.org/moin/IntegratedD
evelopmentEnvironments).

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments


Consistency	and	style
All	of	the	examples	in	the	book	were	prepared	using	the	black	tool	to	provide
consistent	formatting.	Some	additional	manual	adjustments	were	made	to	keep
code	within	the	narrow	sizes	of	printed	material.

A	common	alternative	to	using	black	is	to	use	pylint	to	identify	formatting
problems.	These	can	then	be	corrected.	In	addition	to	detailed	analysis	of	code
quality,	the	pylint	tool	offers	a	numeric	quality	score.	For	this	book,	some	pylint
rules	needed	to	be	disabled.	For	example,	the	modules	often	have	imports	that
are	not	in	the	preferred	order;	some	modules	also	have	imports	that	are	relevant
to	doctest	examples,	and	appear	to	be	unused;	some	examples	use	global
variables;	and	some	class	definitions	are	mere	skeletons	without	appropriate
method	definitions.	

Using	pylint	to	locate	potential	problems	is	essential.	It's	often	helpful	to	silence
pylint	warnings.	In	the	following	example,	we	need	to	silence	a	pylint	warning
about	the	test_list	variable	name	being	invalid	as	a	global	variable:

#	pylint:	disable=invalid-name

test_list	=	"""

			>>>	f	=	[1,	1,	2,	3]

				>>>	f	+=	[f[-1]	+	f[-2]]

				>>>	f

				[1,	1,	2,	3,	5]

			"""

if	__name__	==	"__main__":

				import	doctest

				__test__	=	{name:	value	

								for	name,	value	in	locals().items()	

												if	name.startswith("test_")}

				doctest.testmod(verbose=False)

Besides	helping	enforce	a	consistent	style,	the	pylint	warnings	are	helpful	for
identifying	spelling	mistakes	and	a	list	of	common	errors.	For	example,	the
instance	variable	is	commonly	self.	An	accidental	spelling	error	of	sefl	will	be
found	by	pylint.	



Type	hints	and	the	mypy	program
Python	3	permits	the	use	of	type	hints.	The	hints	are	present	in	assignment
statements,	function,	and	class	definitions.	They're	not	used	directly	by	Python
when	the	program	runs.	Instead,	they're	used	by	external	tools	to	examine	the
code	for	improper	use	of	types,	variables,	and	functions.	Here's	a	simple	function
with	type	hints:

def	F(n:	int)	->	int:

				if	n	in	(0,	1):

								return	1

				else:

								return	F(n-1)	+	F(n-2)

print("Good	Use",	F(8))

print("Bad	Use",	F(355/113))

When	we	run	the	mypy	program,	we'll	see	an	error	such	as	the	following:

Chapter_1/ch01_ex3.py:23:	error:	Argument	1	to	"F"	has	incompatible	type	"float";	expected	"int"

This	message	informs	us	of	the	location	of	the	error:	the	file	is
Chapter_1/ch01_ex3.py,	which	is	the	23rd	line	of	the	file.	The	details	tell	us	that	the
function,	F,	has	an	improper	argument	value.	This	kind	of	problem	can	be
difficult	to	see.	In	some	cases,	unit	tests	might	not	cover	this	case	very	well,	and
it's	possible	for	a	program	to	harbor	subtle	bugs	because	data	of	an	improper
type	might	be	used.



Performance	–	the	timeit	module
We'll	make	use	of	the	timeit	module	to	compare	the	actual	performance	of
different	object-oriented	designs	and	Python	constructs.	We'll	focus	on
the	timeit()	function	in	this	module.	This	function	creates	a	Timer	object	that's
used	to	measure	the	execution	of	a	given	block	of	code.	We	can	also	provide
some	preparatory	code	that	creates	an	environment.	The	return	value	from	this
function	is	the	time	required	to	run	the	given	block	of	code.

The	default	count	is	100,000.	This	provides	a	meaningful	time	that	averages	out
other	OS-level	activity	on	the	computer	doing	the	measurement.	For	complex	or
long-running	statements,	a	lower	count	may	be	prudent.

Here's	a	simple	interaction	with	timeit:

>>>	timeit.timeit("obj.method()",	

...	"""

...	class	SomeClass:

...					def	method(self):

...									pass

...	obj=	SomeClass()

...	""")

0.1980541350058047

The	code	to	be	measured	is	obj.method().	It	is	provided	to	timeit()	as	a	string.	The
setup	code	block	is	the	class	definition	and	object	construction.	This	code	block,
too,	is	provided	as	a	string.	It's	important	to	note	that	everything	required	by	the
statement	must	be	in	the	setup.	This	includes	all	imports,	as	well	as	all	variable
definitions	and	object	creation.

This	example	showed	that	100,000	method	calls	that	do	nothing	costs	0.198
seconds.



Testing	–	unittest	and	doctest
Unit	testing	is	absolutely	essential.

If	there's	no	automated	test	to	show	a	particular	element	functionality,	then	the
feature	doesn't	really	exist.	Put	another	way,	it's	not	done	until	there's	a	test	that
shows	that	it's	done.

We'll	touch,	tangentially,	on	testing.	If	we	delved	into	testing	each	object-
oriented	design	feature,	the	book	would	be	twice	as	long	as	it	is.	Omitting	the
details	of	testing	has	the	disadvantage	of	making	good	unit	tests	seem	optional.
They're	emphatically	not	optional.

Unit	testing	is	essential.

When	in	doubt,	design	the	tests	first.	Fit	the	code	to	the	test	cases.

Python	offers	two	built-in	testing	frameworks.	Most	applications	and	libraries
will	make	use	of	both.	One	general	wrapper	for	testing	is	the	unittest	module.	In
addition,	many	public	API	docstrings	will	have	examples	that	can	be	found	and
used	by	the	doctest	module.	Also,	unittest	can	incorporate	doctest.

The	pytest	tool	can	locate	test	cases	and	execute	them.	This	is	a	very	useful	tool,
but	must	be	installed	separately	from	the	rest	of	Python.

One	lofty	ideal	is	that	every	class	and	function	has	at	least	a	unit	test.	The
important,	visible	classes	and	functions	will	often	also	have	doctest.	There	are
other	lofty	ideals:	100%	code	coverage;	100%	logic	path	coverage,	and	so	on.

Pragmatically,	some	classes	don't	need	testing.	A	class	that
extends	typing.NamedTuple,	for	example,	doesn't	really	need	a	sophisticated	unit
test.	It's	important	to	test	the	unique	features	of	a	class	you've	written	and	not	the
features	inherited	from	the	standard	library.

Generally,	we	want	to	develop	the	test	cases	first,	and	then	write	code	that	fits
the	test	cases.	The	test	cases	formalize	the	API	for	the	code.	This	book	will
reveal	numerous	ways	to	write	code	that	has	the	same	interface.	Once	we've



defined	an	interface,	there	are	still	numerous	candidate	implementations	that	fit
the	interface.	One	set	of	tests	will	apply	to	several	different	object-oriented
designs.

One	general	approach	to	using	the	unittest	and	pytest	tools	is	to	create	at	least
three	parallel	directories	for	your	project:

myproject:	This	directory	is	the	final	package	that	will	be	installed	in	lib/site-
packages	for	your	package	or	application.	It	has	an	__init__.py	file.	We'll	put
our	files	in	here	for	each	module.
tests:	This	directory	has	the	test	scripts.	In	some	cases,	the	scripts	will
parallel	the	modules.	In	some	cases,	the	scripts	may	be	larger	and	more
complex	than	the	modules	themselves.
docs:	This	has	other	documentation.	We'll	touch	on	this	in	the	next	section,
as	well	as	a	chapter	in	part	three.

In	some	cases,	we'll	want	to	run	the	same	test	suite	on	multiple	candidate	classes
so	that	we	can	be	sure	each	candidate	works.	There's	no	point	in	doing
timeit	comparisons	on	code	that	doesn't	actually	work.



Documentation	–	sphinx	and	RST
markup
All	Python	code	should	have	docstrings	at	the	module,	class	and	method	level.
Not	every	single	method	requires	a	docstring.	Some	method	names	are	really
well	chosen,	and	little	more	needs	to	be	said.	Most	times,	however,
documentation	is	essential	for	clarity.

Python	documentation	is	often	written	using	the	reStructuredText	(RST)
markup.

Throughout	the	code	examples	in	the	book,	however,	we'll	omit	docstrings.	The
omission	keeps	the	book	to	a	reasonable	size.	This	gap	has	the	disadvantage	of
making	docstrings	seem	optional.	They're	emphatically	not	optional.

This	point	is	so	important,	we'll	emphasize	it	again:	docstrings	are	essential.

The	docstring	material	is	used	three	ways	by	Python:

The	internal	help()	function	displays	the	docstrings.
The	doctest	tool	can	find	examples	in	docstrings	and	run	them	as	test	cases.
External	tools,	such	as	sphinx	and	pydoc,	can	produce	elegant	documentation
extracts	from	these	strings.

Because	of	the	relative	simplicity	of	RST,	it's	quite	easy	to	write	good
docstrings.	We'll	look	at	documentation	and	the	expected	markup	in	detail	in	Chap
ter	18,	Coping	with	the	Command	Line.	For	now,	however,	we'll	provide	a	quick
example	of	what	a	docstring	might	look	like:

def	factorial(n:	int)	->	int:

				"""

				Compute	n!	recursively.

				:param	n:	an	integer	>=	0

				:returns:	n!

				Because	of	Python's	stack	limitation,	this	won't	compute	a	value	larger	than	about	1000!.

				>>>	factorial(5)



				120

				"""

				if	n	==	0:

								return	1

				return	n*factorial(n-1)

This	shows	the	RST	markup	for	the	n	parameter	and	the	return	value.	It	includes
an	additional	note	about	limitations.	It	also	includes	a	doctest	example	that	can	be
used	to	validate	the	implementation	using	the	doctest	tool.	The	use	of	:param	n:
and	:return:	identifies	text	that	will	be	used	by	the	sphinx	tool	to	provide	proper
formatting	and	indexing	of	the	information.



Installing	components
Most	of	the	tools	required	must	be	added	to	the	Python	3.7	environment.	There
are	two	approaches	in	common	use:

Use	pip	to	install	everything.
Use	conda	to	create	an	environment.	Most	of	the	tools	described	in	this	book
are	part	of	the	Anaconda	distribution.

The	pip	installation	uses	a	single	command:

python3	-m	pip	install	pyyaml	sqlalchemy	jinja2	pytest	sphinx	mypy	pylint	black

This	will	install	all	of	the	required	packages	and	tools	in	your	current	Python
environment.

The	conda	installation	creates	a	conda	environment	to	keep	the	book's	material
separate	from	any	other	projects:

1.	 Install	conda.	If	you	have	already	installed	Anaconda,	you	have	the	Conda
tool,	nothing	more	needs	to	be	done.	If	you	don't	have	Anaconda	yet,	then
install	miniconda,	which	is	the	ideal	way	to	get	started.	Visit	https://conda.io/mi
niconda.html	and	download	the	appropriate	version	of	conda	for	your	platform.

2.	 Use	conda	to	build	and	activate	the	new	environment.

3.	 Then	upgrade	pip.	This	is	needed	because	the	default	pip	installation	in	the
Python	3.7	environment	is	often	slightly	out	of	date.

4.	 Finally,	install	black.	This	is	required	because	black	is	not	currently	in	any	of
the	conda	distribution	channels.

Here	are	the	commands:

$	conda	create	--name	mastering	python=3.7	pyyaml	sqlalchemy	jinja2	

		pytest	sphinx	mypy	pylint

$	conda	activate	mastering

$	python3	-m	pip	install	--upgrade	pip

$	python3	-m	pip	install	black

The	suite	of	tools	(pytest,	sphinx,	mypy,	pylint,	and	black)	are	essential	for	creating

https://conda.io/miniconda.html


high-quality,	reliable	Python	programs.	The	other	components,	pyyaml,	sqlalchemy,
and	jinja2,	are	helpful	for	building	useful	applications.



Summary
In	this	chapter,	we've	surveyed	the	game	of	Blackjack.	The	rules	have	a
moderate	level	of	complexity,	providing	a	framework	for	creating	a	simulation.
Simulation	was	one	of	the	first	uses	for	OOP	and	remains	a	rich	source	of
programming	problems	that	illustrate	language	and	library	strengths.

This	chapter	introduces	the	way	the	Python	runtime	uses	special	methods	to
implement	the	various	operators.	The	bulk	of	this	book	will	show	ways	to	make
use	of	the	special	methods	names	for	creating	objects	that	interact	seamlessly
with	other	Python	features.

We've	also	looked	at	a	number	of	tools	that	will	be	required	to	build	good	Python
applications.	This	includes	the	IDE,	the	mypy	program	for	checking	type	hints,
and	the	black	and	pylint	programs	for	getting	to	a	consistent	style.	We	also	looked
at	the	timeit,	unittest,	and	doctest	modules	for	doing	essential	performance	and
functional	testing.	For	final	documentation	of	a	project,	it's	helpful	to	install
sphinx.	The	installation	of	these	extra	components	can	be	done	with	pip	or	conda.
The	pip	tool	is	part	of	Python,	the	conda	tool	requires	another	download	to	make	it
available.

In	the	next	chapter,	we'll	start	our	exploration	of	Python	with	class	definition.
We'll	focus	specifically	on	how	objects	are	initialized	using	the	__init__()	special
method.



The	__init__()	Method
The	__init__()	method	is	a	profound	feature	of	Python	class	definitions	for	two
reasons.	Firstly,	initialization	is	the	first	big	step	in	an	object's	life;	every	object
must	have	its	state	initialized	properly.	The	second	reason	is	that	the	argument
values	for	__init__()	can	take	many	forms.

Because	there	are	so	many	ways	to	provide	argument	values	to	__init__(),	there	is
a	vast	array	of	use	cases	for	object	creation.	We'll	take	a	look	at	several	of	them.
We	want	to	maximize	clarity,	so	we	need	to	define	an	initialization	that
characterizes	the	problem	domain	and	clearly	sets	the	state	of	the	object.

Before	we	can	get	to	the	__init__()	method,	however,	we	need	to	take	a	look	at
the	implicit	class	hierarchy	in	Python,	glancing	briefly	at	the	class	named	object.
This	will	set	the	stage	for	comparing	its	default	behavior	with	the	different	kinds
of	behavior	we	want	from	our	own	classes.

In	this	chapter,	we	will	take	a	look	at	different	forms	of	initialization	for	simple
objects	(for	example,	playing	cards).	After	this,	we	will	take	a	look	at	more
complex	objects,	such	as	hands,	which	involve	collections,	and	players,	which
involve	strategies	and	states.	Throughout	these	examples,	we'll	include	type	hints
and	explain	how	mypy	will	examine	this	code	to	determine	the	correct	use	of
objects.

In	this	chapter,	we	will	cover	the	following	topics:

All	Python	objects	are	subclasses	of	a	common	parent,	the	object	class,	so
we'll	look	at	this	first.
We'll	look	at	how	the	default	__init__()	method	for	the	object	class	works.
The	first	design	strategy	we'll	look	at	is	using	a	common	__init__()	method
for	all	subclasses	of	a	hierarchy.	This	can	lead	to	using	a	factory	function,
separate	from	the	__init__()	method,	to	help	initialize	objects	correctly.
The	second	design	strategy	involves	pushing	the	__init__()	method	into	each
individual	subclass	of	a	complex	hierarchy,	and	how	this	changes	the	design
of	the	classes.
We'll	look	at	how	to	create	composite	objects,	which	involves	a	number	of



related	uses	of	the	__init__()	methods	of	different	classes.
We'll	also	look	at	stateless	objects,	which	don't	need	a	sophisticated
__init__()	method.
The	chapter	will	finish	with	several	more	complex	uses	of	class-level	(or
static)	initialization,	and	how	to	validate	values	before	creating	an	invalid
object.

In	the	first	section,	we'll	look	at	Python's	superclass	for	all	objects,	the	object
class.



Technical	requirements
The	code	files	for	this	chapter	can	be	found	at	https://git.io/fj2U0.

https://git.io/fj2U0


The	implicit	superclass	–	object
Each	Python	class	definition	has	an	implicit	superclass:	object.	It's	a	very	simple
class	definition	that	does	almost	nothing.

We	can	create	instances	of	object,	but	we	can't	do	much	with	them,	because	many
of	the	special	methods	simply	raise	exceptions.

When	we	define	our	own	class,	object	is	the	superclass.	The	following	is	an
example	class	definition	that	simply	extends	object	with	a	new	name:

>>>	class	X:	

>>>					pass	

The	following	are	some	interactions	with	this	tiny	class	definition:

>>>	X.__class__	

<class	'type'>	

>>>	X.__class__.__base__	

<class	'object'>	

We	can	see	that	a	class	is	an	object	of	the	class	named	type	and	that	the	base	class
for	our	new	class	is	the	class	named	object.	As	we	look	at	each	method,	we	also
take	a	look	at	the	default	behavior	inherited	from	object.	In	some	cases,	the
superclass	special	method's	behavior	will	be	exactly	what	we	want.	In	other
cases,	we'll	need	to	override	the	behavior	of	the	special	method.



The	base	class	object	__init__()
method
Fundamental	to	the	life	cycle	of	an	object	are	its	creation,	initialization,	and
destruction.	We'll	defer	creation	and	destruction	to	a	later	chapter	on	more
advanced	special	methods	and	focus	on	initialization.	This	will	set	the	initial
state	of	the	object.

The	superclass	of	all	classes,	object,	has	a	default	implementation	of	__init__()
that	amounts	to	pass.	We	aren't	required	to	implement	__init__().	If	we	don't
implement	it,	then	no	instance	variables	will	be	created	when	the	object	is
created.	In	some	cases,	this	default	behavior	is	acceptable.

We	can	add	attributes	to	an	object	that's	a	subclass	of	object.	Consider	the
following	class,	which	requires	two	instance	variables,	but	doesn't	initialize
them:

class	Rectangle:	

				def	area(self)	->	float:	

								return	self.length	*	self.width	

The	Rectangle	class	has	a	method	that	uses	two	attributes	to	return	a	value.	The
attributes	have	not	been	initialized	anywhere	in	the	class	definition.	While	this	is
legal	Python,	it's	a	little	strange	to	avoid	specifically	setting	attributes.	The
following	is	an	interaction	with	the	Rectangle	class:

>>>	r	=	Rectangle()	

>>>	r.length,	r.width	=	13,	8	

>>>	r.area()

104	

While	this	is	legal,	it's	a	potential	source	of	deep	confusion,	which	is	a	good
reason	to	avoid	it.	Setting	ad-hoc	attribute	values	outside	the	class	body	in	the
example	shown	above	defeats	type	hint	checking	by	mypy,	which	is	another
reason	for	avoiding	it.

This	kind	of	design	grants	some	flexibility,	so	there	could	be	times	when	we
needn't	set	all	of	the	attributes	in	the	__init__()	method.	We	walk	a	fine	line	here.



An	optional	attribute	implies	a	kind	of	subclass	that's	not	formally	declared	as	a
proper	subclass.

We're	creating	polymorphism	in	a	way	that	could	lead	to	confusing	and
inappropriate	use	of	convoluted	if	statements.	While	uninitialized	attributes	may
be	useful,	they	could	be	a	symptom	of	bad	design.

The	Zen	of	Python,	by	Tim	Peters,	available	from	the	standard	library	via	import
this,	offers	the	following	advice:

"Explicit	is	better	than	implicit."

This	statement	has	proven	helpful	over	the	years,	to	help	keep	Python	programs
simple	and	consistent.	This	is	Python	Enhancement	Proposal	(PEP)	number
20.	See	https://www.python.org/dev/peps/pep-0020/	for	further	information.

An	__init__()	method	should	make	instance	variables	explicit.

Pretty	poor	polymorphism
There's	a	fine	line	between	flexibility	and	foolishness.	We	may	have	stepped	over	the	edge	of
flexible	into	foolish	as	soon	as	we	feel	the	need	to	write	the	following:

if	'x'	in	self.__dict__:

				code-to-handle-optional-attribute

Or,	we	could	see	the	following:

try:

				self.x

except	AttributeError:

				code-to-handle-optional-attribute

It's	time	to	reconsider	the	API	and	add	a	common	method	or	attribute.	Refactoring	is	better
than	adding	if	statements.

https://www.python.org/dev/peps/pep-0020/


Implementing	__init__()	in	a
superclass
We	initialize	an	object	by	implementing	the	__init__()	method.	When	an	object	is
created,	Python	first	creates	an	empty	object	and	then	calls	the	__init__()	method
to	set	the	state	of	the	new	object.	This	method	generally	creates	the	object's
instance	variables	and	performs	any	other	one-time	processing.

The	following	are	some	example	definitions	of	a	Card	class	hierarchy.	We'll
define	a	Card	superclass	and	three	subclasses	that	are	variations	of	the	basic
theme	of	Card.	We	have	two	instance	variables	that	have	been	set	directly	from
argument	values	and	two	variables	that	have	been	calculated	using	an
initialization	method:

from	typing	import	Tuple

class	Card:

				def	__init__(self,	rank:	str,	suit:	str)	->	None:

								self.suit	=	suit

								self.rank	=	rank

								self.hard,	self.soft	=	self._points()

				def	_points(self)	->	Tuple[int,	int]:

								return	int(self.rank),	int(self.rank)

class	AceCard(Card):

				def	_points(self)	->	Tuple[int,	int]:

								return	1,	11

class	FaceCard(Card):

				def	_points(self)	->	Tuple[int,	int]:

								return	10,	10

In	this	example,	we	factored	the	__init__()	method	into	the	superclass	so	that	a
common	initialization	in	the	superclass,	Card,	applies	to	two
subclasses,	AceCard	and	FaceCard.

This	example	provides	type	hints	for	parameters	of	the	__init__()	method.	Both
the	rank	and	suit	parameters	are	expected	to	have	values	of	the	str	type.	The
result	of	the	__init__()	method	is	always	None,	since	it	never	returns	a	value.	These



hints	can	be	checked	by	the	mypy	tool	to	ensure	that	the	class	is	used	properly.

This	shows	a	common	polymorphic	design.	Each	subclass	provides	a	unique
implementation	of	the	_points()	method.	The	various	_points()	methods	all	return
a	two-tuple	with	the	different	ways	to	evaluate	a	card.	All	the	subclasses	have
identical	signatures	–	they	have	the	same	methods	and	attributes.	Objects	of
these	three	subclasses	can	be	used	interchangeably	in	an	application.

The	leading	_	in	the	name	is	a	suggestion	to	someone	reading	the	class	that	the
_points()	method	is	an	implementation	detail,	subject	to	change	in	a	future
implementation.	This	can	help	to	reveal	which	methods	are	part	of	a	public
interface	and	which	are	details	that	aren't	intended	for	general	use	by	other
classes.

If	we	simply	use	characters	for	suits,	we	will	be	able	to	create	the	Card	instances,
as	shown	in	the	following	code	snippet:

cards	=	[AceCard('A',	'♠'),	Card('2','♠'),	FaceCard('J','♠'),]

We	enumerated	the	class,	rank,	and	suit	for	several	cards	in	a	list.	In	the	long
run,	we'll	need	a	much	smarter	factory	function	to	build	Card	instances;
enumerating	all	52	cards	this	way	is	tedious	and	error-prone.	Before	we	get	to
factory	functions,	we	will	take	a	look	at	a	number	of	other	issues.



Creating	enumerated	constants
We	can	define	classes	for	the	suits	of	our	cards.	The	suits	of	playing	cards	are	an
example	of	a	type	with	a	domain	that	can	be	exhaustively	enumerated.	Some
other	types	with	very	small	domains	of	values	include	the	None	type,	where	there's
only	one	value,	and	the	bool	type,	which	has	only	two	values.

The	suit	of	a	playing	card	could	be	thought	of	as	an	immutable	object:	the	state
should	not	be	changed.	Python	has	one	simple	formal	mechanism	for	defining	an
object	as	immutable.	We'll	look	at	techniques	to	assure	immutability	in	Chapter	4,
Attribute	Access,	Properties,	and	Descriptors.	While	it	might	make	sense	for	the
attributes	of	a	suit	to	be	immutable,	the	extra	effort	has	no	tangible	benefit.

The	following	is	a	class	that	we'll	use	to	build	four	manifest	constants:

from	enum	import	Enum

class	Suit(str,	Enum):

				Club	=	"♣"

				Diamond	=	"♦"

				Heart	=	"♥"

				Spade	=	"♠"

This	class	has	two	parent	classes.	Each	of	the	four	values	of	the	Suit	class	is	both
a	string	as	well	as	an	Enum	instance.	Each	string	value	is	only	a	single	Unicode
character.	The	enumerated	values	must	be	qualified	by	the	class	name,	assuring
that	there	will	be	no	collisions	with	other	objects.

Here's	one	of	the	enumerated	constants	built	by	this	class:

>>>	Suit.Club

<Suit.Club:	'♣'>

The	representation	of	an	Enum	instance	shows	the	name	within	the	Enum	class,	as
well	as	the	value	assigned	by	the	other	parent	class.	To	see	only	the	value,	use	an
expression	such	as	Suit.Heart.value.

We	can	now	create	cards,	as	shown	in	the	following	code	snippet:

cards	=	[AceCard('A',	Suit.Spade),	Card('2',	Suit.Spade),	FaceCard('Q',	Suit.Spade),]



For	an	example	this	small,	this	class	isn't	a	huge	improvement	on	single
character	suit	codes.	It	is	very	handy	to	have	the	explicit	enumeration	of	the
domain	of	values.	An	expression	such	as	list(Suit)	will	provide	all	of	the
available	objects.

We	do	have	to	acknowledge	that	these	objects	aren't	technically	immutable.	It's
possible	to	assign	additional	attributes	to	the	Suit	objects.	While	additional
attributes	can	be	added,	the	value	attribute	cannot	be	changed.	The	following
example	shows	the	exception	raised:

>>>	Suit.Heart.value	=	'H'

Traceback	(most	recent	call	last):

				File	"<doctest	__main__.__test__.test_suit_value[1]>",	line	1,	in	<module>

								Suit.Heart.value	=	'H'

				File	"/Users/slott/miniconda3/envs/py37/lib/python3.7/types.py",	line	175,	in	__set__

								raise	AttributeError("can't	set	attribute")

AttributeError:	can't	set	attribute

The	irrelevance	of	immutability
Immutability	can	become	an	attractive	nuisance.	It's	sometimes	justified	by	a	mythical
malicious	programmer	who	modifies	the	constant	value	in	their	application.	As	a	design
consideration,	this	is	often	silly.	A	mythical	malicious	programmer	can't	be	stopped	by
creating	immutable	objects.	A	malicious	programmer	would	have	access	to	the	Python	source
and	be	able	to	tweak	it	just	as	easily	as	they	could	write	poorly-crafted	code	to	modify	a
constant.

In	Chapter	4,	Attribute	Access,	Properties,	and	Descriptors,	we'll	show	you	some
ways	to	provide	suitable	diagnostic	information	for	a	buggy	program	that's
attempting	to	mutate	objects	intended	to	be	immutable.



Leveraging	__init__()	via	a	factory
function
We	can	build	a	complete	deck	of	cards	via	a	factory	function.	This	beats
enumerating	all	52	cards.	In	Python,	there	are	two	common	approaches	to
factories,	as	follows:

We	define	a	function	that	creates	objects	of	the	required	classes.
We	define	a	class	that	has	methods	for	creating	objects.	This	is	the	Factory
design	pattern,	as	described	in	books	on	object-oriented	design	patterns.	In
languages	such	as	Java,	a	factory	class	hierarchy	is	required	because	the
language	doesn't	support	standalone	functions.

In	Python,	a	class	isn't	required	to	create	an	object	factory,	but	this	can	be	a	good
idea	when	there	are	related	factories	or	factories	that	are	complex.	One	of	the
strengths	of	Python	is	that	we're	not	forced	to	use	a	class	hierarchy	when	a
simple	function	might	do	just	as	well.

While	this	is	a	book	about	object-oriented	programming,	a	function	really	is	fine.	It's	common,
idiomatic	Python.

We	can	always	rewrite	a	function	to	be	a	proper	callable	object	if	the	need	arises.
From	a	callable	object,	we	can	refactor	it	into	a	class	hierarchy	for	our	factories.
We'll	look	at	callable	objects	in	Chapter	6,	Using	Callables	and	Contexts.

The	advantage	of	class	definitions	is	code	reuse	via	inheritance.	The	purpose	of	a
factory	class	is	to	encapsulate	the	complexities	of	object	construction	in	a	way
that's	extensible.	If	we	have	a	factory	class,	we	can	add	subclasses	when
extending	the	target	class	hierarchy.	This	can	give	us	polymorphic	factory
classes;	different	factory	class	definitions	can	have	the	same	method	signatures
and	can	be	used	interchangeably.

If	the	alternative	factory	definitions	don't	actually	reuse	any	code,	then	a	class
hierarchy	won't	be	as	helpful	in	Python.	We	can	simply	use	functions	that	have
the	same	signatures.



The	following	is	a	factory	function	for	our	various	Card	subclasses:

def	card(rank:	int,	suit:	Suit)	->	Card:

				if	rank	==	1:

								return	AceCard("A",	suit)

				elif	2	<=	rank	<	11:

								return	Card(str(rank),	suit)

				elif	11	<=	rank	<	14:

								name	=	{11:	"J",	12:	"Q",	13:	"K"}[rank]

								return	FaceCard(name,	suit)

				raise	Exception("Design	Failure")

This	function	builds	a	Card	class	from	a	numeric	rank	number	and	a	suit	object.
The	type	hints	clarify	the	expected	argument	values.	The	->	Card	hint	describes
the	result	of	this	function,	showing	that	it	will	create	a	Card	object.	We	can	now
build	Card	instances	more	simply.	We've	encapsulated	the	construction	issues	into
a	single	factory	function,	allowing	an	application	to	be	built	without	knowing
precisely	how	the	class	hierarchy	and	polymorphic	design	works.

The	following	is	an	example	of	how	we	can	build	a	deck	with	this	factory
function:

deck	=	[card(rank,	suit)	

				for	rank	in	range(1,14)	

								for	suit	in	iter(Suit)]	

This	enumerates	all	the	ranks	and	suits	to	create	a	complete	deck	of	52	cards.
This	works	nicely,	because	the	Enum	subclasses	will	iterate	over	the	list	of
enumerated	values.

We	do	not	need	to	use	iter(Suit).	We	can	use	Suit	in	the	preceding	generator,	and
it	will	work	nicely.	While	the	for	suit	in	Suit	form	will	work,	mypy	will	signal
errors.	Using	list(Suit)	or	iter(Suit)	will	mute	the	errors	by	making	the	intent
clear.



Faulty	factory	design	and	the	vague
else	clause
Note	the	structure	of	the	if	statement	in	the	card()	function.	We	did	not	use	a
catch-all	else	clause	to	do	any	processing;	we	merely	raised	an	exception.	The
use	of	a	catch-all	else	clause	is	subject	to	debate.

On	the	one	hand,	it	can	be	argued	that	the	condition	that	belongs	in	an	else	clause
should	never	be	left	unstated	because	it	may	hide	subtle	design	errors.	On	the
other	hand,	some	else	clause	conditions	are	truly	obvious.

It's	important	to	avoid	a	vague	else	clause.

Consider	the	following	variant	on	this	factory	function	definition:

def	card2(rank:	int,	suit:	Suit)	->	Card:

				if	rank	==	1:

								return	AceCard("A",	suit)

				elif	2	<=	rank	<	11:

								return	Card(str(rank),	suit)

				else:

								name	=	{11:	"J",	12:	"Q",	13:	"K"}[rank]

								return	FaceCard(name,	suit)

While	this	kind	of	code	is	common,	it's	not	perfectly	clear	what	condition	applies
to	the	else:	clause.	

The	following	looks	like	it	might	build	a	valid	deck:

deck2	=	[card2(rank,	suit)	for	rank	in	range(13)	for	suit	in	iter(Suit)]

This	doesn't	work.	But	the	error	is	an	obscure	KeyError	when	trying	to	build	a
FaceCard	instance.

What	if	the	if	conditions	were	more	complex?	While	some	programmers	will
understand	this	if	statement	at	a	glance,	others	will	struggle	to	determine
whether	all	of	the	cases	are	properly	exclusive.

We	should	not	force	the	reader	to	deduce	a	complex	condition	for	an	else	clause.



Either	the	condition	should	be	obvious	to	the	newest	of	noobz,	or	it	should	be
explicit.

Catch-all	else	should	be	used	rarely.	Use	it	only	when	the	condition	is	obvious.	When	in
doubt,	be	explicit	and	use	else	to	raise	an	exception.	Avoid	the	vague	else	clause.



Simplicity	and	consistency	using	elif
sequences
The	factory	function,	card(),	is	a	mixture	of	two	very	common	Factory	design
patterns:

An	if-elif	sequence
A	mapping

For	the	sake	of	simplicity,	it	can	be	better	to	focus	on	just	one	of	these
techniques	rather	than	on	both.

We	can	always	replace	a	mapping	with	elif	conditions.	(Yes,	always.	The	reverse
is	not	true	though;	transforming	elif	conditions	to	a	mapping	can	be
challenging.)

The	following	is	a	Card	factory	without	a	mapping:

def	card3(rank:	int,	suit:	Suit)	->	Card:

				if	rank	==	1:

								return	AceCard("A",	suit)

				elif	2	<=	rank	<	11:

								return	Card(str(rank),	suit)

				elif	rank	==	11:

								return	FaceCard("J",	suit)

				elif	rank	==	12:

								return	FaceCard("Q",	suit)

				elif	rank	==	13:

								return	FaceCard("K",	suit)

				else:

								raise	Exception("Rank	out	of	range")

We	rewrote	the	card()	factory	function.	The	mapping	was	transformed	into
additional	elif	clauses.	This	function	has	the	advantage	that	it	is	more	consistent
than	the	previous	version.



Simplicity	using	mapping	and	class
objects
In	some	cases,	we	can	use	a	mapping	instead	of	a	chain	of	elif	conditions.	It's
possible	to	find	conditions	that	are	so	complex	that	a	chain	of	elif	conditions	is
the	only	sensible	way	to	express	them.	For	simple	cases,	however,	a	mapping
often	works	better	and	can	be	easy	to	read.

Since	class	is	a	first-class	object,	we	can	easily	map	from	the	rank	parameter	to
the	class	that	must	be	constructed.

The	following	is	a	Card	factory	that	uses	only	a	mapping:

def	card4(rank:	int,	suit:	Suit)	->	Card:

				class_	=	{1:	AceCard,	11:	FaceCard,	12:	FaceCard,	

								13:	FaceCard}.get(rank,	Card)

				return	class_(str(rank),	suit)

We've	mapped	the	rank	object	to	a	class.	Then,	we	applied	the	class	to	the	rank
and	suit	values	to	build	the	final	Card	instance.

The	card4()	function,	however,	has	a	serious	deficiency.	It	lacks	the	translation
from	1	to	A	and	13	to	K	that	we	had	in	previous	versions.	When	we	try	to	add	that
feature,	we	run	into	a	problem.

We	need	to	change	the	mapping	to	provide	both	a	Card	subclass	as	well	as	the
string	version	of	the	rank	object.	How	can	we	create	this	two-part	mapping?
There	are	four	common	solutions:

We	can	do	two	parallel	mappings.	We	don't	suggest	this,	but	we'll	show	it	to
emphasize	what's	undesirable	about	it.
We	can	map	to	a	two-tuple.	This	also	has	some	disadvantages.
We	can	map	to	a	partial	()	function.	The	partial()	function	is	a	feature	of	the
functools	module.	This	won't	work	out	perfectly,	and	we'll	use	a	lambda
object	to	achieve	the	same	goal.
We	can	also	consider	modifying	our	class	definition	to	fit	more	readily	with
this	kind	of	mapping.	We'll	look	at	this	alternative	in	the	next	section,	on



pushing	__init__()	into	subclass	definitions.

We'll	look	at	each	of	these	with	a	concrete	example.



Two	parallel	mappings
The	following	is	the	essence	of	the	two-parallel	mappings	solution:

def	card5(rank:	int,	suit:	Suit)	->	Card:

				class_	=	{1:	AceCard,	11:	FaceCard,	12:	FaceCard,	

								13:	FaceCard}.get(rank,	Card)

				rank_str	=	{1:	"A",	11:	"J",	12:	"Q",	

								13:	"K"}.get(rank,	str(rank))

				return	class_(rank_str,	suit)

This	is	not	desirable.	It	involves	a	repetition	of	the	sequence	of	the	mapping	keys
1,	11,	12,	and	13.	Repetition	is	bad,	because	parallel	structures	never	seem	to	stay
that	way	after	the	software	has	been	updated	or	revised.

Don't	use	parallel	structures
Two	parallel	structures	should	be	replaced	with	tuples	or	some	kind	of	proper	collection.



Mapping	to	a	tuple	of	values
The	following	is	the	essence	of	how	mapping	is	done	to	a	two-tuple:

def	card6(rank:	int,	suit:	Suit)	->	Card:

				class_,	rank_str	=	{

								1:	(AceCard,	"A"),	

								11:	(FaceCard,	"J"),	

								12:	(FaceCard,	"Q"),	

								13:	(FaceCard,	"K")

				}.get(

								rank,	(Card,	str(rank))

				)

				return	class_(rank_str,	suit)

This	is	a	reasonably	pleasant	design	because	it	uses	a	simple	mapping.	It's	not
much	code	to	handle	special	cases	of	playing	cards.	We	will	see	how	it	could	be
modified	or	expanded	if	we	needed	to	alter	the	Card	class	hierarchy	to	add
additional	subclasses	of	Card.

It	does	feel	odd	to	map	a	rank	value	to	a	class	object	and	one	of	the	two
arguments	to	that	class	initializer.	It	seems	more	sensible	to	map	the	rank	to	a
simple	class	or	function	object	without	the	clutter	of	providing	some	(but	not	all)
of	the	arguments.



The	partial	function	solution
In	the	previous	example,	we	mapped	the	rank	to	a	two-tuple	of	the	class	and	one
of	the	arguments	for	creating	an	instance.	We	can	combine	class	and	rank	into	a
partial	function.	This	is	a	function	that	has	some	argument	values	and	is	waiting
for	the	final	argument	value.	In	many	cases,	we	can	use	the	partial()	function
from	the	functools	library	to	create	a	partial	function	combining	the	class	object
with	the	rank	argument.

The	partial()	function	is	not	designed	to	create	objects;	using	it	like	this	will	raise
an	exception.	Instead	of	using	the	partial	function,	we	can	create	a	lambda	object
instead.	For	example,	the	lambda	suit:	AceCard("A",	suit)	expression	is	a	function
that	is	waiting	for	the	suit	value	to	create	a	complete	Card.

The	following	is	a	mapping	from	rank	to	a	lambda	object	that	can	be	used	to
construct	Card	objects:

def	card7(rank:	int,	suit:	Suit)	->	Card:

				class_rank	=	{

								1:	lambda	suit:	AceCard("A",	suit),

								11:	lambda	suit:	FaceCard("J",	suit),

								12:	lambda	suit:	FaceCard("Q",	suit),

								13:	lambda	suit:	FaceCard("K",	suit),

				}.get(

								rank,	lambda	suit:	Card(str(rank),	suit)

				)

				return	class_rank(suit)

The	mapping	associates	a	rank	object	with	a	lambda	object	that	contains	a	class	and
a	string.	The	lambda	object	is	a	function	that	is	then	applied	to	the	suit	object	to
create	the	final	Card	instance.

This	use	of	the	partial()	function	is	a	common	technique	for	functional
programming.	It	is	one	way	to	achieve	a	kind	of	polymorphism	so	that	several
different	functions	can	be	used	in	a	similar	way.

In	general,	however,	partial	functions	aren't	helpful	for	most	object-oriented
programming.	When	building	complex	objects,	it	is	common	to	define	methods
that	accept	arguments	incrementally.	Instead	of	using	rank	to	create	a	partial
function,	a	more	object-oriented	approach	is	to	use	separate	methods	to	set	rank



and	suit.



Fluent	APIs	for	factories
In	Python,	a	fluent	interface	is	built	by	creating	methods	that	return	the	self
instance	variable.	Each	method	can	set	some	of	the	object's	state.	By	returning
self,	the	functions	can	be	chained	together.

We	might	have	X().a().b()	in	an	object	notation.	We	can	think	of	it	as	
.	The	x.a()	function	is	a	kind	of	partial()	function	that's	waiting	for	b().	We	can
think	of	X().a()	as	if	it	were	an	object	with	another	function	as	its	argument

value,	 .

The	idea	here	is	that	Python	offers	us	two	alternatives	for	initializing	state.	We
can	either	set	all	of	the	values	in	__init__(),	or	we	can	set	values	in	a	number	of
separate	methods.	In	the	following	example,	we'll	make	the	setting	of	the	rank
object	a	fluent	method	that	returns	self.	Setting	the	suit	object	will	actually	create
the	Card	instance.	The	following	is	a	fluent	Card	factory	class.	An	instance	must
use	the	two	method	functions	in	the	required	order:

class	CardFactory:

				def	rank(self,	rank:	int)	->	"CardFactory":

								self.class_,	self.rank_str	=	{

												1:	(AceCard,	"A"),

												11:	(FaceCard,	"J"),

												12:	(FaceCard,	"Q"),

												13:	(FaceCard,	"K"),

								}.get(

												rank,	(Card,	str(rank))

								)

								return	self

				def	suit(self,	suit:	Suit)	->	Card:

								return	self.class_(self.rank_str,	suit)

The	rank()	method	updates	the	state	of	the	constructor,	and	the	suit()	method
actually	creates	the	final	Card	object.	The	type	hint	for	the	rank()	function	shows
the	function	returning	a	CardFactory	object.	Because	the	class	is	not	fully	defined,
the	name	isn't	known,	and	a	quoted	string	has	to	be	used.	The	mypy	tool	will
resolve	the	string	type	name	to	create	a	circular	reference	from	the	class	to	itself.

This	factory	class	can	be	used	as	follows:



card8	=	CardFactory()	

deck8	=	[card8.rank(r	+	1).suit(s)	for	r	in	range(13)	for	s	in	Suit]

First,	we	create	a	factory	instance,	then	we	use	that	instance	to	create	the	Card
instances.	This	doesn't	materially	change	how	__init__()	itself	works	in	the	Card
class	hierarchy.	It	does,	however,	change	the	way	that	our	client	application
creates	objects.



Implementing	__init__()	in	each
subclass
As	we	look	at	the	factory	functions	for	creating	Card	objects,	there	are	some
alternative	designs	for	the	Card	class.	We	might	want	to	refactor	the	conversion	of
the	rank	number	so	that	it	is	the	responsibility	of	the	Card	class	itself.	This	pushes
the	initialization	down	into	each	subclass.

This	often	requires	some	common	initialization	of	a	superclass	as	well	as
subclass-specific	initialization.	We	need	to	follow	the	Don't	Repeat	Yourself
(DRY)	principle	to	keep	the	code	from	getting	cloned	into	each	of	the
subclasses.

This	version	of	the	Card3	class	has	an	initializer	at	the	superclass	level	that	is	used
by	each	subclass,	as	shown	in	the	following	code	snippet:

class	Card3:

				def	__init__(

												self,	rank:	str,	suit:	Suit,	hard:	int,	soft:	int

				)	->	None:

								self.rank	=	rank

								self.suit	=	suit

								self.hard	=	hard

								self.soft	=	soft

class	NumberCard3(Card3):

				def	__init__(self,	rank:	int,	suit:	Suit)	->	None:

								super().__init__(str(rank),	suit,	rank,	rank)

class	AceCard3(Card3):

				def	__init__(self,	rank:	int,	suit:	Suit)	->	None:

								super().__init__("A",	suit,	1,	11)

class	FaceCard3(Card3):

				def	__init__(self,	rank:	int,	suit:	Suit)	->	None:

								rank_str	=	{11:	"J",	12:	"Q",	13:	"K"}[rank]

								super().__init__(rank_str,	suit,	10,	10)

We've	provided	__init__()	at	both	the	subclass	and	superclass	level.	Each	subclass
uses	the	super()	function	to	locate	the	superclass	version	of	__init__().	The
superclass	version	has	a	number	of	parameters	that	can	be	omitted	from	the



subclass	initializers.

This	has	the	small	advantage	that	it	simplifies	our	factory	function,	as	shown	in
the	following	code	snippet:

def	card10(rank:	int,	suit:	Suit)	->	Card3:

				if	rank	==	1:

								return	AceCard3(rank,	suit)

				elif	2	<=	rank	<	11:

								return	NumberCard3(rank,	suit)

				elif	11	<=	rank	<	14:

								return	FaceCard3(rank,	suit)

				else:

								raise	Exception("Rank	out	of	range")

We	can	see	from	this	variation	that	we've	created	rather	complex	__init__()
methods	for	a	relatively	minor	improvement	in	the	simplicity	of	a	factory
function.	This	is	a	common	trade-off.	The	complexity	cannot	be	removed;	it	can
only	be	encapsulated.	The	real	question	is	how	should	responsibility	be	allocated
for	this	complexity?

Factory	functions	encapsulate	complexity
There's	a	trade-off	that	occurs	between	sophisticated	__init__()	methods	and	factory	functions.
It's	often	better	to	push	complex	constructors	into	factory	functions.	A	factory	function	helps
separate	construction	and	initial	state-from-state	change	or	other	processing	concerns.



Composite	objects
A	composite	object	can	also	be	called	a	container.	We'll	look	at	a	simple
composite	object:	a	deck	of	individual	cards.	This	is	a	basic	collection.	Indeed,
it's	so	basic	that	we	can,	without	too	much	struggle,	use	a	simple	list	object	as	a
deck.

Before	designing	a	new	class,	we	need	to	ask	this	question:	is	using	a	simple
list	object	appropriate?

We	can	use	random.shuffle()	to	shuffle	the	deck	and	deck.pop()	to	deal	cards	into	a
player's	Hand.

Some	programmers	rush	to	define	new	classes	as	if	using	a	built-in	class	violates
some	object-oriented	design	principle.	Avoiding	a	new	class	leaves	us	with	the
following	code	snippet:

>>>	d	=	[card(r	+	1,	s)	for	r	in	range(13)	for	s	in	iter(Suit)]

>>>	random.shuffle(d)

>>>	hand	=	[d.pop(),	d.pop()]

>>>	hand

[FaceCard(suit=<Suit.Club:	'♣'>,	rank='J'),	Card(suit=<Suit.Spade:	'♠'>,	rank='2')]

If	it's	that	simple,	why	write	a	new	class?

Defining	a	class	has	the	advantage	of	creating	a	simplified,	implementation-free
interface	to	the	object.	In	the	case	of	the	list	example	shown	in	the	preceding
code,	it's	not	clear	how	much	simpler	a	Deck	class	would	be.

The	deck	has	two	use	cases.	A	class	definition	doesn't	seem	to	simplify	things
very	much.	It	does	have	the	advantage	of	concealing	the	implementation's
details.	In	this	example,	the	details	are	so	trivial	that	exposing	them	has	little
cost.

We're	focused	primarily	on	the	__init__()	method	in	this	chapter,	so	we'll	look	at
some	designs	to	create	and	initialize	a	collection.	To	design	a	collection	of
objects,	we	have	the	following	three	general	design	strategies:



Wrap:	This	design	pattern	surrounds	an	existing	collection	definition	with
a	simplified	interface.	This	is	an	example	of	the	more	general	Facade
design	pattern.
Extend:	This	design	pattern	starts	with	an	existing	collection	class	and
extends	it	to	add	features.
Invent:	This	is	designed	from	scratch.	We'll	look	at	this	in	Chapter	7,
Creating	Containers	and	Collections.

These	three	concepts	are	central	to	object-oriented	design.	Because	Python	has
so	many	features	built	into	the	language,	we	must	always	make	this	choice	when
designing	a	class.



Wrapping	a	collection	class
The	following	is	a	wrapper	design	that	contains	an	internal	collection:

class	Deck:

				def	__init__(self)	->	None:

								self._cards	=	[card(r	+	1,	s)	

												for	r	in	range(13)	for	s	in	iter(Suit)]

								random.shuffle(self._cards)

				def	pop(self)	->	Card:

								return	self._cards.pop()

We've	defined	Deck	so	that	the	internal	collection	is	a	list	object.	The	pop()
method	of	Deck	simply	delegates	to	the	wrapped	list	object.

We	can	then	create	a	Hand	instance	with	the	following	type	of	code:

d	=	Deck()	

hand	=	[d.pop(),	d.pop()]	

Generally,	a	Facade	design	pattern	or	wrapper	class	contains	methods	that
delegate	the	work	to	the	underlying	implementation	class.	This	delegation	can
become	wordy	when	a	lot	of	features	are	provided.	For	a	sophisticated
collection,	we	may	wind	up	delegating	a	large	number	of	methods	to	the
wrapped	object.



Extending	a	collection	class
An	alternative	to	wrapping	is	to	extend	a	built-in	class.	By	doing	this,	we	have
the	advantage	of	not	having	to	reimplement	the	pop()	method;	we	can	simply
inherit	it.

The	pop()	method	has	an	advantage	in	that	it	creates	a	class	without	writing	too
much	code.	In	this	example,	extending	the	list	class	has	the	disadvantage	that
this	provides	many	more	functions	than	we	truly	need.

The	following	is	a	definition	of	Deck2	that	extends	the	built-in	list	object:

class	Deck2(list):

				def	__init__(self)	->	None:

								super().__init__(

												card(r	+	1,	s)	

																for	r	in	range(13)	for	s	in	iter(Suit))

								random.shuffle(self)

In	this	case,	we've	initialized	the	list	with	Card	instances.	super().__init__()	reaches
up	to	the	superclass	initialization	to	populate	our	list	object	with	an	initial	single
deck	of	cards.	After	seeding	the	list,	the	initializer	then	shuffles	the	cards.	The
pop()	method	is	directly	inherited	from	list	and	works	perfectly.	Other	methods
inherited	from	the	list	class	will	also	work.

While	simpler,	this	exposes	methods	such	as	delete()	and	remove().	If	these
additional	features	are	undesirable,	a	wrapped	object	might	be	a	better	idea.



More	requirements	and	another
design
In	a	casino,	cards	are	often	dealt	from	a	shoe	that	has	half	a	dozen	decks	of	cards
all	mingled	together.	This	additional	complexity	suggests	that	we	need	to	build
our	own	implementation	of	Deck	and	not	simply	use	the	list	class	directly.
Additionally,	a	casino	shoe	is	not	dealt	fully.	Instead,	a	marker	card	is	inserted.
Because	of	the	marker,	some	cards	are	effectively	set	aside	and	not	used	for	play.
These	cards	are	said	to	be	burned.

The	following	Deck3	class	definition	contains	multiple	sets	of	52-card	decks:

class	Deck3(list):

				def	__init__(self,	decks:	int	=	1)	->	None:

								super().__init__()

								for	i	in	range(decks):

												self.extend(

																card(r	+	1,	s)	

																for	r	in	range(13)	for	s	in	iter(Suit)

												)

								random.shuffle(self)

								burn	=	random.randint(1,	52)

								for	i	in	range(burn):

												self.pop()

Here,	we	used	the	__init__()	method	of	the	superclass	to	build	an	empty
collection.	Then,	we	used	self.extend()	to	extend	this	collection	with	multiple	52-
card	decks.	This	populates	the	shoe.	We	could	also	use	super().extend(),	since	we
did	not	provide	an	overriding	implementation	in	this	class.

We	could	also	carry	out	the	entire	task	via	super().__init__()	using	a	more	deeply
nested	generator	expression,	as	shown	in	the	following	code	snippet:

super().__init__(

				card(r	+	1,	s)

								for	r	in	range(13)	

												for	s	in	iter(Suit)	

																for	d	in	range(decks)

				)

This	class	provides	us	with	a	collection	of	Card	instances	that	we	can	use	to
emulate	casino	blackjack	as	dealt	from	a	shoe.



Complex	composite	objects
The	following	is	an	example	of	a	Blackjack	Hand	description	that	might	be
suitable	for	emulating	play	strategies:

class	Hand:

				def	__init__(self,	dealer_card:	Card)	->	None:

								self.dealer_card:	Card	=	dealer_card

								self.cards:	List[Card]	=	[]

				def	hard_total(self)	->	int:

								return	sum(c.hard	for	c	in	self.cards)

				def	soft_total(self)	->	int:

								return	sum(c.soft	for	c	in	self.cards)

				def	__repr__(self)	->	str:

								return	f"{self.__class__.__name__}	{self.dealer_card}	{self.cards}"

In	this	example,	we	have	a	self.dealer_card	instance	variable	based	on	a	parameter
of	the	__init__()	method.	The	self.cards	instance	variable,	however,	is	not	based
on	any	parameter.	This	kind	of	initialization	creates	an	empty	collection.	Note
that	the	assignment	to	the	self.cards	variable	requires	a	type	hint	to	inform	mypy	of
the	expected	contents	of	the	self.cards	collection.

To	create	an	instance	of	Hand,	we	can	use	the	following	code:

>>>	d	=	Deck()

>>>	h	=	Hand(d.pop())

>>>	h.cards.append(d.pop())

>>>	h.cards.append(d.pop())

This	has	the	disadvantage	of	consisting	of	a	long-winded	sequence	of	statements
to	build	an	instance	of	a	Hand	object.	It	can	become	difficult	to	serialize	the	Hand
object	and	rebuild	it	with	an	initialization	as	complex	as	this.	Even	if	we	were	to
create	an	explicit	append()	method	in	this	class,	it	would	still	take	multiple	steps	to
initialize	the	collection.

The	definition	of	the	__repr__()	method	illustrates	this	problem.	We	can't	provide
a	simple	string	representation	that	would	rebuild	the	object.	The	typical	use	of
__repr__()	is	to	create	a	Pythonic	view	of	the	object's	state,	but,	with	such	a
complex	initialization,	there's	no	simple	expression	to	represent	it.



We	could	try	to	create	a	fluent	interface,	but	that	wouldn't	really	simplify	things;
it	would	merely	mean	a	change	in	the	syntax	of	the	way	that	a	Hand	object	is	built.
A	fluent	interface	still	leads	to	multiple	method	evaluations.	When	we	take	a
look	at	the	serialization	of	objects	in	part	2,	Persistence	and	Serialization,	we'd
like	an	interface	that's	a	single	class-level	function;	ideally	the	class	constructor.
We'll	look	at	this	in	depth	in	Chapter	10,	Serializing	and	Saving	–	JSON,	YAML,
Pickle,	CSV,	and	XML.

You	should	also	note	that	the	hard	total	and	soft	total	method	functions	shown
here	don't	fully	follow	the	rules	of	Blackjack.	We'll	return	to	this	issue	in	Chapter	
3,	Integrating	Seamlessly	–	Basic	Special	Methods.



Complete	composite	object
initialization
Ideally,	the	__init__()	initializer	method	will	create	a	complete	instance	of	an
object.	This	is	a	bit	more	complex	when	creating	a	complete	instance	of	a
container	that	contains	an	internal	collection	of	other	objects.	It'll	be	helpful	if
we	can	build	this	composite	in	a	single	step.

It's	common	to	have	both	a	method	to	incrementally	accrete	items,	as	well	as	the
initializer	special	method,	which	can	load	all	of	the	items	in	one	step.

For	example,	we	might	have	a	class	such	as	the	following	code	snippet:

class	Hand2:

				def	__init__(self,	dealer_card:	Card,	*cards:	Card)	->	None:

								self.dealer_card	=	dealer_card

								self.cards	=	list(cards)

				def	card_append(self,	card:	Card)	->	None:

								self.cards.append(card)

				def	hard_total(self)	->	int:

								return	sum(c.hard	for	c	in	self.cards)

				def	soft_total(self)	->	int:

								return	sum(c.soft	for	c	in	self.cards)

				def	__repr__(self)	->	str:

								return	f"{self.__class__.__name__}({self.dealer_card!r},	*{self.cards})"

This	initialization	sets	all	of	the	instance	variables	in	a	single	step.	The	other
methods	are	copies	from	the	previous	class	definition.	The	first	positional
argument	value	is	assigned	to	the	dealer_card	parameter.	The	use	of	*	with	the
cards	parameter	means	that	all	of	the	remaining	positional	argument	values	are
collected	into	a	tuple	and	assigned	to	the	cards	parameter.

We	can	build	a	Hand2	object	in	two	ways.	This	first	example	loads	one	card	at	a
time	into	a	Hand2	object:

d	=	Deck()	

P	=	Hand2(d.pop())	

p.cards.append(d.pop())	

p.cards.append(d.pop())	



This	second	example	uses	the	*cards	parameter	to	load	a	sequence	of	the	Cards
class	in	a	single	step:

d	=	Deck()	

h	=	Hand2(d.pop(),	d.pop(),	d.pop())	

For	unit	testing,	it's	often	helpful	to	build	a	composite	object	in	a	single
statement	in	this	way.	More	importantly,	some	of	the	serialization	techniques
from	the	next	part	will	benefit	from	a	way	of	building	a	composite	object	in	a
single,	simple	evaluation.



Stateless	objects	without	__init__()
The	following	is	an	example	of	a	degenerate	class	that	doesn't	need	an	__init__()
method.	It's	a	common	design	pattern	for	Strategy	objects.	A	Strategy	object	is
plugged	into	some	kind	of	master	or	owner	object	to	implement	an	algorithm	or
decision.	The	Strategy	object	often	depends	on	data	in	the	master	object;	the
Strategy	object	may	not	have	any	data	of	its	own.	We	often	design	strategy
classes	to	follow	the	Flyweight	design	pattern	so	we	can	avoid	internal	storage	in
the	strategy	instance.	All	values	can	be	provided	to	a	Strategy	object	as	method
argument	values.	In	some	cases,	a	strategy	object	can	be	stateless;	in	this
instance,	it	is	more	a	collection	of	method	functions	than	anything	else.

In	the	following	examples,	we'll	show	both	stateless	and	stateful	strategy	class
definitions.	We'll	start	with	the	strategy	for	making	some	of	the	player	decisions
based	on	the	state	of	the	Hand	object.

In	this	case,	we're	providing	the	gameplay	decisions	for	a	Player	instance.	The
following	is	an	example	of	a	(dumb)	strategy	to	pick	cards	and	decline	other
bets:

class	GameStrategy:

				def	insurance(self,	hand:	Hand)	->	bool:

								return	False

				def	split(self,	hand:	Hand)	->	bool:

								return	False

				def	double(self,	hand:	Hand)	->	bool:

								return	False

				def	hit(self,	hand:	Hand)	->	bool:

								return	sum(c.hard	for	c	in	hand.cards)	<=	17

Each	method	requires	the	current	Hand	object	as	an	argument	value.	The	decisions
are	based	on	the	available	information;	that	is,	on	the	dealer's	cards	and	the
player's	cards.	The	result	of	each	decision	is	shown	in	the	type	hints	as	a	Boolean
value.	Each	method	returns	True	if	the	player	elects	to	perform	the	action.

We	can	build	a	single	instance	of	this	strategy	for	use	by	various	Player	instances,
as	shown	in	the	following	code	snippet:



dumb	=	GameStrategy()	

We	can	imagine	creating	a	family	of	related	strategy	classes,	each	one	using
different	rules	for	the	various	decisions	a	player	is	offered	in	Blackjack.



Some	additional	class	definitions
As	noted	previously,	a	player	has	two	strategies:	one	for	betting	and	one	for
playing	their	hand.	Each	Player	instance	has	a	sequence	of	interactions	with	a
larger	simulation	engine.	We'll	call	the	larger	engine	the	Table	class.

The	Table	class	requires	the	following	sequence	of	events	by	the	Player	instances:

1.	 The	player	must	place	an	initial,	or	ante,	bet	based	on	the	betting	strategy.
2.	 The	player	will	then	receive	a	hand	of	cards.
3.	 If	the	hand	is	splittable,	the	player	must	decide	whether	to	split	it	or	not

based	on	their	game	strategy.	This	can	create	additional	Hand	instances.	In
some	casinos,	the	additional	hands	are	also	splittable.

4.	 For	each	Hand	instance,	the	player	must	decide	to	hit,	double,	or	stand	based
on	their	game	strategy.

5.	 The	player	will	then	receive	payouts,	and	they	must	update	their	betting
strategy	based	on	their	wins	and	losses.

From	this,	we	can	see	that	the	Table	class	has	a	number	of	API	methods	to	receive
a	bet,	create	a	Hand	object,	offer	a	split,	resolve	each	hand,	and	pay	off	the	bets.
This	is	a	large	object	that	tracks	the	state	of	play	with	a	collection	of	Players.

The	following	is	the	beginning	of	a	Table	class,	which	handles	the	bets	and	cards:

class	Table:

				def	__init__(self)	->	None:

								self.deck	=	Deck()

				def	place_bet(self,	amount:	int)	->	None:

								print("Bet",	amount)

				def	get_hand(self)	->	Hand2:

								try:

												self.hand	=	Hand2(self.deck.pop(),	

																self.deck.pop(),	self.deck.pop())

												self.hole_card	=	self.deck.pop()

								except	IndexError:

												#	Out	of	cards:	need	to	shuffle	and	try	again.

												self.deck	=	Deck()

												return	self.get_hand()

								print("Deal",	self.hand)

								return	self.hand

				def	can_insure(self,	hand:	Hand)	->	bool:



								return	hand.dealer_card.insure

The	Table	class	is	used	by	the	Player	class	to	accept	a	bet,	create	a	Hand	object,	and
determine	whether	the	insurance	bet	is	in	play	for	this	hand.	Additional	methods
can	be	used	by	the	Player	class	to	get	cards	and	determine	the	payout.

The	exception	handling	shown	in	get_hand()	is	not	a	precise	model	of	casino	play.
A	may	lead	to	minor	statistical	inaccuracies.	A	more	accurate	simulation	requires
the	development	of	a	deck	that	reshuffles	itself	when	empty	instead	of	raising	an
exception.

In	order	to	interact	properly	and	simulate	realistic	play,	the	Player	class	needs	a
betting	strategy.	The	betting	strategy	is	a	stateful	object	that	determines	the	level
of	the	initial	bet.	Various	betting	strategies	generally	change	a	bet	based	on
whether	a	game	was	a	win	or	a	loss.

Ideally,	we'd	like	to	have	a	family	of	BettingStrategy	objects.	Python	has	a	module
with	decorators	that	allows	us	to	create	an	abstract	superclass.	An	informal
approach	to	creating	Strategy	objects	is	to	raise	an	exception	for	methods	that
must	be	implemented	by	a	subclass.

We've	defined	an	abstract	superclass,	as	well	as	a	specific	subclass,	as	follows,	to
define	a	flat	betting	strategy:

class	BettingStrategy:

				def	bet(self)	->	int:

								raise	NotImplementedError("No	bet	method")

				def	record_win(self)	->	None:

								pass

				def	record_loss(self)	->	None:

								pass

class	Flat(BettingStrategy):

				def	bet(self)	->	int:

								return	1

The	superclass	defines	the	methods	with	handy	default	values.	The	basic	bet()
method	in	the	abstract	superclass	raises	an	exception.	The	subclass	must	override
the	bet()	method.	The	type	hints	show	the	results	of	the	various	betting	methods.	

We	can	make	use	of	the	abc	module	to	formalize	an	abstract	superclass	definition.



It	would	look	like	the	following	code	snippet:

import	abc

from	abc	import	abstractmethod

class	BettingStrategy2(metaclass=abc.ABCMeta):

				@abstractmethod

				def	bet(self)	->	int:

								return	1

				def	record_win(self):

								pass

				def	record_loss(self):

								pass

This	has	the	advantage	that	it	makes	the	creation	of	an	instance	of
BettingStrategy2,	or	any	subclass	that	failed	to	implement	bet(),	impossible.	If	we
try	to	create	an	instance	of	this	class	with	an	unimplemented	abstract	method,	it
will	raise	an	exception	instead	of	creating	an	object.

And,	yes,	the	abstract	method	has	an	implementation.	It	can	be	accessed	via
super().bet().	This	allows	a	subclass	to	use	the	superclass	implementation,	if
necessary.



Multi-strategy	__init__()
We	may	have	objects	that	are	created	from	a	variety	of	sources.	For	example,	we
might	need	to	clone	an	object	as	part	of	creating	a	memento,	or	freeze	an	object
so	that	it	can	be	used	as	the	key	of	a	dictionary	or	placed	into	a	set;	this	is	the
idea	behind	the	set	and	frozenset	built-in	classes.

We'll	look	at	two	design	patterns	that	offer	multiple	ways	to	build	an	object.	One
design	pattern	uses	a	complex	__init__()	method	with	multiple	strategies	for
initialization.	This	leads	to	designing	the	__init__()	method	with	a	number	of
optional	parameters.	The	other	common	design	pattern	involves	creating
multiple	static	or	class-level	methods,	each	with	a	distinct	definition.

Defining	an	overloaded	__init__()	method	can	be	confusing	to	mypy,	because	the
parameters	may	have	distinct	value	types.	This	is	solved	by	using	the	@overload
decorator	to	describe	the	different	assignments	of	types	to	the	__init__()
parameters.	The	approach	is	to	define	each	of	the	alternative	versions	of
__init__()	and	decorate	with	@overload.	A	final	version	–	without	any	decoration	–
defines	the	parameters	actually	used	for	the	implementation.

The	following	is	an	example	of	a	Hand3	object	that	can	be	built	in	either	of	the	two
ways:

class	Hand3:

				@overload

				def	__init__(self,	arg1:	"Hand3")	->	None:

								...

				@overload

				def	__init__(self,	arg1:	Card,	arg2:	Card,	arg3:	Card)	->	None:

								...

				def	__init__(

								self,

								arg1:	Union[Card,	"Hand3"],

								arg2:	Optional[Card]	=	None,

								arg3:	Optional[Card]	=	None,

				)	->	None:

								self.dealer_card:	Card

								self.cards:	List[Card]

								if	isinstance(arg1,	Hand3)	and	not	arg2	and	not	arg3:

												#	Clone	an	existing	hand

												self.dealer_card	=	arg1.dealer_card



												self.cards	=	arg1.cards

								elif	(isinstance(arg1,	Card)	

												and	isinstance(arg2,	Card)	

												and	isinstance(arg3,	Card)

								):

												#	Build	a	fresh,	new	hand.

												self.dealer_card	=	cast(Card,	arg1)

												self.cards	=	[arg2,	arg3]

				def	__repr__(self)	->	str:

								return	f"{self.__class__.__name__}({self.dealer_card!r},	*{self.cards})"

In	the	first	overloaded	case,	a	Hand3	instance	has	been	built	from	an	existing	Hand3
object.	In	the	second	case,	a	Hand3	object	has	been	built	from	individual	Card
instances.	The	@overload	decorator	provides	two	alternative	versions	of	the
__init__()	method.	These	are	used	by	mypy	to	ensure	this	constructor	is	used
properly.	The	undecorated	version	is	used	at	runtime.	It	is	a	kind	of	union	of	the
two	overloaded	definitions.

The	@overload	definitions	are	purely	for	mypy	type-checking	purposes.	The	non-
overloaded	definition	of	__init__()	provides	a	hint	for	arg1	as	union	of	either	a	Card
object	or	a	Hand3	object.	The	code	uses	the	isinstance()	function	to	decide	which	of
the	two	types	of	argument	values	were	provided.	To	be	more	robust,	the	if-elif
statements	should	have	an	else:	clause.	This	should	raise	a	ValueError	exception.

This	design	parallels	the	way	a	frozenset	object	can	be	built	from	individual	items
or	an	existing	set	object.	We	will	look	at	creating	immutable	objects	more	in	the
next	chapter.	Creating	a	new	Hand3	object	from	an	existing	Hand3	object	allows	us
to	create	a	memento	of	a	Hand3	object	using	a	construct	such	as	the	following
code	snippet:

h	=	Hand3(deck.pop(),	deck.pop(),	deck.pop())	

memento	=	Hand3(h)	

We	saved	the	Hand	object	in	the	memento	variable.	This	can	be	used	to	compare	the
final	with	the	original	hand	that	was	dealt,	or	we	can	freeze	it	for	use	in	a	set	or
mapping	too.



More	complex	initialization
alternatives
In	order	to	write	a	multi-strategy	initialization,	it	can	seem	helpful	to	give	up	on
specific	named	parameters.	This	leads	to	trying	to	use	the	**kw	construct	to	take
only	named	arguments.	This	design	has	the	advantage	of	being	very	flexible,	but
the	disadvantage	of	bypassing	automated	type	checking.	It	requires	a	great	deal
of	documentation	explaining	the	variant	use	cases.

Instead	of	collecting	all	named	parameters	using	the	**	construct,	it's	often
helpful	to	use	a	standalone	*	construct.	When	we	write	def	f(a:	int,	b:	int,	*,	c:
int),	we're	expecting	two	positional	argument	values,	and	the	third	value	must	be
provided	by	name.	We'd	use	this	function	as	f(1,	2,	c=3).	This	provides	for
explicit	names	to	cover	special	cases.

We	can	expand	our	initialization	to	also	split	a	Hand	object.	The	result	of	splitting
a	Hand	object	is	simply	another	constructor.	The	following	code	snippet	shows
how	the	splitting	of	a	Hand	object	might	look:

class	Hand4:

				@overload

				def	__init__(self,	arg1:	"Hand4")	->	None:

								...

				@overload

				def	__init__(self,	

								arg1:	"Hand4",	arg2:	Card,	*,	split:	int)	->	None:

								...

				@overload

				def	__init__(self,	

								arg1:	Card,	arg2:	Card,	arg3:	Card)	->	None:

								...

				def	__init__(

								self,

								arg1:	Union["Hand4",	Card],

								arg2:	Optional[Card]	=	None,

								arg3:	Optional[Card]	=	None,

								split:	Optional[int]	=	None,

				)	->	None:

								self.dealer_card:	Card

								self.cards:	List[Card]

								if	isinstance(arg1,	Hand4):

												#	Clone	an	existing	hand



												self.dealer_card	=	arg1.dealer_card

												self.cards	=	arg1.cards

								elif	isinstance(arg1,	Hand4)	and	isinstance(arg2,	Card)	and	"split"	is	not	None:

												#	Split	an	existing	hand

												self.dealer_card	=	arg1.dealer_card

												self.cards	=	[arg1.cards[split],	arg2]

								elif	(

												isinstance(arg1,	Card)	

												and	isinstance(arg2,	Card)	

												and	isinstance(arg3,	Card)

								):

												#	Build	a	fresh,	new	hand	from	three	cards

												self.dealer_card	=	arg1

												self.cards	=	[arg2,	arg3]

								else:

												raise	TypeError("Invalid	constructor	{arg1!r}	{arg2!r}	{arg3!r}")

				def	__str__(self)	->	str:

								return	",	".join(map(str,	self.cards))

This	design	reflects	three	separate	use	cases:

Creating	a	Hand4	object	from	an	existing	Hand4	object.	In	this	case,	arg1	will
have	the	Hand4	type	and	the	other	arguments	will	have	default	values	of	None.
Splitting	a	Hand4	object.	This	requires	a	value	for	the	split	keyword	argument
that	uses	the	position	of	the	Card	class	from	the	original	Hand4	object.	Note
how	*	is	inserted	into	the	parameter	list	to	show	that	the	split	value	must	be
provided	as	a	keyword	argument	value.
Building	a	Hand4	object	from	three	Card	instances.	In	this	case,	all	three	of	the
positional	parameters	will	have	values	of	the	Card	type.

The	@overload	decorator	information	is	used	by	mypy.	It	provides	documentation	for
people	using	this	class.	It	has	no	runtime	impact.	

The	following	code	snippet	shows	how	we'd	use	these	definitions	to	create	and
split	a	hand:

d	=	Deck()	

h	=	Hand4(d.pop(),	d.pop(),	d.pop())	

s1	=	Hand4(h,	d.pop(),	split=0)	

s2	=	Hand4(h,	d.pop(),	split=1)	

We	created	an	initial	h	instance	of	Hand4,	split	it	into	two	other	Hand4	instances,	s1
and	s2,	and	dealt	an	additional	Card	class	into	each.	The	rules	of	Blackjack	only
allow	this	when	the	initial	hand	has	two	cards	of	equal	rank.

While	this	__init__()	method	is	rather	complex,	it	has	the	advantage	that	it	can



parallel	the	way	in	which	fronzenset	is	created	from	an	existing	set.	The
disadvantage	is	that	it	needs	a	large	docstring	to	explain	all	these	variations.



Initializing	with	static	or	class-level
methods
When	we	have	multiple	ways	to	create	an	object,	it's	sometimes	more	clear	to
use	static	methods	to	create	and	return	instances	rather	than	complex	__init__()
methods.

The	term	static	is	borrowed	from	other	languages.	Python	has	three	kinds	of
binding	for	method	functions.	The	default	case	is	to	bind	a	method	to	the
instance;	the	first	positional	parameter	is	self,	the	instance	variable.	A	method
can	be	bound	to	the	class;	this	requires	the	@staticmethod	decorator.	A	method	can
also	be	bound	to	the	class,	but	receive	the	class	as	the	first	positional	parameter;
this	requires	the	@classmethod	decorator.

In	the	case	of	freezing	or	splitting	a	Hand	object,	we	might	want	to	create	two	new
static	methods	to	freeze	or	split	a	Hand	object.	Using	static	methods	as	surrogate
constructors	is	a	tiny	syntax	change	in	construction,	but	it	has	huge	advantages
when	organizing	code.

The	following	is	a	version	of	Hand	with	static	methods	that	can	be	used	to	build
new	instances	of	Hand	from	an	existing	Hand	instance:

class	Hand5:

				def	__init__(self,	dealer_card:	Card,	*cards:	Card)	->	None:

								self.dealer_card	=	dealer_card

								self.cards	=	list(cards)

				@staticmethod

				def	freeze(other)	->	"Hand5":

								hand	=	Hand5(other.dealer_card,	*other.cards)

								return	hand

				@staticmethod

				def	split(other,	card0,	card1)	->	Tuple["Hand5",	"Hand5"]:

								hand0	=	Hand5(other.dealer_card,	other.cards[0],	card0)

								hand1	=	Hand5(other.dealer_card,	other.cards[1],	card1)

								return	hand0,	hand1

				def	__str__(self)	->	str:

								return	",	".join(map(str,	self.cards))

The	freeze()	method	freezes	or	creates	a	memento	version.	The	split()	method



splits	a	Hand5	instance	to	create	two	new	child	instances	of	Hand5.	The	__init__()
method	builds	a	hand	from	individual	Card	instances.

This	is	often	more	readable	and	preserves	the	use	of	the	parameter	names	to
explain	the	interface.	Note	how	the	class	name	must	be	provided	as	a	string
when	used	as	a	type	hint	within	the	class	definition.	You	will	recall	that	the	class
name	doesn't	exist	until	after	the	execution	of	the	class	statement.	Using	strings
instead	of	type	objects	permits	a	reference	to	a	type	that	doesn't	exist	yet.	When
mypy	evaluates	the	type	hints,	it	will	resolve	the	type	objects	from	the	strings.

The	following	code	snippet	shows	how	we	can	split	a	Hand5	instance	with	this
version	of	the	class:

d	=	Deck()	

h	=	Hand5(d.pop(),	d.pop(),	d.pop())	

s1,	s2	=	Hand5.split(h,	d.pop(),	d.pop())	

We	created	an	initial	h	instance	of	Hand5,	split	it	into	two	other	hands,	s1	and	s2,
and	dealt	an	additional	Card	class	into	each.	The	split()	static	method	is	much
simpler	than	the	equivalent	functionality	implemented	via	__init__().	



Yet	more	__init__()	techniques
We'll	take	a	look	at	a	few	other,	more	advanced	__init__()	techniques.	These
aren't	quite	so	universally	useful	as	the	techniques	in	the	previous	sections.

The	following	is	a	definition	for	the	Player	class	that	uses	two	Strategy	objects
and	a	table	object.	This	shows	an	unpleasant-looking	__init__()	method:

class	Player:

				def	__init__(

								self,	

								table:	Table,	

								bet_strategy:	BettingStrategy,	

								game_strategy:	GameStrategy

				)	->	None:

								self.bet_strategy	=	bet_strategy

								self.game_strategy	=	game_strategy

								self.table	=	table

				def	game(self):

								self.table.place_bet(self.bet_strategy.bet())

								self.hand	=	self.table.get_hand()

								if	self.table.can_insure(self.hand):

												if	self.game_strategy.insurance(self.hand):

																self.table.insure(self.bet_strategy.bet())

								#	etc.	(omitted	for	now)

The	__init__()	method	for	Player	seems	to	do	little	more	than	bookkeeping.	We're
simply	transferring	named	parameters	to	instance	variables	with	same	name.	In
many	cases,	the	@dataclass	decorator	can	simplify	this.

We	can	use	this	Player	class	(and	related	objects)	as	follows:

table	=	Table()	

flat_bet	=	Flat()	

dumb	=	GameStrategy()	

p	=	Player(table,	flat_bet,	dumb)	

p.game()	

We	can	provide	a	very	short	and	very	flexible	initialization	by	simply
transferring	keyword	argument	values	directly	into	the	internal	instance
variables.

The	following	is	a	way	to	build	a	Player	class	using	keyword	argument	values:

class	Player2(Player):



				def	__init__(self,	**kw)	->	None:

								"""Must	provide	table,	bet_strategy,	game_strategy."""

								self.bet_strategy:	BettingStrategy	=	kw["bet_strategy"]

								self.game_strategy:	GameStrategy	=	kw["game_strategy"]

								self.table:	Table	=	kw["table"]

				def	game(self)	->	None:

								self.table.place_bet(self.bet_strategy.bet())

								self.hand	=	self.table.get_hand()

This	sacrifices	some	readability	for	succinctness.	Each	individual	instance
variable	now	requires	an	explicit	type	hint,	because	the	parameters	don't	provide
any	information.	

Since	the	__init__()	method	is	reduced	to	one	line,	it	removes	a	certain	level	of
wordiness	from	the	method.	This	wordiness,	however,	is	transferred	to	each
individual	object	constructor	expression.	In	effect,	we	provide	type	hints	and
parameter	names	in	each	of	the	object	initialization	expressions.

Here's	how	we	must	provide	the	required	parameters,	as	shown	in	the	following
code	snippet:

p2	=	Player2(table=table,	bet_strategy=flat_bet,	game_strategy=dumb)	

This	syntax	also	works	with	the	Player	class,	as	shown	in	the	preceding	code.	For
the	Player2	class,	it's	a	requirement.	For	the	Player	class,	this	syntax	is	optional.	

Using	the	**	construct	to	collect	all	keywords	into	a	single	variable	does	have	a
potential	advantage.	A	class	defined	like	this	is	easily	extended.	We	can,	with
only	a	few	specific	concerns,	supply	additional	keyword	parameters	to	a
constructor.

Here's	an	example	of	extending	the	preceding	definition:

class	Player2x(Player):

				def	__init__(self,	**kw)	->	None:

								"""Must	provide	table,	bet_strategy,	game_strategy."""

								self.bet_strategy:	BettingStrategy	=	kw["bet_strategy"]

								self.game_strategy:	GameStrategy	=	kw["game_strategy"]

								self.table:	Table	=	kw["table"]

								self.log_name:	Optional[str]	=	kw.get("log_name")

We've	added	a	log_name	attribute	without	touching	the	class	definition.	This	could
be	used,	perhaps,	as	part	of	a	larger	statistical	analysis.	The	Player2.log_name



attribute	can	be	used	to	annotate	logs	or	other	collected	data.	The	other
initialization	was	not	changed.

We	are	limited	in	what	we	can	add;	we	can	only	add	parameters	that	fail	to
conflict	with	the	names	already	in	use	within	a	class.	Some	knowledge	of	a	class
implementation	is	required	to	create	a	subclass	that	doesn't	abuse	the	set	of
keywords	already	in	use.	Since	the	**kw	parameter	is	opaque,	we	need	to	read	it
carefully.	In	most	cases,	we'd	rather	trust	the	class	to	work	than	review	the
implementation	details.	The	disadvantage	of	this	technique	is	the	obscure
parameter	names,	which	aren't	formally	documented.

We	can	(and	should)	hybridize	this	with	a	mixed	positional	and	keyword
implementation,	as	shown	in	the	following	code	snippet:

class	Player3(Player):

				def	__init__(

								self,

								table:	Table,

								bet_strategy:	BettingStrategy,

								game_strategy:	GameStrategy,

								**extras,

				)	->	None:

								self.bet_strategy	=	bet_strategy

								self.game_strategy	=	game_strategy

								self.table	=	table

								self.log_name:	str	=	extras.pop("log_name",	self.__class__.__name__)

								if	extras:

												raise	TypeError(f"Extra	arguments:	{extras!r}")

This	is	more	sensible	than	a	completely	open	definition.	We've	made	the
required	parameters	positional	parameters	while	leaving	any	nonrequired
parameters	as	keywords.	This	clarifies	the	use	of	any	extra	keyword	arguments
given	to	the	__init__()	method.

The	known	parameter	values	are	popped	from	the	extras	dictionary.	After	this	is
finished,	any	other	parameter	names	represent	a	type	error.	



Initialization	with	type	validation
Runtime	type	validation	is	rarely	a	sensible	requirement.	In	a	way,	this	might	be
a	failure	to	fully	understand	Python.	Python's	type	system	permits	numerous
extensions.	Runtime	type	checking	tends	to	defeat	this.	Using	mypy	provides
extensive	type	checking	without	the	runtime	overheads.

The	notional	objective	behind	runtime	checking	is	to	validate	that	all	of	the
arguments	are	of	a	proper	type.	The	issue	with	trying	to	do	this	is	that	the
definition	of	proper	is	often	far	too	narrow	to	be	truly	useful.

Type	checking	is	different	from	checking	ranges	and	domains	within	a	type.
Numeric	range	checking,	for	example,	may	be	essential	to	prevent	infinite	loops
at	runtime.	

What	can	create	problems	is	trying	to	do	something	like	the	following	in	an
__init__()	method:

class	ValidPlayer:

				def	__init__(self,	table,	bet_strategy,	game_strategy):

								assert	isinstance(table,	Table)

								assert	isinstance(bet_strategy,	BettingStrategy)

								assert	isinstance(game_strategy,	GameStrategy)

								self.bet_strategy	=	bet_strategy

								self.game_strategy	=	game_strategy

								self.table	=	table

The	isinstance()	method	checks	circumvent	Python's	normal	duck	typing.	We're
unable	to	provide	instances	without	strictly	following	the	class	hierarchy	defined
by	isinstance()	checks.

We	write	a	casino	game	simulation	in	order	to	experiment	with	endless
variations	on	GameStrategy.	These	class	definitions	are	very	simple:	they	have	four
method	definitions.	There's	little	real	benefit	to	using	inheritance	from	a
GameStrategy	superclass.	We	should	be	allowed	to	define	classes	independently,	not
by	referencing	an	overall	superclass.

The	initialization	error-checking	shown	in	this	example	would	force	us	to	create



subclasses	merely	to	pass	a	runtime	error	check.	No	usable	code	is	inherited
from	the	abstract	superclass.

One	of	the	biggest	duck	typing	issues	surrounds	numeric	types.	Different
numeric	types	will	work	in	different	contexts.	Attempts	to	validate	the	types	of
arguments	may	prevent	a	perfectly	sensible	numeric	type	from	working	properly.
When	attempting	validation,	we	have	the	following	two	choices	in	Python:

We	write	validation	so	that	a	relatively	narrow	collection	of	types	is
permitted,	and	someday	the	code	will	break	because	a	new	type	that	would
have	worked	sensibly	is	prohibited.
We	eschew	validation	so	that	a	broad	collection	of	types	is	permitted,	and
someday	the	code	will	break	because	a	type	that	does	not	work	sensibly	is
used.

Note	that	both	are	essentially	the	same:	the	code	could	perhaps	break	someday.	It
will	either	break	because	a	type	is	prevented	from	being	used,	even	though	it's
sensible,	or	because	a	type	that's	not	really	sensible	is	used.

Just	allow	it
Generally,	it's	considered	better	Python	style	to	simply	permit	any	type	of	data	to	be	used.
We'll	return	to	this	in	Chapter	5,	The	ABCs	of	Consistent	Design.

The	question	is	this:	why	add	runtime	type	checking	when	it	will	restrict
potential	future	use	cases?

If	there's	no	good	reason	to	restrict	potential	future	use	cases,	then	runtime	type
checking	should	be	avoided.

Rather	than	preventing	a	sensible,	but	possibly	unforeseen,	use	case,	we	provide
type	hints	and	use	mypy	to	evaluate	the	hints.	Additionally,	of	course,	unit	testing,
debug	logging,	and	documentation	can	help	us	to	understand	any	restrictions	on
the	types	that	can	be	processed.

With	a	few	exceptions,	all	of	the	examples	in	this	book	use	type	hints	to	show
the	types	of	values	expected	and	produced.	The	mypy	utility	can	be	run	to	confirm
that	the	definitions	are	used	properly.	While	the	standard	library	has	extensive
type	hints,	not	all	packages	are	fully	covered	by	hints.	In	Chapter	12,	Storing	and
Retrieving	Objects	via	SQLite,	we'll	use	the	SQLAlchemy	package,	which



doesn't	provide	complete	type	hints.



Initialization,	encapsulation,	and
privacy
The	general	Python	policy	regarding	privacy	can	be	summed	up	as	follows:
we're	all	adults	here.

Object-oriented	design	makes	an	explicit	distinction	between	interface	and
implementation.	This	is	a	consequence	of	the	idea	of	encapsulation.	A	class
encapsulates	a	data	structure,	an	algorithm,	an	external	interface,	or	something
meaningful.	The	idea	is	to	have	the	capsule	separate	the	class-based	interface
from	the	implementation	details.

However,	no	programming	language	reflects	every	design	nuance.	Python
doesn't	typically	implement	all	design	considerations	as	explicit	code.

One	aspect	of	class	design	that	is	not	fully	carried	into	code	is	the	distinction
between	the	private	(implementation)	and	public	(interface)	methods	or
attributes	of	an	object.	The	notion	of	privacy	in	languages	that	support	these
attributes	or	methods	(C++	or	Java	are	two	examples)	is	already	quite	complex.

These	languages	include	settings	such	as	private,	protected,	and	public,	as	well
as	not	specified,	which	is	a	kind	of	semi-private.	The	private	keyword	is	often
used	incorrectly,	making	subclass	definition	needlessly	difficult.

Python's	notion	of	privacy	is	simple:

Attributes	and	methods	are	all	essentially	public.	The	source	code	is
available.	We're	all	adults.	Nothing	can	be	truly	hidden.
Conventionally,	we	treat	some	names	in	a	way	that's	less	public.	They're
generally	implementation	details	that	are	subject	to	change	without	notice,
but	there's	no	formal	notion	of	private.

Names	that	begin	with	_	are	honored	as	being	less	public	by	some	parts	of
Python.	The	help()	function	generally	ignores	these	methods.	Tools	such	as
Sphinx	can	conceal	these	names	from	documentation.



Python's	internal	names	begin	(and	end)	with	double	underscores	__,	often
pronounced	dunder.	We	might	call	__init__()	dunder	init.	The	use	of	__	names	is
how	Python	internals	are	kept	from	colliding	with	other	application	features.	The
collection	of	these	internal	names	is	fully	defined	by	the	language	reference.
Further,	there's	no	benefit	to	trying	to	use	__	to	attempt	to	create	a	truly
private	attribute	or	method	in	our	code.	All	that	happens	is	that	we	create	a
potential	future	problem	if	a	release	of	Python	ever	starts	using	a	name	we	chose
for	internal	purposes.	Also,	we're	likely	to	run	afoul	of	the	internal	name
mangling	that	is	applied	to	these	names.

The	rules	for	the	visibility	of	Python	names	are	as	follows:

Most	names	are	public.
Names	that	start	with	_	are	somewhat	less	public.	Use	them	for
implementation	details	that	are	truly	subject	to	change.
Names	that	begin	and	end	with	__	are	internal	to	Python.	We	never	make
these	up;	we	only	use	the	names	defined	by	the	language	reference.

Generally,	the	Python	approach	is	to	register	the	intent	of	a	method	(or	attribute)
using	documentation	and	a	well-chosen	name.	Often,	interface	methods	will
have	elaborate	documentation,	possibly	including	doctest	examples,	while
implementation	methods	will	have	more	abbreviated	documentation	and	may	not
have	doctest	examples.

For	programmers	new	to	Python,	it's	sometimes	surprising	that	privacy	is	not
more	widely	implemented.	For	programmers	experienced	in	Python,	it's
surprising	how	many	brain	calories	get	burned	sorting	out	private	and	public
declarations	that	aren't	really	very	helpful	because	the	intent	is	obvious	from	the
method	names	and	the	documentation.



Summary
In	this	chapter,	we	have	reviewed	the	various	design	alternatives	of	the	__init__()
method.	The	__init__()	method	is	how	objects	are	created,	and	it	sets	the	initial
state	of	an	object.

We've	looked	at	how	all	Python	objects	are	subclasses	of	a	common	parent,
the	object	class,	and	how	the	default	__init__()	method	for	the	object	class	works.
This	consideration	leads	to	two	design	strategies	for	placement	of	the	__init__()
method:

We	can	define	a	common	__init__()	method	for	all	subclasses	of	a	hierarchy.
This	can	lead	to	using	a	factory	function,	separate	from
the	__init__()	method,	to	help	initialize	objects	correctly.
We	can	push	the	__init__()	method	into	each	individual	subclass	of	a
complex	hierarchy,	and	how	this	changes	the	design	of	classes.

After	looking	at	building	individual	objects,	we	looked	at	how	we	can	create
composite	objects.	This	involves	a	number	of	related	uses	of	the	__init__()
methods	of	different	classes.	More	advanced	topics	included	defining	stateless
objects	that	don't	need	a	sophisticated	initialization,	using	class-level	(or	static)
initialization,	and	how	to	validate	values	before	creating	an	invalid	object.

In	the	next	chapter,	we	will	take	a	look	at	special	methods,	along	with	a	few
advanced	ones	as	well.



Integrating	Seamlessly	-	Basic	Special
Methods
There	are	a	number	of	special	methods	that	permit	close	integration	between	our
classes	and	classes	builtin	Python.	The	Python	standard	library	calls	them	basic.
A	better	term	might	be	foundational	or	essential.	These	special	methods	form	a
foundation	for	building	classes	that	seamlessly	integrate	with	other	Python
features.

For	example,	we	often	need	string	representations	of	a	given	object's	value.	The
base	class,	object,	has	default	implementations	of	__repr__()	and	__str__()	that
provide	string	representations	of	an	object.	Sadly,	these	default	representations
are	remarkably	uninformative.	We'll	almost	always	want	to	override	one	or	both
of	these	default	definitions.	We'll	also	look	at	__format__(),	which	is	a	bit	more
sophisticated,	but	serves	a	similar	purpose.

We'll	also	look	at	other	conversions,	specifically	__hash__(),	__bool__(),
and	__bytes__().	These	methods	convert	an	object	into	a	number,	a	true/false
value,	or	a	string	of	bytes.	When	we	implement	__bool__(),	for	example,	we	can
use	an	object,	x,	in	an	if	statement,	as	follows:

if	x:

There's	an	implicit	use	of	the	bool()	function,	which	relies	on	the	object's
implementation	of	the	__bool__()	special	method.

We	can	then	look	at	the	special	methods	that	implement	the	__lt__(),	__le__(),
__eq__(),	__ne__(),	__gt__(),	and	__ge__()	comparison	operators.

These	basic	special	methods	are	almost	always	needed	in	class	definitions.

We'll	look	at	__new__()	and	__del__()	last,	because	the	use	cases	for	these	methods
are	rather	complex.	We	don't	need	these	as	often	as	we	need	the	other	basic
special	methods.

We'll	look	in	detail	at	how	we	can	expand	a	simple	class	definition	to	add	these



special	methods.	We'll	need	to	look	at	both	of	the	default	behaviors	inherited
from	object	so	that	we	can	understand	what	overrides	are	needed	and	when
they're	needed.

In	this	chapter,	we	will	cover	the	following	topics:

The	__repr__()	and	__str__()	methods
The	__format__()	method
The	__hash__()	method
The	__bool__()	method
The	__bytes__()	method
The	comparison	operator	methods
The	__del__()	method
The	__new__()	method	and	immutable	objects
The	__new__()	method	and	metaclasses



Technical	requirements
The	code	files	for	this	chapter	can	be	found	at	https://git.io/fj2UE.

https://git.io/fj2UE


The	__repr__()	and	__str__()
methods
Python	generally	offers	two	string	representations	of	an	object.	These	are	closely
aligned	with	the	built-in	repr(),	str(),	and	print()	functions	and	the	string.format()
method:

Generally,	the	str()	method	representation	of	an	object	is	expected	to	be
more	friendly	to	humans.	It	is	built	by	an	object's	__str__()	method.

The	repr()	method	representation	is	often	more	technical,	and	typically	uses
a	complete	Python	expression	to	rebuild	an	object.	The	documentation	for
the	__repr__()	method	in	the	Python	documentation	(https://docs.python.org/3/r
eference/datamodel.html?highlight=__del__#object.__repr__)	states	the	following:

"If	at	all	possible,	this	should	look	like	a	valid	Python	expression	that	could	be	used	to	recreate	an
object	with	the	same	value	(given	an	appropriate	environment)."

This	is	built	by	an	object's	__repr__()	method.
The	print()	function	generally	uses	str()	to	prepare	an	object	for	printing.
The	format()	method	of	a	string	can	also	access	these	methods.	When	we	use
a	string	format	line,	{x:d},	we're	providing	a	"d"	parameter	to	the	__format__()
method	of	the	x	object.	When	we	use	{x!r}	or	{x!s}	formatting,	we're
requesting	__repr__()	or	__str__(),	respectively.

Let's	look	at	the	default	implementations	first.	The	following	is	a	simple	class
hierarchy:

class	Card:

				def	__init__(self,	rank:	str,	suit:	str)	->	None:

								self.suit	=	suit

								self.rank	=	rank

								self.hard,	self.soft	=	self._points()

				def	_points(self)	->	Tuple[int,	int]:

								return	int(self.rank),	int(self.rank)

class	AceCard(Card):

				def	_points(self)	->	Tuple[int,	int]:

								return	1,	11

https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__repr__


class	FaceCard(Card):

				def	_points(self)	->	Tuple[int,	int]:

								return	10,	10

We've	defined	three	classes	with	four	attributes	in	each	class.

The	following	is	an	interaction	with	an	object	of	one	of	these	classes:

>>>	x	=	Card('2','♠')

>>>	str(x)

'<__main__.Card	object	at	0x1078d4518>'

>>>	repr(x)

'<__main__.Card	object	at	0x1078d4518>'

>>>	print(x)

<__main__.Card	object	at	0x1078d4518>

We	can	see	from	this	output	that	the	default	implementations	of	__str__()
and	__repr__()	are	not	very	informative.

There	are	two	broad	design	cases	that	we	consider	when	overriding	__str__()	and
__repr__():

Simple	objects:	A	simple	object	doesn't	contain	a	collection	of	other
objects	and	generally	doesn't	involve	very	complex	formatting.
Collection	objects:	An	object	that	contains	a	collection	involves	somewhat
more	complex	formatting.



Simple	__str__()	and	__repr__()
As	we	saw	previously,	the	output	from	__str__()	and	__repr__()	is	not	very
informative.	We'll	almost	always	need	to	override	them.	The	following	is	an
approach	to	override	__str__()	and	__repr__()	when	there's	no	collection	involved.
These	methods	belong	to	the	Card	class,	defined	previously	as	follows:

def	__repr__(self)	->	str:

				return	f"{self.__class__.__name__}(suit={self.suit!r},	rank={self.rank!r})"

def	__str__(self)	->	str:

				return	f"{self.rank}{self.suit}"

These	two	methods	rely	on	f-strings	to	interpolate	values	from	the	instance	into	a
string	template.	In	the	__repr__()	method,	the	class	name,	suit,	and	rank	were	used
to	create	a	string	that	could	be	used	to	rebuild	the	object.	In	the	__str__()	method,
the	rank	and	suit	were	displayed	in	an	easy-to-read	form.

The	template	string	uses	two	kinds	of	format	specifications:

The	{self.__class__.__name__}	format	specification	could	also	be	written	as
{self.__class__.__name__!s}	to	include	an	explicit	!s	format	specification.	This
is	the	default	format,	and	implies	using	str()	to	get	a	string	representation	of
the	object.
The	{self.suit!r}	and	{self.rank!r}	specifications	both	use	the	!r	format	to	use
the	repr()	function	to	get	representations	of	the	attribute	values.



Collection	__str__()	and	__repr__()
When	there's	a	collection	involved,	we	need	to	format	each	individual	item	in	the
collection,	as	well	as	the	overall	container	for	those	items.	The	following	is	a
simple	collection	with	both	the	__str__()	and	__repr__()	methods:

class	Hand:

				def	__init__(self,	dealer_card:	Card,	*cards:	Card)	->	None:

								self.dealer_card	=	dealer_card

								self.cards	=	list(cards)

				def	__str__(self)	->	str:

								return	",	".join(map(str,	self.cards))

				def	__repr__(self)	->	str:

								cards_text	=	',	'.join(map(repr,	self.cards))

								return	f"{self.__class__.__name__}({self.dealer_card!r},	{cards_text})"

The	__str__()	method	has	a	typical	recipe	for	applying	str()	to	the	items	in	the
collection,	as	follows:

1.	 Map	str()	to	each	item	in	the	collection.	This	will	create	an	iterator	over	the
resulting	string	values.

2.	 Use	",	".join()	to	merge	all	the	item	strings	into	a	single,	long	string.

The	__repr__()	method	is	a	similar	recipe	to	apply	repr()	to	the	items	in	the
collection,	as	follows:

1.	 Map	repr()	to	each	item	in	the	collection.	This	will	create	an	iterator	over
the	resulting	string	values.

2.	 Use	",	".join()	to	merge	all	the	item	strings.
3.	 Use	f"{self.__class__.__name__}({self.dealer_card!r},	{cards_text})"	to	combine

the	class	name,	the	dealer	card,	and	the	long	string	of	item	values.	This
format	uses	!r	formatting	to	ensure	that	the	dealer_card	attribute	uses	the
repr()	conversion	too.

It's	essential	for	__str__()	to	use	str()	and	for	__repr__()	to	use	repr()	when	building
representations	of	complex	objects.	This	simple	consistency	guarantees	that
results	from	very	complex	objects	with	multiple	layers	of	nesting	will	have
consistent	string	values.	



The	__format__()	method
The	__format__()	method	is	used	by	f-strings,	the	str.format()	method,	as	well	as
the	format()	built-in	function.	All	three	of	these	interfaces	are	used	to	create
presentable	string	versions	of	a	given	object.

The	following	are	the	two	ways	in	which	arguments	will	be	presented	to
the	__format__()	method	of	a	someobject	object:

someobject.__format__(""):	This	happens	when	an	application	uses	a	string	such
as	f"{someobject}",	a	function	such	as	format(someobject),	or	a	string	formatting
method	such	as	"{0}".format(someobject).	In	these	cases,	there	was	no	:	in	the
format	specification,	so	a	default	zero-length	string	is	provided	as	the
argument	value.	This	should	produce	a	default	format.
someobject.__format__(spec):	This	happens	when	an	application	uses	a	string
such	as	f"{someobject:spec}",	a	function	such	as	format(someobject,	spec),	or
something	equivalent	to	the	"{0:spec}".format(someobject)	string	method.

Note	that	an	f-string	f"{item!r}"	with	!r	or	a	"{0!r}".format(item)	format
method	with	!r	doesn't	use	the	object's	__format__()	method.	The	portion	after	!	is
a	conversion	specification.

A	conversion	specification	of	!r	uses	the	repr()	function,	which	is	generally
implemented	by	an	object's	__repr__()	method.	Similarly,	a	conversion
specification	of	!s	uses	the	str()	function,	which	is	implemented	by	the	__str__()
method.	The	!a	conversion	specification	uses	the	ascii()	function.	The	ascii()
function	generally	depends	on	the	__repr__()	method	to	provide	the	underlying
representation.	

With	a	specification	of	"",	a	sensible	implementation	is	return	str(self).	This
provides	an	obvious	consistency	between	the	various	string	representations	of	an
object.

The	format	specification	provided	as	the	argument	value	to	__format__()	will	be	all
the	text	after	":"	in	the	original	format	string.	When	we	write	f"{value:06.4f}",
06.4f	is	the	format	specification	that	applies	to	the	item	value	in	the	string	to	be



formatted.

Section	2.4.3	of	the	Python	Language	Reference	defines	the	formatted	string	(f-
string)	mini-language.	Each	format	specification	has	the	following	syntax:

[[fill]align][sign][#][0][width][grouping_option][.precision][type]

We	can	parse	these	potentially	complex	standard	specifications	with	a	regular
expression	(RE),	as	shown	in	the	following	code	snippet:

re.compile(	

				r"(?P<fill_align>.?[\<\>=\^])?"	

				r"(?P<sign>[-+	])?"	

				r"(?P<alt>#)?"	

				r"(?P<padding>0)?"	

				r"(?P<width>\d*)"	

				r"(?P<grouping_option>,)?"	

				r"(?P<precision>\.\d*)?"	

				r"(?P<type>[bcdeEfFgGnosxX%])?")	

This	RE	will	break	the	specification	into	eight	groups.	The	first	group	will	have
both	the	fill	and	alignment	fields	from	the	original	specification.	We	can	use	these
groups	to	work	out	the	formatting	for	the	attributes	of	classes	we've	defined.

In	some	cases,	this	very	general	format	specification	mini-language	might	not
apply	to	the	classes	that	we've	defined.	This	leads	to	a	need	to	define	a	format
specification	mini-language	and	process	it	in	the	customized	__format__()	method.

As	an	example,	here's	a	trivial	language	that	uses	the	%r	character	to	show	us	the
rank	and	the	%s	character	to	show	us	the	suit	of	an	instance	of	the	Card	class.	The
%%	character	becomes	%	in	the	resulting	string.	All	other	characters	are	repeated
literally.

We	could	extend	our	Card	class	with	formatting,	as	shown	in	the	following	code
snippet:

def	__format__(self,	format_spec:	str)	->	str:

				if	format_spec	==	"":

								return	str(self)

				rs	=	(

								format_spec.replace("%r",	self.rank)

																			.replace("%s",	self.suit)

																			.replace("%%",	"%")

				)

				return	rs

This	definition	checks	for	a	format	specification.	If	there's	no	specification,	then



the	str()	function	is	used.	If	a	specification	was	provided,	a	series	of
replacements	is	done	to	fold	rank,	suit,	and	any	%	characters	into	the	format
specification,	turning	it	into	the	output	string.

This	allows	us	to	format	cards	as	follows:

print(	"Dealer	Has	{0:%r	of	%s}".format(	hand.dealer_card)	)	

The	format	specification	("%r	of	%s")	is	passed	to	our	__format__()	method	as	the
format	parameter.	Using	this,	we're	able	to	provide	a	consistent	interface	for	the
presentation	of	the	objects	of	the	classes	that	we've	defined.

Alternatively,	we	can	define	things	as	follows:

				default_format	=	"some	specification"	

				def	__str__(self)	->	str:	

								return	self.__format__(self.default_format)	

				def	__format__(self,	format_spec:	str)	->	str:	

								if	format_spec	==	"":		

												format_spec	=	self.default_format	

							#	process	using	format_spec.	

This	has	the	advantage	of	putting	all	string	presentations	into	the	__format__()
method	instead	of	spreading	them	between	__format__()	and	__str__().	This	does
have	a	disadvantage,	because	we	don't	always	need	to	implement	__format__(),	but
we	almost	always	need	to	implement	__str__().



Nested	formatting	specifications
The	string.format()	method	can	handle	nested	instances	of	{}	to	perform	simple
keyword	substitution	into	the	format	specification	itself.	This	replacement	is
done	to	create	the	final	format	string	that's	passed	to	our	class's	__format__()
method.	This	kind	of	nested	substitution	simplifies	some	kinds	of	relatively
complex	numeric	formatting	by	parameterizing	an	otherwise	generic
specification.

The	following	is	an	example	where	we've	made	width	easy	to	change	in	the	format
parameter:

width	=	6	

for	hand,	count	in	statistics.items():	

				print(f"{hand}	{count:{width}d}")	

We've	defined	a	generic	format,	f"{hand}	{count:{width}d}",	which	requires	a	width
parameter	to	make	it	into	a	final	format	specification.	In	the	example,	width	is	6,
which	means	that	the	final	format	will	be	f"{hand}	{count:6d}".	The	expanded
format	string,	"6d"	will	be	the	specification	provided	to	the	__format__()	method	of
the	underlying	object.



Collections	and	delegating	format
specifications
When	formatting	a	complex	object	that	includes	a	collection,	we	have	two
formatting	issues:	how	to	format	the	overall	object	and	how	to	format	the	items
in	the	collection.	When	we	look	at	Hand,	for	example,	we	see	that	we	have	a
collection	of	individual	Cards	objects.	We'd	like	to	have	Hand	delegate	some
formatting	details	to	the	individual	Card	instances	in	the	Hand	collection.

The	following	is	a	__format__()	method	that	applies	to	Hand:

def	__format__(self,	spec:	str)	->	str:

				if	spec	==	"":

								return	str(self)

				return	",	".join(f"{c:{spec}}"	for	c	in	self.cards)

The	spec	parameter	will	be	used	for	each	individual	Card	instance	within	the	Hand
collection.	f-string	f"{c:{spec}}"	uses	the	nested	format	specification	technique	to
push	the	spec	string	into	the	format.	This	creates	a	final	format,	which	will	be
applied	to	each	Card	instance.

Given	this	method,	we	can	format	a	Hand	object,	player_hand,	as	follows:

>>>	d	=	Deck()

>>>	h	=	Hand(d.pop(),	d.pop(),	d.pop())

>>>	print("Player:	{hand:%r%s}".format(hand=h))

Player:	K♦,	9♥

This	string	in	the	print()	function	used	the	format()	method	of	the	Hand	object.	This
passed	the	%r%s	format	specification	to	each	Card	instance	of	the	Hand	object	to
provide	the	desired	formatting	for	each	card	of	the	hand.



The	__hash__()	method
The	built-in	hash()	function	invokes	the	__hash__()	method	of	a	given	object.	This
hash	is	a	calculation	that	reduces	a	(potentially	complex)	value	to	a	small	integer
value.	Ideally,	a	hash	reflects	all	the	bits	of	the	source	value.	Other	hash
calculations	–	often	used	for	cryptographic	purposes	–	can	produce	very	large
values.

Python	includes	two	hash	libraries.	The	cryptographic-quality	hash	functions	are
in	hashlib.	The	zlib	module	also	has	two	high-speed	hash	functions:	adler32()	and
crc32().	For	the	most	common	cases,	we	don't	use	any	of	these	library	functions.
They're	only	needed	to	hash	extremely	large,	complex	objects.

The	hash()	function	(and	the	associated	__hash__()	method)	is	used	to	create	a
small	integer	key	that	is	used	to	work	with	collections,	such	as	set,	frozenset,	and
dict.	These	collections	use	the	hash	value	of	an	immutable	object	to	rapidly
locate	the	object	in	the	collection.

Immutability	is	important	here;	we'll	mention	it	many	times.	Immutable	objects
don't	change	their	state.	The	number	3,	for	example,	cannot	meaningfully	change
state.	It's	always	3.	Similarly,	more	complex	objects	can	have	an	immutable	state.
Python	strings	are	immutable.	These	can	then	be	used	as	keys	to	mappings	and
sets.

The	default	__hash__()	implementation	inherited	from	an	object	returns	a	value
based	on	the	object's	internal	ID	value.	This	value	can	be	seen	with	the	id()
function,	as	follows:

>>>	x	=	object()	

>>>	hash(x)	

280696151

>>>	id(x)	

4491138416

>>>	id(x)	/	16	

280696151.0

The	id	values	shown	in	this	example	will	vary	from	system	to	system.

From	this,	we	can	see	that,	on	the	author's	system,	the	hash	value	is	the	object's



id//16.	This	detail	might	vary	from	platform	to	platform.

What's	essential	is	the	strong	correlation	between	the	internal	ID	and	the	default
__hash__()	method.	This	means	that	the	default	behavior	is	for	each	object	to	be
hashable	as	well	as	utterly	distinct,	even	if	the	objects	appear	to	have	the	same
value.

We'll	need	to	modify	this	if	we	want	to	coalesce	different	objects	with	the	same
value	into	a	single	hashable	object.	We'll	look	at	an	example	in	the	next	section,
where	we	would	like	two	instances	of	a	single	Card	instance	to	be	treated	as	if
they	were	the	same	object.



Deciding	what	to	hash
Not	every	object	should	provide	a	hash	value.	Specifically,	if	we're	creating	a
class	of	stateful,	mutable	objects,	the	class	should	never	return	a	hash	value.
There	should	not	be	an	implementation	of	the	__hash__()	method.

Immutable	objects,	on	the	other	hand,	might	sensibly	return	a	hash	value	so	that
the	object	can	be	used	as	the	key	in	a	dictionary,	or	as	a	member	of	a	set.	In	this
case,	the	hash	value	needs	to	parallel	the	way	the	test	for	equality	works.	It's	bad
to	have	objects	that	claim	to	be	equal	and	have	different	hash	values.	The	reverse
—objects	with	the	same	hash	that	are	actually	not	equal	–	is	acceptable	and
expected.	Several	distinct	objects	may	happen	to	have	overlapping	hash	values.

There	are	three	tiers	of	equality	comparison:

The	same	hash	value:	This	means	that	two	objects	could	be	equal.	The
hash	value	provides	us	with	a	quick	check	for	likely	equality.	If	the	hash
value	is	different,	the	two	objects	cannot	possibly	be	equal,	nor	can	they	be
the	same	object.
Compare	as	equal:	This	means	that	the	hash	values	must	also	have	been
equal.	This	is	the	definition	of	the	==	operator.	The	objects	may	be	the	same
object.
Same	ID	value:	This	means	that	they	are	the	same	object.	They	also
compare	as	equal	and	will	also	have	the	same	hash	value.	This	is	the
definition	of	the	is	operator.

The	Fundamental	Law	of	Hash	(FLH)	has	two	parts:

Objects	that	compare	as	equal	have	the	same	hash	value.
Objects	with	the	same	hash	value	may	actually	be	distinct	and	not	compare
as	equal.

We	can	think	of	a	hash	comparison	as	being	the	first	step	in	an	equality	test.	This
is	a	very	fast	comparison	to	determine	whether	subsequent	equality	checks	are
necessary.	



The	__eq__()	method,	which	we'll	also	look	at	in	the	section	on	comparison
operators,	is	intimately	tied	up	with	hashing.	This	provides	a	potentially	slow
field-by-field	comparison	between	objects.

Here's	a	contrived	example	of	two	distinct	numeric	values	with	the	same	hash
value:

>>>	v1	=	123_456_789

>>>	v2	=	2_305_843_009_337_150_740

>>>	hash(v1)

123456789

>>>	hash(v2)

123456789

>>>	v2	==	v1

False

Notice	that	a	v1	integer,	equal	to	123,456,789,	has	a	hash	value	equal	to	itself.	This
is	typical	of	integers	up	to	the	hash	modulus.	The	v2	integer	has	the	same	hash,
but	a	different	actual	value.

This	hash	collision	is	expected.	It's	part	of	the	known	processing	overhead	when
creating	sets	or	dictionaries.	There	will	be	unequal	objects	that	are	reduced	to
coincidentally	equal	hash	values.	

There	are	three	use	cases	for	defining	equality	tests	and	hash	values	via
the	__eq__()	and	__hash__()	method	functions:

Immutable	objects:	These	are	stateless	objects	of	types	such	as	tuples,
namedtuples,	and	frozensets	that	cannot	be	updated.	We	have	two	choices:

Define	neither	__hash__()	nor	__eq__().	This	means	doing	nothing	and
using	the	inherited	definitions.	In	this	case,	__hash__()	returns	a	trivial
function	of	the	ID	value	for	the	object,	and	__eq__()	compares	the	ID
values.	
Define	both	__hash__()	and	__eq__().	Note	that	we're	expected	to	define
both	for	an	immutable	object.

Mutable	objects:	These	are	stateful	objects	that	can	be	modified	internally.
We	have	one	design	choice:

Define	__eq__()	but	set	__hash__	to	None.	These	cannot	be	used	as	dict
keys	or	items	in	sets.

The	default	behavior	for	immutable	objects	will	be	undesirable	when	an
application	requires	two	distinct	objects	to	compare	as	equal.	For	example	we



might	want	two	instances	of	Card(1,	Clubs)	to	test	as	equal	and	compute	the	same
hash;	this	will	not	happen	by	default.	For	this	to	work,	we'll	need	to	override
the	__hash__()	and	__eq__()	methods.

Note	that	there's	an	additional	possible	combination:	defining	__hash__()	but	using
a	default	definition	for	__eq__().	This	is	simply	a	waste	of	code,	as	the	default
__eq__()	method	is	the	same	as	the	is	operator.	Using	the	default	__hash__()	method
would	have	involved	writing	less	code	for	the	same	behavior.

We'll	look	at	each	of	these	three	situations	in	detail.



Inheriting	definitions	for	immutable
objects
Let's	see	how	default	definitions	operate.	The	following	is	a	simple	class
hierarchy	that	uses	the	default	definitions	of	__hash__()	and	__eq__():

class	Card:

				insure	=	False

				def	__init__(self,	rank:	str,	suit:	"Suit",	hard:	int,	soft:	int)	->	None:

								self.rank	=	rank

								self.suit	=	suit

								self.hard	=	hard

								self.soft	=	soft

				def	__repr__(self)	->	str:

								return	f"{self.__class__.__name__}(suit={self.suit!r},	rank={self.rank!r})"

				def	__str__(self)	->	str:

								return	f"{self.rank}{self.suit}"

class	NumberCard(Card):

				def	__init__(self,	rank:	int,	suit:	"Suit")	->	None:

								super().__init__(str(rank),	suit,	rank,	rank)

class	AceCard(Card):

				insure	=	True

				def	__init__(self,	rank:	int,	suit:	"Suit")	->	None:

								super().__init__("A",	suit,	1,	11)

class	FaceCard(Card):

				def	__init__(self,	rank:	int,	suit:	"Suit")	->	None:

								rank_str	=	{11:	"J",	12:	"Q",	13:	"K"}[rank]

								super().__init__(rank_str,	suit,	10,	10)

This	is	a	class	hierarchy	for	philosophically	immutable	objects.	We	haven't	taken
care	to	implement	the	special	methods	that	prevent	the	attributes	from	getting
updated.	We'll	look	at	attribute	access	in	the	next	chapter.	Here's	the	definition	of
the	enumerated	class	of	Suit	values:

from	enum	import	Enum

class	Suit(str,	Enum):

				Club	=	"\N{BLACK	CLUB	SUIT}"

				Diamond	=	"\N{BLACK	DIAMOND	SUIT}"

				Heart	=	"\N{BLACK	HEART	SUIT}"



				Spade	=	"\N{BLACK	SPADE	SUIT}"

Let's	see	what	happens	when	we	use	this	class	hierarchy:

>>>	c1	=	AceCard(1,	Suit.Club)

>>>	c2	=	AceCard(1,	Suit.Club)

We	defined	two	instances	of	what	appear	to	be	the	same	Card	instance.	We	can
check	the	id()	values	as	shown	in	the	following	code	snippet:

>>>	id(c1),	id(c2)

(4492886928,	4492887208)

They	have	different	id()	numbers;	this	means	that	they're	distinct	objects.	This
meets	our	expectations.

We	can	check	to	see	whether	they're	the	same	by	using	the	is	operator	as	shown
in	the	following	code	snippet:

>>>	c1	is	c2	

False	

The	is	test	is	based	on	the	id()	numbers;	it	shows	us	that	they	are,	indeed,
separate	objects.

We	can	see	that	their	hash	values	are	different	from	each	other:

>>>	hash(c1),	hash(c2)

(-9223372036575077572,	279698247)

These	hash	values	come	directly	from	the	id()	values.	This	was	our	expectation
for	the	inherited	methods.	In	this	implementation,	we	can	compute	the	hash	from
the	id()	function,	as	shown	in	the	following	code	snippet:

>>>	id(c1)	/	16	

268911077.0	

>>>	id(c2)	/	16	

268911061.0	

As	the	hash	values	are	different,	they	must	not	compare	as	equal.	While	this	fits
the	definitions	of	hash	and	equality,	it	violates	our	expectations	for	instances	of
this	class.

We	created	the	two	objects	with	the	same	attributes.	The	following	is	an	equality
check:



>>>	c1	==	c2

False	

Even	though	the	objects	have	the	same	attribute	values,	they	don't	compare	as
equal.	In	some	applications,	this	might	not	be	good.	For	example,	when
accumulating	statistical	counts	of	dealer	cards,	we	don't	want	to	have	six	counts
for	one	card	because	the	simulation	used	a	six-deck	shoe.

We	can	see	that	these	are	proper	immutable	objects.	The	following	example
shows	that	these	objects	can	be	put	into	a	set:

>>>	set([c1,	c2])

{AceCard(suit=<Suit.Club:	'♣'>,	rank='A'),	AceCard(suit=<Suit.Club:	'♣'>,	rank='A')}

This	is	the	documented	behavior	from	the	Standard	Library	Reference
documentation.	By	default,	we'll	get	a	__hash__()	method	based	on	the	ID	of	the
object	so	that	each	instance	appears	unique.	However,	this	isn't	always	what	we
want.



Overriding	definitions	for	immutable
objects
The	following	is	a	simple	class	hierarchy	that	provides	us	with	definitions
of	__hash__()	and	__eq__():

import	sys

class	Card2:

				insure	=	False

				def	__init__(self,	rank:	str,	suit:	"Suit",	hard:	int,	soft:	int)	->	None:

								self.rank	=	rank

								self.suit	=	suit

								self.hard	=	hard

								self.soft	=	soft

				def	__repr__(self)	->	str:

								return	f"{self.__class__.__name__}(suit={self.suit!r},	rank={self.rank!r})"

				def	__str__(self)	->	str:

								return	f"{self.rank}{self.suit}"

				def	__eq__(self,	other:	Any)	->	bool:

								return	(

												self.suit	==	cast(Card2,	other).suit

												and	self.rank	==	cast(Card2,	other).rank

								)

				def	__hash__(self)	->	int:

								return	(hash(self.suit)	+	4*hash(self.rank))	%	sys.hash_info.modulus

class	AceCard2(Card2):

				insure	=	True

				def	__init__(self,	rank:	int,	suit:	"Suit")	->	None:

								super().__init__("A",	suit,	1,	11)

This	object	is	immutable	in	principle.	There's	no	formal	mechanism	to	the
immutable	instances.	We'll	look	at	how	to	prevent	attribute	value	changes	in	Chap
ter	4,	Attribute	Access,	Properties,	and	Descriptors.

Also,	note	that	the	preceding	code	omits	two	of	the	subclasses	that	didn't	change
significantly	from	the	previous	example,	FaceCard	and	NumberCard.

The	__eq__()	method	has	a	type	hint,	which	suggests	that	it	will	compare	an	object
of	any	class	and	return	a	bool	result.	The	implementation	uses	a	cast()	function	to
provide	a	hint	to	mypy	that	the	value	of	other	will	always	be	an	instance	of	Card2



or	a	runtime	type	error	can	be	raised.	The	cast()	function	is	part	of	mypy's	type
hinting	and	has	no	runtime	effect	of	any	kind.	The	function	compares	two
essential	values:	suit	and	rank.	It	doesn't	need	to	compare	the	hard	and	soft
values;	they're	derived	from	rank.

The	rules	for	Blackjack	make	this	definition	a	bit	suspicious.	Suit	doesn't
actually	matter	in	Blackjack.	Should	we	merely	compare	rank?	Should	we	define
an	additional	method	that	compares	rank	only?	Or,	should	we	rely	on	the
application	to	compare	rank	properly?	There's	no	best	answer	to	these	questions;
these	are	potential	design	trade-offs.

The	__hash__()	function	computes	a	unique	value	pattern	from	the	two	essential
attributes.	This	computation	is	based	on	the	hash	values	for	the	rank	and	the	suit.
The	rank	will	occupy	the	most	significant	bits	of	the	value,	and	suit	will	be	the
least	significant	bits.	This	tends	to	parallel	the	way	that	cards	are	ordered,	with
rank	being	more	important	than	suit.	The	hash	values	must	be	computed	using
the	sys.hash_info.modulus	value	as	a	modulus	constraint.

Let's	see	how	objects	of	these	classes	behave.	We	expect	them	to	compare	as
equal	and	behave	properly	with	sets	and	dictionaries.	Here	are	two	objects:

>>>	c1	=	AceCard2(1,	'♣')	

>>>	c2	=	AceCard2(1,	'♣')	

We	defined	two	instances	of	what	appear	to	be	the	same	card.	We	can	check	the
ID	values	to	be	sure	that	they're	distinct	objects:

>>>	id(c1),	id(c2)

(4302577040,	4302577296)

>>>	c1	is	c2

False	

These	have	different	id()	numbers.	When	we	test	with	the	is	operator,	we	see	that
they're	distinct	objects.	This	fits	our	expectations	so	far.

Let's	compare	the	hash	values:

>>>	hash(c1),	hash(c2)

(1259258073890,	1259258073890)

The	hash	values	are	identical.	This	means	that	they	could	be	equal.



The	equality	operator	shows	us	that	they	properly	compare	as	equal:

>>>	c1	==	c2

True	

Because	the	objects	produce	a	hash	value,	we	can	put	them	into	a	set,	as	follows:

>>>	set([c1,	c2])

{AceCard2(suit=<Suit.Club:	'♣'>,	rank='A')}

Since	the	two	objects	create	the	same	hash	value	and	test	as	equal,	they	appear	to
be	two	references	to	the	same	object.	Only	one	of	them	is	kept	in	the	set.	This
meets	our	expectations	for	complex	immutable	objects.	We	had	to	override	both
special	methods	to	get	consistent,	meaningful	results.



Overriding	definitions	for	mutable
objects
This	example	will	continue	using	the	Cards	class.	The	idea	of	mutable	cards	is
strange,	perhaps	even	wrong.	However,	we'd	like	to	apply	just	one	small	tweak
to	the	previous	examples.

The	following	is	a	class	hierarchy	that	provides	us	with	the	definitions
of	__hash__()	and	__eq__(),	appropriate	for	mutable	objects.	The	parent	class	is	as
follows:

class	Card3:

				insure	=	False

				def	__init__(self,	rank:	str,	suit:	"Suit",	hard:	int,	soft:	int)	->	None:

								self.rank	=	rank

								self.suit	=	suit

								self.hard	=	hard

								self.soft	=	soft

				def	__repr__(self)	->	str:

								return	f"{self.__class__.__name__}(suit={self.suit!r},	rank={self.rank!r})"

				def	__str__(self)	->	str:

								return	f"{self.rank}{self.suit}"

				def	__eq__(self,	other:	Any)	->	bool:

								return	(

												self.suit	==	cast(Card3,	other).suit

												and	self.rank	==	cast(Card3,	other).rank

								)

A	subclass	of	Card3	is	shown	in	the	following	example:

class	AceCard3(Card3):

				insure	=	True

				def	__init__(self,	rank:	int,	suit:	"Suit")	->	None:

								super().__init__("A",	suit,	1,	11)

Let's	see	how	objects	of	these	classes	behave.	We	expect	them	to	compare	as
equal	but	not	work	at	all	with	sets	or	dictionaries.	We'll	create	two	objects	as
follows:

>>>	c1	=	AceCard3(1,	'♣')	

>>>	c2	=	AceCard3(1,	'♣')	



We've	defined	two	instances	of	what	appear	to	be	the	same	card.

We'll	look	at	their	ID	values	to	ensure	that	they	really	are	distinct:

>>>	id(c1),	id(c2)

(4302577040,	4302577296)

No	surprise	here.	Now,	we'll	see	if	we	can	get	hash	values:

>>>	hash(c1),	hash(c2)

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

TypeError:	unhashable	type:	'AceCard3'	

The	Card3	objects	can't	be	hashed.	They	won't	provide	a	value	for	the	hash()
function.	This	is	the	expected	behavior.	However,	we	can	perform	equality
comparisons,	as	shown	in	the	following	code	snippet:

>>>	c1	==	c2

True	

The	equality	test	works	properly,	allowing	us	to	compare	cards.	They	just	can't
be	inserted	into	sets	or	used	as	keys	in	a	dictionary.

The	following	is	what	happens	when	we	try	to	put	them	into	a	set:

>>>	set([c1,	c2])

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

TypeError:	unhashable	type:	'AceCard3'	

We	get	a	proper	exception	when	trying	to	do	so.

Clearly,	this	is	not	a	proper	definition	for	something	that	–	in	real	life	–	is
immutable,	such	as	a	card.	This	style	of	definition	is	more	appropriate	for
stateful	objects,	such	as	Hand,	where	the	content	of	the	hand	is	always	changing.
We'll	provide	you	with	a	second	example	of	stateful	objects	in	the	following
section.



Making	a	frozen	hand	from	a
mutable	hand
If	we	want	to	perform	a	statistical	analysis	of	specific	Hand	instances,	we	might
want	to	create	a	dictionary	that	maps	a	Hand	instance	to	a	count.	We	can't	use	a
mutable	Hand	class	as	the	key	in	a	mapping.	We	can,	however,	parallel	the	design
of	set	and	frozenset	and	create	two	classes:	Hand	and	FrozenHand.	This	allows	us	to
freeze	a	Hand	instance	by	creating	FrozenHand;	the	frozen	version	is	immutable	and
can	be	used	as	a	key	in	a	dictionary.	

The	following	is	a	simple	Hand	definition:

class	Hand:

				def	__init__(self,	dealer_card:	Card2,	*cards:	Card2)	->	None:

								self.dealer_card	=	dealer_card

								self.cards	=	list(cards)

				def	__str__(self)	->	str:

								return	",	".join(map(str,	self.cards))

				def	__repr__(self)	->	str:

								cards_text	=	",	".join(map(repr,	self.cards))

								return	f"{self.__class__.__name__}({self.dealer_card!r},	{cards_text})"

				def	__format__(self,	spec:	str)	->	str:

								if	spec	==	"":

												return	str(self)

								return	",	".join(f"{c:{spec}}"	for	c	in	self.cards)

				def	__eq__(self,	other:	Any)	->	bool:

								if	isinstance(other,	int):

												return	self.total()	==	cast(int,	other)

								try:

												return	(

																self.cards	==	cast(Hand,	other).cards

																and	self.dealer_card	==	cast(Hand,	other).dealer_card

												)

								except	AttributeError:

												return	NotImplemented

This	is	a	mutable	object;	it	does	not	compute	a	hash	value,	and	can't	be	used	in	a
set	or	dictionary	key.	It	does	have	a	proper	equality	test	that	compares	two
hands.	As	with	previous	examples,	the	parameter	to	the	__eq__()	method	has	a
type	hint	of	Any,	and	a	do-nothing	cast()	function	is	used	to	tell	the	mypy	program
that	the	argument	values	will	always	be	instances	of	Hand.	The	following	is	a



frozen	version	of	Hand:

import	sys

class	FrozenHand(Hand):

				def	__init__(self,	*args,	**kw)	->	None:

								if	len(args)	==	1	and	isinstance(args[0],	Hand):

												#	Clone	a	hand

												other	=	cast(Hand,	args[0])

												self.dealer_card	=	other.dealer_card

												self.cards	=	other.cards

								else:

												#	Build	a	fresh	Hand	from	Card	instances.

												super().__init__(*args,	**kw)

				def	__hash__(self)	->	int:

								return	sum(hash(c)	for	c	in	self.cards)	%	sys.hash_info.modulus

The	frozen	version	has	a	constructor	that	will	build	one	Hand	class	from	another
Hand	class.	It	defines	a	__hash__()	method	that	sums	the	card's	hash	value,	which	is
limited	to	the	sys.hash_info.modulus	value.	For	the	most	part,	this	kind	of	modulus-
based	calculation	works	out	well	for	computing	the	hashes	of	composite	objects.
We	can	now	use	these	classes	for	operations	such	as	the	following	code	snippet:

from	collections	import	defaultdict

stats	=	defaultdict(int)	

	

d	=	Deck()	

h	=	Hand(d.pop(),	d.pop(),	d.pop())	

h_f	=	FrozenHand(h)	

stats[h_f]	+=	1	

We've	initialized	a	statistics	dictionary,	stats,	as	a	defaultdict	dictionary	that	can
collect	integer	counts.	We	could	also	use	a	collections.Counter	object	for	this.

By	freezing	an	instance	of	the	Hand	class,	we	can	compute	a	hash	and	use	it	as	a
key	in	a	dictionary.	This	makes	it	easy	to	create	a	defaultdict	for	collecting	counts
of	each	hand	that	actually	gets	dealt.



The	__bool__()	method
Python	has	a	pleasant	definition	of	falsity.	The	reference	manual	lists	a	large
number	of	values	that	will	test	as	equivalent	to	False.	This	includes	things	such	as
False,	0,	'',	(),	[],	and	{}.	Objects	not	included	in	this	list	will	test	as	equivalent	to
True.

Often,	we'll	want	to	check	for	an	object	being	not	empty	with	a	simple	statement,
as	follows:

if	some_object:	

				process(some_object)	

Under	the	hood,	this	is	the	job	of	the	bool()	built-in	function.	This	function
depends	on	the	__bool__()	method	of	a	given	object.

The	default	__bool__()	method	returns	as	True.	We	can	see	this	with	the	following
code:

>>>	x	=	object()	

>>>	bool(x)	

True	

For	most	classes,	this	is	perfectly	valid.	Most	objects	are	not	expected	to	be	False.
For	collections,	however,	the	default	behavior	is	not	appropriate.	An	empty
collection	should	be	equivalent	to	False.	A	non-empty	collection	should	return
True.	We	might	want	to	add	a	method	like	this	to	our	Deck	objects.

If	the	implementation	of	a	collection	involves	wrapping	a	list,	we	might	have
something	as	shown	in	the	following	code	snippet:

def	__bool__(self):	

				return	bool(self._cards)	

This	delegates	the	Boolean	function	to	the	internal	self._cards	collection.

If	we're	extending	a	list,	we	might	have	something	as	follows:

def	__bool__(self):	

				return	super().__bool__(self)	



This	delegates	to	the	superclass	definition	of	the	__bool__()	function.

In	both	cases,	we're	specifically	delegating	the	Boolean	test.	In	the	wrap	case,
we're	delegating	to	the	collection.	In	the	extend	case,	we're	delegating	to	the
superclass.	Either	way,	wrap	or	extend,	an	empty	collection	will	be	False.	This
will	give	us	a	way	to	see	whether	the	Deck	object	has	been	entirely	dealt	and	is
empty.

We	can	do	this	as	shown	in	the	following	code	snippet:

d	=	Deck()	

while	d:	

				card	=	d.pop()	

				#	process	the	card	

This	loop	will	deal	all	the	cards	without	getting	an	IndexError	exception	when	the
deck	has	been	exhausted.



The	__bytes__()	method
There	are	relatively	few	occasions	when	you	will	need	to	transform	an	object
into	bytes.	Bytes	representation	is	used	for	the	serialization	of	objects	for
persistent	storage	or	transfer.	We'll	look	at	this	in	detail	in	Chapter	10,	Serializing
and	Saving	-	JSON,	YAML,	Pickle,	CSV	and	XML	through	Chapter	14,
Configuration	Files	and	Persistence.

In	the	most	common	situation,	an	application	will	create	a	string	representation,
and	the	built-in	encoding	capabilities	of	the	Python	IO	classes	can	be	used	to
transform	the	string	into	bytes.	This	works	perfectly	for	almost	all	situations.
The	main	exception	would	be	when	we're	defining	a	new	kind	of	string.	In
which	case,	we'd	need	to	define	the	encoding	of	that	string.

The	bytes()	function	does	a	variety	of	things,	depending	on	the	arguments:

bytes(integer):	This	returns	an	immutable	bytes	object	with	the	given	number
of	0x00	values.
bytes(string):	This	will	encode	the	given	string	into	bytes.	Additional
parameters	for	encoding	and	error	handling	will	define	the	details	of	the
encoding	process.
bytes(something):	This	will	invoke	something.__bytes__()	to	create	a	bytes	object.
The	encoding	of	error	arguments	will	not	be	used	here.

The	base	object	class	does	not	define	__bytes__().	This	means	our	classes	don't
provide	a	__bytes__()	method	by	default.

There	are	some	exceptional	cases	where	we	might	have	an	object	that	will	need
to	be	encoded	directly	into	bytes	before	being	written	to	a	file.	It's	often	simpler
to	work	with	strings	and	allow	the	str	type	to	produce	bytes	for	us.	When
working	with	bytes,	it's	important	to	note	that	there's	no	simple	way	to	decode
bytes	from	a	file	or	interface.	The	built-in	bytes	class	will	only	decode	strings,	not
our	unique,	new	objects.	This	means	that	we'll	need	to	parse	the	strings	that	are
decoded	from	the	bytes.	Or,	we	might	need	to	explicitly	parse	the	bytes	using	the
struct	module	and	create	our	unique	objects	from	the	parsed	values.



We'll	look	at	encoding	and	decoding	the	Card2	instance	into	bytes.	As	there	are
only	52	card	values,	each	card	could	be	packed	into	a	single	byte.	However,
we've	elected	to	use	a	character	to	represent	suit	and	a	character	to	represent	rank.
Further,	we'll	need	to	properly	reconstruct	the	subclass	of	Card2,	so	we	have	to
encode	several	things:

The	subclass	of	Card2	(AceCard2,	NumberCard2,	and	FaceCard2)
The	parameters	to	the	subclass-defined	__init__()	methods.

Note	that	some	of	our	alternative	__init__()	methods	will	transform	a	numeric
rank	into	a	string,	losing	the	original	numeric	value.	For	the	purposes	of
reversible	byte	encoding,	we	need	to	reconstruct	this	original	numeric	rank
value.

The	following	is	an	implementation	of	__bytes__(),	which	returns	a	utf-8	encoding
of	the	Card2	subclass	name,	rank,	and	suit:

def	__bytes__(self)	->	bytes:

				class_code	=	self.__class__.__name__[0]

				rank_number_str	=	{"A":	"1",	"J":	"11",	"Q":	"12",	"K":	"13"}.get(

								self.rank,	self.rank

				)

				string	=	f"({'	'.join([class_code,	rank_number_str,	self.suit])})"

				return	bytes(string,	encoding="utf-8")

This	works	by	creating	a	string	representation	of	the	Card2	object.	The
representation	uses	the	()	objects	to	surround	three	space-separated	values:	code
that	represents	the	class,	a	string	that	represents	the	rank,	and	the	suit.	This	string
is	then	encoded	into	bytes.	

The	following	snippet	shows	how	bytes	representation	looks:

>>>	c1	=	AceCard2(1,	Suit.Club)

>>>	bytes(c1)

b'(A	1	\xe2\x99\xa3)'

When	we	are	given	a	pile	of	bytes,	we	can	decode	the	string	from	the	bytes	and
then	parse	the	string	into	a	new	Card2	object.	The	following	is	a	method	that	can
be	used	to	create	a	Card2	object	from	bytes:

def	card_from_bytes(buffer:	bytes)	->	Card2:

				string	=	buffer.decode("utf8")

				try:

								if	not	(string[0]	==	"("	and	string[-1]	==	")"):

												raise	ValueError



								code,	rank_number,	suit_value	=	string[1:-1].split()

								if	int(rank_number)	not	in	range(1,	14):

												raise	ValueError

								class_	=	{"A":	AceCard2,	"N":	NumberCard2,	"F":	FaceCard2}[code]

								return	class_(int(rank_number),	Suit(suit_value))

				except	(IndexError,	KeyError,	ValueError)	as	ex:

								raise	ValueError(f"{buffer!r}	isn't	a	Card2	instance")

In	the	preceding	code,	we've	decoded	the	bytes	into	a	string.	We	checked	the
string	for	required	().	We've	then	parsed	the	string	into	three	individual	values
using	string[1:-1].split().	From	those	values,	we	converted	the	rank	to	an	integer
of	the	valid	range,	located	the	class,	and	built	an	original	Card2	object.

We	can	reconstruct	a	Card2	object	from	a	stream	of	bytes	as	follows:

>>>	data	=	b'(N	5	\xe2\x99\xa5)'

>>>	c2	=	card_from_bytes(data)

>>>	c2

NumberCard2(suit=<Suit.Heart:	'♥'>,	rank='5')

It's	important	to	note	that	an	external	bytes	representation	is	often	challenging	to
design.	In	all	cases,	the	bytes	are	the	representation	of	the	state	of	an	object.
Python	already	has	a	number	of	representations	that	work	well	for	a	variety	of
class	definitions.

It's	often	better	to	use	the	pickle	or	json	modules	than	to	invent	a	low-level	bytes
representation	of	an	object.	This	will	be	the	subject	of	Chapter	10,	Serializing	and
Saving	-	JSON,	YAML,	Pickle,	CSV,	and	XML.



The	comparison	operator	methods
Python	has	six	comparison	operators.	These	operators	have	special	method
implementations.	According	to	the	documentation,	mapping	works	as	follows:

x<y	is	implemented	by	x.__lt__(y).
x<=y	is	implemented	by	x.__le__(y).
x==y	is	implemented	by	x.__eq__(y).
x!=y	is	implemented	by	x.__ne__(y).
x>y	is	implemented	by	x.__gt__(y).
x>=y	is	implemented	by	x.__ge__(y).

We'll	return	to	comparison	operators	again	when	looking	at	numbers	in	Chapter	8,
Creating	Numbers.

There's	an	additional	rule	regarding	what	operators	are	actually	implemented
that's	relevant	here.	These	rules	are	based	on	the	idea	that	the	object's	class	on
the	left-hand	side	of	an	operator	defines	the	required	special	method.	If	it
doesn't,	Python	can	try	an	alternative	operation	by	changing	the	order	and
considering	the	object	on	the	right-hand	side	of	the	operator.

Here	are	the	two	basic	rules
First,	the	operand	on	the	left-hand	side	of	the	operator	is	checked	for	an	implementation:	A<B
means	A.__lt__(B).
Second,	the	operand	on	the	right-hand	side	of	the	operator	is	checked	for	a	reversed
implementation:	A<B	means	B.__gt__(A).
The	rare	exception	to	this	occurs	when	the	right-hand	operand	is	a	subclass	of	the	left-hand
operand;	then,	the	right-hand	operand	is	checked	first	to	allow	a	subclass	to	override	a
superclass.

We	can	see	how	this	works	by	defining	a	class	with	only	one	of	the	operators
defined	and	then	using	it	for	other	operations.

The	following	is	a	partial	class	that	we	can	use:

class	BlackJackCard_p:

				def	__init__(self,	rank:	int,	suit:	Suit)	->	None:

								self.rank	=	rank

								self.suit	=	suit



				def	__lt__(self,	other:	Any)	->	bool:

								print(f"Compare	{self}	<	{other}")

								return	self.rank	<	cast(BlackJackCard_p,	other).rank

				def	__str__(self)	->	str:

								return	f"{self.rank}{self.suit}"

This	follows	the	Blackjack	comparison	rules,	where	suits	don't	matter	and	cards
are	only	compared	by	their	rank.	We've	omitted	all	but	one	of	the	comparison
methods	to	see	how	Python	will	fall	back	when	an	operator	is	missing.	This	class
will	allow	us	to	perform	<	comparisons.	Interestingly,	Python	can	also	use	this	to
perform	>	comparisons	by	switching	the	argument	order.	In	other	words,	

.	This	is	the	mirror	reflection	rule;	we'll	see	it	again	in	Chapt
er	8,	Creating	Numbers.

We	see	this	when	we	try	to	evaluate	different	comparison	operations.	We'll
create	two	BlackJackCard_p	instances	and	compare	them	in	various	ways,	as	shown
in	the	following	code	snippet:

>>>	two	=	BlackJackCard_p(2,	Suit.Spade)

>>>	three	=	BlackJackCard_p(3,	Suit.Spade)

>>>	two	<	three

Compare	2♠	<	3♠

True

>>>	two	>	three

Compare	3♠	<	2♠

False

>>>	two	==	three

False

This	example	shows	that	a	comparison	using	the	<	operator	is	implemented	by
the	defined	__lt__()	method,	as	expected.	When	using	the	>	operator,	then	the
available	__lt__()	method	is	also	used,	but	with	the	operands	reversed.

What	happens	when	we	try	to	use	an	operator	such	as	<=?	This	shows	the
exception:

>>>	two	<=	three

Traceback	(most	recent	call	last):

	File	"/Users/slott/miniconda3/envs/py37/lib/python3.7/doctest.py",	line	1329,	in	__run

	compileflags,	1),	test.globs)

	File	"<doctest	__main__.__test__.test_blackjackcard_partial[5]>",	line	1,	in	<module>

	print("{0}	<=	{1}	::	{2!r}".format(two,	three,	two	<=	three))	#	doctest:	+IGNORE_EXCEPTION_DETAIL

TypeError:	'<='	not	supported	between	instances	of	'BlackJackCard_p'	and	'BlackJackCard_p'

From	this,	we	can	see	where	two	<	three	maps	to	two.__lt__(three).

However,	for	two	>	three,	there's	no	__gt__()	method	defined;	Python	uses



three.__lt__(two)	as	a	fallback	plan.

By	default,	the	__eq__()	method	is	inherited	from	object.	You	will	recall	that	the
default	implementation	compares	the	object	IDs	and	all	unique	objects	will
compare	as	not	equal.	The	objects	participate	in	==	tests	as	follows:

>>>	two_c	=	BlackJackCard_p(2,	Suit.Club)

>>>	two_c	==	BlackJackCard_p(2,	Suit.Club)

False

We	can	see	that	the	results	aren't	quite	what	we	expect.	We'll	often	need	to
override	the	default	implementation	of	__eq__().

There's	no	logical	connection	among	the	operators	either.	Mathematically,	we
can	derive	all	the	necessary	comparisons	from	just	two.	Python	doesn't	do	this
automatically.	Instead,	Python	handles	the	following	four	simple	reflection	pairs
by	default:

This	means	that	we	must,	at	a	minimum,	provide	one	from	each	of	the	four	pairs.
For	example,	we	could	provide	__eq__(),	__ne__(),	__lt__(),	and	__le__().

The	@functools.total_ordering	decorator	can	help	overcome	the	default	limitation.
This	decorator	deduces	the	rest	of	the	comparisons	from	just	__eq__()	and	one	of
these:	__lt__(),	__le__(),	__gt__(),	or	__ge__().	This	provides	all	the	necessary
comparisons.	We'll	revisit	this	in	Chapter	8,	Creating	Numbers.



Designing	comparisons
There	are	two	considerations	when	defining	comparison	operators:

The	obvious	question	of	how	to	compare	two	objects	of	the	same	class.
The	less	obvious	question	of	how	to	compare	objects	of	different	classes.

For	a	class	with	multiple	attributes,	we	often	have	a	profound	ambiguity	when
looking	at	the	comparison	operators.	It	might	not	be	perfectly	clear	which	of	the
available	attributes	participate	in	the	comparison.

Consider	the	humble	playing	card	(again!).	An	expression,	such	as	card1	==	card2,
is	clearly	intended	to	compare	both	rank	and	suit,	right?	Is	that	always	true?	After
all,	suit	doesn't	matter	in	games	such	as	Blackjack.

If	we	want	to	decide	whether	a	Hand	object	can	be	split,	we	must	decide	whether
the	split	operation	is	valid.	In	Blackjack,	a	hand	can	only	be	split	if	the	two	cards
are	of	the	same	rank.	The	implementation	we	chose	for	equality	testing	will	then
change	how	we	implement	the	rules	for	splitting	a	hand.

This	leads	to	some	alternatives.	In	one	case,	the	use	of	rank	is	implicit;	the	other
requires	it	to	be	explicit.	The	following	is	the	first	code	snippet	for	rank
comparison:

if	hand.cards[0]	==	hand.cards[1]	

The	following	is	the	second	code	snippet	for	rank	comparison:

if	hand.cards[0].rank	==	hand.cards[1].rank	

While	one	is	shorter,	brevity	is	not	always	best.	If	we	define	equality	to	only
consider	rank,	we	may	have	trouble	creating	unit	tests.	If	we	use	only	rank,
then	assert	expectedCard	==	actualCard	will	tolerate	a	wide	variety	of	cards	when	a
unit	test	should	be	focused	on	exactly	correct	cards.

An	expression	such	as	card1	<=	7	is	clearly	intended	to	compare	rank.	Should	the
ordering	operators	have	slightly	different	semantics	than	equality	testing?



There	are	more	trade-off	questions	that	stem	from	a	rank-only	comparison.	How
could	we	order	cards	by	suit	if	this	attribute	is	not	used	for	ordering
comparisons?

Furthermore,	equality	checks	must	parallel	the	hash	calculation.	If	we've
included	multiple	attributes	in	the	hash,	we	also	need	to	include	them	in	the
equality	comparison.	In	this	case,	it	appears	that	equality	(and	inequality)
between	cards	must	be	full	Card	comparisons,	because	we're	hashing	the	Card
values	to	include	rank	and	suit.

The	ordering	comparisons	between	Card,	however,	could	be	rank	only.
Comparisons	against	integers	could	similarly	be	rank	only.	For	the	special	case	of
detecting	a	split,	hand.cards[0].rank	==	hand.cards[1].rank	could	be	used,	because	it
states	the	rule	for	a	valid	split	explicitly.



Implementation	of	a	comparison	of
objects	of	the	same	class
We'll	look	at	a	simple	same-class	comparison	by	looking	at	a	more	complete
BlackJackCard	class:

class	BlackJackCard:

				def	__init__(self,	rank:	int,	suit:	Suit,	hard:	int,	soft:	int)	->	None:

								self.rank	=	rank

								self.suit	=	suit

								self.hard	=	hard

								self.soft	=	soft

				def	__lt__(self,	other:	Any)	->	bool:

								if	not	isinstance(other,	BlackJackCard):

												return	NotImplemented

								return	self.rank	<	other.rank

				def	__le__(self,	other:	Any)	->	bool:

								try:

												return	self.rank	<=	cast(BlackJackCard,	other).rank

								except	AttributeError:

												return	NotImplemented

				def	__gt__(self,	other:	Any)	->	bool:

								if	not	isinstance(other,	BlackJackCard):

												return	NotImplemented

								return	self.rank	>	other.rank

				def	__ge__(self,	other:	Any)	->	bool:

								try:

												return	self.rank	>=	cast(BlackJackCard,	other).rank

								except	AttributeError:

												return	NotImplemented

				def	__eq__(self,	other:	Any)	->	bool:

								if	not	isinstance(other,	BlackJackCard):

												return	NotImplemented

								return	(self.rank	==	other.rank

																and	self.suit	==	other.suit)

				def	__ne__(self,	other:	Any)	->	bool:

								if	not	isinstance(other,	BlackJackCard):

												return	NotImplemented

								return	(self.rank	!=	other.rank

																or	self.suit	!=	other.suit)

				def	__str__(self)	->	str:

								return	f"{self.rank}{self.suit}"

				def	__repr__(self)	->	str:

								return	(f"{self.__class__.__name__}"

																f"(rank={self.rank!r},	suit={self.suit!r},	"



																f"hard={self.hard!r},	soft={self.soft!r})")

This	example	class	defines	all	six	comparison	operators.

The	various	comparison	methods	use	two	kinds	of	type	checking:	class	and
protocol:

Class-based	type	checking	uses	isinstance()	to	check	the	class	membership
of	the	object.	When	the	check	fails,	the	method	returns	the	special
NotImplemented	value;	this	allows	the	other	operand	to	implement	the
comparison.	The	isinstance()	check	also	informs	mypy	of	a	type	constraint
on	the	objects	named	in	the	expression.
Protocol-based	type	checking	follows	duck	typing	principles.	If	the	object
supports	the	proper	protocol,	it	will	have	the	necessary	attributes.	This	is
shown	in	the	implementation	of	the	__le__()	and	__ge__()	methods.	A	try:
block	is	used	to	wrap	the	attempt	and	provide	a	useful	NotImplemented	value	if
the	protocol	isn't	available	in	the	object.	In	this	case,	the	cast()	function	is
used	to	inform	mypy	that	only	objects	with	the	expected	class	protocol	will
be	used	at	runtime.	

There's	a	tiny	conceptual	advantage	to	checking	for	support	for	a	given	protocol
instead	of	membership	in	a	class:	it	avoids	needlessly	over-constraining
operations.	It's	entirely	possible	that	someone	might	want	to	invent	a	variation
on	a	card	that	follows	the	protocol	of	BlackJackCard,	but	is	not	defined	as	a	proper
subclass	of	BlackjackCard.	Using	isinstance()	checks	might	prevent	an	otherwise
valid	class	from	working	correctly.

The	protocol-focused	try:	block	might	allow	a	class	that	coincidentally	happens
to	have	a	rank	attribute	to	work.	The	risk	of	this	situation	turning	into	a	difficult-
to-solve	problem	is	nil,	as	the	class	would	likely	fail	everywhere	else	it	was	used
in	this	application.	Also,	who	compares	an	instance	of	Card	with	a	class	from	a
financial	modeling	application	that	happens	to	have	a	rank-ordering	attribute?

In	future	examples,	we'll	focus	on	protocol-based	comparison	using	a	try:	block.
This	tends	to	offer	more	flexibility.	In	cases	where	flexibility	is	not	desired,	the
isinstance()	check	can	be	used.

In	our	examples,	the	comparison	uses	cast(BlackJackCard,	other)	to	insist	to	mypy
that	the	other	variable		conforms	to	the	BlackjackCard	protocol.	In	many	cases,	a



complex	class	may	have	a	number	of	protocols	defined	by	various	kinds	of
mixins,	and	a	cast()	function	will	focus	on	the	essential	mixin,	not	the	overall
class.

Comparison	methods	explicitly	return	NotImplemented	to	inform	Python	that	this
operator	isn't	implemented	for	this	type	of	data.	Python	will	try	reversing	the
argument	order	to	see	whether	the	other	operand	provides	an	implementation.	If
no	valid	operator	can	be	found,	then	a	TypeError	exception	will	be	raised.

We	omitted	the	three	subclass	definitions	and	the	factory	function,	card21().
They're	left	as	an	exercise.

We	also	omitted	intraclass	comparisons;	we'll	save	that	for	the	next	section.	With
this	class,	we	can	compare	cards	successfully.	The	following	is	an	example
where	we	create	and	compare	three	cards:

>>>	two	=	card21(2,	"♠")

>>>	three	=	card21(3,	"♠")

>>>	two_c	=	card21(2,	"♣")

Given	those	three	BlackJackCard	instances,	we	can	perform	a	number	of
comparisons,	as	shown	in	the	following	code	snippet:

>>>	f"{two}	==	{three}	is	{two	==	three}"

2♠	==	3♠	is	False

>>>	two.rank	==	two_c.rank	

True	

>>>	f"{two}	<	{three}	is	{two	<	three}"

2♠	<	3♠	is	True

The	definitions	seem	to	have	worked	as	expected.



Implementation	of	a	comparison	of
the	objects	of	mixed	classes
We'll	use	the	BlackJackCard	class	as	an	example	to	see	what	happens	when	we
attempt	comparisons	where	the	two	operands	are	from	different	classes.

The	following	is	a	Card	instance	that	we	can	compare	against	the	int	values:

>>>	two	=	card21(2,	"♠")

>>>	two	<	2	

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

TypeError:	unorderable	types:	Number21Card()	<	int()	

>>>	two	>	2	

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

TypeError:	unorderable	types:	Number21Card()	>	int()	

This	is	what	we	expected:	the	subclass	of	BlackJackCard,	Number21Card,	doesn't
provide	the	required	special	methods	to	implement	a	comparison	against
integers,	so	there's	a	TypeError	exception.	However,	consider	the	following	two
examples:

>>>	two	==	2

False

>>>	2	==	two

False

Why	do	these	provide	responses?	When	confronted	with	a	NotImplemented	value,
Python	will	reverse	the	operands.	In	this	case,	the	integer	value,	2,	defines
the	int.__eq__()	method,	which	tolerates	objects	of	an	unexpected	class.



Hard	totals,	soft	totals,	and
polymorphism
Two	classes	are	polymorphic	when	they	share	common	attributes	and	methods.
One	common	example	of	this	is	objects	of	the	int	and	float	classes.	Both	have
__add__()	methods	to	implement	the	+	operator.	Another	example	of	this	is	that
most	collections	offer	a	__len__()	method	to	implement	the	len()	function.	The
results	are	produced	in	different	ways,	depending	on	the	implementation	details.

Let's	define	Hand	so	that	it	will	perform	a	meaningful	mixed-class	comparison
among	several	subclasses	of	Hand.	As	with	same-class	comparisons,	we	have	to
determine	precisely	what	we're	going	to	compare.	We'll	look	at	the	following
three	cases:

Equality	comparisons	between	Hand	instances	should	compare	all	cards	in
the	collection.	Two	hands	are	equal	if	all	of	the	cards	are	equal.
Ordering	comparisons	between	two	Hand	instances	should	compare	an
attribute	of	each	Hand	object.	In	the	case	of	Blackjack,	we'll	want	to	compare
the	hard	total	or	soft	total	of	the	hand's	points.
Equality	comparisons	against	an	int	value	should	compare	the	Hand	object's
points	against	the	int	value.	In	order	to	have	a	total,	we	have	to	sort	out	the
subtlety	of	hard	totals	and	soft	totals	in	the	game	of	Blackjack.

When	there's	an	ace	in	a	hand,	then	the	following	are	two	candidate	totals:

The	soft	total	treats	an	ace	as	11.	
The	hard	total	treats	an	ace	as	1.	If	the	soft	total	is	over	21,	then	only	the
hard	total	is	relevant	to	the	game.

This	means	that	the	hand's	total	isn't	a	simple	sum	of	the	cards.

We	have	to	determine	whether	there's	an	ace	in	the	hand	first.	Given	that
information,	we	can	determine	whether	there's	a	valid	(less	than	or	equal	to	21)
soft	total.	Otherwise,	we'll	fall	back	on	the	hard	total.



One	symptom	of	Pretty	Poor	Polymorphism	is	the	reliance	on	isinstance()	to
determine	the	subclass	membership.	Generally,	this	is	a	violation	of	the	basic
ideas	of	encapsulation	and	class	design.	A	good	set	of	polymorphic	subclass
definitions	should	be	completely	equivalent	with	the	same	method	signatures.
Ideally,	the	class	definitions	are	also	opaque;	we	don't	need	to	look	inside	the
class	definition.	A	poor	set	of	polymorphic	classes	uses	extensive
isinstance()	class	testing.

In	Python,	some	uses	of	the	isinstance()	function	are	necessary.	This	will	arise
when	using	a	built-in	class.	It	arises	because	we	can't	retroactively	add	method
functions	to	built-in	classes,	and	it	might	not	be	worth	the	effort	of	subclassing
them	to	add	a	polymorphism	helper	method.

In	some	of	the	special	methods,	it's	necessary	to	use	the	isinstance()	function	to
implement	operations	that	work	across	multiple	classes	of	objects	where	there's
no	simple	inheritance	hierarchy.	We'll	show	you	an	idiomatic	use	of	isinstance()
for	unrelated	classes	in	the	next	section.

For	our	cards	class	hierarchy,	we	want	a	method	(or	an	attribute)	that	identifies	an
ace	without	having	to	use	isinstance().	A	well-designed	method	or	attribute	can
help	to	make	a	variety	of	classes	properly	polymorphic.	The	idea	is	to	provide	a
variant	attribute	value	or	method	implementation	that	varies	based	on	the	class.

We	have	two	general	design	choices	for	supporting	polymorphism:

Define	a	class-level	attribute	in	all	relevant	classes	with	a	distinct	value.
Define	a	method	in	all	classes	with	distinct	behavior.

In	a	situation	where	the	hard	total	and	soft	total	for	the	cards	differ	by	10,	this	is
an	indication	of	at	least	one	ace	being	present	in	the	hand.	We	don't	need	to
break	encapsulation	by	checking	for	class	membership.	The	values	of	the
attributes	provide	all	the	information	required.

When	card.soft	!=	card.hard,	this	is	sufficient	information	to	work	out	the	hard
total	versus	the	soft	total	of	the	hand.	Besides	indicating	the	presence	of	AceCard,
it	also	provides	the	exact	offset	value	between	hard	and	soft	totals.	

The	following	is	a	version	of	the	total	method	that	makes	use	of	the	soft	versus



hard	delta	value:

def	total(self)	->	int:

				delta_soft	=	max(c.soft	-	c.hard	for	c	in	self.cards)

				hard	=	sum(c.hard	for	c	in	self.cards)

				if	hard	+	delta_soft	<=	21:

								return	hard	+	delta_soft

				return	hard

We'll	compute	the	largest	difference	between	the	hard	and	soft	total	of	each
individual	card	in	the	hand	as	delta_soft.	For	most	cards,	the	difference	is	zero.
For	an	ace,	the	difference	will	be	nonzero.

Given	the	hard	total	and	delta_soft,	we	can	determine	which	total	to	return.	If
hard+delta_soft	is	less	than	or	equal	to	21,	the	value	is	the	soft	total.	If	the	soft	total
is	greater	than	21,	then	revert	to	a	hard	total.



A	mixed	class	comparison	example
Given	a	definition	of	a	total	for	a	Hand	object,	we	can	meaningfully	define
comparisons	between	Hand	instances	and	comparisons	between	Hand	and	int.	In
order	to	determine	which	kind	of	comparison	we're	doing,	we're	forced	to	use
isinstance().

The	following	is	a	partial	definition	of	Hand	with	comparisons.	Here's	the	first
part:

class	Hand:

				def	__init__(self,	dealer_card:	Card2,	*cards:	Card2)	->	None:

								self.dealer_card	=	dealer_card

								self.cards	=	list(cards)

				def	__str__(self)	->	str:

								return	",	".join(map(str,	self.cards))

				def	__repr__(self)	->	str:

								cards_text	=	",	".join(map(repr,	self.cards))

								return	f"{self.__class__.__name__}({self.dealer_card!r},	{cards_text})"

Here's	the	second	part,	emphasizing	the	comparison	methods:

def	__eq__(self,	other:	Any)	->	bool:

				if	isinstance(other,	int):

								return	self.total()	==	other

				try:

								return	(

												self.cards	==	cast(Hand,	other).cards

												and	self.dealer_card	==	cast(Hand,	other).dealer_card

								)

				except	AttributeError:

								return	NotImplemented

def	__lt__(self,	other:	Any)	->	bool:

				if	isinstance(other,	int):

								return	self.total()	<	cast(int,	other)

				try:

								return	self.total()	<	cast(Hand,	other).total()

				except	AttributeError:

								return	NotImplemented

def	__le__(self,	other:	Any)	->	bool:

				if	isinstance(other,	int):

								return	self.total()	<=	cast(int,	other)

				try:

								return	self.total()	<=	cast(Hand,	other).total()

				except	AttributeError:

								return	NotImplemented



def	total(self)	->	int:

				delta_soft	=	max(c.soft	-	c.hard	for	c	in	self.cards)

				hard	=	sum(c.hard	for	c	in	self.cards)

				if	hard	+	delta_soft	<=	21:

								return	hard	+	delta_soft

				return	hard

We've	defined	three	of	the	comparisons,	not	all	six.	Python's	default	behavior
can	fill	in	the	missing	operations.	Because	of	the	special	rules	for	different	types,
we'll	see	that	the	defaults	aren't	perfect.

In	order	to	interact	with	Hands,	we'll	need	a	few	Card	objects:

>>>	two	=	card21(2,	'♠')	

>>>	three	=	card21(3,	'♠')	

>>>	two_c	=	card21(2,	'♣')	

>>>	ace	=	card21(1,	'♣')	

>>>	cards	=	[ace,	two,	two_c,	three]	

We'll	use	this	sequence	of	cards	to	see	two	different	hand	instances.

This	first	Hands	object	has	an	irrelevant	dealer's	Card	object	and	the	set	of	four	Cards
created	previously.	One	of	the	Card	objects	is	an	ace:

>>>	h	=	Hand(card21(10,'♠'),	*cards)	

>>>	print(h)	

A♣,	2♠,	2♣,	3♠	

>>>	h.total()	

18	

The	total	of	18	points	is	a	soft	total,	because	the	ace	is	being	treated	as	having	11
points.	The	hard	total	for	these	cards	is	8	points.

The	following	is	a	second	Hand	object,	which	has	an	additional	Card	object:

>>>	h2	=	Hand(card21(10,'♠'),	card21(5,'♠'),	*cards)	

>>>	print(h2)	

5♠,	A♣,	2♠,	2♣,	3♠	

>>>	h2.total()	

13	

This	hand	has	a	total	of	13	points.	This	is	a	hard	total.	The	soft	total	would	be
over	21,	and	therefore	irrelevant	for	play.

Comparisons	between	Hands	work	very	nicely,	as	shown	in	the	following	code
snippet:

>>>	h	<	h2	

False	



>>>	h	>	h2	

True	

These	comparisons	mean	that	we	can	rank	Hands	based	on	the	comparison
operators.	We	can	also	compare	Hands	with	integers,	as	follows:

>>>	h	==	18	

True	

>>>	h	<	19	

True	

>>>	h	>	17	

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

TypeError:	unorderable	types:	Hand()	>	int()	

The	comparisons	with	integers	work	as	long	as	Python	isn't	forced	to	try	a
fallback.	The	h	>	17	example	shows	us	what	happens	when	there's	no	__gt__()
method.	Python	checks	the	reflected	operands,	and	the	integer,	17,	doesn't	have	a
proper	__lt__()	method	for	Hand	either.

We	can	add	the	necessary	__gt__()	and	__ge__()	functions	to	make	Hand	work
properly	with	integers.	The	code	for	these	two	comparisons	is	left	as	an	exercise
for	the	reader.



The	__del__()	method
The	__del__()	method	has	a	rather	obscure	use	case.

The	intent	is	to	give	an	object	a	chance	to	do	any	cleanup	or	finalization	just
before	the	object	is	removed	from	memory.	This	use	case	is	handled	much	more
cleanly	by	context	manager	objects	and	the	with	statement.	This	is	the	subject	of	C
hapter	6,	Using	Callables	and	Contexts.	Creating	a	context	is	much	more
predictable	than	dealing	with	__del__()	and	the	Python	garbage	collection
algorithm.

If	a	Python	object	has	a	related	operating	system	resource,	the	__del__()	method	is
the	last	chance	to	cleanly	disentangle	the	resource	from	the	Python	application.
As	examples,	a	Python	object	that	conceals	an	open	file,	a	mounted	device,	or
perhaps	a	child	subprocess	might	all	benefit	from	having	the	resource	released	as
part	of	__del__()	processing.

The	__del__()	method	is	not	invoked	at	any	easy-to-predict	time.	It's	not	always
invoked	when	the	object	is	deleted	by	a	del	statement,	nor	is	it	always	invoked
when	an	object	is	deleted	because	a	namespace	is	being	removed.	The
documentation	on	the	__del__()	method	describes	the	circumstances	as
precarious	and	provides	this	additional	note	on	exception	processing—
exceptions	that	occur	during	their	execution	are	ignored,	and	a	warning	is
printed	to	sys.stderr	instead.	See	the	warning	here:	https://docs.python.org/3/referenc
e/datamodel.html?highlight=__del__#object.__del__.

For	these	reasons,	a	context	manager	is	often	preferable	to	implementing
__del__().

https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__
https://docs.python.org/3/reference/datamodel.html?highlight=__del__#object.__del__


The	reference	count	and	destruction
For	CPython	implementation,	objects	have	a	reference	count.	The	count	is
incremented	when	the	object	is	assigned	to	a	variable	and	decremented	when	the
variable	is	removed.	When	the	reference	count	is	zero,	the	object	is	no	longer
needed	and	can	be	destroyed.	For	simple	objects,	__del__()	will	be	invoked	and
the	object	will	be	removed.

For	complex	objects	that	have	circular	references	among	objects,	the	reference
count	might	never	go	to	zero	and	__del__()	can't	be	invoked	easily.	The	following
is	a	class	that	we	can	use	to	see	what	happens:

class	Noisy:

				def	__del__(self)	->	None:

								print(f"Removing	{id(self)}")

We	can	create	(and	see	the	removal	of)	these	objects	as	follows:

>>>	x	=	Noisy()	

>>>	del	x	

Removing	4313946640	

We	created	and	removed	a	Noisy	object,	and,	almost	immediately,	we	saw	the
message	from	the	__del__()	method.	This	indicates	that	the	reference	count	went
to	zero	when	the	x	variable	was	deleted.	Once	the	variable	is	gone,	there's	no
longer	a	reference	to	the	Noisy	instance	and	it,	too,	can	be	cleaned	up.	The
following	is	a	common	situation	that	involves	the	shallow	copies	that	are	often
created:

>>>	ln	=	[Noisy(),	Noisy()]	

>>>	ln2=	ln[:]	

>>>	del	ln	

There's	no	response	to	this	del	statement.	The	Noisy	objects	have	not	had	their
reference	counts	go	to	zero	yet;	they're	still	being	referenced	somewhere,	as
shown	in	the	following	code	snippet:

>>>	del	ln2	

Removing	4313920336	

Removing	4313920208	



The	ln2	variable	was	a	shallow	copy	of	the	ln	list.	The	Noisy	objects	were
referenced	in	two	lists.	The	Noisy	instances	could	not	be	destroyed	until	both	lists
were	removed,	reducing	the	reference	counts	to	zero.

There	are	numerous	other	ways	to	create	shallow	copies.	The	following	are	a
few	ways	to	create	shallow	copies	of	objects:

a	=	b	=	Noisy()	

c	=	[Noisy()]	*	2	

The	point	here	is	that	we	can	often	be	confused	by	the	number	of	references	to
an	object	that	exist	because	shallow	copies	are	prevalent	in	Python.



Circular	references	and	garbage
collection
The	following	is	a	common	situation	that	involves	circularity.	One	class,	Parent,
contains	a	collection	of	children.	Each	Child	instance	contains	a	reference	to	the
Parent	class.	We'll	use	these	two	classes	to	examine	circular	references:

class	Parent:

				def	__init__(self,	*children:	'Child')	->	None:

								for	child	in	children:

												child.parent	=	self

								self.children	=	{c.id:	c	for	c	in	children}

				def	__del__(self)	->	None:

								print(

												f"Removing	{self.__class__.__name__}	{id(self):d}"

								)

class	Child:

				def	__init__(self,	id:	str)	->	None:

								self.id	=	id

								self.parent:	Parent	=	cast(Parent,	None)

				def	__del__(self)	->	None:

								print(

												f"Removing	{self.__class__.__name__}	{id(self):d}"

								)

A	Parent	instance	has	a	collection	of	children	in	a	simple	dict.	Note	that	the
parameter	value,	*children,	has	a	type	hint	of	'Child'.	The	Child	class	has	not	been
defined	yet.	In	order	to	provide	a	type	hint,	mypy	will	resolve	a	string	to	a	type
that's	defined	elsewhere	in	the	module.	In	order	to	have	a	forward	reference	or	a
circular	reference,	we	have	to	use	strings	instead	of	a	yet-to-be-defined	type.

Each	Child	instance	has	a	reference	to	the	Parent	class	that	contains	it.	The
reference	is	created	during	initialization,	when	the	children	are	inserted	into	the
parent's	internal	collection.

We've	made	both	classes	noisy	so	that	we	can	see	when	the	objects	are	removed.
The	following	is	what	happens:

>>>	p	=	Parent(Child('a'),	Child('b'))



>>>	del	p

The	Parent	instance	and	two	initial	Child	instances	cannot	be	removed.	They	both
contain	references	to	each	other.	Prior	to	the	del	statement,	there	are	three
references	to	the	Parent	object.	The	p	variable	has	one	reference.	Each	child	object
also	has	a	reference.	When	the	del	statement	removed	the	p	variable,	this
decremented	the	reference	count	for	the	Parent	instance.	The	count	is	not	zero,	so
the	object	remains	in	memory,	unusable.	We	call	this	a	memory	leak.

We	can	create	a	childless	Parent	instance,	as	shown	in	the	following	code	snippet:

>>>	p_0	=	Parent()	

>>>	id(p_0)	

4313921744	

>>>	del	p_0	

Removing	Parent	4313921744	

This	object	is	deleted	immediately,	as	expected.

Because	of	the	mutual	or	circular	references,	a	Parent	instance	and	its	list	of	Child
instances	cannot	be	removed	from	the	memory.	If	we	import	the	garbage
collector	interface,	gc,	we	can	collect	and	display	these	nonremovable	objects.

We'll	use	the	gc.collect()	method	to	collect	all	the	nonremovable	objects	that
have	a	__del__()	method,	as	shown	in	the	following	code	snippet:

>>>	import	gc	

>>>	gc.collect()	

Removing	Child	4536680176

Removing	Child	4536680232

Removing	Parent	4536679952

30

We	can	see	that	our	Parent	object	is	cleaned	up	by	the	manual	use	of	the	garbage
collector.	The	collect()	function	locates	objects	that	are	inaccessible,	identifies
any	circular	references,	and	forces	their	deletion.

Note	that	we	can't	break	the	circularity	by	putting	code	in	the	__del__()	method.
The	__del__()	method	is	called	after	the	circularity	has	been	broken	and	the
reference	counts	are	already	zero.	When	we	have	circular	references,	we	can	no
longer	rely	on	simple	Python	reference	counting	to	clear	out	the	memory	of
unused	objects.	We	must	either	explicitly	break	the	circularity	or	use	a	weakref
reference,	which	permits	garbage	collection.



Circular	references	and	the	weakref
module
In	cases	where	we	need	circular	references	but	also	want	__del__()	to	work	nicely,
we	can	use	weak	references.	One	common	use	case	for	circular	references	is
mutual	references:	a	parent	with	a	collection	of	children	where	each	child	has	a
reference	back	to	the	parent.	If	a	Player	class	has	multiple	hands,	it	might	be
helpful	for	a	Hand	object	to	contain	a	weak	reference	to	the	owning	Player	class.

The	default	object	references	could	be	called	strong	references;	however,	direct
references	is	a	better	term.	They're	used	by	the	reference-counting	mechanism
in	Python;	they	cannot	be	ignored.

Consider	the	following	statement:

a	=	B()	

The	a	variable	has	a	direct	reference	to	the	object	of	the	B	class	that	was	created.
The	reference	count	to	the	instance	of	B	is	at	least	one,	because	the	a	variable	has
a	reference.

A	weak	reference	involves	a	two-step	process	to	find	the	associated	object.	A
weak	reference	will	use	x.parent(),	invoking	the	weak	reference	as	a	callable
object	to	track	down	the	actual	parent	object.	This	two-step	process	allows	the
reference	counting	or	garbage	collection	to	remove	the	referenced	object,
leaving	the	weak	reference	dangling.

The	weakref	module	defines	a	number	of	collections	that	use	weak	references
instead	of	strong	references.	This	allows	us	to	create	dictionaries	that,	for
example,	permit	the	garbage	collection	of	otherwise	unused	objects.

We	can	modify	our	Parent	and	Child	classes	to	use	weak	references	from	Child	to
Parent,	permitting	simpler	destruction	of	unused	objects.

The	following	is	a	modified	class	that	uses	weak	references	from	Child	to	Parent:



from	weakref	import	ref

class	Parent2:

				def	__init__(self,	*children:	'Child2')	->	None:

								for	child	in	children:

												child.parent	=	ref(self)

								self.children	=	{c.id:	c	for	c	in	children}

				def	__del__(self)	->	None:

								print(

												f"Removing	{self.__class__.__name__}	{id(self):d}"

								)

class	Child2:

				def	__init__(self,	id:	str)	->	None:

								self.id	=	id

								self.parent:	ref[Parent2]	=	cast(ref[Parent2],	None)

				def	__del__(self)	->	None:

								print(

												f"Removing	{self.__class__.__name__}	{id(self):d}"

								)

We've	changed	the	child	to	parent	reference	to	be	a	weakref	object	reference	instead
of	a	simple,	direct	reference.

From	within	a	Child	class,	we	must	locate	the	parent	object	via	a	two-step
operation:

p	=	self.parent()	

if	p	is	not	None:	

				#	Process	p,	the	Parent	instance.

else:	

				#	The	Parent	instance	was	garbage	collected.	

We	should	explicitly	check	to	be	sure	the	referenced	object	was	found.	Objects
with	weak	references	can	be	removed,	leaving	the	weak	reference	dangling	–	it
not	longer	refers	to	an	object	in	memory.	There	are	several	responses,	which
we'll	look	at	below.

When	we	use	this	new	Parent2	class,	we	see	that	del	makes	the	reference	counts
go	to	zero,	and	the	object	is	immediately	removed:

>>>	p	=	Parent2(Child(),	Child())	

>>>	del	p	

Removing	Parent2	4303253584	

Removing	Child	4303256464	

Removing	Child	4303043344	

When	a	weakref	reference	is	dangling	(because	the	referent	was	destroyed),	we



have	several	potential	responses:

Recreate	the	referent.	You	could,	perhaps,	reload	it	from	a	database.
Use	the	warnings	module	to	write	the	debugging	information	in	low-memory
situations	where	the	garbage	collector	removed	objects	unexpectedly	and
try	to	continue	in	degraded	mode.
Ignore	it.

Generally,	weakref	references	are	left	dangling	after	objects	have	been	removed
for	very	good	reasons:	variables	have	gone	out	of	scope,	a	namespace	is	no
longer	in	use,	or	the	application	is	shutting	down.	For	these	kinds	of	reasons,	the
third	response	is	quite	common.	The	object	trying	to	create	the	reference	is
probably	about	to	be	removed	as	well.



The	__del__()	and	close()	methods
The	most	common	use	for	__del__()	is	to	ensure	that	files	are	closed.

Generally,	class	definitions	that	open	files	will	have	something	like	what's	shown
in	the	following	code:

__del__	=	close	

This	will	ensure	that	the	__del__()	method	is	also	the	close()	method.	When	the
object	is	no	longer	needed,	the	file	will	be	closed,	and	any	operating	system
resources	can	be	released.

Anything	more	complex	than	this	is	better	done	with	a	context	manager.	See	Chap
ter	6,	Using	Callables	and	Contexts,	for	more	information	on	context	managers.



The	__new__()	method	and
immutable	objects
One	use	case	for	the	__new__()	method	is	to	initialize	objects	that	are	otherwise
immutable.	The	__new__()	method	is	where	an	uninitialized	object	is	created	prior
to	the	__init__()	method	setting	the	attribute	values	of	the	object.

The	__new__()	method	must	be	overridden	to	extend	an	immutable	class	where
the	__init__()	method	isn't	used.

The	following	is	a	class	that	does	not	work.	We'll	define	a	version	of	float	that
carries	around	information	on	units:

class	Float_Fail(float):

				def	__init__(self,	value:	float,	unit:	str)	->	None:

								super().__init__(value)

								self.unit	=	unit

We're	trying	(improperly)	to	initialize	an	immutable	object.	Since	immutable
objects	can't	have	their	state	changed,	the	__init__()	method	isn't	meaningful	and
isn't	used.

The	following	is	what	happens	when	we	try	to	use	this	class	definition:

>>>	s2	=	Float_Fail(6.5,	"knots")	

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

	TypeError:	float	expected	at	most	1	arguments,	got	2

From	this,	we	can	see	that	we	can't	override	the	__init__()	method	for	the	built-in
immutable	float	class.	We	have	similar	problems	with	all	other	immutable
classes.	We	can't	set	the	attribute	values	on	the	immutable	object,	self,	because
that	would	break	the	definition	of	immutability.	We	can	only	set	attribute	values
during	the	object	construction.	The	__new__()	method	supports	this	kind	of
processing.

The	__new__()	method	is	a	class	method:	it	will	receive	the	class	object	as	the	first
argument	value.	This	is	true	without	using	the	@classmethod	decorator.	It	doesn't



use	a	self	variable,	as	its	job	is	to	create	the	object	that	will	eventually	be
assigned	to	the	self	variable.

For	any	class	we	define,	the	default	implementation	of	__new__()	is	inherited	from
the	parent	class.	Implicitly,	the	class	object	is	the	parent	of	all	classes.	The
object.__new__()	method	builds	a	simple,	empty	object	of	the	required	class.	The
arguments	and	keywords	to	__new__(),	with	the	exception	of	the	cls	argument,	are
passed	to	__init__()	as	part	of	the	standard	Python	behavior.

The	following	are	two	cases	when	this	default	behavior	isn't	perfect:

When	we	want	to	subclass	an	immutable	class	definition.	We'll	look	at	this
next.
When	we	need	to	create	a	metaclass.	That's	the	subject	of	the	next	section,
as	it's	fundamentally	different	from	creating	immutable	objects.

Instead	of	overriding	__init__()	when	creating	a	subclass	of	a	built-in	immutable
type,	we	have	to	tweak	the	object	at	the	time	of	creation	by	overriding	__new__().
The	following	is	an	example	class	definition	that	shows	us	the	proper	way	to
extend	float:

class	Float_Units(float):

				def	__new__(cls,	value,	unit):

								obj	=	super().__new__(cls,	float(value))

								obj.unit	=	unit

								return	obj

This		implementation	of	__new__()	does	two	things.	It	creates	a	new	Float_Units
object	with	a	float	value.	It	also	injects	an	additional	unit	attribute	into	the
instance	that	is	being	created.

It's	difficult	to	provide	appropriate	type	hints	for	this	use	of	__new__().	The	method
as	defined	in	the	typeshed	used	by	mypy	version	0.630	doesn't	correspond
precisely	to	the	underlying	implementation.	For	this	rare	case,	type	hints	don't
seem	helpful	for	preventing	problems.

The	following	code	snippet	gives	us	a	floating-point	value	with	attached	unit
information:

>>>	speed	=	Float_Units(6.8,	"knots")

>>>	speed*2



13.6

>>>	speed.unit

'knots'

Note	that	an	expression	such	as	speed	*	2	does	not	create	a	Float_Units	object.	This
class	definition	inherits	all	the	operator	special	methods	from	float;	the	float
arithmetic	special	methods	all	create	float	objects.	Creating	Float_Units	objects
will	be	covered	in	Chapter	8,	Creating	Numbers.



The	__new__()	method	and
metaclasses
The	other	use	case	for	the	__new__()	method	is	to	create	a	metaclass	to	control
how	a	class	definition	is	built.	This	use	of	__new__()	to	build	a	class	object	is
related	to	using	__new__()	to	build	a	new	immutable	object,	shown	previously.	In
both	cases,	__new__()	gives	us	a	chance	to	make	minor	modifications	in	situations
where	__init__()	isn't	relevant.

A	metaclass	is	used	to	build	a	class.	Once	a	class	object	has	been	built,	the	class
object	is	used	to	build	instance	objects.	The	metaclass	of	all	class	definitions	is
type.	The	type()	function	creates	the	class	objects	in	an	application.	Additionally,
the	type()	function	can	be	used	to	reveal	the	class	of	an	object.

The	following	is	a	silly	example	of	building	a	new,	nearly	useless	class	directly
with	type()	as	a	constructor:

Useless	=	type("Useless",	(),	{})	

To	create	a	new	class,	the	type()	function	is	given	a	string	name	for	the	class,	a
tuple	of	superclasses,	and	a	dictionary	used	to	initialize	any	class	variables.	The
return	value	is	a	class	value.	Once	we've	created	this	class,	we	can	create	objects
of	this	Useless	class.	However,	the	objects	won't	do	much	because	they	have	no
methods	or	attributes.

We	can	use	this	newly-minted	Useless	class	to	create	objects,	for	what	little	it's
worth.	The	following	is	an	example:

>>>	Useless	=	type("Useless",	(),	{})	

>>>	u	=	Useless()

>>>	u.attribute	=	1

>>>	dir(u)

['__class__',	'__delattr__',	'__dict__',	'__dir__',	'__doc__',	'__eq__',	'__format__',	'__ge__',	'__getattribute__',	'__gt__',	'__hash__',	'__init__',	'__init_subclass__',	'__le__',	'__lt__',	'__module__',	'__ne__',	'__new__',	'__reduce__',	'__reduce_ex__',	'__repr__',	'__setattr__',	'__sizeof__',	'__str__',	'__subclasshook__',	'__weakref__',	'attribute']

This	example	created	an	instance	of	Useless,	u.	It's	easy	to	add	an	attribute	to	the
objects	of	this	class	with	an	assignment	to	u.attribute.

This	is	almost	equivalent	to	defining	minimal	classes,	as	follows:



from	types	import	SimpleNamespace

Useless2	=	SimpleNamespace

class	Useless3:	pass

The	definition	of	Useless2	is	the	SimpleNamespace	class	from	the	types	module.	The
definition	of	Useless3	uses	Python	syntax	to	create	a	class	that's	the	default
implementation	of	object.	These	all	have	nearly	identical	behaviors.

This	brings	up	the	important	question:	why	would	we	change	the	way	classes	are
defined	in	the	first	place?

The	answer	is	that	some	of	the	default	features	of	a	class	aren't	perfectly
applicable	to	some	edge	cases.	We'll	talk	about	three	situations	where	we	might
want	to	introduce	a	metaclass:

We	can	use	a	metaclass	to	add	attributes	or	methods	to	a	class.	Note	that
we're	adding	these	to	the	class	itself,	not	to	any	of	the	instances	of	the	class.
The	reason	for	using	a	metaclass	is	to	simplify	the	creation	of	a	large
number	of	similar	classes.	In	many	respects,	adding	a	@classmethod	decorator
to	a	method	can	be	similar	to	creating	a	metaclass.
Metaclasses	are	used	to	create	Abstract	Base	Classes	(ABC),	which	we'll
look	at	in	Chapter	4,	Attribute	Access,	Properties,	and	Descriptions	through	C
hapter	7,	Creating	Containers	and	Collections.	An	ABC	relies	on	a
metaclass	__new__()	method	to	confirm	that	the	concrete	subclass	is
complete.	We'll	introduce	this	in	Chapter	5,	The	ABCs	of	Consistent	Design.
Metaclasses	can	be	used	to	simplify	some	aspects	of	object	serialization.
We'll	look	at	this	in	Chapter	10,	Serializing	and	Saving	-	JSON,	YAML,
Pickle,	CSV,	and	XML.	When	a	large	number	of	classes	will	all	be	using
similar	serialization	techniques,	a	metaclass	can	ensure	that	all	of	the
application	classes	have	a	common	serialization	aspect.

In	general,	there	are	a	great	many	things	that	can	be	done	in	a	metaclass	that
cannot	be	understood	by	the	mypy	tool.	It's	not	always	helpful	to	struggle	with
the	details	of	defining	metaclasses.



Metaclass	example	–	class-level	logger
When	we	have	a	large	number	of	classes	that	all	need	a	logger,	it	can	be	handy	to
centralize	the	feature	in	a	single	definition.	There	are	a	number	of	ways	of	doing
this,	one	of	which	is	to	provide	a	metaclass	definition	that	builds	a	class-level
logger	shared	by	all	instances	of	the	class.

The	recipe	has	the	following	three	parts:

1.	 Create	a	metaclass.	The	__new__()	method	of	the	metaclass	will	add	attributes
to	the	constructed	class	definition.

2.	 Create	an	abstract	superclass	that	is	based	on	the	metaclass.	This	abstract
class	will	simplify	inheritance	for	the	application	classes.

3.	 Create	the	subclasses	of	the	abstract	superclass	that	benefit	from	the
metaclass.

The	following	is	an	example	metaclass,	which	will	inject	a	logger	into	a	class
definition:

import	logging

class	LoggedMeta(type):

				def	__new__(

												cls:	Type,

												name:	str,

												bases:	Tuple[Type,	...],

												namespace:	Dict[str,	Any]

				)	->	'Logged':

								result	=	cast('Logged',	super().__new__(cls,	name,	bases,	namespace))

								result.logger	=	logging.getLogger(name)

								return	result

class	Logged(metaclass=LoggedMeta):

				logger:	logging.Logger

The	LoggedMeta	class	extends	the	built-in	default	metaclass,	type,	with	a	new
version	of	the	__new__()	method.

The	__new__()	metaclass	method	is	executed	after	the	class	body	elements	have
been	added	to	the	namespace.	The	argument	values	are	the	metaclass,	the	new
class	name	to	be	built,	a	tuple	of	superclasses,	and	a	namespace	with	all	of	the
class	items	used	to	initialize	the	new	class.	This	example	is	typical:	it	uses	super()



to	delegate	the	real	work	of	__new__()	to	the	superclass.	The	superclass	of	this
metaclass	is	the	built-in	type	class.	

The	__new__()	method	in	this	example	also	adds	an	attribute,	logger,	into	the	class
definition.	This	was	not	provided	when	the	class	was	written,	but	will	be
available	to	every	class	that	uses	this	metaclass.

We	must	use	the	metaclass	when	defining	a	new	abstract	superclass,	Logged.	Note
that	the	superclass	includes	a	reference	to	the	logger	attribute,	which	will	be
injected	by	the	metaclass.	This	information	is	essential	to	make	the	injected
attribute	visible	to	mypy.

We	can	then	use	this	new	abstract	class	as	the	superclass	for	any	new	classes	that
we	define,	as	follows:

class	SomeApplicationClass(Logged):

				def	__init__(self,	v1:	int,	v2:	int)	->	None:

								self.logger.info("v1=%r,	v2=%r",	v1,	v2)

								self.v1	=	v1

								self.v2	=	v2

								self.v3	=	v1*v2

								self.logger.info("product=%r",	self.v3)

The	__init__()	method	of	the	SomeApplication	class	relies	on	the	logger	attribute
available	in	the	class	definition.	The	logger	attribute	was	added	by	the	metaclass,
with	a	name	based	on	the	class	name.	No	additional	initialization	or	setup
overhead	is	required	to	ensure	that	all	the	subclasses	of	Logged	have	loggers
available.



Summary
We've	looked	at	a	number	of	basic	special	methods,	which	are	essential	features
of	any	class	that	we	design.	These	methods	are	already	part	of	every	class,	but
the	defaults	that	we	inherit	from	the	object	may	not	match	our	processing
requirements.

We'll	almost	always	need	to	override	__repr__(),	__str__(),	and	__format__().	The
default	implementations	of	these	methods	aren't	very	helpful	at	all.

We	rarely	need	to	override	__bool__()	unless	we're	writing	our	own	collection.
That's	the	subject	of	Chapter	7,	Creating	Containers	and	Collections.

We	often	need	to	override	comparison	and	__hash__()	methods.	These	definitions
are	suitable	for	simple	immutable	objects,	but	are	not	at	all	appropriate	for
mutable	objects.	We	may	not	need	to	write	all	the	comparison	operators;	we'll
look	at	the	@functools.total_ordering	decorator	in	Chapter	9,	Decorators	and	Mixins	-
Cross-Cutting	Aspects.

The	other	two	basic	special	method	names,	__new__()	and	__del__(),	are	for	more
specialized	purposes.	Using	__new__()	to	extend	an	immutable	class	is	the	most
common	use	case	for	this	method	function.

These	basic	special	methods,	along	with	__init__(),	will	appear	in	almost	every
class	definition	that	we	write.	The	rest	of	the	special	methods	are	for	more
specialized	purposes;	they	fall	into	six	discrete	categories:

Attribute	access:	These	special	methods	implement	what	we	see	as
object.attribute	in	an	expression,	object.attribute	on	the	left-hand	side	of	an
assignment,	and	object.attribute	in	a	del	statement.
Callables:	A	special	method	implements	what	we	see	as	a	function	applied
to	arguments,	much	like	the	built-in	len()	function.
Collections:	These	special	methods	implement	the	numerous	features	of
collections.	This	involves	operations	such	as	sequence[index],	mapping[key],	and
set	|	set.
Numbers:	These	special	methods	provide	the	arithmetic	operators	and	the



comparison	operators.	We	can	use	these	methods	to	expand	the	domain	of
numbers	that	Python	works	with.
Contexts:	There	are	two	special	methods	that	we'll	use	to	implement	a
context	manager	that	works	with	the	with	statement.
Iterators:	There	are	special	methods	that	define	an	iterator.	This	isn't
essential,	as	generator	functions	handle	this	feature	so	elegantly.	However,
we'll	look	at	how	we	can	design	our	own	iterators.

In	the	next	chapter,	we	will	address	attributes,	properties,	and	descriptors.



Attribute	Access,	Properties,	and
Descriptors
An	object	is	a	collection	of	features,	including	methods	and	attributes.	The
default	behavior	of	the	object	class	involves	setting,	getting,	and	deleting	named
attributes.	We	often	need	to	modify	this	behavior	to	change	the	attributes
available	in	an	object.

This	chapter	will	focus	on	the	following	five	tiers	of	attribute	access:

We'll	look	at	built-in	attribute	processing.
We'll	review	the	@property	decorator.	A	property	extends	the	concept	of	an
attribute	to	include	the	processing	defined	in	method	functions.
We'll	look	at	how	to	make	use	of	the	lower-level	special	methods	that
control	attribute	access:	__getattr__(),	__setattr__(),	and	__delattr__().	These
special	methods	allow	us	to	build	more	sophisticated	attribute	processing.
We'll	also	take	a	look	at	the	__getattribute__()	method,	which	provides	more
granular	control	over	attributes.	This	can	allow	us	to	write	very	unusual
attribute	handling.
We'll	take	a	look	at	descriptors.	These	objects	mediate	access	to	an
attribute.	Therefore,	they	involve	somewhat	more	complex	design
decisions.	Descriptors	are	the	foundational	structure	used	to	implement
properties,	static	methods,	and	class	methods.

In	this	chapter,	we'll	see	how	the	default	processing	works	in	detail.	This	will
help	us	to	decide	where	and	when	to	override	the	default	behavior.	In	some
cases,	we	want	our	attributes	to	do	more	than	simply	be	instance	variables.	In
other	cases,	we	might	want	to	prevent	the	addition	of	attributes.	We	may	have
attributes	that	have	even	more	complex	behaviors.

Also,	as	we	explore	descriptors,	we'll	come	to	a	much	deeper	understanding	of
how	Python's	internals	work.	We	don't	often	need	to	use	descriptors	explicitly.
We	often	use	them	implicitly,	however,	because	they	implement	a	number	of
Python	features.



Since	type	hints	are	now	available	in	Python,	we'll	take	a	look	at	how	to	annotate
attributes	and	properties	so	a	tool	like	mypy	can	confirm	that	objects	of
appropriate	types	are	used.

Finally,	we'll	look	at	the	new	dataclasses	module	and	how	this	can	be	used	to
simplify	class	definition.

In	this	chapter,	we	will	cover	the	following	topics:

Basic	attribute	processing
Creating	properties
Using	special	methods	for	attribute	access
The	getattribute_()	method
Creating	descriptors
Using	Type	Hints	for	attributes	and	properties
Using	the	dataclasses	module



Technical	requirements
The	code	files	for	this	chapter	can	be	found	at	https://git.io/fj2Uu.

https://git.io/fj2Uu


Basic	attribute	processing
By	default,	any	class	we	create	will	permit	the	following	four	behaviors	with
respect	to	attributes:

To	create	a	new	attribute	and	set	its	value
To	set	the	value	of	an	existing	attribute
To	get	the	value	of	an	attribute
To	delete	an	attribute

We	can	experiment	with	this	using	something	as	simple	as	the	following	code.
We	can	create	a	simple,	generic	class	and	an	object	of	that	class:

>>>	class	Generic:	

...					pass	

...						

>>>	g	=	Generic()	

The	preceding	code	permits	us	to	create,	get,	set,	and	delete	attributes.	We	can
easily	create	and	get	an	attribute.	The	following	are	some	examples:

>>>	g.attribute	=	"value"	

>>>	g.attribute	

'value'	

>>>	g.unset	

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

AttributeError:	'Generic'	object	has	no	attribute	'unset'	

>>>	del	g.attribute	

>>>	g.attribute	

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

AttributeError:	'Generic'	object	has	no	attribute	'attribute'	

The	example	shows	adding,	changing,	and	removing	attributes.	We	will	get
exceptions	if	we	try	to	get	an	otherwise	unset	attribute	or	delete	an	attribute	that
doesn't	exist	yet.

A	slightly	better	way	to	do	this	is	to	use	an	instance	of	the	types.SimpleNamespace
class.	The	feature	set	is	the	same,	but	we	don't	need	to	create	an	extra	class
definition.	We	create	an	object	of	the	SimpleNamespace	class	instead,	as	follows:

>>>	import	types	

>>>	n	=	types.SimpleNamespace()	



In	the	following	code,	we	can	see	that	the	same	use	cases	work	for
a	SimpleNamespace	class:

>>>	n.attribute	=	"value"	

>>>	n.attribute	

'value'	

>>>	del	n.attribute	

>>>	n.attribute	

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

AttributeError:	'namespace'	object	has	no	attribute	'attribute'	

We	can	create	attributes	for	this	instance,	n.	Any	attempt	to	use	an	undefined
attribute	raises	an	exception.

An	instance	of	the	SimpleNamespace	class	has	different	behavior	from	what	we	saw
when	we	created	an	instance	of	the	object	class.	An	instance	of	the	object	class
doesn't	permit	the	creation	of	new	attributes;	it	lacks	the	internal	__dict__
structure	that	Python	uses	to	store	attributes	and	values.



Attributes	and	the	__init__()	method
Most	of	the	time,	we	create	an	initial	collection	of	attributes	using	the	__init__()
method	of	a	class.	Ideally,	we	provide	names	and	default	values	for	all	the
attributes	in	__init__().

While	it's	not	required	to	provide	all	attributes	in	the	__init__()	method,	it's	the
place	mypy	checks	to	gather	the	expected	list	of	attributes	of	an	object.	An
optional	attribute	can	be	used	as	part	of	an	object's	state,	but	there	aren't	easy
ways	to	describe	the	absence	of	an	attribute	as	a	valid	state	for	an	object.

An	optional	attribute	also	pushes	the	edge	of	the	envelope	in	terms	of	class
definition.	A	class	is	defined	by	the	unique	collection	of	attributes.	Attributes	are
best	added	(or	removed)	by	creating	a	subclass	or	superclass	definition.	Dynamic
changes	to	the	attributes	are	confusing	to	tools	such	as	mypy	as	well	as	to
people.

Generally,	optional	attributes	imply	a	concealed	or	informal	subclass
relationship.	Therefore,	we	bump	up	against	Pretty	Poor	Polymorphism	when	we
use	optional	attributes.	Multiple	polymorphic	subclasses	are	often	a	better
implementation	than	optional	attributes.

Consider	a	Blackjack	game	in	which	only	a	single	split	is	permitted.	If	a	hand	is
split,	it	cannot	be	re-split.	There	are	several	ways	that	we	can	model	this
constraint:

We	can	create	an	instance	of	a	subclass,	SplitHand,	from	the	Hand.split()
method.	We	won't	show	this	in	detail.	This	subclass	of	Hand	has	an
implementation	for	split()	that	raises	an	exception.	Once	a	Hand	has	been
split	to	create	two	SplitHand	instances,	these	cannot	be	re-split.
We	can	create	a	status	attribute	on	an	object	named	Hand,	which	can	be
created	from	the	Hand.split()	method.	Ideally,	this	is	a	Boolean	value,	but	we
can	implement	it	as	an	optional	attribute	as	well.

The	following	is	a	version	of	Hand.split()	that	can	detect	splittable	versus
unsplittable	hands	via	an	optional	attribute,	self.split_blocker:



def		split(self,	deck):	

				assert	self.cards[0].rank	==	self.cards[1].rank	

				try:	

								self.split_blocker	

								raise	CannotResplit	

				except	AttributeError:	

								h0	=	Hand(self.dealer_card,	self.cards[0],	deck.pop())	

								h1	=	Hand(self.dealer_card,	self.cards[1],	deck.pop())	

								h0.split_blocker	=	h1.split_blocker	=	True

								return	h0,	h1	

The	split()	method	tests	for	the	presence	of	a	split_blocker	attribute.	If	this
attribute	exists,	then	this	hand	should	not	be	re-split;	the	method	raises	a
customized	CannotSplit	exception.	If	the	split_blocker	attribute	does	not	exist,	then
splitting	is	allowed.	Each	of	the	resulting	objects	has	the	optional	attribute,
preventing	further	splits.

An	optional	attribute	has	the	advantage	of	leaving	the	__init__()	method
relatively	uncluttered	with	status	flags.	It	has	the	disadvantage	of	obscuring	an
aspect	of	object	state.	Furthermore,	the	mypy	program	will	be	baffled	by	the
reference	to	an	attribute	not	initialized	in	__init__().	Optional	attributes	for
managing	object	state	must	be	used	carefully,	if	at	all.



Creating	properties
A	property	is	a	method	function	that	appears	(syntactically)	to	be	a	simple
attribute.	We	can	get,	set,	and	delete	property	values	with	syntax	identical	to	the
syntax	for	attribute	values.	There's	an	important	distinction,	though.	A	property
is	actually	a	method	and	can	process,	rather	than	simply	preserve,	a	reference	to
another	object.

Besides	the	level	of	sophistication,	one	other	difference	between	properties	and
attributes	is	that	we	can't	attach	new	properties	to	an	existing	object	easily,	but
we	can	add	dynamic	attributes	to	an	object	very	easily.	A	property	is	not
identical	to	a	simple	attribute	in	this	one	respect.

There	are	two	ways	to	create	properties.	We	can	use	the	@property	decorator,	or	we
can	use	the	property()	function.	The	differences	are	purely	syntactic.	We'll	focus
on	the	decorator.

We'll	now	take	a	look	at	two	basic	design	patterns	for	properties:

Eager	calculation:	In	this	design	pattern,	when	we	set	a	value	via	a
property,	other	attributes	are	also	computed.
Lazy	calculation:	In	this	design	pattern,	calculations	are	deferred	until
requested	via	a	property.

In	order	to	compare	the	preceding	two	approaches	to	properties,	we'll	split	some
common	features	of	the	Hand	object	into	an	abstract	superclass,	as	follows:

class	Hand:

				def	__init__(

												self,

												dealer_card:	BlackJackCard,

												*cards:	BlackJackCard

								)	->	None:

								self.dealer_card	=	dealer_card

								self._cards	=	list(cards)

				def	__str__(self)	->	str:

								return	",	".join(map(str,	self.card))

				def	__repr__(self)	->	str:

								return	(

												f"{self.__class__.__name__}"



												f"({self.dealer_card!r},	"	

												f"{',	'.join(map(repr,	self.card))})"

								)

In	the	preceding	code,	we	defined	the	object	initialization	method,	which
actually	does	nothing.	There	are	two	string	representation	methods	provided.
This	class	is	a	wrapper	around	an	internal	list	of	cards,	kept	in	an	instance
variable,	_cards.	We've	used	a	leading	_	on	the	instance	variable	as	a	reminder	that
this	is	an	implementation	detail	that	may	change.

The	__init__()	is	used	to	provide	instance	variable	names	and	type	hints	for
mypy.	An	attempt	to	use	None	as	a	default	in	this	kind	of	abstract	class
definition	will	violate	the	type	hints.	The	dealer_card	attribute	must	be	an	instance
of	BlackJackCard.	To	allow	this	variable	to	have	an	initial	value	of	None,	the	type
hint	would	have	to	be	Optional[BlackJackCard],	and	all	references	to	this	variable
would	also	require	a	guarding	if	statement	to	be	sure	the	value	was	not	None.

The	following	is	a	subclass	of	Hand,	where	total	is	a	lazy	property	that	is
computed	only	when	needed:

class	Hand_Lazy(Hand):

				@property

				def	total(self)	->	int:

								delta_soft	=	max(c.soft	-	c.hard	for	c	in	self._cards)

								hard_total	=	sum(c.hard	for	c	in	self._cards)

								if	hard_total	+	delta_soft	<=	21:

												return	hard_total	+	delta_soft

								return	hard_total

				@property

				def	card(self)	->	List[BlackJackCard]:

								return	self._cards

				@card.setter

				def	card(self,	aCard:	BlackJackCard)	->	None:

								self._cards.append(aCard)

				@card.deleter

				def	card(self)	->	None:

								self._cards.pop(-1)

The	Hand_Lazy	class	sets	the	dealer_card	and	the	_cards	instance	variables.	The	total
property	is	based	on	a	method	that	computes	the	total	only	when	requested.
Additionally,	we	defined	some	other	properties	to	update	the	collection	of
cards	in	the	hand.	The	card	property	can	get,	set,	or	delete	cards	in	the	hand.	We'll
take	a	look	at	these	properties	in	the	setter	and	deleter	properties	section.



We	can	create	a	Hand_Lazy	object.	total	appears	to	be	a	simple	attribute:

>>>	d	=	Deck()	

>>>	h	=	Hand_Lazy(d.pop(),	d.pop(),	d.pop())	

>>>	h.total	

19	

>>>	h.card	=	d.pop()	

>>>	h.total	

29	

The	total	is	computed	lazily	by	rescanning	the	cards	in	the	hand	each	time	the
total	is	requested.	For	the	simple	BlackJackCard	instances,	this	is	a	relatively
inexpensive	computation.	For	other	kinds	of	items,	this	can	involve	considerable
overhead.



Eagerly	computed	properties
The	following	is	a	subclass	of	Hand,	where	total	is	a	simple	attribute	that's
computed	eagerly	as	each	card	is	added:

class	Hand_Eager(Hand):

				def	__init__(

												self,

												dealer_card:	BlackJackCard,

												*cards:	BlackJackCard

				)	->	None:

								self.dealer_card	=	dealer_card

								self.total	=	0

								self._delta_soft	=	0

								self._hard_total	=	0

								self._cards:	List[BlackJackCard]	=	list()

								for	c	in	cards:

												#	Mypy	cannot	discern	the	type	of	the	setter.

												#	https://github.com/python/mypy/issues/4167

												self.card	=	c		#	type:	ignore

				@property

				def	card(self)	->	List[BlackJackCard]:

								return	self._cards

				@card.setter

				def	card(self,	aCard:	BlackJackCard)	->	None:

								self._cards.append(aCard)

								self._delta_soft	=	max(aCard.soft	-	aCard.hard,	self._delta_soft)

								self._hard_total	=	self._hard_total	+	aCard.hard

								self._set_total()

				@card.deleter

				def	card(self)	->	None:

								removed	=	self._cards.pop(-1)

								self._hard_total	-=	removed.hard

								#	Issue:	was	this	the	only	ace?

								self._delta_soft	=	max(c.soft	-	c.hard	for	c	in	self._cards)

								self._set_total()

				def	_set_total(self)	->	None:

								if	self._hard_total	+	self._delta_soft	<=	21:

												self.total	=	self._hard_total	+	self._delta_soft

								else:

												self.total	=	self._hard_total

The	__init__()	method	of	the	Hand_Eager	class	initializes	the	eagerly	computed	total
to	zero.	It	also	uses	two	other	instance	variables,	_delta_soft,	and	_hard_total,	to
track	the	state	of	ace	cards	in	the	hand.	As	each	card	is	placed	in	the	hand,	these
totals	are	updated.



Each	use	of	self.card	looks	like	an	attribute.	It's	actually	a	reference	to	the
property	method	decorated	with	@card.setter.	This	method's	parameter,	aCard,	will
be	the	value	on	the	right	side	of	the	=	in	an	assignment	statement.	

In	this	case,	each	time	a	card	is	added	via	the	card	setter	property,	the	total
attribute	is	updated.

The	other	card	property	decorated	with	@card.deleter	eagerly	updates	the	total
attribute	whenever	a	card	is	removed.	We'll	take	a	look	at	deleter	in	detail	in
the	next	section.

A	client	sees	the	same	syntax	between	these	two	subclasses	(Hand_Lazy()	and
Hand_Eager())	of	Hand:

d	=	Deck()	

h1	=	Hand_Lazy(d.pop(),	d.pop(),	d.pop())	

print(h1.total)	

h2	=	Hand_Eager(d.pop(),	d.pop(),	d.pop())	

print(h2.total)	

In	both	cases,	the	client	software	simply	uses	the	total	attribute.	The	lazy
implementation	defers	computation	of	totals	until	required,	but	recomputes	them
every	time.	The	eager	implementation	computes	totals	immediately,	and	only
recomputes	them	on	a	change	to	the	hand.	The	trade-off	is	an	important	software
engineering	question,	and	the	final	choice	depends	on	how	the	overall
application	uses	the	total	attribute.

The	advantage	of	using	properties	is	that	the	syntax	doesn't	change	when	the
implementation	changes.	We	can	make	a	similar	claim	for	getter/setter	method
functions.	However,	getter/setter	method	functions	involve	extra	syntax	that	isn't
very	helpful	or	informative.	The	following	are	two	examples,	one	of	which
involves	the	use	of	a	setter	method,	while	the	other	uses	the	assignment	operator:

obj.set_something(value)	

obj.something	=	value	

The	presence	of	the	assignment	operator	(=)	makes	the	intent	very	plain.	Many
programmers	find	it	clearer	to	look	for	assignment	statements	than	to	look	for
setter	method	functions.



The	setter	and	deleter	properties
In	the	previous	examples,	we	defined	the	card	property	to	deal	additional	cards
into	an	object	of	the	Hand	class.

Since	setter	(and	deleter)	properties	are	created	from	the	getter	property,	we	must
always	define	a	getter	property	first	using	code	that	looks	like	the	following
example:

@property

def	card(self)	->	List[BlackJackCard]:

				return	self._cards

@card.setter

def	card(self,	aCard:	BlackJackCard)	->	None:

				self._cards.append(aCard)

@card.deleter

def	card(self)	->	None:

				self._cards.pop(-1)

This	allows	us	to	add	a	card	to	the	hand	with	a	simple	statement	like	the
following:

h.card	=	d.pop()	

The	preceding	assignment	statement	has	a	disadvantage	because	it	looks	like	it
replaces	all	the	cards	with	a	single	card.	On	the	other	hand,	it	has	an	advantage
in	that	it	uses	simple	assignment	to	update	the	state	of	a	mutable	object.	We	can
use	the	__iadd__()	special	method	to	do	this	a	little	more	cleanly.	However,	we
shall	wait	until	Chapter	8,	Creating	Numbers,	to	introduce	the	other	special
methods.

We	will	consider	a	version	of	split()	that	works	like	the	following	code:

def	split(self,	deck:	Deck)	->	"Hand":

				"""Updates	this	hand	and	also	returns	the	new	hand."""

				assert	self._cards[0].rank	==	self._cards[1].rank

				c1	=	self._cards[-1]

				del	self.card

				self.card	=	deck.pop()

				h_new	=	self.__class__(self.dealer_card,	c1,	deck.pop())

				return	h_new



The	preceding	method	updates	the	given	Hand	instance	and	returns	a	new	Hand
object.	Because	this	method	is	inside	the	Hand	class	definition,	it	must	show	the
class	name	as	a	string	because	the	class	has	not	been	fully	defined	yet.

The	del	statement	will	remove	the	last	card	from	the	current	hand.	This	will	use
the	@card.deleter	property	to	do	the	work	of	deleting	the	card.	For	a	lazy	hand,
nothing	more	needs	to	be	done.	For	an	eager	hand,	the	totals	must	be	updated.
The	assignment	statement	in	front	of	the	del	statement	was	used	to	save	the	last
card	into	a	local	variable,	c1.	

The	following	is	an	example	of	a	hand	being	split:

>>>	d	=	Deck()	

>>>	c	=	d.pop()	

>>>	h	=	Hand_Lazy(d.pop(),	c,	c)		#	Create	a	splittable	hand	

>>>	h2	=	h.split(d)	

>>>	print(h)	

2♠,	10♠	

>>>	print(h2)	

2♠,	A♠	

Once	we	have	two	cards,	we	can	use	split()	to	produce	the	second	hand.	A	card
was	removed	from	the	initial	hand	to	create	the	resulting	hand.

This	version	of	split()	is	certainly	workable.	However,	it	seems	somewhat	better
to	have	the	split()	method	return	two	fresh	new	Hand	objects.	That	way,	the	old,
pre-split	Hand	instance	can	be	saved	as	a	memento	for	auditing	or	statistical
analysis.



Using	special	methods	for	attribute
access
We'll	now	look	at	the	three	canonical	special	methods	for	attribute	access:
__getattr__(),	__setattr__(),	and	__delattr__().	Additionally,	we'll	acknowledge
the	__dir__()	special	method	to	reveal	attribute	names.	We'll	defer
__getattribute__()	to	the	next	section.

The	default	behavior	shown	in	this	section	is	as	follows:

The	__setattr__()	method	will	create	and	set	attributes.
The	__getattr__()	method	is	a	fallback	used	when	an	attribute	is	not	defined.
When	an	attribute	name	is	not	part	of	the	instance	variables	of	an	object,
then	the	__getattr__()	method	is	used.	The	default	behavior	of	this	special
method	is	to	raise	an	AttributeError	exception.	We	can	override	this	to	return
a	meaningful	result	instead	of	raising	an	exception.
The	__delattr__()	method	deletes	an	attribute.
The	__dir__()	method	returns	a	list	of	attribute	names.	This	is	often	coupled
with	__getattr__(	)	to	provide	a	seamless	interface	to	attributes	computed
dynamically.

The	__getattr__()	method	function	is	only	one	step	in	a	larger	process;	it	is	used
when	the	attribute	name	is	unknown.	If	the	name	is	a	known	attribute,	this
method	is	not	used.	

We	have	a	number	of	design	choices	for	controlling	attribute	access.	Some	of
these	design	choices	are	as	follows:

We	can	replace	the	internal	__dict__	with	__slots__.	This	makes	it	difficult	to
add	new	attributes.	The	named	attributes	remain	mutable,	however.
We	can	use	the	two	special	methods	to	add	attributes	to	a	class	by
overriding	__setattr__()	and	__delattr__().	Dynamic	attributes	make	it
difficult	for	mypy	to	evaluate	type	hints.
We	can	implement	property-like	behaviors	in	a	class.	Using	__getattr__()	and
__setattr__()	methods,	we	can	ensure	that	a	variety	of	property-like



processing	is	centralized	in	these	two	methods.
We	can	create	lazy	attributes	where	the	values	aren't	(or	can't	be)	computed
until	they're	needed.	For	example,	we	can	create	an	attribute	that	doesn't
have	a	value	until	it's	read	from	a	file,	database,	or	network.	This	is	a
common	use	for	__getattr__().
We	can	have	eager	attributes,	where	setting	an	attribute	creates	values	in
other	attributes	immediately.	This	is	done	via	overrides	to	__setattr__().

We	won't	look	at	all	of	these	alternatives.	Instead,	we'll	focus	on	the	most
commonly	used	techniques.	We'll	create	objects	with	a	limited	number	of
attributes	and	look	at	other	ways	to	compute	dynamic	attribute	values.

When	we	are	not	able	to	set	an	attribute	or	create	a	new	attribute,	then	the	object
is	immutable.	The	following	is	what	we'd	like	to	see	in	interactive	Python:

>>>	c	=	card21(1,'♠')	

>>>	c.rank	=	12	

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

		File	"<stdin>",	line	30,	in	__setattr__	

TypeError:	Cannot	set	rank	

>>>	c.hack	=	13	

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

		File	"<stdin>",	line	31,	in	__setattr__	

AttributeError:	'Ace21Card'	has	no	attribute	'hack'	

The	preceding	code	shows	a	Card	object,	where	we	are	not	allowed	to	change	an
attribute	or	add	an	attribute	to	the	object.

The	simplest	way	to	implement	completely	immutable	behavior	is	to
extend	typing.NamedTuple.	We'll	look	at	this	in	the	sections	that	follow.	It	is	the
preferred	approach.	Prior	to	that,	we'll	look	at	some	more	complex	alternatives
for	selective	features	of	immutability.



Limiting	attribute	names	with
__slots__
We	can	use	__slots__	to	create	a	class	where	we	cannot	add	new	attributes,	but
can	modify	an	attribute's	value.	This	example	shows	how	to	restrict	the	attribute
names:

class	BlackJackCard:

				__slots__	=	("rank",	"suit",	"hard",	"soft")

				def	__init__(self,	rank:	str,	suit:	"Suit",	hard:	int,	soft:	int)	->	None:

								self.rank	=	rank

								self.suit	=	suit

								self.hard	=	hard

								self.soft	=	soft

We	made	one	significant	change	to	the	previous	definitions	of	this	class:	setting
the	__slots__	attribute	to	the	names	of	the	attributes	allowed.	This	turns	off	the
internal	__dict__	feature	of	the	object	and	limits	us	to	these	attribute	names	only.
The	defined	attribute	values	are	mutable	even	though	new	attributes	cannot	be
added.

The	primary	use	case	for	this	feature	is	to	limit	the	memory	occupied	by	the
internal	__dict__	structure	created	by	default.	The	__slots__	structure	uses	less
memory,	and	is	often	used	when	a	very	large	number	of	instances	will	be
created.



Dynamic	attributes	with	__getattr__()
We	can	create	objects	where	attributes	are	computed	from	a	single,	centralized
__getattr__()	method.	When	attribute	values	are	computed	by	separate	properties,
the	presence	of	many	methods	can	be	a	convenient	way	to	encapsulate	a	variety
of	algorithms.	In	some	cases,	however,	it	might	be	sensible	to	combine	all	of	the
computations	into	a	single	method.	In	this	case,	the	names	of	the	attributes	are
essentially	invisible	to	mypy,	since	they	aren't	an	obvious	part	of	the	Python
source	text.

A	single	computation	method	is	shown	in	the	following	example:

class	RTD_Solver:

				def	__init__(

								self,	*,

								rate:	float	=	None,

								time:	float	=	None,

								distance:	float	=	None

				)	->	None:

								if	rate:

												self.rate	=	rate

								if	time:

												self.time	=	time

								if	distance:

												self.distance	=	distance

				def	__getattr__(self,	name:	str)	->	float:

								if	name	==	"rate":

												return	self.distance	/	self.time

								elif	name	==	"time":

												return	self.distance	/	self.rate

								elif	name	==	"distance":

												return	self.rate	*	self.time

								else:

												raise	AttributeError(f"Can't	compute	{name}")

An	instance	of	the	RTD_Solver	class	is	built	with	two	of	three	values.	The	idea	is	to
compute	the	missing	third	value	from	the	other	two.	In	this	case,	we've	elected	to
make	the	missing	value	an	optional	attribute,	and	compute	the	value	of	the
attribute	when	required.	The	attributes	for	this	class	are	dynamic:	two	of	the
three	possible	attributes	will	be	in	use.

The	class	is	used	as	shown	in	the	following	snippet:

>>>	r1	=	RTD_Solver(rate=6.25,	distance=10.25)



>>>	r1.time

1.64

>>>	r1.rate

6.25

An	instance	of	the	RTD_Solver	class	was	built	with	two	of	the	three	possible
attributes.	In	this	example,	it's	rate	and	distance.	A	request	for	the	time	attribute
value	leads	to	a	computation	of	time	from	rate	and	distance.

A	request	for	the	rate	attribute	value,	however,	does	not	involve	the	__getattr__()
method.	Because	the	instance	has	rate	and	distance	attributes,	these	are	provided
directly.	To	confirm	that	__getattr__()	is	not	used,	insert	a	print()	function	in	the
computation	of	rate,	as	shown	in	the	following	code	snippet:

if	name	==	"rate":

				print("Computing	Rate")

				return	self.distance	/	self.time

When	an	instance	of	RTD_Solver	is	created	with	an	attribute	value	set	by	the
__init__()	method,	the	__getattr__()	method	is	not	used	to	fetch	the	attribute.	The
__getattr__()	method	is	only	used	for	unknown	attributes.



Creating	immutable	objects	as	a
NamedTuple	subclass
The	best	approach	in	terms	of	creating	immutable	objects	is	to	make	our	Card
property	a	subclass	of	typing.NamedTuple.

The	following	is	an	extension	to	the	built-in	typing.NamedTuple	class:

class	AceCard2(NamedTuple):

				rank:	str

				suit:	Suit

				hard:	int	=	1

				soft:	int	=	11

				def	__str__(self)	->	str:

								return	f"{self.rank}{self.suit}"

When	we	use	the	preceding	code,	we	see	the	following	kinds	of	interaction:

>>>	c	=	AceCard2("A",	Suit.Spade)

>>>	c.rank

'A'

>>>	c.suit

<Suit.Spade:	'♠'>

>>>	c.hard

1

We	can	create	an	instance,	and	it	has	the	desired	attribute	values.	We	cannot,
however,	add	or	change	any	attributes.	All	of	the	processing	of	attribute	names	is
handled	by	the	NamedTuple	class	definition:

>>>	c.not_allowed	=	2

Traceback	(most	recent	call	last):

		File	"/Users/slott/miniconda3/envs/py37/lib/python3.7/doctest.py",	line	1329,	in	__run

				compileflags,	1),	test.globs)

		File	"<doctest	__main__.__test__.test_comparisons_2[3]>",	line	1,	in	<module>

				c.not_allowed	=	2

AttributeError:	'AceCard2'	object	has	no	attribute	'not_allowed'

>>>	c.rank	=	3

Traceback	(most	recent	call	last):

		File	"/Users/slott/miniconda3/envs/py37/lib/python3.7/doctest.py",	line	1329,	in	__run

				compileflags,	1),	test.globs)

		File	"<doctest	__main__.__test__.test_comparisons_2[4]>",	line	1,	in	<module>

				c.rank	=	3

AttributeError:	can't	set	attribute



Eagerly	computed	attributes,
dataclasses,	and	__post_init__()
We	can	define	an	object	where	attributes	are	computed	eagerly	—	as	soon
as	—	possible	after	a	value	is	set.	An	object	such	as	this	can	optimize	access	by
performing	a	computation	once	and	leaving	the	result	to	be	used	multiple	times.

This	can	be	done	with	property	setters.	However,	a	class	with	a	lot	of	property
setters,	each	of	which	computes	a	number	of	attributes,	can	be	rather	complex-
looking.	In	some	cases,	all	of	the	derived	value	computations	can	be	centralized.

The	dataclasses	module	provides	us	with	a	class	with	an	array	of	built-in	features.
One	of	these	features	is	a	__post_init__()	method	that	we	can	use	to	derive	values
eagerly.

We'd	like	something	that	looks	like	the	following	code:

>>>	RateTimeDistance(rate=5.2,	time=9.5)

RateTimeDistance(rate=5.2,	time=9.5,	distance=49.4)

>>>	RateTimeDistance(distance=48.5,	rate=6.1)

RateTimeDistance(rate=6.1,	time=7.950819672131148,	distance=48.5)

We	can	set	two	of	the	three	required	values	in	this	RateTimeDistance	object.	The
additional	attribute	is	computed	immediately,	as	demonstrated	in	the	following
code	block:	

from	dataclasses	import	dataclass

@dataclass

class	RateTimeDistance:

				rate:	Optional[float]	=	None

				time:	Optional[float]	=	None

				distance:	Optional[float]	=	None

				def	__post_init__(self)	->	None:

								if	self.rate	is	not	None	and	self.time	is	not	None:

												self.distance	=	self.rate	*	self.time

								elif	self.rate	is	not	None	and	self.distance	is	not	None:

												self.time	=	self.distance	/	self.rate

								elif	self.time	is	not	None	and	self.distance	is	not	None:

												self.rate	=	self.distance	/	self.time



A	class	defined	by	the	@dataclass	decorator	will	accept	a	variety	of	initialization
values.	After	the	values	have	been	set,	the	__post_init__()	method	is	invoked.	This
can	be	used	to	compute	additional	values.	

	The	attributes	here	are	mutable,	and	it's	relatively	simple	to	create	an	object
with	inconsistent	values	for	rate,	time,	and	distance.	We	can	do	the	following	to
create	an	object	with	improper	internal	relationships	among	the	attribute	values:

>>>	r1	=	RateTimeDistance(time=1,	rate=0)

>>>	r1.distance	=	-99

To	prevent	this,	a	@dataclass(frozen=True)	decorator	can	be	used.	This	variant	will
behave	quite	a	bit	like	a	NamedTuple.



Incremental	computation	with
__setattr__()
We	can	create	classes	which	use	__setattr__()	to	detect	changes	in	attribute
values.	This	can	lead	to	incremental	computation.	The	idea	is	to	build	derived
values	after	initial	attribute	values	have	been	set.

Note	the	complexity	of	having	two	senses	of	attribute	setting.

The	client's	view:	An	attribute	can	be	set	and	other	derived	values	may	be
computed.	In	this	case,	a	sophisticated	__setattr__()	is	used.
The	internal	view:	Setting	an	attribute	must	not	result	in	any	additional
computation.	If	additional	computation	is	done,	this	leads	to	an	infinite
recursion	of	setting	attributes	and	computing	derived	values	from	those
attributes.	In	this	case,	the	fundamental	__setattr__()	method	of
the	superclass	must	be	used.

This	distinction	is	important	and	easy	to	overlook.	Here's	a	class	that	both	sets
attributes	and	computes	derived	attributes	in	the	__setattr__()	method:

class	RTD_Dynamic:

				def	__init__(self)	->	None:

								self.rate	:	float

								self.time	:	float

								self.distance	:	float

								super().__setattr__('rate',	None)

								super().__setattr__('time',	None)

								super().__setattr__('distance',	None)

				def	__repr__(self)	->	str:

								clauses	=	[]

								if	self.rate:

												clauses.append(f"rate={self.rate}")

								if	self.time:

												clauses.append(f"time={self.time}")

								if	self.distance:

												clauses.append(f"distance={self.distance}")

								return	(

												f"{self.__class__.__name__}"

												f"({',	'.join(clauses)})"

								)

				def	__setattr__(self,	name:	str,	value:	float)	->	None:

								if	name	==	'rate':

												super().__setattr__('rate',	value)



								elif	name	==	'time':

												super().__setattr__('time',	value)

								elif	name	==	'distance':

												super().__setattr__('distance',	value)

								if	self.rate	and	self.time:

												super().__setattr__('distance',	self.rate	*	self.time)

								elif	self.rate	and	self.distance:

												super().__setattr__('time',	self.distance	/	self.rate)

								elif	self.time	and	self.distance:

												super().__setattr__('rate',	self.distance	/	self.time)

The	__init__()	method	uses	the	__setattr__()	superclass	to	set	default	attribute
values	without	starting	a	recursive	computation.	The	instance	variables	are
named	with	type	hints,	but	no	assignment	is	performed.

The	RTD_Dynamic	class	provides	a	__setattr__()	method	that	will	set	an	attribute.	If
enough	values	are	present,	it	will	also	compute	derived	values.	The	internal	use
of	super().__setattr__()	specifically	avoids	any	additional	computations	from
being	done	by	using	the	object	superclass	attribute	setting	methods.

Here's	an	example	of	using	this	class:

>>>	rtd	=	RTD_Dynamic()

>>>	rtd.time	=	9.5

>>>	rtd

RTD_Dynamic(time=9.5)

>>>	rtd.rate	=	6.25

>>>	rtd

RTD_Dynamic(rate=6.25,	time=9.5,	distance=59.375)

>>>	rtd.distance

59.375

Note	that	we	can't	set	attribute	values	inside	some	methods	of	this	class	using	simple	self.name
=	syntax.

Let's	imagine	we	tried	to	write	the	following	line	of	code	inside	the	__setattr__()
method	of	this	class	definition:

self.distance	=	self.rate*self.time	

If	we	were	to	write	the	preceding	code	snippet,	we'd	have	infinite	recursion	in
the	__setattr__()	method.	In	the	self.distance=x	line,	this	is	implemented	as
self.__setattr__('distance',	x).	If	a	line	such	as	self.distance=x	occurs	within	the
body	of	__setattr__(),	it	means	__setattr__()	will	have	to	be	used	while	trying	to
implement	attribute	settings.	The	__setattr__()	superclass	doesn't	do	any
additional	work	and	is	free	from	recursive	entanglements	with	itself.

It's	also	important	to	note	that	once	all	three	values	are	set,	changing	an	attribute



won't	simply	recompute	the	other	two	attributes.	The	rules	for	computation	are
based	on	an	explicit	assumption	that	one	attribute	is	missing	and	the	other	two
are	available.

To	properly	recompute	values,	we	need	to	make	two	changes:	1)	set	the	desired
attribute	to	None,	and	2)	provide	a	value	to	force	a	recomputation.

We	can't	simply	set	a	new	value	for	rate	and	compute	a	new	value	for	time	while
leaving	distance	unchanged.	To	tweak	this	model,	we	need	to	both	clear	one
variable	and	set	a	new	value	for	another	variable:

>>>	rtd.time	=	None

>>>	rtd.rate	=	6.125

>>>	rtd

RTD_Dynamic(rate=6.125,	time=9.5,	distance=58.1875)

Here,	we	cleared	time	and	changed	rate	to	get	a	new	solution	for	time	using	the
previously	established	value	for	distance.



The	__getattribute__()	method
An	even	lower-level	attribute	processing	is	the	__getattribute__()	method.	The
default	implementation	of	this	method	attempts	to	locate	the	value	as	an	existing
attribute	in	the	internal	__dict__	(or	__slots__).	If	the	attribute	is	not	found,	this
method	calls	__getattr__()	as	a	fallback.	If	the	value	located	is	a	descriptor	(refer
to	the	following	Creating	descriptors	section),	then	it	processes	the	descriptor.
Otherwise,	the	value	is	simply	returned.

By	overriding	this	method,	we	can	perform	any	of	the	following	kinds	of	tasks:

We	can	effectively	prevent	access	to	attributes.	This	method,	by	raising	an
exception	instead	of	returning	a	value,	can	make	an	attribute	more	secret
than	if	we	were	to	merely	use	the	leading	underscore	(_)	to	mark	a	name	as
private	to	the	implementation.
We	can	invent	new	attributes	similarly	to	how	__getattr__()	can	invent	new
attributes.	In	this	case,	however,	we	can	bypass	the	default	lookup	done	by
the	default	version	of	__getattribute__().
We	can	make	attributes	perform	unique	and	different	tasks.	This	might
make	the	program	very	difficult	to	understand	or	maintain,	and	it	could	also
be	a	terrible	idea.
We	can	change	the	way	descriptors	behave.	While	technically	possible,
changing	a	descriptor's	behavior	sounds	like	a	terrible	idea.

When	we	implement	the	__getattribute__()	method,	it's	important	to	note	that
there	cannot	be	any	internal	attribute	references	in	the	method's	body.	If	we
attempt	to	get	the	value	for	self.name,	it	will	lead	to	infinite	recursion	of	the
__getattribute__()	method.

The	__getattribute__()	method	cannot	use	any	simple	self.name	attribute	access;	it	will	lead	to
infinite	recursions.

In	order	to	get	attribute	values	within	the	__getattribute__()	method,	we	must
explicitly	refer	to	the	base	method	defined	in	a	superclass,	or	the	base
class	object,	as	shown	in	the	following	snippet:

object.__getattribute__(self,	name)	



We	can	use	this	kind	of	processing	to	inject	debugging,	audit,	or	security
controls	into	a	class	definition.	We	might,	for	example,	write	a	line	to	a	log	when
an	attribute	is	accessed	in	a	particularly	important	class.	A	sensible	security	test
might	limit	access	to	people	with	defined	access	controls.

The	following	example	will	show	a	trivial	use	of	__getattribute__()	to	prevent
access	to	the	single	leading	_	instance	variables	and	methods	in	a	class.	We'll	do
this	by	raising	an	AttributeError	exception	for	any	of	those	kinds	of	names.

Here's	the	class	definition:	

class	SuperSecret:

				def	__init__(self,	hidden:	Any,	exposed:	Any)	->	None:

								self._hidden	=	hidden

								self.exposed	=	exposed

				def	__getattribute__(self,	item:	str):

								if	(len(item)	>=	2	and	item[0]	==	"_"

																and	item[1]	!=	"_"):

												raise	AttributeError(item)

								return	super().__getattribute__(item)

We've	overridden	__getattribute__()	to	raise	an	attribute	error	on	private	names
only.	This	will	leave	Python's	internal	__	names	visible,	but	any	name	with	a
single	_	prefix	will	be	concealed.	The	_hidden	attribute	will	be	nearly	invisible.
The	following	is	an	example	of	an	object	of	this	class	being	used:

>>>	x	=	SuperSecret('onething',	'another')

>>>	x.exposed

'another'

>>>	x._hidden		#	doctest:	+IGNORE_EXCEPTION_DETAIL

Traceback	(most	recent	call	last):

		File	"/Users/slott/miniconda3/envs/py37/lib/python3.7/doctest.py",	line	1329,	in	__run

				compileflags,	1),	test.globs)

		File	"<doctest	__main__.__test__.test_secret[3]>",	line	1,	in	<module>

				x._hidden		#

		File	"/Users/slott/Documents/Writing/Python/Mastering	OO	Python	2e/mastering-oo-python-2e/Chapter_4/ch04_ex4.py",	line	132,	in	__getattribute__

				raise	AttributeError(item)

AttributeError:	_hidden

The	object,	x,	will	respond	to	requests	for	the	exposed	attribute,	but	will	raise	an
exception	for	any	reference	to	an	attribute	that	begins	with	_.	

This	does	not	fully	conceal	all	of	the	_	names,	however.	The	dir()	function	will
show	the	existence	of	the	_hidden	attribute.	To	correct	this	problem,	the	__dir__()
special	method	must	be	overridden	to	also	conceal	the	names	beginning	with	one
_.



As	general	advice,	it's	rarely	necessary	to	change	the	implementation
of	__getattribute__().	The	default	implementation	gives	us	access	to	flexible
features	via	property	definitions	or	as	changes	to	__getattr__().



Creating	descriptors
A	descriptor	is	a	class	that	mediates	attribute	access.	The	descriptor	class	can	be
used	to	get,	set,	or	delete	attribute	values.	Descriptor	objects	are	built	inside	a
class	at	class	definition	time.	Descriptors	are	the	essence	of	how	Python
implements	methods,	attributes,	and	properties.

The	descriptor	design	pattern	has	two	parts:	an	owner	class	and	the	attribute
descriptor	itself.	The	owner	class	uses	one	or	more	descriptors	for	its	attributes.
A	descriptor	class	defines	some	combination	of	the	__get__,	__set__,	and	__delete__
methods.	An	instance	of	the	descriptor	class	will	be	an	attribute	of	the	owner
class.

A	descriptor	is	an	instance	of	a	class	that	is	separate	from	the	owning	class.
Therefore,	descriptors	let	us	create	reusable,	generic	kinds	of	attributes.	The
owning	class	can	have	multiple	instances	of	each	descriptor	class	to	manage
attributes	with	similar	behaviors.

Unlike	other	attributes,	descriptors	are	created	at	the	class	level.	They're	not
created	within	the	__init__()	initialization.	While	descriptor	instances	can	have
values	set	during	initialization,	the	descriptor	instances	are	generally	built	as	part
of	the	class,	outside	any	method	functions.	Each	descriptor	object	will	be	an
instance	of	a	descriptor	class.	The	descriptor	instance	must	be	bound	to	an
attribute	name	in	the	owner	class.

To	be	recognized	as	a	descriptor,	a	class	must	implement	any	combination	of	the
following	three	methods:

Descriptor.__get__(self,	instance,	owner):	In	this	method,	the	instance	parameter
is	the	self	variable	of	the	object	being	accessed.	The	owner	parameter	is	the
owning	class	object.	If	this	descriptor	is	invoked	in	a	class	context,	the
instance	parameter	will	get	a	None	value.	This	must	return	the	value	of	the
descriptor.
Descriptor.__set__(self,	instance,	value):	In	this	method,	the	instance	parameter
is	the	self	variable	of	the	object	being	accessed.	The	value	parameter	is	the
new	value	that	the	descriptor	needs	to	be	set	to.



Descriptor.__delete__(self,	instance):	In	this	method,	the	instance	parameter	is
the	self	variable	of	the	object	being	accessed.	This	method	of	the	descriptor
must	delete	this	attribute's	value.

Sometimes,	a	descriptor	class	will	also	need	an	__init__()	method	function	to
initialize	the	descriptor's	internal	state.	There	are	two	design	patterns	for
descriptors	based	on	the	methods	defined,	as	follows:

A	non-data	descriptor:	This	kind	of	descriptor	defines	only
the	__get__()	method.	The	idea	of	a	non-data	descriptor	is	to	provide	an
indirect	reference	to	another	object	via	methods	or	attributes	of	its	own.	A
non-data	descriptor	can	also	take	some	action	when	referenced.
A	data	descriptor:	This	descriptor	defines	both	__get__()	and	__set__()	to
create	a	mutable	object.	It	may	also	define	__delete__().	A	reference	to	an
attribute	with	a	value	of	a	data	descriptor	is	delegated	to	the	__get__(),
__set__(),	or	__delete__()	methods	of	the	descriptor	object.

There	are	a	wide	variety	of	use	cases	for	descriptors.	Internally,	Python	uses
descriptors	for	several	reasons:

The	methods	of	a	class	are	implemented	as	descriptors.	These	are	non-data
descriptors	that	apply	the	method	function	to	the	object	and	the	various
parameter	values.
The	property()	function	is	implemented	by	creating	a	data	descriptor	for	the
named	attribute.
A	class	method,	or	static	method,	is	implemented	as	a	descriptor.	In	both
cases,	the	method	will	apply	to	the	class	instead	of	an	instance	of	the	class.

When	we	look	at	object-relational	mapping	in	Chapter	12,	Storing	and	Retrieving
Objects	via	SQLite,	we'll	see	that	many	of	the	ORM	class	definitions	make	use
of	descriptors	to	map	Python	class	definitions	to	SQL	tables	and	columns.

As	we	think	about	the	purposes	of	a	descriptor,	we	must	also	examine	the	three
common	use	cases	for	the	data	that	a	descriptor	works	with,	as	follows:

The	descriptor	object	has,	or	acquires,	the	data	value.	In	this	case,	the
descriptor	object's	self	variable	is	relevant,	and	the	descriptor	object	is
stateful.	With	a	data	descriptor,	the	__get__()	method	can	return	this	internal
data.	With	a	non-data	descriptor,	the	descriptor	may	include	other	methods



or	attributes	to	acquire	or	process	data.	Any	descriptor	state	applies	to	the
class	as	a	whole.
The	owner	instance	contains	the	data.	In	this	case,	the	descriptor	object
must	use	the	instance	parameter	to	reference	a	value	in	the	owning	object.
With	a	data	descriptor,	the	__get__()	method	fetches	the	data	from	the
instance.	With	a	non-data	descriptor,	the	descriptor's	other	methods	access
the	instance	data.
The	owner	class	contains	the	relevant	data.	In	this	case,	the	descriptor
object	must	use	the	owner	parameter.	This	is	commonly	used	when	the
descriptor	implements	a	static	method	or	class	method	that	applies	to	the
class	as	a	whole.

We'll	take	a	look	at	the	first	case	in	detail.	This	means	creating	a	data	descriptor
with	__get__()	and	__set__()	methods.	We'll	also	look	at	creating	a	non-data
descriptor	without	a	__get__()	method.

The	second	case	(the	data	in	the	owning	instance)	is	essentially	what	the	@property
decorator	does.	There's	a	small	possible	advantage	to	writing	a	descriptor	class
instead	of	creating	a	conventional	property—a	descriptor	can	be	used	to	refactor
the	calculations	into	the	descriptor	class.	While	this	may	fragment	class	design,
it	can	help	when	the	calculations	are	truly	of	epic	complexity.	This	is	essentially
the	Strategy	design	pattern,	a	separate	class	that	embodies	a	particular
algorithm.

The	third	case	shows	how	the	@staticmethod	and	@classmethod	decorators	are
implemented.	We	don't	need	to	reinvent	those	wheels.



Using	a	non-data	descriptor
Internally,	Python	uses	non-data	descriptors	as	part	of	the	implementation	for
class	methods	and	static	methods.	This	is	possible	because	a	descriptor	provides
access	to	the	owning	class,	as	well	as	the	instance.

We'll	look	at	an	example	of	a	descriptor	that	updates	the	instance	and	also	works
with	the	filesystem	to	provide	an	additional	side-effect	to	use	of	the	descriptor.

For	this	example,	we'll	add	a	descriptor	to	a	class	that	will	create	a	working
directory	that	is	unique	to	each	instance	of	a	class.	This	can	be	used	to	cache
state,	or	debugging	history,	or	even	audit	information	in	a	complex	application.

Here's	an	example	of	an	abstract	class	that	might	use	a	StateManager	internally:

class	PersistentState:

				"""Abstract	superclass	to	use	a	StateManager	object"""

				_saved:	Path

The	PersistentState	class	definition	includes	a	reference	to	an	attribute,	_saved,
which	has	a	type	hint	of	Path.	This	formalizes	the	relationships	among	the	objects
in	a	way	that	can	be	detected	by	mypy.

Here's	an	example	of	a	descriptor	that	provides	access	to	a	file	for	saving	the
object	state:

class	StateManager:

				"""May	create	a	directory.	Sets	_saved	in	the	instance."""

				def	__init__(self,	base:	Path)	->	None:

								self.base	=	base

				def	__get__(self,	instance:	PersistentState,	owner:	Type)	->	Path:

								if	not	hasattr(instance,	"_saved"):

												class_path	=	self.base	/	owner.__name__

												class_path.mkdir(exist_ok=True,	parents=True)

												instance._saved	=	class_path	/	str(id(instance))

								return	instance._saved

When	this	descriptor	is	created	in	a	class,	a	base	Path	is	provided.	When	this
instance	is	referenced,	it	will	ensure	that	a	working	directory	exists.	It	will	also
save	a	working	Path	object,	setting	the	_saved	instance	attribute.



The	following	is	a	class	that	uses	this	descriptor	for	access	to	a	working
directory:

class	PersistentClass(PersistentState):

				state_path	=	StateManager(Path.cwd()	/	"data"	/	"state")

				def	__init__(self,	a:	int,	b:	float)	->	None:

								self.a	=	a

								self.b	=	b

								self.c:	Optional[float]	=	None

								self.state_path.write_text(repr(vars(self)))

				def	calculate(self,	c:	float)	->	float:

								self.c	=	c

								self.state_path.write_text(repr(vars(self)))

								return	self.a	*	self.b	+	self.c

				def	__str__(self)	->	str:

								return	self.state_path.read_text()

At	the	class	level,	a	single	instance	of	this	descriptor	is	created.	It's	assigned	to
the	state_path	attribute.	There	are	three	places	where	a	reference	to
self.state_path	are	made.	Because	the	object	is	a	descriptor,	the	__get__()	method	is
invoked	implicitly	each	time	the	variable	is	referenced.	This	means	that	any	of
those	references	will	serve	to	create	the	necessary	directory	and	working	file
path.

This	implicit	use	of	the	__get__()	method	of	the	StateManager	class	will	guarantee
consistent	processing	at	each	reference.	The	idea	is	to	centralize	the	OS-level
work	into	a	single	method	that	is	part	of	a	reusable	descriptor	class.

As	an	aid	to	debugging,	the	__str__()	method	dumps	the	content	of	the	file	into
which	the	state	has	been	written.	When	we	interact	with	this	class,	we	see	output
like	the	following	example:

>>>	x	=	PersistentClass(1,	2)

>>>	str(x)

"{'a':	1,	'b':	2,	'c':	None,	'_saved':	...)}"

>>>	x.calculate(3)

5

>>>	str(x)

"{'a':	1,	'b':	2,	'c':	3,	'_saved':	...)}"

We	created	an	instance	of	the	PersistentClass	class,	providing	initial	values	for	two
attributes,	a,	and	b.	The	third	attribute,	c,	is	left	with	a	default	value	of	None.	The
use	of	str()	displays	the	content	of	the	saved	state	file.

The	reference	to	self.saved_state	invoked	the	descriptor's	__get__()	method,



ensuring	that	the	directory	exists	and	could	be	written.

This	example	demonstrates	the	essential	feature	of	a	non-data	descriptor.	The
implied	use	of	the	__get__()	method	can	be	handy	for	performing	a	few,	limited
kinds	of	automated	processing	where	implementation	details	need	to	be	hidden.
In	the	case	of	static	methods	and	class	methods,	this	is	very	helpful.



Using	a	data	descriptor
A	data	descriptor	is	used	to	build	property-like	processing	using	external	class
definitions.	The	descriptor	methods	of	__get__(),	__set__(),	and	__delete__()
correspond	to	the	way	@property	can	be	used	to	build	getter,	setter,	and	deleter
methods.	The	important	distinction	of	the	descriptor	is	a	separate	and	reusable
class	definition,	allowing	reuse	of	property	definitions.

We'll	design	an	overly	simplistic	unit	conversion	schema	using	descriptors	that
can	perform	appropriate	conversions	in	their	__get__()	and	__set__()	methods.

The	following	is	a	superclass	of	a	descriptor	of	units	that	will	do	conversions	to
and	from	a	standard	unit:

class	Conversion:

				"""Depends	on	a	standard	value."""

				conversion:	float

				standard:	str

				def	__get__(self,	instance:	Any,	owner:	type)	->	float:

								return	getattr(instance,	self.standard)	*	self.conversion

				def	__set__(self,	instance:	Any,	value:	float)	->	None:

								setattr(instance,	self.standard,	value	/	self.conversion)

class	Standard(Conversion):

				"""Defines	a	standard	value."""

				conversion	=	1.0

The	Conversion	class	does	simple	multiplications	and	divisions	to	convert	standard
units	to	other	non-standard	units,	and	vice	versa.	This	doesn't	work	for
temperature	conversions,	and	a	subclass	is	required	to	handle	that	case.

The	Standard	class	is	an	extension	to	the	Conversion	class	that	sets	a	standard	value
for	a	given	measurement	without	any	conversion	factor	being	applied.	This
exists	mostly	to	provide	a	very	visible	name	to	the	standard	for	any	particular
kind	of	measurement.

With	these	two	superclasses,	we	can	define	some	conversions	from	a	standard
unit.	We'll	look	at	the	measurement	of	speed.	Some	concrete	descriptor	class
definitions	are	as	follows:



class	Speed(Conversion):

				standard	=	"standard_speed"		#	KPH

class	KPH(Standard,	Speed):

				pass

class	Knots(Speed):

				conversion	=	0.5399568

class	MPH(Speed):

				conversion	=	0.62137119

The	abstract	Speed	class	provides	the	standard	source	data	for	the	various
conversion	subclasses,	KPH,	Knots,	and	MPH.	Any	attributes	based	on	subclasses	of
the	Speed	class	will	consume	standard	values.

The	KPH	class	is	defined	as	a	subclass	of	both	Standard	class	and	the	Speed	class.
From	Standard,	it	gets	a	conversion	factor	of	1.0.	From	Speed,	it	gets	the	attribute
name	to	be	used	to	keep	the	standard	value	for	speed	measurements.

The	other	classes	are	subclasses	of	Speed,	which	performs	conversions	from	a
standard	value	to	the	desired	value.

The	following	Trip	class	uses	these	conversions	for	a	given	measurement:

class	Trip:

				kph	=	KPH()

				knots	=	Knots()

				mph	=	MPH()

				def	__init__(

								self,

								distance:	float,

								kph:	Optional[float]	=	None,

								mph:	Optional[float]	=	None,

								knots:	Optional[float]	=	None,

				)	->	None:

								self.distance	=	distance		#	Nautical	Miles

								if	kph:

												self.kph	=	kph

								elif	mph:

												self.mph	=	mph

								elif	knots:

												self.knots	=	knots

								else:

												raise	TypeError("Impossible	arguments")

								self.time	=	self.distance	/	self.knots

				def	__str__(self)	->	str:

								return	(

												f"distance:	{self.distance}	nm,	"

												f"rate:	{self.kph}	"



												f"kph	=	{self.mph}	"

												f"mph	=	{self.knots}	knots,	"

												f"time	=	{self.time}	hrs"

								)

Each	of	the	class-level	attributes,	kph,	knots,	and	mph,	are	descriptors	for	a	different
unit.	When	these	attributes	are	referenced,	the	__get__()	and	__set__()	methods	of
the	various	descriptors	will	perform	appropriate	conversions	to	and	from	the
standard	values.

The	following	is	an	example	of	an	interaction	with	the	Trip	class:

>>>	m2	=	Trip(distance=13.2,	knots=5.9)

>>>	print(m2)

distance:	13.2	nm,	rate:	10.92680006993152	kph	=	6.789598762345432	mph	=	5.9	knots,	time	=	2.23728813559322	hrs

>>>	print(f"Speed:	{m2.mph:.3f}	mph")

Speed:	6.790	mph

>>>	m2.standard_speed

10.92680006993152

We	created	an	object	of	the	Trip	class	by	setting	an	attribute,	distance,	setting	one
of	the	available	descriptors,	and	then	computing	a	derived	value,	time.	In	this
example,	we	set	the	knots	descriptor.	This	is	a	subclass	of	the	Speed	class,	which	is
a	subclass	of	the	Conversion	class,	and	therefore,	the	value	will	be	converted	to	a
standard	value.

When	we	displayed	the	value	as	a	large	string,	each	of	the	descriptors'	__get__()
methods	were	used.	These	methods	fetched	the	internal	kph	attribute	value	from
the	owning	object,	applied	a	conversion	factor,	and	returned	the	resulting	values.

The	process	of	creating	the	descriptors	allows	for	reuse	of	the	essential	unit
definitions.	The	calculations	can	be	stated	exactly	once,	and	they	are	separate
from	any	particular	application	class	definition.	Compare	this	with	a	@property
method	that	is	tightly	bound	to	the	class	including	it.	The	various	conversion
factors,	similarly,	are	stated	once,	and	can	be	widely	reused	by	a	number	of
related	applications.	

The	core	description,	conversion,	embodies	a	relatively	simple	computation.
When	the	computation	is	more	complex,	it	can	lead	to	a	sweeping	simplification
of	the	overall	application.	Descriptors	are	very	popular	when	working	with
databases	and	data	serialization	problems	because	the	descriptor's	code	can
involve	complex	conversions	to	different	representations.



Using	type	hints	for	attributes	and
properties
When	using	mypy,	we'll	need	to	provide	type	hints	for	the	attributes	of	a	class.
This	is	generally	handled	through	the	__init__()	method.	Most	of	the	time,	the
parameter	type	hints	are	all	that's	required.

In	previous	examples,	we	defined	classes	like	this:

class	RTD_Solver:

				def	__init__(

								self,	*,

								rate:	Optional[float]	=	None,

								time:	Optional[float]	=	None,

								distance:	Optional[float]	=	None

				)	->	None:	

								if	rate:

												self.rate	=	rate

								if	time:

												self.time	=	time

								if	distance:

												self.distance	=	distance

The	type	hints	on	the	parameters	are	used	to	discern	the	types	for	the	instance
variables,	self.rate,	self.time,	and	self.distance.

When	we	assign	default	values	in	the	__init__()	method,	we	have	two	common
design	patterns.

When	we	can	compute	a	value	eagerly,	the	type	can	be	discerned	by	mypy
from	the	assignment	statement.
When	a	default	None	value	is	provided,	the	type	will	have	to	be	stated
explicitly.

We	may	see	assignment	statements	such	as	the	following:

self.computed_value:	Optional[float]	=	None

This	assignment	statement	tells	mypy	that	the	variable	will	either	be	an	instance
of	float	or	the	None	object.	This	style	of	initialization	makes	the	class	attribute
types	explicit.	



For	property	definitions,	the	type	hint	is	part	of	the	property	method	definition.
We'll	often	see	code	like	the	following:

@property

def	some_computed_value(self)	->	float:	...

This	definition	provides	a	clear	statement	for	the	type	of	object.some_computed_value.
This	is	used	by	mypy	to	be	sure	the	types	all	match	among	the	references	to	this
property	name.



Using	the	dataclasses	module
Starting	with	Python	3.7	the	dataclasses	module	is	available.	This	module	offers	a
superclass	we	can	use	to	create	classes	with	clearly-stated	attribute	definitions.
The	core	use	case	for	a	dataclass	is	a	simple	definition	of	the	attributes	of	a	class.

The	attributes	are	used	to	automatically	create	common	attribute	access	methods,
including	__init__(),	__repr__(),	and	__eq__().	Here's	an	example:

from	dataclasses	import	dataclass

from	typing	import	Optional,	cast

@dataclass

class	RTD:

				rate:	Optional[float]

				time:	Optional[float]

				distance:	Optional[float]

				def	compute(self)	->	"RTD":

								if	(

												self.distance	is	None	and	self.rate	is	not	None	

												and	self.time	is	not	None

								):

												self.distance	=	self.rate	*	self.time

								elif	(

												self.rate	is	None	and	self.distance	is	not	None	

												and	self.time	is	not	None

								):

												self.rate	=	self.distance	/	self.time

								elif	(

												self.time	is	None	and	self.distance	is	not	None	

												and	self.rate	is	not	None

								):

												self.time	=	self.distance	/	self.rate

								return	self

Each	instance	of	this	class	will	have	three	attributes,	rate,	time,	and	distance.	The
decorator	will	create	an	__init__()	method	to	set	these	attributes.	It	will	also
create	a	__repr__()	method	to	display	the	details	of	the	attribute	value.	An	__eq__()
method	is	written	to	perform	a	simple	equality	check	on	all	of	the	attribute
values.

Careful	checking	for	None	and	non-None	values	is	helpful	for	mypy.	This	explicit
checking	provides	an	assurance	that	the	Optional[float]	types	will	have	non-None
values.



Note	that	the	three	names	are	written	as	part	of	the	class	definition.	They're	used
to	build	an	__init__()	method	that's	part	of	the	resulting	class.	These	will	become
instance	variables	in	the	resulting	objects.

The	compute()	method	changes	the	internal	state	of	the	object.	We've	provided	a
type	hint	that	describes	the	return	value	as	an	instance	of	the	class.	Here's	how
we	can	use	an	instance	of	this	class:

>>>	r	=	RTD(distance=13.5,	rate=6.1,	time=None)

>>>	r.compute()

RTD(rate=6.1,	time=2.2131147540983607,	distance=13.5)

In	this	code	snippet,	we	created	an	instance,	providing	non-None	values	for
distance	and	rate.	The	compute()	method	computed	a	value	for	the	time	attribute.

The	default	@dataclass	decorator	will	not	have	comparison	methods.	It	will	create
a	mutable	class	where	attribute	values	can	be	changed.	

We	can	request	some	additional,	optional	features.	We	can	provide	optional
parameters	to	the	decorator	to	control	optional	features.	We	can	create	a	class	for
immutable	objects	with	comparison	operators	with	code	such	as	the	following:

@dataclass(frozen=True,	order=True)

class	Card:

				rank:	int

				suit:	str

				@property

				def	points(self)	->	int:

								return	self.rank

The	frozen	parameter	in	this	example	leads	the	decorator	to	make	the	class	into	an
immutable,	frozen	object.	The	order	parameter	to	the	@dataclass	decorator	creates
the	methods	for	comparison	in	the	class	definition.	This	is	very	helpful	for
creating	simple,	immutable	objects.	Because	the	two	attributes	include	type
hints,	mypy	can	confirm	that	the	Card	dataclass	is	used	properly.	

Inheritance	works	with	dataclasses.	We	can	declare	classes	as	in	the	following
example:

class	Ace(Card):

				@property

				def	points(self)	->	int:

								return	1



class	Face(Card):

				@property

				def	points(self)	->	int:

								return	10

These	two	classes	inherit	the	__init__(),	__repr__(),	__eq__(),	__hash__(),	and
comparison	methods	from	the	Card	superclass.	These	two	classes	differ	in	the
implementation	of	the	points()	method.

The	@dataclass	decorator	simplifies	the	class	definition.	The	methods	that	tend	to
have	a	direct	relationship	with	the	attributes	are	generated	by	the	decorator.



Attribute	Design	Patterns
Programmers	coming	from	other	languages	(particularly	Java	and	C++)	can	try
to	make	all	attributes	private	and	write	extensive	getter	and	setter	functions.	This
kind	of	design	pattern	can	be	necessary	for	languages	where	type	definitions	are
statically	compiled	into	the	runtime.	It	is	not	necessary	in	Python.	Python
depends	on	a	different	set	of	common	patterns.

In	Python,	it's	common	to	treat	all	attributes	as	public.	This	means	the	following:

All	attributes	should	be	well	documented.
Attributes	should	properly	reflect	the	state	of	the	object;	they	shouldn't	be
temporary	or	transient	values.
In	the	rare	case	of	an	attribute	that	has	a	potentially	confusing	(or	brittle)
value,	a	single	leading	underscore	character	(_)	marks	the	name	as	not	part
of	the	defined	interface.	It's	not	technically	private,	but	it	can't	be	relied	on
in	the	next	release	of	the	framework	or	package.

It's	important	to	think	of	private	attributes	as	a	nuisance.	Encapsulation	isn't
broken	by	the	lack	of	complex	privacy	mechanisms	in	the	language;	proper
encapsulation	can	only	be	broken	by	bad	design.

Additionally,	we	have	to	choose	between	an	attribute	or	a	property	which	has	the
same	syntax	as	an	attribute,	but	can	have	more	complex	semantics.	



Properties	versus	attributes
In	most	cases,	attributes	can	be	set	outside	a	class	with	no	adverse	consequences.
Our	example	of	the	Hand	class	shows	this.	For	many	versions	of	the	class,	we	can
simply	append	to	hand.cards,	and	the	lazy	computation	of	total	via	a	property	will
work	perfectly.

In	cases	where	the	changing	of	an	attribute	should	lead	to	consequential	changes
in	other	attributes,	a	more	sophisticated	class	design	is	required:

A	method	may	clarify	the	state	change.	This	will	be	necessary	when
multiple	parameter	values	are	required	and	the	changes	must	be
synchronized.
A	setter	property	may	be	clearer	than	a	method	function.	This	will	be	a
sensible	option	when	a	single	value	is	required.
We	can	also	use	Python's	in-place	operators,	such	as	+=.	We'll	defer	this	until
Chapter	8,	Creating	Numbers.

There's	no	strict	rule.	The	distinction	between	a	method	function	and	a	property
is	entirely	one	of	syntax	and	how	well	the	syntax	communicates	the	intent.	For
computed	values,	a	property	allows	lazy	computation,	while	an	attribute	requires
eager	computation.	This	devolves	to	a	performance	question.	The	benefits	of
lazy	versus	eager	computation	are	based	on	the	expected	use	cases.

Finally,	for	some	very	complex	cases,	we	might	want	to	use	the	underlying
Python	descriptors.



Designing	with	descriptors
Many	uses	of	descriptors	are	already	part	of	Python.	We	don't	need	to	reinvent
properties,	class	methods,	or	static	methods.

The	most	compelling	cases	for	creating	new	descriptors	relate	to	mapping
between	Python	objects	and	other	software	outside	Python.	Object-relational
database	mapping,	for	example,	requires	a	great	deal	of	care	to	ensure	that	a
Python	class	has	the	right	attributes	in	the	right	order	to	match	a	SQL	table	and
columns.	Also,	when	mapping	to	something	outside	Python,	a	descriptor	class
can	handle	the	encoding	and	decoding	of	data,	or	fetching	the	data	from	external
sources.

When	building	a	web	service	client,	we	might	consider	using	descriptors	to
make	web	service	requests.	The	__get__()	method,	for	example,	might	turn	into	an
HTTP	GET	request,	and	the	__set__()	method	might	turn	into	an	HTTP	PUT	request.
In	some	cases,	a	single	request	may	populate	the	data	of	several	descriptors.	In
this	case,	the	__get__()	method	would	check	the	instance	cache	and	return	that
value	before	making	an	HTTP	request.

Many	data	descriptor	operations	are	more	simply	handled	by	properties.	This
provides	us	with	a	place	to	start	to	write	properties	first.	If	the	property
processing	becomes	too	expansive	or	complex,	then	we	can	switch	to	descriptors
to	refactor	the	class.



Summary
In	this	chapter,	we	looked	at	several	ways	to	work	with	an	object's	attributes.	We
can	use	the	built-in	features	of	the	object	class	to	get	and	set	attribute	values
simply	and	effectively.	We	can	use	@property	to	create	attribute-like	methods.

If	we	want	more	sophistication,	we	can	tweak	the	underlying	special	method
implementations	for	__getattr__(),	__setattr__(),	__delattr__(),	or	__getattribute__().
These	allow	us	very	fine-grained	control	over	attribute	behaviors.	We	walk	a	fine
line	when	we	touch	these	methods	because	we	can	make	fundamental	(and
confusing)	changes	to	Python's	behavior.

Internally,	Python	uses	descriptors	to	implement	features	such	as	class	methods,
static	methods,	and	properties.	Many	of	the	really	good	use	cases	for	descriptors
are	already	first-class	features	of	the	language.

The	use	of	type	hints	helps	confirm	that	objects	are	used	properly.	They're
strongly	encouraged	as	a	supplement	to	unit	tests	for	assuring	that	parameters
and	values	align.	

The	new	dataclasses	module	can	help	simplify	class	definition.	In	many	cases,	a
class	created	with	the	@dataclass	decorator	can	be	the	essence	of	well-designed
software.

In	the	next	chapter,	we'll	look	closely	at	the	ABCs	(Abstract	Base	Classes)	that
we'll	exploit	in	Chapter	6,	Using	Callables	and	Contexts,	Chapter	7,	Creating
Containers	and	Collections,	and	Chapter	8,	Creating	Numbers.	These	ABCs	will
help	us	to	define	classes	that	integrate	nicely	with	existing	Python	features.	They
will	also	allow	us	to	create	class	hierarchies	that	enforce	consistent	design	and
extension.



The	ABCs	of	Consistent	Design
The	Python	standard	library	provides	abstract	base	classes	for	a	number	of
container	features.	It	provides	a	consistent	framework	for	the	built-in	container
classes,	such	as	list,	dict,	and	set.	Additionally,	the	standard	library	provides
abstract	base	classes	for	numbers.	We	can	use	these	classes	to	extend	the	suite	of
numeric	classes	available	in	Python.

In	this	chapter,	we'll	look	in	general	at	the	abstract	base	classes	in	the
collections.abc	module.	From	there,	we	can	focus	on	a	few	use	cases	that	will	be
the	subject	of	detailed	examination	in	future	chapters.

There	are	three	common	design	strategies	for	reusing	existing	classes:	wrap,
extend,	and	invent.	We'll	look	at	the	general	concepts	behind	the	various
containers	and	collections	that	we	might	want	to	wrap	or	extend.	Similarly,	we'll
look	at	the	concepts	behind	the	numbers	that	we	might	want	to	implement.

Our	goal	is	to	ensure	that	our	application	classes	integrate	seamlessly	with
existing	Python	features.	If	we	create	a	collection,	for	example,	it's	appropriate
to	have	that	collection	create	an	iterator	by	implementing	__iter__().	A	collection
that	implements	__iter__()	will	work	seamlessly	with	a	for	statement.



Technical	requirements
The	code	files	for	this	chapter	can	be	found	at	https://git.io/fj2Uz.

https://git.io/fj2Uz


Abstract	base	classes
The	core	of	the	abstract	base	class	(ABC)	definition	is	defined	in	a	module
named	abc.	This	contains	the	required	decorators	and	metaclasses	to	create
abstractions.	Other	classes	rely	on	these	definitions.	The	collections.abc	module
uses	the	abc	module	to	create	abstractions	focused	on	collections.	We'll	also	look
at	the	numbers	module,	because	it	contains	ABCs	for	numeric	types.	There	are
ABCs	for	I/O	in	the	io	module,	too.

An	abstract	base	class	has	the	following	features:

Abstract	means	that	these	classes	don't	contain	all	the	method	definitions
required	to	work	completely.	For	it	to	be	a	useful	subclass,	we	will	need	to
provide	some	method	definitions.
Base	means	that	other	classes	will	use	it	as	a	superclass.
An	abstract	class	provides	some	definitions	for	methods.	Most
importantly,	the	abstract	base	classes	often	provide	the	signatures	for	the
missing	methods.	A	subclass	must	provide	the	right	methods	to	create	a
concrete	class	that	fits	the	interface	defined	by	the	abstract	class.

Bear	in	mind	the	following	when	using	abstract	base	classes:

When	we	use	them	to	define	our	classes,	they	will	be	consistent	with
Python's	internal	classes.
We	can	use	them	to	create	some	common,	reusable	abstractions	that	our
application	extends.
We	can	use	them	to	support	the	proper	inspection	of	a	class	to	determine
what	it	does.	This	allows	better	collaboration	among	library	classes	and
new	classes	in	our	applications.	It	helps	to	start	from	the	formal	definitions
of	classes	that	will	have	similar	behavior	to	other	containers	or	numbers.

If	we	don't	use	abstract	base	classes,	we	can	easily	create	a	class	that	fails	to
provide	all	the	features	of	the	abstract	base	Sequence	class.	This	will	lead	to	a	class
being	almost	a	sequence—we	sometimes	call	it	sequence-like.	This	can	lead	to
odd	inconsistencies	and	kludgy	workarounds	for	a	class	that	doesn't	quite
provide	all	the	features	of	a	Sequence	class.



With	an	abstract	base	class,	an	application's	class	is	guaranteed	to	have	the
advertised	features	of	the	abstract	base	class.	If	it	lacks	a	feature,	the	presence	of
an	undefined	abstract	method	will	make	the	class	unusable	for	building	object
instances.

We	will	use	ABCs	in	several	situations,	as	follows:

We	will	use	ABCs	as	superclasses	when	defining	our	own	classes.
We	will	use	ABCs	within	a	method	to	confirm	that	an	operation	is	possible.
We	will	use	ABCs	within	a	diagnostic	message	or	exception	to	indicate
why	an	operation	can't	work.

For	the	first	use	case,	we	can	write	modules	with	code	that	looks	like	the
following:

import	collections.abc	

class	SomeApplicationClass(collections.abc.Sequence):	

				pass	

Our	SomeApplicationClass	is	defined	as	a	Sequence	class.	It	must	then	implement	the
specific	methods	required	by	Sequence,	or	we	will	not	be	able	to	create	an
instance.

For	the	second	use	case,	we	can	write	methods	with	code	as	follows:

def	some_method(self,	other:	Iterator):	

				assert	isinstance(other,	collections.abc.Iterator)	

Our	some_method()	requires	the	other	argument	to	be	a	subclass	of	Iterator.	If	the
other	argument	can't	pass	this	test,	we	get	an	exception.

Instead	of	the	assert	statement,	a	common	alternative	is	an	if	statement	that
raises	TypeError,	which	may	be	more	meaningful	than	AssertError.	We'll	see	this	in
the	following	section.

For	the	third	use	case,	we	might	have	something	like	the	following:

try:	

				some_obj.some_method(another)	

except	AttributeError:	

				warnings.warn(f"{another!r}	not	an	Iterator,	found	{another.__class__.__bases__!r}")	

				raise	



In	this	case,	we	wrote	a	diagnostic	warning	that	shows	the	base	classes	for	a
given	object.	This	may	help	debug	problems	with	application	design.



Base	classes	and	polymorphism
In	this	section,	we'll	flirt	with	the	idea	of	pretty	poor	polymorphism.	Inspection
of	argument	value	types	is	a	Python	programming	practice	that	should	be
isolated	to	a	few	special	cases.	Later,	when	we	look	at	numbers	and	numeric
coercion,	we'll	learn	about	cases	where	the	inspection	of	types	is	recommended.

Well-done	polymorphism	follows	what	is	sometimes	called	the	Liskov
substitution	principle.	Polymorphic	classes	can	be	used	interchangeably.	Each
polymorphic	class	has	the	same	suite	of	properties.	For	more	information,	visit	ht
tp://en.wikipedia.org/wiki/Liskov_substitution_principle.

Overusing	isinstance()	to	distinguish	between	the	types	of	arguments	can	lead	to
a	needlessly	complex	(and	slow)	program.	Unit	testing	is	a	far	better	way	to	find
programming	errors	than	verbose	type	inspection	in	the	code.

Method	functions	with	lots	of	isinstance()	methods	can	be	a	symptom	of	a	poor
(or	incomplete)	design	of	polymorphic	classes.	Rather	than	having	type-specific
processing	outside	of	a	class	definition,	it's	often	better	to	extend	or	wrap	classes
to	make	them	more	properly	polymorphic	and	encapsulate	the	type-specific
processing	within	the	class	definition.

One	potential	use	of	the	isinstance()	method	is	to	raise	diagnostic	errors.	A	simple
approach	is	to	use	the	assert	statement,	as	follows:

assert	isinstance(some_argument,	collections.abc.Container),	

f"{some_argument!r}	not	a	Container"

This	will	raise	an	AssertionError	exception	to	indicate	that	there's	a	problem.	This
has	the	advantage	that	it	is	short	and	to	the	point.	This	example	has	two
disadvantages:	assertions	can	be	silenced,	and	it	would	probably	be	better
to	raise	a	TypeError	for	this.	The	preceding	use	of	the	assert	statement	is	not	very
helpful,	and	should	be	avoided.

The	following	example	is	slightly	better:

if	not	isinstance(some_argument,	collections.abc.Container):	

				raise	TypeError(f"{some_argument!r}	not	a	Container")

http://en.wikipedia.org/wiki/Liskov_substitution_principle


The	preceding	code	has	the	advantage	that	it	raises	the	correct	error.	However,	it
has	the	disadvantages	of	being	long-winded	and	it	creates	a	needless	constraint
on	the	domain	of	objects.	Objects	that	are	not	proper	subclasses	of	the	abstract
Container	class	may	still	offer	the	required	methods,	and	should	not	be	excluded.

The	Pythonic	approach	is	summarized	as	follows:

"It's	better	to	ask	for	forgiveness	than	to	ask	for	permission."

This	is	generally	taken	to	mean	that	we	should	minimize	the	upfront	testing	of
arguments	(asking	permission)	to	see	if	they're	the	correct	type.	Argument-type
inspections	are	rarely	of	any	tangible	benefit.	Instead,	we	should	handle	the
exceptions	appropriately	(asking	forgiveness).

Checking	types	in	advance	is	often	called	look	before	you	leap	(LBYL)
programming.	It's	an	overhead	of	relatively	little	value.	The	alternative	is	called
easier	to	ask	for	forgiveness	than	permission	(EAFP)	programming,	and	relies
on	try	statements	to	recover	from	problems.

What's	best	is	to	combine	diagnostic	information	with	the	exception	in	the
unlikely	event	that	an	inappropriate	type	is	used	and	somehow	passed	through
unit	testing	into	operation.

The	following	is	generally	the	best	approach:

try:	

				found	=	value	in	some_argument	

except	TypeError:	

				if	not	isinstance(some_argument,	collections.abc.Container):	

								warnings.warn(f"{some_argument!r}	not	a	Container")	

				raise	

The	assignment	statement	to	create	the	found	variable	assumes	that	some_argument	is
a	proper	instance	of	a	collections.abc.Container	class	and	will	respond	to	the	in
operator.

In	the	unlikely	event	that	someone	changes	the	application	and	some_argument	is	of
a	class	that	can't	use	the	in	operator,	the	application	will	write	a	diagnostic
warning	message	and	crash	with	a	TypeError	exception.

Many	classes	work	with	the	in	operator.	Trying	to	wrap	this	in	LBYL



if	statements	may	exclude	a	perfectly	workable	class.	Using	the	EAFP	style
allows	any	class	to	be	used	that	implements	the	in	operator.



Callable
Python's	definition	of	a	callable	object	includes	the	obvious	function	definitions
created	with	the	def	statement.	

The	Callable	type	hint	is	used	to	describe	the	__call__()	method,	a	common
protocol	in	Python.	We	can	see	several	examples	of	this	in	Python	3	Object-
Oriented	Programming,	by	Dusty	Phillips,	from	Packt	Publishing.

When	we	look	at	any	Python	function,	we	see	the	following	behavior:

>>>	def	hello(text:	str):

...				print(f"hello	{text}")

	

>>>	type(hello)

<class	'function'>

>>>	from	collections.abc	import	Callable

>>>	isinstance(hello,	Callable)

True

When	we	create	a	function,	it	will	fit	the	abstract	base	class	Callable.	Every
function	reports	itself	as	Callable.	This	simplifies	the	inspection	of	an	argument
value	and	helps	write	meaningful	debugging	messages.

We'll	take	a	look	at	callables	in	more	detail	in	Chapter	6,	Using	Callables	and
Contexts.



Containers	and	collections
The	collections	module	defines	a	number	of	collections	above	and	beyond	the
built-in	container	classes.	The	container	classes	include	namedtuple(),	deque,
ChainMap,	Counter,	OrderedDict,	and	defaultdict.	All	of	these	are	examples	of	classes
based	on	ABC	definitions.

The	following	is	a	quick	interaction	to	show	how	we	can	inspect	collections	to
see	the	methods	that	they	support:

>>>	isinstance({},	collections.abc.Mapping)	

True	

>>>	isinstance(collections.defaultdict(int),	collections.abc.Mapping)	

True	

We	can	inspect	the	simple	dict	class	to	see	that	it	follows	the	Mapping	protocol	and
will	support	the	required	methods.

We	can	inspect	a	defaultdict	collection	to	confirm	that	it	is	also	part	of	the	Mapping
class	hierarchy.

When	creating	a	new	kind	of	container,	we	have	the	following	two	general
approaches:

Use	the	collections.abc	classes	to	formally	inherit	behaviors	that	match
existing	classes.	This	will	also	support	mypy	type	hint	checking	and	will
also	provide	some	useful	default	behaviors.
Rely	on	type	hinting	to	confirm	that	the	methods	match	the	protocol
definitions	in	the	typing	module.	This	will	only	support	mypy	type	hint
checking.

It's	clearer	(and	more	reliable)	to	use	a	proper	ABC	as	the	base	class	for	one	of
our	application	classes.	The	additional	formality	has	the	following	two
advantages:

It	advertises	what	our	intention	was	to	people	reading	(and	possibly	using
or	maintaining)	our	code.	When	we	make	a	subclass	of
collections.abc.Mapping,	we're	making	a	very	strong	claim	about	how	that	class



will	behave.
It	creates	some	diagnostic	support.	If	we	somehow	fail	to	implement	all	of
the	required	methods	properly,	an	exception	will	be	raised	when	trying	to
create	instances	of	the	abstract	base	class.	If	we	can't	run	the	unit	tests
because	we	can't	create	instances	of	an	object,	then	this	indicates	a	serious
problem	that	needs	to	be	fixed.

The	entire	family	tree	of	built-in	containers	is	reflected	in	the	abstract	base
classes.	Lower-level	features	include	Container,	Iterable,	and	Sized.	These	are	a	part
of	higher-level	constructs;	they	require	a	few	specific	methods,	particularly
__contains__(),	__iter__(),	and	__len__(),	respectively.

Higher-level	features	include	the	following	characteristics:

Sequence	and	MutableSequence:	These	are	the	abstractions	of	the	list	and
tuple	concrete	classes.	Concrete	sequence	implementations	also	include	bytes
and	str.
MutableMapping:	This	is	the	abstraction	of	dict.	It	extends	Mapping,	but	there's	no
built-in	concrete	implementation	of	this.
Set	and	MutableSet:	These	are	the	abstractions	of	the	frozenset	and	set	concrete
classes.

This	allows	us	to	build	new	classes	or	extend	existing	classes	and	maintain	a
clear	and	formal	integration	with	the	rest	of	Python's	built-in	features.

We'll	look	at	containers	and	collections	in	detail	in	Chapter	7,	Creating	Containers
and	Collections.



Numbers
When	creating	new	numbers	(or	extending	existing	numbers),	we	turn	to	the
numbers	module.	This	module	contains	the	abstract	definitions	of	Python's	built-in
numeric	types.	These	types	form	a	tall,	narrow	hierarchy,	from	the	simplest	to
the	most	elaborate.	In	this	context,	simplicity	(and	elaborateness)	refers	to	the
collection	of	methods	available.

There's	an	abstract	base	class	named	numbers.Number	that	defines	all	of	the	numeric
and	number-like	classes.	We	can	see	that	this	is	true	by	looking	at	interactions
like	the	following	one:

>>>	import	numbers	

>>>	isinstance(42,	numbers.Number)	

True	

>>>	355/113													

3.1415929203539825	

>>>	isinstance(355/113,	numbers.Number)	

True	

Clearly,	integer	and	float	values	are	subclasses	of	the	abstract	numbers.Number
class.	The	subclasses	of	Number	include	numbers.Complex,	numbers.Real,	numbers.Rational,
and	numbers.Integral.	These	definitions	are	roughly	parallel	to	the	mathematical
concepts	used	to	define	the	various	classes	of	numbers.

The	decimal.Decimal	class,	however,	doesn't	fit	this	hierarchy	very	well.	We	can
check	the	relationships	using	the	issubclass()	method	as	follows:

>>>	issubclass(decimal.Decimal,	numbers.Number)	

True	

>>>	issubclass(decimal.Decimal,	numbers.Integral)	

False	

>>>	issubclass(decimal.Decimal,	numbers.Real)	

False	

>>>	issubclass(decimal.Decimal,	numbers.Complex)	

False	

>>>	issubclass(decimal.Decimal,	numbers.Rational)	

False	

While	the	decimal.Decimal	class	seems	closely	aligned	with	numbers.Real,	it	is	not
formally	a	subclass	of	this	type.

For	a	concrete	implementation	of	numbers.Rational,	look	at	the	fractions	module.



We'll	look	at	the	various	kinds	of	numbers	in	detail	in	Chapter	8,	Creating
Numbers.



Some	additional	abstractions
We'll	look	at	some	other	interesting	ABC	classes	that	are	less	widely	extended.
It's	not	that	these	abstractions	are	less	widely	used:	it's	more	that	the	concrete
implementations	rarely	need	extensions	or	revisions.

We'll	look	at	the	iterator,	which	is	defined	by	collections.abc.Iterator.	We'll	also
look	at	the	unrelated	concept	of	a	context	manager.	This	isn't	defined	with	the
same	formality	as	other	ABC	classes.	We'll	look	at	this	in	detail	in	Chapter
6,	Using	Callables	and	Contexts.

In	many	cases,	we'll	create	iterators	using	generator	functions	and	the	yield
statement.	We'll	use	an	explicit	type	hint	of	typing.Iterator	for	these	functions.



The	iterator	abstraction
Iterator	objects	are	created	implicitly	when	we	use	an	iterable	container	with	a
for	statement.	We	rarely	expect	to	see	the	iterator	object	itself.	For	the	most	part,
it	will	be	a	concealed	portion	of	the	implementation	of	the	for	statement.	The	few
times	we	do	care	about	the	iterator	object,	we	rarely	want	to	extend	or	revise	the
class	definition.

We	can	expose	the	implicit	iterators	that	Python	uses	through	the	iter()	function.
We	can	interact	with	an	iterator	in	the	following	way:

>>>	x	=	[1,	2,	3]	

>>>	iter(x)	

<list_iterator	object	at	0x1006e3c50>	

>>>	x_iter	=	iter(x)	

>>>	next(x_iter)	

1	

>>>	next(x_iter)	

2	

>>>	next(x_iter)	

3	

>>>	next(x_iter)	

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

StopIteration	

>>>	isinstance(x_iter,	collections.abc.Iterator)	

True	

In	the	preceding	code,	we	created	an	iterator	over	a	list	object,	assigning	it	to	the
x_iter	variable.	The	next()	function	will	step	through	the	values	in	that	iterator.
This	shows	how	iterator	objects	are	stateful,	and	the	next()	function	both	returns
a	value	and	updates	the	internal	state.

The	final	isinstance()	expression	confirmed	that	this	iterator	object	is	an	instance
of	collections.abc.Iterator.

Most	of	the	time,	we'll	work	with	iterators	that	have	been	created	by	the
collection	classes	themselves;	however,	when	we	branch	out	and	build	our	own
collection	classes	or	extend	a	collection	class,	we	may	also	need	to	build	a
unique	iterator.	We'll	look	at	iterators	in	Chapter	7,	Creating	Containers	and
Collections.



Contexts	and	context	managers
A	context	manager	is	used	with	the	with	statement.	We	work	with	a	context
manager	when	we	write	something	like	the	following:

with	function(arg)	as	context:	

				process(context)	

In	the	preceding	code,	function(arg)	creates	the	context	manager.	Once	the
manager	is	available,	the	object	can	be	used	as	needed.	In	the	example,	it's	an
argument	to	a	function.	A	context	manager	class	may	have	methods	to	perform
actions	within	the	scope	of	the	context.	

One	very	commonly	used	context	manager	is	a	file.	Any	time	a	file	is	opened,	a
context	should	be	used	to	guarantee	that	the	file	will	also	be	properly	closed.
Consequently,	we	should	almost	always	use	a	file	in	the	following	way:

with	open("some	file")	as	the_file:	

				process(the_file)	

At	the	end	of	the	with	statement,	we're	assured	that	the	file	will	be	closed
properly.	This	will	release	any	operating	system	resources,	avoiding	resource
leaks	or	incomplete	processing	when	exceptions	are	raised.

The	contextlib	module	provides	several	tools	for	building	proper	context
managers.	Rather	than	providing	an	abstract	base	class,	this	library	offers
decorators,	which	will	transform	simple	functions	into	context	managers,	as	well
as	a	contextlib.ContextDecorator	base	class,	which	can	be	extended	to	build	a	class
that	is	a	context	manager.

We'll	look	at	context	managers	in	detail	in	Chapter	6,	Using	Callables	and
Contexts.



The	abc	and	typing	modules
The	core	method	of	creating	ABCs	is	defined	in	the	abc	module.	This	module
includes	the	ABCMeta	class,	which	provides	several	features.

First,	the	ABCMeta	class	ensures	that	abstract	classes	can't	be	instantiated.	When	a
method	uses	the	@asbtractmethod	decorator,	then	a	subclass	that	fails	to	provide	this
definition	cannot	be	instantiated.	A	subclass	that	provides	all	of	the	required
definitions	for	the	abstract	methods	can	be	instantiated	properly.

Second,	it	provides	definitions	for	__instancecheck__()	and	__subclasscheck__().	These
special	methods	implement	the	isinstance()	and	issubclass()	built-in	functions.
They	provide	the	checks	to	confirm	that	an	object	(or	a	class)	belongs	to	the
proper	ABC.	This	includes	a	cache	of	subclasses	to	speed	up	the	testing.

The	abc	module	also	includes	a	number	of	decorators	for	creating	abstract
method	functions	that	must	be	provided	by	a	concrete	implementation	of	the
abstract	base	class.	The	most	important	of	these	is	the	@abstractmethod	decorator.

If	we	wanted	to	create	a	new	abstract	base	class,	we	would	use	something	like
the	following:

from	abc	import	ABCMeta,	abstractmethod

class	AbstractBettingStrategy(metaclass=ABCMeta):

				@abstractmethod

				def	bet(self,	hand:	Hand)	->	int:

								return	1

				@abstractmethod

				def	record_win(self,	hand:	Hand)	->	None:

								pass

				@abstractmethod

				def	record_loss(self,	hand:	Hand)	->	None:

								pass

This	class	includes	ABCMeta	as	its	metaclass,	making	it	clear	this	will	be	an	abstract
base	class.

This	abstraction	uses	the	abstractmethod	decorator	to	define	three	abstract	methods.
Any	concrete	subclass	must	define	these	in	order	to	be	a	complete



implementation	of	the	abstract	base	class.	For	more	complex	situations,	an
abstract	base	class	can	define	the	__subclasshook__()	method	to	make	more
complex	tests	for	the	required	concrete	method	definitions.

An	example	of	an	abstract	subclass	of	the	AbstractBettingStrategy	class	is	as
follows:

class	Simple_Broken(AbstractBettingStrategy):	

			def	bet(	self,	hand	):	

								return	1	

The	preceding	code	defines	an	abstract	class.	An	instance	can't	be	built	because
the	class	doesn't	provide	the	necessary	implementations	for	all	three	abstract
methods.	

The	following	is	what	happens	when	we	try	to	build	an	instance	of	this	class:

>>>	simple=	Simple_Broken()	

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

TypeError:	Can't	instantiate	abstract	class	Simple_Broken	with	

	abstract	methods	record_loss,	record_win

The	error	message	indicates	that	the	concrete	class	is	incomplete.	The	following
is	a	better	concrete	class	that	passes	the	completeness	test:

class	Simple(AbstractBettingStrategy):	

				def	bet(self,	hand):	

								return	1	

				def	record_win(self,	hand):	

								pass	

				def	record_loss(self,	hand):	

								pass	

We	can	build	an	instance	of	this	class	and	use	it	as	part	of	our	simulation.	The
abstraction	forces	us	to	clutter	up	the	implementation	with	two	unused	methods.
The	bet()	method	should	be	the	only	required	abstract	method.	The	other	two
methods	should	have	already	been	provided	with	the	default	implementation	of	a
single	pass	statement	by	the	abstract	base	class.	



Using	the	__subclasshook__()	method
We	can	define	abstract	base	classes	with	complex	rules	for	overrides	to	create
concrete	subclasses.	This	is	done	by	implementing	the	__subclasshook__()	method
of	the	abstract	base	class,	as	shown	in	the	following	code:

class	AbstractBettingStrategy2(ABC):

				@abstractmethod

				def	bet(self,	hand:	Hand)	->	int:

								return	1

				@abstractmethod

				def	record_win(self,	hand:	Hand)	->	None:

								pass

				@abstractmethod

				def	record_loss(self,	hand:	Hand)	->	None:

								pass

				@classmethod

				def	__subclasshook__(cls,	subclass:	type)	->	bool:

								"""Validate	the	class	definition	is	complete."""

								if	cls	is	AbstractBettingStrategy2:

												has_bet	=	any(hasattr(B,	"bet")	for	B	in	subclass.__mro__)

												has_record_win	=		any(hasattr(B,	"record_win")	for	B	in	subclass.__mro__)

												has_record_loss	=	any(hasattr(B,	"record_loss")	for	B	in	subclass.__mro__)

												if	has_bet	and	has_record_win	and	has_record_loss:

																return	True

								return	False

This	class	is	an	abstract	base	class,	built	by	extension	from	the	ABC	superclass.	As
with	the	previous	example,	a	number	of	@abstractmethod	definitions	are	provided.
Any	subclass	of	this	class	would	be	like	the	previous	examples	of	the
AbstractBettingStrategy	class.

When	trying	to	build	an	instance	of	the	subclass,	the	__subclasshook__()	method	is
invoked	to	determine	whether	the	object	can	be	built.	In	this	case,	there	are	three
individual	checks:	has_bet,	has_record_win,	and	has_record_loss.	If	all	three	checks
pass,	then	the	function	returns	True	to	permit	the	object	to	be	built;	otherwise,	the
function	returns	False	to	prevent	it	building	an	instance	of	an	incomplete	concrete
class.

Using	__subclasshook__()	permits	nuanced	decision	making	with	regard	to	the
validity	of	a	subclass	of	an	abstract	class.	It	can	also	lead	to	confusion	because



the	obvious	rule—that	is,	implement	all	@abstractmethod	methods—isn't	in	use.



Abstract	classes	using	type	hints
We	can	also	do	some	management	of	the	implementation	of	concrete
methods	with	type	hints	and	the	typing	module.	A	concrete	class	will	be	checked
by	mypy	to	be	sure	it	matches	the	abstract	class	type	hints.	This	is	not	as
stringent	as	the	checks	made	by	the	ABCMeta	class,	since	they	don't	happen	at
runtime,	but	only	when	mypy	is	used.	We	can	do	this	by	using	raise
NotImplementedError	in	the	body	of	an	abstract	class.	This	will	create	a	runtime	error
if	the	application	actually	creates	an	instance	of	an	abstract	class.

The	concrete	subclasses	define	the	methods	normally.	The	presence	of	type	hints
means	mypy	can	confirm	that	the	subclass	provides	a	proper	definition	that
matches	the	superclass	type	hints.	This	comparison	between	type	hints	is	perhaps
the	most	important	part	of	creating	concrete	subclasses.	Consider	the	following
two	class	definitions:

from	typing	import	Tuple,	Iterator

class	LikeAbstract:

				def	aMethod(self,	arg:	int)	->	int:

								raise	NotImplementedError

class	LikeConcrete(LikeAbstract):

				def	aMethod(self,	arg1:	str,	arg2:	Tuple[int,	int])	->	Iterator[Any]:

								pass

The	LikeConcrete	class	implementation	of	the	aMethod()	method	is	clearly	different
from	the	LikeAbstract	superclass.	When	we	run	mypy,	we'll	see	an	error	message
like	the	following:

Chapter_5/ch05_ex1.py:96:	error:	Signature	of	"aMethod"	incompatible	with	supertype	"LikeAbstract"

This	will	confirm	that	the	LikeConcrete	subclass	is	not	a	valid	implementation	of
the	aMethod()	method.	This	technique	for	creating	abstract	class	definitions	via
type	hinting	is	a	feature	of	mypy,	and	can	be	used	in	conjunction	with	the	ABCMeta
class	to	create	a	robust	library	that	supports	both	mypy	and	runtime	checks.



Summary,	design	considerations,	and
trade-offs
In	this	chapter,	we	looked	at	the	essential	ingredients	of	abstract	base	classes.	We
saw	a	few	features	of	each	kind	of	abstraction.

We	also	learned	that	one	rule	for	good	class	design	is	to	inherit	as	much	as
possible.	We	saw	two	broad	patterns	here.	We	also	saw	the	common	exceptions
to	this	rule.

Some	application	classes	don't	have	behaviors	that	overlap	with	internal	features
of	Python.	From	our	Blackjack	examples,	a	Card	isn't	much	like	a	number,	a
container,	an	iterator,	or	a	context:	it's	just	a	playing	card.	In	this	case,	we	can
generally	invent	a	new	class	because	there	aren't	any	built-in	features	to	inherit
from.

When	we	look	at	Hand,	however,	we	can	see	that	a	hand	is	clearly	a	container.	As
we	noted	when	looking	at	hand	classes	in	Chapters	2,	The	__init__()	Method,	and	
Chapter	3,	Integrating	Seamlessly	-	Basic	Special	Methods,	the	following	are	three
fundamental	design	strategies:

Wrapping	an	existing	container
Extending	an	existing	container
Inventing	a	wholly	new	kind	of	container

Most	of	the	time,	we'll	be	wrapping	or	extending	an	existing	container.	This	fits
with	our	rule	of	inheriting	as	much	as	possible.

When	we	extend	an	existing	class,	our	application	class	will	fit	into	the	class
hierarchy	neatly.	An	extension	to	the	built-in	list	is	already	an	instance	of
collections.abc.MutableSequence.

When	we	wrap	an	existing	class,	however,	we	have	to	carefully	consider
which	parts	of	the	original	interface	we	want	to	support	and	which	parts	we	don't
want	to	support.	In	our	examples	in	the	previous	chapters,	we	only	wanted	to



expose	the	pop()	method	from	the	list	object	we	were	wrapping.

Because	a	wrapper	class	is	not	a	complete	mutable	sequence	implementation,
there	are	many	things	it	can't	do.	On	the	other	hand,	an	extension	class
participates	in	a	number	of	use	cases	that	just	might	turn	out	to	be	useful.	For
example,	a	hand	that	extends	list	will	turn	out	to	be	iterable.

If	we	find	that	extending	a	class	doesn't	meet	our	requirements,	we	can	resort	to
building	an	entirely	new	collection.	The	ABC	definitions	provide	a	great	deal	of
guidance	on	what	methods	are	required	in	order	to	create	a	collection	that	can
integrate	seamlessly	with	the	rest	of	the	Python	universe.	We'll	look	at	a	detailed
example	of	inventing	a	collection	in	Chapter	7,	Creating	Containers	and
Collections.

In	most	cases,	type	hints	will	help	us	create	abstraction	classes	that	constrain
aspects	of	the	concrete	implementations.	The	abstract	base	class	definitions	are
checked	when	the	application	executes,	introducing	overheads	that	may	be
undesirable.	The	mypy	checks	are	made	—	along	with	unit	tests	checks	—
before	an	application	is	used,	reducing	overheads,	and	improving	confidence	in
the	resulting	application.



Looking	forward
In	the	coming	chapters,	we'll	make	extensive	use	of	the	abstract	base	classes
discussed	in	this	chapter.	In	Chapter	6,	Using	Callables	and	Contexts,	we'll	look	at
the	relatively	simple	features	of	callables	and	contexts.	In	Chapter	7,	Creating
Containers	and	Collections,	we'll	look	at	the	available	containers	and
collections.	We'll	also	look	at	how	to	build	a	unique,	new	kind	of	container	in
this	chapter.	Lastly,	in	Chapter	8,	Creating	Numbers,	we'll	look	at	the	various
numeric	types	and	how	we	can	create	our	own	kind	of	number.



Using	Callables	and	Contexts
The	callable	concept	in	Python	includes	a	variety	of	different	ways	to	create
functions	and	objects	that	behave	like	functions.	We	can	create	callable	objects
that	use	memoization	to	maintain	a	cache	of	answers,	therefore	performing	very
quickly.	In	some	cases,	memoization	is	essential	for	creating	an	algorithm	that
finishes	within	a	reasonable	amount	of	time.

The	concept	of	context	allows	us	to	create	elegant,	reliable	resource
management.	The	with	statement	defines	a	context	and	creates	a	context	manager
to	control	the	resources	used	in	that	context.	Python	files	are	generally	context
managers;	when	used	in	a	with	statement,	they	are	properly	closed.

We'll	look	at	several	ways	to	create	context	managers	using	the	tools	in	the
contextlib	module.	Some	other	useful	abstract	base	classes	are	in	a	separate
submodule	called	collections.abc.

We'll	show	a	number	of	variant	designs	for	callable	objects.	This	will	show	us
why	a	stateful	callable	object	is	sometimes	more	useful	than	a	simple	function.
We'll	also	look	at	how	to	use	some	of	the	existing	Python	context	managers
before	we	dive	in	and	write	our	own	context	manager.

The	following	concepts	will	be	discussed	in	this	chapter:

Designing	callables
Improving	performance
Using	functools	for	memoization
Complexities	and	the	callable	interface
Managing	contexts	and	the	with	statement
Defining	the	_enter_()	and	_exit_()	methods
Context	manager	as	a	factory



Technical	requirements
The	code	files	for	this	chapter	can	be	found	at	https://git.io/fj2Ug.

https://git.io/fj2Ug


Designing	callables
There	are	two	easy	and	commonly-used	ways	to	create	callable	objects	in
Python,	which	are	as	follows:

By	using	the	def	statement	to	create	a	function.
By	creating	an	instance	of	a	class	that	implements	the	_call()_	method.	This
can	be	done	by	using	collections.abc.Callable	as	its	base	class.

Beyond	these	two,	we	can	also	assign	a	lambda	form	to	a	variable.	A	lambda	is
a	small,	anonymous	function	that	consists	of	exactly	one	expression.	We'd	rather
not	emphasize	saving	lambdas	in	a	variable,	as	this	leads	to	the	confusing
situation	where	we	have	a	function-like	callable	that's	not	defined	with	a	def
statement.

The	following	is	a	simple	callable	object,	pow1,	created	from	a	class:

from	typing	import	Callable

IntExp	=	Callable[[int,	int],	int]

class	Power1:

				def	__call__(self,	x:	int,	n:	int)	->	int:

								p	=	1

								for	i	in	range(n):

												p	*=	x

								return	p

pow1:	IntExp	=	Power1()

There	are	three	parts	to	creating	a	callable	object,	as	follows:

The	type	hint	defines	the	parameters	and	return	values	from	the	resulting
callable	object.	In	this	example,	Callable[[int,	int],	int]	defines	a	function
with	two	integer	parameters	and	an	integer	result.	To	save	repeating	it,	a
new	type	name,	IntExp,	is	assigned.
We	defined	the	class	with	a	__call__()	method.	The	type	signature	here
matches	the	IntExp	type	definition.	
We	created	an	instance	of	the	class,	pow1().	This	object	is	callable	and
behaves	like	a	function.	We've	also	provided	a	type	hint	so	that	mypy	can
confirm	that	the	callable	object	will	have	the	proper	signature.

The	algorithm	for	computing	 	seems	to	be	inefficient.	We'll	address	that	later.



Clearly,	the	body	of	the	__call__()	method	is	so	simple	that	a	full	class	definition
isn't	really	necessary.	In	order	to	show	the	various	optimizations,	we'll	start	with
this	simple	callable	object	rather	than	mutate	a	function	into	a	callable	object.

We	can	now	use	the	pow1()	function	just	as	we'd	use	any	other	function.	Here's
how	to	use	the	pow1()	function	in	a	Python	command	line:

>>>	pow1(2,	0)	

1	

>>>	pow1(2,	1)	

2	

>>>	pow1(2,	2)	

4	

>>>	pow1(2,	10)	

1024	

We've	evaluated	the	callable	object	with	various	kinds	of	argument	values.

It's	not	required	to	make	a	callable	object	a	subclass	of	abc.Callable	when	working
with	mypy;	however,	using	the	abstract	base	class	can	help	with	debugging.

Consider	this	flawed	definition:

class	Power2(collections.abc.Callable):	

				def	__call_(	self,	x,	n	):	

								p=	1	

								for	i	in	range(n):	

												p	*=	x	

								return	p	

The	preceding	class	definition	has	an	error	and	doesn't	meet	the	definition	of	the
callable	abstraction.

The	following	is	what	happens	when	we	try	to	create	an	instance	of	this	class:

>>>	pow2:	IntExp	=	Power2()	

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

TypeError:	Can't	instantiate	abstract	class	Power2	with	abstract	

	methods	__call__

It	may	not	be	obvious	exactly	what	went	wrong,	but	we	have	a	fighting	chance
to	debug	this.	If	we	hadn't	subclassed	collections.abc.Callable,	we'd	have	a
somewhat	more	mysterious	problem	to	debug.

Here's	a	version	of	a	broken	callable	that	relies	on	type	hints	to	detect	the
problem.	This	is	nearly	identical	to	the	correct	Power	class	shown	previously.	The



code	that	contains	a	tragic	flaw	is	as	follows:

class	Power3:

				def	__call_(self,	x:	int,	n:	int)	->	int:

								p	=	1

								for	i	in	range(n):

												p	*=	x

								return	p

When	we	run	mypy,	we	will	see	complaints	about	this	code.	The	expected	type
of	the	callable	object	doesn't	match	the	defined	IntExp	type:

#	Chapter_6/ch06_ex1.py:68:	error:	Incompatible	types	in	assignment	(expression	has	type	"Power3",	variable	has	type	"Callable[[int,	int],	int]")

If	we	ignore	the	mypy	error	and	try	to	use	this	class,	we'll	see	runtime
problems.	The	following	is	what	happens	when	we	try	to	use	Power3	as	a	class	that
doesn't	meet	the	expectations	of	callables	and	isn't	a	subclass	of	abc.Callable
either:

>>>	pow3:	IntExp	=	Power3()	

>>>	pow3(2,	5)	

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

TypeError:	'Power3'	object	is	not	callable	

This	error	provides	less	guidance	as	to	why	the	Power3	class	definition	is	flawed.
The	mypy	hint	provides	some	assistance	in	locating	the	problem.



Improving	performance
We'll	look	at	two	performance	tweaks	for	the	Power1	class	shown	previously.

First,	we	need	to	switch	to	a	better	algorithm.	Then,	we	will	require	a	better
algorithm	combined	with	memoization,	which	involves	a	cache;	therefore,	the
function	becomes	stateful.	This	is	where	callable	objects	shine.

The	first	modification	is	to	use	a	divide-and-conquer	design	strategy.	The
previous	version	chopped	the	computation	of	 	into	 	steps;	the	loop	carried
out	n	individual	multiplication	operations.	If	we	can	find	a	way	to	split	the
problem	into	two	equal	portions,	the	problem	decomposes	into	 	steps.

For	example,	pow1(2,1024),	the	Power1	callable,	performs	1,024	individual
multiplication	operations.	We	can	optimize	this	down	to	10	multiplications,	a
significant	speedup.

Rather	than	simply	multiplying	by	a	fixed	value,	we'll	use	the	fast
exponentiation	algorithm.	It	uses	three	essential	rules	for	computing,	as	follows:

If	 ,	then	 ,	and	the	result	is	simply	1.
If	n	is	odd,	 ,	and	the	result	is	 .	This	involves	a
recursive	computation	of	 .	This	does	one	multiplication.	However,	

is	an	even	number,	which	can	be	optimized.
If	n	is	even,	 ,	and	the	result	is	 .	This	involves	a
recursive	computation	of	 .	This	chops	the	number	of	multiplications	in
half.

The	following	is	these	recursive	callable	object:

class	Power4:

				def	__call__(self,	x:	int,	n:	int)	->	int:

								if	n	==	0:

												return	1

								elif	n	%	2	==	1:

												return	self.__call__(x,	n	-	1)	*	x

								else:		#	n	%	2	==	0:

												t	=	self.__call__(x,	n	//	2)

												return	t	*	t



pow4:	IntExp	=	Power4()

We	applied	the	three	rules	to	the	input	value:

If	n	is	zero,	we'll	return	1.
If	n	is	odd,	we'll	make	a	recursive	call	and	return	 .

If	n	is	even,	we'll	make	a	recursive	call	and	return	 .

The	execution	time	is	dramatically	faster.	We	can	use	the	timeit	module	to	see	the
difference	in	performance.	See	Chapter	1,	Preliminaries,	Tools,	and
Techniques	for	information	on	using	timeit.	When	we	compare	running
pow1(2,1024)	and	pow4(2,1024)	10,000	times,	we'll	see	something	like	183	seconds
for	the	previous	version	versus	8	seconds	for	this	version.

The	following	is	how	we	can	gather	performance	data	using	timeit:

import	timeit	

iterative	=	timeit.timeit(	"pow1(2,1024)","""	

class	Power1():	

				def	__call__(self,	x:	int,	n:	int)	->	int:

								p=	1	

								for	i	in	range(n):	

												p	*=	x	

								return	p	

	

pow1=	Power1()	

""",	number=100_000	)	

print("Iterative",	iterative)	

We	imported	the	timeit	module.	The	timeit.timeit()	function	will	evaluate	a	given
statement	in	the	defined	context.	In	this	case,	our	statement	is	the	pow1(2,1024)
expression.	The	context	for	this	statement	is	the	definition	of	the	pow1()	callable
object;	this	includes	the	import,	class	definition,	and	creation	of	the	pow1	instance.

Note	that	we	provided	number=100_000	to	speed	things	up.	If	we	had	used	the
default	value	for	the	number	of	iterations,	it	could	have	taken	almost	two
minutes.



Using	memoization	or	caching
The	idea	behind	memoization	is	to	cache	previous	results	to	avoid	recomputing
them.	We'll	use	considerably	more	memory,	but	we	can	also	dramatically	speed
up	performance	by	avoiding	computation.

An	ordinary	function	doesn't	have	a	place	to	cache	previous	results.	A	function	is
not	expected	to	be	stateful.	A	callable	object,	however,	can	be	stateful.	It	can
include	a	cache	of	previous	results.

The	following	is	a	memoized	version	of	our	Power	callable	object:

class	Power5:

				def	__init__(self):

								self.memo	=	{}

				def	__call__(self,	x:	int,	n:	int)	->	int:

								if	(x,	n)	not	in	self.memo:

												if	n	==	0:

																self.memo[x,	n]	=	1

												elif	n	%	2	==	1:

																self.memo[x,	n]	=	self.__call__(x,	n-1)	*	x

												elif	n	%	2	==	0:

																t	=	self.__call__(x,	n	//	2)

																self.memo[x,	n]	=	t	*	t

												else:

																raise	Exception("Logic	Error")

								return	self.memo[x,	n]

pow5:	IntExp	=	Power5()

We	revised	our	algorithm	to	work	with	a	self.memo	cache.	This	is	initialized	to	an
empty	mapping.	In	the	__call__()	method,	the	cache	is	checked	for	previously
computed	answers.

If	the	parameter	values	have	been	requested	previously,	the	cached	result	is
returned	and	no	computation	is	performed.	This	is	the	big	speedup	that	we	spoke
of	earlier.

Otherwise,	the	parameter	values	are	not	present	in	the	cache.	In	this	missing

value	case,the	value	of	 	must	be	computed	and	saved.	The	three	rules	to
compute	the	fast	exponent	are	used	to	get	and	put	values	in	the	cache.	This



assures	us	that	future	calculations	will	be	able	to	exploit	the	cached	values.

The	importance	of	memoization	can't	be	stressed	enough.	The	reduction	in
computation	can	be	dramatic.	It	is	commonly	done	by	replacing	a	slow,
expensive	function	with	a	callable	object.

Memoization	doesn't	work	well	with	float	values.	The	lack	of	exact	match	equality	means
some	kind	of	approximately-equal	test	needs	to	be	made	against	the	cached	values.	When
working	with	float	values,	either	rounding	needs	to	be	used,	or	some	more	sophisticated	cache
search	will	be	required.



Using	functools	for	memoization
The	Python	library	includes	a	memoization	decorator	in	the	functools	module.	We
can	use	this	module	instead	of	creating	our	own	callable	object.

We	can	use	this	as	follows:

from	functools	import	lru_cache

@lru_cache()

def	pow6(x:	int,	n:	int)	->	int:

				if	n	==	0:

								return	1

				elif	n	%	2	==	1:

								return	pow6(x,	n-1)	*	x

				else:		#	n	%	2	==	0:

								t	=	pow6(x,	n	//	2)

								return	t	*	t

This	code	defines	a	function,	pow6(),	which	is	decorated	with	a	Least	Recently
Used	(LRU)	cache.	Previous	requests	are	stored	in	a	memoization	cache.	The
idea	behind	an	LRU	cache	is	that	the	most	recently	made	requests	are	kept	and
the	oldest	requests	are	quietly	purged.	We	can	use	@lru_cache(256),	for	example,	to
limit	the	cache	to	256	entries,	thereby	optimizing	memory	use.

Using	timeit,	we	can	see	that	10,000	iterations	of	pow5()	run	in	about	1	second,
while	the	iterations	for	pow6()	run	in	about	8	seconds.

What	this	also	shows	is	that	a	trivial	use	of	timeit	can	misstate	the	performance
of	the	memoization	algorithms.	If	each	request	is	recomputing	a	previously
cached	answer,	only	the	first	iteration	–	with	an	empty	cache	–	performs	the
computation.



Aiming	for	simplicity	using	a	callable
interface
The	idea	behind	a	callable	object	is	that	we	have	a	class	interface	focused	on	a
single	method.	This	is	also	true	for	simple	function	definitions.

Some	objects	have	multiple	relevant	methods.	A	Blackjack	Hand,	for	example,	has
to	add	cards	and	produce	a	total.	A	Blackjack	Player	has	to	place	bets,	accept
hands,	and	make	play	decisions	(for	example,	hit,	stand,	split,	insure,	and	double
down).	These	are	more	complex	interfaces	that	are	not	suitable	to	be	callables.

The	betting	strategy,	however,	is	a	candidate	for	being	a	callable.	While	it	will	be
implemented	as	several	methods	to	set	the	state	and	get	a	bet,	this	seems
excessive.	For	this	simple	case,	the	strategy	can	be	a	callable	interface	with	a
few	public	attributes.

The	following	is	the	straight	betting	strategy,	which	is	always	the	same:

class	BettingStrategy:	

				def	__init__(self)	->	None:	

							self.win	=	0	

							self.loss	=	0	

				def	__call__(self)	->	int:	

								return	1	

bet	=	BettingStrategy()	

The	idea	of	this	interface	is	that	a	Player	object	will	inform	the	betting	strategy	of
win	amounts	and	loss	amounts.	The	Player	object	might	have	methods	such	as	the
following	to	inform	the	betting	strategy	about	the	outcome:

				def	win(self,	amount)	->	None:	

								self.bet.win	+=	1	

								self.stake	+=	amount	

				def	loss(self,	amount)	->	None:	

									self.bet.loss	+=	1	

									self.stake	-=	amount	

These	methods	inform	a	betting	strategy	object	(the	self.bet	object)	whether	the
hand	was	a	win	or	a	loss.	When	it's	time	to	place	a	bet,	the	Player	object	will
perform	something	like	the	following	operation	to	get	the	current	betting	level:



				def	initial_bet(self)	->	int:	

								return	self.bet()	

This	is	a	pleasantly	short	method	implementation.	After	all,	the	betting	strategy
doesn't	do	much	other	than	encapsulate	a	few,	relatively	simple	rules.

The	compactness	of	the	callable	interface	can	be	helpful.	We	don't	have	many
method	names,	and	we	don't	have	a	complex	set	of	syntaxes	for	a	class	to
represent	something	as	simple	as	bet	amount.



Complexities	and	the	callable
interface
Let's	see	how	well	this	interface	design	holds	up	as	our	processing	becomes
more	complex.	The	following	is	the	double-up	on	each	loss	strategy	(also	known
as	the	Martingale	betting	system):

class	BettingMartingale(BettingStrategy):

				def	__init__(self)	->	None:

								self._win	=	0

								self._loss	=	0

								self.stage	=	1

				@property

				def	win(self)	->	int:

								return	self._win

				@win.setter

				def	win(self,	value:	int)	->	None:

								self._win	=	value

								self.stage	=	1

				@property

				def	loss(self)	->	int:

								return	self._loss

				@loss.setter

				def	loss(self,	value:	int)	->	None:

								self._loss	=	value

								self.stage	*=	2

				def	__call__(self)	->	int:

								return	self.stage

Each	loss	doubles	the	betting	by	multiplying	the	stage	by	two.	This	goes	on	until
we	win	and	recoup	our	losses,	reach	the	table	limit,	or	go	broke	and	can	no
longer	place	any	bets.	Casinos	limit	this	by	imposing	table	limits.

Whenever	we	win,	the	betting	is	reset	to	the	base	bet.	The	stage	variable	is	reset
to	have	a	value	of	1.

The	goal	is	to	easily	access	an	attribute	value.	The	client	of	this	class	will	be	able
to	use	bet.win	+=	1.	This	can	depend	on	the	property	setter	methods	to	make
additional	state	changes	based	on	the	wins	and	losses.	We	only	really	care	about
the	setter	properties,	but	we	must	define	the	getter	properties	in	order	to	clearly



create	the	setter	properties.	In	addition	to	counting	wins	and	losses,	the	setter
methods	also	set	the	stage	instance	variable.

We	can	see	this	class	in	action	in	the	following	code	snippet:

>>>	bet=	BettingMartingale()	

>>>	bet()	

1	

>>>	bet.win	+=	1	

>>>	bet()	

1	

>>>	bet.loss	+=	1	

>>>	bet()	

2	

The	interface	to	this	object	is	still	quite	simple.	We	can	either	count	the	wins	and
reset	the	bet	to	the	base,	or	we	can	count	the	losses,	and	the	bets	will	double.

The	use	of	properties	made	the	class	definition	long	and	hideous.	Since	we're
really	only	interested	in	the	setter	properties	and	not	the	getter	properties,	we	can
use	__setattr__()	to	streamline	the	class	definition	somewhat,	as	shown	in	the
following	code:

class	BettingMartingale2(BettingStrategy):

				def	__init__(self)	->	None:

								self.win	=	0

								self.loss	=	0

								self.stage	=	1

				def	__setattr__(self,	name:	str,	value:	int)	->	None:

								if	name	==	"win":

												self.stage	=	1

								elif	name	==	"loss":

												self.stage	*=	2

								super().__setattr__(name,	value)

				def	__call__(self)	->	int:

								return	self.stage

We	used	__setattr__()	to	monitor	the	changes	to	the	win	and	loss	attributes.	In
addition	to	setting	the	instance	variables	using	super().__setattr__(),	we	also
updated	the	internal	state	for	the	betting	amount.

This	is	a	nicer	looking	class	definition,	and	it	retains	the	same,	simple	interface
as	the	original	callable	object	with	two	attributes.



Managing	contexts	and	the	with
statement
Contexts	and	context	managers	are	used	in	several	places	in	Python.	We'll	look
at	a	few	examples	to	establish	the	basic	terminology.

Python	defines	context	using	the	with	statement.	The	following	program	is	a
small	example	that	parses	a	log	file	to	create	a	useful	CSV	summary	of	that	log.
Since	there	are	two	open	files,	this	will	use	the	nested	with	contexts.	The	example
uses	a	complex	regular	expression,	format_1_pat.	We'll	define	this	shortly.

We	might	see	something	similar	to	the	following	in	an	application	program:

from	pathlib	import	Path

import	gzip	

import	csv	

source_path	=	Path.cwd()/"data"/"compressed_data.gz"

target_path	=	Path.cwd()/"data"/"subset.csv"

with	target_path.open('w',	newline='')	as	target:	

				wtr=	csv.writer(	target	)	

				with	gzip.open(source_path)	as	source:	

								line_iter	=	(b.decode()	for	b	in	source)

								row_iter	=	Counter(format_1_pat.match(line)	for	line	in	line_iter)

								non_empty_rows:	Iterator[Match]	=	filter(None,	row_iter)

								wtr.writerows(m.groups()	for	m	in	non_empty_rows)

Two	contexts	with	two	context	managers	are	part	of	this	example:

The	outermost	context	starts	with	the	with	target_path.open('w',	newline='')	as
target:	statement.	The	path.open()	method	opens	a	file	that	is	also	a	context
manager	and	assigns	it	to	the	target	variable	for	further	use.
The	inner	context	starts	with	the	with	gzip.open(source_path,	"r")	as	source:
statement.	This	gzip.open()	function	opens	the	given	path	and	also	behaves	as
a	context	manager.	

When	the	with	statements	end,	the	contexts	exit	and	the	files	are	properly	closed;
this	means	that	all	of	the	buffers	are	flushed	and	the	operating	system	resources
are	released.	Even	if	there's	an	exception	in	the	body	of	the	with	context,	the
context	manager's	exit	will	be	processed	correctly	and	the	file	will	be	closed.



Always	use	a	with	statement	around	a	path.open()	and	related	file-system	operations

Since	files	involve	operating	system	(OS)	resources,	it's	important	to	be	sure	that	the
entanglements	between	our	applications	and	the	OS	are	released	as	soon	as	they're	no	longer
needed.	The	with	statement	ensures	that	resources	are	used	properly.

Just	to	complete	the	example,	the	following	is	the	regular	expression	used	to
parse	the	Apache	HTTP	server	log	files	in	the	Common	Log	Format:

import	re	

format_1_pat=	re.compile(	

				r"([\d\.]+)\s+"	#	digits	and	.'s:	host	

				r"(\S+)\s+"					#	non-space:	logname	

				r"(\S+)\s+"					#	non-space:	user	

				r"\[(.+?)\]\s+"	#	Everything	in	[]:	time	

				r'"(.+?)"\s+'			#	Everything	in	"":	request	

				r"(\d+)\s+"					#	digits:	status	

				r"(\S+)\s+"					#	non-space:	bytes	

				r'"(.*?)"\s+'			#	Everything	in	"":	referrer	

				r'"(.*?)"\s*'			#	Everything	in	"":	user	agent	

)	

The	preceding	expression	located	the	various	log	format	fields	used	in	the
previous	example.



Using	the	decimal	context
Another	context	that	is	used	frequently	is	the	decimal	context.	This	context
defines	a	number	of	properties	of	the	decimal.Decimal	calculation,	including	the
quantization	rules	used	to	round	or	truncate	values.

We	might	see	application	programming	that	looks	similar	to	the	following	code
snippet:

import	decimal	

PENNY	=	decimal.Decimal("0.00")	

	

price	=	decimal.Decimal('15.99')	

rate	=	decimal.Decimal('0.0075')	

print(f"Tax={(price	*	rate).quantize(PENNY)},	Fully={price	*	rate}")

	

with	decimal.localcontext()	as	ctx:	

				ctx.rounding	=	decimal.ROUND_DOWN	

				tax	=	(price*rate).quantize(PENNY)	

print(f"Tax={tax}")

The	preceding	example	shows	both	a	default	context	as	well	as	a	local	context.
The	default	context	is	shown	first,	and	it	uses	the	default	rounding	rule.

The	localized	context	begins	with	the	with	decimal.localcontext()	as	ctx:	statement.
Within	this	context,	the	decimal	rounding	has	been	defined	to	round	down	for
this	particular	calculation.

The	with	statement	is	used	to	assure	that	the	original	context	is	restored	after	the
localized	change.	Outside	this	context,	the	default	rounding	applies.	Inside	this
context,	a	modified	rounding	rule	applies.



Other	contexts
There	are	a	few	other	common	contexts.	Almost	all	of	them	are	associated	with
basic	input/output	operations.	Most	modules	that	open	a	file	create	a	context
along	with	the	file-like	object.

Contexts	are	also	associated	with	locking	and	database	transactions.	We	may
acquire	and	release	an	external	lock,	such	as	a	semaphore,	or	we	may	want	a
database	transaction	to	properly	commit	when	it's	successful	or	roll	back	when	it
fails.	These	are	all	the	things	that	have	defined	contexts	in	Python.

The	PEP	343	document	provides	a	number	of	other	examples	of	how	the	with
statement	and	context	managers	might	be	used.	There	are	also	other	places
where	we	might	like	to	use	a	context	manager.

We	may	need	to	create	classes	that	are	simply	context	managers,	or	we	may	need
to	create	classes	that	can	have	multiple	purposes,	one	of	which	is	to	be	a	context
manager.	We'll	look	at	a	number	of	design	strategies	for	contexts.

We'll	return	to	this	again	in	Chapter	9,	Decorators	and	Mixins	–	Cross-Cutting
Aspects,	where	we	can	cover	a	few	more	ways	to	create	classes	that	have
context	manager	features.



Defining	the	__enter__()	and
__exit__()	methods
The	defining	feature	of	a	context	manager	is	that	it	has	two	special
methods:	__enter__()	and	__exit__().	These	are	used	by	the	with	statement	to	enter
and	exit	the	context.	We'll	use	a	simple	context	so	that	we	can	see	how	they
work.

We'll	often	use	context	managers	to	make	global	state	changes.	This	might	be	a
change	to	the	database	transaction	status	or	a	change	to	the	locking	status	of	a
resource,	something	that	we	want	to	do	and	then	undo	when	the	transaction	is
complete.

For	this	example,	we'll	make	a	global	change	to	the	random	number	generator.
We'll	create	a	context	in	which	the	random	number	generator	uses	a	fixed	and
known	seed,	providing	a	fixed	sequence	of	values.

The	following	is	the	context	manager	class	definition:

import	random

from	typing	import	Optional,	Type

from	types	import	TracebackType

class	KnownSequence:

				def	__init__(self,	seed:	int	=	0)	->	None:

								self.seed	=	0

				def	__enter__(self)	->	'KnownSequence':

								self.was	=	random.getstate()

								random.seed(self.seed,	version=1)

								return	self

				def	__exit__(

												self,

												exc_type:	Optional[Type[BaseException]],

												exc_value:	Optional[BaseException],

												traceback:	Optional[TracebackType]

				)	->	Optional[bool]:

								random.setstate(self.was)

								return	False

We	defined	the	required	__enter__()	and	__exit__()	methods	for	the	context
manager.	The	__enter__()	method	will	save	the	previous	state	of	the	random



module	and	then	reset	the	seed	to	a	given	value.	The	__exit__()	method	will
restore	the	original	state	of	the	random	number	generator.

Note	that	__enter__()	returns	self.	This	is	common	for	mixin	context	managers
that	have	been	added	into	other	class	definitions.	We'll	look	at	the	concept	of
a	mixin	in	Chapter	9,	Decorators	And	Mixins	–	Cross-Cutting	Aspects.	Note	that
the	__enter__()	method	cannot	have	a	type	hint	that	refers	to	the	KnownSequence	class,
because	the	class	definition	isn't	complete.	Instead,	a	string,	'KnownSequence',	is
used;	mypy	will	resolve	this	to	the	class	when	the	type	hint	checking	is	done.

The	__exit__()	method's	parameters	will	have	the	value	of	None	under	normal
circumstances.	Unless	we	have	specific	exception-handling	needs,	we	generally
ignore	the	argument	values.	We'll	look	at	exception	handling	in	the	following
code.	Here's	an	example	of	using	the	context	to	print	five	bunches	of	random
numbers:

print(tuple(random.randint(-1,36)	for	i	in	range(5)))	

with	KnownSequence():	

				print(tuple(random.randint(-1,36)	for	i	in	range(5)))	

print(tuple(random.randint(-1,36)	for	i	in	range(5)))	

with	KnownSequence():	

				print(tuple(random.randint(-1,36)	for	i	in	range(5)))	

print(tuple(random.randint(-1,36)	for	i	in	range(5)))	

The	two	groups	of	random	numbers	created	within	the	context	managed	by	an
instance	of	KnownSequence,	produce	a	fixed	sequence	of	values.	Outside	the	two
contexts,	the	random	seed	is	restored,	and	we	get	random	values.

The	output	will	look	like	the	following	(in	most	cases):

(12,	0,	8,	21,	6)	

(23,	25,	1,	15,	31)	

(6,	36,	1,	34,	8)	

(23,	25,	1,	15,	31)	

(9,	7,	13,	22,	29)	

Some	of	this	output	is	machine-dependent.	While	the	exact	values	may	vary,	the
second	and	fourth	lines	will	match	because	the	seed	was	fixed	by	the	context.
The	other	lines	will	not	necessarily	match,	because	they	rely	on	the	random
module's	own	randomization	features.



Handling	exceptions
Exceptions	that	arise	in	a	context	manager's	block	will	be	passed	to	the	__exit__()
method	of	the	context	manager.	The	standard	bits	of	an	exception	–	the	class,
arguments,	and	the	traceback	stack	–	will	all	be	provided	as	argument	values.

The	__exit__()	method	can	do	one	of	the	following	two	things	with	the	exception
information:

Silence	the	exception	by	returning	some	True	value.
Allow	the	exception	to	rise	normally	by	returning	any	other	False	value.
Returning	nothing	is	the	same	as	returning	None,	which	is	a	False	value;	this
allows	the	exception	to	propagate.

An	exception	might	also	be	used	to	alter	what	the	context	manager	does	on	exit.
We	might,	for	example,	have	to	carry	out	special	processing	for	certain	types	of
OS	errors	that	might	arise.



Context	manager	as	a	factory
We	can	create	a	context	manager	class,	which	is	a	factory	for	an	application
object.	This	gives	us	a	pleasant	separation	of	design	considerations	without
cluttering	up	an	application	class	with	context	management	features.

Let's	say	we	want	a	deterministic	Deck	for	dealing	in	Blackjack.	This	isn't	as
useful	as	it	might	sound.	For	unit	testing,	we'll	need	a	complete	mock	deck	with
specific	sequences	of	cards.	This	has	the	advantage	that	the	context	manager
works	with	the	classes	we	already	saw.

We'll	extend	the	simple	context	manager	shown	earlier	to	create	a	Deck	that	can
be	used	within	the	with	statement	context.

The	following	is	a	class	that	is	a	factory	for	Deck	and	also	tweaks	the	random
module:

class	Deterministic_Deck:

				def	__init__(self,	*args,	**kw)	->	None:

								self.args	=	args

								self.kw	=	kw

				def	__enter__(self)	->	Deck:

								self.was	=	random.getstate()

								random.seed(0,	version=1)

								return	Deck(*self.args,	**self.kw)

				def	__exit__(

												self,

												exc_type:	Optional[Type[BaseException]],

												exc_value:	Optional[BaseException],

												traceback:	Optional[TracebackType]

				)	->	Optional[bool]:

								random.setstate(self.was)

								return	False

The	preceding	context	manager	class	preserves	the	argument	values	so	that	it	can
create	a	Deck	with	the	given	arguments.

The	__enter__()	method	preserves	the	old	random	number	state	and	then	sets	the
random	module	in	a	mode	that	provides	a	fixed	sequence	of	values.	This	is	used	to
build	and	shuffle	the	deck.



Note	that	the	__enter__()	method	returns	a	newly	minted	Deck	object	to	be	used	in
the	with	statement	context.	This	is	assigned	via	the	as	clause	in	the	with	statement.
The	type	hint	specifies	Deck	as	the	return	type	of	this	method.	The	following	is	a
way	to	use	this	factory	context	manager:

with	Deterministic_Deck(size=6)	as	deck:	

				h	=	Hand(deck.pop(),	deck.pop(),	deck.pop())	

The	preceding	example	of	code	guarantees	a	specific	sequence	of	cards	that	we
can	use	for	demonstration	and	testing	purposes.



Cleaning	up	in	a	context	manager
In	this	section,	we'll	discuss	a	more	complex	context	manager	that	attempts	some
cleanup	when	there	are	problems.

This	addresses	the	common	issue	where	we	want	to	save	a	backup	copy	of	a	file
that	our	application	is	rewriting.	We	want	to	be	able	to	do	something	similar	to
the	following:

with	Updating(some_path):	

				with	some_path.open('w')	as	target_file:	

								process(target_file)	

The	intent	is	to	have	the	original	file	renamed	to	some_file	copy.	If	the	context
works	normally,	that	is,	no	exceptions	are	raised,	then	the	backup	copy	can	be
deleted	or	renamed	to	some_file	old.

If	the	context	doesn't	work	normally,	that	is,	an	exception	is	raised,	we	want	to
rename	the	new	file	to	some_file	error	and	rename	the	old	file	to	some_file,	putting
the	original	file	back	the	way	it	was	before	the	exception.

We	will	need	a	context	manager	similar	to	the	following:

from	pathlib	import	Path

from	typing	import	Optional

class	Updating:

				def	__init__(self,	target:	Path)	->	None:

								self.target:	Path	=	target

								self.previous:	Optional[Path]	=	None

				def	__enter__(self)	->	None:

								try:

												self.previous	=	(

																self.target.parent	

																				/	(self.target.stem	+	"	backup")

																).with_suffix(self.target.suffix)

												self.target.rename(self.previous)

								except	FileNotFoundError:

												self.previous	=	None

				def	__exit__(

												self,

												exc_type:	Optional[Type[BaseException]],

												exc_value:	Optional[BaseException],

												traceback:	Optional[TracebackType]



				)	->	Optional[bool]:

								if	exc_type	is	not	None:

												try:

																self.failure	=	(

																				self.target.parent	

																								/	(self.target.stem	+	"	error")

																				).with_suffix(self.target.suffix)

																self.target.rename(self.failure)

												except	FileNotFoundError:

																pass		#	Never	even	got	created.

												if	self.previous:

																self.previous.rename(self.target)

								return	False

This	context	manager's	__enter__()	method	will	attempt	to	preserve	any	previous
copy	of	the	named	file	if	it	already	exists.	If	it	didn't	exist,	there's	nothing	to
preserve.	The	file	is	preserved	by	simply	renaming	it	to	a	name	such	as	"file
backup.ext".

The	__exit__()	method	will	be	given	information	about	any	exception	that
occurred	in	the	body	of	context.	If	there	is	no	exception,	nothing	more	needs	to
be	done.	If	there	is	an	exception,	then	the	__exit__()	method	will	try	to	preserve
the	output	(with	a	suffix	of	"error")	for	debugging	purposes.	It	will	also	put	any
previous	copy	of	the	file	back	in	place	by	renaming	the	backup	to	the	original
name.

This	is	functionally	equivalent	to	a	try-except-finally	block.	However,	it	has	the
advantage	that	it	separates	the	relevant	application	processing	from	the	context
management.	The	application	processing	is	written	in	the	with	statement.	The
context	issues	are	set	aside	into	a	separate	class.



Summary
We	looked	at	three	of	the	special	methods	for	class	definition.	The	__call__()
method	is	used	when	creating	a	callable.	The	callable	is	used	to	create	functions
that	are	stateful.	Our	primary	example	is	a	function	that	memoizes	previous
results.

The	__enter__()	and	__exit__()	methods	are	used	to	create	a	context	manager.	The
context	is	used	to	handle	processing	that	is	localized	to	the	body	of	a	with
statement.	Most	of	our	examples	include	input-output	processing.	Python	also
uses	localized	contexts	for	the	decimal	state.	Other	examples	include	making
patches	for	unit	testing	purposes	or	acquiring	and	releasing	locks.



Callable	design	considerations	and
trade-offs
When	designing	a	callable	object,	we	need	to	consider	the	following:

The	first	consideration	is	the	interface	of	the	object.	If	there's	a	reason	for
the	object	to	have	a	function-like	interface,	then	a	callable	object	is	a
sensible	design	approach.	Using	collections.abc.Callable	assures	that	the
callable	API	is	built	correctly,	and	it	informs	anyone	reading	the	code	what
the	intent	of	the	class	is.
The	secondary	consideration	is	the	statefulness	of	the	function.	Ordinary
functions	in	Python	have	no	hysteresis	–	there's	no	saved	state.	A	callable
object,	however,	can	easily	save	a	state.	The	memoization	design	pattern
makes	good	use	of	stateful	callable	objects.

The	only	disadvantage	of	a	callable	object	is	the	amount	of	syntax	that	is
required.	An	ordinary	function	definition	is	shorter	and	therefore	less	error-prone
and	easier	to	read.

It's	easy	to	migrate	a	defined	function	to	a	callable	object,	as	follows:

def	x(args):	

				body	

The	preceding	function	can	be	converted	into	the	following	callable	object:

class	X:	

				def	__call__(self,	args):	

								body	

x=	X()	

This	is	the	minimal	set	of	changes	required	to	get	the	function	to	pass	unit	tests
in	the	new	form.	The	existing	body	will	work	in	the	new	context	unmodified.

Once	the	change	has	been	made,	features	can	be	added	to	the	callable	object's
version	of	the	function.



Context	manager	design
considerations	and	trade-offs
A	context	is	generally	used	for	acquire/release,	open/close,	and	lock/unlock
types	of	operation	pairs.	Most	of	the	examples	are	file	I/O	related,	and	most	of
the	file-like	objects	in	Python	are	already	proper	context	managers.

A	context	manager	is	almost	always	required	for	anything	that	has	steps	that
bracket	the	essential	processing.	In	particular,	anything	that	requires	a	final
close()	method	should	be	wrapped	by	a	context	manager.

Some	Python	libraries	have	open/close	operations,	but	the	objects	aren't	proper
contexts.	The	shelve	module,	for	example,	doesn't	create	a	proper	context.

We	can	(and	should)	use	the	contextllib.closing()	context	on	a	shelve	file.	We'll
show	this	in	Chapter	10,	Serializing	and	Saving	–	JSON,	YAML,	Pickle,	CSV,	and
XML.

For	our	own	classes	that	require	a	close()	method,	we	can	use	the	closing()
function.	When	confronted	with	a	class	that	has	any	kind	of	acquire/release	life
cycle,	we	want	to	acquire	resources	in	__init__()	or	a	class-level	open()	method
and	release	them	in	close().	That	way,	our	class	can	integrate	well	with	this
closing()	function.

The	following	is	an	example	of	a	class	being	wrapped	that	requires	a	close()
function:

with	contextlib.closing(MyClass())	as	my_object:	

				process(my_object)	

The	contextllib.closing()	function	will	invoke	the	close()	method	of	the	object	that
is	given	as	an	argument.	We	can	guarantee	that	my_object	will	have	its	close()
method	evaluated.



Looking	forward
In	the	next	two	chapters,	we'll	look	at	the	special	methods	used	to	create
containers	and	numbers.	In	Chapter	7,	Creating	Containers	and	Collections,	we'll
look	at	the	containers	and	collections	in	the	standard	library.	We'll	also	look	at
building	a	unique,	new	kind	of	container.	In	Chapter	8,	Creating	Numbers,	we'll
look	at	the	various	numeric	types	and	how	we	can	create	our	own	kind	of
number.



Creating	Containers	and	Collections
We	can	extend	a	number	of	the	standard	library	abstract	base	classes	(ABCs)	to
create	new	kinds	of	collections.	The	ABCs	also	provide	us	with	design
guidelines	to	extend	the	built-in	containers.	These	allow	us	to	fine-tune	the
features	or	define	new	data	structures	that	fit	our	problem	domain	more
precisely.

We'll	look	at	the	basics	of	ABCs	for	container	classes.	There	are	a	fairly	large
number	of	abstractions	that	are	used	to	assemble	the	built-in	Python	types,	such
as	list,	tuple,	dict,	set,	and	frozenset.	We'll	review	the	variety	of	special	methods
that	are	involved	in	being	a	container	and	offering	the	various	features	of
containers.	We'll	split	these	into	the	core	container	methods,	separate	from	the
more	specialized	sequence,	map,	and	set	methods.	We'll	address	extending	built-in
containers	in	order	to	add	features.	We'll	also	look	at	wrapping	built-in
containers	and	delegating	methods	through	the	wrapper	to	the	underlying
container.

Finally,	we'll	look	at	building	entirely	new	containers.	This	is	a	challenging
territory,	because	there's	a	huge	variety	of	interesting	and	useful	collection
algorithms	already	present	in	the	Python	Standard	Library.	In	order	to	avoid	deep
computer	science	research,	we'll	build	a	pretty	lame	collection.	Before	starting
on	a	real	application,	a	careful	study	of	Introduction	to	Algorithms	by	Cormen,
Leiserson,	Rivest,	and	Stein	is	essential.	We'll	finish	by	summarizing	some	of	the
design	considerations	that	go	into	extending	or	creating	new	collections.

In	this	chapter,	we	will	cover	the	following	topics:

ABCs	of	collections
Examples	of	special	methods
Using	the	standard	library	extensions
Creating	new	kinds	of	collections
Narrowing	a	collection's	type
Defining	a	new	kind	of	sequence
Creating	a	new	kind	of	mapping
Creating	a	new	kind	of	set



Technical	requirements
The	code	files	for	this	chapter	are	available	at	https://git.io/fj2U2.

https://git.io/fj2U2


ABCs	of	collections
The	collections.abc	module	provides	a	wealth	of	ABCs	that	decompose
collections	into	a	number	of	discrete	feature	sets.	A	related	set	of	features	of	a
class	is	called	a	protocol:	the	idea	is	that	things	such	as	getting,	setting,	and
deleting	items	are	the	protocol	for	list-like	behavior.	Similarly,	the	__iter__()
method	is	part	of	the	protocol	for	defining	an	iterable	collection.	A	list	often
implements	both	protocols,	but	some	data	structures	may	support	fewer
protocols.	Support	for	a	given	protocol	is	often	exploited	by	mypy	algorithms	to
determine	whether	an	object	is	being	used	properly.

We	can	successfully	use	the	list	class	without	thinking	too	deeply	about	the
various	features	and	how	they	relate	to	the	set	class	or	the	dict	class.	Once	we
start	looking	at	the	ABCs,	however,	we	can	see	that	there's	a	bit	of	subtlety	to
these	classes.	By	decomposing	the	aspects	of	each	collection,	we	can	see	areas
of	overlap	that	manifest	themselves	as	an	elegant	polymorphism,	even	among
different	data	structures.

At	the	bottom	of	the	base	classes	are	some	definitions	of	the	core	protocols	for
collections.

These	are	the	base	classes	that	often	define	a	single	special	method:

The	Container	base	class	requires	the	concrete	class	to	implement	the
__contains__()	method.	This	special	method	implements	the	in	operator.
The	Iterable	base	class	requires	__iter__().	This	special	method	is	used	by	the
for	statement	and	the	generator	expressions	as	well	as	the	iter()	function.
The	Sized	base	class	requires	__len__().	This	method	is	used	by	the	len()
function.	It's	also	prudent	to	implement	__bool__(),	but	it's	not	required	by
this	ABC.
The	Hashable	base	class	requires	__hash__().	This	is	used	by	the	hash()	function.
If	this	is	implemented,	it	means	that	the	object	is	immutable.

Each	of	these	abstract	class	definitions	is	used	to	build	the	higher-level,
composite	definitions	of	structures	we	can	use	in	our	applications.	These
composite	constructs	include	the	lower-level	base	classes	of	Sized,	Iterable,	and



Container.	Here	are	some	composite	base	classes	that	we	might	use	in	an
application:

The	Sequence	and	MutableSequence	classes	build	on	the	basics	and	include
methods	such	as	index(),	count(),	reverse(),	extend(),	and	remove().
The	Mapping	and	MutableMapping	classes	include	methods	such	as	keys(),	items(),
values(),	and	get(),	among	others.
The	Set	and	MutableSet	classes	include	comparison	and	arithmetic	operators
to	perform	set	operations.

If	we	look	more	deeply	into	the	built-in	collections,	we	can	see	how	the	ABC
definitions	serve	to	organize	the	special	methods	that	we	need	to	write	or
modify.

The	collections	module	also	contains	three	concrete	implementations:	UserDict,
UserList	and	UserString.	UserDict	is	a	version	of	the	built-in	dictionary,	with	the
details	exposed.	Similarly,	UserList	and	UserString	provide	implementations	that
can	be	extended	through	subclasses.	These	can	be	helpful	to	see	how	a	collection
is	built.	In	older	versions	of	Python,	these	were	used	as	superclasses	and	were
extended	because	the	built-in	types	could	not	easily	be	extended.	In	Python	3,
the	built-in	types	are	trivially	extended:	these	are	rarely	used	except	as	example
code.

Let's	take	a	look	at	some	examples	of	special	methods	in	the	next	section.



Examples	of	special	methods
When	looking	at	a	blackjack	Hand	object,	we	have	an	interesting	special	case	for
containment.	We	often	want	to	know	if	there's	an	ace	in	the	hand.	If	we	define
Hand	as	an	extension	of	list,	then	we	can't	ask	for	a	generic	ace.	We	can	only	ask
for	specific	cards.	We	have	to	write	something	like	the	following	example:

any(c.rank	==	'A'	for	c	in	hand.cards)	

This	examines	each	card	serially.	For	a	small	collection	where	the	checking	is
rare,	the	design	has	few	consequences.	If,	on	the	other	hand,	we	simulated
millions	of	hands,	this	search	would	be	repeated	often	enough	that	the	cost
would	be	troubling.

For	other	problem	domains,	where	the	collection	may	contain	millions	of	items,
we	certainly	can't	scan	millions	of	items	serially.	A	better	scheme	for	a	collection
of	objects	can	be	helpful.	Ideally,	we'd	like	something	like	this:

'A'	in	hand.cards	

This	means	that	we're	modifying	the	meaning	of	contains	for	a	Hand	object	that
extends	list.	We're	not	looking	for	a	Card	instance;	we're	merely	looking	for	the
rank	property	of	a	Card	object.	We	can	override	the	__contains__()	method	to	do
this:

def	__contains__(self,	rank:	int)	->	bool:	

				return	any(c.rank==rank	for	rank	in	hand.cards)	

This	allows	us	to	use	a	simpler	in	test	for	a	given	rank	in	a	hand.	The	serial
examination	of	individual	cards	is	still	present,	but	it's	encapsulated	within	the
Hand	class,	and	we	can	introduce	special-purpose	indexes	based	on	dictionaries	to
optimize	this.	Similar	design	considerations	can	be	applied	to	the	__iter__()	and
__len__(),	special	methods.	Be	cautious,	however.	Changing	the	semantics	of	len()
or	how	a	collection	interacts	with	the	for	statement,	might	be	disastrous.

The	next	section	explains	how	to	use	the	standard	library	extensions.



Using	the	standard	library	extensions
We'll	look	at	some	extensions	to	built-in	classes	that	are	already	part	of	the
standard	library.	These	are	the	collections	that	extend	or	modify	the	built-in
collections.	Most	of	these	are	covered	in	one	form	or	another	in	books	such
as	Python	3	Object-Oriented	Programming	-	Third	Edition	by	Dusty	Phillips.

We'll	look	at	the	following	four	collection	from	this	library:

deque	(note	the	atypical	class	name)	is	a	double-ended	queue,	a	list-like
collection	that	can	perform	fast	appends	and	pops	on	either	end.	A	subset	of
the	features	of	this	class	will	create	single-ended	stacks	or	queues.
ChainMap	is	a	view	of	multiple	mappings.	Instead	of	merging	mappings
together,	we	can	keep	them	separate	and	chain	among	them	to	locate	which
mapping	contains	a	requested	key.	
defaultdict	(note	the	atypical	spelling)	is	a	dict	subclass	that	uses	a	factory
function	to	provide	values	for	missing	keys.
Counter	is	a	dict	subclass	that	can	be	used	for	counting	objects	to	create
frequency	tables.	However,	it's	actually	a	more	sophisticated	data	structure
called	a	multiset	or	bag.

There	are	two	collections	in	this	library	that	have	been	replaced	by	more
advanced	versions:

The	namedtuple()	function	creates	a	subclass	of	tuple	with	named	attributes.
This	has	been	replaced	by	the	NamedTuple	definition	in	the	typing	module.
We'll	emphasize	the	new	typing.NamedTuple	class	because	it	permits	type	hints.
The	legacy	function	is	no	longer	useful.
An	OrderedDict	collection	is	a	mapping	in	which	the	original	key	entry	order
is	maintained.	This	feature	of	maintaining	key	order	is	now	a	first-class	part
of	the	built-in	dict	class,	so	this	special	collection	isn't	necessary	anymore.

We'll	see	examples	of	the	preceding	collection	classes.	There	are	two	important
lessons	to	be	learned	from	studying	the	library	collections:

What	features	are	already	present	the	standard	library;	this	will	save	us
from	reinvention



How	to	extend	the	ABCs	to	add	interesting	and	useful	structures	to	the
language

Also,	it	can	be	helpful	to	read	the	source	for	the	libraries.	The	source	will	show
us	numerous	Python	object-oriented	programming	techniques.	Beyond	these
basics	are	even	more	modules.	They	are	as	follows:

The	heapq	module	is	a	set	of	functions	that	impose	a	heap	queue	structure	on
an	existing	list	object.	The	heap	queue	invariant	is	the	set	of	those	items	in
the	heap	that	are	maintained,	in	order	to	allow	rapid	retrieval	in	ascending
order.	If	we	use	the	heapq	methods	on	a	list	structure,	we	will	never	have	to
explicitly	sort	the	list.	This	can	have	significant	performance
improvements.
The	array	module	is	a	kind	of	sequence	that	optimizes	storage	for	certain
kinds	of	values.	This	provides	list-like	features	over	potentially	large
collections	of	simple	values.

We	won't	provide	detailed	examples	of	these	advanced	modules.	In	addition,	of
course,	there's	the	deeper	computer	science	that	supports	these	various	data
structure	definitions.

Let's	take	a	look	at	the	different	classes	in	the	next	few	sections.



The	typing.NamedTuple	class
The	NamedTuple	class	expects	a	number	of	class-level	attributes.	These	attributes
will	typically	have	type	hints,	and	provide	a	way	to	give	names	to	the	attributes
of	a	tuple.	

Using	a	NamedTuple	subclass	can	condense	a	class	definition	into	a	very	short
definition	of	a	simple	immutable	object.	It	saves	us	from	having	to	write	longer
and	more	complex	class	definitions	for	the	common	case	where	we	want	to
name	a	fixed	set	of	attributes.

For	something	like	a	playing	card,	we	might	want	to	insert	the	following	code	in
a	class	definition:

from	typing	import	NamedTuple

class	BlackjackCard_T(NamedTuple):

				rank:	str

				suit:	Suit

				hard:	int

				soft:	int

We	defined	a	new	class	and	provided	four	named	attributes:	rank,	suit,	hard,	and
soft.	Since	each	of	these	objects	is	immutable,	we	don't	need	to	worry	about	a
badly	behaved	application	attempting	to	change	the	rank	of	a	BlackjackCard
instance.

We	can	use	a	factory	function	to	create	instances	of	this	class,	as	shown	in	the
following	code:

def	card_t(rank:	int,	suit:	Suit)	->	BlackjackCard_T:

				if	rank	==	1:

								return	BlackjackCard_T("A",	suit,	1,	11)

				elif	2	<=	rank	<	11:

								return	BlackjackCard_T(str(rank),	suit,	rank,	rank)

				elif	rank	==	11:

								return	BlackjackCard_T("J",	suit,	10,	10)

				elif	rank	==	12:

								return	BlackjackCard_T("Q",	suit,	10,	10)

				elif	rank	==	13:

								return	BlackjackCard_T("K",	suit,	10,	10)

				else:

								raise	ValueError(f"Invalid	Rank	{rank}")



The	card_t()	function	will	build	an	instance	of	BlackjackCard	with	the	hard	and	soft
totals	set	properly	for	various	card	ranks.	The	intent	here	is	to	use	card_t(7,
Suit.Hearts)	to	create	an	instance	of	the	BlackjackCard	class.	The	various	points	will
be	set	automatically	by	the	card_t()	function.

A	subclass	of	NamedTuple	will	include	a	class-level	attribute	named	_fields,	which
names	the	fields.	Additionally,	a	_field_types	attribute	provides	details	of	the	type
hints	provided	for	the	attributes.	These	permit	sophisticated	introspection
on	NamedTuple	subclasses.

We	can,	of	course,	include	methods	in	a	NamedTuple	class	definition.		An	example
of	including	methods	is	as	follows:

class	BlackjackCard_T(NamedTuple):

				rank:	str

				suit:	Suit

				hard:	int

				soft:	int

				def	is_ace(self)	->	bool:

								return	False

class	AceCard(BlackjackCard):

				def	is_ace(self)	->	bool:

								return	True

A	subclass	can't	add	any	new	attributes.	The	subclass	can,	however,
meaningfully	override	method	definitions.	This	technique	can	create	usefully
polymorphic	subclasses	of	a	NamedTuple	class.



The	deque	class
A	list	object	is	designed	to	provide	uniform	performance	for	any	element	within
the	container.	Some	operations	have	performance	penalties.	Most	notably,	any
operation	extending	from	the	front	of	a	list,	such	as	list.insert(0,	item),	or
removing	from	the	front	of	a	list,	such	as	list.pop(0),	will	incur	some	overheads
because	the	list's	size	is	changed,	and	the	position	of	each	element	must	then
changed.

A	deque	–	a	double-ended	queue	–	is	designed	to	provide	uniform	performance	for
the	first	and	last	elements	of	a	list.	The	idea	is	that	appending	and	popping	will
be	faster	than	the	built-in	list	object.

Class	names	are	usually	in	title	case.	However,	the	deque	class	doesn't	follow	the	common
pattern.

Our	design	for	a	deck	of	cards	avoids	the	potential	performance	pitfall	of	a	list
object	by	always	popping	from	the	end,	never	from	the	beginning.	Using	the
default	pop(),	or	an	explicit	pop(-1),	leverages	the	asymmetry	of	a	list	by	using	the
low-cost	location	for	removing	at	item.

The	deque.pop()	method	is	very	fast	and	works	from	either	end	of	the	list.	While
this	can	be	handy,	we	can	check	whether	the	performance	of	shuffling	may
suffer.	A	shuffle	will	make	random	access	to	the	container,	something	for	which
deque	is	not	designed.

In	order	to	confirm	the	potential	costs,	we	can	use	timeit	to	compare	list	and
deque	shuffling	performance	as	follows:

>>>	timeit.timeit('random.shuffle(x)',"""	

...	import	random	

...	x=list(range(6*52))""")	

597.951664149994	

>>>	

>>>	timeit.timeit('random.shuffle(d)',"""	

...	from	collections	import	deque

...	import	random	

...	d=deque(range(6*52))""")							

609.9636979339994	



We	invoked	timeit	using	random.shuffle().	The	first	example	works	on	a	list	object;
the	second	example	works	on	a	deque	object.

These	results	indicate	that	shuffling	a	deque	object	is	only	a	trifle	slower	than
shuffling	a	list	object	–	about	2	percent	slower.	This	distinction	is	a	hair	not
worth	splitting.	We	can	confidently	try	a	deque	object	in	place	of	list.

The	change	amounts	to	this:

from	collections	import	dequeue	

class	Deck(dequeue):	

				def	__init__(	self,	size=1	):	

								super().__init__()	

								for	d	in	range(size):	

											cards	=	[	card(r,s)	for	r	in	range(13)	for	s	in	Suits	]	

												super().extend(	cards	)	

								random.shuffle(	self	)	

We	replaced	list	with	deque	in	the	definition	of	Deck.	Otherwise,	the	class	is
identical.

What	is	the	actual	performance	difference?	Let's	create	decks	of	100,000	cards
and	deal	them:

>>>	timeit.timeit('x.pop()',	"x=list(range(100000))",	

	number=100000)	

0.032304395994287916	

>>>	timeit.timeit('x.pop()',	"from	collections	import	deque;	

	x=deque(range(100000))",	number=100000)	

0.013504189992090687	

We	invoked	timeit	using	x.pop().	The	first	example	works	on	a	list;	the	second
example	works	on	a	deque	object.

The	dealing	time	is	cut	almost	by	half	(42	percent,	actually).	We	had	big	savings
from	a	tiny	change	in	the	data	structure.

In	general,	it's	important	to	pick	the	optimal	data	structure	for	the	application.
Trying	several	variations	can	show	us	what's	more	efficient.



The	ChainMap	use	case
The	use	case	for	chaining	maps	together	fits	nicely	with	Python's	concept	of
local	versus	global	definitions.	When	we	use	a	variable	in	Python,	first	the	local
namespaces	and	then	the	global	namespaces	are	searched,	in	that	order.	In
addition	to	searching	both	namespaces	for	a	variable,	setting	a	variable	is	done	in
the	local	namespace	without	disturbing	the	global	namespace.	This	default
behavior	(without	the	global	or	nonlocal	statements)	is	also	how	ChainMap	works.

When	our	applications	start	running,	we	often	have	properties	that	come	from
command-line	parameters,	configuration	files,	OS	environment	variables,	and
possibly	a	default	file	of	settings	installed	with	the	software.	These	have	a	clear
precedence	order	where	a	value	supplied	on	the	command-line	is	most
important,	and	an	installation-wide	default	setting	is	the	least	important.	Because
a	ChainMap	object	will	search	through	the	various	mappings	in	order,	it	lets	us
merge	many	sources	of	parameters	into	a	single	dictionary-like	structure,	so	that
we	can	easily	locate	a	setting.	

We	might	have	an	application	startup	that	combines	several	sources	of
configuration	options	like	this:

import	argparse

import	json

import	os

import	sys

from	collections	import	ChainMap

from	typing	import	Dict,	Any

def	get_options(argv:	List[str]	=	sys.argv[1:])	->	ChainMap:

				parser	=	argparse.ArgumentParser(

								description="Process	some	integers.")

				parser.add_argument(

								"-c",	"--configuration",	type=open,	nargs="?")

				parser.add_argument(

								"-p",	"--playerclass",	type=str,	nargs="?",	

								default="Simple")

				cmdline	=	parser.parse_args(argv)

				if	cmdline.configuration:

								config_file	=	json.load(cmdline.configuration)

								cmdline.configuration.close()

				else:

								config_file	=	{}

				default_path	=	(

								Path.cwd()	/	"Chapter_7"	/	"ch07_defaults.json")



				with	default_path.open()	as	default_file:

								defaults	=	json.load(default_file)

				combined	=	ChainMap(

								vars(cmdline),	config_file,	os.environ,	defaults)

				return	combined

The	preceding	code	shows	us	the	configuration	from	several	sources,	such	as	the
following:

The	command-line	arguments.	In	this	example,	there	is	only	one	argument,
called	playerclass,	but	a	practical	application	will	often	have	many,	many
more.
One	of	the	arguments,	configuration,	is	the	name	of	a	configuration	file	with
additional	parameters.	This	is	expected	to	be	in	the	JSON	format,	and	the
file's	contents	are	read.
Additionally,	there's	a	defaults.json	file	with	yet	another	place	to	look	for	the
configuration	values.

From	the	preceding	sources,	we	can	build	a	single	ChainMap	object.	This	object
permits	looking	for	a	parameter	in	each	of	the	listed	locations	in	the	specified
order.	The	ChainMap	instance	use	case	will	search	through	each	mapping	from
highest	precedence	to	lowest,	looking	for	the	given	key	and	returning	the	value.
This	gives	us	a	tidy,	easy-to-use	source	for	runtime	options	and	parameters.

We'll	look	at	this	again	in	Chapter	14,	Configuration	Files	and	Persistence,	and	Cha
pter	18,	Coping	with	the	Command	Line.



The	OrderedDict	collection
The	OrderedDict	collection	is	a	Python	dictionary	with	an	added	feature.	The	order
in	which	keys	were	inserted	is	retained.

One	common	use	for	OrderedDict	is	when	processing	HTML	or	XML	files,	where
the	order	of	objects	must	be	retained,	but	objects	might	have	cross-references	via
the	ID	and	IDREF	attributes.	We	can	optimize	the	connections	among	objects	by
using	the	ID	as	a	dictionary	key.	We	can	retain	the	source	document's	ordering
with	the	OrderedDict	structure.

With	release	3.7,	the	built-in	dict	class	makes	the	same	guarantee	of	preserving
the	order	in	which	dictionary	keys	were	inserted.	Here's	an	example:

>>>	some_dict	=	{'zzz':	1,	'aaa':	2}

>>>	some_dict['mmm']	=	3

>>>	some_dict

{'zzz':	1,	'aaa':	2,	'mmm':	3}

In	earlier	releases	of	Python,	the	order	of	keys	in	a	dictionary	were	not
guaranteed	to	match	the	order	in	which	they	were	inserted.	The	ordering	of	keys
used	to	be	arbitrary	and	difficult	to	predict.	The	OrderedDict	class	added	the
insertion	order	guarantee	in	these	older	releases	of	Python.	Since	the	order	of	the
keys	is	now	guaranteed	to	be	the	order	in	which	keys	were	inserted,	the
OrderedDict	class	is	redundant.	



The	defaultdict	subclass
An	ordinary	dict	type	raises	an	exception	when	a	key	is	not	found.	A	defaultdict
collection	class	does	this	differently.	Instead	of	raising	an	exception,	it	evaluates
a	given	function	and	inserts	the	value	of	that	function	into	the	dictionary	as	a
default	value.

Class	names	are	usually	in	upper	TitleCase.	However,	the	defaultdict	class	doesn't	follow	this
pattern.

A	common	use	case	for	the	defaultdict	class	is	to	create	indices	for	objects.	When
several	objects	have	a	common	key,	we	can	create	a	list	of	objects	that	share	this
key.

Here's	a	function	that	accumulates	a	list	of	distinct	values	based	on	a	summary	of
the	two	values:

from	typing	import	Dict,	List,	Tuple,	DefaultDict

def	dice_examples(n:	int=12,	seed:	Any=None)	->	DefaultDict[int,	List]:

				if	seed:

								random.seed(seed)

				Roll	=	Tuple[int,	int]

				outcomes:	DefaultDict[int,	List[Roll]]	=	defaultdict(list)

				for	_	in	range(n):

								d1,	d2	=	random.randint(1,	6),	random.randint(1,	6)

								outcomes[d1+d2].append((d1,	d2))

				return	outcomes

The	type	hint	for	Roll	shows	that	we	consider	a	roll	of	the	dice	to	be	a	two-tuple
composed	of	integers.	The	outcomes	object	has	a	hint	that	it	will	be	a	dictionary
that	has	integer	keys	and	the	associated	value	will	be	a	list	of	Roll	instances.

The	dictionary	is	built	using	outcomes[d1+d2].append((d1,	d2)).	Given	two	random
numbers,	d1	and	d2,	the	sum	is	the	key	value.	If	this	key	value	does	not	already
exist	in	the	outcomes	mapping,	the	list()	function	is	used	to	build	a	default	value
of	an	empty	list.	If	the	key	already	exists,	the	value	is	simply	fetched,	and	the
append()	method	is	used	to	accumulate	the	actual	pair	of	numbers.

As	another	example,	we	can	use	the	a	defaultdict	collection	class	to	provide	a
constant	value.	We	can	use	this	instead	of	the	container.get(key,"N/A")	expression.



We	can	create	a	zero-argument	lambda	object.	This	works	very	nicely.	Here's	an
example:

>>>	from	collections	import	defaultdict	

>>>	messages	=	defaultdict(lambda:	"N/A")	

>>>	messages['error1']=	'Full	Error	Text'	

>>>	messages['other']	

'N/A'

>>>	messages['error1']

'Full	Error	Text'

In	the	first	use	of	messages['error1'],	a	value	was	assigned	to	the	'error1'	key.	This
new	value	will	replace	the	default.	The	second	use	of	messages['other']	will	add
the	default	value	to	the	dictionary.	

We	can	determine	how	many	new	keys	were	created	by	looking	for	all	the	keys
that	have	a	value	of	"N/A":

>>>	[k	for	k	in	messages	if	messages[k]	==	"N/A"]	

['other']	

As	you	can	see	in	the	preceding	output,	we	found	the	key	that	was	assigned	the
default	value	of	"N/A".	This	is	often	a	helpful	summary	of	the	data	that	is	being
accumulated.	It	shows	us	all	of	the	keys	associated	with	the	default	value.



The	counter	collection
One	of	the	most	common	use	cases	for	a	defaultdict	class	is	when	accumulating
counts	of	key	instances.	A	simple	way	to	count	keys	looks	like	this:

frequency	=	defaultdict(int)	

for	k	in	some_iterator():	

				frequency[k]	+=	1	

This	example	counts	the	number	of	times	each	key	value,	k,	appears	in	the
sequence	of	values	from	some_iterator().

This	use	case	is	so	common	that	there's	a	variation	on	the	defaultdict	theme	that
performs	the	same	operation	shown	in	the	preceding	code–it's	called	Counter.	A
Counter	collection,	however,	is	considerably	more	sophisticated	than	a	simple
defaultdict	class.

Here's	an	example	that	creates	a	frequency	histogram	from	some	source	of	data
showing	values	in	descending	order	by	frequency:

from	collections	import	Counter

frequency	=	Counter(some_iterator())	

for	k,	freq	in	frequency.most_common():	

				print(k,	freq)	

This	example	shows	us	how	we	can	easily	gather	statistical	data	by	providing
any	iterable	item	to	Counter.	It	will	gather	frequency	data	on	the	values	in	that
iterable	item.	In	this	case,	we	provided	an	iterable	function	named	some_iterator().
We	might	have	provided	a	sequence	or	some	other	collection.

We	can	then	display	the	results	in	descending	order	of	popularity.	But	wait!
That's	not	all.

The	Counter	collection	is	not	merely	a	simplistic	variation	of	the	defaultdict
collection.	The	name	is	misleading.	A	Counter	object	is	actually
a	aaaaaaaaaaaaaaaamultiset,	sometimes	called	a	bag.

It's	a	collection	that	is	set-like,	but	allows	repeat	values	in	the	bag.	It	is	not	a
sequence	with	items	identified	by	an	index	or	position;	order	doesn't	matter.	It	is



not	a	mapping	with	keys	and	values.	It	is	like	a	set	in	which	items	stand	for
themselves	and	order	doesn't	matter.	But,	it	is	unlike	a	set	because,	in	this	case,
elements	can	repeat.

As	elements	can	repeat,	the	Counter	object	represents	multiple	occurrences	with
an	integer	count.	Hence,	it's	used	as	a	frequency	table.	However,	it	does	more
than	this.	As	a	bag	is	like	a	set,	we	can	compare	the	elements	of	two	bags	to
create	a	union	or	an	intersection.

Let's	create	two	bags:

>>>	bag1	=	Counter("aardwolves")

>>>	bag2	=	Counter("zymologies")

>>>	bag1	

Counter({'a':	2,	'o':	1,	'l':	1,	'w':	1,	'v':	1,	'e':	1,

'd':	1,		's':	1,	'r':	1})	

>>>	bag2	

Counter({'o':	2,	'm':	1,	'l':	1,	'z':	1,	'y':	1,	'g':	1,

'i':	1,		'e':	1,	's':	1})

We	built	each	bag	by	examining	a	sequence	of	letters.	For	characters	that	occur
more	than	once,	there's	a	count	that	is	more	than	one.

We	can	easily	compute	the	union	of	the	two	bags:

>>>	bag1+bag2	

Counter({'o':	3,	's':	2,	'l':	2,	'e':	2,	'a':	2,	'z':	1,	

'y':	1,		'w':	1,	'v':	1,	'r':	1,	'm':	1,	'i':	1,	'g':	1,	

'd':	1})

This	shows	us	the	entire	suite	of	letters	between	the	two	strings.	There	were
three	instances	of	o.	Not	surprisingly,	other	letters	were	less	popular.

We	can	just	as	easily	compute	the	difference	between	the	bags:

>>>	bag1-bag2	

Counter({'a':	2,	'w':	1,	'v':	1,	'd':	1,	'r':	1})	

>>>	bag2-bag1	

Counter({'o':	1,	'm':	1,	'z':	1,	'y':	1,	'g':	1,	'i':	1})	

The	first	expression	shows	us	characters	in	bag1	that	were	not	in	bag2.

The	second	expression	shows	us	characters	in	bag2	that	were	not	in	bag1.	Note	that
the	letter	o	occurred	twice	in	bag2	and	once	in	bag1.	The	difference	only	removed
one	of	the	o	characters	from	bag1.



In	the	next	section,	we'll	see	how	to	create	new	kinds	of	collections.



Creating	new	kinds	of	collections
We'll	look	at	some	extensions	we	might	make	to	Python's	built-in	container
classes.	We	won't	show	an	example	of	extending	each	container.

We'll	pick	an	example	of	extending	a	specific	container	and	see	how	the	process
works:

1.	 Define	the	requirements.	This	may	include	research	on	Wikipedia,
generally	starting	here:	http://en.wikipedia.org/wiki/Data_structure.	Designs	of
data	structures	often	involve	complex	edge	cases	around	missing	items	and
duplicate	items.

2.	 If	necessary,	look	at	the	collections.abc	module	to	see	what	methods	must	be
implemented	to	create	the	new	functionality.

3.	 Create	some	test	cases.	This	also	requires	careful	study	of	the	algorithms	to
ensure	that	the	edge	cases	are	properly	covered.

4.	 Write	code	based	on	the	previous	research	steps.

We	need	to	emphasize	the	importance	of	researching	the	fundamentals	before
trying	to	invent	a	new	kind	of	data	structure.	In	addition	to	searching	the	web	for
overviews	and	summaries,	details	will	be	necessary.	See	any	of	the	following:

	Introduction	to	Algorithms	by	Cormen,	Leiserson,	Rivest,	and	Stein
Data	Structures	and	Algorithms	by	Aho,	Ullman,	and	Hopcroft
	The	Algorithm	Design	Manual	by	Steven	Skiena

As	we	saw	earlier,	the	ABCs	define	three	broad	kinds	of	collections:	sequences,
mappings,	and	sets.	We	have	three	design	strategies	that	we	can	use	to	create
new	kinds	of	collections	of	our	own:

Extend:	This	is	an	existing	sequence.
Wrap:	This	is	an	existing	sequence.
Invent:	This	is	a	new	sequence	created	from	scratch.

In	principle,	we	could	give	as	many	as	nine	examples	–	each	basic	flavor	of
collection	with	each	basic	design	strategy.	We	won't	beat	this	subject	to	death
like	that.	We'll	dig	deep	to	create	new	kinds	of	sequences,	learning	how	to

http://en.wikipedia.org/wiki/Data_structure


extend	and	wrap
existing	sequences.

As	there	are	so	many	extended	mappings	(such	as	ChainMap,	OrderedDict,	defaultdict,
and	Counter),	we'll	only	touch	lightly	on	creating	new	kinds	of	mappings.	We'll
also	dig	deep	to	create	a	new	kind	of	ordered	multiset	or	bag.

Let's	narrow	a	collection's	type	in	the	next	section.



Narrowing	a	collection's	type
Python	3	allows	us	to	provide	extensive	type	hints	for	describing	the	contents	of
a	collection.	This	has	two	benefits:

It	helps	us	visualize	the	data	structure.
It	supports	running	mypy	to	confirm	that	the	code	uses	the	data	structures
properly.

The	non-collection	types	(int,	str,	float,	complex,	and	so	on)	all	use	the	type	name
as	their	type	hint.	The	built-in	collections	all	have	parallel	type	definitions	in	the
typing	module.	It's	common	to	see	from	typing	import	List,	Tuple,	Dict,	Set	to	import
these	type	names	into	a	module.	

Each	of	the	type	hints	accepts	parameters	to	further	narrow	the	definition:

The	List[T]	hint	claims	the	object	will	be	a	list	and	all	the	items	will	be	of
type	T.	For	example	[1,	1,	2,	3,	5,	8]	can	be	described	as	List[int].
A	Set[T]	hint	is	similar	to	the	List[T]	hint.	It	claims	all	items	in	the	set	will	be
of	type	T.	For	example,	{'a',	'r',	'd'}	can	be	described	as	Set[str].
The	Dict[K,	V]	hint	claims	the	object	will	be	a	dict,	the	keys	will	all	have	a
type	K,	and	the	values	will	all	have	a	type	V.	For	example,	{'A':	4,	'B'	12}	can
be	described	as	Dict[str,	int].

The	Tuple	hint	is	often	more	complex.	There	are	two	common	cases	for	tuples:

A	hint	such	as	Tuple[str,	int,	int,	int]	describes	a	four-tuple	with	a	string
and	three	integer	values,	for	example,	('crimson',	220,	20,	60).		The	size	is
specified	explicitly.
A	hint	such	as	Tuple[int,	...]	describes	a	tuple	of	indefinite	size.	The	items
will	all	be	type	int.		The	size	is	not	specified.	The	...	notation	is	a	token	in
the	Python	language,	and	is	a	first-class	part	of	the	syntax	for	this	type	hint.

To	describe	objects	where	None	values	may	be	present	in	a	collection,	the	Optional
type	is	used.	We	might	have	a	type	hint	such	as	List[Optional[int]]	to	describe	a
list	that	is	a	mixture	of	int	and	None	objects,	for	example	[1,	2,	None,	42].



Because	of	the	type	coercion	rules	for	numbers,	we	can	often	summarize
numerical	algorithms	using	a	float	type	hint,	such	as	the	following:

def	mean(data:	List[float])	->	float:	...

This	function	will	also	work	with	a	list	of	integer	values.	The	mypy	program
recognizes	the	type	coercion	rules	and	will	recognize	mean([8,	9,	10])	as	a	valid
use	of	this	function.

In	the	next	section,	we'll	define	a	new	kind	of	sequence.



Defining	a	new	kind	of	sequence
A	common	requirement	that	we	have	when	performing	statistical	analysis	is	to
compute	basic	means,	modes,	and	standard	deviations	on	a	collection	of	data.
Our	blackjack	simulation	will	produce	outcomes	that	must	be	analyzed
statistically	to	see	if	we	have	actually	invented	a	better	strategy.

When	we	simulate	the	playing	strategy	for	a	game,	we	will	develop	some
outcome	data	that	will	be	a	sequence	of	numbers	that	show	the	final	result	of
playing	the	game	several	times	with	a	given	strategy.	

We	could	accumulate	the	outcomes	into	a	built-in	list	class.	We	can	compute	the

mean	via	 ,	where	 	is	the	number	of	elements	in	 :

def	mean(outcomes:	List[float])	->	float:

				return	sum(outcomes)	/	len(outcomes)

Standard	deviation	can	be	computed	via	 :

def	stdev(outcomes:	List[float])	->	float:

				n	=	float(len(outcomes))

				return	math.sqrt(

								n	*	sum(x**2	for	x	in	outcomes)	-	sum(outcomes)**2

				)	/	n

Both	of	these	are	relatively	simple	calculation	functions.	As	things	get	more
complex,	however,	loose	functions	such	as	these	become	less	helpful.	One	of	the
benefits	of	object-oriented	programming	is	to	bind	the	functionality	with	the
data.

Our	first	example	will	not	involve	rewriting	any	of	the	special	methods	of	list.
We'll	simply	subclass	list	to	add	methods	that	will	compute	the	statistics.	This	is
a	very	common	kind	of	extension.

We'll	revisit	this	in	the	second	example	so	that	we	can	revise	and	extend	the



special	methods.	This	will	require	some	study	of	the	ABC	special	methods	to	see
what	we	need	to	add	or	modify	so	that	our	new	list	subclass	properly	inherits	all
the	features	of	the	built-in	list	class.

Because	we're	looking	at	sequences,	we	also	have	to	wrestle	with	the	Python
slice	notation.	We'll	look	at	what	a	slice	is	and	how	it	works	internally	in	the
Working	with	__getitem__,	__setitem__,	__delitem__,	and	slices	section.

The	second	important	design	strategy	is	wrapping.	We'll	create	a	wrapper	around
a	list	and	see	how	we	can	delegate	methods	to	the	wrapped	list.	Wrapping	has
some	advantages	when	it	comes	to	object	persistence,	which	is	the	subject	of	Chap
ter	10,	Serializing	and	Saving	–	JSON,	YAML,	Pickle,	CSV,	and	XML.

We	can	also	look	at	the	kinds	of	things	that	need	to	be	done	to	invent	a	new	kind
of	sequence	from	scratch.



A	statistical	list
It	makes	good	sense	to	incorporate	mean	and	standard	deviation	features	directly
into	a	subclass	of	list.	We	can	extend	list	like	this:

class	StatsList(list):

				def	__init__(self,	iterable:	Optional[Iterable[float]])	->	None:

								super().__init__(cast(Iterable[Any],	iterable))

				@property

				def	mean(self)	->	float:

								return	sum(self)	/	len(self)

				@property

				def	stdev(self)	->	float:

								n	=	len(self)

								return	math.sqrt(

												n	*	sum(x	**	2	for	x	in	self)	-	sum(self)	**	2

								)	/	n

With	this	simple	extension	to	the	built-in	list	class,	we	can	accumulate	data	and
report	statistics	on	the	collection	of	data	items.

Note	the	relative	complexity	involved	in	narrowing	the	type	of	the	list	class.	The
built-in	list	structure's	type,	List,	is	effectively	List[Any].	In	order	for	the
arithmetic	operations	to	work,	the	content	really	must	be	List[float].	By	stating
the	__init__()	method	will	only	accept	an	Iterable[float]	value,	mypy	is	forced	to
confirm	arguments	to	StatsList	will	meet	this	criteria.	Let's	imagine	we	have	a
source	of	raw	data:

def	data_gen()	->	int:

				return	random.randint(1,	6)	+	random.randint(1,	6)

This	little	data_gen()	function	is	a	stand-in	for	a	variety	of	possible	functions.	It
might	be	a	complex	simulation.	It	might	be	a	source	of	actual	measurements.
The	essential	feature	of	this	function—defined	by	the	type	hint—is	to	create	an
integer	value.

We	can	imagine	that	an	overall	simulation	script	can	use	the	StatsList	class,	as
follows:

random.seed(42)

data	=	[data_gen()	for	_	in	range(100)]



stats	=	StatsList(data)

print(f"mean	=	{stats.mean:f}")

print(f"stdev=	{stats.stdev:.3f}")

This	snippet	uses	a	list	comprehension	to	create	a	raw	list	object	with	100
samples.	Because	the	data	object	is	built	from	the	data_gen()	function,	it's	clear
that	the	data	object	has	the	type	List[int].	From	this,	a	StatsList	object	is	created.
The	resulting	stats	object	has	mean	and	stdev	properties,	which	are	extensions	to
the	base	list	class.



Choosing	eager	versus	lazy
calculation
Note	that	the	calculations	in	the	previous	example	are	lazy;	they	are	only	done
when	requested.	This	also	means	that	they're	performed	each	and	every	time
they're	requested.	This	can	be	a	considerable	overhead,	depending	on	the	context
in	which	objects	of	these	classes	are	used.

It's	may	be	sensible	to	transform	these	statistical	summaries	into	eager
calculations,	as	we	know	when	elements	are	added	and	removed	from	a	list.
Although	there's	a	hair	more	programming	to	create	eager	versions	of	these
functions,	it	has	a	net	impact	of	improving	performance	when	there's	a	lot	of
data	being	accumulated.

The	point	of	eager	statistical	calculations	is	to	avoid	the	loops	that	compute
sums.	If	we	compute	the	sums	eagerly,	as	the	list	is	being	created,	we	avoid	extra
looping	through	the	data.

When	we	look	at	the	special	methods	for	a	Sequence	class,	we	can	see	all	of	the
places	where	data	is	added	to,	removed	from,	and	modified	in	the	sequence.	We
can	use	this	information	to	recompute	the	two	sums	that	are	involved.	We	start
with	the	collections.abc	section	of	the	Python	Standard	Library	documentation,
section	8.4.1,	at	http://docs.python.org/3.4/library/collections.abc.html#collections-abst
ract-base-classes.

Here	are	the	required	methods	for	a	MutableSequence	class:	__getitem__,
__setitem__,	__delitem__,	__len__,	insert,	append,	reverse,	extend,	pop,	remove,	and	__iadd__.
The	documentation	also	mentions	the	Inherited	Sequence	methods.	However,	as
they	are	for	immutable	sequences,	we	can	certainly	ignore	them.

Here	are	the	details	of	what	must	be	done	to	update	the	statistical	results	in	each
method:

__getitem__:	There's	no	change	in	the	state.
__setitem__:	This	changes	an	item.	We	need	to	take	the	old	item	out	of	each

http://docs.python.org/3.4/library/collections.abc.html#collections-abstract-base-classes


sum	and	fold	the	new	item	into	each	sum.
__delitem__:	This	removes	an	item.	We	need	to	take	the	old	item	out	of	each
sum.
__len__:	There's	no	change	in	the	state.
insert:	This	adds	a	new	item.	We	need	to	fold	it	into	each	sum.
append:	This	also	adds	a	new	item.	We	need	to	fold	it	into	each	sum.
reverse:	There's	no	change	in	the	value	of	the	mean	or	standard	deviation.
extend:	This	adds	many	new	items.	All	of	the	items	must	be	folded	into	the
sums.
pop:	This	removes	an	item.	We	need	to	take	the	old	item	out	of	each	sum.
remove:	This	removes	an	item.	We	need	to	take	the	old	item	out	of	each	sum.
__iadd__:	This	is	the	+=	augmented	assignment	statement,	the	in-place
addition.	It's	effectively	the	same	as	the	extend	keyword.

We	won't	look	at	each	method	in	detail,	because	there	are	really	combinations	of
two	use	cases:

Fold	in	one	new	value
Remove	one	old	value

The	replacement	case	is	a	combination	of	the	remove	and	fold	in	operations.

Here	are	the	elements	of	an	eager	StatsList2	class.	We're	going	to	see
the	insert()	and	pop()	method:

class	StatsList2(list):

				"""Eager	Stats."""

				def	__init__(self,	iterable:	Optional[Iterable[float]])	->	None:

								self.sum0	=	0		#	len(self),	sometimes	called	"N"

								self.sum1	=	0.0		#	sum(self)

								self.sum2	=	0.0		#	sum(x**2	for	x	in	self)

								super().__init__(cast(Iterable[Any],	iterable))

								for	x	in	self:

												self._new(x)

				def	_new(self,	value:	float)	->	None:

								self.sum0	+=	1

								self.sum1	+=	value

								self.sum2	+=	value	*	value

				def	_rmv(self,	value:	float)	->	None:

								self.sum0	-=	1

								self.sum1	-=	value

								self.sum2	-=	value	*	value

				def	insert(self,	index:	int,	value:	float)	->	None:

								super().insert(index,	value)



								self._new(value)

				def	pop(self,	index:	int	=	0)	->	None:

								value	=	super().pop(index)

								self._rmv(value)

								return	value

We	provided	three	internal	variables	with	comments	to	show	the	invariants	that
this	class	will	maintain.	We'll	call	these	the	sum	invariants	because	each	of	them
contains	a	particular	kind	of	sum	that	is	maintained	as	invariant	(always	true)
after	each	kind	of	state	change.	The	essence	of	this	eager	calculation	are	the
_rmv()	and	_new()	methods,	which	update	our	three	internal	sums	based	on	changes
to	the	list,	so	that	the	relationships	really	remain	invariant.

When	we	remove	an	item,	that	is,	after	a	successful	pop()	operation,	we	have	to
adjust	our	sums.	When	we	add	an	item	(either	initially,	or	via	the	insert()
method),	we	also	have	to	adjust	our	sums.	The	other	methods	we	need	to
implement	will	make	use	of	these	two	methods	to	ensure	that	the	three	sum
invariants	hold.	For	a	given	list	of	values,	L,	we	ensure	that	L.sum0	is	always	

,	L.sum1	is	always	 ,	and	L.sum2	is	always	 .	We	can	use
the	sums	to	compute	the	mean	and	standard	deviation.

Other	methods,	such	as	append(),	extend(),	and	remove(),	are	similar	in	many	ways	to
these	methods.	We	haven't	shown	them	because	they're	similar.

We	can	see	how	this	list	works	by	playing	with	some	data:

>>>	sl2	=	StatsList2(	[2,	4,	3,	4,	5,	5,	7,	9,	10]	)	

>>>	sl2.sum0,	sl2.sum1,	sl2.sum2	

(9,	49,	325)	

>>>	sl2[2]=	4	

>>>	sl2.sum0,	sl2.sum1,	sl2.sum2	

(9,	50,	332)	

>>>	del	sl2[-1]	

>>>	sl2.sum0,	sl2.sum1,	sl2.sum2	

(8,	40,	232)	

>>>	sl2.insert(	0,	-1	)	

>>>	sl2.pop()																													

-1	

>>>	sl2.sum0,	sl2.sum1,	sl2.sum2	

(8,	40,	232)	

We	can	create	a	list	and	the	sums	are	computed	initially.	Each	subsequent	change
eagerly	updates	the	various	sums.	We	can	change,	remove,	insert,	and	pop	an
item;	each	change	results	in	a	new	set	of	sums.



All	that's	left,	is	to	add	our	mean	and	standard	deviation	calculations,	which	we
can	do	as	follows:

@property

def	mean(self)	->	float:

				return	self.sum1	/	self.sum0

@property

def	stdev(self)	->	float:

				return	math.sqrt(

								self.sum0*self.sum2	-	self.sum1*self.sum1

				)	/	self.sum0

These	make	use	of	the	sums	that	have	already	been	computed.	There's	no
additional	looping	over	the	data	to	compute	these	two	statistics.



Working	with	__getitem__(),
__setitem__(),	__delitem__(),	and
slices
The	StatsList2	example	didn't	show	us	the	implementation	of	__setitem__()	or
__delitem__()	because	they	involve	slices.	We'll	need	to	look	at	the	implementation
of	a	slice	before	we	can	implement	these	methods	properly.

Sequences	have	two	different	kinds	of	indexes:

a[i].	This	is	a	simple	integer	index.
a[i:j]	or	a[i:j:k]:	These	are	slice	expressions	with	start:stop:step	values.
Slice	expressions	can	be	quite	complex,	with	seven	different	variations	for
different	kinds	of	defaults.

This	basic	syntax	works	in	three	contexts:

In	an	expression,	relying	on	__getitem__()	to	get	a	value
On	the	left-hand	side	of	assignment,	relying	on	__setitem__()	to	set	a	value
On	a	del	statement,	relying	on	__delitem__()	to	delete	a	value

When	we	do	something	like	seq[:-1],	we	write	a	slice	expression.	The	underlying
__getitem__()	method	will	be	given	a	slice	object,	instead	of	a	simple	integer.

The	reference	manual	tells	us	a	few	things	about	slices.	A	slice	object	will	have
three	attributes:	start,	stop,	and	step.	It	will	also	have	a	method	function	called
indices(),	which	will	properly	compute	any	omitted	attribute	values	for	a	slice.

We	can	explore	the	slice	objects	with	a	trivial	class	that	extends	list:

class	Explore(list):	

				def	__getitem__(	self,	index	):	

								print(	index,	index.indices(len(self))	)	

								return	super().__getitem__(	index	)	

This	class	will	dump	the	slice	object	and	the	value	of	the	indices()	function	result.



Then,	use	the	superclass	implementation,	so	that	the	list	behaves	normally
otherwise.

Given	this	class,	we	can	try	different	slice	expressions	to	see	what	we	get:

>>>	x	=	Explore('abcdefg')	

>>>	x[:]	

slice(None,	None,	None)	(0,	7,	1)	

['a',	'b',	'c',	'd',	'e',	'f',	'g']	

>>>	x[:-1]	

slice(None,	-1,	None)	(0,	6,	1)	

['a',	'b',	'c',	'd',	'e',	'f']	

>>>	x[1:]	

slice(1,	None,	None)	(1,	7,	1)	

['b',	'c',	'd',	'e',	'f',	'g']	

>>>	x[::2]	

slice(None,	None,	2)	(0,	7,	2)	

['a',	'c',	'e',	'g']	

In	the	preceding	slice	expressions,	we	can	see	that	a	slice	object	has	three
attributes,	and	the	values	for	those	attributes	come	directly	from	the	Python
syntax.	When	we	provide	the	proper	length	to	the	indices()	function,	it	returns	a
three-tuple	value	with	start,	stop,	and	step	values.



Implementing	__getitem__(),
__setitem__(),	and	__delitem__()
When	we	implement	the	__getitem__(),	__setitem__()	and	__delitem__()	methods,	we
must	work	with	two	kinds	of	argument	values:	int	and	slice.	This	variant
behavior	requires	two	different	type	hints.	The	hints	are	provided	using	the
@overload	decorator.

When	we	overload	the	various	sequence	methods,	we	must	handle	the	slice
situation	appropriately	within	the	body	of	the	method.	This	requires	using	the
isinstance()	function	to	discern	whether	a	slice	object	or	a	simple	int	has	been
provided	as	an	argument	value.

Here	is	a	__setitem__()	method	that	works	with	slices:

@overload

def	__setitem__(self,	index:	int,	value:	float)	->	None:	...

@overload

def	__setitem__(self,	index:	slice,	value:	Iterable[float])	->	None:	...

def	__setitem__(self,	index,	value)	->	None:

				if	isinstance(index,	slice):

								start,	stop,	step	=	index.indices(len(self))

								olds	=	[self[i]	for	i	in	range(start,	stop,	step)]

								super().__setitem__(index,	value)

								for	x	in	olds:

												self._rmv(x)

								for	x	in	value:

												self._new(x)

				else:

								old	=	self[index]

								super().__setitem__(index,	value)

								self._rmv(old)

The	preceding	method	has	two	processing	paths:

If	the	index	is	a	slice	object,	we'll	compute	the	start,	stop,	and	step	values.
Then,	we'll	locate	all	the	old	values	that	will	be	removed.	We	can	then
invoke	the	superclass	operation	and	fold	in	the	new	values	that	replaced	the
old	values.
If	the	index	is	a	simple	int	object,	the	old	value	is	a	single	item,	and	the	new
value	is	also	a	single	item.



Note	that	__setitem__()	expected	multiple	type	hints,	written	using	the	@overload
descriptor.	The	__delitem__()	definition,	on	the	other	hand,	relies	on	Union[int,
slice],	instead	of	two	overloaded	definitions.

Here's	the	__delitem__()	method,	which	works	with	either	a	slice	or	an	integer:

def	__delitem__(self,	index:	Union[int,	slice])	->	None:

				#	Index	may	be	a	single	integer,	or	a	slice

				if	isinstance(index,	slice):

								start,	stop,	step	=	index.indices(len(self))

								olds	=	[self[i]	for	i	in	range(start,	stop,	step)]

								super().__delitem__(index)

								for	x	in	olds:

												self._rmv(x)

				else:

								old	=	self[index]

								super().__delitem__(index)

								self._rmv(old)

The	preceding	code,	too,	expands	the	slice	to	determine	what	values	could	be
removed.	If	the	index	is	a	simple	integer,	then	just	one	value	is	removed.

When	we	introduce	proper	slice	processing	to	our	StatsList2	class,	we	can	create
lists	that	do	everything	the	base	list	class	does,	and	also	(rapidly)	return	the
mean	and	standard	deviation	for	the	values	that	are	currently	in	the	list.

Note	that	these	method	functions	will	each	create	a	temporary	list	object,	olds;	this	involves
some	overhead	that	can	be	removed.	As	an	exercise	for	the	reader,	it's	helpful	to	rewrite	the
_rmv()	function	to	eliminate	the	use	of	the	olds	variable.



Wrapping	a	list	and	delegating
We'll	look	at	how	we	might	wrap	one	of	Python's	built-in	container	classes.
Wrapping	an	existing	class	means	that	some	methods	will	have	to	be	delegated
to	the	underlying	container.

As	there	are	a	large	number	of	methods	in	any	of	the	built-in	collections,
wrapping	a	collection	may	require	a	fair	amount	of	code.	When	it	comes	to
creating	persistent	classes,	wrapping	has	advantages	over	extending.	That's	the
subject	of	Chapter	10,	Serializing	and	Saving	-	JSON,	YAML,	Pickle,	CSV,	and
XML.	In	some	cases,	we'll	want	to	expose	the	internal	collection	to	save	writing
a	large	number	of	sequence	methods	that	delegate	to	an	internal	list.

A	common	restriction	that	applies	to	statistics	data	classes	is	that	they	need	to	be
insert	only.	We'll	be	disabling	a	number	of	method	functions.	This	is	the	kind	of
dramatic	change	in	the	class	features	that	suggests	using	a	wrapper	class	instead
of	an	extension.

We	can	design	a	class	that	supports	only	append	and	__getitem__,	for	example.	It
would	wrap	a	list	class.	The	following	code	can	be	used	to	accumulate	data	from
simulations:

class	StatsList3:

				def	__init__(self)	->	None:

								self._list:	List[float]	=	list()

								self.sum0	=	0		#	len(self),	sometimes	called	"N"

								self.sum1	=	0.		#	sum(self)

								self.sum2	=	0.		#	sum(x**2	for	x	in	self)

				def	append(self,	value:	float)	->	None:

								self._list.append(value)

								self.sum0	+=	1

								self.sum1	+=	value

								self.sum2	+=	value	*	value

				def	__getitem__(self,	index:	int)	->	float:

								return	self._list.__getitem__(index)

				@property

				def	mean(self)	->	float:

								return	self.sum1	/	self.sum0

				@property

				def	stdev(self)	->	float:

								return	math.sqrt(



												self.sum0*self.sum2	-	self.sum1*self.sum1

								)	/	self.sum0

This	class	has	an	internal	_list	object	that	is	the	underlying	list.	We've	provided
an	explicit	type	hint	to	show	the	object	is	expected	to	be	List[float].	The	list	is
initially	empty.	As	we've	only	defined	append()	as	a	way	to	update	the	list,	we	can
maintain	the	various	sums	easily.	We	need	to	be	careful	to	delegate	the	work	to
the	superclass	to	be	sure	that	the	list	is	actually	updated	before	our	subclass
processes	the	argument	value.

We	can	directly	delegate	__getitem__()	to	the	internal	list	object	without	examining
the	arguments	or	the	results.

We	can	use	this	class	as	follows:

>>>	sl3	=	StatsList3()	

>>>	for	data	in	2,	4,	4,	4,	5,	5,	7,	9:	

...					sl3.append(data)	

...	

>>>	sl3.mean	

5.0	

>>>	sl3.stdev				

2.0	

We	created	an	empty	list	and	appended	items	to	the	list.	As	we	maintain	the
sums	as	items	are	appended,	we	can	compute	the	mean	and	standard	deviation
extremely	quickly.

We	did	not	provide	a	definition	of	__iter__().	Instances	of	this	class	will,
however,	be	iterable	in	spite	of	this	omission.

Because	we've	defined	__getitem__(),	several	things	now	work.	Not	only	can	we
get	items,	but	it	also	turns	out	that	there	will	be	a	default	implementation	that
allows	us	to	iterate	through	the	sequence	of	values.

Here's	an	example:

>>>	sl3[0]	

2	

>>>	for	x	in	sl3:	

...					print(x)	

...	

2	

4	

4	

4	

5	



5	

7	

9	

The	preceding	output	shows	us	that	a	minimal	wrapper	around	a	collection	is
often	enough	to	satisfy	many	use	cases.

Note	that	we	didn't,	for	example,	make	the	list	sizeable.	If	we	attempt	to	get	the
size,	it	will	raise	an	exception,	as	shown	in	the	following	snippet:

>>>	len(sl3)	

Traceback	(most	recent	call	last):	

		File	"<stdin>",	line	1,	in	<module>	

TypeError:	object	of	type	'StatsList3'	has	no	len()	

We	might	want	to	add	a	__len__()	method	that	delegates	the	real	work	to	the
internal	_list	object.	We	might	also	want	to	set	__hash__	to	None,	which	would	be
prudent	as	this	is	a	mutable	object.

We	might	want	to	define	__contains__()	and	delegate	this	feature	to	the	internal
_list	too.	This	will	create	a	minimalist	container	that	offers	the	low-level	feature
set	of	a	container.



Creating	iterators	with	__iter__()
When	our	design	involves	wrapping	an	existing	class,	we'll	need	to	be	sure	our
class	is	iterable.	When	we	look	at	the	documentation	for	collections.abc.Iterable,
we	see	that	we	only	need	to	define	__iter__()	to	make	an	object	iterable.	The
__iter__()	method	can	either	return	a	proper	Iterator	object,	or	it	can	be
a	generator	function.

Creating	an	Iterator	object,	while	not	terribly	complex,	is	rarely	necessary.	It's
much	simpler	to	create	generator	functions.	For	a	wrapped	collection,	we	should
always	simply	delegate	the	__iter__()	method	to	the	underlying	collection.

For	our	StatsList3	class,	it	would	look	like	this:

				def	__iter__(self):	

								return	iter(self._list)	

This	method	function	would	delegate	the	iteration	to	the	underlying	list
object's	Iterator.



Creating	a	new	kind	of	mapping
Python	has	a	built-in	mapping	called	dict,	and	numerous	library	mappings.	In
addition	to	the	collections	module	extensions	to	dict	(defaultdict,	Counter,	and
ChainMap),	there	are	several	other	library	modules	that	contain	mapping-like
structures.

The	shelve	module	is	an	important	example	of	another	mapping.	We'll	look	at	this
in	Chapter	11,	Storing	and	Retrieving	Objects	via	Shelve.	The	dbm	module	is	similar
to	shelve,	in	that	it	also	maps	a	key	to	a	value.

The	mailbox	module	and	email.message	modules	both	have	classes	that	provide	an
interface	that	is	similar	to	dict	for	the	mailbox	structure	used	to	manage	local	e-
mails.

As	far	as	design	strategies	go,	we	can	extend	or	wrap	one	of	the	existing
mappings	to	add	even	more	features.

We	could	upgrade	Counter	to	add	the	mean	and	standard	deviation	to	the	data
stored	as	a	frequency	distribution.	Indeed,	we	can	also	calculate	the	median	and
mode	very	easily	from	this	class.

Here's	a	StatsCounter	extension	to	Counter	that	adds	some	statistical	functions:

import	math

from	collections	import	Counter

class	StatsCounter(Counter):

				@property

				def	mean(self)	->	float:

								sum0	=	sum(v	for	k,	v	in	self.items())

								sum1	=	sum(k	*	v	for	k,	v	in	self.items())

								return	sum1	/	sum0

				@property

				def	stdev(self)	->	float:

								sum0	=	sum(v	for	k,	v	in	self.items())

								sum1	=	sum(k	*	v	for	k,	v	in	self.items())

								sum2	=	sum(k	*	k	*	v	for	k,	v	in	self.items())

								return	math.sqrt(sum0	*	sum2	-	sum1	*	sum1)	/	sum0

We	extended	the	Counter	class	with	two	new	methods	to	compute	the	mean	and
standard	deviation	from	the	frequency	distributions.	The	formulae	are	similar	to



the	examples	shown	earlier	for	the	eager	calculations	on	a	list	object,	even
though	they're	lazy	calculations	on	a	Counter	object.

We	used	sum0	=	sum(v	for	k,v	in	self.items())	to	compute	a	sum	of	the	values,	v,
ignoring	the	k	keys.	We	could	use	an	underscore	(_)	instead	of	k	to	emphasize
that	we're	ignoring	the	keys.	We	could	also	use	sum(v	for	v	in	self.values())	to
emphasize	that	we're	not	using	the	keys.	We	prefer	obvious	parallel	structures	for
sum0	and	sum1.

We	can	use	this	class	to	efficiently	gather	statistics	and	to	perform	quantitative
analysis	on	the	raw	data.	We	might	run	a	number	of	simulations,	using	a	Counter
object	to	gather	the	results.

Here's	an	interaction	with	a	list	of	sample	data	that	stands	in	for	real	results:

>>>	sc	=	StatsCounter(	[2,	4,	4,	4,	5,	5,	7,	9]	)	

>>>	sc.mean	

5.0	

>>>	sc.stdev	

2.0	

>>>	sc.most_common(1)	

[(4,	3)]	

>>>	list(sorted(sc.elements()))	

[2,	4,	4,	4,	5,	5,	7,	9]	

The	results	of	most_common()	are	reported	as	a	sequence	of	two-tuples	with	the
mode	value	(4)	and	the	number	of	times	the	value	occurred	(3).	We	might	want
to	get	the	top	three	values	to	bracket	the	mode	with	the	next	two	less-popular
items.	We	get	several	popular	values	with	an	evaluation	such	as	sc.most_common(3).

The	elements()	method	reconstructs	a	list	that's	like	the	original	data	with	the
items	repeated	properly.

From	the	sorted	elements,	we	can	extract	the	median,	the	middle-most	item:

@property

def	median(self)	->	Any:

				all	=	list(sorted(self.elements()))

				return	all[len(all)	//	2]

This	method	is	not	only	lazy,	it's	rather	extravagant	with	memory;	it	creates	an
entire	sequence	of	the	available	values	merely	to	find	the	middle-most	item.

While	it	is	simple,	this	is	often	an	expensive	way	to	use	Python.



A	smarter	approach	would	be	to	compute	the	effective	length	and	mid-point	via
sum(self.values())//2.	Once	this	is	known,	the	keys	can	be	visited	in	that	order,
using	the	counts	to	compute	the	range	of	positions	for	a	given	key.	Eventually,	a
key	will	be	found	with	a	range	that	includes	the	midpoint.

The	code	would	look	something	like	the	following:

@property

def	median2(self)	->	Optional[float]:

				mid	=	sum(self.values())	//	2

				low	=	0

				for	k,	v	in	sorted(self.items()):

								if	low	<=	mid	<	low	+	v:	return	k

								low	+=	v

				return	None

We	stepped	through	the	keys	and	the	number	of	times	they	occur	to	locate	the
key	that	is	midmost.	Note	that	this	uses	the	internal	sorted()	function,	which	is
not	without	its	own	cost.

Via	timeit,	we	can	learn	that	the	extravagant	version	takes	9.5	seconds;	the
smarter	version	takes	5.2	seconds.

Let's	take	a	look	at	how	to	create	a	new	kind	of	set	in	the	next	section.



Creating	a	new	kind	of	set
Creating	a	whole	new	collection	requires	some	preliminary	work.	We	need	to
have	new	algorithms	or	new	internal	data	structures	that	offer	significant
improvements	over	the	built-in	collections.	It's	important	to	do	thorough	Big-
O	complexity	calculations	before	designing	a	new	collection.	It's	also	important
to	use	timeit	after	an	implementation	to	be	sure	that	the	new	collection	really	is
an	improvement	over	available	built-in	classes.

We	might,	for	example,	want	to	create	a	binary	search	tree	structure	that	will
keep	the	elements	in	a	proper	order.	As	we	want	this	to	be	a	mutable	structure,
we'll	have	to	perform	the	following	kinds	of	design	activities:

Design	the	essential	binary	tree	structure.
Decide	which	structure	is	the	basis:	MutableSequence,	MutableMapping,	or
MutableSet.
Look	at	the	special	methods	for	the	collection	in	the	collections.abc	section
of	the	Python	Standard	Library	documentation,	section	8.4.1.

A	binary	search	tree	has	nodes	that	contain	a	key	value,	and	two	branches:	a	less
than	branch	for	all	keys	less	than	this	node's	key,	and	a	greater	than	or	equal
to	branch	for	keys	greater	than,	or	equal	to,	this	node's	key.

We	need	to	examine	the	fit	between	our	collection	and	the	Python	ABCs:

A	binary	tree	doesn't	fit	well	with	some	sequence	features.	Notably,	we
don't	often	use	an	integer	index	with	a	binary	tree.	We	most	often	refer	to
elements	in	a	search	tree	by	their	key.	While	we	can	impose	an	integer

index	without	too	much	difficulty,	it	will	involve	 tree	traversals.
A	tree	could	be	used	for	the	keys	of	a	mapping;	this	would	keep	the	keys	in
a	sorted	order	at	a	relatively	low	cost.
It	is	a	good	alternative	to	a	set	or	a	Counter	class	because	it	can	tolerate
multiple	copies	of	a	key,	making	it	easily	bag-like.

We'll	look	at	creating	a	sorted	multiset	or	a	bag.	This	can	contain	multiple	copies
of	an	object.	It	will	rely	on	relatively	simple	comparison	tests	among	objects.



This	is	a	rather	complex	design.	There	are	a	great	many	details.	To	create	a
background,	it's	important	to	read	articles	such	as	http://en.wikipedia.org/wiki/Binar
y_search_tree.	At	the	end	of	the	previous	Wikipedia	page	are	a	number	of	external
links	that	will	provide	further	information.	It's	essential	to	study	the	essential
algorithms	in	books	such	as	Introduction	to	Algorithms	by	Cormen,	Leiserson,
Rivest,	and	Stein;	Data	Structures	and	Algorithms	by	Aho,	Ullman,	and
Hopcroft;	or	The	Algorithm	Design	Manual	by	Steven	Skiena.

http://en.wikipedia.org/wiki/Binary_search_tree


Some	design	rationale
We're	going	to	split	the	collection	into	two	classes:	TreeNode	and	Tree.	This	will
allow	us	to	separate	the	design	into	the	essential	data	collection,	and	a	Pythonic
Façade	design	pattern	required	to	match	other	collections.	

The	TreeNode	class	will	contain	the	item	as	well	as	the	more,	less,	and	parent
references.	This	is	the	core	collection	of	values.	It	handles	insertion	and	removal.
Also,	searching	for	a	particular	item	in	order	to	use	__contains__()	or	discard()	will
be	delegated	to	the	TreeNode	class.

The	essential	search	algorithm's	outline	looks	like	this.

If	the	target	item	is	equal	to	the	self	item,	then	return	self.
If	the	target	item	is	less	than	self.item,	then	recursively	use	less.find(target
item).
If	the	target	item	is	greater	than	self.item,	then	recursively	use
more.find(target.item).

We'll	use	similar	delegation	to	the	TreeNode	class	for	more	of	the	real	work	of
maintaining	the	tree	structure.

We'll	use	the	Façade	design	pattern	to	wrap	details	of	the	TreeNode	with	a
Pythonic	interface.	This	will	define	the	visible,	external	definition	the	Tree	itself.
A	Façade	design	can	also	be	called	a	wrapper;	the	idea	is	to	add	features
required	for	a	particular	interface.	The	Tree	class	provides	the	external	interface
required	by	a	MutableSet	ABC	and	keeps	these	requirements	distinct	from	the
implementation	details	in	the	TreeNode	class.

The	algorithms	can	be	somewhat	simpler	if	there's	a	root	node	that's	empty	and
always	compares	less	than	all	other	key	values.	This	can	be	challenging	in
Python	because	we	don't	know	in	advance	what	types	of	data	the	nodes	might
have;	we	can't	easily	define	a	bottom	value	for	the	root	node.	Instead,	we'll	use	a
special	case	value	of	None,	and	endure	the	overheads	of	if	statements	checking	for
the	root	node.



Defining	the	Tree	class
We'll	start	with	the	wrapper	or	Façade	class,	Tree.	This	is	the	core	of	an	extension
to	the	MutableSet	class	that	provides	the	minimal	method	functions:

class	Tree(collections.abc.MutableSet):

				def	__init__(self,	source:	Iterable[Comparable]	=	None)	->	None:

								self.root	=	TreeNode(None)

								self.size	=	0

								if	source:

												for	item	in	source:

																self.root.add(item)

																self.size	+=	1

				def	add(self,	item:	Comparable)	->	None:

								self.root.add(item)

								self.size	+=	1

				def	discard(self,	item:	Comparable)	->	None:

								if	self.root.more:

												try:

																self.root.more.remove(item)

																self.size	-=	1

												except	KeyError:

																pass

								else:

												pass

				def	__contains__(self,	item:	Any)	->	bool:

								if	self.root.more:

												self.root.more.find(cast(Comparable,	item))

												return	True

								else:

												return	False

				def	__iter__(self)	->	Iterator[Comparable]:

								if	self.root.more:

												for	item	in	iter(self.root.more):

																yield	item

								#	Otherwise,	the	tree	is	empty.

				def	__len__(self)	->	int:

								return	self.size

The	initialization	design	is	similar	to	that	of	a	Counter	object;	this	class	will	accept
an	iterable	and	load	the	elements	into	the	structure.	The	source	of	data	is
provided	with	a	type	hint	of	Iterable[Comparable].	This	hint	imposes	a	restriction	on
the	kinds	of	items	which	this	collection	can	handle.		If	the	collection	is	used	with
items	that	do	not	support	the	proper	comparable	protocol	methods,	then	mypy
will	report	an	error.



Here's	the	definition	of	the	Comparable	type	hint:

class	Comparable(metaclass=ABCMeta):

				@abstractmethod

				def	__lt__(self,	other:	Any)	->	bool:	...

				@abstractmethod

				def	__ge__(self,	other:	Any)	->	bool:	...

The	Comparable	class	definition	is	an	abstraction	which	requires	two	methods:
__lt__()	and	__ge__().	This	is	the	minimum	required	for	a	class	of	objects	to	work
properly	with	the	<,	<=,	>,	and	>=	operators.	This	defines	the	comparable	protocol
among	objects	that	can	be	sorted	or	ranked.

The	add()	and	discard()	methods	both	update	the	tree,	and	also	keep	track	of	the
overall	size.	That	saves	counting	nodes	via	a	recursive	traversal	of	the	tree.
These	methods	also	delegate	their	work	to	the	TreeNode	object	at	the	root	of	the
tree.

The	__contains__()	special	method	performs	a	recursive	find.	The	initial	check	to
be	sure	the	tree	contains	a	value	in	the	root	node	is	required	by	mypy.	Without
the	if	statement,	the	type	hints	suggest	the	more	attribute	could	be	None.	

The	__iter__()	special	method	is	a	generator	function.	It	also	delegates	the	real
work	to	recursive	iterators	within	the	TreeNode	class.

We	defined	discard();	mutable	sets	require	this	to	be	silent	when	attempting	to
discard	the	missing	keys.	The	abstract	superclass	provides	a	default
implementation	of	remove(),	which	raises	an	exception	if	a	key	is	not	found.	Both
method	functions	must	be	present;	we	defined	discard()	based	on	remove(),	by
silencing	the	exception.	In	some	cases,	it	might	be	easier	to	define	remove()	based
on	discard(),	by	raising	an	exception	if	a	problem	is	found.

Because	this	class	extends	the	MutableSet	abstraction,	numerous	features	are
provided	automatically.	This	saves	us	from	copy-and-paste	programming	to
create	a	number	of	boilerplate	features.	In	some	cases,	our	data	structure	may
have	more	efficient	implementations	than	the	defaults,	and	we	may	want	to
override	additional	methods	inherited	from	the	abstract	superclass.



Defining	the	TreeNode	class
The	overall	Tree	class	relies	on	the	TreeNode	class	to	handle	the	implementation
details	of	adding,	removing,	and	iterating	through	the	various	items	in	the	bag.
This	class	is	rather	large,	so	we'll	present	it	in	four	sections.

The	first	part	shows	the	essential	elements	of	initialization,	representation,	and
how	the	attributes	are	made	visible:

class	TreeNode:

				def	__init__(

								self,

								item:	Optional[Comparable],

								less:	Optional["TreeNode"]	=	None,

								more:	Optional["TreeNode"]	=	None,

								parent:	Optional["TreeNode"]	=	None,

				)	->	None:

								self.item	=	item

								self.less	=	less

								self.more	=	more

								if	parent:

												self.parent	=	parent

				@property

				def	parent(self)	->	Optional["TreeNode"]:

								return	self.parent_ref()

				@parent.setter

				def	parent(self,	value:	"TreeNode"):

								self.parent_ref	=	weakref.ref(value)

				def	__repr__(self)	->	str:

								return	f"TreeNode({self.item!r},	{self.less!r},	{self.more!r})"

Each	individual	node	must	have	a	reference	to	an	item.	Additional	nodes	with
items	that	compare	as	less	than	the	given	item,	or	more	than	the	given	item	are
optional.	Similarly,	a	parent	node	is	also	optional.

The	property	definitions	for	the	parent	methods	are	used	to	ensure	that	the	parent
attribute	is	actually	a	weakref	attribute,	but	it	appears	like	a	strong	reference.	For
more	information	on	weak	references,	see	Chapter	3,	Integrating	Seamlessly	-
Basic	Special	Methods.	We	have	mutual	references	between	a	TreeNode	parent
object	and	its	children	objects;	this	circularity	could	make	it	difficult	to	remove
TreeNode	objects.	Using	a	weakref	breaks	the	circularity,	allowing	reference
counting	to	remove	nodes	quickly	when	they	are	no	longer	referenced.



Note	that	the	TreeNode	type	hints	are	references	to	the	class	from	inside	the	class
definition.	This	circularity	can	be	a	syntax	problem	because	the	class	hasn't	been
fully	defined.	To	make	valid	self-referential	type	hints,	mypy	allows	the	use	of	a
string.	When	mypy	is	run,	the	string	resolves	to	the	proper	type	object.

Here	are	the	methods	for	finding	and	iterating	through	the	nodes:

def	find(self,	item:	Comparable)	->	"TreeNode":

				if	self.item	is	None:		#	Root

								if	self.more:

												return	self.more.find(item)

				elif	self.item	==	item:

								return	self

				elif	self.item	>	item	and	self.less:

								return	self.less.find(item)

				elif	self.item	<	item	and	self.more:

								return	self.more.find(item)

				raise	KeyError

def	__iter__(self)	->	Iterator[Comparable]:

				if	self.less:

								yield	from	self.less

				if	self.item:

								yield	self.item

				if	self.more:

								yield	from	self.more

We	saw	the	find()	method,	which	performs	a	recursive	search	from	a	tree	through
the	appropriate	subtree	looking	for	the	target	item.	There	are	a	total	of	six	cases:

When	this	is	the	root	node	of	the	tree,	we'll	simply	skip	it.
When	this	node	has	the	target	item,	we'll	return	it.
When	the	target	item	is	less	than	this	node's	item	and	there	is	a	branch	on
the	less	side,	we'll	descend	into	that	subtree	to	search.
When	the	target	item	is	more	than	this	node's	item	and	there	is	a	branch	on
the	more	side,	we'll	descend	into	that	subtree	to	search.
There	are	two	remaining	cases:	the	target	item	is	less	than	the	current	node,
but	there's	no	less	branch	or	the	target	item	is	more	than	the	current	node,
but	there's	no	more	branch.	These	two	cases	both	mean	the	item	cannot	be
found	in	the	tree,	leading	to	a	KeyError	exception.

The	__iter__()	method	does	what's	called	an	inorder	traversal	of	this	node	and	its
subtrees.	As	is	typical,	this	is	a	generator	function	that	yields	the	values	from
iterators	over	each	collection	of	subtrees.	Although	we	could	create	a	separate
iterator	class	that's	tied	to	our	Tree	class,	there's	little	benefit	when	this	generator
function	does	everything	we	need.



The	result	of	the	__iter__()	has	a	type	hint	of	Iterator[Comparable].	This	reflects	the
minimal	constraint	placed	on	the	items	contained	in	the	tree.

Here's	the	next	part	of	this	class	to	add	a	new	node	to	a	tree:

def	add(self,	item:	Comparable):

				if	self.item	is	None:		#	Root	Special	Case

								if	self.more:

												self.more.add(item)

								else:

												self.more	=	TreeNode(item,	parent=self)

				elif	self.item	>=	item:

								if	self.less:

												self.less.add(item)

								else:

												self.less	=	TreeNode(item,	parent=self)

				elif	self.item	<	item:

								if	self.more:

												self.more.add(item)

								else:

												self.more	=	TreeNode(item,	parent=self)

This	is	the	recursive	search	for	the	proper	place	to	add	a	new	node.	The	structure
parallels	the	find()	method.

Finally,	we	have	the	(more	complex)	processing	to	remove	a	node	from	the	tree.
This	requires	some	care	to	relink	the	tree	around	the	missing	node:

def	remove(self,	item:	Comparable):

				#	Recursive	search	for	node

				if	self.item	is	None	or	item	>	self.item:

								if	self.more:

												self.more.remove(item)

								else:

												raise	KeyError

				elif	item	<	self.item:

								if	self.less:

												self.less.remove(item)

								else:

												raise	KeyError

				else:		#	self.item	==	item

								if	self.less	and	self.more:		#	Two	children	are	present

												successor	=	self.more._least()

												self.item	=	successor.item

												if	successor.item:

																successor.remove(successor.item)

								elif	self.less:		#	One	child	on	less

												self._replace(self.less)

								elif	self.more:		#	One	child	on	more

												self._replace(self.more)

								else:		#	Zero	children

												self._replace(None)

def	_least(self)	->	"TreeNode":

				if	self.less	is	None:

								return	self

				return	self.less._least()



def	_replace(self,	new:	Optional["TreeNode"]	=	None)	->	None:

				if	self.parent:

								if	self	==	self.parent.less:

												self.parent.less	=	new

								else:

												self.parent.more	=	new

				if	new	is	not	None:

								new.parent	=	self.parent

The	remove()	method	has	two	sections.	The	first	part	is	the	recursive	search	for	the
target	node.

Once	the	node	is	found,	there	are	three	cases	to	consider:

When	we	delete	a	node	with	no	children,	we	simply	delete	it	and	update	the
parent	to	replace	the	link	with	None.	The	use	of	a	weak	reference	from	the
removed	node	back	to	the	parent,	means	memory	cleanup	and	reuse	is
immediate.
When	we	delete	a	node	with	one	child,	we	can	push	the	single	child	up	to
replace	this	node	under	the	parent.
When	there	are	two	children,	we	need	to	restructure	the	tree.	We	locate	the
successor	node	(the	least	item	in	the	more	subtree).	We	can	replace	the	to-be-
removed	node	with	the	content	of	this	successor.	Then,	we	can	remove	the
duplicative	former	successor	node.

We	rely	on	two	private	methods.	The	_least()	method	performs	a	recursive	search
for	the	least-valued	node	in	a	given	tree.	The	_replace()	method	examines	a	parent
to	see	whether	it	should	touch	the	less	or	more	attribute.



Demonstrating	the	binary	tree	bag
We	built	a	complete	new	collection.	The	ABC	definitions	included	a	number	of
methods	automatically.	These	inherited	methods	might	not	be	particularly
efficient,	but	they're	defined,	they	work,	and	we	didn't	write	the	code	for	them.

>>>	s1	=	Tree(["Item	1",	"Another",	"Middle"])	

>>>	list(s1)	

['Another',	'Item	1',	'Middle']	

>>>	len(s1)	

3	

>>>	s2	=	Tree(["Another",	"More",	"Yet	More"])	

>>>	

>>>	union=	s1	|	s2	

>>>	list(union)	

['Another',	'Another',	'Item	1',	'Middle',	'More',	'Yet	More']	

>>>	len(union)	

6	

>>>	union.remove('Another')	

>>>	list(union)	

['Another',	'Item	1',	'Middle',	'More',	'Yet	More']	

This	example	shows	us	that	the	set	union	operator	for	set	objects	works	properly,
even	though	we	didn't	provide	code	for	it	specifically.	As	this	is	a	bag,	items	are
duplicated	properly,	too.



Design	considerations	and	tradeoffs
When	working	with	containers	and	collections,	we	have	a	multistep	design
strategy:

1.	 Consider	the	built-in	versions	of	sequence,	mapping,	and	set.
2.	 Consider	the	library	extensions	in	the	collection	module,	as	well	as	extras

such	as	heapq,	bisect,	and	array.
3.	 Consider	a	composition	of	existing	class	definitions.	In	many	cases,	a	list	of

tuple	objects	or	a	dict	of	lists	provides	the	needed	features.
4.	 Consider	extending	one	of	the	earlier	mentioned	classes	to	provide

additional	methods	or	attributes.
5.	 Consider	wrapping	an	existing	structure	as	another	way	to	provide

additional	methods	or	attributes.
6.	 Finally,	consider	a	novel	data	structure.	Generally,	there	is	a	lot	of	careful

analysis	available.	Start	with	Wikipedia	articles	such	as	this	one:	http://en.wi
kipedia.org/wiki/List_of_data_structures.

Once	the	design	alternatives	have	been	identified,	there	are	two	parts	of	the
evaluation	left:

How	well	the	interface	fits	with	the	problem	domain.	This	is	a	relatively
subjective	determination.
How	well	the	data	structure	performs	as	measured	with	timeit.	This	is	an
entirely	objective	result.

It's	important	to	avoid	the	paralysis	of	analysis.	We	need	to	effectively	find	the
proper	collection.

In	most	cases,	it	is	best	to	profile	a	working	application	to	see	which	data
structure	is	the	performance	bottleneck.	In	some	cases,	consideration	of	the
complexity	factors	for	a	data	structure	will	reveal	its	suitability	for	a	particular
kind	of	problem	before	starting	the	implementation.

Perhaps	the	most	important	consideration	is	this:	for	the	highest	performance,	avoid	search.

http://en.wikipedia.org/wiki/List_of_data_structures


Avoiding	search	is	the	reason	sets	and	mappings	require	hashable	objects.	A
hashable	object	can	be	located	in	a	set	or	mapping	with	almost	no	processing.
Locating	an	item	by	value	(not	by	index)	in	a	list	can	take	a	great	deal	of	time.

Here's	a	comparison	of	a	bad	set-like	use	of	a	list	and	a	proper	use	of	a	set:

>>>	import	timeit	

>>>	timeit.timeit('l.remove(10);	l.append(10)',	'l	=	

	list(range(20))')	

0.8182099789992208	

>>>	timeit.timeit('l.remove(10);	l.add(10)',	'l	=	set(range(20))')	

0.30278149300283985	

We	removed	and	added	an	item	from	a	list,	as	well	as	a	set.

Clearly,	abusing	a	list	to	get	it	to	perform	set-like	operations	makes	the
collection	take	2.7	times	as	long	to	run.

As	a	second	example,	we'll	abuse	a	list	to	make	it	mapping-like.	This	is	based	on
a	real-world	example	where	the	original	code	had	two	parallel	lists	to	mimic	the
keys	and	values	of	a	mapping.

We'll	compare	a	proper	mapping	with	two	parallel	lists,	as	follows:

>>>	timeit.timeit('i	=	k.index(10);	v[i]=	0',	'k=list(range(20));	

	v=list(range(20))')	

0.6549435159977293	

>>>	timeit.timeit('m[10]	=	0',	'm=dict(zip(list(range(20)),list(range(20))))'	)	

0.0764331009995658	

The	first	example	uses	two	parallel	lists.	One	list	is	used	to	look	up	a	value,	and
then	a	change	is	made	to	the	parallel	list.	In	the	other	case,	we	simply	updated	a
mapping.

Clearly,	performing	an	index	and	update	on	two	parallel	lists	is	a	horrifying
mistake.	It	takes	8.6	times	as	long	to	locate	something	via	list.index()	as	it	does
to	locate	it	via	a	mapping	and	the	hash	value.



Summary
In	this	chapter,	we	looked	at	a	number	of	built-in	class	definitions.	The	built-in
collections	are	the	starting	place	for	most	design	work.	We'll	often	start	with
tuple,	list,	dict,	or	set.	We	can	leverage	the	extension	to	tuple,	created	by
namedtuple()	for	an	application's	immutable	objects.

Beyond	these	classes,	we	have	other	standard	library	classes	in	the	collections
mode	that	we	can	use:

deque

ChainMap

defaultdict

Counter

We	have	three	standard	design	strategies,	too.	We	can	wrap	any	of	these	existing
classes,	or	we	can	extend	a	class.

Finally,	we	can	also	invent	an	entirely	new	kind	of	collection.	This	requires
defining	a	number	of	method	names	and	special	methods.

In	the	next	chapter,	we'll	closely	look	at	the	built-in	numbers	and	how	to	create
new	kinds	of	numbers.	As	with	containers,	Python	offers	a	rich	variety	of	built-
in	numbers.	When	creating	a	new	kind	of	number,	we'll	have	to	define	numerous
special	methods.

After	looking	at	numbers,	we	can	look	at	some	more	sophisticated	design
techniques.	We'll	look	at	how	we	can	create	our	own	decorators	and	use	those	to
simplify	the	class	definition.	We'll	also	look	at	using	mixin	class	definitions,
which	are	similar	to	the	ABC	definitions.



Creating	Numbers
We	can	extend	the	ABC	abstractions	in	the	numbers	module	to	create	new	kinds	of
numbers.	We	might	need	to	do	this	to	create	numeric	types	that	fit	our	problem
domain	more	precisely	than	the	built-in	numeric	types.	The	abstractions	in	the
numbers	module	need	to	be	looked	at	first,	because	they	define	the	existing	built-in
classes.	Before	working	with	new	kinds	of	numbers,	it's	essential	to	see	how	the
existing	numbers	work.

We'll	digress	to	look	at	Python's	operator-to-method	mapping	algorithm.	The
idea	is	that	a	binary	operator	has	two	operands;	either	operand	can	define	the
class	that	implements	the	operator.	Python's	rules	for	locating	the	relevant	class
are	essential	to	decide	what	special	methods	to	implement.

The	essential	arithmetic	operators,	such	as	+,	-,	*,	/,	//,	%,	and	**,	form	the
backbone	of	numeric	operations.	There	are	additional	operators	that	include	^,	|,
and	&;	these	are	used	for	the	bit-wise	processing	of	integers.	They're	also	used	as
operators	among	sets.	There	are	some	more	operators	in	this	class,	including
<<	and	>>.	The	comparison	operators	were	covered	in	Chapter	3,	Integrating
Seamlessly	–	Basic	Special	Methods.	These	include	<,	>,	<=,	>=,	==,	and	!=.	We'll
review	and	extend	our	study	of	the	comparison	operators	in	this	chapter.

There	are	a	number	of	additional	special	methods	for	numbers.	These	include	the
various	conversions	to	other	built-in	types.	Python	also	defines	in-
place	combinations	of	an	assignment	with	an	operator.	These	include	+=,	-=,	*=,
/=,	//=,	%=,	**=,	&=,	|=,	^=,	>>=,	and	<<=.	These	are	more	appropriate	for	mutable
objects	than	numbers.	We'll	finish	the	chapter	by	summarizing	some	of	the
design	considerations	that	go	into	extending	or	creating	new	numbers.

In	this	chapter,	we	will	cover	the	following	topics:

ABCs	of	numbers
The	arithmetic	operator's	special	method
Creating	a	numeric	class
Computing	a	numeric	hash
Implementing	other	special	methods



Optimization	with	the	in-place	operators



Technical	requirements
The	code	files	for	this	chapter	are	available	at	https://git.io/fj2Ua.

https://git.io/fj2Ua


ABCs	of	numbers
The	numbers	package	provides	a	tower	of	numeric	types	that	are	all
implementations	of	numbers.Number.	Additionally,	the	fractions	and	decimal	modules
provide	extension	numeric	types:	fractions.Fraction	and	decimal.Decimal.	These
definitions	roughly	parallel	the	mathematical	thought	on	the	various	classes	of
numbers.	An	article	available	at	http://en.wikipedia.org/wiki/Number_theory	contains
numerous	links	to	in-depth	explanations;	for	example,	An	Introduction	to	the
Theory	of	Numbers.

The	essential	question	is	how	well	computers	can	implement	the	underlying
mathematical	abstractions.	To	be	more	specific,	we	want	to	be	sure	that	anything
that	is	computable	in	the	abstract	world	of	mathematics	can	be	computed	(or
approximated)	using	a	concrete	computer.	This	is	why	the	question	of
computability	is	so	important.	The	idea	behind	a	Turing	complete	programming
language	is	that	it	can	compute	anything	that	is	computable	by	an	abstract	Turing
machine.	A	helpful	article	can	be	found	at	http://en.wikipedia.org/wiki/Computability_
theory;	additional	links	in	this	article	include	https://www.encyclopediaofmath.org/index
.php?title=p/t094460.	

I	recommend	reading	the	Wikipedia	articles	on	number	theory	and	computability	theory,	and
other	concepts	that	I	discuss	in	the	chapter.	The	articles	and	the	additional	links	present	in	the
reference	sections	of	these	sources	will	give	you	more	background	information	than	can	be
covered	here.

Python	defines	the	following	abstractions	and	their	associated	implementation
classes.	Further,	these	classes	form	an	inheritance	hierarchy,	where	each	abstract
class	inherits	from	the	class	above	it.	As	we	move	down	the	list,	the	classes	have
more	features.	As	there	are	very	few	classes,	as	follows,	it	forms	a	tower	rather
than	a	tree:

numbers.Complex	implemented	by	complex
numbers.Real	implemented	by	float
numbers.Rational	implemented	by	fractions.Fraction
numbers.Integral	implemented	by	int

Additionally,	we	have	decimal.Decimal,	which	is	a	bit	like	float	;	it	isn't	a	proper

http://en.wikipedia.org/wiki/Number_theory
https://books.google.com/books?id=rey9wfSaJ9EC
http://en.wikipedia.org/wiki/Computability_theory
https://www.encyclopediaofmath.org/index.php?title=p/t094460


subclass	of	numbers.Real,	but	is	somewhat	like	it.	While	it	may	be	obvious,	it's	still
essential	to	repeat	the	fact	that	the	float	value	is	merely	an	approximation;	it	is
not	exact.	

Don't	be	surprised	by	this	sort	of	thing.	The	following	example	shows	how	a
float	value	is	only	an	approximation	for	real	numbers:

>>>	(105+(1/29)-105)*29

0.9999999999998153

Ordinary	algebra	suggests	that	this	value	should	be	equal	to	one.	Because	of	the
nature	of	the	floating-point	approximations,	the	actual	result	differs	from	the
abstract	ideal.	In	addition	to	the	numeric	class	definitions,	there	are	also	a
number	of	conversions	among	the	various	classes.	It's	not	possible	to	convert
from	every	type	to	every	other	type,	so	we	must	work	out	a	matrix	that	shows
the	conversions	that	work	and	those	conversions	that	can't	work.	The	following
list	is	a	summary:

complex:	This	can't	be	converted	to	any	other	type.	A	complex	value	can	be
decomposed	into	the	real	and	imag	portions,	both	of	which	are	float	values.
float:	This	can	be	converted	explicitly	to	any	type,	including	decimal.Decimal.
Arithmetic	operators	won't	implicitly	coerce	a	float	value	to	Decimal.
Fractions.Fraction:	This	can	be	converted	to	any	of	the	other	types,	except
decimal.Decimal.	To	get	to	decimal	requires	a	two-part	operation:	first	to	float,
and	second	to	decimal.Decimal.	This	leads	to	an	approximation.
int:	This	can	be	converted	to	any	of	the	other	types.
Decimal:	This	can	be	converted	to	any	other	type.	It	is	not	implicitly	coerced
to	other	types	via	arithmetic	operations.

The	up	and	down	conversions	come	from	the	tower	of	numeric	abstractions
mentioned	earlier.

Let's	see	how	to	decide	which	type	to	use	in	the	next	section.



Deciding	which	types	to	use
Because	of	the	conversions,	we	see	the	following	four	general	domains	of
numerical	processing:

Complex:	Once	we	get	involved	in	complex	math,	we'll	be	using	complex,
and	float,	plus	the	cmath	module.	We	probably	aren't	going	to	use	Fraction	or
Decimal	at	all.	However,	there's	no	reason	to	impose	restrictions	on	the
numeric	types;	most	numbers	can	be	converted	to	complex.
Currency:	For	currency-related	operations,	we	absolutely	must	use	Decimal.
Generally,	when	doing	currency	calculations,	there's	no	good	reason	to	mix
the	decimal	values	with	non-decimal	values.	Sometimes,	we'll	use	the	int
values,	but	there's	no	good	reason	to	work	with	float	or	complex	along	with
Decimal.	Remember,	floats	are	approximations,	and	that's	unacceptable	when
working	with	currency.
Bit	Kicking:	For	operations	that	involve	bit	and	byte	processing,	we'll
generally	use	int,	only	int,	and	nothing	but	int.
Conventional:	This	is	a	broad,	vague	everything	else	category.	For	most
conventional	mathematical	operations,	int,	float,	and	Fraction	are	all
interchangeable.	Indeed,	a	well-written	function	can	often	be	properly
polymorphic;	it	will	work	perfectly	well	with	any	numeric	type.	Python
types,	particularly	float	and	int,	will	participate	in	a	variety	of	implicit
conversions.	This	makes	the	selection	of	a	specific	numeric	type	for	these
kinds	of	problems	somewhat	moot.

These	are	generally	obvious	aspects	of	a	given	problem	domain.	It's	often	easy	to
distinguish	applications	that	might	involve	science	or	engineering	and	complex
numbers	from	applications	that	involve	financial	calculations,	currency,	and
decimal	numbers.	It's	important	to	be	as	permissive	as	possible	in	the	numeric
types	that	are	used	in	an	application.	Needlessly	narrowing	the	domain	of	types
via	the	isinstance()	test	is	often	a	waste	of	time	and	code.

In	the	next	section,	we'll	talk	about	method	resolution	and	the	reflected	operator
concept.



Method	resolution	and	the	reflected
operator	concept
The	arithmetic	operators	(+,	-,	*,	/,	//,	%,	**,	and	so	on)	all	map	to	special	method
names.	When	we	provide	an	expression	such	as	355+113,	the	generic	+
operator	will	be	mapped	to	a	concrete	__add__()	method	of	a	specific	numeric
class.	This	example	will	turn	out	to	be	evaluated	as	though	we	had	written
355.__add__(113).	The	simplest	rule	is	that	the	left-most	operand	determines	the
class	of	the	operator	being	used.

But	wait,	there's	more!	When	we	have	an	expression	with	mixed	types,	Python
may	end	up	with	two	available	implementations	of	the	special	method,	one	in
each	class.	Consider	7-0.14	as	an	expression.	Using	the	left-side	int	class,	this
expression	will	be	attempted	as	7.__sub__(0.14).	This	involves	an	unpleasant
complexity,	since	the	argument	to	an	int	operator	is	a	float	value	0.14	and
converting	float	to	int	could	potentially	lose	precision.	Converting	up	the	tower
of	types	(from	int	toward	complex)	won't	lose	precision.	Converting	down	the
tower	of	types	implies	a	potential	loss	of	precision.

Using	the	right-hand	side	float	version,	however,	this	expression	will	be
attempted	as	0.14.__rsub__(7).	In	this	case,	the	argument	to	a	float	operator	is	an
int	value	7;	converting	int	up	the	tower	to	float	doesn't	(generally)	lose
precision.	(A	truly	giant	int	value	can	lose	precision;	however,	that's	a	technical
quibble,	not	a	general	principle.)

The	__rsub__()	operation	is	called	reflected	subtraction.	The	X.__sub__(Y)
operation	is	the	expected	subtraction,	and	the	A.__rsub__(B)	operation	is	the
reflected	subtraction;	the	implementation	method	in	the	latter	comes	from	the
right-hand	side	operand's	class.	So	far,	we've	seen	the	following	two	rules:

Rule	one:	try	the	left-hand	side	operand's	class	first.	If	that	works,	good.	If
the	operand	returns	NotImplemented	as	a	value,	then	use	rule	two.
Rule	two:	try	the	right-hand	side	operand	with	the	reflected	operator.	If	that
works,	good.	If	it	returns	NotImplemented,	then	it	really	is	not	implemented,	so
an	exception	must	be	raised.



The	notable	exception	is	when	the	two	operands	happen	to	have	a	subclass
relationship.

The	following	additional	rule	applies	before	the	first	pair	rules	as	a	special	case:

If	the	right	operand	is	a	subclass	of	the	left,	and	the	subclass	defines	the
reflected	special	method	name	for	the	operator,	then	the	subclass	reflected
operator	will	be	tried.	This	allows	a	subclass	override	to	be	used,	even	if	the
subclass	operand	is	on	the	right-hand	side	of	the	operator.
Otherwise,	use	rule	one	and	try	the	left	side.

Imagine	we	wrote	a	subclass	of	float,	called	MyFloat.	In	an	expression	such	as		2.0-
MyFloat(1),	the	right	operand	is	of	a	subclass	of	the	left	operand's	class.	Because	of
this	subclass	relationship,	MyFloat(1).__rsub__(2.0)	will	be	tried	first.	The	point	of
this	rule	is	to	give	precedence	to	the	subclass.

This	means	that	a	class	that	will	do	implicit	coercion	from	other	types	must
implement	the	forward	as	well	as	the	reflected	operators.	When	we	implement	or
extend	a	numeric	type,	we	must	work	out	the	conversions	that	our	type	is	able	to
do.

In	the	next	section,	we'll	take	a	look	at	the	arithmetic	operator's	special	methods.



The	arithmetic	operator's	special
methods
There	are	a	total	of	13	binary	operators	and	their	associated	special	methods.
We'll	focus	on	the	obvious	arithmetic	operators	first.	The	special	method	names
match	the	operators	(and	functions),	as	shown	in	the	following	table:

Method Operator

object.__add__(self,	other) +

object.__sub__(self,	other) -

object.__mul__(self,	other) *

object.__truediv__(self,	other) /

object.__floordiv__(self,	other) //

object.__mod__(self,	other) %

object.__divmod__(self,	other) divmod()

object.__pow__(self,	other[,	modulo]) pow()	as	well	as	**

	



And	yes,	interestingly,	two	functions	are	included	with	the	various	symbolic
operators.	There	are	a	number	of	unary	operators	and	functions,	which	have
special	method	names	as	shown	in	the	following	table:

Method Operator

object.__neg__(self) -

object.__pos__(self) +

object.__abs__(self) abs()

object.__complex__(self) complex()

object.__int__(self) int()

object.__float__(self) float()

object.__round__(self[,	n]) round()

object.__trunc__(self[,	n]) math.trunc()

object.__ceil__(self[,	n]) math.ceil()

object.__floor__(self[,	n]) math.floor()

	

And	yes,	there	are	a	lot	of	functions	in	this	list,	too.	We	can	tinker	with	Python's



internal	trace	to	see	what's	going	on	under	the	hood.	We'll	define	a	simplistic
trace	function	that	will	provide	us	with	a	little	bit	of	visibility	into	what's	going
on:

def	trace(frame,	event,	arg):	

				if	frame.f_code.co_name.startswith("__"):	

								print(frame.f_code.co_name,	frame.f_code.co_filename,	event)	

This	function	will	dump	special	method	names	when	the	code	associated	with
the	traced	frame	has	a	name	that	starts	with	"__".	We	can	install	this	trace
function	in	Python	using	the	following	code:

import	sys	

sys.settrace(trace)	

Once	installed,	everything	passes	through	our	trace()	function.	We're	filtering	the
trace	events	for	special	method	names.	We'll	define	a	subclass	of	a	built-in	class
so	that	we	can	explore	the	method	resolution	rules:

class	noisyfloat(	float	):	

				def	__add__(	self,	other	):	

								print(	self,	"+",	other	)	

								return	super().__add__(	other	)	

				def	__radd__(	self,	other	):	

								print(	self,	"r+",	other	)	

								return	super().__radd__(	other	)	

This	class	overrides	just	two	of	the	operator's	special	method	names.	When	we
add	noisyfloat	values,	we'll	see	a	printed	summary	of	the	operation.	Plus,	the	trace
will	tell	us	what's	going	on.	The	following	is	the	interaction	that	shows	Python's
choice	of	class	to	implement	a	given	operation:

>>>	x	=	noisyfloat(2)	

>>>	x+3	

__add__	<stdin>	call	

2.0	+	3	

5.0	

>>>	2+x	

__radd__	<stdin>	call	

2.0	r+	2	

4.0	

>>>	x+2.3	

__add__	<stdin>	call	

2.0	+	2.3	

4.3	

>>>	2.3+x	

__radd__	<stdin>	call	

2.0	r+	2.3	

4.3	



From	x+3,	we	see	how	noisyfloat+int	provided	the	int	object,	3,	to	the	__add__()
method.	This	value	was	passed	to	the	superclass,	float,	which	handled	the
coercion	of	3	to	a	float	and	did	the	addition,	too.	2+x	shows	how	the	right-hand
side	noisyfloat	version	of	the	operation	was	used.	Again,	int	was	passed	to	the
superclass	that	handled	the	coercion	to	float.	From	x+2.3,	we	come	to	know	that
noisyfloat+float	used	the	subclass	that	was	on	the	left-hand	side.	On	the	other
hand,	2.3+x	shows	how	float+noisyfloat	used	the	subclass	on	the	right-hand	side
and	the	reflected	__radd__()	operator.

Let's	see	how	to	create	a	numeric	class.



Creating	a	numeric	class
We'll	try	to	design	a	new	kind	of	number.	This	is	no	easy	task	when	Python
already	offers	integers	of	indefinite	precision,	rational	fractions,	standard	floats,
and	decimal	numbers	for	currency	calculations.	There	aren't	many	features
missing	from	this	list.

We'll	define	a	class	of	scaled	numbers.	These	are	numbers	that	include	an	integer
value	coupled	with	a	scaling	factor.	We	can	use	these	for	currency	calculations.
For	many	currencies	of	the	world,	we	can	use	a	scale	of	100	and	do	all	our
calculations	to	the	nearest	cent.

The	advantage	of	scaled	arithmetic	is	that	it	can	be	done	very	simply	by	using
low-level	hardware	instructions.	We	could	rewrite	this	module	to	be	a	C-
language	module	and	exploit	hardware	speed	operations.	The	disadvantage	of
inventing	new	scaled	arithmetic	is	that	the	decimal	package	already	does	a	very
neat	job	of	precise	decimal	arithmetic.

We'll	call	this	FixedPoint	class	because	it	will	implement	a	kind	of	fixed	decimal
point	number.	The	scale	factor	will	be	a	simple	integer,	usually	a	power	of	ten.	In
principle,	a	scaling	factor	that's	a	power	of	two	could	be	considerably	faster,	but
wouldn't	be	ideally	suited	for	currency.

The	reason	a	power	of	two	scaling	factor	can	be	faster	is	that	we	can	replace
value*(2**scale)	with	value	<<	scale,	and	replace	value/(2**scale)	with	value	>>	scale.
The	left	and	right	shift	operations	are	often	hardware	instructions	that	are	much
faster	than	multiplication	or	division.

Ideally,	the	scaling	factor	is	a	power	of	ten,	but	we	don't	explicitly	enforce	this.
It's	a	relatively	simple	extension	to	track	both	scaling	power	and	the	scale	factor
that	goes	with	the	power.	We	might	store	two	as	the	power	and	as	the	factor.
We've	simplified	this	class	definition	to	just	track	the	factor.

Let's	see	how	to	define	FixedPoint	initialization	in	the	next	section.



Defining	FixedPoint	initialization
We'll	start	with	initialization,	which	includes	conversions	of	various	types	to	the
FixedPoint	values	as	follows:

import	numbers

import	math

from	typing	import	Union,	Optional,	Any

class	FixedPoint(numbers.Rational):

				__slots__	=	("value",	"scale",	"default_format")

				def	__init__(self,	value:	Union['FixedPoint',	int,	float],	scale:	int	=	100)	->	None

								self.value:	int

								self.scale:	int

								if	isinstance(value,	FixedPoint):

												self.value	=	value.value

												self.scale	=	value.scale

								elif	isinstance(value,	int):

												self.value	=	value

												self.scale	=	scale

								elif	isinstance(value,	float):

												self.value	=	int(scale	*	value	+	.5)		#	Round	half	up

												self.scale	=	scale

								else:

												raise	TypeError(f"Can't	build	FixedPoint	from	{value!r}	of	{type(value)}")

								digits	=	int(math.log10(scale))

								self.default_format	=	"{{0:.{digits}f}}".format(digits=digits)

				def	__str__(self)	->	str:

								return	self.__format__(self.default_format)

				def	__repr__(self)	->	str:

								return	f"{self.__class__.__name__:s}({self.value:d},scale={self.scale:d})"

				def	__format__(self,	specification:	str)	->	str:

								if	specification	==	"":

												specification	=	self.default_format

								return	specification.format(self.value	/	self.scale)

Our	FixedPoint	class	is	defined	as	a	numbers.Rational	subclass.	We're	going	to	wrap
two	integer	values,	scale	and	value,	and	follow	the	general	definitions	for
fractions.	This	requires	a	large	number	of	special	method	definitions.	The
initialization	is	for	an	immutable	object,	so	it	overrides	__new__()	instead	of
__init__().	It	defines	a	limited	number	of	slots	to	prevent	the	adding	of	any
further	attributes.	The	initialization	includes	several	kinds	of	conversions	as
follows:

If	we're	given	another	FixedPoint	object,	we'll	copy	the	internal	attributes	to
create	a	new	FixedPoint	object	that's	a	kind	of	clone	of	the	original.	It	will



have	a	unique	ID,	but	we	can	be	sure	it	has	the	same	hash	value	and
compares	as	equal,	making	the	clone	largely	indistinguishable.
When	given	integral	or	rational	values	(concrete	classes	of	int	or	float),
these	are	used	to	set	the	value	and	scale	attributes.
We	can	add	cases	to	handle	decimal.Decimal	and	fractions.Fraction,	as	well	as
parsing	input	string	values.

We've	defined	three	special	methods	to	produce	string	results:	__str__(),
__repr__(),	and	__format__().	For	the	format	operation,	we've	decided	to	leverage
the	existing	floating-point	features	of	the	format	specification	language.	Because
this	is	a	rational	number,	we	need	to	provide	numerator	and	denominator
methods.

Note	that	we	could	have	also	started	with	wrapping	the	existing	fractions.Fraction
class.	In	order	to	show	more	of	the	programming	required,	we	opted	to	start	from
the	abstract	Rational	class.

Let's	see	how	to	define	FixedPoint	binary	arithmetic	operators	in	the	next	section.



Defining	FixedPoint	binary
arithmetic	operators
The	sole	reason	for	defining	a	new	class	of	numbers	is	to	overload	the	arithmetic
operators.	Each	FixedPoint	object	has	two	parts:	value	and	scale.	We	can	say	some

value,	 ,	is	a	fraction	of	the	value	 	divided	by	the	scaling	factor	 :	 .

Note	that	we've	worked	out	the	algebra	in	the	following	example	using	correct,
but	inefficient,	floating	point	expressions,	we'll	discuss	the	slightly	more
efficient,	pure	integer	operations.

The	general	form	for	addition	(and	subtraction)	is	this:	

,	which	can	create	a	result	with	a	lot	of	useless
precision.

Imagine	adding	9.95	and	12.95.	We'd	have	(in	principle)	229000/10000.	This
can	be	properly	reduced	to	2290/100.	The	problem	is	that	it	also	reduces	to
229/10,	which	is	no	longer	in	cents.	We'd	like	to	avoid	reducing	fractions	in	a
general	way	and	instead	stick	with	cents	or	mills	to	the	extent	possible.

We	can	identify	two	cases	for	 :

The	scale	factors	match:	In	this	case,	 	and	the	sum	is	

.	When	adding	a	FixedPoint	value	and	a	plain	old
integer	value,	this	will	also	work.	We	can	force	the	integer	to	have	the
required	scale	factor.

The	scale	factors	don't	match:	When	 ,	it	can	help	to	produce	a
result	scale	 	with	the	maximum	scale	factor	of	the	two	input	values:	

.	From	this,	we	can	compute	two	intermediate	scale

factors:	 	and	 .	One	of	those	scale	factors	will	be	1,	and	the	other	will



be	less	than	1.	We	can	now	add	with	a	common	value	in	the	denominator.

Algebraically,	it's	 .	This	can	be	further
optimized	into	two	cases,	since	one	of	the	factors	is	1	and	the	other	is	a
power	of	10.

We	can't	really	optimize	multiplication.	It's	 .	The
precision	really	must	increase	when	we	multiply	the	FixedPoint	values.

Division	is	multiplication	by	an	inverse:	 .	If	A	and	B
have	the	same	scale,	these	values	will	cancel	so	that	we	do	have	a	handy
optimization	available.	However,	this	changes	the	scale	from	cents	to	wholes,
which	might	not	be	appropriate.

The	following	is	what	the	forward	operators,	built	around	a	similar	boilerplate,
look	like:

def	__add__(self,	other:	Union['FixedPoint',	int])	->	'FixedPoint':

				if	not	isinstance(other,	FixedPoint):

								new_scale	=	self.scale

								new_value	=	self.value	+	other	*	self.scale

				else:

								new_scale	=	max(self.scale,	other.scale)

								new_value	=	self.value	*	(new_scale	//	self.scale)	+	other.value	*	(

												new_scale	//	other.scale

								)

				return	FixedPoint(int(new_value),	scale=new_scale)

def	__sub__(self,	other:	Union['FixedPoint',	int])	->	'FixedPoint':

				if	not	isinstance(other,	FixedPoint):

								new_scale	=	self.scale

								new_value	=	self.value	-	other	*	self.scale

				else:

								new_scale	=	max(self.scale,	other.scale)

								new_value	=	self.value	*	(new_scale	//	self.scale)	-	other.value	*	(

												new_scale	//	other.scale

								)

				return	FixedPoint(int(new_value),	scale=new_scale)

def	__mul__(self,	other:	Union['FixedPoint',	int])	->	'FixedPoint':

				if	not	isinstance(other,	FixedPoint):

								new_scale	=	self.scale

								new_value	=	self.value	*	other

				else:

								new_scale	=	self.scale	*	other.scale

								new_value	=	self.value	*	other.value

				return	FixedPoint(int(new_value),	scale=new_scale)

def	__truediv__(self,	other:	Union['FixedPoint',	int])	->	'FixedPoint':



				if	not	isinstance(other,	FixedPoint):

								new_value	=	int(self.value	/	other)

				else:

								new_value	=	int(self.value	/	(other.value	/	other.scale))

				return	FixedPoint(new_value,	scale=self.scale)

def	__floordiv__(self,	other:	Union['FixedPoint',	int])	->	'FixedPoint':

				if	not	isinstance(other,	FixedPoint):

								new_value	=	int(self.value	//	other)

				else:

								new_value	=	int(self.value	//	(other.value	/	other.scale))

				return	FixedPoint(new_value,	scale=self.scale)

def	__mod__(self,	other:	Union['FixedPoint',	int])	->	'FixedPoint':

				if	not	isinstance(other,	FixedPoint):

								new_value	=	(self.value	/	self.scale)	%	other

				else:

								new_value	=	self.value	%	(other.value	/	other.scale)

				return	FixedPoint(new_value,	scale=self.scale)

def	__pow__(self,	other:	Union['FixedPoint',	int])	->	'FixedPoint':

				if	not	isinstance(other,	FixedPoint):

								new_value	=	(self.value	/	self.scale)	**	other

				else:

								new_value	=	(self.value	/	self.scale)	**	(other.value	/	other.scale)

				return	FixedPoint(int(new_value)	*	self.scale,	scale=self.scale)

For	the	simple	addition,	subtraction,	and	multiplication	cases,	we've	provided
versions	that	can	be	optimized	to	eliminate	some	of	the	relatively	slow	floating
point	intermediate	results.

Each	of	these	operators	returns	an	instance	of	the	FixedPoint	class.	We	can't	use
the	name	inside	the	class	definition	itself.	We've	provided	a	string	version	of	the
name.	The	mypy	utility	will	resolve	this	string	to	the	proper	type	name	when	it
is	used	to	check	the	type	hints.

In	some	cases,	we've	used	Union['FixedPoint',	int]	to	explicitly	support	integer
coercion.		This	type	hint	tells	that	mypy	the	method	will	accept	either	an
instance	of	the	FixedPoint	class	or	a	simple	int	object.	

For	the	two	divisions,	the	__mod__(),	and	__pow__()	methods,	we	haven't	done	any
optimization	to	try	and	eliminate	noise	being	introduced	via	floating-point
division.	Instead,	we've	provided	a	working	Python	implementation	that	can	be
used	with	a	suite	of	unit	tests	as	a	basis	for	optimization	and	refactoring.

It's	important	to	note	that	the	division	operations	can	properly	reduce	the	scale
factors.	However,	changing	the	scale	may	be	undesirable.	When	doing	currency
work,	we	might	divide	the	currency	rate	(dollars)	by	a	non-currency	value
(hours)	to	get	the	dollars-per-hour	result.	The	proper	answer	might	have	zero



relevant	decimal	places.		This	would	be	a	scale	of	1,	but	we	might	want	to	force
the	value	to	have	a	cents-oriented	scale	of	100.	This	implementation	ensures	that
the	left-hand	side	operand	dictates	the	desired	number	of	decimal	places.

Now,	let's	see	how	to	define	FixedPoint	unary	arithmetic	operators.



Defining	FixedPoint	unary	arithmetic
operators
The	following	are	the	unary	operator	method	functions:

def	__abs__(self)	->	'FixedPoint':

				return	FixedPoint(abs(self.value),	self.scale)

def	__float__(self)	->	float:

				return	self.value	/	self.scale

def	__int__(self)	->	int:

				return	int(self.value	/	self.scale)

def	__trunc__(self)	->	int:

				return	int(math.trunc(self.value	/	self.scale))

def	__ceil__(self)	->	int:

				return	int(math.ceil(self.value	/	self.scale))

def	__floor__(self)	->	int:

				return	int(math.floor(self.value	/	self.scale))

def	__round__(self,	ndigits:	Optional[int]	=	0)	->	Any:

				return	FixedPoint(round(self.value	/	self.scale,	ndigits=ndigits),	self.scale)

def	__neg__(self)	->	'FixedPoint':

				return	FixedPoint(-self.value,	self.scale)

def	__pos__(self)	->	'FixedPoint':

				return	self

For	the	__round__(),	__trunc__(),	__ceil__(),	and	__floor__()	operators,	we've
delegated	the	work	to	a	Python	library	function.	There	are	some	potential
optimizations,	but	we've	taken	the	lazy	route	of	creating	a	float	approximation
and	used	that	to	create	the	desired	result.	This	suite	of	methods	ensures	that	our
FixedPoint	objects	will	work	with	a	number	of	arithmetic	functions.	Yes,	there	are
a	lot	of	operators	in	Python.	This	isn't	the	entire	suite.	We	haven't	provided
implementations	for	the	comparison	or	bit-kicking	operators.	The	comparisons
are	generally	similar	to	arithmetic	operations,	and	are	left	as	an	exercise	for	the
reader.	The	bit-wise	operators	(&,	|,	^,	and	~)	don't	have	a	clear	meaning	outside
the	domains,	like	values	or	sets,	so	we	shouldn't	implement	them.

In	the	next	section,	we'll	see	how	to	implement	FixedPoint	reflected	operators.



Implementing	FixedPoint	reflected
operators
Reflected	operators	are	used	in	the	following	two	cases:

The	right-hand	operand	is	a	subclass	of	the	left-hand	operand.	In	this	case,
the	reflected	operator	is	tried	first	to	ensure	that	the	subclass	overrides	the
parent	class.
The	left-hand	operand's	class	doesn't	implement	the	special	method
required.	In	this	case,	the	right-hand	operand's	reflected	special	method	is
used.

The	following	table	shows	the	mapping	between	reflected	special	methods	and
operators:

Method Operator

object.__radd__(self,	other) +

object.__rsub__(self,	other) -

object.__rmul__(self,	other) *

object.__rtruediv__(self,	other) /

object.__rfloordiv__(self,	other) //

object.__rmod__(self,	other) %

object.__rdivmod__(self,	other) divmod()



object.__rpow__(self,	other[,	modulo]) pow()	as	well	as	**

	

These	reflected	operation	special	methods	are	also	built	around	a	common
boilerplate.	Since	these	are	reflected,	the	order	of	the	operands	in	subtraction,
division,	modulus,	and	power	is	important.	For	commutative	operations,	such	as
addition	and	multiplication,	the	order	doesn't	matter.	The	following	are	the
implementations	for	the	reflected	operators:

def	__radd__(self,	other:	Union['FixedPoint',	int])	->	'FixedPoint':

				if	not	isinstance(other,	FixedPoint):

								new_scale	=	self.scale

								new_value	=	other	*	self.scale	+	self.value

				else:

								new_scale	=	max(self.scale,	other.scale)

								new_value	=	other.value	*	(new_scale	//	other.scale)	+	self.value	*	(

												new_scale	//	self.scale

								)

				return	FixedPoint(int(new_value),	scale=new_scale)

def	__rsub__(self,	other:	Union['FixedPoint',	int])	->	'FixedPoint':

				if	not	isinstance(other,	FixedPoint):

								new_scale	=	self.scale

								new_value	=	other	*	self.scale	-	self.value

				else:

								new_scale	=	max(self.scale,	other.scale)

								new_value	=	other.value	*	(new_scale	//	other.scale)	-	self.value	*	(

												new_scale	//	self.scale

								)

				return	FixedPoint(int(new_value),	scale=new_scale)

def	__rmul__(self,	other:	Union['FixedPoint',	int])	->	'FixedPoint':

				if	not	isinstance(other,	FixedPoint):

								new_scale	=	self.scale

								new_value	=	other	*	self.value

				else:

								new_scale	=	self.scale	*	other.scale

								new_value	=	other.value	*	self.value

				return	FixedPoint(int(new_value),	scale=new_scale)

def	__rtruediv__(self,	other:	Union['FixedPoint',	int])	->	'FixedPoint':

				if	not	isinstance(other,	FixedPoint):

								new_value	=	self.scale	*	int(other	/	(self.value	/	self.scale))

				else:

								new_value	=	int((other.value	/	other.scale)	/	self.value)

				return	FixedPoint(new_value,	scale=self.scale)

def	__rfloordiv__(self,	other:	Union['FixedPoint',	int])	->	'FixedPoint':

				if	not	isinstance(other,	FixedPoint):

								new_value	=	self.scale	*	int(other	//	(self.value	/	self.scale))

				else:



								new_value	=	int((other.value	/	other.scale)	//	self.value)

				return	FixedPoint(new_value,	scale=self.scale)

def	__rmod__(self,	other:	Union['FixedPoint',	int])	->	'FixedPoint':

				if	not	isinstance(other,	FixedPoint):

								new_value	=	other	%	(self.value	/	self.scale)

				else:

								new_value	=	(other.value	/	other.scale)	%	(self.value	/	self.scale)

				return	FixedPoint(new_value,	scale=self.scale)

def	__rpow__(self,	other:	Union['FixedPoint',	int])	->	'FixedPoint':

				if	not	isinstance(other,	FixedPoint):

								new_value	=	other	**	(self.value	/	self.scale)

				else:

								new_value	=	(other.value	/	other.scale)	**	self.value	/	self.scale

				return	FixedPoint(int(new_value)	*	self.scale,	scale=self.scale)

We've	tried	to	use	math	that	is	identical	to	the	forward	operators.	The	idea	is	to
switch	the	operands	in	a	simple	way.	This	follows	from	the	most	common
situation.	Having	the	text	of	the	forward	and	reverse	methods	match	each	other
simplifies	code	inspections,	and	yes,	there	is	some	redundancy	in	the
commutative	operator	implementations.

As	with	the	forward	operators,	we've	kept	the	division,	modulus,	and	power
operators	simple	to	avoid	optimizations.	The	versions	shown	here	can	introduce
noise	from	the	conversion	to	a	floating-point	approximation	and	back	to	a
FixedPoint	value.	In	the	next	section,	we'll	see	how	to	implement	FixedPoint
comparison	operators.



Implementing	FixedPoint	comparison
operators
The	following	are	the	six	comparison	operators	and	the	special	methods	that
implement	them:

Method Operator

object.__lt__(self,	other) <

object.__le__(self,	other) <=

object.__eq__(self,	other) ==

object.__ne__(self,	other) !=

object.__gt__(self,	other) >

object.__ge__(self,	other) >=

	

The	is	operator	compares	object	IDs.	We	can't	meaningfully	override	this	since
it's	independent	of	any	specific	class.	The	in	comparison	operator	is	implemented
by	object.__contains__(self,	value).	This	isn't	meaningful	for	numeric	values.

Note	that	equality	testing	is	a	subtle	business.	Since	floats	are	approximations,
we	have	to	be	very	careful	to	avoid	direct	equality	testing	with	float	values.	We
must	compare	to	see	whether	the	values	are	within	a	small	range,	that	is,	epsilon.



Equality	tests	should	never	be	written	as	a	==	b.	The	general	approach	to	compare
floating-point	approximations	should	be	abs(a-b)	<=	eps,	or,	more	generally,	abs(a-
b)/a	<=	eps.

In	our	FixedPoint	class,	the	scale	indicates	how	close	two	values	need	to	be	for	a
float	value	to	be	considered	equal.	For	a	scale	of	100,	the	epsilon	could	be	0.01.
We'll	actually	be	more	conservative	than	that	and	use	0.005	as	the	basis	for
comparison	when	the	scale	is	100.

Additionally,	we	have	to	decide	whether	FixedPoint(123,	100)	should	be	equal	to
FixedPoint(1230,	1000).	While	they're	mathematically	equal,	one	value	is	in	cents
and	one	is	in	mills.

This	can	be	taken	as	a	claim	about	the	different	accuracies	of	the	two	numbers;
the	presence	of	an	additional	significant	digit	may	indicate	that	they're	not
supposed	to	simply	appear	equal.	If	we	follow	this	approach,	then	we	need	to	be
sure	that	the	hash	values	are	different	too.

For	this	example,	we've	decided	that	distinguishing	among	scale	values	is	not
appropriate.	We	want	FixedPoint(123,	100)	to	be	equal	to	FixedPoint(1230,	1000).	This
is	the	assumption	behind	the	recommended	__hash__()	implementation	too.	The
following	are	the	implementations	for	our	FixedPoint	class	comparisons:

def	__eq__(self,	other:	Any)	->	bool:

				if	isinstance(other,	FixedPoint):

								if	self.scale	==	other.scale:

												return	self.value	==	other.value

								else:

												return	self.value	*	other.scale	//	self.scale	==	other.value

				else:

								return	abs(self.value	/	self.scale	-	float(other))	<	.5	/	self.scale

def	__ne__(self,	other:	Any)	->	bool:

				return	not	(self	==	other)

def	__le__(self,	other:	'FixedPoint')	->	bool:

				return	self.value	/	self.scale	<=	float(other)

def	__lt__(self,	other:	'FixedPoint')	->	bool:

				return	self.value	/	self.scale	<	float(other)

def	__ge__(self,	other:	'FixedPoint')	->	bool:

				return	self.value	/	self.scale	>=	float(other)

Each	of	the	comparison	functions	tolerates	a	value	that	is	not	a	FixedPoint	value.
This	is	a	requirement	imposed	by	the	superclass:	the	Any	type	hint	must	be	used



to	be	compatible	with	that	class.	The	only	requirement	is	that	the	other	value
must	have	a	floating-point	representation.	We've	defined	a	__float__()	method	for
the	FixedPoint	objects,	so	the	comparison	operations	will	work	perfectly	well
when	comparing	the	two	FixedPoint	values.

We	don't	need	to	write	all	six	comparisons.	The	@functools.total_ordering	decorator
can	generate	the	missing	methods	from	just	two	FixedPoint	values.	We'll	look	at
this	in	Chapter	9,	Decorators	and	Mixins	–	Cross-Cutting	Aspects.

In	the	next	section,	we'll	see	how	to	compute	a	numeric	hash.



Computing	a	numeric	hash
We	do	need	to	define	the	__hash__()	method	properly.	See	section	4.4.4	of	the
Python	Standard	Library	for	information	on	computing	hash	values	for	numeric
types.	That	section	defines	a	hash_fraction()	function,	which	is	the	recommended
solution	for	what	we're	doing	here.	Our	method	looks	like	this:

def	__hash__(self)	->	int:

				P	=	sys.hash_info.modulus

				m,	n	=	self.value,	self.scale

				#	Remove	common	factors	of	P.		(Unnecessary	if	m	and	n	already	coprime.)

				while	m	%	P	==	n	%	P	==	0:

								m,	n	=	m	//	P,	n	//	P

				if	n	%	P	==	0:

								hash_	=	sys.hash_info.inf

				else:

								#	Fermat's	Little	Theorem:	pow(n,	P-1,	P)	is	1,	so

								#	pow(n,	P-2,	P)	gives	the	inverse	of	n	modulo	P.

								hash_	=	(abs(m)	%	P)	*	pow(n,	P	-	2,	P)	%	P

				if	m	<	0:

								hash_	=	-hash_

				if	hash_	==	-1:

								hash_	=	-2

				return	hash_

This	reduces	a	two-part	rational	fraction	value	to	a	single,	standardized	hash.
This	code	is	copied	with	a	few	modifications	from	the	reference	manual.	The
core	of	the	calculation,	which	is	bolded	in	the	preceding	code,	multiplies	the
numerator	by	the	inverse	of	the	denominator.	In	effect,	it	carries	out	the	division
of	the	numerator	by	the	denominator,	mod	P.	We	can	optimize	this	to	make	it	more
specific	to	our	problem	domain.

First,	we	could	modify	the	__new__()	method	for	this	class	to	assure	that	the	scale
is	non-zero,	eliminating	any	need	for	sys.hash_info.inf.	Second,	we	could
explicitly	limit	the	range	of	the	scale	factor	to	be	less	than	sys.hash_info.modulus
(generally	 	for	64-bit	computers).	We	can	eliminate	the	need	to	remove
common	factors	of	P.	That	would	boil	the	hash	down	to	hash_	=	(abs(m)	%	P)	*
pow(n,	P	-	2,	P)	%	P,	sign	handling,	and	the	special	case	that	-1	is	mapped	to	-2.

Finally,	we	might	want	to	cache	the	result	of	any	hash	calculation.	This	requires
an	additional	slot	that's	only	populated	once,	the	first	time	a	hash	is	requested.
The	pow(n,	P	-	2,	P)	expression	is	relatively	expensive	to	evaluate	and	we	don't



want	to	compute	it	more	often	than	necessary.

In	the	next	section,	we'll	show	how	to	implement	a	simple	rounding	schema	for
these	FixedPoint	objects.



Designing	more	useful	rounding
We	truncated	the	presentation	on	rounding.	We	defined	the	required	functions	for
round()	and	trunc()	without	further	explanation.	These	definitions	are	the
minimum	requirements	of	the	abstract	superclass.	However,	these	definitions	are
not	quite	enough	for	our	purposes.

To	process	currency,	we'll	often	have	code	that	looks	like	this:

>>>	price	=	FixedPoint(1299,	100)	

>>>	tax_rate	=	FixedPoint(725,	1000)	

>>>	price	*	tax_rate	

FixedPoint(941775,	scale=100000)	

Then,	we	need	to	round	this	value	to	a	scale	of	100	to	get	a	value	of	942.	We	need
methods	that	will	round	(as	well	as	truncate)	a	number	to	a	new	scale	factor.	The
following	is	a	method	to	round	to	a	specific	scale:

def	round_to(self,	new_scale:	int)	->	'FixedPoint':

				f	=	new_scale	/	self.scale

				return	FixedPoint(int(self.value	*	f	+	.5),	scale=new_scale)

The	following	code	allows	us	to	properly	rescale	the	value:

>>>	price	=	FixedPoint(1299,	100)	

>>>	tax_rate	=	FixedPoint(725,	1000)	

>>>	tax	=	price	*	tax_rate	

>>>	tax.round_to(100)	

FixedPoint(942,	scale=100)	

This	shows	that	we	have	a	minimal	set	of	functions	to	calculate	currency.

In	the	next	section,	we'll	see	how	to	implement	other	special	methods.



Implementing	other	special	methods
In	addition	to	the	core	arithmetic	and	comparison	operators,	we	have	a	group	of
additional	operators	that	(generally)	we	only	define	for	the	numbers.Integral	values.
As	we're	not	defining	integral	values,	we	can	avoid	these	special	methods:

Method Operator

object.__lshift__(self,	other) <<

object.__rshift__(self,	other) >>

object.__and__(self,	other) &

object.__xor__(self,	other) ^

object.__or__(self,	other) |

	

Also,	there	are	reflected	versions	of	these	operators:

Method Operator

object.__rlshift__(self,	other) <<

object.__rrshift__(self,	other) >>

object.__rand__(self,	other) &



object.__rxor__(self,	other) ^

object.__ror__(self,	other) |

	

Additionally,	there	is	a	unary	operator	for	a	bit-wise	inverse	of	the	value:

Method Operator

object.__invert__(self) ~

	

Interestingly,	some	of	these	operators	are	defined	for	the	set	collection,	as	well	as
integral	numbers.	They	don't	apply	to	our	rational	value.	The	principles	to	define
these	operators	are	the	same	as	the	other	arithmetic	operators.

Now,	let's	see	how	to	optimize	using	the	in-place	operators.



Optimization	with	the	in-place
operators
Generally,	numbers	are	immutable.	However,	the	numeric	operators	are	also
used	for	mutable	objects.	Lists	and	sets,	for	example,	respond	to	a	few	of	the
defined	augmented	assignment	operators.	As	an	optimization,	a	class	can	include
an	in-place	version	of	a	selected	operator.	The	methods	in	the	following	table
implement	the	augmented	assignment	statements	for	mutable	objects.	Note	that
these	methods	are	expected	to	end	with	return	self	to	be	compatible	with	ordinary
assignment:

Method Operator

object.__iadd__(self,	other) +=

object.__isub__(self,	other) -=

object.__imul__(self,	other) *=

object.__itruediv__(self,	other) /=

object.__ifloordiv__(self,	other) //=

object.__imod__(self,	other) %=

object.__ipow__(self,	other[,	modulo]) **=

object.__ilshift__(self,	other) <<=



object.__irshift__(self,	other) >>=

object.__iand__(self,	other) &=

object.__ixor__(self,	other) ^=

object.__ior__(self,	other) |=

	

As	our	FixedPoint	objects	are	immutable,	we	should	not	define	any	of	them.

Stepping	outside	this	FixedPoint	class	example	for	a	moment,	we	can	see	a	more
typical	use	for	in-place	operators.	We	could	easily	define	some	in-place
operators	for	our	Blackjack	Hand	objects.	We	might	want	to	add	this	definition	to
Hand	as	follows:

def	__iadd__(self,	aCard):	

				self._cards.append(aCard)	

				return	self	

This	allows	us	to	deal	into	hand	with	the	following	code:

player_hand	+=	deck.pop()	

This	seems	to	be	an	elegant	way	to	indicate	that	hand	is	updated	with	another
card.



Summary
We've	looked	at	the	built-in	numeric	types	and	the	vast	number	of	special
methods	required	to	invent	a	new	numeric	type.	Specialized	numeric	types	that
integrate	seamlessly	with	the	rest	of	Python	is	one	of	the	core	strengths	of	the
language.	That	doesn't	make	the	job	easy.	It	merely	makes	it	elegant	and	useful
when	done	properly.

When	working	with	numbers,	we	have	a	multistep	design	strategy:

1.	 Consider	the	built-in	versions	of	complex,	float,	and	int.
2.	 Consider	the	library	extensions,	such	as	decimal	and	fractions.

For	financial	calculations,	decimal	must	be	used;	there	is	no	alternative.
3.	 Consider	extending	one	of	the	preceding	classes	with	additional	methods

or	attributes.
4.	 Finally,	consider	a	novel	number.	This	is	particularly	challenging	since

Python's	variety	of	available	numbers	is	already	very	rich.

Defining	new	numbers	involves	several	considerations:

Completeness	and	consistency:	The	new	number	must	perform	a	complete
set	of	operations	and	behave	consistently	in	all	kinds	of	expressions.	This	is
really	a	question	of	properly	implementing	the	formal	mathematical
definitions	of	this	new	kind	of	computable	number.
Fit	with	the	problem	domain:	Is	this	number	truly	suitable?	Does	it	help
clarify	the	solution?
Performance:	As	with	other	design	questions,	we	must	be	sure	that	our
implementation	is	efficient	enough	to	warrant	writing	all	that	code.	Our
example	in	this	chapter	uses	some	inefficient	floating-point	operations	that
could	be	optimized	by	doing	a	little	more	math	and	a	little	less	coding.

The	next	chapter	is	about	using	decorators	and	mixins	to	simplify	and	normalize
class	design.	We	can	use	decorators	to	define	features	that	should	be	present	in	a
number	of	classes,	which	are	not	in	a	simple	inheritance	hierarchy.	Similarly,	we
can	use	mixin	class	definitions	to	create	a	complete	application	class	from
component	class	definitions.	One	of	the	decorators	that	is	helpful	for	defining



comparison	operators	is	the	@functools.total_ordering	decorator.



Decorators	and	Mixins	-	Cross-
Cutting	Aspects
A	software	design	often	has	aspects	that	apply	across	several	classes,	functions,
or	methods.	We	might	have	a	concern,	such	as	logging,	auditing,	or	security,	that
must	be	implemented	consistently.	One	general	method	for	reuse	of	functionality
in	object-oriented	programming	is	inheritance	through	a	class	hierarchy.
However,	inheritance	doesn't	always	work	out	well.	For	example,	one	aspect	of	a
software	design	could	be	orthogonal	to	the	class	hierarchy.	These	are	sometimes
called	cross-cutting	concerns.	They	cut	across	the	classes,	making	design	more
complex.

A	decorator	provides	a	way	to	define	functionality	that's	not	bound	to	the
inheritance	hierarchy.	We	can	use	decorators	to	design	an	aspect	of	our
application	and	then	apply	the	decorators	across	classes,	methods,	or	functions.

Additionally,	we	can	use	multiple	inheritances	in	a	disciplined	way	to	create
cross-cutting	aspects.	We'll	consider	a	base	class	plus	mixin	class	definitions	to
introduce	features.	Often,	we'll	use	the	mixin	classes	to	build	cross-cutting
aspects.

It's	important	to	note	that	cross-cutting	concerns	are	rarely	specific	to	the
application	at	hand.	They're	often	generic	considerations.	The	common	examples
of	logging,	auditing,	and	security	could	be	considered	as	infrastructure	separate
from	the	application's	details.

Python	comes	with	many	decorators,	and	we	can	expand	this	standard	set	of
decorators.	There	are	several	different	use	cases.	This	chapter	will	start	with	a
look	at	class	definitions	and	the	meaning	of	a	class.	With	that	context,	we'll	look
at	simple	function	decorators,	function	decorators	with	arguments,	class
decorators,	and	method	decorators.

In	this	chapter,	we	will	cover	the	following	topics:

Class	and	meaning



Using	built-in	decorators
Using	standard	library	mixin	classes
Writing	a	simple	function	decorator
Parameterizing	a	decorator
Creating	a	method	function	decorator
Creating	a	class	decorator
Adding	methods	to	a	class
Using	decorators	for	security



Technical	requirements
The	code	files	for	this	chapter	are	available	at	https://git.io/fj2UV.

https://git.io/fj2UV


Class	and	meaning
One	essential	feature	of	objects	is	that	they	can	be	classified:	every	object
belongs	to	a	class.	This	leads	to	a	straightforward	relationship	between	an	object
and	class	when	using	simple,	single-inheritance	design.

With	multiple	inheritance,	the	classification	problem	can	become	complex.
When	we	look	at	real-world	objects,	such	as	coffee	cups,	we	can	classify	them	as
containers	without	too	much	difficulty.	That	is,	after	all,	their	primary	use	case.
The	problem	they	solve	is	that	of	holding	coffee.	However,	in	another	context,
we	may	be	interested	in	other	use	cases.	Within	a	decorative	collection	of
ceramic	mugs,	we	might	be	more	interested	in	size,	shape,	and	glaze	than	we	are
in	the	coffee-carrying	aspect	of	a	cup.

Most	objects	have	a	straightforward	is-a	relationship	with	a	class.	In	our	coffee-
holding	problem	domain,	the	mug	sitting	on	the	desk	is	in	the	class	of	coffee
cups	as	well	as	the	more	general	class	of	containers.	Objects	may	also	have
several	acts-as	relationships	with	other	classes.	A	mug	acts	as	a	piece	of	ceramic
art	with	size,	shape,	and	glaze	properties.	A	mug	acts	as	a	paper	weight	with
mass	and	friction	properties.

Generally,	these	other	features	can	be	seen	as	mixin	classes,	and	they	define	the
additional	interfaces	or	behaviors	for	an	object.	The	mixin	classes	may	have
their	own	hierarchies;	for	example,	ceramic	art	is	a	specialization	of	the	more
general	sculpture	and	art	classes.

When	doing	object-oriented	design	in	Python,	it's	helpful	to	identify	the	is-a
class	and	the	essential	aspects	defined	by	that	class.	Other	classes	provide	acts-
as	aspects,	which	mix	in	additional	interfaces	or	behaviors	for	an	object.

In	the	next	section,	we'll	look	at	function	definition	and	decoration	because	it's
simpler	than	class	construction.	After	looking	at	how	function	decoration	works,
we'll	return	to	mixin	classes	and	class	decoration.



Type	hints	and	attributes	for
decorators
We	construct	decorated	functions	in	two	stages.	The	first	stage	is	the	def
statement	with	an	original	definition.

A	def	statement	provides	a	name,	parameters,	defaults,	a	docstring,	a	code	object,
and	a	number	of	other	details.	A	function	is	a	collection	of	11	attributes,	defined
in	section	3.2	of	the	Python	Standard	Library,	which	is	the	standard	type
hierarchy.

The	second	stage	involves	the	application	of	a	decorator	to	the	original
definition.	When	we	apply	a	decorator,	(@d),	to	a	function	(F),	the	effect	is	as	if
we	have	created	a	new	function,	 .	The	name,	F,	is	the	same,	but	the
functionality	can	be	different,	depending	on	the	kinds	of	features	that	have	been
added,	removed,	or	modified.	Generally,	we	can	write	the	following	code:

@decorate	

def	function():	

				pass	

The	decorator	is	written	immediately	in	front	of	the	function	definition.	What
happens	to	implement	this	can	be	seen	by	the	following:

def	function():	

				pass	

function	=	decorate(function)	

The	decorator	modifies	the	function	definition	to	create	a	new	function.	The
essential	technique	here	is	that	a	decorator	function	accepts	a	function	and
returns	a	modified	version	of	that	function.	Because	of	this,	a	decorator	has	a
rather	complex	type	hint.

This	second	style,	function=decorate(function),	also	works	with	functions	created	by
assigning	a	lambda	to	a	variable.	It	works	with	callable	objects,	also.	The
@decorate	notation	only	works	with	the	def	statement.

When	there	are	multiple	decorators,	they	are	applied	as	nested	function	calls.



Consider	the	following	example:

@decorator1

@decorator2

def	function():	...

This	is	equivalent	to	function=decorator1(decorator2(function)).	When	decorators
have	side	effects,	the	order	of	applying	the	decorations	will	matter.	In	the	Flask
framework,	for	example,	the	@app.route	decoration	should	always	be	at	the	top	of
the	stack	of	decorators	so	that	it	is	applied	last	and	includes	the	results	of	other
decorators'	behaviors.

The	following	is	a	typical	set	of	type	hints	required	to	define	a	decorator:

from	typing	import	Any,	Callable,	TypeVar,	cast

FuncType	=	Callable[...,	Any]

F	=	TypeVar('F',	bound=FuncType)

def	my_decorator(func:	F)	->	F:

			...

We've	defined	a	function	type,	FuncType,	based	on	the	Callable	type	hint.	From	this,
the	type	variable,	F,	is	derived	as	a	generic	description	of	anything	that	adheres
to	the	FuncType	protocol.	This	will	include	functions,	lambdas,	and	callable
objects.	The	decorator	function,	my_decorator(),	accepts	a	parameter,	func,	with	the
type	hint	of	F,	and	returns	a	function,	using	the	type	hint	of	F.	What's	essential	is
that	any	kind	of	object	with	the	callable	protocol	can	be	described	as	having	an
upper	boundary	of	the	very	generic	FuncType.	We've	omitted	the	details	of
my_decorator()	for	now.	This	snippet	is	intended	to	show	the	general	approach	to
type	hints.

The	decorator	for	a	class	is	simpler,	because	the	signature	is	def
class_decorator(class:	Type)	->	Type:	....	There	are	a	few	ways	to	create	classes,	and
the	upper	limit	is	already	defined	as	the	type	hint	Type.

Now,	let's	examine	the	different	attributes	of	a	function.



Attributes	of	a	function
A	decorator	can	change	the	attributes	of	a	function.	Here	is	the	list	of	attributes
of	a	function:

__doc__ The	docstring,	or	none

__name__ The	original	name	of	the	function

__module__ The	name	of	the	module	the	function	was	defined	in,	or	none

__qualname__ The	function's	fully-qualified	name,	__module__.__name__

__defaults__ The	default	argument	values,	or	none	if	there	are	no	defaults

__kwdefaults__ The	default	values	for	keyword-only	parameters

__code__ The	code	object	representing	the	compiled	function	body

__dict__ A	namespace	for	the	function's	attributes

__annotations__

The	annotations	of	parameters,	including	'return'	for	the
return	annotation



__globals__

The	global	namespace	of	the	module	that	the	function	was
defined	in;	this	is	used	to	resolve	global	variables	and	is
read-only

__closure__
Bindings	for	the	function's	free	variables	or	none;	it	is	read-
only

	

Except	for	__globals__	and	__closure__,	a	decorator	can	change	any	of	these
attributes.	As	a	practical	matter,	it's	best	to	only	copy	the	__name__	and	__doc__	from
the	original	function	to	the	decorated	function.	Most	of	the	other	attributes,	while
changeable,	are	easier	to	manage	with	a	simple	technique	of	defining	a	new
function	inside	the	decorator	and	returning	the	new	function.	We'll	look	into	this
in	the	following	several	examples.

Now,	let's	see	how	to	construct	a	decorated	class.



Constructing	a	decorated	class
A	decorated	class	construction	is	a	nested	set	of	several	two-stage	processes.
Making	class	construction	more	complex	is	the	way	references	are	made	to	class
methods.	The	references	involve	a	multistep	lookup.	An	object's	class	will	define
a	Method	Resolution	Order	(MRO).	This	defines	how	base	classes	are
searched	to	locate	an	attribute	or	method	name.	The	MRO	works	its	way	up	the
inheritance	hierarchy;	this	is	how	a	subclass	name	can	override	a	name	in	a
superclass.	

The	outermost	part	of	the	nesting	is	processing	the	class	statement	as	a	whole.
This	has	two	stages:	building	the	class,	and	applying	the	decorator	functions.
Within	the	class	statement	processing,	the	individual	method	definitions	can	also
have	decorations,	and	each	of	those	is	a	two-stage	process.

The	first	stage	in	class	construction	is	the	execution	of	the	class	statement.	This
stage	involves	the	evaluation	of	the	metaclass	followed	by	the	execution	of	the
sequence	of	assignment	and	def	statements	within	a	class.	Each	def	statement
within	the	class	expands	to	a	nested	two-stage	function	construction	as	described
previously.	Decorators	can	be	applied	to	each	method	function	as	part	of	the
process	of	building	the	class.

The	second	stage	in	class	construction	is	to	apply	an	overall	class	decorator	to	a
class	definition.	Generally,	this	can	add	features.	It's	somewhat	more	common	to
add	attributes	rather	than	methods.	While	it	is	possible	for	decorators	to	add
method	functions,	it	can	be	hopelessly	confusing	for	software	maintainers	to
locate	the	source	for	a	method	injected	by	a	decorator.	These	kinds	of	features
need	to	be	designed	with	considerable	care.

The	features	inherited	from	the	superclasses	cannot	be	modified	through
decorators	since	they	are	resolved	lazily	by	method	resolution	lookup.	This	leads
to	some	important	design	considerations.	We	generally	want	to	introduce
methods	and	attributes	through	classes	and	mixin	classes.	We	should	limit
ourselves	to	defining	new	attributes	via	decorators.

Here's	a	list	of	some	of	the	attributes	that	are	built	for	a	class.	A	number	of



additional	attributes	are	part	of	the	metaclass;	they	are	described	in	the	following
table:

__doc__ The	class's	documentation	string,	or	none	if	undefined

__name__ The	class	name

__module__ The	module	name	that	the	class	was	defined	in

__dict__ The	dictionary	containing	the	class's	namespace

__bases__

A	tuple	(possibly	empty	or	a	singleton)	containing	the	base
classes,	in	the	order	of	their	occurrence	in	the	base	class	list;	it	is
used	to	work	out	the	method	resolution	order

__class__ The	superclass	of	this	class,	often	type

	

Some	additional	method	functions	that	are	part	of	a	class	include	__subclasshook__,
__reduce__,	and	__reduce_ex__,	which	are	part	of	the	interface	for	pickle.



Some	class	design	principles
When	defining	a	class,	we	have	the	following	sources	of	attributes	and	methods:

Any	decorators	applied	to	the	class	definition.	These	are	applied	to	the
definition	last.
The	body	of	the	class	statement.
Any	mixin	classes.	These	definitions	tend	to	override	the	base	class
definitions	in	the	method	resolution	order	algorithm.
The	base	class.	If	unspecified,	the	base	class	is	object,	which	provides	a
minimal	set	of	definitions.

These	are	presented	in	order	of	their	visibility.	The	final	changes	from	a
decorator	overwrite	everything	below	it,	making	these	changes	most	visible.	The
body	of	the	class	statement	overrides	anything	inherited	from	mixins	or	the	base
class.	The	base	class	is	the	last	place	used	to	resolve	names.	

We	need	to	be	cognizant	about	how	easy	it	is	for	software	maintainers	to	see
each	of	these.	The	class	statement	is	the	most	obvious	place	for	someone	to	look
for	the	definition	of	an	attribute	or	methods.	The	mixins	and	the	base	class	are
somewhat	less	obvious	than	the	class	body.	It's	helpful	to	make	sure	that	the	base
class	name	clarifies	its	role	and	uses	terminology	that	is	clearly	essential.	For
example,	it	helps	to	name	base	classes	after	real-world	objects.

The	application	of	the	decorator	to	the	class	can	lead	to	obscure	features.	A
strong	focus	on	one	or	a	few	features	helps	to	clarify	what	the	decorator	does.
While	some	aspects	of	an	application	can	be	suitable	for	generic	decorators,	the
lack	of	visibility	can	make	them	difficult	to	test,	debug,	and	maintain.

The	mixin	classes	will	generally	define	additional	interfaces	or	behaviors	of	a
class.	It's	important	to	be	clear	about	how	the	mixin	classes	are	used	to	build	the
final	class	definitions.	While	a	docstring	class	is	an	important	part	of	this,	the
overall	docstring	module	is	also	important	to	show	how	a	proper	class	can	be
assembled	from	the	various	parts.

When	writing	the	class	statement,	the	mixins	are	listed	first,	and	the	essential



superclass	is	listed	last.	This	is	the	search	order	for	name	resolution.	The	last
listed	class	is	the	class	that	defines	the	essential	is-a	relationship.	The	last	class
on	a	list	defines	what	a	thing	IS.	The	previous	class	names	can	define	what	a
thing	DOES.	The	mixins	provide	ways	to	override	or	extend	this	base	behavior.

Aspect-oriented	programming	is	discussed	in	the	next	section.



Aspect-oriented	programming
Parts	of	aspect-oriented	programming	(AOP)	are	implemented	by	decorators
in	Python.	Our	purpose	here	is	to	leverage	a	few	aspect-oriented	concepts	to	help
show	the	purpose	of	decorators	and	mixins	in	Python.	The	idea	of	a	cross-
cutting	concern	is	central	to	AOP.	While	the	Wikipedia	page	(http://en.wikipedia.
org/wiki/Cross-cutting_concern)	is	generally	kept	up-to-date,	older	information	is
available	here:	https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index
.php?title=Glossary.	The	Spring	framework	provides	some	ideas;	see	also	https://do
cs.spring.io/spring-python/1.2.x/sphinx/html/aop.html.	There	are	several	common
examples	of	cross-cutting	concerns,	as	follows:

Logging:	We	often	need	to	have	logging	features	implemented	consistently
in	many	classes.	We	want	to	be	sure	that	the	loggers	are	named	consistently
and	that	logging	events	follow	the	class	structure	in	a	consistent	manner.
Auditability:	A	variation	of	the	logging	theme	is	to	provide	an	audit	trail
that	shows	each	transformation	of	a	mutable	object.	In	many	commerce-
oriented	applications,	the	transactions	are	business	records	that	represent
bills	or	payments.	Each	step	in	the	processing	of	a	business	record	needs	to
be	auditable	to	show	that	no	errors	have	been	introduced	by	processing.
Security:	Our	applications	will	often	have	security	aspects	that	pervade
each	HTTP	request	and	each	piece	of	content	downloaded	by	the	website.
The	idea	is	to	confirm	that	each	request	involves	an	authenticated	user	who
is	authorized	to	make	the	request.	Cookies,	secure	sockets,	and	other
cryptographic	techniques	must	be	used	consistently	to	assure	that	an	entire
web	application	is	secured.

Some	languages	and	tools	have	deep,	formal	support	for	AOP.	Python	borrows	a
few	of	the	concepts.	The	Pythonic	approach	to	AOP	involves	the	following
language	features:

Decorators:	Using	a	decorator,	we	can	establish	a	consistent	aspect
implementation	at	one	of	two	simple	join	points	in	a	function.	We	can
perform	the	aspect's	processing	before	or	after	the	existing	function.	We
can't	easily	locate	join	points	inside	the	code	of	a	function.	It's	easiest	for
decorators	to	transform	a	function	or	method	by	wrapping	it	with	additional

http://en.wikipedia.org/wiki/Cross-cutting_concern
https://web.archive.org/web/20150919015041/http://www.aosd.net/wiki/index.php?title=Glossary
https://docs.spring.io/spring-python/1.2.x/sphinx/html/aop.html#coding-aop-with-pure-python


functionality.
Mixins:	Using	a	mixin,	we	can	define	a	class	that	exists	as	part	of	several
class	hierarchies.	The	mixin	classes	can	be	used	with	the	base	class	to
provide	a	consistent	implementation	of	cross-cutting	aspects.	Generally,
mixin	classes	are	considered	abstract,	since	they	can't	be	meaningfully
instantiated.

The	next	section	shows	how	to	use	built-in	decorators



Using	built-in	decorators
Python	has	several	built-in	decorators	that	are	part	of	the	language.	The	@property,
@classmethod,	and	@staticmethod	decorators	are	used	to	annotate	methods	of	a	class.
The	@property	decorator	transforms	a	method	function	into	a	descriptor.	The
@property	decorator,	when	applied	to	a	method	function,	changes	the	function	into
an	attribute	of	the	object.	The	property	decorator,	when	applied	to	a	method,	also
creates	an	additional	pair	of	properties	that	can	be	used	to	create	a	setter	and
deleter	property.	We	looked	at	this	in	Chapter	4,	Attribute	Access,	Properties,	and
Descriptors.

The	@classmethod	and	@staticmethod	decorators	transform	a	method	function	into	a
class-level	function.	The	decorated	method	is	now	part	of	the	class,	not	an
object.	In	the	case	of	a	static	method,	there's	no	explicit	reference	to	the	class.
With	a	class	method,	on	the	other	hand,	the	class	is	the	first	argument	of	the
method	function.	The	following	is	an	example	of	a	class	that	includes
@staticmethod	and	some	@property	definitions:

class	Angle(float):

				__slots__	=	("_degrees",)

				@staticmethod

				def	from_radians(value:	float)	->	'Angle':

								return	Angle(180	*	value	/	math.pi)

				def	__init__(self,	degrees:	float)	->	None:

								self._degrees	=	degrees

				@property

				def	radians(self)	->	float:

								return	math.pi	*	self._degrees	/	180

				@property

				def	degrees(self)	->	float:

								return	self._degrees

This	class	defines	an	Angle	that	can	be	represented	in	degrees	or	radians.	The
constructor	expects	degrees.	However,	we've	also	defined	a	from_radians()	method
function	that	emits	an	instance	of	the	class.	This	function	does	not	set	values	on
an	existing	instance	variable	the	way	__init__()	does;	it	creates	a	new	instance	of
the	class.	

Additionally,	we	provide	the	degrees()	and	radians()	method	functions	that	have



been	decorated	so	that	they	are	properties.	Under	the	hood,	these	decorators
create	a	descriptor	so	that	accessing	the	attribute	name	degrees	or	radians	will
invoke	the	named	method	function.	We	can	use	the	static	method	to	create	an
instance	and	then	use	a	property	method	to	access	a	method	function	as	follows:

>>>	b	=	Angle.from_radians(.227)	

>>>	round(b.degrees,	1)

13.0

The	static	method	is	similar	to	a	function	because	it's	not	tied	to	the	self	instance
variable.	It	has	the	advantage	that	it	is	syntactically	bound	to	the	class.	Using
Angle.from_radians	can	be	more	helpful	than	using	a	function	named
angle_from_radians.	The	use	of	these	decorators	ensures	that	implementation	is
handled	correctly	and	consistently.

Now,	let's	see	how	to	use	standard	library	decorators.



Using	standard	library	decorators
The	standard	library	has	a	number	of	decorators.	Modules	such	as	contextlib,
functools,	unittest,	atexit,	importlib,	and	reprlib	contain	decorators	that	are	excellent
examples	of	cross-cutting	aspects	of	a	software	design.

One	particular	example,	the	functools	library,	offers	the	total_ordering	decorator
that	defines	comparison	operators.	It	leverages	__eq__()	and	either	__lt__(),
__le__(),	__gt__(),	or	__ge__()	to	create	a	complete	suite	of	comparisons.

First,	we'll	need	this	class	to	fully	define	a	playing	card	as	follows:

from	enum	import	Enum

class	Suit(Enum):

				Clubs	=	"♣"

				Diamonds	=	"♦"

				Hearts	=	"♥"

				Spades	=	"♠"

This	class	provides	the	enumerated	values	for	the	suits	of	the	playing	cards.

The	following	is	a	variation	on	the	Card	class	that	defines	just	two	comparisons:

import	functools

@functools.total_ordering

class	CardTO:

				__slots__	=	("rank",	"suit")

				def	__init__(self,	rank:	int,	suit:	Suit)	->	None:

								self.rank	=	rank

								self.suit	=	suit

				def	__eq__(self,	other:	Any)	->	bool:

								return	self.rank	==	cast(CardTO,	other).rank

				def	__lt__(self,	other:	Any)	->	bool:

								return	self.rank	<	cast(CardTO,	other).rank

				def	__str__(self)	->	str:

								return	f"{self.rank:d}{self.suit:s}"

Our	class,	CardTO,	is	wrapped	by	a	class-level	decorator,	@functools.total_ordering.
This	decorator	creates	the	missing	method	functions	to	be	sure	all	comparisons
work.	From	some	combinations	of	operators,	the	remainder	can	be	derived.	The
general	idea	is	to	provide	some	form	of	equality	(or	inequality)	test,	and	an



ordering	test,	and	the	remainder	of	the	operations	can	be	derived	logically	from
those	two.

In	the	example,	we	provided	<	and	=.	Here's	how	the	other	comparisons	can	be
derived:

We	can	use	this	class	to	create	objects	that	can	be	compared	using	all	of	the
comparison	operators,	even	though	only	two	were	defined	as	follows:

>>>	c1	=	Card(	3,	'♠'	)	

>>>	c2	=	Card(	3,	'♥'	)	

>>>	c1	==	c2	

True	

>>>	c1	<	c2	

False	

>>>	c1	<=	c2	

True	

>>>	c1	>=	c2	

True	

This	interaction	shows	that	we	are	able	to	make	comparisons	that	are	not	defined
in	the	original	class.	The	decorator	added	the	required	method	functions	to	the
original	class	definition.

Let's	see	how	to	use	standard	library	mixin	classes	in	the	next	section.



Using	standard	library	mixin	classes
The	standard	library	makes	use	of	mixin	class	definitions.	There	are	several
modules	that	contain	examples,	including	io,	socketserver,	urllib.request,	contextlib,
and	collections.abc.	Next,	we'll	look	at	an	example	using	mixing	features	of	the
Enum	class	in	the	enum	module.

When	we	define	our	own	collection	based	on	the	collections.abc	abstract	base
classes,	we're	making	use	of	mixins	to	ensure	that	cross-cutting	aspects	of	the
containers	are	defined	consistently.	The	top-level	collections	(Set,	Sequence,	and
Mapping)	are	all	built	from	multiple	mixins.	It's	very	important	to	look	at	section
8.4	of	the	Python	Standard	Library	to	see	how	the	mixins	contribute	features	as
the	overall	structure	is	built	up	from	pieces.

Looking	at	just	one	line,	the	summary	of	Sequence,	we	see	that	it	inherits	from
Sized,	Iterable,	and	Container.	These	mixin	classes	lead	to	methods	of	__contains__(),
__iter__(),	__reversed__(),	index(),	and	count().

The	final	behavior	of	the	list	class	is	a	composition	of	aspects	from	each	of	the
mixins	present	in	its	definition.	Fundamentally,	it's	a	Container	with	numerous
protocols	added	to	it.

Let's	look	at	how	to	use	the	enum	with	mixin	classes	in	the	next	section.



Using	the	enum	with	mixin	classes
The	enum	module	provides	the	Enum	class.	One	common	use	case	for	this	class	is	to
define	an	enumerated	domain	of	values;	for	example,	we	might	use	this	to
enumerate	the	four	suits	for	playing	cards.

An	enumerated	type	has	the	following	two	features:

Member	names:	The	member	names	are	proper	Python	identifiers	for	the
enumerated	values.
Member	values:	The	member	values	can	be	any	Python	object.

In	several	previous	examples,	we've	used	a	simplistic	definition	for	the
enumerated	members.	Here's	a	typical	class	definition:

from	enum	import	Enum

class	Suit(Enum):

				Clubs	=	"♣"

				Diamonds	=	"♦"

				Hearts	=	"♥"

				Spades	=	"♠"

This	provides	four	members.	We	can	use	Suit.Clubs	to	reference	a	specific	string.
We	can	also	use	list(Suit)	to	create	a	list	of	the	enumerated	members.	

The	base	Enum	class	imposes	constraints	on	the	member	names	or	values	that	will
be	part	of	the	class.	We	can	narrow	the	definition	using	mixin	class	definitions.
Specifically,	the	Enum	class	can	work	with	a	data	type	as	well	as	additional
feature	definitions.

We	often	want	a	richer	definition	of	the	underlying	values	for	the	members	of
the	enumeration.	This	example	shows	the	mixing	of	str	into	Enum:

class	SuitS(str,	Enum):

				Clubs	=	"♣"

				Diamonds	=	"♦"

				Hearts	=	"♥"

				Spades	=	"♠"

The	base	class	is	Enum.	Features	of	the	str	class	will	be	available	to	each	member.
The	order	of	the	definitions	is	important:	the	mixins	are	listed	first;	the	base	class



is	listed	last.	

When	str	is	mixed	in,	it	provides	all	of	the	string	methods	to	the	member	itself
without	having	to	make	an	explicit	reference	to	the	internal	value	of	each
member.	For	example,	SuitS.Clubs.center(5)	will	emit	the	string	value	centered	in	a
string	of	length	five.	

We	can	also	incorporate	additional	features	in	an	Enum.	In	this	example,	we'll	add
a	class-level	feature	to	enumerate	the	values:

class	EnumDomain:

				@classmethod

				def	domain(cls:	Type)	->	List[str]:

								return	[m.value	for	m	in	cls]

class	SuitD(str,	EnumDomain,	Enum):

				Clubs	=	"♣"

				Diamonds	=	"♦"

				Hearts	=	"♥"

				Spades	=	"♠"

The	following	two	mixin	protocols	are	added	to	this	class:

The	str	methods	will	apply	to	each	member	directly.
The	class	also	has	a	domain()	method,	which	will	emit	only	the	values.	We
can	use	SuitD.domain()	to	get	the	list	of	string	values	associated	with	the
members.

This	mixin	technique	allows	us	to	bundle	features	together	to	create	complex
class	definitions	from	separate	aspects.	

A	mixin	design	is	better	than	copy	and	paste	among	several	related	classes.

It	can	be	difficult	to	create	classes	that	are	generic	enough	to	be	used	as	mixins.
One	approach	is	to	look	for	duplicated	copypasta	code	across	multiple	classes.
The	presence	of	duplicated	code	is	an	indication	of	a	possible	mixin	to	refactor
and	eliminate	the	duplication.

Let's	see	how	to	write	a	simple	function	decorator	in	the	next	section.	



Writing	a	simple	function	decorator
A	decorator	is	a	function	(or	a	callable	object)	that	accepts	a	function	as	an
argument	and	returns	a	new	function.	The	result	of	decoration	is	a	function	that
has	been	wrapped.	Generally,	the	additional	features	of	the	wrapping	surround
the	original	functionality,	either	by	transforming	actual	argument	values	or	by
transforming	the	result	value.	These	are	the	two	readily	available	join	points	in	a
function.

When	we	use	a	decorator,	we	want	to	be	sure	that	the	resulting	decorated
function	has	the	original	function's	name	and	docstring.	These	details	can	be
handled	for	us	by	a	decorator	to	build	our	decorators.	Using	functools.wraps	to
write	new	decorators	simplifies	the	work	we	need	to	do	because	the	bookkeeping
is	handled	for	us.

Additionally,	the	type	hints	for	decorators	can	be	confusing	because	the
parameter	and	return	are	both	essentially	of	the	Callable	type.	To	be	properly
generic,	we'll	use	an	upper-bound	type	definition	to	define	a	type,	F,	which
embraces	any	variation	on	callable	objects	or	functions.

To	illustrate	the	two	places	where	functionality	can	be	inserted,	we	can	create	a
debug	trace	decorator	that	will	log	parameters	and	return	values	from	a	function.
This	puts	functionality	both	before	and	after	the	called	function.	The	following	is
a	defined	function,	some_function,	that	we	want	to	wrap.	In	effect,	we	want	code
that	behaves	like	the	following:

logging.debug("function(%r,	%r)",	args,	kw)

result	=	some_function(*args,	**kw)

logging.debug("result	=	%r",	result)	

This	snippet	shows	how	we'll	have	new	log-writing	to	wrap	the	original,
some_function(),	function.

The	following	is	a	debug	decorator	that	inserts	logging	before	and	after	function
evaluation:

import	logging,	sys

import	functools



from	typing	import	Callable,	TypeVar

FuncType	=	Callable[...,	Any]

F	=	TypeVar('F',	bound=FuncType)

def	debug(function:	F)	->	F:

				@functools.wraps(function)

				def	logged_function(*args,	**kw):

								logging.debug("%s(%r,	%r)",	function.__name__,	args,	kw)

								result	=	function(*args,	**kw)

								logging.debug("%s	=	%r",	function.__name__,	result)

								return	result

				return	cast(F,	logged_function)

We've	used	the	@functools.wraps	decorator	to	ensure	that	the	original	function	name
and	docstring	are	preserved	as	attributes	of	the	result	function.	The
logged_function()	definition	is	the	resulting	function	returned	by	the	debug()
decorator.	The	internal,	logged_function()	does	some	logging,	then	invokes	the
decorated	function,	function,	and	does	some	more	logging	before	returning	the
result	of	the	decorated	function.	In	this	example,	no	transformation	of	argument
values	or	results	was	performed.

When	working	with	the	logger,	f-strings	are	not	the	best	idea.	It	can	help	to
provide	individual	values	so	the	logging	filters	can	be	used	to	redact	or	exclude
entries	from	a	sensitive	log.	

Given	this	@debug	decorator,	we	can	use	it	to	produce	noisy,	detailed	debugging.
For	example,	we	can	do	this	to	apply	the	decorator	to	a	function,	ackermann(),	as
follows:

@debug

def	ackermann(m:	int,	n:	int)	->	int:

				if	m	==	0:

								return	n	+	1

				elif	m	>	0	and	n	==	0:

								return	ackermann(m	-	1,	1)

				elif	m	>	0	and	n	>	0:

								return	ackermann(m	-	1,	ackermann(m,	n	-	1))

				else:

								raise	Exception(f"Design	Error:	{vars()}")

This	definition	wraps	the	ackermann()	function	with	debugging	information	written
via	the	logging	module	to	the	root	logger.	We've	made	no	material	changes	to	the
function	definition.	The	@debug	decorator	injects	the	logging	details	as	a	separate
aspect.	



We	configure	the	logger	as	follows:

logging.basicConfig(stream=sys.stderr,	level=logging.DEBUG)	

We'll	revisit	logging	in	detail	in	Chapter	16,	The	Logging	and	Warning	Modules.
We'll	see	this	kind	of	result	when	we	evaluate	ackermann(2,4)	as	follows:

DEBUG:root:ackermann((2,	4),	{})	

DEBUG:root:ackermann((2,	3),	{})	

DEBUG:root:ackermann((2,	2),	{})	

.	

.	

.	

DEBUG:root:ackermann((0,	10),	{})	

DEBUG:root:ackermann	=	11	

DEBUG:root:ackermann	=	11	

DEBUG:root:ackermann	=	11	

In	the	next	section,	we	will	see	how	to	create	separate	loggers.



Creating	separate	loggers
As	a	logging	optimization,	we	might	want	to	use	a	specific	logger	for	each
wrapped	function	and	not	overuse	the	root	logger	for	this	kind	of	debugging
output.	We'll	return	to	the	logger	in	Chapter	16,	The	Logging	and	Warning
Modules.

The	following	is	a	version	of	our	decorator	that	creates	a	separate	logger	for	each
individual	function:

def	debug2(function:	F)	->	F:

				log	=	logging.getLogger(function.__name__)

				@functools.wraps(function)

				def	logged_function(*args,	**kw):

								log.debug("call(%r,	%r)",	args,	kw)

								result	=	function(*args,	**kw)

								log.debug("result	=	%r",	result)

								return	result

				return	cast(F,	logged_function)

This	version	modifies	the	output	to	look	like	the	following:

DEBUG:ackermann:call((2,	4),	{})	

DEBUG:ackermann:call((2,	3),	{})	

DEBUG:ackermann:call((2,	2),	{})	

.	

.	

.	

DEBUG:ackermann:call(	(0,	10),	{}	)	

DEBUG:ackermann:result	=	11	

DEBUG:ackermann:result	=	11	

DEBUG:ackermann:result	=	11	

The	function	name	is	now	the	logger	name.	This	can	be	used	to	fine-tune	the
debugging	output.	We	can	now	enable	logging	for	individual	functions	rather
than	enabling	debugging	for	all	functions.	

Note	that	we	can't	trivially	change	the	decorator	and	expect	the	decorated
function	to	also	change.	After	making	a	change	to	a	decorator,	we	need	to	apply
the	revised	decorator	to	a	function.	This	means	that	debugging	and
experimenting	with	decorators	can't	be	done	trivially	from	the	>>>	interactive
prompt.



Decorator	development	often	involves	creating	and	rerunning	a	script	to	define
the	decorator	and	apply	it	to	example	functions.	In	some	cases,	this	script	will
also	include	tests	or	a	demonstration	to	show	that	everything	works	as	expected.

Now,	let's	see	how	to	parameterize	a	decorator.



Parameterizing	a	decorator
Sometimes,	we	need	to	provide	parameters	to	a	decorator.	The	idea	is	that	we	are
going	to	customize	the	wrapping	function.	When	we	do	this,	decoration	becomes
a	two-step	process.

Here's	a	snippet	showing	how	we	provide	a	parameterized	decorator	to	a
function	definition:

@decorator(arg)	

def	func(	):	

				pass	

The	implementation	is	as	follows:

def	func(	):	

				pass	

func	=	decorator(arg)(func)	

We've	done	the	following	three	things:

Defined	a	function,	func
Applied	the	abstract	decorator	to	its	arguments	to	create	a	concrete
decorator,	decorator(arg)
Applied	the	concrete	decorator	to	the	defined	function	to	create	the
decorated	version	of	the	function,	decorator(arg)(func)

It	can	help	to	think	of	func	=	decorate(arg)(func)	as	having	the	following
implementation:

concrete	=	decorate(arg)

func	=	concrete(func)

This	means	that	a	decorator	with	arguments	is	implemented	as	indirect
construction	of	the	final	function.	Now,	let's	tweak	our	debugging	decorator	yet
again.	We'd	like	to	do	the	following:

@debug("log_name")	

def	some_function(	args	):	

				pass	



This	kind	of	code	allows	us	to	specify	the	name	of	the	log	that	the	debugging
output	will	go	to.	This	means	we	won't	use	the	root	logger	or	create	a	distinct
logger	for	each	function.

The	outline	of	a	parameterized	decorator	will	be	the	following:

def	decorator(config)	->	Callable[[F],	F]:

				def	concrete_decorator(function:	F)	->	F:

								def	wrapped(*args,	**kw):

												return	function(*args,	**kw)

								return	cast(F,	wrapped)

				return	concrete_decorator

Let's	peel	back	the	layers	of	this	onion	before	looking	at	the	example.	The
decorator	definition	(def	decorator(config))	shows	the	parameters	we	will	provide
to	the	decorator	when	we	use	it.	The	body	of	this	is	the	concrete	decorator,
which	is	returned	after	the	parameters	are	bound	to	it.	The	concrete	decorator
(def	concrete_decorator(function):)	will	then	be	applied	to	the	target	function.	The
concrete	decorator	is	like	the	simple	function	decorator	shown	in	the	previous
section.	It	builds	the	wrapped	function	(def	wrapped(*args,	**kw):),	which	it	returns.

The	following	is	our	named	logger	version	of	debug:

def	debug_named(log_name:	str)	->	Callable[[F],	F]:

				log	=	logging.getLogger(log_name)

				def	concrete_decorator(function:	F)	->	F:

								@functools.wraps(function)

								def	wrapped(*args,	**kw):

												log.debug("%s(%r,	%r)",	function.__name__,	args,	kw)

												result	=	function(*args,	**kw)

												log.debug("%s	=	%r",	function.__name__,	result)

												return	result

								return	cast(F,	wrapped)

				return	concrete_decorator

This	@debug_named	decorator	accepts	an	argument	that	is	the	name	of	the	log	to	use.
It	creates	and	returns	a	concrete	decorator	function	with	a	logger	of	the	given
name	bound	into	it.	When	this	concrete	decorator	is	applied	to	a	function,	the
concrete	decorator	returns	the	wrapped	version	of	the	given	function.	When	the
function	is	used	in	the	following	manner,	the	decorator	adds	noisy	debug	lines.

Here's	an	example	of	creating	a	logged	named	recursion	with	output	from	a
given	function:



@debug_named("recursion")

def	ackermann3(m:	int,	n:	int)	->	int:

				if	m	==	0:

								return	n	+	1

				elif	m	>	0	and	n	==	0:

								return	ackermann3(m	-	1,	1)

				elif	m	>	0	and	n	>	0:

								return	ackermann3(m	-	1,	ackermann3(m,	n	-	1))

				else:

								raise	Exception(f"Design	Error:	{vars()}")

The	decorator	wraps	the	given	ackermann3()	function	with	logging	output.	Since
the	decorator	accepts	a	parameter,	we	can	provide	a	logger	name.	We	can	reuse
the	decorator	to	put	any	number	of	individual	functions	into	a	single	logger,
providing	more	control	over	the	debug	output	from	an	application.

Now,	let's	see	how	to	create	a	method	function	decorator.



Creating	a	method	function	decorator
A	decorator	for	a	method	of	a	class	definition	is	identical	to	a	decorator	for	a
standalone	function.	While	it's	used	in	a	different	context,	it	will	be	defined	like
any	other	decorator.	One	small	consequence	of	the	different	context	is	that	we
often,	must	explicitly	name	the	self	variable	in	decorators	intended	for	methods.

One	application	for	method	decoration	is	to	produce	an	audit	trail	for	object	state
changes.	Business	applications	often	create	stateful	records;	commonly,	these	are
represented	as	rows	in	a	relational	database.	We'll	look	at	object	representation	in
Chapter	10,	Serializing	and	Saving	–	JSON,	YAML,	Pickle,	CSV,	and	XML,	Chapter	
11,	Storing	and	Retrieving	Objects	via	Shelve,	and	Chapter	12,	Storing	and
Retrieving	Objects	via	SQLite.

When	we	have	stateful	records,	the	state	changes	often	need	to	be	auditable.	An	audit	can
confirm	that	appropriate	changes	have	been	made	to	the	records.	In	order	to	do	the	audit,	the
before	and	after	version	of	each	record	must	be	available	somewhere.	Stateful	database
records	are	a	long-standing	tradition	but	are	not	in	any	way	required.	Immutable	database
records	are	a	viable	design	alternative.

When	we	design	a	stateful	class,	any	setter	method	will	cause	a	state	change.	If
we	do	this,	we	can	fold	in	an	@audit	decorator	that	can	track	changes	to	the	object
so	that	we	have	a	proper	trail	of	changes.	We'll	create	an	audit	log	via	the	logging
module.	We'll	use	the	__repr__()	method	function	to	produce	a	complete	text
representation	that	can	be	used	to	examine	changes.

The	following	is	an	audit	decorator:

def	audit(method:	F)	->	F:

				@functools.wraps(method)

				def	wrapper(self,	*args,	**kw):

								template	=	"%s\n					before	%s\n					after	%s"

								audit_log	=	logging.getLogger("audit")

								before	=	repr(self)		#	preserve	state	as	text

								try:

												result	=	method(self,	*args,	**kw)

								except	Exception	as	e:

												after	=	repr(self)

												audit_log.exception(template,	method.__qualname__,	before,	after)

												raise

								after	=	repr(self)

								audit_log.info(template,	method.__qualname__,	before,	after)

								return	result



				return	cast(F,	wrapper)

This	audit	trail	works	by	creating	text	mementos	of	the	before	setting	and	after
setting	state	of	the	object.	After	capturing	the	before	state,	the	original	method
function	is	applied.	If	there	was	an	exception,	an	audit	log	entry	includes	the
exception	details.	Otherwise,	an	INFO	entry	is	written	with	the	qualified	name	of
the	method	name,	the	before	memento,	and	the	after	memento	of	the	object.

The	following	is	a	modification	of	the	Hand	class	that	shows	how	we'd	use	this
decorator:

class	Hand:

				def	__init__(self,	*cards:	CardDC)	->	None:

								self._cards	=	list(cards)

				@audit

				def	__iadd__(self,	card:	CardDC)	->	"Hand":

								self._cards.append(card)

								self._cards.sort(key=lambda	c:	c.rank)

								return	self

				def	__repr__(self)	->	str:

								cards	=	",	".join(map(str,	self._cards))

								return	f"{self.__class__.__name__}({cards})"

This	definition	modifies	the	__iadd__()	method	function	so	that	adding	a	card
becomes	an	auditable	event.	This	decorator	will	perform	the	audit	operation,
saving	text	mementos	of	Hand	before	and	after	the	operation.

This	use	of	a	method	decorator	makes	a	visible	declaration	that	a	particular
method	will	make	a	significant	state	change.	We	can	easily	use	code	reviews	to
be	sure	that	all	of	the	appropriate	method	functions	are	marked	for	audit	like
this.	

In	the	event	that	we	want	to	audit	object	creation	as	well	as	state	change,	we
can't	use	this	audit	decorator	on	the	__init__()	method	function.	That's	because
there's	no	before	image	prior	to	the	execution	of	__init__().	There	are	two	things
we	can	do	as	a	remedy	to	this,	as	follows:

We	can	add	a	__new__()	method	that	ensures	that	an	empty	_cards	attribute	is
seeded	into	the	class	as	an	empty	collection.
We	can	tweak	the	audit()	decorator	to	tolerate	AttributeError	that	will	arise
when	__init__()	is	being	processed.



The	second	option	is	considerably	more	flexible.	We	can	do	the	following:

try:	

				before	=	repr(self)	

except	AttributeError	as	e:	

				before	=	repr(e)	

This	would	record	a	message	such	as	AttributeError:	'Hand'	object	has	no	attribute
'_cards'	for	the	before	status	during	initialization.

In	the	next	section,	we'll	see	how	to	create	a	class	decorator.



Creating	a	class	decorator
Analogous	to	decorating	a	function,	we	can	write	a	class	decorator	to	add
features	to	a	class	definition.	The	essential	rules	are	the	same.	The	decorator	is	a
function	(or	callable	object);	it	receives	a	class	object	as	an	argument	and	returns
a	class	object	as	a	result.

We	have	a	limited	number	of	join	points	inside	a	class	definition	as	a	whole.	For
the	most	part,	a	class	decorator	can	fold	additional	attributes	into	a	class
definition.	While	it's	technically	possible	to	create	a	new	class	that	wraps	an
original	class	definition,	this	doesn't	seem	to	be	very	useful	as	a	design	pattern.
It's	also	possible	to	create	a	new	class	that	is	a	subclass	of	the	original	decorated
class	definition.	This	may	be	baffling	to	users	of	the	decorator.	It's	also	possible
to	delete	features	from	a	class	definition,	but	this	seems	perfectly	awful.

One	sophisticated	class	decorator	was	shown	previously.	The
functools.Total_Ordering	decorator	injects	a	number	of	new	method	functions	into
the	class	definition.	The	technique	used	in	this	implementation	is	to	create
lambda	objects	and	assign	them	to	attributes	of	the	class.

In	general,	adding	attributes	often	leads	to	problems	with	mypy	type	hint
checking.	When	we	add	attributes	to	a	class	in	a	decorator,	they're	essentially
invisible	to	mypy.

As	an	example,	consider	the	need	to	debug	object	creation.	Often,	we'd	like	to
have	a	unique	logger	for	each	class.

We're	often	forced	to	do	something	like	the	following:

class	UglyClass1:

				def	__init__(self)	->	None:

								self.logger	=	logging.getLogger(self.__class__.__qualname__)

								self.logger.info("New	thing")

				def	method(self,	*args:	Any)	->	int:

								self.logger.info("method	%r",	args)

								return	42

This	class	has	the	disadvantage	that	it	creates	a	logger	instance	variable	that's



really	not	part	of	the	class's	operation,	but	is	a	separate	aspect	of	the	class.	We'd
like	to	avoid	polluting	the	class	with	this	additional	aspect.	Even	though
logging.getLogger()	is	very	efficient,	the	cost's	non-zero.	We'd	like	to	avoid	this
additional	overhead	every	time	we	create	an	instance	of	UglyClass1.

Here's	a	slightly	better	version.	The	logger	is	promoted	to	be	a	class-level
instance	variable	and	is	separate	from	each	individual	object	of	the	class:

class	UglyClass2:

				logger	=	logging.getLogger("UglyClass2")

				def	__init__(self)	->	None:

								self.logger.info("New	thing")

				def	method(self,	*args:	Any)	->	int:

								self.logger.info("method	%r",	args)

								return	42

This	has	the	advantage	that	it	implements	logging.getLogger()	just	once.	However,
it	suffers	from	a	profound	Don't	Repeat	Yourself	(DRY)	problem.	We	can't
automatically	set	the	class	name	within	the	class	definition.	The	class	hasn't	been
created	yet,	so	we're	forced	to	repeat	the	name.

The	DRY	problem	can	be	partially	solved	by	a	small	decorator	as	follows:

def	logged(class_:	Type)	->	Type:

				class_.logger	=	logging.getLogger(class_.__qualname__)

				return	class_

This	decorator	tweaks	the	class	definition	to	add	the	logger	reference	as	a	class-
level	attribute.	Now,	each	method	can	use	self.logger	to	produce	audit	or	debug
information.	When	we	want	to	use	this	feature,	we	can	use	the	@logged	decorator
on	the	class	as	a	whole.

This	presents	a	profound	problem	for	mypy,	more	easily	solved	with	a	mixin
than	a	decorator.

Continuing	to	use	the	class	decorator,	the	following	is	an	example	of	a	logged
class,	SomeClass:

@logged

class	SomeClass:

				def	__init__(self)	->	None:

								self.logger.info("New	thing")		#	mypy	error



				def	method(self,	*args:	Any)	->	int:

								self.logger.info("method	%r",	args)		#	mypy	error

								return	42

The	decorator	guarantees	that	the	class	has	a	logger	attribute	that	can	be	used	by
any	method.	The	logger	attribute	is	not	a	feature	of	each	individual	instance,	but	a
feature	of	the	class	as	a	whole.	This	attribute	has	the	added	benefit	that	it	creates
the	logger	instances	during	module	import,	reducing	the	overhead	of	logging
slightly.	Let's	compare	this	with	UglyClass1,	where	logging.getLogger()	was	evaluated
for	each	instance	creation.

We've	annotated	two	lines	that	will	report	mypy	errors.	The	type	hint	checks
whether	attributes	injected	by	decorators	are	not	robust	enough	to	detect	the
additional	attribute.	The	decorator	can't	easily	create	attributes	visible	to	mypy.
It's	better	to	use	the	following	kind	of	mixin:

class	LoggedWithHook:

				def	__init_subclass__(cls,	name=None):

								cls.logger	=	logging.getLogger(name	or	cls.__qualname__)

This	mixin	class	defines	the	__init_subclass__()	method	to	inject	an	additional
attribute	into	the	class	definition.	This	is	recognized	by	mypy,	making	the	logger
attribute	visible	and	useful.	If	the	name	of	the	parameter	is	provided,	it	becomes
the	name	of	the	logger,	otherwise	the	name	of	the	subclass	will	be	used.	Here's
an	example	class	making	use	of	this	mixin:

class	SomeClass4(LoggedWithHook):

				def	__init__(self)	->	None:

								self.logger.info("New	thing")

				def	method(self,	*args:	Any)	->	int:

								self.logger.info("method	%r",	args)

								return	42

This	class	will	have	a	logger	built	when	the	class	is	created.	It	will	be	shared	by
all	instances	of	the	class.	And	the	additional	attribute	will	be	visible	to	mypy.	In
most	ordinary	application	programming,	class-level	decorators	are	a	rarity.
Almost	anything	needed	can	be	done	using	the	__init_subclass__()	method.

Some	complex	frameworks,	such	as	the	@dataclasses.dataclass	decorator,	involve
extending	the	class	from	the	available	scaffolding.	The	code	required	to
introduce	names	into	the	attributes	used	by	mypy	is	unusual.



Let's	see	how	to	add	methods	to	a	class	in	the	next	section.



Adding	methods	to	a	class
A	class	decorator	can	create	new	methods	using	a	two-step	process.	First,	it	must
create	a	method	function	and	then	insert	it	into	the	class	definition.	This	is	often
better	done	via	a	mixin	class	than	a	decorator.	The	obvious	and	expected	use	of	a
mixin	is	to	insert	methods.	Inserting	methods	with	a	decorator	is	less	obvious
and	can	be	astonishing	to	people	reading	the	code	and	trying	to	find	where	the
methods	of	a	class	are	defined.

In	the	example	of	the	Total_Ordering	decorator,	the	exact	method	functions	inserted
were	flexible	and	depended	on	what	was	already	provided.	This	was	a	kind	of
special	case	that	doesn't	tend	to	astonish	people	reading	the	code.

We'll	look	at	a	technique	to	create	a	snapshot	of	an	object's	state	by	creating	a
text	memento	of	the	object.	This	can	be	implemented	via	a	standardized	memento()
method.	We'd	like	to	include	this	standard	method	function	in	a	variety	of
classes.	First,	we'll	look	at	a	decorator	implementation.	After	that,	we'll	look	at	a
mixin	version	of	this	design.

The	following	is	the	decorator	version	of	adding	this	standardized	memento()
method:

def	memento(class_:	Type)	->	Type:

				def	memento_method(self):

								return	f"{self.__class__.__qualname__}(**{vars(self)!r})"

				class_.memento	=	memento_method

				return	class_

This	decorator	includes	a	method	function	definition	that	is	inserted	into	the
class.	The	vars(self)	expression	exposes	the	instance	variables	usually	kept	the
internal	__dict__	attribute	of	an	instance.	This	produces	a	dictionary	that	can	be
included	in	the	output	string	value.

The	following	is	how	we	use	this	@memento	decorator	to	add	the	memento()	method	to
a	class:

@memento

class	StatefulClass:



				def	__init__(self,	value:	Any)	->	None:

								self.value	=	value

				def	__repr__(self)	->	str:

								return	f"{self.value}"

The	decorator	incorporates	a	new	method,	memento(),	into	the	decorated	class.
Here's	an	example	of	using	this	class	and	extracting	a	memento	that	summarizes
the	state	of	the	object:

>>>	st	=	StatefulClass(2.7)

>>>	print(st.memento())

StatefulClass(**{'value':	2.7})

This	implementation	has	the	following	disadvantages:

We	can't	override	the	implementation	of	the	memento()	method	function	to
handle	special	cases.	It's	built	into	the	class	after	the	definition.
We	can't	extend	the	decorator	function	easily.	Doing	this	would	involve
creating	either	a	very	complex	memento()	method,	or	perhaps	some	other
unwieldy	design	to	incorporate	some	kind	of	plug-in	feature.

An	alternative	is	to	use	a	mixin	class.	Variations	on	this	class	allow
customization.	The	following	is	the	mixin	class	that	adds	a	standard	method:

class	Memento:

				def	memento(self)	->	str:

								return	(

												f"{self.__class__.__qualname__}"

												f"(**{vars(self)!r})"

								)

The	following	is	how	we	use	this	Memento	mixin	class	to	define	an	application
class:

class	StatefulClass2(Memento):

				def	__init__(self,	value):

								self.value	=	value

				def	__repr__(self):

								return	f"{self.value}"

The	mixin	provides	a	new	method,	memento();	this	is	the	expected,	typical	purpose
of	a	mixin.	We	can	more	easily	extend	the	Memento	mixin	class	to	add	features.	In
addition,	we	can	override	the	memento()	method	function	to	handle	special	cases.



Now,	let's	see	how	to	use	decorators	for	security.



Using	decorators	for	security
Software	is	filled	with	cross-cutting	concerns,	aspects	that	need	to	be
implemented	consistently,	even	if	they're	in	separate	class	hierarchies.	It's	often	a
mistake	to	try	and	impose	a	class	hierarchy	around	a	cross-cutting	concern.
We've	looked	at	a	few	examples,	such	as	logging	and	auditing.

We	can't	reasonably	demand	that	every	class	that	might	need	to	write	to	the	log
also	be	a	subclass	of	some	single	Loggable	superclass.	It's	much	easier	to	design	a
Loggable	mixin	or	a	@loggable	decorator.	These	don't	interfere	with	the	proper
inheritance	hierarchy	that	we	need	to	design	to	make	polymorphism	work
correctly.

Some	important	cross-cutting	concerns	revolve	around	security.	Within	a	web
application,	there	are	two	aspects	to	the	security	question	as	follows:

Authentication:	Do	we	know	who's	making	the	request?
Authorization:	Is	the	authenticated	user	permitted	to	make	the	request?

Some	web	frameworks	allow	us	to	decorate	our	request	handlers	with	security
requirements.	The	Django	framework,	for	example,	has	a	number	of	decorators
that	allow	us	to	specify	security	requirements	for	a	view	function	or	a	view	class.

Some	of	these	decorators	are	as	follows:

user_passes_test:	This	is	a	low-level	decorator	that's	very	generalized	and	is
used	to	build	the	other	two	decorators.	It	requires	a	test	function;	the
logged-in	User	object	associated	with	the	request	must	pass	the	given
function.	If	the	User	instance	is	not	able	to	pass	the	given	test,	they're
redirected	to	a	login	page	so	that	the	person	can	provide	the	credentials
required	to	make	the	request.
login_required:	This	decorator	is	based	on	user_passes_test.	It	confirms	that	the
logged-in	user	is	authenticated.	This	kind	of	decorator	is	used	on	web
requests	that	apply	to	all	people	accessing	the	site.	Requests,	such	as
changing	a	password	or	logging	out,	shouldn't	require	any	more	specific
permissions.



permission_required:	This	decorator	works	with	Django's	internally	defined
database	permission	scheme.	It	confirms	that	the	logged-in	user	(or	the
user's	group)	is	associated	with	the	given	permission.	This	kind	of	decorator
is	used	on	web	requests	where	specific	administrative	permissions	are
required	to	make	the	request.

Other	packages	and	frameworks	also	have	ways	to	express	this	cross-cutting
aspect	of	web	applications.	In	many	cases,	a	web	application	may	have	even
more	stringent	security	considerations.	We	might	have	a	web	application	where
user	features	are	selectively	unlocked	based	on	contract	terms	and	conditions.
Perhaps,	additional	fees	will	unlock	a	feature.	We	might	have	to	design	a	test
like	the	following:

def	user_has_feature(feature_name):	

				def	has_feature(user):	

								return	feature_name	in	(f.name	for	f	in	user.feature_set())	

				return	user_passes_test(has_feature)	

This	decorator	customizes	a	version	of	the	Django	user_passes_test()	decorator	by
binding	in	a	specific	feature	test.	The	has_feature()	function	checks	a	feature_set()
value	of	each	User	object.	This	is	not	built-in	in	Django.	The	feature_set()	method
would	be	an	extension,	added	onto	the	Django	User	class	definition.	The	idea	is
for	an	application	to	extend	the	Django	definitions	to	define	additional	features.

The	has_feature()	function	checks	to	see	whether	the	named	feature	is	associated
with	the	feature_set()	results	for	the	current	User	instance.	We've	used	our
has_feature()	function	with	Django's	user_passes_test	decorator	to	create	a	new
decorator	that	can	be	applied	to	the	relevant	view	functions.

We	can	then	create	a	view	function	as	follows:

@user_has_feature('special_bonus')	

def	bonus_view(request):	

				pass	

This	ensures	that	the	security	concerns	will	be	applied	consistently	across	a
number	of	view	functions.



Summary
We've	looked	at	using	decorators	to	modify	function	and	class	definitions.	We've
also	looked	at	mixins	that	allow	us	to	decompose	a	larger	class	into	components
that	are	knitted	together.

The	idea	of	both	of	these	techniques	is	to	separate	application-specific	features
from	generic	features,	such	as	security,	audit,	or	logging.	We're	going	to
distinguish	between	the	inherent	features	of	a	class	and	aspects	that	aren't
inherent	but	are	additional	concerns.	The	inherent	features	are	part	of	the	explicit
design.	They're	part	of	the	inheritance	hierarchy;	they	define	what	an	object	is.
The	other	aspects	can	be	mixins	or	decorations;	they	define	how	an	object	might
also	act.

In	most	cases,	this	division	between	is-a	and	acts-as	is	quite	clear.	Inherent
features	are	a	part	of	the	overall	problem	domain.	When	talking	about	simulating
Blackjack	play,	things	such	as	cards,	hands,	betting,	hitting,	and	standing	are
clearly	part	of	the	problem	domain.	Similarly,	the	data	collection	and	statistical
analysis	of	outcomes	is	part	of	the	solution.	Other	things,	such	as	logging,
debugging,	security	checks,	and	auditing	are	not	part	of	the	problem	domain;
these	other	aspects	are	associated	with	the	solution	technology.	In	some	cases,
they	are	part	of	regulatory	compliance	or	another	background	context	in	which
the	software	is	used.

While	most	cases	are	quite	clear,	the	dividing	line	between	inherent	and
decorative	aspects	can	be	fine.	In	some	cases,	it	may	devolve	to	an	aesthetic
judgment.	Generally,	the	decision	becomes	difficult	when	writing	framework
and	infrastructure	classes	because	they	aren't	focused	on	a	specific	problem.	A
general	strategy	for	creating	good	designs	is	as	follows:

Aspects	that	are	central	to	the	problem	will	contribute	directly	to	class
definitions.	Many	classes	are	based	on	nouns	and	verbs	present	in	the
problem	domain.	These	classes	form	simple	hierarchies;	polymorphism
among	data	objects	works	as	expected	when	compared	with	real-world
objects.
Some	aspects	are	peripheral	to	the	problem	and	will	lead	to	mixin	class



definitions.	These	are	things	related	to	operational	aspects	of	using	the
software	more	than	solving	the	essential	problem.

A	class	that	involves	mixins	can	be	said	to	be	multidimensional.	It	has	more	than
one	independent	axis;	aspects	belong	to	orthogonal	design	considerations.	When
we	define	separate	mixins,	we	can	have	separate	inheritance	hierarchies	for	the
mixins.	For	our	casino	game	simulations,	there	are	two	aspects:	the	rules	of	the
game	and	a	betting	strategy.	These	are	orthogonal	considerations.	The	final
player	simulation	classes	must	have	mixin	elements	from	both	class	hierarchies.

The	type	hints	for	decorators	can	become	complex.	In	the	most	generic	case,	a
decorator	can	be	summarized	as	a	function	with	an	argument	that's	a	Callable	and
a	result	that's	a	Callable.	If	we	want	to	be	specific	about	the	arguments	and	results
of	the	callable,	there	will	be	complex-looking	type	hints,	often	involving	type
variables	to	show	how	the	Callable	argument	and	the	Callable	result	align.	This	can
become	very	complex	if	the	decorator	changes	the	signature	of	the	decorated
function	by	modifying	parameters	or	results.

As	noted	previously,	object-oriented	programming	lets	us	follow	a	variety	of
design	strategies,	as	follows:

Composition:	We	introduce	functionality	through	wrapping	one	class	with
another	class.	This	may	involve	the	composition	of	various	aspects	under	a
façade.	It	may	involve	using	mixins	classes	to	add	features,	or	decorators	to
add	features.
Extension:	This	is	the	ordinary	case	of	inheritance.	This	is	appropriate
where	there	is	a	clear	is-a	relationship	among	the	class	definitions.	It	works
out	best	when	the	superclass	is	a	unsurprising	generalization	of	the	subclass
details.	In	this	case,	ordinary	inheritance	techniques	work	out	well.

The	forthcoming	chapters	will	change	direction.	We've	seen	almost	all	of
Python's	special	method	names.	The	next	five	chapters	are	going	to	focus	on
object	persistence	and	serialization.	We'll	start	out	with	serializing	and	saving
objects	in	various	external	notations,	including	JSON,	YAML,	Pickle,	CSV,	and
XML.

Serialization	and	persistence	introduce	yet	more	object-oriented	design
considerations	for	our	classes.	We'll	also	have	a	look	at	object	relationships	and



how	they're	represented.	We'll	also	have	a	look	at	the	cost	complexity	of
serializing	and	deserializing	objects,	and	at	the	security	issues	related	to	the
deserialization	of	objects	from	untrustworthy	sources.



Section	2:	Object	Serialization	and
Persistence
A	persistent	object	has	been	serialized	to	a	storage	medium.	Perhaps	it	has	been
transformed	to	JSON	and	written	to	the	filesystem.	Perhaps	an	object-relational
management	(ORM)	layer	can	store	the	object	in	a	database.

The	following	chapters	will	be	covered	in	this	section:

Chapter	10,	Serializing	and	Saving	–	JSON,	YAML,	Pickle,	CSV,	and	XML
Chapter	11,	Storing	and	Retrieving	Objects	via	Shelve
Chapter	12,	Storing	and	Retrieving	Objects	via	SQLite
Chapter	13,	Transmitting	and	Sharing	Objects
Chapter	14,	Configuration	Files	and	Persistence



Serializing	and	Saving	-	JSON,
YAML,	Pickle,	CSV,	and	XML
To	make	a	Python	object	persistent,	we	must	convert	it	into	bytes	and	write	the
bytes	to	a	file.	We'll	call	this	transformation	serialization;	it	is	also	called
marshaling,	deflating,	or	encoding.	We'll	look	at	several	ways	to	serialize	a
Python	object	to	a	stream	of	bytes.	It's	important	to	note	that	we're	focused	on
representing	the	state	of	an	object,	separate	from	the	full	definition	of	the	class
and	its	methods	and	superclasses.

A	serialization	scheme	includes	a	physical	data	format.	Each	format	offers
some	advantages	and	disadvantages.	There's	no	best	format	to	represent	the	state
of	objects.		helps	to	distinguish	the	format	from	the	logical	data	layout,	which
may	be	a	simple	reordering	or	change	in	the	use	of	whitespace;	the	layout
changes	don't	change	the	value	of	the	object	but	change	the	sequence	of	bytes	in
an	irrelevant	way.	For	example,	the	CSV	physical	format	can	have	a	variety	of
logical	layouts	and	still	represent	the	same	essential	data.	If	we	provide	unique
column	titles,	the	order	of	the	columns	doesn't	matter.

Some	serialized	representations	are	biased	toward	representing	a	single	Python
object,	while	others	can	save	collections	of	individual	objects.	Even	when	the
single	object	is	a	list	of	items,	it's	still	a	single	Python	object.	In	order	to	update
or	replace	one	of	the	items	within	the	list,	the	entire	list	must	be	de-serialized
and	re-serialized.	When	it	becomes	necessary	to	work	with	multiple	objects
flexibly,	there	are	better	approaches	described	in	Chapters	11,	Storing	and
Retrieving	Objects	via	Shelve,	Chapter	12,	Storing	and	Retrieving	Objects	via
SQLite,	and	Chapter	13,	Transmitting	and	Sharing	Objects.

For	the	most	part,	we're	limited	to	objects	that	fit	in	working	memory.	We'll	look
at	the	following	serialization	representations:

JavaScript	Object	Notation	(JSON):	This	is	a	widely	used	representation.
For	more	information,	visit	http://www.json.org.	The	json	module	provides	the
classes	and	functions	necessary	to	load	and	dump	data	in	this	format.	In	the
Python	Standard	Library,	look	at	section	19,	Internet	Data	Handling,	not

http://www.json.org


section	12,	Persistence.	The	json	module	is	focused	narrowly	on	JSON
serialization.	The	more	general	problem	of	serializing	arbitrary	Python
objects	isn't	handled	well.
YAML	Ain't	Markup	Language	(YAML):	This	is	an	extension	to	JSON
and	can	lead	to	some	simplification	of	the	serialized	output.	For	more
information,	check	out	http://yaml.org.	This	is	not	a	standard	part	of	the
Python	library;	we	must	add	a	module	to	handle	this.	The	PyYaml	package,
specifically,	has	numerous	Python	persistence	features.
pickle:	The	pickle	module	has	its	own	unique	representation	for	data.	As
this	is	a	first-class	part	of	the	Python	library,	we'll	look	closely	at	how	to
serialize	an	object	in	this	way.	This	has	the	disadvantage	of	being	a	poor
format	for	the	interchange	of	data	with	non-Python	programs.	It's	the	basis
for	the	shelve	module	in	Chapter	11,	Storing	and	Retrieving	Objects	via
Shelve,	as	well	as	message	queues	in	Chapter	13,	Transmitting	and	Sharing
Objects.
Comma	Separated	Values	(CSV):	This	can	be	inconvenient	for
representing	complex	Python	objects.	As	it's	so	widely	used,	we'll	need	to
work	out	ways	to	serialize	Python	objects	in	the	CSV	notation.	For
references,	look	at	section	14,	File	Formats,	of	the	Python	Standard
Library,	not	section	12,	Persistence,	because	it's	simply	a	file	format	and
little	more.	CSV	allows	us	to	perform	an	incremental	representation	of	the
Python	object	collections	that	cannot	fit	into	memory.
XML:	In	spite	of	some	disadvantages,	this	is	very	widely	used,	so	it's
important	to	be	able	to	convert	objects	into	an	XML	notation	and	recover
objects	from	an	XML	document.	XML	parsing	is	a	huge	subject.	The
reference	material	is	in	section	20,	Structured	Markup	Processing	Tools,	of
the	Python	Standard	Library.	There	are	many	modules	to	parse	XML,	each
with	different	advantages	and	disadvantages.	We'll	focus	on	ElementTree.

Beyond	these	simple	serialization	formats,	we	can	also	have	hybrid	problems.
One	example	of	a	hybrid	problem	is	a	spreadsheet	encoded	in	XML.	This	means
that	we	have	a	row-and-column	data	representation	problem	wrapped	in	the
XML	parsing	problem.	This	leads	to	more	complex	software	for	disentangling
the	various	kinds	of	data	that	were	flattened	to	CSV-like	rows	so	that	we	can
recover	useful	Python	objects.	

In	this	chapter,	we	will	cover	the	following	topics:

Understanding	persistence	class,	state,	and	representation

http://yaml.org


Filesystem	and	network	considerations
Defining	classes	to	support	persistence
Dumping	and	loading	with	JSON
Dumping	and	loading	with	YAML
Dumping	and	loading	with	pickle
Dumping	and	loading	with	CSV
Dumping	and	loading	with	XML



Technical	requirements
The	code	files	for	this	chapter	are	available	at	https://git.io/fj2Uw.

https://git.io/fj2Uw


Understanding	persistence,	class,
state,	and	representation
Primarily,	our	Python	objects	exist	in	volatile	computer	memory.	The	upper
bound	on	the	life	of	an	object	is	the	duration	of	the	Python	process.	This	lifetime
is	further	constrained	by	objects	only	lasting	as	long	there	are	references	to	them.
If	we	want	an	object	with	a	longer	duration,	we	need	to	make	it	persistent.	If	we
want	to	extract	the	state	of	an	object	from	one	process	and	provide	this	state
information	to	another	process,	the	same	serialization	techniques	for	persistence
can	be	used	for	the	transfer	of	object	state.

Most	operating	systems	offer	persistent	storage	in	the	form	of	a	filesystem.	This
can	include	disk	drives,	flash	drives,	or	other	forms	of	non-volatile	storage.
Persisting	the	bytes	from	memory	to	the	filesystem	turns	out	to	be	surprisingly
difficult.

The	complexity	arises	because	our	in-memory	Python	objects	have	references	to
other	objects.	An	object	refers	to	its	class.	The	class	refers	to	any	base	classes.
The	object	might	be	a	container	and	refer	to	other	objects.	The	in-memory
version	of	an	object	is	a	web	of	references	and	relationships.	The	references	are
generally	based	on	the	locations	in	memory,	which	are	not	fixed:	the
relationships	would	be	broken	by	trying	to	simply	dump	and	restore	memory
bytes.

The	web	of	references	surrounding	an	object	contains	other	objects	that	are
largely	static.	Class	definitions,	for	example,	change	very	slowly	compared	to
instance	variables	within	an	object.	Python	gives	us	a	formal	distinction	between
the	instance	variables	of	an	object	and	other	methods	defined	in	the	class.
Consequently,	serialization	techniques	focus	on	persisting	the	dynamic	state	of
an	object	based	on	its	instance	variables.

We	don't	actually	have	to	do	anything	extra	to	persist	class	definitions;	we
already	have	a	very	simple	method	for	handling	classes.	Class	definitions	exist
primarily	as	source	code.	The	class	definition	in	the	volatile	memory	is	rebuilt



from	the	source	(or	the	byte-code	version	of	the	source)	every	time	it's	needed.	If
we	need	to	exchange	a	class	definition,	we	exchange	Python	modules	or
packages.

Let's	take	a	look	at	common	Python	terminology	in	the	next	section.



Common	Python	terminology
Python	serialization	terminology	tends	to	focus	on	the	words	dump	and	load.
Most	of	the	classes	we're	going	to	work	with	will	define	methods	such	as	the
following:

dump(object,	file):	This	will	dump	the	given	object	to	a	file.
dumps(object):	This	will	dump	an	object,	returning	a	string	representation.
load(file):	This	will	load	an	object	from	a	file,	returning	the	constructed
object.
loads(string):	This	will	load	an	object	from	a	string	representation,	returning
the	constructed	object.

There's	no	formal	standard;	the	method	names	aren't	guaranteed	by	any	formal
ABC	inheritance	or	mixin	class	definition.	However,	they're	widely	used.
Generally,	the	file	used	for	the	dump	or	load	can	be	any	file-like	object.

To	be	useful,	the	file-like	object	must	implement	a	short	list	of	methods.
Generally,	read()	and	readline()	are	required	for	the	load.	We	can,	therefore,	use
the	io.StringIO	objects	as	well	as	the	urllib.request	objects	as	sources	for	the	load.
Similarly,	dump	places	few	requirements	on	the	data	source,	mostly	a	write()
method	is	used.	We'll	dig	into	these	file	object	considerations	next.



Filesystem	and	network
considerations
As	the	OS	filesystem	(and	network)	works	in	bytes,	we	need	to	represent	the
values	of	an	object's	instance	variables	as	a	serialized	stream	of	bytes.	Often,
we'll	use	a	two-step	transformation	to	get	the	bytes:	firstly,	we'll	represent	the
state	of	an	object	as	a	string;	secondly,	we'll	rely	on	the	Python	str	class	to
provide	bytes	in	a	standard	encoding.	Python's	built-in	features	for	encoding	a
string	into	bytes	neatly	solves	the	second	part	of	the	problem.	This	allows	most
serialization	methods	to	focus	on	creating	strings.

When	we	look	at	our	OS	filesystems,	we	see	two	broad	classes	of	devices:
block-mode	devices	and	character-mode	devices.	Block-mode	devices	can	also
be	called	seekable	because	the	OS	supports	a	seek	operation	that	can	access	any
byte	in	the	file	in	an	arbitrary	order.	Character-mode	devices	are	not	seekable;
they	are	interfaces	where	bytes	are	transmitted	serially.	Seeking	would	involve
some	kind	of	time	travel	to	recover	past	bytes	or	see	future	bytes.

This	distinction	between	the	character	and	block	mode	can	have	an	impact	on
how	we	represent	the	state	of	a	complex	object	or	a	collection	of	objects.	The
serializations	we'll	look	at	in	this	chapter	focus	on	the	simplest	common	feature
set:	an	ordered	stream	of	bytes.	The	stream	of	bytes	can	be	written	to	either	kind
of	device.

The	formats	we'll	look	at	in	Chapter	11,	Storing	and	Retrieving	Objects	via	Shelve,
and	Chapter	12,	Storing	and	Retrieving	objects	via	SQLite,	however,	will	require
block-mode	storage	in	order	to	encode	more	objects	than	could	possibly	fit	into
memory.	The	shelve	module	and	the	SQLite	database	require	seekable	files	on
block-mode	devices.

To	an	extent,	the	OS	unifies	block-	and	character-mode	devices	into	a	single
filesystem	metaphor.	Some	parts	of	the	Python	Standard	Library	implement	the
common	feature	set	between	the	block	and	character	devices.	When	we	use
Python's	urllib.request,	we	can	access	the	network	resources	as	well	as	local	files.



When	we	open	a	local	file,	the	urllib.request.urlopen()	function	imposes	the
limited	character-mode	interface	on	an	otherwise	seekable	file	on	a	block-mode
device.	Because	the	distinction	is	invisible,	it	lets	a	single	application	work	with
network	or	local	resources.

Let's	define	classes	to	support	persistence.



Defining	classes	to	support
persistence
In	order	to	work	with	persistence,	we	need	some	objects	that	we	want	to	save.
We'll	look	at	a	simple	microblog	and	the	posts	on	that	blog.	Here's	a	class
definition	for	Post:

from	dataclasses	import	dataclass

import	datetime

@dataclass

class	Post:

				date:	datetime.datetime

				title:	str

				rst_text:	str

				tags:	List[str]

				def	as_dict(self)	->	Dict[str,	Any]:

								return	dict(

												date=str(self.date),

												title=self.title,

												underline="-"	*	len(self.title),

												rst_text=self.rst_text,

												tag_text="	".join(self.tags),

								)

The	instance	variables	are	the	attributes	of	each	microblog	post	–	a	date,	a	title,
some	text,	and	some	tags.	Our	attribute	name	provides	us	with	a	hint	that	the	text
should	be	in	reStructuredText(reST)	markup,	even	though	that's	largely
irrelevant	to	the	rest	of	the	data	model.

To	support	simple	substitution	into	templates,	the	as_dict()	method	returns	a
dictionary	of	values	that	have	been	converted	into	string	format.	We'll	look	at	the
processing	templates	using	string.Template	later.	The	type	hint	reflects	the	general
nature	of	JSON,	where	the	resulting	object	will	be	a	dictionary	with	string	keys
and	values	chosen	from	a	small	domain	of	types.	In	this	example,	all	of	the
values	are	strings,	and	Dict[str,	str]	could	also	be	used;	this	seems	overly
specific,	however,	so	Dict[str,	Any]	is	used	to	provide	future	flexibility.

In	addition	to	the	essential	data	values,	we've	added	a	few	values	to	help	with
creating	the	reST	output.	The	tag_text	attribute	is	a	flattened	text	version	of	the
tuple	of	tag	values.	The	underline	attribute	produces	an	underline	string	with	a



length	that	matches	the	title	string;	this	helps	the	reST	formatting	work	out
nicely.

We'll	also	create	a	blog	as	a	collection	of	posts.	We'll	make	this	collection	more
than	a	simple	list	by	including	an	additional	attribute	of	a	title	for	the	collection
of	posts.	We	have	three	choices	for	the	collection	design:	wrap,	extend,	or	invent
a	new	class.	We'll	head	off	some	confusion	by	providing	this	warning:	don't
extend	a	list	if	you	intend	to	make	it	persistent.

Extending	an	iterable	object	can	be	confusing
When	we	extend	a	sequence	class,	we	might	get	confused	with	some	serialization	algorithms.
This	may	wind	up	bypassing	the	extended	features	we	put	in	a	subclass	of	a	sequence.
Wrapping	a	sequence	is	usually	a	better	idea	than	extending	it.

This	encourages	us	to	look	at	wrapping	or	inventing.	Since	the	blog	posts	form	a
simple	sequence,	there	will	be	few	places	for	confusion,	and	we	can	extend	a
list.	Here's	a	collection	of	microblog	posts.	We've	built	in	a	list	to	create	the	Blog
class:

from	collections	import	defaultdict

class	Blog_x(list):

				def	__init__(self,	title:	str,	posts:	Optional[List[Post]]=None)	->	None:

								self.title	=	title

								super().__init__(posts	if	posts	is	not	None	else	[])

				def	by_tag(self)	->	DefaultDict[str,	List[Dict[str,	Any]]]:

								tag_index:	DefaultDict[str,	List[Dict[str,	Any]]]	=	defaultdict(list)

								for	post	in	self:

												for	tag	in	post.tags:

																tag_index[tag].append(post.as_dict())

								return	tag_index

				def	as_dict(self)	->	Dict[str,	Any]:

								return	dict(

												title=self.title,

												entries=[p.as_dict()	for	p	in	self]

								)

In	addition	to	extending	the	list	class,	we've	also	included	an	attribute	that	is	the
title	of	the	microblog.	The	initializer	uses	a	common	technique	to	avoid
providing	a	mutable	object	as	a	default	value.	We've	provided	None	as	the	default
value	for	posts.	If	posts	is	None,	we	use	a	freshly-minted	empty	list,	[].	Otherwise,
we	use	the	given	value	for	posts.

Additionally,	we've	defined	a	method	that	indexes	the	posts	by	their	tags.	In	the
resulting	defaultdict,	each	key	is	a	tag's	text.	Each	value	is	a	list	of	posts	that



shares	the	given	tag.

To	simplify	the	use	of	string.Template,	we've	added	another	as_dict()	method	that
boils	the	entire	blog	down	to	a	simple	dictionary	of	strings	and	dictionaries.	The
idea	here	is	to	produce	only	built-in	types	that	have	simple	string
representations.	In	this	case,	the	Dict[str,	Any]	type	hint	reflects	a	general
approach	the	return	value.	Practically,	the	tile	is	a	str,	and	the	entries	are	a
List[Dict[str,	Any]],	based	on	the	definition	of	the	Post	entries.	The	extra	details
don't	seem	to	be	completely	helpful,	so	we've	left	the	hint	as	Dict[str,	Any].

In	the	next	section,	we'll	see	how	to	render	blogs	and	posts.



Rendering	blogs	and	posts
We'll	show	you	the	template-rendering	process	next.	In	order	to	see	how	the
rendering	works,	here's	some	sample	data:

travel_x	=	Blog_x("Travel")

travel_x.append(

				Post(

								date=datetime.datetime(2013,	11,	14,	17,	25),

								title="Hard	Aground",

								rst_text="""Some	embarrassing	revelation.	Including	☹	and	⚓""",
								tags=["#RedRanger",	"#Whitby42",	"#ICW"],

				)

)

travel_x.append(

				Post(

								date=datetime.datetime(2013,	11,	18,	15,	30),

								title="Anchor	Follies",

								rst_text="""Some	witty	epigram.	Including	<	&	>	characters.""",

								tags=["#RedRanger",	"#Whitby42",	"#Mistakes"],

				)

)

We've	serialized	the	Blog	and	Post	objects	in	the	form	of	Python	code.	This	can	be
a	nice	way	to	represent	the	blog.	There	are	some	use	cases	where	Python	code	is
a	perfectly	fine	representation	for	an	object.	In	Chapter	14,	Configuration	Files
and	Persistence,	we'll	look	more	closely	at	using	Python	to	encode	data.

Here's	one	way	to	render	the	blog	into	reST;	a	similar	approach	can	be	used	to
create	Markdown	(MD).	From	this	output	file,	the	docutils	rst2html.py	tool	can
transform	the	reST	output	into	the	final	HTML	file.	This	saves	us	from	having	to
digress	into	HTML	and	CSS.	Also,	we're	going	to	use	reST	to	write	the
documentation	in	Chapter	20,	Quality	and	Documentation.	For	more	information
on	docutils,	see	Chapter	1,	Preliminaries,	Tools,	and	Techniques.

We	can	use	the	string.Template	class	to	do	this.	However,	it's	clunky	and	complex.
There	are	a	number	of	add-on	template	tools	that	can	perform	a	more
sophisticated	substitution,	including	loops	and	conditional	processing	within	the
template	itself.	You	can	find	a	list	of	alternatives	at	https://wiki.python.org/moin/Temp
lating.	We're	going	to	show	you	an	example	using	the	Jinja2	template	tool	(https:
//pypi.python.org/pypi/Jinja2).	Here's	a	script	to	render	this	data	in	reST	using	a
template:

https://wiki.python.org/moin/Templating
https://pypi.python.org/pypi/Jinja2


from	jinja2	import	Template	

blog_template=	Template(	"""	

{{title}}	

{{underline}}	

	

{%	for	e	in	entries	%}	

{{e.title}}	

{{e.underline}}	

	

{{e.rst_text}}	

	

:date:	{{e.date}}	

	

:tags:	{{e.tag_text}}	

{%	endfor	%}	

	

Tag	Index	

=========	

{%	for	t	in	tags	%}	

	

*			{{t}}	

				{%	for	post	in	tags[t]	%}	

	

				-			`{{post.title}}`_	

				{%	endfor	%}	

{%	endfor	%}	

""")	

print(blog_template.render(tags=travel.by_tag(),	**travel.as_dict()))	

The	{{title}}	and	{{underline}}	elements	(and	all	similar	elements)	show	us	how
values	are	substituted	into	the	text	of	the	template.	The	render()	method	is	called
with	**travel.as_dict()	to	ensure	that	attributes	such	as	title	and	underline	will	be
keyword	arguments.

The	{%for%}	and	{%endfor%}	constructs	show	us	how	Jinja	can	iterate	through	the
sequence	of	Post	entries	in	Blog.	Within	the	body	of	this	loop,	the	e	variable	will
be	the	dictionary	created	from	each	Post.	We've	picked	specific	keys	out	of	the
dictionary	for	each	post,	such	as	{{e.title}}	and	{{e.rst_text}}.

We	also	iterated	through	a	tags	collection	for	the	Blog.	This	is	a	dictionary	with
the	keys	of	each	tag	and	the	posts	for	the	tag.	The	loop	will	visit	each	key,
assigned	to	t.	The	body	of	the	loop	will	iterate	through	the	posts	in	the	dictionary
value,	tags[t].

The	`{{post.title}}`_	construct	uses	reST	markup	to	generate	a	link	to	the	section
that	has	that	title	within	the	document.	This	kind	of	very	simple	markup	is	one	of
the	strengths	of	reST.	It	lets	us	use	the	blog	titles	as	sections	and	links	within	the
index.	This	means	that	the	titles	must	be	unique	or	we'll	get	reST	rendering
errors.



Because	this	template	iterates	through	a	given	blog,	it	will	render	all	of	the	posts
in	one	smooth	motion.	The	string.Template,	which	is	built-in	for	Python,	can't
iterate.	This	makes	it	a	bit	more	complex	to	render	all	of	the	Posts	of	a	Blog.

Let's	see	how	to	dump	and	load	using	JSON.



Dumping	and	loading	with	JSON
What	is	JSON?	A	section	from	the	https://www.json.org/	web	page	states	the
following:

"JSON	(JavaScript	Object	Notation)	is	a	lightweight	data-interchange	format.	It	is	easy	for	humans	to	read
and	write.	It	is	easy	for	machines	to	parse	and	generate.	It	is	based	on	a	subset	of	the	JavaScript
Programming	Language,	Standard	ECMA-262	3rd	Edition	-	December	1999.	JSON	is	a	text	format	that	is
completely	language	independent	but	uses	conventions	that	are	familiar	to	programmers	of	the	C-family	of
languages,	including	C,	C++,	C#,	Java,	JavaScript,	Perl,	Python,	and	many	others.	These	properties	make
JSON	an	ideal	data-interchange	language."

This	format	is	used	by	a	broad	spectrum	of	languages	and	frameworks.
Databases	such	as	CouchDB	represent	their	data	as	JSON	objects,	simplifying
the	transmission	of	data	between	applications.	JSON	documents	have	the
advantage	of	looking	vaguely	like	Python	list	and	dict	literal	values.	They're
easy	to	read	and	easy	to	edit	manually.

The	json	module	works	with	the	built-in	Python	types.	It	does	not	work	with
classes	defined	by	us	until	we	take	some	additional	steps.	We'll	look	at	these
extension	techniques	next.	For	the	following	Python	types,	there's	a	mapping	to
JavaScript	types	that	JSON	uses:

Python	type JSON

dict object

list,	tuple array

str string

int,	float number

https://www.json.org/


True true

False false

None null

	

Other	types	are	not	supported;	this	means	an	values	of	another	type	must	be
coerced	to	one	of	these	types.	This	is	often	done	via	the	extension	functions	that
we	can	plug	into	the	dump()	and	load()	functions.	We	can	explore	these	built-in
types	by	transforming	our	microblog	objects	into	simpler	Python	lists	and	dicts.
When	we	look	at	our	Post	and	Blog	class	definitions,	we	have	already	defined	the
as_dict()	methods	that	reduce	our	custom	class	objects	to	built-in	Python	objects.

Here's	the	code	required	to	produce	a	JSON	version	of	our	blog	data:

import	json	

print(json.dumps(travel.as_dict(),	indent=4))	

Here's	the	output:

{	

				"entries":	[	

								{	

												"title":	"Hard	Aground",	

												"underline":	"------------",	

												"tag_text":	"#RedRanger	#Whitby42	#ICW",	

												"rst_text":	"Some	embarrassing	revelation.	Including	\u2639	and	\u2693",	

												"date":	"2013-11-14	17:25:00"	

								},	

								{	

												"title":	"Anchor	Follies",	

												"underline":	"--------------",	

												"tag_text":	"#RedRanger	#Whitby42	#Mistakes",	

												"rst_text":	"Some	witty	epigram.	Including	<	&	>	characters.",	

												"date":	"2013-11-18	15:30:00"	

								}	

				],	

				"title":	"Travel"	

}	

The	preceding	output	shows	us	how	each	of	the	various	objects	are	translated
from	Python	to	the	JSON	notation.	What's	elegant	about	this	is	that	our	Python
objects	have	been	written	into	a	standardized	notation.	We	can	share	them	with



other	applications.	We	can	write	them	to	disk	files	and	preserve	them.	There	are
several	unpleasant	features	of	the	JSON	representation:

We	had	to	rewrite	our	Python	objects	into	dictionaries.	It	would	be	much
nicer	to	transform	Python	objects	more	simply,	without	explicitly	creating
additional	dictionaries.
We	can't	rebuild	our	original	Blog	and	Post	objects	easily	when	we	load	this
JSON	representation.	When	we	use	json.load(),	we	won't	get	Blog	or	Post
objects;	we'll	just	get	dict	and	list	objects.	We	need	to	provide	some
additional	hints	to	rebuild	the	Blog	and	Post	objects.
There	are	some	values	in	the	object's	__dict__	that	we'd	rather	not	persist,
such	as	the	underlined	text	for	a	Post.

We	need	something	more	sophisticated	than	the	built-in	JSON	encoding.

Let's	take	a	look	at	JSON	type	hints	in	the	next	section.



JSON	type	hints
The	as_dict()	methods	in	both	the	Blog	class	and	Post	class	shown	earlier	use	a
simplistic	Dict[str,	Any]	type	hint	for	a	data	structure	that's	compatible	with	JSON
serialization.	While	the	type	hint	was	meaningful	for	those	examples,	this	isn't	an
ideal	general	description	of	the	types	used	by	JSON	serialization.

The	actual	type	that	can	be	readily	serialized	could	be	defined	like	this:

from	typing	import	Union,	Dict,	List,	Type

JSON	=	Union[Dict[str,	'JSON'],	List['JSON'],	int,	str,	float,	bool,	Type[None]]

Currently,	mypy	doesn't	handle	recursive	types	gracefully.	Therefore,	we're
forced	to	use	the	following:

JSON	=	Union[Dict[str,	Any],	List[Any],	int,	str,	float,	bool,	Type[None]]

The	classes	defined	in	this	chapter	don't	use	this	more	general	JSON	type	hint.	In
this	chapter,	we're	only	interested	in	working	with	the	Dict[str,	Any]	subset	of
JSON-compatible	Python	objects.	It	can	be	helpful	in	some	contexts	to	include
the	more	sophisticated	hint	to	be	sure	the	types	involved	are	correct.

Let's	see	how	to	support	JSON	in	our	classes.



Supporting	JSON	in	our	classes
In	order	to	properly	support	creating	strings	in	JSON	notation,	we	need	encoders
and	decoders	for	classes	outside	the	types	that	can	be	converted	automatically.
To	encode	our	unique	objects	into	JSON,	we	need	to	provide	a	function	that	will
reduce	our	objects	to	Python	primitive	types.	The	json	module	calls	this	a	default
function;	it	provides	a	default	encoding	for	an	object	of	an	unknown	class.

To	decode	strings	in	JSON	notation	and	create	Python	objects	of	an	application
class,	a	class	outside	the	baseline	types	supported	by	JSON,	we	need	to	provide
an	extra	function.	This	extra	function	will	transform	a	dictionary	of	Python
primitive	values	into	an	instance	of	the	one	of	our	application	classes.	This	is
called	the	object	hook	function;	it's	used	to	transform	dict	into	an	object	of	a
customized	class.

The	json	module	documentation	suggests	that	we	might	want	to	make	use	of
class	hinting.	The	Python	documentation	includes	a	reference	to	the	JSON-RPC
version	1	specification	(see	http://json-rpc.org/wiki/specification).	Their	suggestion
is	to	encode	an	instance	of	a	customized	class	as	a	dictionary,	like	the	following:

{"__jsonclass__":	["ClassName",	[param1,...]]}	

The	suggested	value	associated	with	the	"__jsonclass__"	key	is	a	list	of	two	items:
the	class	name,	and	a	list	of	arguments	required	to	create	an	instance	of	that
class.	The	specification	allows	for	more	features,	but	they're	not	relevant	to
Python.

To	decode	an	object	from	a	JSON	dictionary,	an	object	hook	function	can	look
for	the	"__jsonclass__"	key	as	a	hint	that	one	of	our	classes	needs	to	be	built,	not	a
built-in	Python	object.	The	class	name	can	be	mapped	to	a	class	object	and	the
argument	sequence	can	be	used	to	build	the	instance.

When	we	look	at	other	sophisticated	JSON	encoders	(such	as	the	one	that	comes
with	the	Django	Web	framework),	we	can	see	that	they	provide	a	bit	more
complex	an	encoding	of	a	custom	class.	They	include	the	class,	a	database
primary	key,	and	the	attribute	values.	We'll	look	at	how	to	implement	customized

http://json-rpc.org/wiki/specification


encoding	and	decoding.	The	rules	are	represented	as	simple	functions	that	are
plugged	into	the	JSON	encoding	and	decoding	functions.

Let's	see	how	to	customize	JSON	encoding.



Customizing	JSON	encoding
For	class	hinting,	we'll	provide	three	pieces	of	information.	We'll	include	a
__class__	key	that	names	the	target	class.	The	__args__	key	will	provide	a	sequence
of	positional	argument	values.	A	__kw__	key	will	provide	a	dictionary	of	keyword
argument	values.	(We	will	not	use	the	__jsonclass__	key;	it's	too	long	and	doesn't
seem	Pythonic.)	This	will	cover	all	the	options	of	__init__().

Here's	an	encoder	that	follows	this	design:

def	blog_encode(object:	Any)	->	Dict[str,	Any]:

				if	isinstance(object,	datetime.datetime):

								return	dict(

												__class__="datetime.datetime",

												__args__=[],

												__kw__=dict(

																year=object.year,

																month=object.month,

																day=object.day,

																hour=object.hour,

																minute=object.minute,

																second=object.second,

												),

								)

				elif	isinstance(object,	Post):

								return	dict(

												__class__="Post",

												__args__=[],

												__kw__=dict(

																date=object.date,

																title=object.title,

																rst_text=object.rst_text,

																tags=object.tags,

												),

								)

				elif	isinstance(object,	Blog):

								return	dict(

												__class__="Blog",	__args__=[object.title,	object.entries],	__kw__={}

								)

				else:

								return	object

This	function	shows	us	two	different	flavors	of	object	encodings	for	the	three
classes:

We	encoded	a	datetime.datetime	object	as	a	dictionary	of	individual	fields
using	keyword	arguments.
We	encoded	a	Post	instance	as	a	dictionary	of	individual	fields,	also	using
keyword	arguments.



We	encoded	a	Blog	instance	as	a	sequence	of	title	and	post	entries	using	a
sequence	of	positional	arguments.

The	else:	clause	is	used	for	all	other	classes:	this	invokes	the	existing	encoder's
default	encoding.	This	will	handle	the	built-in	classes.	We	can	use	this	function
to	encode	as	follows:

text	=	json.dumps(travel,	indent=4,	default=blog_encode)	

We	provided	our	function,	blog_encode(),	as	the	default=	keyword	parameter	to	the
json.dumps()	function.	This	function	is	used	by	the	JSON	encoder	to	determine	the
encoding	for	an	object.	This	encoder	leads	to	JSON	objects	that	look	like	the
following:

{	

				"__args__":	[	

								"Travel",	

								[	

												{	

																"__args__":	[],	

																"__kw__":	{	

																				"tags":	[	

																								"#RedRanger",	

																								"#Whitby42",	

																								"#ICW"	

																				],	

																				"rst_text":	"Some	embarrassing	revelation.	Including	\u2639	and	\u2693\ufe0e",	

																				"date":	{	

																								"__args__":	[],	

																								"__kw__":	{	

																												"minute":	25,	

																												"hour":	17,	

																												"day":	14,	

																												"month":	11,	

																												"year":	2013,	

																												"second":	0	

																								},	

																								"__class__":	"datetime.datetime"	

																				},	

																				"title":	"Hard	Aground"	

																},	

																"__class__":	"Post"	

												},	

.	

.	

.	

				"__kw__":	{},	

				"__class__":	"Blog"	

}	

We've	taken	out	the	second	blog	entry	because	the	output	was	rather	long.	A	Blog
object	is	now	wrapped	with	a	dict	that	provides	the	class	and	two	positional
argument	values.	The	Post	and	datetime	objects,	similarly,	are	wrapped	with	the



class	name	and	the	keyword	argument	values.

Let's	see	how	to	customize	JSON	decoding.



Customizing	JSON	decoding
In	order	to	decode	objects	from	a	string	in	JSON	notation,	we	need	to	work
within	the	structure	of	a	JSON	parsing.	Objects	of	our	customized	class
definitions	were	encoded	as	simple	dicts.	This	means	that	each	dict	decoded	by
the	JSON	decoder	could	be	one	of	our	customized	classes.	Or,	what	is	serialized
as	a	dict	should	be	left	as	a	dict.

The	JSON	decoder	object	hook	is	a	function	that's	invoked	for	each	dict	to	see
whether	it	represents	a	customized	object.	If	dict	isn't	recognized	by	the	hook
function,	it's	an	ordinary	dictionary	and	should	be	returned	without	modification.
Here's	our	object	hook	function:

def	blog_decode(some_dict:	Dict[str,	Any])	->	Dict[str,	Any]:

				if	set(some_dict.keys())	==	{"__class__",	"__args__",	"__kw__"}:

								class_	=	eval(some_dict["__class__"])

								return	class_(*some_dict["__args__"],	**some_dict["__kw__"])

				else:

								return	some_dict

Each	time	this	function	is	invoked,	it	checks	for	the	keys	that	define	an	encoding
of	our	objects.	If	the	three	keys	are	present,	the	given	function	is	called	with	the
arguments	and	keywords.	We	can	use	this	object	hook	to	parse	a	JSON	object,	as
follows:

blog_data	=	json.loads(text,	object_hook=blog_decode)	

This	will	decode	a	block	of	text,	encoded	in	a	JSON	notation,	using	our
blog_decode()	function	to	transform	dict	into	proper	Blog	and	Post	objects.

In	the	next	section,	we'll	take	a	look	at	security	and	the	eval()	issue.



Security	and	the	eval()	issue
Some	programmers	will	object	to	the	use	of	the	eval()	function	in	our
preceding	blog_decode()	function,	claiming	that	it	is	a	pervasive	security	problem.
What's	silly	is	the	claim	that	eval()	is	a	pervasive	problem.	It's	a	potential
security	problem	if	malicious	code	is	written	into	the	JSON	representation	of	an
object	by	some	malicious	actor.	A	local	malicious	actor	has	access	to	the	Python
source.	Why	waste	their	time	on	subtly	tweaking	JSON	files?	Why	not	just	edit
the	Python	source?

As	a	practical	issue,	we	have	to	look	at	the	transmission	of	the	JSON	documents
through	the	internet;	this	is	an	actual	security	problem.	However,	even	this
problem	does	not	indict	eval()	in	general.

Some	provisions	can	be	made	for	a	situation	where	an	untrustworthy	document
has	been	tweaked	by	a	Man-in-the-Middle	(MITM)	attack.	Assume	a	JSON
document	is	doctored	while	passing	through	a	web	interface	that	includes	an
untrustworthy	server	acting	as	a	proxy.	(SSL	is	the	preferred	method	to	prevent
this	problem,	so	we	have	to	assume	parts	of	the	connection	are	also	unsecured.)

If	necessary,	to	cope	with	possible	MITM	attacks,	we	can	replace	eval()	with	a
dictionary	that	maps	from	name	to	class.	We	can	change	the	class_
=eval(some_dict['__class__'])	expression	to	the	following:

class_	=	{

				"Post":	Post,	

				"Blog":	Blog,	

				"datetime.datetime":	datetime.datetime

}[some_dict['__class__']]	

This	will	prevent	problems	in	the	event	that	a	JSON	document	is	passed	through
a	non-SSL-encoded	connection.	It	also	leads	to	a	maintenance	requirement	to
tweak	this	mapping	each	time	the	application	design	changes	to	introduce	new
classes.

Let's	see	how	to	refactor	the	encode	function	in	the	next	section.



Refactoring	the	encode	function
The	encoding	function	shouldn't	expose	information	on	the	classes	being
converted	into	JSON.	To	keep	each	class	properly	encapsulated,	it	seems	better
to	refactor	the	creation	of	a	serialized	representation	into	each	application	class.
We'd	rather	not	pile	all	of	the	encoding	rules	into	a	function	outside	the	class
definitions.

To	do	this	with	library	classes,	such	as	datetime,	we	would	need	to	extend
datetime.datetime	for	our	application.	This	leads	to	making	our	application	use	the
extended	datetime	instead	of	the	datetime	library.	This	can	become	a	bit	of	a
headache	to	avoid	using	the	built-in	datetime	classes.	Consequently,	we	may	elect
to	strike	a	balance	between	our	customized	classes	and	library	classes.	Here	are
two	class	extensions	that	will	create	JSON-encodable	class	definitions.	We	can
add	a	property	to	Blog:

				@property	

				def	_json(	self	)	->	Dict[str,	Any]:	

								return	dict(

												__class__=self.__class__.__name__,	

												__kw__={},	

												__args__=[self.title,	self.entries]	

								)	

This	property	will	provide	initialization	arguments	that	are	usable	by	our
decoding	function.	We	can	add	this	property	to	Post:

				@property	

				def	_json(self)	->	Dict[str,	Any]:	

								return	dict(	

												__class__=self.__class__.__name__,	

												__kw__=dict(	

																date=	self.date,	

																title=	self.title,	

																rst_text=	self.rst_text,	

																tags=	self.tags,	

												),	

												__args__=[]	

								)	

As	with	Blog,	this	property	will	provide	initialization	arguments	that	are	usable	by
our	decoding	function.	The	type	hint	emphasizes	the	intermediate,	JSON-
friendly	representation	of	Python	objects	as	Dict[str,	Any].	



These	two	properties	let	us	modify	the	encoder	to	make	it	somewhat	simpler.
Here's	a	revised	version	of	the	default	function	provided	for	encoding:

def	blog_encode_2(object:	Union[Blog,	Post,	Any)	->	Dict[str,	Any]:	

				if	isinstance(object,	datetime.datetime):	

								return	dict(	

												__class__="datetime.datetime",	

												__args__=[],	

												__kw__=dict(	

																year=	object.year,	

																month=	object.month,	

																day=	object.day,	

																hour=	object.hour,	

																minute=	object.minute,	

																second=	object.second,	

												)	

								)	

				else:	

								try:	

												encoding	=	object._json

								except	AttributeError:	

												encoding	=	json.JSONEncoder().default(o)	

								return	encoding	

There	are	two	kinds	of	cases	here.	For	a	datetime.datetime	library	class,	this
function	includes	the	serialization,	exposing	details	of	the	implementation.	For
our	Blog	and	Post	application	classes,	we	can	rely	on	these	classes	having	a
consistent	_json()	method	that	emits	a	representation	suitable	for	encoding.

Let's	see	how	to	standardize	a	date	string	in	the	next	section.



Standardizing	the	date	string
Our	formatting	of	dates	doesn't	make	use	of	the	widely-used	ISO	standard	text
format.	To	be	more	compatible	with	other	languages,	we	should	properly	encode
the	datetime	object	in	a	standard	string	and	parse	a	standard	string.

As	we're	already	treating	dates	as	a	special	case,	this	seems	to	be	a	sensible
implementation.	It	can	be	done	without	too	much	change	to	our	encoding	and
decoding.	Consider	this	small	change	to	the	encoding:

				if	isinstance(object,	datetime.datetime):	

								fmt=	"%Y-%m-%dT%H:%M:%S"	

								return	dict(	

												__class__="datetime.datetime.strptime",	

												__args__=[object.strftime(fmt),	fmt],	

												__kw__={}	

								)	

The	encoded	output	names	the	static	method	datetime.datetime.strptime()	and
provides	the	argument-encoded	datetime	as	well	as	the	format	to	be	used	to
decode	it.	The	output	for	a	post	now	looks	like	the	following	snippet:

												{	

																"__args__":	[],	

																"__class__":	"Post_J",	

																"__kw__":	{	

																				"title":	"Anchor	Follies",	

																				"tags":	[	

																								"#RedRanger",	

																								"#Whitby42",	

																								"#Mistakes"	

																				],	

																				"rst_text":	"Some	witty	epigram.",	

																				"date":	{	

																								"__args__":	[	

																												"2013-11-18T15:30:00",	

																												"%Y-%m-%dT%H:%M:%S"	

																								],	

																								"__class__":	"datetime.datetime.strptime",	

																								"__kw__":	{}	

																				}	

																}	

												}	

This	shows	us	that	we	now	have	an	ISO-formatted	date	instead	of	individual
fields.	We've	also	moved	away	from	the	object	creation	using	a	class	name.	The
__class__	value	is	expanded	to	be	a	class	name	or	a	static	method	name.



Writing	JSON	to	a	file
When	we	write	JSON	files,	we	generally	do	something	like	this:

from	pathlib	import	Path

with	Path("temp.json").open("w",	encoding="UTF-8")	as	target:	

				json.dump(travel3,	target,	default=blog_j2_encode)

We	open	the	file	with	the	required	encoding.	We	provide	the	file	object	to	the
json.dump()	method.	When	we	read	JSON	files,	we	will	use	a	similar	technique:

from	pathlib	import	Path

with	Path("some_source.json").open(encoding="UTF-8")	as	source:

					objects	=	json.load(source,	object_hook=blog_decode)

The	idea	is	to	segregate	the	JSON	representation	as	text	from	any	conversion	to
bytes	on	the	resulting	file.	There	are	a	few	formatting	options	that	are	available
in	JSON.	We've	shown	you	an	indent	of	four	spaces	because	that	seems	to
produce	nice-looking	JSON.	As	an	alternative,	we	can	make	the	output	more
compact	by	leaving	the	indent	option.	We	can	compact	it	even	further	by	making
the	separators	more	terse.

The	following	is	the	output	created	in	temp.json:

{"__class__":"Blog_J","__args__":["Travel",[{"__class__":"Post_J","__args__":[],"__kw__":{"rst_text":"Some	embarrassing	revelation.","tags":["#RedRanger","#Whitby42","#ICW"],"title":"Hard	Aground","date":{"__class__":"datetime.datetime.strptime","__args__":["2013-11-14T17:25:00","%Y-%m-%dT%H:%M:%S"],"__kw__":{}}}},{"__class__":"Post_J","__args__":[],"__kw__":{"rst_text":"Some	witty	epigram.","tags":["#RedRanger","#Whitby42","#Mistakes"],"title":"Anchor	Follies","date":{"__class__":"datetime.datetime.strptime","__args__":["2013-11-18T15:30:00","%Y-%m-%dT%H:%M:%S"],"__kw__":{}}}}]],"__kw__":{}}	

Let's	see	how	to	dump	and	load	using	YAML.



Dumping	and	loading	with	YAML
The	https://yaml.org/	web	page	states	the	following	about	YAML:

YAML™	(rhymes	with	"camel")	is	a	human-friendly,	cross-language,	Unicode-based	data	serialization
language	designed	around	the	common	native	data	types	of	agile	programming	languages.

The	Python	Standard	Library	documentation	for	the	json	module	explains	the
following	about	JSON	and	YAML:

JSON	is	a	subset	of	YAML	1.2.	The	JSON	produced	by	this	module's	default	settings	(in	particular,	the
default	separators	value)	is	also	a	subset	of	YAML	1.0	and	1.1.	This	module	can	thus	also	be	used	as	a
YAML	serializer.

Technically,	then,	we	can	prepare	YAML	data	using	the	json	module.	However,
the	json	module	cannot	be	used	to	de-serialize	more	sophisticated	YAML	data.
There	are	two	benefits	to	using	YAML.	First,	it's	a	more	sophisticated	notation,
allowing	us	to	encode	additional	details	about	our	objects.	Second,	the	PyYAML
implementation	has	a	deep	level	of	integration	with	Python	that	allows	us	to	very
simply	create	YAML	encodings	of	Python	objects.	The	drawback	of	YAML	is
that	it	is	not	as	widely	used	as	JSON.	We'll	need	to	download	and	install	a
YAML	module.	A	good	one	can	be	found	at	http://pyyaml.org/wiki/PyYAML.

Once	we've	installed	the	package,	we	can	dump	our	objects	into	the	YAML
notation:

import	yaml	

text	=	yaml.dump(travel2)	

print(text)	

Here's	what	the	YAML	encoding	for	our	microblog	looks	like:

!!python/object:__main__.Blog	

entries:	

-	!!python/object:__main__.Post	

		date:	2013-11-14	17:25:00	

		rst_text:	Some	embarrassing	revelation.	Including	☹	and	⚓	
		tags:	!!python/tuple	['#RedRanger',	'#Whitby42',	'#ICW']	

		title:	Hard	Aground	

-	!!python/object:__main__.Post	

		date:	2013-11-18	15:30:00	

		rst_text:	Some	witty	epigram.	Including	<	&	>	characters.	

		tags:	!!python/tuple	['#RedRanger',	'#Whitby42',	'#Mistakes']	

		title:	Anchor	Follies	

https://yaml.org/
http://pyyaml.org/wiki/PyYAML


The	output	is	relatively	terse	but	also	delightfully	complete.	Also,	we	can	easily
edit	the	YAML	file	to	make	updates.	The	class	names	are	encoded	with	a	YAML
!!	tag.	YAML	contains	11	standard	tags.	The	yaml	module	includes	a	dozen
Python-specific	tags,	plus	five	complex	Python	tags.

The	Python	class	names	are	qualified	by	the	defining	module.	In	our	case,	the
module	happened	to	be	a	simple	script,	so	the	class	names	are	__main__.Blog	and
__main__.Post.	If	we	had	imported	these	from	another	module,	the	class	names
would	reflect	the	module	that	defined	the	classes.

Items	in	a	list	are	shown	in	a	block	sequence	form.	Each	item	starts	with	a	-
sequence;	the	rest	of	the	items	are	indented	with	two	spaces.	When	list	or	tuple	is
small	enough,	it	can	flow	onto	a	single	line.	If	it	gets	longer,	it	will	wrap	onto
multiple	lines.	To	load	Python	objects	from	a	YAML	document,	we	can	use	the
following	code:

copy	=	yaml.load(text)	

This	will	use	the	tag	information	to	locate	the	class	definitions	and	provide	the
values	found	in	the	YAML	document	to	the	constructor	class.	Our	microblog
objects	will	be	fully	reconstructed.

In	the	next	chapter,	we'll	format	YAML	data	on	a	file.



Formatting	YAML	data	on	a	file
When	we	write	YAML	files,	we	generally	do	something	like	this:

from	pathlib	import	Path

import	yaml

with	Path("some_destination.yaml").open("w",	encoding="UTF-8")	as	target:	

				yaml.dump(some_collection,	target)	

We	open	the	file	with	the	required	encoding.	We	provide	the	file	object	to	the
yaml.dump()	method;	the	output	is	written	there.	When	we	read	YAML	files,	we
will	use	a	similar	technique:

from	pathlib	import	Path

import	yaml

with	Path("some_source.yaml").open(encoding="UTF-8")	as	source:

					objects=	yaml.load(source)

The	idea	is	to	segregate	the	YAML	representation	as	text	from	any	conversion	to
bytes	on	the	resulting	file.	We	have	several	formatting	options	to	create	a	prettier
YAML	representation	of	our	data.	Some	of	the	options	are	shown	in	the
following	table:

explicit_start If	true,	writes	a	---	marker	before	each	object.

explicit_end

If	true,	writes	a	...	marker	after	each	object.	We	might	use
this	or	explicit_start	if	we're	dumping	a	sequence	of	YAML
documents	into	a	single	file	and	need	to	know	when	one	ends
and	the	next	begins.

version
Given	a	pair	of	integers	(x,	y),	writes	a	%YAML	x.y	directive	at
the	beginning.	This	should	be	version=(1,2).

tags

Given	a	mapping,	it	emits	a	YAML	%TAG	directive	with



different	tag	abbreviations.

canonical
If	true,	includes	a	tag	on	every	piece	of	data.	If	false,	a	number
of	tags	are	assumed.

indent If	set	to	a	number,	changes	the	indentation	used	for	blocks.

width
If	set	to	a	number,	changes	the	width	at	which	long	items	are
wrapped	to	multiple,	indented	lines.

allow_unicode

If	set	to	true,	permits	full	Unicode	without	escapes.
Otherwise,	characters	outside	the	ASCII	subset	will	have
escapes	applied.

line_break
Uses	a	different	line-ending	character;	the	default	is	a
newline.

	

Of	these	options,	explicit_end	and	allow_unicode	are	perhaps	the	most	useful.



Extending	the	YAML	representation
Sometimes,	one	of	our	classes	has	a	tidy	representation	that	is	nicer	than	the
default	YAML	dump	of	attribute	values.	For	example,	the	default	YAML	for	our
Blackjack	Card	class	definitions	will	include	several	derived	values	that	we	don't
really	need	to	preserve.

The	yaml	module	includes	a	provision	for	adding	a	representer	and	constructor	to	a
class	definition.	The	representer	is	used	to	create	a	YAML	representation,
including	a	tag	and	value.	The	constructor	is	used	to	build	a	Python	object	from
the	given	value.	Here's	yet	another	Card	class	hierarchy:

from	enum	import	Enum

class	Suit(str,	Enum):

				Clubs	=	"♣"

				Diamonds	=	"♦"

				Hearts	=	"♥"

				Spades	=	"♠"

class	Card:

				def	__init__(self,	rank:	str,	suit:	Suit,	

								hard:	Optional[int]=None,	

								soft:	Optional[int]=None

				)	->	None:

								self.rank	=	rank

								self.suit	=	suit

								self.hard	=	hard	or	int(rank)

								self.soft	=	soft	or	int(rank)

				def	__str__(self)	->	str:

								return	f"{self.rank!s}{self.suit.value!s}"

class	AceCard(Card):

				def	__init__(self,	rank:	str,	suit:	Suit)	->	None:

								super().__init__(rank,	suit,	1,	11)

class	FaceCard(Card):

				def	__init__(self,	rank:	str,	suit:	Suit)	->	None:

								super().__init__(rank,	suit,	10,	10)

We've	used	the	superclass,	Card,	for	number	cards	and	defined	two	subclasses,
AceCard	and	FaceCard,	for	aces	and	face	cards.	In	previous	examples,	we	made
extensive	use	of	a	factory	function	to	simplify	the	construction.	The	factory
handled	mapping	from	a	rank	of	1	to	a	class	of	AceCard,	and	from	ranks	of	11,	12,



and	13	to	a	class	of	FaceCard.	This	was	essential	so	that	we	could	easily	build	a
deck	using	a	simple	range(1,14)	for	the	rank	values.

When	loading	from	YAML,	the	class	will	be	fully	spelled	out	via	the	YAML	!!
tags.	The	only	missing	information	would	be	the	hard	and	soft	values	associated
with	each	subclass	of	the	card.	The	hard	and	soft	points	have	three	relatively
simple	cases	that	can	be	handled	through	optional	initialization	parameters.
Here's	how	it	looks	when	we	dump	these	objects	into	the	YAML	format	using
default	serialization:

-	!!python/object:Chapter_10.ch10_ex2.AceCard

		hard:	1

		rank:	A

		soft:	11

		suit:	!!python/object/apply:Chapter_10.ch10_ex2.Suit

		-	♣

-	!!python/object:Chapter_10.ch10_ex2.Card

		hard:	2

		rank:	'2'

		soft:	2

		suit:	!!python/object/apply:Chapter_10.ch10_ex2.Suit

		-	♥

-	!!python/object:Chapter_10.ch10_ex2.FaceCard

		hard:	10

		rank:	K

		soft:	10

		suit:	!!python/object/apply:Chapter_10.ch10_ex2.Suit

		-	♦

These	are	correct,	but	perhaps	a	bit	wordy	for	something	as	simple	as	a	playing
card.	We	can	extend	the	yaml	module	to	produce	smaller	and	more	focused	output
for	these	simple	objects.	Let's	define	representer	and	constructor	for	our	Card
subclasses.	Here	are	the	three	functions	and	registrations:

def	card_representer(dumper:	Any,	card:	Card)	->	str:

				return	dumper.represent_scalar(

								"!Card",	f"{card.rank!s}{card.suit.value!s}")

def	acecard_representer(dumper:	Any,	card:	Card)	->	str:

				return	dumper.represent_scalar(

								"!AceCard",	f"{card.rank!s}{card.suit.value!s}")

def	facecard_representer(dumper:	Any,	card:	Card)	->	str:

				return	dumper.represent_scalar(

								"!FaceCard",	f"{card.rank!s}{card.suit.value!s}")

yaml.add_representer(Card,	card_representer)

yaml.add_representer(AceCard,	acecard_representer)

yaml.add_representer(FaceCard,	facecard_representer)



We've	represented	each	Card	instance	as	a	short	string.	YAML	includes	a	tag	to
show	which	class	should	be	built	from	the	string.	All	three	classes	use	the	same
format	string.	This	happens	to	match	the	__str__()	method,	leading	to	a	potential
optimization.

The	other	problem	we	need	to	solve	is	constructing	Card	instances	from	the
parsed	YAML	document.	For	that,	we	need	constructors.	Here	are	three
constructors	and	the	registrations:

def	card_constructor(loader:	Any,	node:	Any)	->	Card:

				value	=	loader.construct_scalar(node)

				rank,	suit	=	value[:-1],	value[-1]

				return	Card(rank,	suit)

def	acecard_constructor(loader:	Any,	node:	Any)	->	Card:

				value	=	loader.construct_scalar(node)

				rank,	suit	=	value[:-1],	value[-1]

				return	AceCard(rank,	suit)

def	facecard_constructor(loader:	Any,	node:	Any)	->	Card:

				value	=	loader.construct_scalar(node)

				rank,	suit	=	value[:-1],	value[-1]

				return	FaceCard(rank,	suit)

yaml.add_constructor("!Card",	card_constructor)

yaml.add_constructor("!AceCard",	acecard_constructor)

yaml.add_constructor("!FaceCard",	facecard_constructor)

As	a	scalar	value	is	parsed,	the	tag	will	be	used	to	locate	a	specific	constructor.
The	constructor	can	then	decompose	the	string	and	build	the	proper	subclass	of	a
Card	instance.	Here's	a	quick	demo	that	dumps	one	card	of	each	class:

deck	=	[AceCard("A",	Suit.Clubs),	Card("2",	Suit.Hearts),	FaceCard("K",	Suit.Diamonds)]

text	=	yaml.dump(deck,	allow_unicode=True)

The	following	is	the	output:

-	!AceCard	'A♣'

-	!Card	'2♥'

-	!FaceCard	'K♦'

This	gives	us	short,	elegant	YAML	representations	of	cards	that	can	be	used	to
reconstruct	Python	objects.

We	can	rebuild	our	three-card	deck	using	the	following	statement:

yaml.load(text,	Loader=yaml.Loader)



This	will	parse	the	representation,	use	the	constructor	functions,	and	build	the
expected	objects.	Because	the	constructor	function	ensures	that	proper
initialization	gets	done,	the	internal	attributes	for	the	hard	and	soft	values	are
properly	rebuilt.

It's	essential	to	use	a	specific	Loader	when	adding	new	constructors	to	the	yaml
module.	The	default	behavior	is	to	ignore	these	additional	constructor	tags.	When
we	want	to	use	them,	we	need	to	provide	a	Loader	that	will	handle	extension	tags.

Let's	take	a	look	at	security	and	safe	loading	in	the	next	section.



Security	and	safe	loading
In	principle,	YAML	can	build	objects	of	any	type.	This	allows	an	attack	on	an
application	that	transmits	YAML	files	over	the	internet	without	proper	SSL
controls	in	place.

The	YAML	module	offers	a	safe_load()	method	that	refuses	to	execute	arbitrary
Python	code	as	part	of	building	an	object.	This	severely	limits	what	can	be
loaded.	For	insecure	data	exchanges,	we	can	use	yaml.safe_load()	to	create	Python
dict	and	list	objects	that	contain	only	built-in	types.	We	can	then	build	our
application	classes	from	the	dict	and	list	instances.	This	is	vaguely	similar	to	the
way	we	use	JSON	or	CSV	to	exchange	dict	that	must	be	used	to	create	a	proper
object.

A	better	approach	is	to	use	the	yaml.YAMLObject	mixin	class	for	our	own	objects.	We
use	this	to	set	some	class-level	attributes	that	provide	hints	to	yaml	and	ensure	the
safe	construction	of	objects.

Here's	how	we	define	a	superclass	for	safe	transmission:

class	Card2(yaml.YAMLObject):	

				yaml_tag	=	'!Card2'	

				yaml_loader	=	yaml.SafeLoader	

The	two	attributes	will	alert	yaml	that	these	objects	can	be	safely	loaded	without
executing	arbitrary	and	unexpected	Python	code.	Each	subclass	of	Card2	only	has
to	set	the	unique	YAML	tag	that	will	be	used:

class	AceCard2(Card2):	

				yaml_tag	=	'!AceCard2'	

We've	added	an	attribute	that	alerts	yaml	that	these	objects	use	only	this	class
definition.	The	objects	can	be	safely	loaded;	they	don't	execute	arbitrary
untrustworthy	code.

With	these	modifications	to	the	class	definitions,	we	can	now	use	yaml.safe_load()
on	the	YAML	stream	without	worrying	about	the	document	having	malicious
code	inserted	over	an	unsecured	internet	connection.	The	explicit	use	of	the



yaml.YAMLObject	mixin	class	for	our	own	objects	coupled	with	setting	the	yaml_tag
attribute	has	several	advantages.	It	leads	to	slightly	more	compact	files.	It	also
leads	to	a	better-looking	YAML	files—the	long,	generic
!!python/object:Chapter_10.ch10_ex2.AceCard	tags	are	replaced	with	shorter	!AceCard2
tags.

Let's	see	how	to	dump	and	load	using	pickle.



Dumping	and	loading	with	pickle
The	pickle	module	is	Python's	native	format	to	make	objects	persistent.	The
Python	Standard	Library	(https://docs.python.org/3/library/pickle.html)	says	this
about	pickle:

The	pickle	module	can	transform	a	complex	object	into	a	byte	stream	and	it	can	transform	the	byte	stream
into	an	object	with	the	same	internal	structure.	Perhaps	the	most	obvious	thing	to	do	with	these	byte
streams	is	to	write	them	onto	a	file,	but	it	is	also	conceivable	to	send	them	across	a	network	or	store	them	in
a	database.

The	focus	of	pickle	is	Python,	and	only	Python.	This	is	not	a	data-interchange
format,	such	as	JSON,	YAML,	CSV,	or	XML,	that	can	be	used	with	applications
written	in	other	languages.

The	pickle	module	is	tightly	integrated	with	Python	in	a	variety	of	ways.	For
example,	the	__reduce__()	and	__reduce_ex__()	methods	of	a	class	exist	to	support	the
pickle	processing.

We	can	easily	pickle	our	microblog	in	the	following	manner:

import	pickle

from	pathlib	import	Path

with	Path("travel_blog.p").open("wb")	as	target:	

				pickle.dump(travel,	target)	

This	exports	the	entire	travel	object	to	the	given	file.	The	file	is	written	as	raw
bytes,	so	the	open()	function	uses	the	"wb"	mode.

We	can	easily	recover	a	picked	object	in	the	following	manner:

import	pickle

from	pathlib	import	Path

with	Path("travel_blog.p").open("rb")	as	source:	

				copy	=	pickle.load(source)	

As	pickled	data	is	written	as	bytes,	the	file	must	be	opened	in	the	"rb"	mode.	The
pickled	objects	will	be	correctly	bound	to	the	proper	class	definitions.	The
underlying	stream	of	bytes	is	not	intended	for	human	consumption.	It	is	readable
after	a	fashion,	but	it	is	not	designed	for	readability	as	YAML	is.

https://docs.python.org/3/library/pickle.html


We'll	design	a	class	for	reliable	pickle	processing	in	the	next	section.



Designing	a	class	for	reliable	pickle
processing
The	__init__()	method	of	a	class	is	not	actually	used	to	unpickle	an	object.	The
__init__()	method	is	bypassed	by	using	__new__()	and	setting	the	pickled	values
into	the	object's	__dict__	directly.	This	distinction	matters	when	our	class
definition	includes	some	processing	in	__init__().	For	example,	if	__init__()	opens
external	files,	creates	some	part	of	a	GUI,	or	performs	some	external	update	to	a
database,	then	this	will	not	be	performed	during	unpickling.

If	we	compute	a	new	instance	variable	during	the	__init__()	processing,	there	is
no	real	problem.	For	example,	consider	a	Blackjack	Hand	object	that	computes	the
total	of	the	Card	instances	when	the	Hand	is	created.	The	ordinary	pickle	processing
will	preserve	this	computed	instance	variable.	It	won't	be	recomputed	when	the
object	is	unpickled.	The	previously	computed	value	will	simply	be	unpickled.

A	class	that	relies	on	processing	during	__init__()	has	to	make	special
arrangements	to	be	sure	that	this	initial	processing	will	happen	properly.	There
are	two	things	we	can	do:

Avoid	eager	startup	processing	in	__init__().	Instead,	do	only	the	minimal
initialization	processing.	For	example,	if	there	are	external	file	operations,
these	should	be	deferred	until	required.	If	there	are	any	eager
summarization	computations,	they	must	be	redesigned	to	be	done	lazily.
Similarly,	any	initialization	logging	will	not	be	executed	properly.
Define	the	__getstate__()	and	__setstate__()	methods	that	can	be	used	by	pickle
to	preserve	the	state	and	restore	the	state.	The	__setstate__()	method	can	then
invoke	the	same	method	that	__init__()	invokes	to	perform	a	one-time
initialization	processing	in	ordinary	Python	code.

We'll	look	at	an	example	where	the	initial	Card	instances	loaded	into	a	Hand	are
logged	for	audit	purposes	by	the	__init__()	method.	Here's	a	version	of	Hand	that
doesn't	work	properly	when	unpickling:

audit_log	=	logging.getLogger("audit")



class	Hand_bad:

				def	__init__(self,	dealer_card:	Card,	*cards:	Card)	->	None:

								self.dealer_card	=	dealer_card

								self.cards	=	list(cards)

								for	c	in	self.cards:

												audit_log.info("Initial	%s",	c)

				def	append(self,	card:	Card)	->	None:

								self.cards.append(card)

								audit_log.info("Hit	%s",	card)

				def	__str__(self)	->	str:

								cards	=	",	".join(map(str,	self.cards))

								return	f"{self.dealer_card}	|	{cards}"

This	has	two	logging	locations:	during	__init__()	and	append().	The	__init__()
processing	works	nicely	for	most	cases	of	creating	a	Hand_bad	object.	It	doesn't
work	when	unpickling	to	recreate	a	Hand_bad	object.	Here's	the	logging	setup	to
see	this	problem:

import	logging,sys	

audit_log	=	logging.getLogger("audit")	

logging.basicConfig(stream=sys.stderr,	level=logging.INFO)	

This	setup	creates	the	log	and	ensures	that	the	logging	level	is	appropriate	for
seeing	the	audit	information.	Here's	a	quick	script	that	builds,	pickles,	and
unpickles	Hand:

>>>	h	=	Hand_bad(FaceCard("K",	"♦"),	AceCard("A",	"♣"),	Card("9",	"♥"))

INFO:audit:Initial	A♣

INFO:audit:Initial	9♥

>>>	data	=	pickle.dumps(h)

>>>	h2	=	pickle.loads(data)	

When	we	execute	this,	we	see	that	the	log	entries	written	during	__init__()
processing.	These	entries	are	not	written	when	unpickling	Hand.	Any	other
__init__()	processing	would	also	be	skipped.

In	order	to	properly	write	an	audit	log	for	unpickling,	we	could	put	lazy	logging
tests	throughout	this	class.	For	example,	we	could	extend	__getattribute__()	to
write	the	initial	log	entries	whenever	any	attribute	is	requested	from	this	class.
This	leads	to	stateful	logging	and	an	if	statement	that	is	executed	every	time	a
hand	object	does	something.	A	better	solution	is	to	tap	into	the	way	state	is	saved
and	recovered	by	pickle.

class	Hand2:

				def	__init__(self,	dealer_card:	Card,	*cards:	Card)	->	None:



								self.dealer_card	=	dealer_card

								self.cards	=	list(cards)

								for	c	in	self.cards:

												audit_log.info("Initial	%s",	c)

				def	append(self,	card:	Card)	->	None:

								self.cards.append(card)

								audit_log.info("Hit	%s",	card)

				def	__str__(self)	->	str:

								cards	=	",	".join(map(str,	self.cards))

								return	f"{self.dealer_card}	|	{cards}"

				def	__getstate__(self)	->	Dict[str,	Any]:

								return	vars(self)

				def	__setstate__(self,	state:	Dict[str,	Any])	->	None:

								#	Not	very	secure	--	hard	for	mypy	to	detect	what's	going	on.

								self.__dict__.update(state)

								for	c	in	self.cards:

												audit_log.info("Initial	(unpickle)	%s",	c)

The	__getstate__()	method	is	used	while	picking	to	gather	the	current	state	of	the
object.	This	method	can	return	anything.	In	the	case	of	objects	that	have	internal
memoization	caches,	for	example,	the	cache	might	not	be	pickled	in	order	to
save	time	and	space.	This	implementation	uses	the	internal	__dict__	without	any
modification.

The	__setstate__()	method	is	used	while	unpickling	to	reset	the	value	of	the
object.	This	version	merges	the	state	into	the	internal	__dict__	and	then	writes	the
appropriate	logging	entries.

In	the	next	section,	we'll	take	a	look	at	security	and	the	global	issue.



Security	and	the	global	issue
During	unpickling,	a	global	name	in	the	pickle	stream	can	lead	to	the	evaluation
of	arbitrary	code.	Generally,	the	global	names	inserted	into	the	bytes	are	class
names	or	a	function	name.	However,	it's	possible	to	include	a	global	name	that	is
a	function	in	a	module	such	as	os	or	subprocess.	This	allows	an	attack	on	an
application	that	attempts	to	transmit	pickled	objects	through	the	internet	without
strong	SSL	controls	in	place.	In	order	to	prevent	the	execution	of	arbitrary	code,
we	must	extend	the	pickle.Unpickler	class.	We'll	override	the	find_class()	method	to
replace	it	with	something	more	secure.	We	have	to	account	for	several
unpickling	issues,	such	as	the	following:

We	have	to	prevent	the	use	of	the	built-in	exec()	and	eval()	functions.
We	have	to	prevent	the	use	of	modules	and	packages	that	might	be
considered	unsafe.	For	example,	sys	and	os	should	be	prohibited.
We	have	to	permit	the	use	of	our	application	modules.

Here's	an	example	that	imposes	some	restrictions:

import	builtins

class	RestrictedUnpickler(pickle.Unpickler):

				def	find_class(self,	module:	str,	name:	str)	->	Any:

								if	module	==	"builtins":

												if	name	not	in	("exec",	"eval"):

																return	getattr(builtins,	name)

								elif	module	in	("__main__",	"Chapter_10.ch10_ex3",	"ch10_ex3"):

												#	Valid	module	names	depends	on	execution	context.

												return	globals()[name]

								#	elif	module	in	any	of	our	application	modules...

								elif	module	in	("Chapter_10.ch10_ex2",):

												return	globals()[name]

								raise	pickle.UnpicklingError(

												f"global	'{module}.{name}'	is	forbidden"

								)

This	version	of	the	Unpickler	class	will	help	us	avoid	a	large	number	of	potential
problems	that	could	stem	from	a	pickle	stream	that	was	doctored.	It	permits	the
use	of	any	built-in	function	except	exec()	and	eval().	It	permits	the	use	of	classes
defined	only	in	__main__.	In	all	other	cases,	it	raises	an	exception.

Let's	see	how	to	dump	and	load	using	CSV.



Dumping	and	loading	with	CSV
The	csv	module	encodes	and	decodes	simple	list	or	dict	instances	into	a	CSV
notation.	As	with	the	json	module,	discussed	previously,	this	is	not	a	very
complete	persistence	solution.	The	wide	adoption	of	CSV	files,	however,	means
that	it	often	becomes	necessary	to	convert	between	Python	objects	and	CSV.

Working	with	CSV	files	involves	a	manual	mapping	between	potentially
complex	Python	objects	and	very	simplistic	CSV	structures.	We	need	to	design
the	mapping	carefully,	remaining	cognizant	of	the	limitations	of	the	CSV
notation.	This	can	be	difficult	because	of	the	mismatch	between	the	expressive
powers	of	objects	and	the	tabular	structure	of	a	CSV	file.

The	content	of	each	column	of	a	CSV	file	is,	by	definition,	pure	text.	When
loading	data	from	a	CSV	file,	we'll	need	to	convert	these	values	into	more	useful
types	inside	our	applications.	This	conversion	can	be	complicated	by	the	way
spreadsheets	perform	unexpected	type	coercion.	We	might,	for	example,	have	a
spreadsheet	where	US	zip	codes	have	been	changed	into	floating-point	numbers
by	the	spreadsheet	application.	When	the	spreadsheet	saves	to	CSV,	the	zip
codes	could	become	a	confusing	numeric	value.	Bangor,	Maine,	for	example,
has	a	zip	code	of	04401.	This	becomes	4401	when	converted	into	a	number	by	a
spreadsheet	program.

Consequently,	we	might	need	to	use	a	conversion	such	as
row['zip'].zfill(5)	or	('00000'+row['zip'])[-5:]	to	restore	the	leading	zeroes.	Also,
don't	forget	that	a	file	might	have	a	mixture	of	ZIP	and	ZIP	and	four	postal
codes,	making	this	data	cleansing	even	more	challenging.

To	further	complicate	working	with	CSV	files,	we	have	to	be	aware	that	they're
often	touched	manually	and	are	become	subtly	incompatible	because	of	human
tweaks.	It's	important	for	software	to	be	flexible	in	the	face	of	real-world
irregularities	that	arise.

When	we	have	relatively	simple	class	definitions,	we	can	often	transform	each
instance	into	a	simple,	flat	row	of	data	values.	Often,	NamedTuple	is	a	good	match
between	a	CSV	source	file	and	Python	objects.	Going	the	other	way,	we	might



need	to	design	our	Python	classes	around	NamedTuple	if	our	application	will	save
data	in	the	CSV	notation.

When	we	have	classes	that	are	containers,	we	often	have	a	difficult	time
determining	how	to	represent	structured	containers	in	flat	CSV	rows.	This	is	an
impedance	mismatch	between	object	models	and	the	flat	normalized	tabular
structure	used	for	CSV	files	or	relational	databases.	There's	no	good	solution	for
the	impedance	mismatch;	it	requires	careful	design.	We'll	start	with	simple,	flat
objects	to	show	you	some	CSV	mappings.

Let's	see	how	to	dump	simple	sequences	into	CSV.



Dumping	simple	sequences	into	CSV
An	ideal	mapping	is	between	the	NamedTuple	instances	and	rows	in	a	CSV	file.
Each	row	represents	a	different	NamedTuple.	Consider	the	following	Python	class
definition:

from	typing	import	NamedTuple

class	GameStat(NamedTuple):

				player:	str

				bet:	str

				rounds:	int

				final:	float

We've	defined	the	objects	in	this	application	to	have	a	simple,	flat	sequence	of
attributes.	The	Database	architects	call	this	First	Normal	Form.	There	are	no
repeating	groups	and	each	item	is	an	atomic	piece	of	data.

We	might	produce	these	objects	from	a	simulation	that	looks	like	the	following
code:

from	typing	import	Iterator,	Type

def	gamestat_iter(

				player:	Type[Player_Strategy],	betting:	Type[Betting],	limit:	int	=	100

)	->	Iterator[GameStat]:

				for	sample	in	range(30):

								random.seed(sample)		#	Assures	a	reproducible	result

								b	=	Blackjack(player(),	betting())

								b.until_broke_or_rounds(limit)

								yield	GameStat(player.__name__,	betting.__name__,	b.rounds,	b.betting.stake)

This	iterator	will	create	Blackjack	simulations	with	a	given	player	and	betting
strategy.	It	will	execute	the	game	until	the	player	is	broke	or	has	sat	at	the	table
for	100	individual	rounds	of	play.	At	the	end	of	each	session,	it	will	yield	a
GameStat	object	with	the	player	strategy,	betting	strategy,	the	number	of	rounds,
and	the	final	stake.	This	will	allow	us	to	compute	statistics	for	each	play,	betting
strategy,	or	combination.	Here's	how	we	can	write	this	to	a	file	for	later	analysis:

import	csv

from	pathlib	import	Path

with	(Path.cwd()	/	"data"	/	"ch10_blackjack_1.csv").open("w",	newline="")	as	target:

				writer	=	csv.DictWriter(target,	GameStat._fields)

				writer.writeheader()

				for	gamestat	in	gamestat_iter(Player_Strategy,	Martingale_Bet):



								writer.writerow(gamestat._asdict())

There	are	three	steps	to	create	a	CSV	writer:

1.	 Open	a	file	with	the	newline	option	set	to	"".	This	will	support	the
(possibly)	nonstandard	line	ending	for	CSV	files.

2.	 Create	a	CSV	writer.	In	this	example,	we	created	DictWriter	because	it	allows
us	to	easily	create	rows	from	dictionary	objects.	The	GameStat._fields
attribute	provides	the	Python	attribute	names	so	the	CSV	columns	will
precisely	match	the	attributes	of	the	GameStat	subclass	of	the	NamedTuple	class.

3.	 Write	a	header	in	the	first	line	of	the	file.	This	makes	data	exchange	slightly
simpler	by	providing	some	hint	as	to	what's	in	the	CSV	file.

Once	the	writer	object	has	been	prepared,	we	can	use	the	writer's	writerow()
method	to	write	each	dictionary	to	the	CSV	file.	We	can,	to	an	extent,	simplify
this	slightly	by	using	the	writerows()	method.	This	method	expects	an	iterator
instead	of	an	individual	row.	Here's	how	we	can	use	writerows()	with	an	iterator:

data	=	gamestat_iter(Player_Strategy,	Martingale_Bet)

with	(Path.cwd()	/	"data"	/	"ch10_blackjack_2.csv").open("w",	newline="")	as	target:

				writer	=	csv.DictWriter(target,	GameStat._fields)

				writer.writeheader()

				writer.writerows(g._asdict()	for	g	in	data)

We've	assigned	the	iterator	to	a	variable,	data.	For	the	writerows()	method,	we	get	a
dictionary	from	each	row	produced	by	the	iterator.

Let's	load	a	simple	sequence	from	CSV.



Loading	simple	sequences	from	CSV
We	can	load	simple,	sequential	objects	from	a	CSV	file	with	a	loop	like	the
following:

with	(Path.cwd()	/	"data"	/	"ch10_blackjack_1.csv").open()	as	source:

				reader	=	csv.DictReader(source)

				assert	set(reader.fieldnames)	==	set(GameStat._fields)

				for	gs	in	(GameStat(**r)	for	r	in	reader):

								print(	gs	)

We've	defined	a	reader	for	our	file.	As	we	know	that	our	file	has	a	proper
heading,	we	can	use	DictReader.	This	will	use	the	first	row	to	define	the	attribute
names.	We	can	now	construct	the	GameStat	objects	from	the	rows	in	the	CSV	file.
We've	used	a	generator	expression	to	build	rows.

In	this	case,	we've	assumed	that	the	column	names	match	the	attribute	names	of
our	GameStat	class	definition.	We	can,	if	necessary,	confirm	that	the	file	matches
the	expected	format	by	comparing	reader.fieldnames	with	GameStat._fields.	As	the
order	doesn't	have	to	match,	we	need	to	transform	each	list	of	field	names	into	a
set.	Here's	how	we	can	check	the	column	names:

assert	set(reader.fieldnames)	==	set(GameStat._fields)	

We've	ignored	the	data	types	of	the	values	that	were	read	from	the	file.	The	two
numeric	columns	will	wind	up	being	string	values	when	we	read	from	the	CSV
file.	Because	of	this,	we	need	a	more	sophisticated	row-by-row	transformation	to
create	proper	data	values.

Here's	a	typical	factory	function	that	performs	the	required	conversions:

def	gamestat_rdr_iter(

								source_data:	Iterator[Dict[str,	str]]

				)	->	Iterator[GameStat]:

				for	row	in	source_data:

								yield	GameStat(row["player"],	row["bet"],	int(row["rounds"]),	int(row["final"]))

We've	applied	the	int	function	to	the	columns	that	are	supposed	to	have	numeric
values.	In	the	rare	event	where	the	file	has	the	proper	headers	but	improper	data,
we'll	get	an	ordinary	ValueError	from	a	failed	int()	function.	We	can	use	this
generator	function	as	follows:



with	(Path.cwd()/"data"/"ch10_blackjack_1.csv").open()	as	source:

				reader	=	csv.DictReader(source)

				assert	set(reader.fieldnames)	==	set(GameStat._fields)

				for	gs	in	gamestat_rdr_iter(reader):

								print(gs)

This	version	of	the	reader	has	properly	reconstructed	the	GameStat	objects	by
performing	conversions	on	the	numeric	values.

Let's	see	how	to	handle	containers	and	complex	classes.



Handling	containers	and	complex
classes
When	we	look	back	at	our	microblog	example,	we	have	a	Blog	object	that
contains	many	Post	instances.	We	designed	Blog	as	a	wrapper	around	list,	so	that
the	Blog	would	contain	a	collection.	When	working	with	a	CSV	representation,
we	have	to	design	a	mapping	from	a	complex	structure	to	a	tabular
representation.	We	have	three	common	solutions:

We	can	create	two	files,	a	blog	file	and	a	posting	file.	The	blog	file	has	only
the	Blog	instances.	Each	Blog	has	a	title	in	our	example.	Each	Post	row	can
then	have	a	reference	to	the	Blog	row	that	the	posting	belongs	to.	We	need	to
add	a	key	for	each	Blog.	Each	Post	would	then	have	a	foreign	key	reference
to	the	Blog	key.
We	can	create	two	kinds	of	rows	in	a	single	file.	We	will	have	the	Blog	rows
and	Post	rows.	Our	writers	entangle	the	various	types	of	data;	our	readers
must	disentangle	the	types	of	data.
We	can	perform	a	relational	database	join	between	the	various	kinds	of
rows,	repeating	the	Blog	parent	information	on	each	Post	child.

There's	no	best	solution	among	these	choices.	We	have	to	design	a	solution	to
cope	with	an	impedance	mismatch	between	flat	CSV	rows	and	more	structured
Python	objects.	The	use	cases	for	the	data	will	define	some	of	the	advantages
and	disadvantages.

Creating	two	files	requires	that	we	create	some	kind	of	unique	identifier	for	each
Blog	so	that	a	Post	can	properly	refer	to	the	Blog.	We	can't	easily	use	the	Python
internal	ID,	as	these	are	not	guaranteed	to	be	consistent	each	time	Python	runs.

A	common	assumption	is	that	the	Blog	title	is	a	unique	key;	as	this	is	an	attribute
of	Blog,	it	is	called	a	natural	primary	key.	This	rarely	works	out	well;	we	cannot
change	a	Blog	title	without	also	updating	all	of	the	Posts	that	refer	to	the	Blog.	A
better	plan	is	to	invent	a	unique	identifier	and	update	the	class	design	to	include
that	identifier.	This	is	called	a	surrogate	key.	The	Python	uuid	module	can
provide	unique	identifiers	for	this	purpose.



The	code	to	use	multiple	files	is	nearly	identical	to	the	previous	examples.	The
only	change	is	to	add	a	proper	primary	key	to	the	Blog	class.	Once	we	have	the
keys	defined,	we	can	create	writers	and	readers	as	shown	previously	to	process
the	Blog	and	Post	instances	into	their	separate	files.

In	the	next	section,	we'll	dump	and	load	multiple	row	types	into	a	CSV	file.



Dumping	and	loading	multiple	row
types	into	a	CSV	file
Creating	multiple	kinds	of	rows	in	a	single	file	makes	the	format	a	bit	more
complex.	The	column	titles	must	become	a	union	of	all	the	available	column
titles.	Because	of	the	possibility	of	name	clashes	between	the	various	row	types,
we	can	either	access	rows	by	position	(preventing	us	from	simply	using
csv.DictReader)	or	we	must	invent	a	more	sophisticated	column	title	that	combines
class	and	attribute	names.

The	process	is	simpler	if	we	provide	each	row	with	an	extra	column	that	acts	as	a
class	discriminator.	This	extra	column	shows	us	what	type	of	object	the	row
represents.	The	object's	class	name	would	work	well	for	this.	Here's	how	we
might	write	blogs	and	posts	to	a	single	CSV	file	using	two	different	row	formats:

with	(Path.cwd()	/	"data"	/	"ch10_blog3.csv").open("w",	newline="")	as	target:

				wtr	=	csv.writer(target)

				wtr.writerow(["__class__",	"title",	"date",	"title",	"rst_text",	"tags"])

				for	b	in	blogs:

								wtr.writerow(["Blog",	b.title,	None,	None,	None,	None])

								for	p	in	b.entries:

												wtr.writerow(["Post",	None,	p.date,	p.title,	p.rst_text,	p.tags])

We	created	two	varieties	of	rows	in	the	file.	Some	rows	have	'Blog'	in	the	first
column	and	contain	just	the	attributes	of	a	Blog	object.	Other	rows	have	'Post'	in
the	first	column	and	contain	just	the	attributes	of	a	Post	object.

We	did	not	make	the	column	titles	unique,	so	we	can't	use	dictionary	writers	or
readers.	When	allocating	columns	by	position	like	this,	each	row	allocates
unused	columns	based	on	the	other	types	of	rows	it	must	coexist	with.	These
additional	columns	are	filled	with	None.	As	the	number	of	distinct	row	types
grows,	keeping	track	of	the	various	positional	column	assignments	can	become
challenging.

Also,	the	individual	data	type	conversions	can	be	somewhat	baffling.	In
particular,	we've	ignored	the	data	type	of	the	timestamp	and	tags.	We	can	try	to
reassemble	our	Blogs	and	Posts	by	examining	the	row	discriminators:



with	(Path.cwd()	/	"data"	/	"ch10_blog3.csv").open()	as	source:

				rdr	=	csv.reader(source)

				header	=	next(rdr)

				assert	header	==	["__class__",	"title",	"date",	"title",	"rst_text",	"tags"]

				blogs	=	[]

				for	r	in	rdr:

								if	r[0]	==	"Blog":

												blog	=	Blog(*r[1:2])		#	type:	ignore

												blogs.append(blog)

								elif	r[0]	==	"Post":

												post	=	Post(*r[2:])		#	type:	ignore

												blogs[-1].append(post)

This	snippet	will	construct	a	list	of	Blog	objects.	Each	'Blog'	row	uses	columns	in
slice(1,2)	to	define	the	Blog	object.	Each	'Post'	row	uses	columns	in	slice(2,6)	to
define	a	Post	object.	This	requires	that	each	Blog	be	followed	by	the	relevant	Post
instances.	A	foreign	key	is	not	used	to	tie	the	two	objects	together.

We've	used	two	assumptions	about	the	columns	in	the	CSV	file	that	has	the	same
order	and	type	as	the	parameters	of	the	class	constructors.	For	Blog	objects,	we
used	blog	=	Blog(*r[1:2])	because	the	one-and-only	column	is	text,	which	matches
the	constructor	class.	When	working	with	externally-supplied	data,	this
assumption	might	prove	to	be	invalid.

The	#	type:	ignore	comments	are	required	because	the	data	types	from	the	reader
will	be	strings	and	those	types	don't	match	the	dataclass	type	definitions
provided	above.	Subverting	mypy	checks	to	construct	objects	isn't	ideal.

To	build	the	Post	instances	and	perform	the	appropriate	type	conversion,	a
separate	function	is	required.	This	function	will	map	the	types	and	invoke
the	constructor	class.	Here's	a	mapping	function	to	build	Post	instances:

import	ast

def	post_builder(row:	List[str])	->	Post:

				return	Post(

								date=datetime.datetime.strptime(row[2],	"%Y-%m-%d	%H:%M:%S"),

								title=row[3],

								rst_text=row[4],

								tags=ast.literal_eval(row[5]),

				)

This	will	properly	build	a	Post	instance	from	a	row	of	text.	It	converts	the	text	for
datetime	and	the	text	for	the	tags	into	their	proper	Python	types.	This	has	the
advantage	of	making	the	mapping	explicit.

In	this	example,	we're	using	ast.literal_eval()	to	decode	more	complex	Python



literal	values.	This	allows	the	CSV	data	to	include	the	literal	representation	of	a
tuple	of	string	values:	"('#RedRanger',	'#Whitby42',	'#ICW')".	Without	using
ast.literal_eval(),	we'd	have	to	write	our	own	parser	for	the	rather	complex
regular	expression	around	this	data	type.	Instead	of	writing	our	own	parser,	we
elected	to	serialize	a	tuple-of-string	object	that	could	be	deserialized	securely.

Let's	see	how	to	filter	CSV	rows	with	an	iterator.



Filtering	CSV	rows	with	an	iterator
We	can	refactor	the	previous	load	example	to	iterate	through	the	Blog	objects
rather	than	constructing	a	list	of	the	Blog	objects.	This	allows	us	to	skim	through
a	large	CSV	file	and	locate	just	the	relevant	Blog	and	Post	rows.	This	function	is	a
generator	that	yields	each	individual	Blog	instance	separately:

def	blog_iter(source:	TextIO)	->	Iterator[Blog]:

				rdr	=	csv.reader(source)

				header	=	next(rdr)

				assert	header	==	["__class__",	"title",	"date",	"title",	"rst_text",	"tags"]

				blog	=	None

				for	r	in	rdr:

								if	r[0]	==	"Blog":

												if	blog:

																yield	blog

												blog	=	blog_builder(r)

								elif	r[0]	==	"Post":

												post	=	post_builder(r)

												blog.append(post)

				if	blog:

								yield	blog

This	blog_iter()	function	creates	the	Blog	object	and	appends	the	Post	objects.	Each
time	a	Blog	header	appears,	the	previous	Blog	is	complete	and	can	be	yielded.	At
the	end,	the	final	Blog	object	must	also	be	yielded.	If	we	want	the	large	list	of	Blog
instances,	we	can	use	the	following	code:

with	(Path.cwd()/"data"/"ch10_blog3.csv").open()	as	source:

				blogs	=	list(blog_iter(source))

This	will	use	the	iterator	to	build	a	list	of	Blogs	in	the	rare	cases	that	we	actually
want	the	entire	sequence	in	memory.	We	can	use	the	following	to	process	each
Blog	individually,	rendering	it	to	create	reST	files:

with	(Path.cwd()/"data"/"ch10_blog3.csv").open()	as	source:

				for	b	in	blog_iter(source):	

								with	open(blog.title+'.rst','w')	as	rst_file:	

												render(blog,	rst_file)	

We	used	the	blog_iter()	function	to	read	each	blog.	After	being	read,	it	can	be
rendered	into	an	.rst	format	file.	A	separate	process	can	run	rst2html.py	to	convert
each	blog	into	HTML.

We	can	easily	add	a	filter	to	process	only	selected	Blog	instances.	Rather	than



simply	rendering	all	the	Blog	instances,	we	can	add	an	if	statement	to	decide
which	Blogs	should	be	rendered.

Let's	see	how	to	dump	and	load	joined	rows	into	a	CSV	file.



Dumping	and	loading	joined	rows
into	a	CSV	file
Joining	the	objects	together	means	creating	a	collection	where	each	row	has	a
composite	set	of	columns.	The	columns	will	be	a	union	of	the	child	class
attributes	and	the	parent	class	attributes.	The	file	will	have	a	row	for	each	child.
The	parent	attributes	of	each	row	will	repeat	the	parent	attribute	values	for	the
parent	of	that	child.	This	involves	a	fair	amount	of	redundancy,	since	the	parent
values	are	repeated	with	each	individual	child.	When	there	are	multiple	levels	of
containers,	this	can	lead	to	large	amounts	of	repeated	data.

The	advantage	of	this	repetition	is	that	each	row	stands	alone	and	doesn't	belong
to	a	context	defined	by	the	rows	above	it.	We	don't	need	a	class	discriminator.
The	parent	values	are	repeated	for	each	child	object.

This	works	well	for	data	that	forms	a	simple	hierarchy;	each	child	has	some
parent	attributes	added	to	it.	When	the	data	involves	more	complex	relationships,
the	simplistic	parent-child	pattern	breaks	down.	In	these	examples,	we've	lumped
the	Post	tags	into	a	single	column	of	text.	If	we	tried	to	break	the	tags	into
separate	columns,	they	would	become	children	of	each	Post,	meaning	that	the
text	of	Post	might	be	repeated	for	each	tag.	Clearly,	this	isn't	a	good	idea!

The	CSV	column	titles	must	be	a	union	of	all	the	available	column	titles.
Because	of	the	possibility	of	name	clashes	between	the	various	row	types,	we'll
qualify	each	column	name	with	the	class	name.	This	will	lead	to	column	titles
such	as	'Blog.title'	and	'Post.title'.	This	allows	for	the	use	of	DictReader	and
DictWriter	rather	than	the	positional	assignment	of	the	columns.	However,	these
qualified	names	don't	trivially	match	the	attribute	names	of	the	class	definitions;
this	leads	to	somewhat	more	text	processing	to	parse	the	column	titles.	Here's
how	we	can	write	a	joined	row	that	contains	parent	as	well	as	child	attributes:

with	(Path.cwd()	/	"data"	/	"ch10_blog5.csv").open("w",	newline="")	as	target:

				wtr	=	csv.writer(target)

				wtr.writerow(

								["Blog.title",	"Post.date",	"Post.title",	"Post.tags",	"Post.rst_text"]

				)

				for	b	in	blogs:



								for	p	in	b.entries:

												wtr.writerow([b.title,	p.date,	p.title,	p.tags,	p.rst_text])

We	saw	qualified	column	titles.	In	this	format,	each	row	now	contains	a	union	of
the	Blog	attribute	and	the	Post	attributes.	We	can	use	the	b.title	and	p.title
attributes	to	include	the	blog	title	on	each	posting.

This	data	file	layout	is	somewhat	easier	to	prepare,	as	there's	no	need	to	fill
unused	columns	with	None.	Since	each	column	name	is	unique,	we	can	easily
switch	to	a	DictWriter	instead	of	a	simple	csv.writer().

Rebuilding	the	blog	entry	becomes	a	two-step	operation.	The	columns	that
represent	the	parent	and	Blog	objects	must	be	checked	for	uniqueness.	The
columns	that	represent	the	child	and	Post	objects	are	built	in	the	context	of	the
most-recently-found	parent.	Here's	a	way	to	reconstruct	the	original	container
from	the	CSV	rows:

def	blog_iter2(source:	TextIO)	->	Iterator[Blog]:

				rdr	=	csv.DictReader(source)

				assert	(

								set(rdr.fieldnames)

								==	{"Blog.title",	"Post.date",	"Post.title",	"Post.tags",	"Post.rst_text"}

				)

				#	Fetch	first	row,	build	the	first	Blog	and	Post.

				row	=	next(rdr)

				blog	=	blog_builder5(row)

				post	=	post_builder5(row)

				blog.append(post)

				#	Fetch	all	subsequent	rows.

				for	row	in	rdr:

								if	row["Blog.title"]	!=	blog.title:

												yield	blog

												blog	=	blog_builder5(row)

								post	=	post_builder5(row)

								blog.append(post)

				yield	blog

The	first	row	of	data	is	used	to	build	a	Blog	instance	and	the	first	Post	in	that	Blog.
The	invariant	condition	for	the	loop	that	follows	assumes	that	there's	a	proper
Blog	object.	Having	a	valid	Blog	instance	makes	the	processing	logic	much
simpler.	The	Post	instances	are	built	with	the	following	function:

import	ast

def	post_builder5(row:	Dict[str,	str])	->	Post:

				return	Post(

								date=datetime.datetime.strptime(

												row["Post.date"],	

												"%Y-%m-%d	%H:%M:%S"),

								title=row["Post.title"],



								rst_text=row["Post.rst_text"],

								tags=ast.literal_eval(row["Post.tags"]),

				)

We	mapped	the	individual	columns	in	each	row	through	a	conversion	to	the
parameters	of	the	constructor	class.	This	properly	handles	all	of	the	type
conversions	from	the	CSV	text	into	Python	objects.

The	blog_builder5()	function	is	similar	to	the	post_builder5()	function.	Since	there
are	fewer	attributes	and	no	data	conversion	involved,	it's	not	shown,	and	is	left	as
an	exercise	for	the	reader.

Let's	see	how	to	dump	and	load	using	XML.



Dumping	and	loading	with	XML
Python's	xml	package	includes	numerous	modules	that	parse	XML	files.	There	is
also	a	Document	Object	Model	(DOM)	implementation	that	can	produce	an
XML	document.	As	with	the	previous	json	module,	XML	is	not	a	complete
persistence	solution	for	Python	objects.	Because	of	the	wide	adoption	of	the
XML	files,	however,	it	often	becomes	necessary	to	convert	between	Python
objects	and	XML	documents.

Working	with	XML	files	involves	a	manual	mapping	between	Python	objects
and	XML	structures.	We	need	to	design	the	mapping	carefully,	remaining
mindful	of	the	constraints	of	XML's	notation.	This	can	be	difficult	because	of	the
mismatch	between	the	expressive	powers	of	objects	and	the	strictly	hierarchical
nature	of	an	XML	document.

The	content	of	an	XML	attribute	or	tag	is	pure	text.	When	loading	an	XML
document,	we'll	need	to	convert	these	values	into	more	useful	types	inside	our
applications.	In	some	cases,	the	XML	document	might	include	attributes	or	tags
to	indicate	the	expected	type.

If	we	are	willing	to	put	up	with	some	limitations,	we	can	use	the	plistlib	module
to	emit	some	built-in	Python	structures	as	XML	documents.	We'll	examine	this
module	in	Chapter	14,	Configuration	Files	and	Persistence,	where	we'll	use	it	to
load	the	configuration	files.

The	json	module	offers	ways	to	extend	the	JSON	encoding	to	include	our	customized	classes;
the	plistlib	module	doesn't	offer	this	additional	hook.

When	we	look	at	dumping	a	Python	object	to	create	an	XML	document,	there
are	three	common	ways	to	build	the	text:

Include	XML	output	methods	in	our	class	design:	In	this	case,	our
classes	emit	strings	that	can	be	assembled	into	an	XML	document.	This
conflates	serialization	into	the	class	in	a	potentially	brittle	design.
Use	xml.etree.ElementTree	to	build	the	ElementTree	nodes	and	return	this
structure:	This	can	be	then	be	rendered	as	text.	This	is	somewhat	less



brittle	because	it	builds	an	abstract	document	object	model	rather	than	text.
Use	an	external	template	and	fill	attributes	into	that	template:	Unless
we	have	a	sophisticated	template	tool,	this	doesn't	work	out	well.	The
string.Template	class	in	the	standard	library	is	only	suitable	for	very	simple
objects.	More	generally,	Jinja2	or	Mako	should	be	used.	This	divorces	XML
from	the	class	definitions.

There	are	some	projects	that	include	generic	Python	XML	serializers.	The
problem	with	trying	to	create	a	generic	serializer	is	that	XML	is	extremely
flexible;	each	application	of	XML	seems	to	have	unique	XML	Schema
Definition	(XSD)	or	Document	Type	Definition	(DTD)	requirements.

One	open-XML	document-design	question	is	how	to	encode	an	atomic	value.
There	are	many	choices.	We	could	use	a	type-specific	tag	with	an	attribute	name
in	the	tag's	attributes,	such	as	<int	name="the_answer">42</int>.	Another	possibility	is
to	use	an	attribute-specific	tag	with	the	type	in	the	tag's	attributes:	<the_answer
type="int">42</the_answer>.	We	can	also	use	nested	tags:	<the_answer><int>42</int>
</the_answer>.	Or,	we	could	rely	on	a	separate	schema	definition	to	suggest	that
the_answer	should	be	an	integer	and	merely	encode	the	value	as	text:
<the_answer>42</the_answer>.	We	can	also	use	adjacent	tags:	<key>the_answer</key>
<int>42</int>.	This	is	not	an	exhaustive	list;	XML	offers	us	a	lot	of	choices.

When	it	comes	to	recovering	Python	objects	from	an	XML	document,	there	will
be	two	steps.	Generally,	we	have	to	parse	the	document	to	create	the	document
object.	Once	this	is	available,	we	can	then	examine	the	XML	document,
assembling	Python	objects	from	the	available	tags.

Some	web	frameworks,	such	as	Django,	include	XML	serialization	of	Django-
defined	classes.	This	isn't	a	general	serialization	of	arbitrary	Python	objects.	The
serialization	is	narrowly	defined	by	Django's	data-modeling	components.
Additionally,	there	are	packages,	such	as	dexml,	lxml,	and	pyxser,	as	alternative
bindings	between	Python	objects	and	XML.	Check	out	http://pythonhosted.org/dexm
l/api/dexml.html,	http://lxml.de	and	http://coder.cl/products/pyxser/	for	more
information.	A	longer	list	of	candidate	packages	can	be	found	at:	https://wiki.pyth
on.org/moin/PythonXml.

Now,	let's	see	how	to	dump	objects	using	string	templates.

http://pythonhosted.org/dexml/api/dexml.html
http://lxml.de
http://coder.cl/products/pyxser/
https://wiki.python.org/moin/PythonXml


Dumping	objects	using	string
templates
One	way	to	serialize	a	Python	object	into	XML	is	by	including	a	method	to	emit
XML	text.	In	the	case	of	a	complex	object,	the	container	must	get	the	XML	for
each	item	inside	the	container.	Here	are	two	simple	extensions	to	our	microblog
class	structure	that	add	the	XML	output	capability	as	text:

from	dataclasses	import	dataclass,	field,	asdict

@dataclass

class	Blog_X:

				title:	str

				entries:	List[Post_X]	=	field(default_factory=list)

				underline:	str	=	field(init=False)

				def	__post_init__(self)	->	None:

								self.underline	=	"="*len(self.title)

				def	append(self,	post:	'Post_X')	->	None:

								self.entries.append(post)

				def	by_tag(self)	->	DefaultDict[str,	List[Dict[str,	Any]]]:

								tag_index:	DefaultDict[str,	List[Dict[str,	Any]]]	=	defaultdict(list)

								for	post	in	self.entries:

												for	tag	in	post.tags:

																tag_index[tag].append(asdict(post))

								return	tag_index

				def	as_dict(self)	->	Dict[str,	Any]:

								return	asdict(self)

				def	xml(self)	->	str:

								children	=	"\n".join(c.xml()	for	c	in	self.entries)

								return	f"""\

<blog><title>{self.title}</title>

<entries>

{children}

<entries>

</blog>

"""

We've	included	several	things	in	this	dataclass-based	definition.	First,	we	defined
the	core	attributes	of	a	Blog_X	object,	a	title	and	a	list	of	entries.	In	order	to	make
the	entries	optional,	a	field	definition	was	provided	to	use	the	list()	function	as	a
factory	for	default	values.	In	order	to	be	compatible	with	the	Blog	class	shown
earlier,	we've	also	provided	an	underline	attribute	that	is	built	by	the
__post_init__()	special	method.



The	append()	method	is	provided	at	the	Blog_X	class	level	to	be	compatible	with	the
Blog	class	from	the	xxx	section.	It	delegates	the	work	to	the	entries	attribute.	The
by_tag()	method	can	be	used	to	build	an	index	by	hashtags.	

The	as_dict()	method	was	defined	for	Blog	objects,	and	emitted	a	dictionary	built
from	the	object.	When	working	with	dataclasses,	the	dataclasses.asdict()	function
does	this	for	us.	To	be	compatible	with	the	Blog	class,	we	wrapped	the	asdict()
function	into	a	method	of	the	Blog_X	dataclass.	

The	xml()	method	emits	XML-based	text	for	this	object.	It	uses	relatively
unsophisticated	f-string	processing	to	inject	values	into	strings.	To	assemble	a
complete	entry,	the	entries	collection	is	transformed	into	a	series	of	lines,
assigned	to	the	children	variable,	and	formatted	into	the	resulting	XML	text.

The	Post_X	class	definition	is	similar.	It's	shown	here:

@dataclass

class	Post_X:

				date:	datetime.datetime

				title:	str

				rst_text:	str

				tags:	List[str]

				underline:	str	=	field(init=False)

				tag_text:	str	=	field(init=False)

				def	__post_init__(self)	->	None:

								self.underline	=	"-"*len(self.title)

								self.tag_text	=	'	'.join(self.tags)

				def	as_dict(self)	->	Dict[str,	Any]:

								return	asdict(self)

				def	xml(self)	->	str:

								tags	=	"".join(f"<tag>{t}</tag>"	for	t	in	self.tags)

								return	f"""\

<entry>

				<title>{self.title}</title>

				<date>{self.date}</date>

				<tags>{tags}</tags>

				<text>{self.rst_text}</text>

</entry>"""

This,	too,	has	two	fields	that	are	created	by	the	__post_init__()	special	method.	It
includes	an	as_dict()	method	to	remain	compatible	with	the	Post	class	shown
earlier.	This	method	uses	the	asdict()	function	to	do	the	real	work	of	creating	a
dictionary	from	the	dataclass	object.

Both	classes	include	highly	class-specific	XML	output	methods.	These	will	emit



the	relevant	attributes	wrapped	in	XML	syntax.	This	approach	doesn't	generalize
well.	The	Blog_X.xml()	method	emits	a	<blog>	tag	with	a	title	and	entries.	The
Post_X.xml()	method	emits	a	<post>	tag	with	the	various	attributes.	In	both	of	these
methods,	subsidiary	objects	were	created	using	"".join()	or	"\n".join()	to	build	a
longer	string	from	shorter	string	elements.	When	we	convert	a	Blog	object	into
XML,	the	results	look	like	this:

<blog><title>Travel</title>	

<entries>	

<entry>	

				<title>Hard	Aground</title>	

				<date>2013-11-14	17:25:00</date>	

				<tags><tag>#RedRanger</tag><tag>#Whitby42</tag><tag>#ICW</tag></tags>	

				<text>Some	embarrassing	revelation.	Including	☹	and	⚓</text>	
</entry>	

<entry>	

				<title>Anchor	Follies</title>	

				<date>2013-11-18	15:30:00</date>	

				<tags><tag>#RedRanger</tag><tag>#Whitby42</tag><tag>#Mistakes</tag></tags>	

				<text>Some	witty	epigram.</text>	

</entry>	

<entries></blog>	

This	approach	has	two	disadvantages:

We've	ignored	the	XML	namespaces.	That's	a	small	change	to	the	literal
text	for	emitting	the	tags.
Each	class	would	also	need	to	properly	escape	the	<,	&,	>,	and	"	characters
into	the	&lt;,	&gt;,	&amp;,	and	&quot;	XML	entities.	The	html	module	includes
the	html.escape()	function	which	does	this.

This	emits	proper	XML;	it	can	be	relied	upon	to	work;	but	it	isn't	very	elegant
and	doesn't	generalize	well.

In	the	next	section,	we'll	see	how	to	dump	objects	with	xml.etree.ElementTree.



Dumping	objects	with
xml.etree.ElementTree
We	can	use	the	xml.etree.ElementTree	module	to	build	Element	structures	that	can	be
emitted	as	XML.	It's	challenging	to	use	xml.dom	and	xml.minidom	for	this.	The	DOM
API	requires	a	top-level	document	that	then	builds	individual	elements.	The
presence	of	this	necessary	context	object	creates	clutter	when	trying	to	serialize	a
simple	class	with	several	attributes.	We	have	to	create	the	document	first	and
then	serialize	all	the	elements	of	the	document,	providing	the	document	context
as	an	argument.

Generally,	we'd	like	each	class	in	our	design	to	build	a	top-level	element	and
return	that.	Most	top-level	elements	will	have	a	sequence	of	subelements.	We
can	assign	text	as	well	as	attributes	to	each	element	that	we	build.	We	can	also
assign	a	tail,	which	is	the	extraneous	text	that	follows	a	closed	tag.	In	some
content	models,	this	is	just	whitespace.	Because	of	the	long	name,	it	might	be
helpful	to	import	ElementTree	in	the	following	manner:

import	xml.etree.ElementTree	as	XML	

Here	are	two	extensions	to	our	microblog	class	structure	that	add	the	XML
output	capability	as	the	Element	instances.	We	can	use	the	following	extension	to
the	Blog_X	class:

import	xml.etree.ElementTree	as	XML

from	typing	import	cast

class	Blog_E(Blog_X):

				def	xmlelt(self)	->	XML.Element:

								blog	=	XML.Element("blog")

								title	=	XML.SubElement(blog,	"title")

								title.text	=	self.title

								title.tail	=	"\n"

								entities	=	XML.SubElement(blog,	"entries")

								entities.extend(cast('Post_E',	c).xmlelt()	for	c	in	self.entries)

								blog.tail	=	"\n"

								return	blog

We	can	use	the	following	extension	to	the	Post_X	class:



class	Post_E(Post_X):

				def	xmlelt(self)	->	XML.Element:

								post	=	XML.Element("entry")

								title	=	XML.SubElement(post,	"title")

								title.text	=	self.title

								date	=	XML.SubElement(post,	"date")

								date.text	=	str(self.date)

								tags	=	XML.SubElement(post,	"tags")

								for	t	in	self.tags:

												tag	=	XML.SubElement(tags,	"tag")

												tag.text	=	t

								text	=	XML.SubElement(post,	"rst_text")

								text.text	=	self.rst_text

								post.tail	=	"\n"

								return	post

We've	written	highly	class-specific	XML	output	methods.	These	will	build	the
Element	objects	that	have	the	proper	text	values.

There's	no	fluent	shortcut	for	building	the	subelements.	We	have	to	insert	each	text	item
individually.

In	the	Blog.xmlelt()	method,	we	were	able	to	perform	Element.extend()	to	put	all	of
the	individual	post	entries	inside	the	<entry>	element.	This	allows	us	to	build	the
XML	structure	flexibly	and	simply.	This	approach	can	deal	gracefully	with	the
XML	namespaces.	We	can	use	the	QName	class	to	build	qualified	names	for	XML
namespaces.	The	ElementTree	module	correctly	applies	the	namespace	qualifiers	to
the	XML	tags.	This	approach	also	properly	escapes	the	<,	&,	>,	and	"	characters
into	the	&lt;,	&gt;,	&amp;,	and	&quot;	XML	entities.	The	XML	output	from	these
methods	will	mostly	match	the	previous	section.	The	whitespace	will	be
different.

To	build	the	final	output,	we	use	two	additional	features	of	the	element	tree
module.	It	will	look	like	this	snippet:

tree	=	XML.ElementTree(travel5.xmlelt())

text	=	XML.tostring(tree.getroot())

The	travel5	object	is	an	instance	of	Blog_E.	The	result	of	evaluating	travel5.xmlelt()
is	an	XML.Element;	this	is	wrapped	into	a	complete	XML.ElementTree	object.	The	tree's
root	object	can	be	transformed	into	a	valid	XML	string	and	printed	or	saved	to	a
file.

Let's	see	how	to	load	XML	documents.



Loading	XML	documents
Loading	Python	objects	from	an	XML	document	is	a	two-step	process.	First,	we
need	to	parse	the	XML	text	to	create	the	document	objects.	Then,	we	need	to
examine	the	document	objects	to	produce	Python	objects.	As	noted	previously,
the	tremendous	flexibility	of	XML	notation	means	that	there	isn't	a	single	XML-
to-Python	serialization.

One	approach	to	walk	through	an	XML	document	involves	making	XPath-like
queries	to	locate	the	various	elements	that	were	parsed.	Here's	a	function	to	walk
through	an	XML	document,	emitting	the	Blog	and	Post	objects	from	the	available
XML:

def	build_blog(document:	XML.ElementTree)	->	Blog_X:

				xml_blog	=	document.getroot()

				blog	=	Blog_X(xml_blog.findtext("title"))

				for	xml_post	in	xml_blog.findall("entries/entry"):

								optional_tag_iter	=	(

												t.text	for	t	in	xml_post.findall("tags/tag")

								)

								tags	=	list(

												filter(None,	optional_tag_iter)

								)

								post	=	Post_X(

												date=datetime.datetime.strptime(

																xml_post.findtext("date"),	"%Y-%m-%d	%H:%M:%S"

												),

												title=xml_post.findtext("title"),

												tags=tags,

												rst_text=xml_post.findtext("rst_text"),

								)

								blog.append(post)

				return	blog

This	function	traverses	a	<blog>	XML	document.	It	locates	the	<title>	tag	and
gathers	all	of	the	text	within	that	element	to	create	the	top-level	Blog	instance.	It
then	locates	all	the	<entry>	subelements	found	within	the	<entries>	element.	These
are	used	to	build	each	Post	object.	The	various	attributes	of	the	Post	object	are
converted	individually.	The	text	of	each	individual	<tag>	element	within	the	<tags>
element	is	turned	into	a	list	of	text	values.	The	date	is	parsed	from	its	text
representation.	The	Post	objects	are	each	appended	to	the	overall	Blog	object.	This
manual	mapping	from	XML	text	to	Python	objects	is	an	essential	feature	of
parsing	XML	documents.



The	value	of	the	(t.text	for	t	in	xml_post.findall("tags/tag"))	generator	expression
does	not	have	the	Iterator[str]	type.	It	turns	out	that	the	values	of
the	t.text	attribute	have	an	Optional[str]	type.	The	resulting	expression	would
create	a	list	with	a	type	hint	of	List[Optional[str]],	which	isn't	directly	compatible
with	the	Post_X	class.

There	are	two	resolutions	to	this	problem:	we	could	expand	the	definition	in
Post_X	to	use	List[Optional[str]].	This	could	lead	to	a	need	to	filter	out	None	objects
elsewhere	in	the	application.	Instead,	we	pushed	the	removal	of	None	objects	into
this	parser.	The	filter(None,	iterable)	function	will	remove	all	None	values	from
the	iterable;	this	transforms	a	value	with	the	List[Optional[str]]	type	hint	into	a
value	with	the	List[str]	type	hint.

This	kind	of	transformation	and	filtering	is	an	essential	part	of	XML	processing.
Each	distinct	data	type	or	structure	will	have	to	be	serialized	as	an	XML-
compatible	string	and	deserialized	from	the	XML	string.	XML	provides	a
structure,	but	the	details	of	serialization	remain	an	essential	part	of	the	Python
application	programming.



Summary
We	looked	at	a	number	of	ways	to	serialize	Python	objects.	We	can	encode	our
class	definitions	in	notations,	including	JSON,	YAML,	pickle,	XML,	and	CSV.
Each	of	these	notations	has	a	variety	of	advantages	and	disadvantages.

These	various	library	modules	generally	work	around	the	idea	of	loading	objects
from	an	external	file	or	dumping	objects	into	a	file.	These	modules	aren't
completely	consistent	with	each	other,	but	they're	very	similar,	allowing	us	to
apply	some	common	design	patterns.

Using	CSV	and	XML	tends	to	expose	the	most	difficult	design	problems.	Our
class	definitions	in	Python	can	include	object	references	that	don't	have	a	good
representation	in	the	CSV	or	XML	notation.



Design	considerations	and	tradeoffs
There	are	many	ways	to	serialize	and	persist	Python	objects.	We	haven't	seen	all
of	them	yet.	The	formats	in	this	section	are	focused	on	two	essential	use	cases:

Data	interchange	with	other	applications:	We	might	be	publishing	data
for	other	applications	or	accepting	data	from	other	applications.	In	this	case,
we're	often	constrained	by	the	other	applications'	interfaces.	Often,	JSON
and	XML	are	used	by	other	applications	and	frameworks	as	their	preferred
form	of	data	interchange.	In	some	cases,	we'll	use	CSV	to	exchange	data.
Persistent	data	for	our	own	applications:	In	this	case,	we're	usually	going
to	choose	pickle	because	it's	complete	and	is	already	part	of	the	Python
Standard	Library.	However,	one	of	the	important	advantages	of	YAML	is	its
readability;	we	can	view,	edit,	and	even	modify	the	file.

When	working	with	each	of	these	formats,	we	have	a	number	of	design
considerations.	First	and	foremost,	these	formats	are	biased	towards	serializing	a
single	Python	object.	It	might	be	a	list	of	other	objects,	but	it	is	essentially	a
single	object.	JSON	and	XML,	for	example,	have	ending	delimiters	that	are
written	after	the	serialized	object.	For	persisting	individual	objects	from	a	larger
domain,	we	can	look	at	shelve	and	sqlite3	in	Chapter	11,	Storing	and	Retrieving
Objects	via	Shelve,	and	Chapter	12,	Storing	and	Retrieving	Objects	via	SQLite.

JSON	is	a	widely-used	standard,	but	it's	inconvenient	for	representing	complex
Python	classes.	When	using	JSON,	we	need	to	be	cognizant	of	how	our	objects
can	be	reduced	to	a	JSON-compatible	representation.	JSON	documents	are
human-readable.	JSON's	limitations	make	it	potentially	secure	for	the
transmission	of	objects	through	the	internet.

YAML	is	not	as	widely	used	as	JSON,	but	it	solves	numerous	problems	in
serialization	and	persistence.	YAML	documents	are	human-readable;	for	editable
configuration	files,	YAML	is	ideal.	We	can	make	YAML	secure	using	the	safe-
load	options.

Pickle	is	ideal	for	the	simple,	fast,	local	persistence	of	Python	objects.	It	is	a
compact	notation	for	the	transmission	from	Python	to	Python.	CSV	is	a	widely-



used	standard.	Working	out	representations	for	Python	objects	in	CSV	notation	is
challenging.	When	sharing	data	in	CSV	notation,	we	often	end	up	using
NamedTuple	objects	in	our	applications.	We	have	to	design	a	mapping	from	Python
to	CSV	and	CSV	to	Python.

XML	is	another	widely-used	notation	for	serializing	data.	XML	is	extremely
flexible,	leading	to	a	wide	variety	of	ways	to	encode	Python	objects	in	XML
notation.	Because	of	the	XML	use	cases,	we	often	have	external	specifications	in
the	form	of	an	XSD	or	DTD.	The	process	for	parsing	XML	to	create	Python
objects	is	always	rather	complex.

Because	each	CSV	row	is	largely	independent	of	the	others,	CSV	allows	us	to
encode	or	decode	extremely	large	collections	of	objects.	For	this	reason,	CSV	is
often	handy	for	encoding	and	decoding	gargantuan	collections	that	can't	fit	into
memory.

In	some	cases,	we	have	a	hybrid	design	problem.	When	reading	most	modern
spreadsheet	files,	we	have	the	CSV	row-and-column	problem	wrapped	in	the
XML	parsing	problem.	Consider,	for	example,	OpenOffice.	ODS	files	are	zipped
archives.	One	of	the	files	in	the	archive	is	the	content.xml	file.	Using	an	XPath
search	for	body/spreadsheet/table	elements	will	locate	the	individual	tabs	of	the
spreadsheet	document.	Within	each	table,	we'll	find	the	table-row	elements	that
(usually)	map	to	Python	objects.	Within	each	row,	we'll	find	the	table-cell
elements	that	contain	the	individual	values	that	build	up	the	attributes	of	an
object.



Schema	evolution
When	working	with	persistent	objects,	we	have	to	address	the	problem	of
schema	evolution.	Our	objects	have	a	dynamic	state	and	a	static	class	definition.
We	can	easily	persist	the	dynamic	state.	Our	class	definitions	are	the	schema	for
the	persistent	data.	The	class,	however,	is	not	absolutely	static.	When	a	class
changes,	we	need	to	make	a	provision	to	load	data	that	was	dumped	by	the
previous	release	of	our	application.

It's	best	to	think	of	external	file	compatibility	to	distinguish	between	major	and
minor	release	numbers.	A	major	release	should	mean	that	a	file	is	no	longer
compatible	and	a	conversion	must	be	done.	A	minor	release	should	mean	that	the
file	formats	are	compatible	and	no	data	conversion	will	be	involved	in	the
upgrade.

One	common	approach	is	to	include	the	major	version	number	in	the	file
extension.	We	might	have	filenames	that	end	in	.json2	or	.json3	to	indicate	which
format	of	data	is	involved.	Supporting	multiple	versions	of	a	persistent	file
format	often	becomes	rather	complex.	To	provide	a	seamless	upgrade	path,	an
application	should	be	able	to	decode	previous	file	formats.	Often,	it's	best	to
persist	data	in	the	latest	and	greatest	file	format,	even	if	the	other	formats	are
supported	for	input.

In	the	next	chapters,	we'll	address	serialization	that's	not	focused	on	a	single
object.	The	shelve	and	sqlite3	modules	give	us	ways	to	serialize	a	multitude	of
distinct	objects.	After	that,	we'll	return	to	using	these	techniques	for
REpresentational	State	Transfer	(REST)	to	transmit	objects	from	process	to
process.	Also,	we'll	use	these	techniques	yet	again	to	process	the	configuration
files.



Looking	forward
In	Chapter	11,	Storing	and	Retrieving	Objects	via	Shelve,	and	Chapter	12,	Storing
and	Retrieving	Objects	via	SQLite,	we'll	look	at	two	common	approaches	to
making	larger	collections	of	persistent	objects.	These	two	chapters	show	us
different	approaches	we	can	use	to	create	a	database	of	Python	objects.

In	Chapter	13,	Transmitting	and	Sharing	Objects,	we'll	apply	these	serialization
techniques	to	the	problem	of	making	an	object	available	in	another	process.	We'll
focus	on	RESTful	web	services	as	a	simple	and	popular	way	to	transmit	an
object	among	processes.

In	Chapter	14,	Configuration	Files	and	Persistence,	we'll	apply	these	serialization
techniques	yet	again.	In	this	case,	we'll	use	representations	such	as	JSON	and
YAML	to	encode	the	configuration	information	for	an	application.



Storing	and	Retrieving	Objects	via
Shelve
There	are	many	applications	where	we	need	to	persist	objects	individually.	The
techniques	we	looked	at	in	Chapter	10,	Serializing	and	Saving	–	JSON,	YAML,
Pickle,	CSV,	and	XML,	were	biased	toward	handling	a	single	object.	Sometimes,
we	need	to	persist	separate,	individual	objects	from	a	larger	domain.

Applications	with	persistent	objects	may	demonstrate	four	use	cases,
summarized	as	the	CRUD	operations:	create,	retrieve,	update,	and	delete.	The
idea	here	is	any	of	these	operations	may	be	applied	to	any	object	in	the	domain;
this	leads	to	the	need	for	a	more	sophisticated	persistence	mechanism	than	a
monolithic	load	or	dump	of	all	the	objects	into	a	file.	In	addition	to	squandering
memory,	simple	loads	and	dumps	are	often	less	efficient	than	fine-grained,
distinct,	object-by-object	storage.

Using	more	sophisticated	storage	will	lead	us	to	look	more	closely	at	the
allocation	of	responsibility.	Separating	the	various	concerns	give	us	overall
design	patterns	for	the	architecture	of	the	application	software.	One	example	of
these	higher-level	design	patterns	is	the	multi-tier	architecture:

Presentation	layer:	This	includes	web	browsers	or	mobile	apps.	It	can	also
include	a	graphical	user	interface	(GUI)	for	a	locally-installed
application.	In	some	cases,	this	can	also	be	a	textual	command-line
interface.
Application	layer:	While	this	is	often	based	on	a	web	server,	it	may	also	be
a	portion	of	a	locally-installed	software.	The	application	tier	can	be	usefully
subdivided	into	a	processing	layer	and	a	data	model	layer.	The	processing
layer	involves	the	classes	and	functions	that	embody	an	application's
behavior.	The	data	model	layer	defines	the	problem	domain's	object	model.
Data	layer:	This	can	be	further	subdivided	into	an	access	layer	and	a
persistence	layer.	The	access	layer	provides	uniform	access	to	persistent
objects.	The	persistence	layer	serializes	objects	and	writes	them	to	the
persistent	storage.	This	is	where	the	more	sophisticated	storage	techniques
are	implemented.



Because	some	of	these	tiers	can	be	subdivided,	there	are	a	number	of	variations
on	this	model.	It	can	be	called	a	three-tier	architecture	to	recognize	the	clearest
distinctions.	It	can	also	be	called	an	n-tier	architecture	to	permit	fine	degrees	of
hair-splitting.	

The	data	layer	can	use	modules,	such	as	the	shelve	module,	for	persistence.	This
module	defines	a	mapping-like	container	in	which	we	can	store	objects.	Each
stored	object	is	pickled	and	written	to	a	file.	We	can	also	unpickle	and	retrieve
any	object	from	the	file.	The	shelve	module	relies	on	the	dbm	module	to	save	and
retrieve	objects.

This	section	will	focus	on	the	access	and	persistence	layers	within	the	overall
data	layer.	The	interface	between	these	layers	will	be	a	class	interface	within	a
single	application.	We'll	focus	on	the	simple	class-to-class	interface	in	this
chapter.	We'll	look	at	a	network-based	interface	to	a	data	layer	in	Chapter	13,
Transmitting	and	Sharing	Objects,	using	REST.

In	this	chapter,	we	will	cover	the	following	topics:

Analyzing	persistent	object	use	cases
Creating	a	shelf
Designing	shelvable	objects
Searching,	scanning,	and	querying
Designing	an	access	layer	for	shelve
Creating	indexes	to	improve	efficiency
Adding	yet	more	index	maintenance
The	writeback	alternative	to	index	updates



Technical	requirements
The	code	files	for	this	chapter	are	available	at	https://git.io/fj2Ur.

https://git.io/fj2Ur


Analyzing	persistent	object	use	cases
The	persistence	mechanisms	we	looked	at	in	Chapter	10,	Serializing	and	Saving	–
JSON,	YAML,	Pickle,	CSV,	and	XML,	focused	on	reading	and	writing	a	compact
file	with	the	serialized	representation	of	one	or	more	objects.	If	we	wanted	to
update	any	part	of	the	file,	we	were	forced	to	replace	the	entire	file.	This	is	a
consequence	of	using	a	compact	notation	for	the	data:	it's	difficult	to	reach	the
position	of	an	individual	object	within	a	file,	and	it's	difficult	to	replace	an	object
if	the	size	changes.	Rather	than	addressing	these	difficulties	with	smart,	complex
algorithms,	all	of	the	data	was	serialized	and	written.

When	we	have	a	larger	problem	domain	with	many	persistent,	independent,	and
mutable	objects,	we	introduce	some	additional	depth	to	the	use	cases:

We	may	not	want	to	load	all	of	the	objects	into	the	memory	at	one	time.	For
many	big	data	applications,	it	might	be	impossible	to	load	all	the	objects
into	the	memory	at	one	time.
We	may	be	updating	only	small	subsets	–	or	individual	instances	–	from	our
domain	of	objects.	Loading	and	then	dumping	all	the	objects	to	update	one
object	is	relatively	inefficient	processing.
We	may	not	be	dumping	all	the	objects	at	one	time;	we	may	be
accumulating	objects	incrementally.	Some	formats,	such	as	YAML	and
CSV,	allow	us	to	append	themselves	to	a	file	with	little	complexity.	Other
formats,	such	as	JSON	and	XML,	have	terminators	that	make	it	difficult	to
simply	append	to	a	file.

There	are	still	more	features	we	might	consider.	It's	common	to	conflate
serialization,	persistence,	transactional	consistency,	as	well	as	concurrent	write
access	into	a	single	umbrella	concept	of	database.	The	shelve	module	is	not	a
comprehensive	database	solution	by	itself.	The	underlying	dbm	module	used	by
shelve	does	not	directly	handle	concurrent	writes.	It	doesn't	handle	multi-
operation	transactions	either.	It's	possible	to	use	low-level	OS	locking	on	the
files	to	tolerate	concurrent	updating.	For	concurrent	write	access,	it's	better	to
either	use	a	proper	database	or	a	RESTful	data	server.	See	Chapter	12,	Storing	and
Retrieving	Objects	via	SQLite,	and	Chapter	13,	Transmitting	and	Sharing	Objects,
for	more	information.



Let's	take	a	look	at	the	ACID	properties	in	the	next	section.



The	ACID	properties
Our	design	must	consider	how	the	ACID	properties	apply	to	our	shelve
database.	Often,	an	application	will	make	changes	in	bundles	of	related
operations;	the	bundle	should	change	the	database	from	one	consistent	state	to
the	next	consistent	state.	The	intent	of	a	transactional	bundle	is	to	conceal	any
intermediate	states	that	may	not	be	consistent	with	other	users	of	the	data.

An	example	of	multiple-operation	transactions	could	involve	updating	two
objects	so	that	a	total	is	kept	invariant.	We	might	be	deducting	funds	from	one
financial	account	and	depositing	into	another.	The	overall	balance	must	be	held
constant	for	the	database	to	be	in	a	consistent,	valid	state.

The	ACID	properties	characterize	how	we	want	the	database	transactions	to
behave	as	a	whole.	There	are	four	rules	that	define	our	expectations:

Atomicity:	A	transaction	must	be	atomic.	If	there	are	multiple	operations
within	a	transaction,	either	all	the	operations	should	be	completed	or	none
of	them	should	be	completed.	It	should	never	be	possible	to	view	a	partially
completed	transaction.
Consistency:	A	transaction	must	assure	consistency	of	the	overall	database.
It	must	change	the	database	from	one	valid	state	to	another.	A	transaction
should	not	corrupt	the	database	or	create	inconsistent	views	among
concurrent	users.	All	users	see	the	same	net	effect	of	completed
transactions.
Isolation:	Each	transaction	should	operate	as	if	it	processed	in	complete
isolation	from	all	other	transactions.	We	can't	have	two	concurrent	users
interfering	with	each	other's	attempted	updates.	We	should	always	be	able
to	transform	concurrent	access	into	(possibly	slower)	serial	access	and	the
database	updates	will	produce	the	same	results.	Locks	are	often	used	to
achieve	this.
Durability:	The	changes	to	the	database	should	persist	properly	in	the
filesystem.

When	we	work	with	in-memory	Python	objects,	clearly,	we	can	get	ACI,	but	we
don't	get	D.	In-memory	objects	are	not	durable	by	definition.	If	we	attempt	to



use	the	shelve	module	from	several	concurrent	processes	without	locking	or
versioning,	we	may	get	only	D,	but	lose	the	ACI	properties.

The	shelve	module	doesn't	provide	direct	support	for	atomicity;	it	lacks	an
integrated	technique	to	handle	transactions	that	consist	of	multiple	operations.	If
we	have	multiple-operation	transactions	and	we	need	atomicity,	we	must	ensure
that	they	all	work	or	all	fail	as	a	unit.	This	can	involve	saving	the	state	prior	to
a	try:	statement;	in	the	event	of	a	problem,	the	exception	handlers	must	restore
the	previous	state	of	the	database.

The	shelve	module	doesn't	guarantee	durability	for	all	kinds	of	changes.	If	we
place	a	mutable	object	onto	the	shelf	and	then	change	the	object	in	memory,	the
persistent	version	on	the	shelf	file	will	not	change	automatically.	If	we're	going
to	mutate	shelved	objects,	our	application	must	be	explicit	about	updating	the
shelf	object.	We	can	ask	a	shelf	object	to	track	changes	via	the	writeback	mode,
but	using	this	feature	can	lead	to	poor	performance.

These	missing	features	are	relatively	simple	to	implement	with	some	additional
locking	and	logging.	They	aren't	default	features	of	a	shelf	instance.	When	full
ACID	capabilities	are	needed,	we	often	switch	to	other	forms	of	persistence.
When	an	application	doesn't	need	the	full	ACID	feature	set,	however,	the
shelve	module	can	be	very	helpful.

In	the	next	section,	we'll	see	how	to	create	a	shelf.



Creating	a	shelf
The	first	part	of	creating	a	shelf	is	done	using	a	module-level	function,
shelve.open(),	to	create	a	persistent	shelf	structure.	The	second	part	is	closing	the
file	properly	so	that	all	changes	are	written	to	the	underlying	filesystem.	We'll
look	at	this	in	a	more	complete	example,	in	the	Designing	an	access	layer	for
shelve	section.

Under	the	hood,	the	shelve	module	is	using	the	dbm	module	to	do	the	real	work	of
opening	a	file	and	mapping	from	a	key	to	a	value.	The	dbm	module	itself	is	a
wrapper	around	an	underlying	DBM-compatible	library.	Consequently,	there	are
a	number	of	potential	implementations	for	the	shelve	features.	The	good	news	is
that	the	differences	among	the	dbm	implementations	are	largely	irrelevant.

The	shelve.open()	module	function	requires	two	parameters:	the	filename	and	the
file	access	mode.	Often,	we	want	the	default	mode	of	'c'	to	open	an	existing
shelf	or	create	one	if	it	doesn't	exist.

The	alternatives	are	for	specialized	situations:

'r'	is	a	read-only	shelf.
'w'	is	a	read-write	shelf	that	must	exist	or	an	exception	will	be	raised.
'n'	is	a	new,	empty	shelf;	any	previous	version	will	be	overwritten.

It's	absolutely	essential	to	close	a	shelf	to	be	sure	that	it	is	properly	persisted	to
disk.	The	shelf	is	not	a	context	manager	itself,	but	the	contextlib.closing()	function
should	always	be	used	to	make	sure	that	the	shelf	is	closed.	For	more
information	on	context	managers,	see	Chapter	6,	Using	Callables	and	Contexts.

Under	some	circumstances,	we	might	also	want	to	explicitly	synchronize	a	shelf
to	a	disk	without	closing	the	file.	The	shelve.sync()	method	will	persist	changes
prior	to	a	close.	An	idealized	life	cycle	looks	something	like	the	following	code:

import	shelve	

from	contextlib	import	closing	

from	pathlib	import	Path

db_path	=	Path.cwd()	/	"data"	/	"ch11_blog"

with	closing(shelve.open(str(db_path)))	as	shelf:	



				process(shelf)	

We've	opened	a	shelf	and	provided	that	open	shelf	to	some	function	that	does	the
real	work	of	our	application.	When	this	process	is	finished,	the	context	will
ensure	that	the	shelf	is	closed.	If	the	process()	function	raises	an	exception,	the
shelf	will	still	be	properly	closed.

Let's	see	how	to	design	shelvable	objects.



Designing	shelvable	objects
If	our	objects	are	relatively	simple,	putting	them	on	a	shelf	will	be	trivial.	For
objects	that	are	not	complex	containers	or	large	collections,	we	only	have	to
work	out	a	key-to-value	mapping.	For	objects	that	are	more	complex	–	typically
objects	that	contain	other	objects	–	we	have	to	make	some	additional	design
decisions	regarding	the	granularity	of	access	and	references	among	objects.	We'll
look	at	the	simple	case	first,	where	all	we	have	to	design	is	the	key	that	is	used	to
access	our	objects.	Then,	we'll	look	at	the	more	complex	cases,	where
granularity	and	object	references	come	into	play.

Let's	see	how	to	design	objects	with	type	hints.



Designing	objects	with	type	hints
The	Python	type	hints	provide	considerable	help	in	defining	objects	for	a	shelf.
Throughout	this	chapter,	we'll	emphasize	the	use	of	the	@dataclass	decorator	to
create	objects	suitable	for	persistence.

The	data	class	concept	is	helpful	because	it	makes	the	attributes	that	define
object	state	extremely	clear.	The	attributes	are	not	concealed	inside	method
definitions.	Without	@dataclass,	the	attributes	are	often	implied	by	the	__init__()
method.	In	some	classes,	however,	attributes	are	defined	dynamically,	making
the	attributes	inconsistent	and	leading	to	possible	problems	in	recovering	object
state	from	a	shelved	representation.

The	pickle	module	is	used	to	do	the	serialization	of	the	objects.	For	more
information	on	object	pickling,	see	Chapter	10,	Serializing	and	Saving	–	JSON,
YAML,	Pickle,	CSV,	and	XML.

In	the	following	sections,	we'll	look	at	ways	to	define	the	keys	used	to	uniquely
identify	objects	in	a	shelf	collection.	A	single	unique	key	is	essential.	In	some
problem	domains,	there	will	be	an	attribute,	or	combination	of	attributes,	that	is
unique.	In	spite	of	this,	it's	often	advantageous	to	create	a	surrogate	key	that	is
generated	by	the	application	and	assigned	to	each	persistent	object	to	assure
uniqueness.

Let's	see	how	to	design	keys	for	our	objects.



Designing	keys	for	our	objects
The	shelve	and	dbm	modules	provide	immediate	access	to	any	object	in	an
arbitrarily	huge	universe	of	objects.	The	shelve	module	creates	a	mapping	that	is
much	like	a	dictionary.	The	shelf	mapping	exists	on	persistent	storage,	so	any
object	we	put	onto	the	shelf	will	be	serialized	and	saved.

We	must	identify	each	shelved	object	with	a	unique	key.	String	values	are	a
common	choice	for	keys.	This	imposes	some	design	considerations	on	our
classes	to	provide	an	appropriately	unique	key.	In	some	cases,	the	problem
domain	will	have	an	attribute	that	is	an	obvious	unique	key.	In	that	case,	we	can
simply	use	that	attribute	to	construct	this	key.	For	example,	if	our	class	has	a
unique	attribute	value,	key_attribute,	we	can	use	shelf[object.key_attribute]	=	object.
This	is	the	simplest	case	and	sets	the	pattern	for	more	complex	cases.

When	our	application	problem	doesn't	offer	an	appropriate	unique	key,	we'll
have	to	fabricate	a	surrogate	key	value.	This	problem	arises	frequently	when
every	attribute	of	an	object	is	potentially	mutable	or	potentially	non-unique.	In
this	case,	we	may	have	to	create	a	surrogate	key	because	there	is	no	value,	nor
any	combination	of	values,	that	is	unique.	

Our	application	may	have	non-string	values	that	are	candidates	for	primary	keys.
For	example,	we	might	have	a	datetime	object,	or	a	number.	In	these	cases,	we
might	want	to	encode	the	value	as	a	string.

In	cases	where	there	is	no	obvious	primary	key,	we	can	try	to	locate	a
combination	of	values	that	create	a	unique	composite	key.	This	can	become
complex,	because	now	the	key	is	not	atomic,	and	a	change	to	any	part	of	the	key
may	create	data	update	problems.

It's	often	simplest	to	follow	a	design	pattern	called	a	surrogate	key.	This	key
doesn't	depend	on	data	within	an	object;	it's	a	surrogate	for	the	object.	This
means	that	any	of	the	attributes	of	the	object	can	be	changed	without	leading	to
complications	or	restrictions.	Python's	internal	object	IDs	are	an	example	of	a
kind	of	surrogate	key.



The	string	representation	of	a	shelf	key	can	follow	this	pattern:	class_name:oid.	The
key	string	includes	the	class	of	the	object,	class_name,	paired	with	the	unique
identifier	for	an	instance	of	the	class,	oid.	We	can	easily	store	diverse	classes	of
objects	in	a	single	shelf	using	keys	of	this	form.	Even	when	we	think	there	will
be	only	one	type	of	object	in	the	shelf,	this	format	is	still	helpful	to	save	a
namespace	for	indexes,	administrative	metadata,	and	future	expansion.

When	we	have	a	suitable	natural	key,	we	might	do	something	like	this	to	persist
objects	in	the	shelf:

shelf[f"{object.__class__.__name__}:{object.key_attribute}"]	=	object

This	uses	an	f-string	to	create	a	key	with	a	distinct	class	name	along	with	the
unique	key	value.	This	string	identifier	must	be	unique	for	each	object.	For
surrogate	keys,	we'll	need	to	define	some	kind	of	generator	to	emit	distinct
values.

The	next	section	discusses	how	to	generate	surrogate	keys	for	objects.



Generating	surrogate	keys	for	objects
One	way	to	generate	unique	surrogate	keys	is	to	use	an	integer	counter.	To	be
sure	that	we	keep	this	counter	properly	updated,	we	will	store	it	in	the	shelf
along	with	the	rest	of	our	data.	Even	though	Python	has	an	internal	object	ID,	we
should	not	use	Python's	internal	identifier	for	a	surrogate	key.	Python's	internal
ID	numbers	have	no	guarantees	of	any	kind.

As	we're	going	to	add	some	administrative	objects	to	our	shelf,	we	must	give
these	objects	unique	keys	with	a	distinctive	prefix.	We'll	use	_DB.	This	will	be	a
class	name	for	the	administrative	objects	in	our	shelf.	The	design	decisions	for
these	administrative	objects	are	similar	to	the	design	of	the	application	objects.
We	need	to	choose	the	granularity	of	storage.	We	have	two	choices:

Coarse-grained:	We	can	create	a	single	dict	object	with	all	of	the
administrative	overheads	for	surrogate	key	generations.	A	single	key,	such
as	_DB:max,	can	identify	this	object.	Within	this	dict,	we	could	map	class
names	to	the	maximum	identifier	values	used.	Every	time	we	create	a	new
object,	we	assign	the	ID	from	this	mapping	and	then	also	replace	the
mapping	in	the	shelf.	We'll	show	the	coarse-grained	solution	in	the
following	Designing	a	class	with	a	simple	key	section.
Fine-grained:	We	can	add	many	items	to	the	database,	each	of	which	has
the	maximum	key	value	for	a	different	class	of	objects.	Each	of	these
additional	key	items	has	the	form	of	_DB:max:class.	The	value	for	each	of
these	keys	is	just	an	integer,	the	largest	sequential	identifier	assigned	so	far
for	a	given	class.

An	important	consideration	here	is	that	we've	separated	the	key	design	from	the
class	design	for	our	application's	classes.	We	can	(and	should)	design	our
application	objects	as	simply	as	possible.	We	should	add	just	enough	overhead	to
make	shelve	work	properly,	but	no	more.

Let's	see	how	to	design	a	class	with	a	simple	key.



Designing	a	class	with	a	simple	key
It	is	helpful	to	store	the	shelve	key	as	an	attribute	of	a	shelved	object.	Keeping	the
key	in	the	object	makes	the	object	easier	to	delete	or	replace.	Clearly,	when
creating	an	object,	we'll	start	with	a	keyless	version	of	the	object	until	it's	stored
in	the	shelf.	Once	stored,	the	Python	object	needs	to	have	a	key	attribute	set	so
that	each	object	in	the	memory	contains	a	correct	key.

When	retrieving	objects,	there	are	two	use	cases.	We	might	want	a	specific
object	that	is	known	by	the	key.	In	this	case,	the	shelf	will	map	the	key	to	the
object.	We	might	also	want	a	collection	of	related	objects	not	known	by	their
keys,	but	perhaps	known	by	the	values	of	some	other	attributes.	In	this	case,
we'll	discover	the	keys	of	objects	through	some	kind	of	search	or	query.	We'll
look	at	the	search	algorithms	in	the	following	Designing	CRUD	operations	for
complex	objects	section.

To	support	saving	the	shelf	keys	in	objects,	we'll	add	an	_id	attribute	to	each
object.	It	will	keep	the	shelve	key	in	each	object	that	has	been	put	onto	the	shelf
or	retrieved	from	the	shelf.	This	will	simplify	managing	objects	that	need	to	be
replaced	in	or	removed	from	the	shelf.	A	surrogate	key	won't	have	any	method
functions,	for	example,	and	it	is	never	part	of	the	processing	layer	of	the
application	tier	or	the	presentation	tier.	Here's	a	definition	for	an	overall	Blog:

from	dataclasses	import	dataclass,	asdict,	field

@dataclass

class	Blog:

				title:	str

				entries:	List[Post]	=	field(default_factory=list)

				underline:	str	=	field(init=False,	compare=False)

				#	Part	of	the	persistence,	not	essential	to	the	class.

				_id:	str	=	field(default="",	init=False,	compare=False)

				def	__post_init__(self)	->	None:

								self.underline	=	"="	*	len(self.title)

We've	provided	the	essential	title	attribute.	The	entries	attribute	is	optional,	and
has	a	default	value	of	an	empty	list.	underline	is	computed	as	a	string	with	a
length	that	matches	the	title;	this	makes	some	part	of	reStructuredText	formatting
slightly	simpler.	



We	can	create	a	Blog	object	in	the	following	manner:

>>>	b1	=	Blog(title="Travel	Blog")	

This	will	have	an	empty	list	of	individual	postings	within	the	blog.	When	we
store	this	simple	object	in	the	shelf,	we	can	do	operations	including	the
following:

>>>	import	shelve

>>>	from	pathlib	import	Path

>>>	shelf	=	shelve.open(str(Path.cwd()	/	"data"	/	"ch11_blog"))

>>>	b1._id	=	'Blog:1'

>>>	shelf[b1._id]	=	b1	

We	started	by	opening	a	new	shelf.	The	file	will	end	up	being	called	ch11_blog.db.
We	put	a	key,	Blog:1,	into	our	Blog	instance,	b1.	We	stored	that	Blog	instance	in	the
shelf	using	the	key	given	in	the	_id	attribute.

We	can	fetch	the	item	back	from	the	shelf	like	this:

>>>	shelf['Blog:1']

Blog(title='Travel	Blog',	entries=[],	underline='===========',	_id='Blog:1')

>>>	shelf['Blog:1'].title	

'Travel	Blog'

>>>	shelf['Blog:1']._id	

'Blog:1'

>>>	list(shelf.keys())	

['Blog:1']

>>>	shelf.close()	

When	we	refer	to	shelf['Blog:1'],	it	will	fetch	our	original	Blog	instance	from	the
shelf.	We've	put	only	one	object	on	the	shelf,	as	we	can	see	from	the	list	of	keys.
Because	we	closed	the	shelf,	the	object	is	persistent.	We	can	quit	Python,	start	it
back	up	again,	open	the	shelf,	and	see	that	the	object	remains	on	the	shelf,	using
the	assigned	key.	Previously,	we	mentioned	a	second	use	case	for	retrieval—
locating	an	item	without	knowing	the	key.	Here's	a	search	that	locates	all	the
blogs	with	a	given	title:

>>>	path	=	Path.cwd()	/	"data"	/	"ch11_blog"

>>>	shelf	=	shelve.open(str(path))

>>>	results	=	(shelf[k]	

...					for	k	in	shelf.keys()	

...					if	k.startswith('Blog:')	and	shelf[k].title	==	'Travel	Blog'

...	)

>>>	list(results)

[Blog(title='Travel	Blog',	entries=[],	underline='===========',	_id='Blog:1')]

We	opened	the	shelf	to	get	access	to	the	objects.	The	results	generator	expression



examines	each	item	in	the	shelf	to	locate	those	items	where	the	key	starts	with
'Blog:',	and	the	object's	title	attribute	is	the	'Travel	Blog'	string.

What's	important	is	that	the	key,	'Blog:1',	is	stored	within	the	object	itself.	The	_id
attribute	ensures	that	we	have	the	proper	key	for	any	item	that	our	application	is
working	with.	We	can	now	mutate	any	attribute	of	the	object	(except	the	key)
and	replace	it	in	the	shelf	using	its	original	key.

Now,	let's	see	how	to	design	classes	for	containers	or	collections.



Designing	classes	for	containers	or
collections
When	we	have	more	complex	containers	or	collections,	we	have	more	complex
design	decisions	to	make.	One	question	is	about	the	granularity	of	our	shelved
objects.

When	we	have	an	object,	such	as	Blog,	which	is	a	container,	we	can	persist	the
entire	container	as	a	single,	complex	object	on	our	shelf.	To	an	extent,	this	might
defeat	the	purpose	of	having	multiple	objects	on	a	shelf	in	the	first	place.	Storing
large	containers	involves	coarse-grained	storage.	If	we	change	a	contained
object,	the	entire	container	must	be	serialized	and	stored.	If	we	wind	up
effectively	pickling	the	entire	universe	of	objects	in	a	single	container,	why	use
shelve?	We	must	strike	a	balance	that	is	appropriate	to	the	application's
requirements.

One	alternative	is	to	decompose	the	collection	into	separate,	individual	items.	In
this	case,	our	top-level	Blog	object	won't	be	a	proper	Python	container	anymore.
The	parent	might	refer	to	each	child	with	a	collection	of	keys.	Each	child	object
could	refer	to	the	parent	by	the	key.	This	use	of	keys	is	unusual	in	object-
oriented	design.	Normally,	objects	simply	contain	references	to	other	objects.
When	using	shelve	(or	other	databases),	we	can	be	forced	to	use	indirect
references	by	the	key.

Each	child	will	now	have	two	keys:	its	own	primary	key,	plus	a	foreign	key	that
is	the	primary	key	of	the	parent	object.	This	leads	to	a	second	design	question
about	representing	the	key	strings	for	the	parents	and	their	children.

The	next	section	shows	how	to	refer	to	objects	via	foreign	keys.



Referring	to	objects	via	foreign	keys
The	key	that	we	use	to	uniquely	identify	an	object	is	its	primary	key.	When	child
objects	refer	to	a	parent	object,	we	have	additional	design	decisions	to	make.
How	do	we	structure	the	children's	primary	keys?	There	are	two	common	design
strategies	for	child	keys,	based	on	the	kind	of	dependence	that	exists	between	the
classes	of	objects:

"Child:cid":	We	can	use	this	when	we	have	children	that	can	exist
independently	of	an	owning	parent.	For	example,	an	item	on	an	invoice
refers	to	a	product;	the	product	can	exist	even	if	there's	no	invoice	item	for
the	product.
"Parent:pid:Child:cid":	We	can	use	this	when	the	child	cannot	exist	without	a
parent.	A	customer	address	doesn't	exist	without	a	customer	to	contain	the
address	in	the	first	place.	When	the	children	are	entirely	dependent	on	the
parent,	the	child's	key	can	contain	the	owning	parent's	ID	to	reflect	this
dependency.

As	with	the	parent	class	design,	it's	easiest	if	we	keep	the	primary	key	and	all
foreign	keys	associated	with	each	child	object.	We	suggest	not	initializing	them
in	the	__init__()	method,	as	they're	just	features	of	persistence.	Here's	the	general
definition	for	Post	within	Blog:

import	datetime

from	dataclasses	import	dataclass,	field,	asdict

from	typing	import	List

@dataclass

class	Post:

				date:	datetime.datetime

				title:	str

				rst_text:	str

				tags:	List[str]

				underline:	str	=	field(init=False)

				tag_text:	str	=	field(init=False)

				#	Part	of	the	persistence,	not	essential	to	the	class.

				_id:	str	=	field(default='',	init=False,	repr=False,	compare=False)

				_blog_id:	str	=	field(default='',	init=False,	repr=False,	compare=False)

				def	__post_init__(self)	->	None:

								self.underline	=	"-"	*	len(self.title)

								self.tag_text	=	"	".join(self.tags)

We've	provided	several	attributes	for	each	microblog	post.	The	asdict()	function



of	the	dataclasses	module	can	be	used	with	a	template	to	provide	a	dictionary
usable	to	create	JSON	notation.	We've	avoided	mentioning	the	primary	key	or
any	foreign	keys	for	Post.	Here	are	two	examples	of	the	Post	instances:

p2	=	Post(date=datetime.datetime(2013,11,14,17,25),	

								title="Hard	Aground",	

								rst_text="""Some	embarrassing	revelation.	Including	☹	and	⚓""",	
								tags=("#RedRanger",	"#Whitby42",	"#ICW"),	

								)	

	

p3	=	Post(date=datetime.datetime(2013,11,18,15,30),	

								title="Anchor	Follies",	

								rst_text="""Some	witty	epigram.	Including	<	&	>	characters.""",	

								tags=("#RedRanger",	"#Whitby42",	"#Mistakes"),	

								)	

We	can	now	associate	these	two	post	objects	with	their	owning	blog	object	by
setting	attributes.	We'll	do	this	through	the	following	steps:

1.	 Open	the	shelf	and	retrieve	the	parent	Blog	object.	Save	it	in	the	owner
variable	so	we	have	access	to	the	_id	attribute:

>>>	import	shelve	

>>>	shelf	=	shelve.open("blog")	

>>>	owner	=	shelf['Blog:1']	

2.	 Assign	this	owner's	key	to	each	Post	object	and	persist	the	objects.	Put	the
parent	information	into	each	Post.	We	used	the	parent	information	to	build
the	primary	key.	For	this	dependent	kind	of	key,	the	_parent	attribute	value	is
redundant;	it	can	be	deduced	from	the	key.	If	we	used	an	independent	key
design	for	Posts,	however,	_parent	would	not	be	duplicated	in	the	key:

>>>	p2._blog_id	=	owner._id	

>>>	p2._id	=	p2._blog_id	+	':Post:2'	

>>>	shelf[p2._id]=	p2	

	

>>>	p3._blog_id	=	owner._id	

>>>	p3._id	=	p3._blog_id	+	':Post:3'	

>>>	shelf[p3._id]=	p3	

When	we	look	at	the	keys,	we	can	see	the	Blog	plus	both	Post	instances:

>>>	list(shelf.keys())	

['Blog:1:Post:3',	'Blog:1',	'Blog:1:Post:2']	

When	we	fetch	any	child	Post,	we'll	know	the	proper	parent	Blog	for	the
individual	posting:

>>>	p2._parent	'Blog:1'	



>>>	p2._id	'Blog:1:Post:2'	

Following	the	keys	the	other	way	–	from	parent,	Blog,	down	to	its	child,	Post	–
becomes	a	matter	of	locating	the	matching	keys	in	the	shelf	collection.

How	to	design	CRUD	operations	for	complex	objects	is	discussed	in	the	next
section.



Designing	CRUD	operations	for
complex	objects
When	we	decompose	a	larger	collection	into	a	number	of	separate	fine-grained
objects,	we	will	have	multiple	classes	of	objects	on	the	shelf.	Because	they	are
independent	objects,	they	will	lead	to	separate	sets	of	CRUD	operations	for	each
class.	In	some	cases,	the	objects	are	independent,	and	operations	on	an	object	of
one	class	have	no	impact	outside	that	individual	object.	In	some	relational
database	products,	these	become	cascading	operations.	Removing	a	Blog	entry
can	cascade	into	removing	the	related	Post	entries.

In	our	previous	example,	the	Blog	and	Post	objects	have	a	dependency
relationship.	The	Post	objects	are	children	of	a	parent	Blog;	the	child	can't	exist
without	the	parent.	When	we	have	these	dependent	relationships,	we	have	a
more	entangled	collection	of	operations	to	design.	Here	are	some	of	the
considerations:

Consider	the	following	for	CRUD	operations	on	independent	(or	parent)
objects:

We	may	create	a	new,	empty	parent,	assigning	a	new	primary	key	to
this	object.	We	can	later	assign	children	to	this	parent.	Code	such	as
shelf['parent:'+object._id]	=	object	creates	a	parent	object	in	the	shelf.
We	may	update	or	retrieve	this	parent	without	any	effect	on	the
children.	We	can	perform	shelf['parent:'+some_id]	on	the	right	side	of	the
assignment	to	retrieve	a	parent.	Once	we	have	the	object,	we	can
perform	shelf['parent:'+object._id]	=	object	to	persist	a	change.
Deleting	the	parent	can	lead	to	one	of	two	behaviors.	One	choice	is	to
cascade	the	deletion	to	include	all	the	children	that	refer	to	the	parent.
Alternatively,	we	may	write	code	to	prohibit	the	deletion	of	parents
that	still	have	child	references.	Both	are	sensible,	and	the	choice	is
driven	by	the	requirements	imposed	by	the	problem	domain.

Consider	the	following	for	CRUD	operations	on	dependent	(or	child)
objects:

We	can	create	a	new	child	that	refers	to	an	existing	parent.	We	must
also	decide	what	kind	of	keys	we	want	to	use	for	children	and	parents.



We	can	update,	retrieve,	or	delete	the	child	outside	the	parent.	This	can
include	assigning	the	child	to	a	different	parent.

As	the	code	to	replace	an	object	is	the	same	as	the	code	to	update	an	object,	half
of	the	CRUD	processing	is	handled	through	the	simple	assignment	statement.
Deletion	is	done	with	the	del	statement.	The	issue	of	deleting	children	associated
with	a	parent	might	involve	a	retrieval	to	locate	the	children.	What's	left,	then,	is
an	examination	of	retrieval	processing,	which	can	be	a	bit	more	complex.

Searching,	scanning,	and	querying	are	discussed	in	the	next	section.



Searching,	scanning,	and	querying
A	search	can	be	inefficient	if	we	examine	all	of	the	objects	in	a	database,	and
apply	a	filter.	We'd	prefer	to	work	with	a	more	focused	subset	of	items.	We'll
look	at	how	we	can	create	more	useful	indices	in	the	Creating	indexes	to
improve	efficiency	section.	The	fallback	plan	of	brute-force	scanning	all	the
objects,	however,	always	works.	For	searches	that	occur	rarely,	the	computation
required	to	create	a	more	efficient	index	may	not	be	worth	the	time	saved.	

Don't	panic;	searching,	scanning,	and	querying	are	synonyms.	We'll	use	the	terms
interchangeably.

When	a	child	class	has	an	independent-style	key,	we	can	scan	a	shelf	for	all
instances	of	some	Child	class	using	an	iterator	over	the	keys.	Here's	a	generator
expression	that	locates	all	the	children:

children	=	(shelf[k]	

				for	k	in	shelf.keys()	

				if	k.startswith("Child:"))	

This	looks	at	every	single	key	in	the	shelf	to	pick	the	subset	that	begins	with
"Child:".	We	can	build	on	this	to	apply	more	criteria	by	using	a	more	complex
generator	expression:

children_by_title	=	(c	

				for	c	in	children	

				if	c.startswith("Child:")	and	c.title	==	"some	title")	

We've	used	a	nested	generator	expression	to	expand	on	the	initial	children	query,
adding	criteria.	Nested	generator	expressions	such	as	this	are	remarkably
efficient	in	Python.	This	does	not	make	two	scans	of	the	database.	It's	a	single
scan	with	two	conditions.	Each	result	from	the	inner	generator	feeds	the	outer
generator	to	build	the	result.

When	a	child	class	has	a	dependent-style	key,	we	can	search	the	shelf	for
children	of	a	specific	parent	using	an	iterator	with	a	more	complex	matching
rule.	Here's	a	generator	expression	that	locates	all	the	children	of	a	given	parent:

children_of	=	(shelf[k]	

				for	k	in	shelf.keys()	



				if	k.startswith(parent+":Child:"))	

This	dependent-style	key	structure	makes	it	particularly	easy	to	remove	a	parent
and	all	children	in	a	simple	loop:

query	=	(key

				for	key	in	shelf.keys()	

				if	key.startswith(parent))

for	k	in	query:	

				del	shelf[k]

When	using	hierarchical	"Parent:pid:Child:cid"	keys,	we	do	have	to	be	careful
when	separating	parents	from	their	children.	With	this	multi-part	key,	we'll	see
lots	of	object	keys	that	start	with	"Parent:pid".	One	of	these	keys	will	be	the
proper	parent,	simply	"Parent:pid".	The	other	keys	will	be	children	with
"Parent:pid:Child:cid".	We	have	three	kinds	of	conditions	that	we'll	often	use	for
these	brute-force	searches:

key.startswith(f"Parent:{pid}"):	Finds	a	union	of	parents	and	children;	this	isn't
a	common	requirement.
key.startswith(f"Parent:{pid}:Child:"):	Finds	children	of	the	given	parent.	An
alternative	to	startswith()	is	a	regular	expression,	such	as	r"^(Parent:\d+):
(Child:\d+)$",	to	match	the	keys.
key.startswith(f"Parent:{pid}")	and	":Child:"	not	in	key:	Finds	parents,
excluding	any	children.	An	alternative	is	to	use	a	regular	expression,	such
as	r"^Parent:\d+$",	to	match	the	keys.

All	of	these	queries	can	be	optimized	by	building	indices	to	restrict	the	search
space	to	more	meaningful	subsets.

Let's	take	a	look	at	how	to	design	an	access	layer	for	shelve.



Designing	an	access	layer	for	shelve
Here's	how	shelve	might	be	used	by	an	application.	We'll	look	at	parts	of	an
application	that	edits	and	saves	microblog	posts.	We'll	break	the	application	into
two	tiers:	the	application	tier	and	the	data	tier.	Within	an	application	tier,	we'll
distinguish	between	two	layers:

Application	processing:	Within	the	application	layer,	objects	are	not
persistent.	These	classes	will	embody	the	behavior	of	the	application	as	a
whole.	These	classes	respond	to	the	user	selection	of	commands,	menu
items,	buttons,	and	other	processing	elements.
Problem	domain	data	model:	These	are	the	objects	that	will	get	written	to
a	shelf.	These	objects	embody	the	state	of	the	application	as	a	whole.

The	classes	to	define	an	independent	Blog	and	Post	will	have	to	be	modified	so
that	we	can	process	them	separately	in	the	shelf	container.	We	don't	want	to
create	a	single,	large	container	object	by	turning	Blog	into	a	collection	class.

Within	the	data	tier,	there	might	be	a	number	of	features,	depending	on	the
complexity	of	the	data	storage.	We'll	focus	on	these	two	features:

Access:	These	components	provide	uniform	access	to	the	problem	domain
objects.	We'll	focus	on	the	access	tier.	We'll	define	an	Access	class	that
provides	access	to	the	Blog	and	Post	instances.	It	will	also	manage	the	keys	to
locate	the	Blog	and	Post	objects	in	the	shelf.
Persistence:	The	components	serialize	and	write	problem	domain	objects	to
persistent	storage.	This	is	the	shelve	module.	The	Access	tier	will	depend	on
this.

We'll	break	the	Access	class	into	three	separate	pieces.	Here's	the	first	part,
showing	the	file	open	and	close	operations:

import	shelve

from	typing	import	cast

class	Access:

				def	__init__(self)	->	None:

								self.database:	shelve.Shelf	=	cast(shelve.Shelf,	None)

								self.max:	Dict[str,	int]	=	{"Post":	0,	"Blog":	0}



				def	new(self,	path:	Path)	->	None:

								self.database:	shelve.Shelf	=	shelve.open(str(path),	"n")

								self.max:	Dict[str,	int]	=	{"Post":	0,	"Blog":	0}

								self.sync()

				def	open(self,	path:	Path)	->	None:

								self.database	=	shelve.open(str(path),	"w")

								self.max	=	self.database["_DB:max"]

				def	close(self)	->	None:

								if	self.database:

												self.database["_DB:max"]	=	self.max

												self.database.close()

								self.database	=	cast(shelve.Shelf,	None)

				def	sync(self)	->	None:

								self.database["_DB:max"]	=	self.max

								self.database.sync()

				def	quit(self)	->	None:

								self.close()

For	Access.new(),	we'll	create	a	new,	empty	shelf.	For	Access.open(),	we'll	open	an
existing	shelf.	For	closing	and	synchronizing,	we've	made	sure	to	post	a	small
dictionary	of	the	current	maximum	key	values	into	the	shelf.

The	cast()	function	is	used	to	allow	us	to	break	the	type	hint	for	self.database	by
assigning	a	None	object	to	it.	The	type	hint	for	this	attribute	is	shelve.Shelf.	The
cast()	function	tells	mypy	that	we're	fully	aware	None	is	not	an	instance	of	Shelf.

We	haven't	addressed	how	to	implement	a	Save	As...	method	to	make	a	copy	of
the	file.	Nor	have	we	addressed	a	quit-without-saving	option	to	revert	to	the
previous	version	of	a	database	file.	These	additional	features	involve	the	use	of
the	os	module	to	manage	the	file	copies.

In	addition	to	the	basic	methods	for	opening	and	closing	the	database,	we	need
methods	to	perform	CRUD	operations	on	blogs	and	posts.	In	principle,	we
would	have	eight	separate	methods	for	this.	Here	are	some	of	the	methods	to
update	the	shelf	with	Blog	and	Post	objects:

def	create_blog(self,	blog:	Blog)	->	Blog:

				self.max['Blog']	+=	1

				key	=	f"Blog:{self.max['Blog']}"

				blog._id	=	key

				self.database[blog._id]	=	blog

				return	blog

def	retrieve_blog(self,	key:	str)	->	Blog:

				return	self.database[key]

def	create_post(self,	blog:	Blog,	post:	Post)	->	Post:



				self.max['Post']	+=	1

				post_key	=	f"Post:{self.max['Post']}"

				post._id	=	post_key

				post._blog_id	=	blog._id

				self.database[post._id]	=	post

				return	post

def	retrieve_post(self,	key:	str)	->	Post:

				return	self.database[key]

def	update_post(self,	post:	Post)	->	Post:

				self.database[post._id]	=	post

				return	post

def	delete_post(self,	post:	Post)	->	None:

				del	self.database[post._id]

We've	provided	a	minimal	set	of	methods	to	put	Blog	in	the	shelf	with	its
associated	Post	instances.	When	we	create	a	Blog,	the	create_blog()	method	first
computes	a	new	key,	then	updates	the	Blog	object	with	the	key,	and	finally,	it
persists	the	Blog	object	in	the	shelf.	We've	highlighted	the	lines	that	change	the
shelf	contents.	Simply	setting	an	item	in	the	shelf,	similar	to	setting	an	item	in	a
dictionary,	will	make	the	object	persistent.

When	we	add	a	post,	we	must	provide	the	parent	Blog	so	that	the	two	are	properly
associated	on	the	shelf.	In	this	case,	we	get	the	Blog	key,	create	a	new	Post	key,
and	then	update	Post	with	the	key	values.	This	updated	Post	can	be	persisted	on
the	shelf.	The	highlighted	line	in	create_post()	makes	the	object	persistent	in	the
shelf.

In	the	unlikely	event	that	we	try	to	add	a	Post	without	having	previously	added
the	parent	Blog,	we'll	have	attribute	errors	because	the	Blog._id	attribute	will	not	be
available.

We've	provided	representative	methods	to	replace	Post	and	delete	Post.	There	are
several	other	possible	operations;	we	didn't	include	methods	to	replace	Blog	or
delete	Blog.	When	we	write	the	method	to	delete	Blog,	we	have	to	address	the
question	of	preventing	the	deletion	when	there	are	still	Post	objects,	or	cascading
the	deletion	to	include	Post	objects.	Finally,	there	are	some	search	methods	that
act	as	iterators	to	query	Blog	and	Post	instances:

def	__iter__(self)	->	Iterator[Union[Blog,	Post]]:

				for	k	in	self.database:

								if	k[0]	==	"_":

												continue		#	Skip	the	administrative	objects

								yield	self.database[k]



def	blog_iter(self)	->	Iterator[Blog]:

				for	k	in	self.database:

								if	k.startswith('Blog:'):

												yield	self.database[k]

def	post_iter(self,	blog:	Blog)	->	Iterator[Post]:

				for	k	in	self.database:

								if	k.startswith('Post:'):

												if	self.database[k]._blog_id	==	blog._id:

																yield	self.database[k]

def	post_title_iter(self,	blog:	Blog,	title:	str)	->	Iterator[Post]:

				return	(p	for	p	in	self.post_iter(blog)	if	p.title	==	title)

We've	defined	a	default	iterator,	__iter__(),	to	filter	out	the	internal	objects	that
have	keys	beginning	with	_.	So	far,	we've	only	defined	one	such	key,	_DB:max,	but
this	design	leaves	us	with	room	to	invent	others.

The	blog_iter()	method	iterates	through	the	Blog	entries.	Because	the	database
contains	a	number	of	different	kinds	of	objects,	we	must	explicitly	discard
entries	that	don't	begin	with	"Blog:".	A	separate	index	object	is	often	a	better
approach	than	this	kind	of	brute-force	filter	applied	to	all	keys.	We'll	look	at	that
in	the	following	Writing	a	demonstration	script	section.

The	post_iter()	method	iterates	through	posts	that	are	a	part	of	a	specific	blog.
The	membership	test	is	based	on	looking	inside	each	Post	object	to	check	the
_blog_id	attribute.	The	title_iter()	method	examines	posts	that	match	a	particular
title.	This	examines	each	key	in	the	shelf,	which	is	a	potentially	inefficient
operation.

We	also	defined	an	iterator	that	locates	posts	that	have	the	requested	title	in	a
given	blog,	post_title_iter().	This	is	a	simple	generator	function	that	uses	the
post_iter()	method	function	and	returns	only	matching	titles.

In	the	next	section,	we'll	write	a	demonstration	script.



Writing	a	demonstration	script
We'll	use	a	technology	spike	to	show	you	how	an	application	might	use	this
Access	class	to	process	the	microblog	objects.	The	spike	script	will	save	some	Blog
and	Post	objects	to	a	database	to	show	a	sequence	of	operations	that	an
application	might	use.	This	demonstration	script	can	be	expanded	into	unit	test
cases.

More	complete	unit	tests	would	show	us	that	all	the	features	are	present	and
work	correctly.	This	small	spike	script	shows	us	how	Access	works:

from	contextlib	import	closing

from	pathlib	import	Path

path	=	Path.cwd()	/	"data"	/	"ch11_blog"

with	closing(Access())	as	access:	

				access.new(path)

				#	Create	Example

				access.create_blog(b1)	

				for	post	in	p2,	p3:	

								access.create_post(b1,	post)	

				#	Retrieve	Example

				b	=	access.retrieve_blog(b1._id)	

				print(b._id,	b)	

				for	p	in	access.post_iter(b):	

								print(p._id,	p)		

We've	created	the	Access	class	on	the	access	layer	so	that	it's	wrapped	in	a	context
manager.	The	objective	is	to	be	sure	that	the	access	layer	is	closed	properly,
irrespective	of	any	exceptions	that	might	get	raised.

With	Access.new(),	we've	created	a	new	shelf	named	'blog'.	This	might	be	done	by
a	GUI	through	navigating	to	File	|	New.	We	added	the	new	blog,	b1,	to	the	shelf.
The	Access.create_blog()	method	will	update	the	Blog	object	with	its	shelf	key.
Perhaps	someone	filled	in	the	blanks	on	a	page	and	clicked	on	New	Blog	on
their	GUI	application.

Once	we've	added	Blog,	we	can	add	two	posts	to	it.	The	key	from	the	parent	Blog
entry	will	be	used	to	build	the	keys	for	each	of	the	child	Post	entries.	Again,	the
idea	is	that	a	user	filled	in	some	fields	and	clicked	on	New	Post	on	the	GUI.



There's	a	final	set	of	queries	that	dumps	the	keys	and	objects	from	the	shelf.	This
shows	us	the	final	outcome	of	this	script.	We	can	perform	Access.retrieve_blog()	to
retrieve	a	blog	entry	that	was	created.	We	can	iterate	through	the	posts	that	are
part	of	that	blog	using	Access.post_iter().

The	use	of	the	contextlib.closing()	context	manager	ensures	that	a	final
Access.close()	function	evaluation	will	save	the	database	to	persistent	storage.
This	will	also	flush	the	self.max	dictionary	used	to	generate	unique	keys.

The	next	section	talks	about	how	to	create	indexes	to	improve	efficiency.



Creating	indexes	to	improve
efficiency
One	of	the	rules	of	efficiency	is	to	avoid	search.	Our	previous	example	of	using
an	iterator	over	the	keys	in	a	shelf	is	inefficient.	To	state	that	more	strongly,	use
of	search	defines	an	inefficient	application.	We'll	emphasize	this.

Brute-force	search	is	perhaps	the	worst	possible	way	to	work	with	data.	Try	to	design	indexes
based	on	subsets	or	key	mappings	to	improve	performance.

To	avoid	searching,	we	need	to	create	indexes	that	list	the	items	users	are	most
likely	to	want.	This	saves	you	reading	through	the	entire	shelf	to	find	an	item	or
subset	of	items.	A	shelf	index	can't	reference	Python	objects,	as	that	would
change	the	granularity	at	which	the	objects	are	stored.	An	index	will	only	list
key	values,	a	separate	retrieval	is	done	to	get	the	object	in	question.	This	makes
navigation	among	objects	indirect	but	still	much	faster	than	a	brute-force	search
of	all	items	in	the	shelf.

As	an	example	of	an	index,	we	can	keep	a	list	of	the	Post	keys	associated	with
each	Blog	in	the	shelf.	We	can	easily	change	the	add_blog(),	add_post(),	and
delete_post()	methods	to	update	the	associated	Blog	entry	too.	Here	are	the	revised
versions	of	these	blog	update	methods:

class	Access2(Access):

				def	create_post(self,	blog:	Blog,	post:	Post)	->	Post:

								super().create_post(blog,	post)

								#	Update	the	index;	append	doesn't	work.

								blog_index	=	f"_Index:{blog._id}"

								self.database.setdefault(blog_index,	[])

								self.database[blog_index]	=	self.database[blog_index]	+	[post._id]

								return	post

				def	delete_post(self,	post:	Post)	->	None:

								super().delete_post(post)

								#	Update	the	index.

								blog_index	=	f"_Index:{post._blog_id}"

								index_list	=	self.database[post._blog_id]

								index_list.remove(post._id)

								self.database[post._blog_id]	=	index_list

				def	post_iter(self,	blog:	Blog)	->	Iterator[Post]:

								blog_index	=	f"_Index:{blog._id}"

								for	k	in	self.database[blog_index]:



												yield	self.database[k]

Most	of	the	methods	are	inherited	without	change	from	the	Access	class.	We've
extended	three	methods	to	create	a	useful	index	of	children	for	a	given	blog:

create_post()

delete_post()

post_iter()

The	create_post()	method	uses	the	create_post()	superclass	to	save	the	Post	object	to
the	shelf.	Then	it	makes	sure	the	"_Index:{blog}"	object	is	in	the	shelf,	by	using
setdefault().	This	object	will	be	a	list	with	the	keys	for	related	posts.	The	list	of
keys	is	updated	using	the	following	statement:

self.database[blog_index]	=	self.database[blog_index]	+	[post._id]

This	is	required	to	update	the	shelf.	We	cannot	simply
use	self.database[blog_index].append(post._id).	These	kind	of	update-in-
place	methods	of	a	dictionary	don't	work	as	expected	with	a	shelf	object.
Instead,	we	must	retrieve	the	object	out	of	the	shelf	with	self.database[blog_index].
Update	the	retrieved	object,	and	then	replace	the	object	in	the	shelf	using	a
simple	assignment	statement.

Similarly,	the	delete_post()	method	keeps	the	index	up	to	date	by	removing
unused	posts	from	_post_list	of	the	owning	blog.	As	with	create_post(),	two
updates	are	done	to	the	shelf:	a	del	statement	removes	Post,	and	then	the	Blog
object	is	updated	to	remove	the	key	from	the	associated	index.

This	change	alters	our	queries	for	a	Post	object	in	a	profound	way.	We're	able	to
replace	a	scan	of	all	the	items	in	post_iter()	with	a	much	more	efficient	operation.
This	loop	will	rapidly	yield	the	Post	objects	based	on	the	keys	saved	in	the
_post_list	attribute	of	Blog.	An	alternative	body	is	this	generator	expression:

return	(self.database[k]	for	k	in	blog._post_list)	

The	point	of	this	optimization	to	the	post_iter()	method	is	to	eliminate	the	search
of	all	the	keys	for	the	matching	keys.	We've	replaced	searching	all	keys	with	a
simple	iteration	over	an	appropriate	sequence	of	relevant	keys.	A	simple	timing
test,	which	alternates	between	updating	Blog	and	Post	and	rendering	Blog	to	RST,
shows	us	the	following	results:



Access	Layer	Access:	33.5	seconds	

Access	Layer	Access2:	4.0	seconds	

As	expected,	eliminating	the	search	reduced	the	time	required	to	process	Blog	and
its	individual	Posts.	The	change	is	profound:	almost	86%	of	the	processing	time
was	wasted	in	the	search	for	relevant	posts.

Let's	see	how	to	create	a	cache.



Creating	a	cache
We	added	an	index	to	each	Blog	that	locates	Posts	that	belong	to	the	Blog.	We	can
also	add	a	top-level	cache	to	the	shelf	that	is	slightly	faster	to	locate	all	Blog
instances.	The	essential	design	is	similar	to	what's	been	shown	in	the	previous
section.	For	each	blog	to	be	added	or	deleted,	we	must	update	a	cache	of	valid
keys.	We	must	also	update	the	iterators	to	properly	use	the	index.	Here's	another
class	design	to	mediate	the	access	to	our	objects:

class	Access3(Access2):

				def	new(self,	path:	Path)	->	None:

								super().new(path)

								self.database["_Index:Blog"]	=	list()

				def	create_blog(self,	blog:	Blog)	->	Blog:

								super().create_blog(blog)

								self.database["_Index:Blog"]	+=	[blog._id]

								return	blog

				def	blog_iter(self)	->	Iterator[Blog]:

								return	(self.database[k]	for	k	in	

								self.database["_Index:Blog"])

When	creating	a	new	database,	we	add	an	administrative	object	and	an	index,
with	a	key	of	"_Index:Blog".	This	index	will	be	a	list	with	the	keys	to	each	Blog
entry.	When	we	add	a	new	Blog	object,	we	also	update	this	"_Index:Blog"	object
with	the	revised	list	of	keys.

When	we	iterate	through	Blog	posts,	we	use	the	index	list	instead	of	a	brute-force
search	of	keys	in	the	database.	This	is	slightly	faster	than	using	the	shelf	object's
built-in	keys()	method	to	locate	Blog	posts.

Here	are	the	results	as	measured:

Access	Layer	Access:	33.5	seconds	

Access	Layer	Access2:	4.0	seconds	

Access	Layer	Access3:	3.9	seconds	

In	the	next	section,	we	will	learn	how	to	add	more	index	maintenance.



Adding	yet	more	index	maintenance
Clearly,	the	index	maintenance	aspect	of	a	shelf	can	grow.	With	our	simple	data
model,	we	could	easily	add	more	top-level	indexes	for	tags,	dates,	and	titles	of
Posts.	Here's	another	access-layer	implementation	that	defines	two	indices	for
Blogs.	One	index	simply	lists	the	keys	for	Blog	entries.	The	other	index	provides
keys	based	on	the	Blog	title.	We'll	assume	that	the	titles	are	not	unique.	We'll
present	this	access	layer	in	three	parts.	Here's	the	create	part	of	the	CRUD
processing:

class	Access4(Access3):

				def	new(self,	path:	Path)	->	None:

								super().new(path)

								self.database["_Index:Blog_Title"]	=	dict()

				def	create_blog(self,	blog):

								super().create_blog(blog)

								blog_title_dict	=	self.database["_Index:Blog_Title"]

								blog_title_dict.setdefault(blog.title,	[])

								blog_title_dict[blog.title].append(blog._id)

								self.database["_Index:Blog_Title"]	=	blog_title_dict

								return	blog

We	added	yet	another	index.	In	this	example,	there	is	a	dict	that	provides	us	with
a	list	of	keys	for	a	given	title	string.	If	each	title	is	unique,	each	of	these	lists	will
be	a	singleton	key.	If	the	titles	are	not	unique,	each	title	will	have	a	list	of	the	Blog
keys.

When	we	add	a	Blog	instance,	we	also	update	the	title	index.	The	title	index
requires	us	to	get	the	existing	dict	from	the	shelf,	append	to	the	list	of	keys
mapped	to	the	Blog's	title,	and	then	put	the	defaultdict	back	onto	the	shelf.

An	update	to	the	Blog	object	might	involve	changing	the	title	of	the	Blog	attribute.
If	there	is	a	title	change,	this	will	lead	to	a	complex	pair	of	updates:

1.	 Remove	the	old	title	from	the	index.	Since	each	title	has	a	list	of	keys,	this
operation	removes	one	key	from	the	list.	If	the	list	is	now	empty,	the	entire
title	entry	can	be	removed	from	the	dictionary.

2.	 Add	the	new	title	to	the	index.	This	echoes	the	operation	shown	for	adding
a	new	Blog	object.



Is	this	additional	complexity	needed?	The	only	way	to	be	sure	is	to	gather	actual
performance	details	for	the	queries	actually	used	by	an	application.	There	is	a
cost	to	maintaining	an	index,	and	time-saving	from	using	an	index	to	avoid
search.	There's	a	fine	balance	between	these,	and	it	often	requires	some	data
gathering	and	experimentation	to	determine	the	optimal	use	of	a	shelf.

Let's	take	a	look	at	the	writeback	alternative	to	index	updates.



The	writeback	alternative	to	index
updates
We	can	request	that	a	shelf	be	opened	with	writeback=True.	This	will	track	changes
to	mutable	objects	by	keeping	a	cached	version	of	each	object	in	the	active
memory.	This	changes	the	design	of	the	Access	class.	The	examples	of	the	Access
class,	shown	in	the	previous	sections	of	this	chapter,	forced	the	application	to
make	method	calls	to	update_blog()	and	update_post()	to	be	sure	a	change	was
persisted	to	external	files.	When	working	in	writeback	mode,	the	application	is
free	to	mutate	an	object's	values	and	the	shelf	module	will	persist	the	change
without	any	extra	method	invocations.	This	automatic	update	will	not	update	the
ancillary	indices,	however,	since	they	were	made	by	our	application's	access
layer.

In	an	application	where	a	shelf	does	not	make	extensive	use	of	additional	index
values,	the	writeback	mode	can	be	advantageous.	It	simplifies	application
processing,	and	reduces	the	need	for	a	sophisticated	Access	class.	



Schema	evolution
When	working	with	shelve,	we	have	to	address	the	problem	of	schema	evolution.
The	class	definitions	define	the	schema	for	the	persistent	data.	The	class,
however,	is	not	absolutely	static.	If	we	change	a	class	definition,	the	schema
evolves.	How	will	we	fetch	objects	from	the	shelf	after	this	change?	A	good
design	often	involves	some	combination	of	the	following	techniques.

Changes	to	methods	don't	change	the	persisted	object	representation.	We	can
classify	these	changes	as	minor	because	the	shelved	data	is	still	compatible	with
the	changed	class	definition.	A	new	software	release	can	have	a	new	minor
version	number	and	users	should	be	confident	that	it	will	work	without
problems.

Changes	to	attributes	will	change	the	persisted	object	representation.	We	can	call
these	major	changes,	and	the	shelved	data	will	no	longer	be	compatible	with	the
new	class	definition.	Major	changes	to	the	representation	should	not	made	by
modifying	a	class	definition.	These	kinds	of	changes	should	be	made	by	adding	a
new	subclass	and	providing	an	updated	factory	function	to	create	instances	of
either	version	of	the	class.

We	can	be	flexible	about	supporting	multiple	versions,	or	we	can	use	one-time
conversions.	To	be	flexible,	we	must	rely	on	factory	functions	to	create	instances
of	objects.	A	flexible	application	will	avoid	creating	objects	directly.	By	using	a
factory	function,	we're	assured	that	all	parts	of	an	application	can	work
consistently.	We	might	do	something	like	this	to	support	flexible	schema
changes:

def	make_blog(*args,	**kw):	

				version	=	kw.pop('_version',1)	

				if	version	==	1:	return	Blog(*args,	**kw)	

				elif	version	==	2:	return	Blog2(*args,	**kw)	

				else:	raise	ValueError(f"Unknown	Version	{version}")	

This	kind	of	factory	function	requires	a	_version	keyword	argument	to	specify
which	Blog	class	definition	to	use.	This	allows	us	to	upgrade	a	schema	to	use
different	classes	without	breaking	our	application.	The	Access	layer	can	rely	on
this	kind	of	function	to	instantiate	correct	versions	of	objects.



An	alternative	to	this	level	of	flexibility	is	a	one-time	conversion.	This	feature	of
the	application	will	fetch	all	shelved	objects	using	their	old	class	definition,
convert	to	the	new	class	definition,	and	store	them	on	a	new	shelf	in	the	new
format.



Summary
We	saw	the	basics	of	how	to	use	the	shelve	module.	This	includes	creating	a	shelf
and	designing	keys	to	access	the	objects	that	we've	placed	in	the	shelf.	We	also
understood	the	need	for	an	access	layer	to	perform	the	lower-level	CRUD
operations	on	the	shelf.	The	idea	is	that	we	need	to	distinguish	between	the	class
definitions	that	are	focused	on	our	application	and	other	administrative	details
that	support	persistence.



Design	considerations	and	tradeoffs
One	of	the	strengths	of	the	shelve	module	is	allowing	us	to	persist	distinct	items
very	simply.	This	imposes	a	design	burden	to	identify	the	proper	granularity,	of
the	items.	Too	fine	a	granularity	and	we	waste	time	assembling	a	container
object	from	pieces	scattered	through	the	database.	Too	coarse	a	granularity,	and
we	waste	time	fetching	and	storing	items	that	aren't	relevant.

Since	a	shelf	requires	a	key,	we	must	design	appropriate	keys	for	our	objects.	We
must	also	manage	the	keys	for	our	various	objects.	This	means	using	additional
attributes	to	store	keys,	and	possibly	creating	additional	collections	of	keys	to	act
as	indices	for	items	on	the	shelf.

A	key	used	to	access	an	item	in	a	shelve	database	is	like	a	weakref;	it's	an	indirect
reference.	This	means	that	extra	processing	is	required	to	track	and	access	the
items	from	the	reference.	For	more	information	on	weakref,	see	Chapter	3,
Integrating	Seamlessly	-	Basic	Special	Methods.

One	choice	for	a	key	is	to	locate	an	attribute	or	combination	of	attributes	that	are
proper	primary	keys	and	cannot	be	changed.	Another	choice	is	to	generate
surrogate	keys	that	cannot	be	changed;	this	allows	all	other	attributes	to	be
changed.	As	shelve	relies	on	pickle	to	represent	the	items	on	the	shelf,	we	have	a
high-performance	native	representation	of	the	Python	objects.	This	reduces	the
complexity	of	designing	classes	that	will	be	placed	onto	a	shelf.	Any	Python
object	can	be	persisted.



Application	software	layers
Because	of	the	relative	sophistication	available	when	using	shelve,	our
application	software	must	become	more	properly	layered.	Generally,	we'll	look
at	software	architectures	with	layers	such	as	the	following:

Presentation	layer:	The	top-level	user	interface,	either	a	web	presentation
or	a	desktop	GUI.
Application	layer:	The	internal	services	or	controllers	that	make	the
application	work.	This	could	be	called	the	processing	model,	which	is
different	from	the	logical	data	model.
Business	layer	or	problem	domain	model	layer:	The	objects	that	define
the	business	domain	or	problem	space.	This	is	sometimes	called	the	logical
data	model.	We've	looked	at	how	we	might	model	these	objects,	using	a
microblog	Blog	and	Post	example.
Infrastructure	aspects:	Some	applications	include	a	number	of	cross-
cutting	concerns	or	aspects	such	as	logging,	security,	and	network	access.
These	tend	to	be	pervasive	and	cut	across	multiple	layers.
Data	access	layer.	These	are	protocols	or	methods	to	access	data	objects.
We	looked	at	designing	classes	to	access	our	application	objects	from	the
shelve	storage.
Persistence	layer.	This	is	the	physical	data	model	as	seen	in	file	storage.
The	shelve	module	implements	persistence.

When	looking	at	this	chapter	and	Chapter	12,	Storing	and	Retrieving	Objects	with
SQLite,	it	becomes	clear	that	mastering	object-oriented	programming	involves
some	higher-level	design	patterns.	We	can't	simply	design	classes	in	isolation;
we	need	to	look	at	how	classes	are	going	to	be	organized	into	larger	structures.
Finally,	and	most	importantly,	brute-force	search	is	a	terrible	thing;	it	must	be
avoided.



Looking	forward
The	next	chapter	will	roughly	parallel	this	chapter.	We'll	look	at	using	SQLite
instead	of	shelve	for	the	persistence	of	our	objects.	This	gets	a	bit	tricky	because	a
SQL	database	doesn't	provide	a	way	to	store	complex	Python	objects,	leading	to
the	impedance	mismatch	problem.	We'll	look	at	two	ways	to	solve	this	problem
when	using	a	relational	database	such	as	SQLite.

In	Chapter	13,	Transmitting	and	Sharing	Objects,	we'll	shift	the	focus	from	simple
persistence	to	transmitting	and	sharing	objects.	This	will	rely	on	the	persistence
we	saw	in	this	chapter,	and	it	will	add	network	protocols	into	the	mix.



Storing	and	Retrieving	Objects	via
SQLite
There	are	many	applications	where	we	need	to	persist	a	large	number	of	distinct
objects.	The	techniques	we	looked	at	in	Chapter	10,	Serializing	and
Saving	-	JSON,	YAML,	Pickle,	CSV,	and	XML,	were	biased	toward	persistence
for	a	single,	monolithic	object.	Sometimes,	we	need	to	persist	separate,
individual	objects	from	a	larger	domain.	For	example,	we	might	be	saving	blog
entries,	blog	posts,	authors,	and	advertisements;	each	of	which	must	be	handled
separately.

In	Chapter	11,	Storing	and	Retrieving	Objects	via	Shelve,	we	looked	at	storing
distinct	Python	objects	in	a	shelve	data	store.	This	allowed	us	to	implement	the
CRUD	processing	on	a	domain	of	individual	objects.	Each	object	can	be	created,
retrieved,	updated,	or	deleted	without	having	to	load	and	dump	the	entire	file.

In	this	chapter,	we'll	look	at	mapping	Python	objects	to	a	relational	database;
specifically,	the	sqlite3	database	that	is	bundled	with	Python.	This	will	be	another
example	of	the	three-tier	architecture	design	pattern.

In	this	case,	the	SQLite	data	tier	is	a	more	sophisticated	database	than	shelve.
SQLite	can	allow	concurrent	database	updates	via	locking.	SQLite	offers	an
access	layer	based	on	the	SQL	language.	It	offers	persistence	by	saving	SQL
tables	to	the	filesystem.	Web	applications	are	one	example	where	a	database	is
used	instead	of	simple	file	persistence	to	handle	concurrent	updates	to	a	single
pool	of	data.	RESTful	data	servers,	too,	frequently	use	a	relational	database	to
provide	access	to	persistent	objects.

For	scalability,	a	standalone	database	server	process	can	be	used	to	isolate	all	the
database	transactions.	This	means	persistence	can	be	allocated	to	a	relatively
secure	host	computer,	separate	from	the	web	application	servers	and	behind
appropriate	firewalls.	MySQL,	for	example,	can	be	implemented	as	a	standalone
server	process.

The	SQLite3	database	that	is	part	of	Python	is	not	a	standalone	database	server;



it	must	be	embedded	into	a	host	application.

In	this	chapter,	we	will	cover	the	following	topics:

SQL	databases,	persistence,	and	objects
Processing	application	data	with	SQL
Mapping	Python	objects	to	SQLite	BLOB	columns
Mapping	Python	objects	to	database	rows	manually
Improving	performance	with	indices
Adding	an	ORM	layer
Querying	pasts	given	a	tag
Improving	performance	with	indices



Technical	requirements
The	code	files	for	this	chapter	are	available	at	https://git.io/fj2UK.

https://git.io/fj2UK


SQL	databases,	persistence,	and
objects
When	using	SQLite,	our	application	works	with	an	implicit	access	layer	based
on	the	SQL	language.	The	SQL	language	is	a	legacy	from	an	era	when	object-
oriented	programming	was	a	rarity.	It	is	heavily	biased	toward	procedural
programming.	The	row-and-column	concepts	of	relational	design	creates	what's
termed	an	impedance	mismatch	with	the	more	complex	object	model	of	data.
Within	SQL	databases,	we	generally	focus	on	three	tiers	of	data	modeling,	which
are	shown	here:

The	conceptual	model:	These	are	the	entities	and	relationships	implied	by
the	SQL	model.	These	may	not	be	the	tables	and	columns,	but	may	be
views	of	tables	and	columns.	The	views	may	involve	selecting	rows,
projecting	columns,	or	joining	multiple	tables	into	the	conceptual	result.	In
most	cases,	the	conceptual	model	can	map	to	Python	objects	and	should
correspond	with	the	data	model	layer	of	the	application	tier.	This	is	the
place	where	an	Object-Relational	Mapping	(ORM)	layer	is	useful.
The	logical	model:	These	are	the	tables,	rows,	and	columns	that	appear	to
be	in	the	SQL	database.	We'll	address	these	entities	in	our	SQL	data
manipulation	statements.	We	say	that	these	appear	to	exist	because	the
tables	and	columns	are	implemented	by	a	physical	model	that	may	be
somewhat	different	from	the	objects	defined	in	the	database	schema.	The
results	of	an	SQL	query,	for	example,	look	table-like,	but	may	not	involve
storage	that	parallels	the	storage	of	any	single,	defined	table.
The	physical	model:	These	are	the	files,	blocks,	pages,	bits,	and	bytes	of
persistent	physical	storage.	These	entities	are	defined	by	the	administrative
SQL	statements.	In	some	more	complex	database	products,	we	can	exercise
some	control	over	the	physical	model	of	the	data	to	further	tweak	the
performance.	In	SQLite,	however,	we	have	almost	no	control	over	this.

We	are	confronted	with	a	number	of	design	decisions	when	using	SQL
databases.	Perhaps	the	most	important	one	is	deciding	how	to	cover	the
impedance	mismatch.	How	do	we	handle	the	mapping	between	SQL's	legacy
data	model	to	a	Python	object	model?	The	following	are	three	common



strategies:

Minimal	mapping	to	Python:	This	means	that	we	won't	build	Python
objects	from	the	rows	retrieved	from	the	database.	The	application	will
work	entirely	within	the	SQL	framework	of	independent	atomic	data
elements	and	processing	functions.	Following	this	approach	tends	to	avoid
a	deep	emphasis	on	object-oriented	programming.	This	approach	limits	us
to	the	four	essential	SQLite	types	of	NULL,	INTEGER,	REAL,	and	TEXT,	plus	the
Python	additions	of	datetime.date	and	datetime.datetime.	While	this	can	be
difficult	for	more	complex	applications,	it	is	appropriate	for	certain	kinds	of
scripts	when	doing	database	maintenance	and	support.
Manual	mapping	to	Python:	We	can	define	an	access	layer	to	map
between	our	Python	class	definitions	and	the	SQL	logical	model	of	tables,
columns,	rows,	and	keys.	For	some	specialized	purposes,	this	may	be
necessary.
ORM	layer:	We	can	download	and	install	an	ORM	layer	to	handle	the
mapping	between	Python	objects	and	the	SQL	logical	model.	There	are	a
large	number	of	ORM	choices;	we'll	look	at	SQLAlchemy	as	a
representative	example.	An	ORM	layer	is	often	the	simplest	and	most
general	approach.	

We'll	look	at	all	three	choices	in	the	following	examples.	Before	we	can	look	at
the	mappings	from	SQL	to	objects,	we'll	look	at	the	SQL	logical	model	in	some
detail	and	cover	the	no-mapping,	pure	SQL	design	strategy	first.



The	SQL	data	model	–	rows	and
tables
Conceptually,	the	SQL	data	model	is	based	on	named	tables	with	named
columns.	A	table	definition	is	a	flat	list	of	columns	with	no	other	structure	to	the
data.	Each	row	is	essentially	a	mutable	@dataclass.	The	idea	is	to	imagine	the
contents	within	a	table	as	a	list	of	individual	@dataclass	objects.	The	relational
model	can	be	described	by	Python	type	hints	as	if	it	had	definitions	similar	to	the
following:

from	dataclasses	import	dataclass

from	typing	import	Union,	Text

import	datetime

SQLType	=	Union[Text,	int,	float,	datetime.datetime,	datetime.date,	bytes]

@dataclass

class	Row:

				column_x:	SQLType

				...

Table	=	Union[List[Row],	Dict[SQLType,	Row]]

From	the	type	hints,	we	can	see	that	a	database	Table	can	be	viewed	as	a	list	of	Row
instances,	or	a	Dict	mapping	a	column	to	a	Row	instance.	The	definition	of	a	Row	is
a	collection	of	SQLType	column	definitions.	There	is	much	more	to	the
relational	model,	but	this	tiny	overview	suggests	ways	we'll	use	a	database	in
Python.	An	SQL	database	has	relatively	few	atomic	data	types.	Generally,	the
only	data	structure	available	is	the	Table,	which	is	a	collection	of	rows.	Each	Row	is
a	simple	list	of	individual	column	definitions.	The	data	within	a	Table	can	be	used
as	a	simple	list	of	Row	objects.	When	we	select	a	column	to	be	a	key	and	the
remaining	columns	to	be	values,	we	can	consider	the	table	to	behave	like	a
dictionary	or	mapping	from	key	to	row	value.	We	didn't	clutter	up	the	conceptual
type	definitions	with	additional	details	like	multi-column	keys,	and	the
nullability	of	column	values.

More	complex	data	structures	are	built	by	having	rows	in	one	table	contain
references	to	a	row	in	another	table.	These	references	are	built	around	simply
having	common	values	shared	by	separate	tables.	When	a	row's	key	in	one	table
is	referenced	by	rows	in	another	table,	we've	effectively	defined	a	hierarchical,
one-to-many	relationship;	this	implements	a	Python	nested	list	or	nested



dictionary.	We	can	define	many-to-many	relationships	using	an	intermediate
association	table,	which	provides	a	list	of	key	pairs	from	each	of	the	associated
tables.	A	set	can	be	built	with	a	table	that	has	a	unique,	primary	key	to	assure
only	unique	values	are	collected	into	the	table.

When	we	define	an	SQL	database,	we	define	a	collection	of	tables	and	their
columns.	When	we	use	an	SQL	database,	we	manipulate	the	rows	of	data
collected	into	the	tables.

In	the	case	of	SQLite,	we	have	a	narrow	domain	of	data	types	that	SQL	will
process.	SQLite	handles	NULL,	INTEGER,	REAL,	TEXT,	and	BLOB	data.

The	Python	types	of	None,	int,	float,	str,	and	bytes	are	mapped	to	these	SQL	types.
Similarly,	when	data	of	these	types	is	fetched	from	an	SQLite	database,	the	items
are	converted	into	Python	objects.

The	BLOB	type	is	a	binary	large	object,	a	collection	of	bytes	of	a	type	defined
outside	of	SQL.	This	can	be	used	to	introduce	Python-specific	data	types	into	an
SQL	database.	SQLite	allows	us	to	add	conversion	functions	for	encoding	and
decoding	Python	objects	into	bytes.	The	sqlite3	module	has	already	added	the
datetime.date	and	datetime.datetime	extensions	this	way	for	us.	We	can	add	more
conversion	functions	for	more	specialized	processing.

The	SQL	language	can	be	partitioned	into	three	sublanguages:	the	data
definition	language	(DDL),	the	data	manipulation	language	(DML),	and
the	data	control	language	(DCL).	The	DDL	is	used	to	define	tables,	their
columns,	and	indices.	For	an	example	of	DDL,	we	might	have	some	tables
defined	the	following	way:

CREATE	TABLE	blog(	

				id	INTEGER	PRIMARY	KEY	AUTOINCREMENT,	

				title	TEXT

);	

CREATE	TABLE	post(	

				id	INTEGER	PRIMARY	KEY	AUTOINCREMENT,	

				date	TIMESTAMP,	

				title	TEXT,	

				rst_text	TEXT,	

				blog_id	INTEGER	REFERENCES	blog(id)

);	

CREATE	TABLE	tag(	

				id	INTEGER	PRIMARY	KEY	AUTOINCREMENT,	

				phrase	TEXT	UNIQUE	ON	CONFLICT	FAIL

);	

CREATE	TABLE	assoc_post_tag(	



		post_id	INTEGER	REFERENCES	post(id),	

		tag_id	INTEGER	REFERENCES	tag(id)

);	

We've	created	four	tables	to	represent	the	Blog	and	Post	objects	for	a
microblogging	application.	For	more	information	on	the	SQL	language
processed	by	SQLite,	see	http://www.sqlite.org/lang.html.	For	a	broader	background
in	SQL,	books	such	as	Creating	your	MySQL	Database:	Practical	Design	Tips
and	Techniques	will	introduce	the	SQL	language	in	the	context	of	the	MySQL
database.	The	SQL	language	is	case	insensitive.

For	no	good	reason,	we	prefer	to	see	SQL	keywords	in	all	uppercase	to
distinguish	it	from	the	surrounding	Python	code.

The	blog	table	defines	a	primary	key	with	the	AUTOINCREMENT	option;	this	will	allow
SQLite	to	assign	the	key	values,	saving	us	from	having	to	generate	the	keys	in
our	code.	The	title	column	is	the	title	for	a	blog.	We've	defined	it	to	be	TEXT.	In
some	database	products,	we	must	provide	a	maximum	size	for	a	character	string.
This	can	help	the	database	engine	optimize	storage.	Since	this	size	is	not
required	in	SQLite,	so	we'll	avoid	the	clutter.

The	post	table	defines	a	primary	key	as	well	as	date,	title,	and	RST	text	for	the
body	of	the	post.	Note	that	we	did	not	reference	the	tags	for	a	post	in	this	table
definition.	We'll	return	to	the	design	patterns	required	for	the	following	SQL
tables.	The	post	table	does,	however,	include	a	formal	REFERENCES	clause	to	show	us
that	this	is	a	foreign	key	reference	to	the	owning	blog.

The	tag	table	defines	the	individual	tag	text	items,	and	nothing	more.	The	SQL
defines	the	text	column	as	being	unique.	An	attempt	to	insert	a	duplicate	will
cause	the	transaction	to	fail.

Finally,	we	have	an	association	table	between	post	and	tag.	This	table	has	only
two	foreign	keys.	It	associates	tags	and	posts,	allowing	an	unlimited	number	of
tags	per	post	as	well	as	an	unlimited	number	of	posts	to	share	a	common	tag.
This	association	table	is	a	common	SQL	design	pattern	to	handle	this	kind	of
many-to-many	relationship.	We'll	look	at	some	other	SQL	design	patterns	in	the
following	section.	We	can	execute	the	preceding	definitions	to	create	our
database:

import	sqlite3	

http://www.sqlite.org/lang.html


database	=	sqlite3.connect('p2_c11_blog.db')	

database.executescript(sql_ddl)	

All	database	access	requires	a	connection,	created	with	the	module	function,
sqlite3.connect().	We	provided	the	name	of	the	file	to	assign	to	our	database.

The	DB-API	standard	for	Python	database	modules	is	defined	by	PEP	249,
available	at	https://www.python.org/dev/peps/pep-0249/.	This	standard	presumes	that
there	is	a	separate	database	server	process	to	which	our	application	process	will
connect.	In	the	case	of	SQLite,	there	isn't	really	a	separate	process.	A	connect()
function	is	used,	however,	to	comply	with	the	standard.	The	sql_ddl	variable	in
the	previous	example	is	simply	a	long	string	variable	with	the	four	CREATE	TABLE
statements.	If	there	are	no	error	messages,	then	it	means	that	the	table	structures
have	been	defined.

The	executescript()	method	of	a	Connection	object	is	described	in	the	Python
standard	library	as	a	nonstandard	shortcut.	Technically,	database	operations
must	involve	creating	a	cursor	object.	The	following	is	a	standardized	approach:

from	contextlib	import	closing

with	closing(database.cursor())	as	cursor:

				for	stmt	in	sql_ddl.split(";"):	

								cursor.execute(stmt)	

While	conceptually	helpful,	this	isn't	practical.	It	doesn't	work	well	when	there
are	";"	characters	in	comments	or	text	literals.	It's	better	to	use	the	handy
executescript()	shortcut.	If	we	were	concerned	about	the	portability	to	other
databases,	we'd	shift	focus	to	a	more	strict	compliance	with	the	Python	DB-API
specification.	We'll	return	to	the	nature	of	a	cursor	object	in	the	following
section,	when	looking	at	queries.

In	the	next	section,	we'll	discuss	CRUD	processing	via	SQL	DML	statements.

https://www.python.org/dev/peps/pep-0249/


CRUD	processing	via	SQL	DML
statements
The	following	four	canonical	CRUD	operations	map	directly	to	SQL	language
statements:

Creation	is	done	via	the	INSERT	statement.
Retrieval	is	done	via	the	SELECT	statement.
Update	is	done	via	the	UPDATE	statement.	Some	SQL	dialects	also	include	a
REPLACE	statement.
Deletion	is	done	via	the	DELETE	statement.

We	have	to	note	that	we'll	often	look	at	literal	SQL	syntax	with	all	values
supplied.	This	is	separate	from	SQL	syntax	with	binding	variable	placeholders
instead	of	literal	values.	The	literal	SQL	syntax	is	acceptable	for	scripts;	it	is
perfectly	awful	for	application	programming.	Building	literal	SQL	statements	in
an	application	involves	endless	string	manipulation	and	famous	security
problems.	See	the	XKCD	comic	at	http://xkcd.com/327/	for	a	specific	security	issue
with	assembling	literal	SQL	from	user-provided	text.	We'll	focus	exclusively	on
SQL	with	binding	variables.

Literal	SQL	is	widely	used	for	scripts.	Building	literal	SQL	with	user-supplied
text	is	a	mistake.

Never	build	literal	SQL	DML	statements	with	string	manipulation.	It	is	very	high	risk	to
attempt	to	sanitize	user-supplied	text.

The	Python	DB-API	interface	defines	several	ways	to	bind	application	variables
into	SQL	statements.	SQLite	can	use	positional	bindings	with	?	or	named
bindings	with	:name.	We'll	show	you	both	styles	of	binding	variables.	We	use	an
INSERT	statement	to	create	a	new	BLOG	row	as	shown	in	the	following	code	snippet:

create_blog	=	"""

				INSERT	INTO	blog(title)	VALUES(?)

"""

with	closing(database.cursor())	as	cursor:

				cursor.execute(create_blog,	("Travel	Blog",))

database.commit()

http://xkcd.com/327/


We	created	an	SQL	statement	with	a	positional	bind	variable,	?,	for	the	title
column	of	the	blog	table.	A	cursor	object	is	used	to	execute	the	statement	after
binding	a	tuple	of	values.	There's	only	one	bind	variable,	so	there's	only	one
value	in	the	tuple.	Once	the	statement	has	been	executed,	we	have	a	row	in	the
database.	The	final	commit	makes	this	change	persistent,	releasing	any	locks	that
were	held.	

We	show	the	SQL	statements	clearly	separated	from	the	surrounding	Python
code	in	triple-quoted	long	string	literals.	In	some	applications,	the	SQL	is	stored
as	a	separate	configuration	item.	Keeping	SQL	separate	is	best	handled	as	a
mapping	from	a	statement	name	to	the	SQL	text.	This	can	simplify	application
maintenance	by	keeping	the	SQL	out	of	the	Python	programming.

The	DELETE	and	UPDATE	statements	require	a	WHERE	clause	to	specify	which	rows	will
be	changed	or	removed.	To	change	a	blog's	title,	we	might	do	something	like	the
following:

update_blog	=	"""

				UPDATE	blog	SET	title=:new_title	WHERE	title=:old_title

"""

with	closing(database.cursor())	as	cursor:

				cursor.execute(

								update_blog,	

								dict(

												new_title="2013-2014	Travel",	

												old_title="Travel	Blog"

								)

				)

database.commit()

The	UPDATE	statement	shown	here	has	two	named	bind	variables:	:new_title	and
:old_title.	This	transaction	will	update	all	the	rows	in	the	blog	table	that	have	the
given	old	title,	setting	the	title	to	the	new	title.	Ideally,	the	title	is	unique,	and
only	a	single	row	is	touched.	SQL	operations	are	defined	to	work	on	sets	of
rows.	It's	a	matter	of	database	design	to	ensure	that	a	desired	row	is	the	content
of	a	set.	Hence,	the	suggestion	is	to	have	a	unique	primary	key	for	every	table.

When	implementing	a	delete	operation,	we	always	have	two	choices.	We	can
either	prohibit	deletes	of	a	parent	when	children	still	exist,	or	we	can	cascade	the
deletion	of	a	parent	to	also	delete	the	relevant	children.	We'll	look	at	a	cascading
delete	of	blog,	post,	and	tag	associations.	Here's	a	DELETE	sequence	of	statements:

delete_post_tag_by_blog_title	=	"""	

				DELETE	FROM	assoc_post_tag



				WHERE	post_id	IN	(	

								SELECT	DISTINCT	post_id	

								FROM	blog	JOIN	post	ON	blog.id	=	post.blog_id	

								WHERE	blog.title=:old_title)	

"""	

delete_post_by_blog_title	=	"""	

				DELETE	FROM	post	WHERE	blog_id	IN	(	

								SELECT	id	FROM	BLOG	WHERE	title=:old_title)	

"""	

delete_blog_by_title	="""	

				DELETE	FROM	blog	WHERE	title=:old_title	

"""	

try:

				with	closing(database.cursor())	as	cursor:

								title	=	dict(old_title="2013-2014	Travel")

								cursor.execute("BEGIN")

								cursor.execute(delete_post_tag_by_blog_title,	title)

								cursor.execute(delete_post_by_blog_title,	title)

								cursor.execute(delete_blog_by_title,	title)

				database.commit()

				print("Delete	finished	normally.")	

except	Exception	as	ex:

				print(f"Rollback	due	to	{ex!r}")

				database.rollback()

The	DELETE	operation	for	an	entire	blog	cascades	into	three	separate	delete
operation.	First,	we	deleted	all	the	rows	from	assoc_post_tag	for	a	given	blog	based
on	the	title.	Note	the	nested	query	inside	the	value	of	delete_post_tag_by_blog_title;
we'll	look	at	queries	in	the	next	section.	Navigation	among	tables	is	a	common
issue	with	SQL	construction.

In	this	case,	we	have	to	query	the	blog-to-post	relationship	to	locate	the	post	table
keys	that	will	be	removed;	then,	we	can	remove	rows	from	assoc_post_tag	for	the
posts	associated	with	a	blog	that	will	be	removed.	Next,	we	deleted	all	the	posts
belonging	to	a	particular	blog.	This	too	involves	a	nested	query	to	locate	the	IDs
of	the	blog	based	on	the	title.	Finally,	we	can	delete	the	blog	itself.

This	is	an	example	of	an	explicit	cascade	delete	design,	where	we	have	to
cascade	the	operation	from	the	blog	table	to	two	other	tables.	We	wrapped	the
entire	suite	of	delete	in	a	with	context	so	that	it	would	all	commit	as	a	single
transaction.	In	the	event	of	failure,	it	would	roll	back	the	partial	changes,	leaving
the	database	as	it	was.

It	seems	like	this	kind	of	operation	would	benefit	from	using	the	executescript()
method	of	the	database.	The	problem	with	executescript()	is	that	all	of	the	values
in	the	SQL	statements	must	be	literal;	it	does	not	bind	values.	It	works	nicely	for
data	definition.	It	is	a	poor	choice	for	data	manipulation	shown	here,	where	the
blog	title	must	be	bound	into	each	statement.



Let's	discuss	row	querying	with	the	SQL	SELECT	statement	in	the	next	section.



Querying	rows	with	the	SQL
SELECT	statement
It's	possible	to	write	a	substantial	book	on	the	SELECT	statement	alone.	We'll	skip
all	but	the	most	fundamental	features	of	SELECT.	Our	purpose	is	to	cover	just
enough	SQL	to	store	and	retrieve	objects	from	a	database.

In	most	of	the	previous	examples,	we've	created	a	cursor	to	execute	SQL
statements.	For	DDL	and	other	DML	statements,	the	presence	or	absence	of	a
cursor	doesn't	matter	very	much.	A	nonstandard	shortcut	that	eliminates	the
explicit	creation	of	the	cursor	and	greatly	simplifies	SQL	programming.

For	a	query,	however,	the	cursor	is	essential	for	retrieving	the	rows	from	the
database.	A	cursor	object	maintains	the	query	state	so	that	multiple	rows	can	be
fetched.	When	a	cursor	is	closed,	any	internal	buffers	or	locks	are	released.	To
locate	a	blog	by	title,	we	can	start	with	something	as	simple	as	the	following
code:

SELECT	*	FROM	blog	WHERE	title=?

After	executing	the	SQL	query,	we	need	to	fetch	the	resulting	collection	of	row
objects.	Even	when	we're	expecting	one	row	as	a	response,	in	the	SQL	world,
everything	is	a	collection.	Generally,	every	result	set	from	a	SELECT	query	looks
like	a	table	with	rows	and	columns	defined	by	the	SELECT	statement.

In	this	case,	using	SELECT	*	means	we've	avoided	enumerating	the	expected	result
columns.	This	might	lead	to	a	large	number	of	columns	being	retrieved.	Using	an
explicit	cursor,	we'd	execute	this	as	follows:

query_blog_by_title	=	"""

				SELECT	*	FROM	blog	WHERE	title=?

"""

with	closing(database.cursor())	as	blog_cursor:

				blog_cursor.execute(query_blog_by_title,	("2013-2014	Travel",))

				for	blog	in	blog_cursor.fetchall():

								print("Blog",	blog)

This	follows	the	previous	pattern	of	creating	a	cursor	and	executing	the	SQL



query	statement	with	a	bound	value.	The	fetchall()	method	of	a	cursor	will
retrieve	all	of	the	result	rows.	This	query	will	process	all	blogs	with	the	same
title.

Here's	a	common	optimization	for	doing	this	using	the	SQLite	shortcuts:

query_blog_by_title=	"""	

				SELECT	*	FROM	blog	WHERE	title=?	

"""	

cursor	=	database.execute(

				query_blog_by_title,	("2013-2014	Travel",))

for	blog	in	cursor:	

				print(blog[0],	blog[1])	

We've	bound	the	requested	blog	title	to	the	"?"	parameter	in	the	SELECT	statement.
The	result	of	the	execute()	function	will	be	a	cursor	object.	When	used	as	an
iterable,	the	cursor	will	yield	all	the	rows	in	the	result	set,	and	close	the	cursor
when	the	iteration	is	complete.

This	shortened	form	can	be	handy	for	queries	or	simple	transactions.	For	more
complex	transactions,	like	a	cascading	delete,	then	an	explicit	cursor	with
a	commit()	is	required	to	assure	the	transaction	is	either	executed	completely	or	not
at	all.	We'll	look	at	the	semantics	of	SQL	transactions	next.



SQL	transactions	and	the	ACID
properties
As	we've	seen,	the	SQL	DML	statements	map	to	the	CRUD	operations.	When
discussing	the	features	of	the	SQL	transactions,	we'll	be	looking	at	the	sequences
of	the	INSERT,	SELECT,	UPDATE,	and	DELETE	statements.

The	ACID	properties	are	Atomic,	Consistent,	Isolated,	and	Durable.	These	are
essential	features	of	a	transaction	that	consists	of	multiple	database	operations.
For	more	information,	see	Chapter	11,	Storing	and	Retrieving	Objects	via	Shelve.

All	the	SQL	DML	statements	operate	within	the	context	of	an	SQL	transaction.
The	entire	transaction	must	be	committed	as	a	whole,	or	rolled	back	as	a	whole.
This	supports	the	atomicity	property	by	creating	a	single,	atomic,	indivisible
change	from	one	consistent	state	to	the	next.

SQL	DDL	statements	(that	is,	CREATE,	DROP)	do	not	work	within	a	transaction.	They
implicitly	end	any	previous	in-process	transaction.	After	all,	they're	changing	the
structure	of	the	database;	they're	a	different	kind	of	statement,	and	the
transaction	concept	doesn't	really	apply.	Each	SQL	database	product	varies
slightly	in	whether	or	not	a	commit	is	necessary	when	creating	tables	or	indices.
Issuing	a	database.commit()	can't	hurt;	for	some	database	engines,	it	may	be
required.

Unless	working	in	a	special	read	uncommitted	mode,	each	connection	to	the
database	sees	a	consistent	version	of	the	data	containing	only	the	results	of	the
committed	transactions.	Uncommitted	transactions	are	generally	invisible	to
other	database	client	processes,	supporting	the	consistency	property.

An	SQL	transaction	also	supports	the	isolation	property.	SQLite	supports	several
different	isolation	level	settings.	The	isolation	level	defines	how	the	SQL	DML
statements	interact	among	multiple,	concurrent	processes.	This	is	based	on	how
locks	are	used	and	how	a	process'	SQL	requests	are	delayed	waiting	for	locks.
From	Python,	the	isolation	level	is	set	when	the	connection	is	made	to	the
database.



Each	SQL	database	product	takes	a	different	approach	to	the	isolation	level	and
locking.	There's	no	single	model.

In	the	case	of	SQLite,	there	are	four	isolation	levels	that	define	the	locking	and
the	nature	of	transactions.	For	details,	see	http://www.sqlite.org/isolation.html.

The	following	bullet	list	talks	about	these	isolation	levels:

isolation_level=None:	This	is	the	default,	otherwise	known	as	the	autocommit
mode.	In	this	mode,	each	individual	SQL	statement	is	committed	to	the
database	as	it's	executed.	This	can	break	the	atomicity	of	complex
transactions.	For	a	data	warehouse	query	application,	however,	it's	ideal.
isolation_level='DEFERRED':	In	this	mode,	locks	are	acquired	late	in	the
transaction.	The	BEGIN	statement,	for	example,	does	not	immediately	acquire
any	locks.	Other	read	operations	(examples	include	the	SELECT	statements)
will	acquire	shared	locks.	Write	operations	will	acquire	reserved	locks.
While	this	can	maximize	the	concurrency,	it	can	also	lead	to	deadlocks
among	competing	transaction	processes.
isolation_level='IMMEDIATE':	In	this	mode,	the	transaction	BEGIN	statement
acquires	a	lock	that	prevents	all	writes.	Reads,	however,	will	continue
normally.	This	avoids	deadlocks,	and	works	well	when	transactions	can	be
completed	quickly.
isolation_level='EXCLUSIVE':	In	this	mode,	the	transaction	BEGIN	statement
acquires	a	lock	that	prevents	all	access	except	for	connections	in	a	special
read	uncommitted	mode.	

The	durability	property	is	guaranteed	for	all	committed	transactions.	The	data	is
written	to	the	database	storage.

The	SQL	rules	require	us	to	execute	the	BEGIN	TRANSACTION	and	COMMIT	TRANSACTION
statements	to	bracket	a	sequence	of	steps.	In	the	event	of	an	error,	a	ROLLBACK
TRANSACTION	statement	is	required	to	unwind	the	potential	changes.	The	Python
interface	simplifies	this.	We	can	execute	an	SQL	BEGIN	statement.	The	other
statements	are	provided	as	functions	of	the	sqlite3.Connection	object;	we	don't
execute	SQL	statements	to	end	a	transaction.	We	might	write	things	like	the
following	code	to	be	explicit:

database	=	sqlite3.connect('p2_c11_blog.db',	isolation_level='DEFERRED')	

try:

				with	closing(database.cursor())	as	cursor:

http://www.sqlite.org/isolation.html


								cursor.execute("BEGIN")

								#	cursor.execute("some	statement")

								#	cursor.execute("another	statement")

				database.commit()

except	Exception	as	e:

				database.rollback()

We	selected	an	isolation	level	of	DEFERRED	when	we	made	the	database	connection.
This	leads	to	a	requirement	that	we	explicitly	begin	and	end	each	transaction.
One	typical	scenario	is	to	wrap	the	relevant	DML	in	a	try	block	and	commit	the
transaction	if	things	worked,	or	roll	back	the	transaction	in	the	case	of	a	problem.
We	can	simplify	this	by	using	the	sqlite3.Connection	object	as	a	context	manager
as	follows:

database	=	sqlite3.connect('p2_c11_blog.db',	isolation_level='DEFERRED')	

with	database:	

				database.execute("some	statement")	

				database.execute("another	statement")	

This	is	similar	to	the	previous	example.	We	opened	the	database	in	the	same
way.	Rather	than	executing	an	explicit	BEGIN	statement,	we	entered	a	context;	the
context	executes	the	BEGIN	statement	for	us.

At	the	end	of	the	with	context,	database.commit()	will	be	done	automatically.	In	the
event	of	an	exception,	a	database.rollback()	will	be	done,	and	the	exception	will	be
raised	by	the	with	statement.

This	kind	of	shorthand	is	helpful	in	a	web	server	where	a	connection	only	needs
to	last	for	the	duration	of	a	single	web	request.	When	doing	queries,	the	isolation
level	can	be	left	as	the	default,	resulting	in	a	very	quick	access	to	data.	

In	the	next	section,	we'll	design	primary	and	foreign	database	keys.



Designing	primary	and	foreign
database	keys
SQL	tables	don't	require	a	primary	key.	However,	it's	a	rather	poor	design	that
omits	primary	keys	for	the	rows	of	a	given	table.	As	we	noted	in	Chapter	11,
Storing	and	Retrieving	Objects	via	Shelve,	there	might	be	an	attribute	(or	a
combination	of	attributes)	that	makes	a	proper	primary	key.	It's	also	entirely
possible	that	no	attribute	is	suitable	as	a	primary	key	and	we	must	define
surrogate	keys.

The	previous	examples	use	surrogate	keys	created	by	SQLite.	This	is	perhaps	the
simplest	kind	of	design	because	it	imposes	the	fewest	constraints	on	the	data.	If
we	don't	generate	surrogate	keys,	then	a	primary	key	value	cannot	be	updated;
this	becomes	a	rule	that	the	application	programming	must	enforce.	This	creates
a	complex	edge	case	if	we	need	to	correct	an	error	in	the	primary	key	value.	One
way	to	do	this	is	to	drop	and	recreate	the	constraints.	Another	way	to	do	this	is	to
delete	the	faulty	row	and	reinsert	the	row	with	the	corrected	key.

When	there	are	cascading	deletes,	then	the	transaction	required	to	correct	a
primary	key	can	become	very	complex.	Using	a	surrogate	key	prevents	these
kinds	of	problems.	All	relationships	among	tables	are	done	via	the	primary	keys
and	foreign	key	references.	There	are	two	extremely	common	design	patterns	for
relationships.	The	preceding	tables	show	us	these	two	principle	design	patterns.
There	are	three	design	patterns	for	relationships,	as	follows:

One-to-many:	A	number	of	children	belong	to	a	single	parent	object.	For
example,	this	is	the	relationship	between	one	parent	blog	and	many	child
posts.	The	REFERENCES	clause	shows	us	that	many	rows	in	the	post	table	will
reference	one	row	from	the	blog	table.
Many-to-many:	This	relationship	is	between	many	posts	and	many	tags.
This	requires	an	intermediate	association	table	between	the	post	and	tag
tables;	the	intermediate	table	has	two	(or	more)	foreign	key	associations.
The	many-to-many	association	table	can	also	have	attributes	of	its	own.
One-to-one:	This	relationship	is	a	less	common	design	pattern.	There's	no
technical	difference	from	a	one-to-many	relationship.	This	is	a	question	of



the	cardinality	of	rows	on	the	child	side	of	the	relationship.	To	enforce	a
one-to-one	relationship,	some	processing	must	prevent	the	creation	of
additional	children.

In	a	database	design,	there	are	several	kinds	of	constraints	on	a	relationship:	the
relationship	might	be	described	as	optional	or	mandatory;	there	might	be
cardinality	limits	on	the	relationship.	Sometimes,	these	optionality	and
cardinality	constraints	are	summarized	with	short	descriptions	such	as
0:m	meaning	zero	to	many	or	optional	one	to	many.	The	optionality	and
cardinality	constraints	are	often	an	important	part	of	the	application
programming	logic;	there	are	no	formal	ways	to	state	these	constraints	in	the
SQLite	database.	The	essential	table	relationships	can	be	implemented	in	the
database	in	either	or	both	of	the	following	ways:

Explicit:	We	could	call	these	declared,	as	they're	part	of	the	DDL
declaration	for	a	database.	Ideally,	they're	enforced	by	the	database	server,
and	failure	to	comply	with	the	relationship's	constraints	can	lead	to	an	error
of	some	kind.	These	relationships	will	also	be	repeated	in	queries.
Implicit:	These	are	relationships	that	are	stated	only	in	queries;	they	are	not
a	formal	part	of	the	DDL.

Note	that	our	table	definitions	implemented	a	one-to-many	relationship	between
a	blog	and	the	various	entries	within	that	blog.	We've	made	use	of	these
relationships	in	the	various	queries	that	we	wrote.

In	the	next	section,	we'll	see	how	to	process	application	data	with	SQL.



Processing	application	data	with	SQL
The	examples	in	the	previous	sections	show	us	what	we	can	call	procedural
SQL	processing.	We've	eschewed	any	object-oriented	design	from	our	problem
domain	objects.	Rather	than	working	with	the	Blog	and	Post	objects,	we're
working	with	the	data	elements	that	SQLite	can	process	string,	date,	float,	and
integer	values.	We've	used	mostly	procedural-style	programming.

We	can	see	that	a	series	of	queries	can	be	done	to	locate	a	blog,	all	posts	that	are
part	of	the	blog,	and	all	tags	that	are	associated	with	a	post	associated	with	a
blog.	The	processing	to	retrieve	a	complete	blog,	all	posts,	and	all	tags	on	the
posts	would	look	like	the	following	code:

query_blog_by_title	=	"""

				SELECT	*	FROM	blog	WHERE	title=?

"""

query_post_by_blog_id	=	"""

				SELECT	*	FROM	post	WHERE	blog_id=?

"""

query_tag_by_post_id	=	"""

				SELECT	tag.*

				FROM	tag	

				JOIN	assoc_post_tag	ON	tag.id	=	assoc_post_tag.tag_id

				WHERE	assoc_post_tag.post_id=?

"""

with	closing(database.cursor())	as	blog_cursor:

				blog_cursor.execute(query_blog_by_title,	("2013-2014	Travel",))

				for	blog	in	blog_cursor.fetchall():

								print("Blog",	blog)

								with	closing(database.cursor())	as	post_cursor:

												post_cursor.execute(query_post_by_blog_id,	(blog[0],))

												for	post	in	post_cursor:

																print("Post",	post)

																with	closing(database.cursor())	as	tag_cursor:

																				tag_cursor.execute(query_tag_by_post_id,	(post[0],))

																				for	tag	in	tag_cursor.fetchall():

																								print("Tag",	tag)

We	defined	three	SQL	queries.	The	first	fetches	the	blogs	by	the	title.	For	each
blog,	we	fetched	all	the	posts	that	belong	to	this	blog.	Finally,	we	fetched	all	tags
that	are	associated	with	a	given	post.

The	second	query	implicitly	repeats	the	REFERENCES	definition	between	the	post
table	and	the	blog	table.	We're	finding	child	posts	of	a	specific	blog	parent;	we
need	to	repeat	some	of	the	table	definitions	during	the	query.



The	third	query	involves	a	relational	join	between	rows	of	the	assoc_post_tag	table
and	the	tag	table.	The	JOIN	clause	recapitulates	the	foreign	key	reference	in	the
table	definitions.	The	WHERE	clause	also	repeats	a	REFERENCES	clause	in	the	table
definitions.

Because	multiple	tables	were	joined	in	the	third	query,	using	SELECT	*	will
produce	columns	from	all	of	the	tables.	We're	really	only	interested	in	attributes
of	the	TAG	table,	so	we	use	SELECT	TAG.*	to	produce	only	the	desired	columns.

These	queries	provide	us	with	all	of	the	individual	bits	and	pieces	of	the	data.
However,	these	queries	don't	reconstruct	Python	objects	for	us.	If	we	have	more
complex	class	definitions,	we	have	to	build	objects	from	the	individual	pieces	of
data	that	we	retrieved.	In	particular,	if	our	Python	class	definitions	have
important	method	functions,	we'll	need	a	better	SQL-to-Python	mapping	to	make
use	of	more	complete	Python	class	definitions.

In	the	next	section,	we'll	see	how	to	implement	class-like	processing	in	pure
SQL.



Implementing	class-like	processing	in
pure	SQL
Let's	look	at	a	somewhat	more	complex	definition	of	a	Blog	class.	This	definition
is	repeated	from	Chapter	10,	Serializing	and	Saving	-	JSON,	YAML,	Pickle,	CSV,
and	XML,	as	well	as	Chapter	11,		Storing	and	Retrieving	Objects	via	Shelve.	This
definition	is	as	follows:

from	dataclasses	import	dataclass,	field,	asdict

@dataclass

class	Blog:

				title:	str

				underline:	str	=	field(init=False)

				#	Part	of	the	persistence,	not	essential	to	the	class.

				_id:	str	=	field(default="",	init=False,	compare=False)

				def	__post_init__(self)	->	None:

								self.underline	=	"="	*	len(self.title)

This	dataclass	provides	the	essential	title	attribute	for	a	blog.	It	has	an	optional
attribute	with	the	internal	database	ID	assigned	to	the	blog	entry.

Here's	the	start	of	an	Access	class	to	retrieve	Blog	and	Post	objects:

class	Access:

				def	open(self,	path:	Path)	->	None:

								self.database	=	sqlite3.connect(path)

								self.database.row_factory	=	sqlite3.Row

				def	get_blog(self,	id:	str)	->	Blog:

								query_blog	=	"""

												SELECT	*	FROM	blog	WHERE	id=?

								"""

								row	=	self.database.execute(query_blog,	(id,)).fetchone()

								blog	=	Blog(title=row["TITLE"])

								blog._id	=	row["ID"]

								return	blog

This	Access	class	has	a	method	that	creates	a	Blog	object	from	the	columns	in	the
relational	database.	The	__post_init__()	method	will	create	the	expected	underline
attribute	value.	This	shows	the	essential	technique	for	working	from	relational
data	to	an	object.



Retrieving	the	Post	instances	associated	with	a	Blog	instance	isn't	trivial.	It
requires	using	an	access	object	to	fetch	more	rows	from	the	database.	It	can't	be
done	directly	via	some	kind	of	attribute	defined	solely	within	the	Blog	class.	We'll
look	at	this	in	more	depth	when	we	look	at	the	access	layers	and	object-
relational	management	(ORM).



Mapping	Python	objects	to	SQLite
BLOB	columns
We	can	map	SQL	columns	to	class	definitions	so	that	we	can	create	proper
Python	object	instances	from	data	in	a	database.	SQLite	includes	a	Binary
Large	Object	(BLOB)	data	type.	We	can	pickle	our	Python	objects	and	store
them	in	the	BLOB	columns.	We	can	work	out	a	string	representation	of	our
Python	objects	(for	example,	using	the	JSON	or	YAML	notation)	and	use	SQLite
text	columns	too.

This	technique	must	be	used	cautiously	because	it	effectively	defeats	SQL
processing.	A	BLOB	column	cannot	be	used	for	SQL	DML	operations.	We	can't
index	it	or	use	it	in	the	search	criteria	of	DML	statements.

SQLite	BLOB	mapping	should	be	reserved	for	objects	where	it's	acceptable	to
be	opaque	to	the	surrounding	SQL	processing.	The	most	common	examples	are
media	objects	such	as	videos,	still	images,	or	sound	clips.	SQL	is	biased	towards
text	and	numeric	fields.	It	doesn't	generally	handle	more	complex	objects.

If	we're	working	with	financial	data,	our	application	should	use	the	decimal.Decimal
values.	.	The	reasons	were	discussed	in	Chapter	8,	Creating	Numbers;	currency
computations	will	be	incorrect	when	performed	with	float	values.	We	might
want	to	query	or	calculate	in	SQL	using	this	kind	of	data.	As	decimal.Decimal	is	not
directly	supported	by	SQLite,	we	need	to	extend	SQLite	to	handle	values	of	this
type.

There	are	two	directions	to	this:	conversion	and	adaptation.	We	need	to	adapt
Python	data	to	SQLite,	and	we	need	to	convert	SQLite	data	back	to	Python.
Here	are	two	functions	and	the	requests	to	register	them:

import	decimal	

def	adapt_currency(value):	

				return	str(value)

sqlite3.register_adapter(decimal.Decimal,	adapt_currency)		

def	convert_currency(bytes):	

				return	decimal.Decimal(bytes.decode())

sqlite3.register_converter("DECIMAL",	convert_currency)	



We've	written	an	adapt_currency()	function	that	will	adapt	decimal.Decimal	objects
into	a	suitable	form	for	the	database.	In	this	case,	we've	done	nothing	more	than
a	simple	conversion	to	a	string.	We've	registered	the	adapter	function	so	that
SQLite's	interface	can	convert	objects	of	class	decimal.Decimal	using	the	registered
adapter	function.	We've	also	written	a	convert_currency()	function	that	will	convert
SQLite	bytes	objects	into	the	Python	decimal.Decimal	objects.	We've	registered	the
converter	function	so	that	columns	of	the	DECIMAL	type	will	be	properly	converted	to
Python	objects.

Once	we've	defined	the	adapters	and	converters,	we	can	use	DECIMAL	as	a	fully
supported	column	type.	For	this	to	work	properly,	we	must	inform	SQLite	by
setting	detect_types=sqlite3.PARSE_DECLTYPES	when	making	the	database	connection.
Here's	a	table	definition	that	uses	our	new	column	data	type:

CREATE	TABLE	budget(	

				year	INTEGER,	

				month	INTEGER,	

				category	TEXT,	

				amount	DECIMAL	

)	

As	with	text	fields,	a	maximum	size	isn't	required	by	SQLite.	Other	database
products	require	a	size	to	optimize	storage	and	performance.	We	can	use	our	new
column	type	definition	like	this:

database	=	sqlite3.connect('p2_c11_blog.db',	detect_types=sqlite3.PARSE_DECLTYPES)	

database.execute(decimal_ddl)	

	

insert_budget=	"""	

				INSERT	INTO	budget(year,	month,	category,	amount)	

				VALUES(:year,	:month,	:category,	:amount)	

"""	

database.execute(insert_budget,	

				dict(year=2013,	month=1,	category="fuel",	amount=decimal.Decimal('256.78')))	

database.execute(insert_budget,	

				dict(year=2013,	month=2,	category="fuel",	amount=decimal.Decimal('287.65')))	

	

query_budget=	"""	

				SELECT	*	FROM	budget	

"""	

for	row	in	database.execute(query_budget):	

				print(row)	

We	created	a	database	connection	that	requires	declared	types	to	be	mapped	via	a
converter	function.	Once	we	have	the	connection,	we	can	create	our	table	using	a
new	DECIMAL	column	type.

When	we	insert	rows	into	the	table,	we	use	proper	decimal.Decimal	objects.	When



we	fetch	rows	from	the	table,	we'll	see	that	we	get	proper	decimal.Decimal	objects
back	from	the	database.	The	following	is	the	output:

(2013,	1,	'fuel',	Decimal('256.78'))	

(2013,	2,	'fuel',	Decimal('287.65'))	

This	shows	us	that	our	decimal.Decimal	objects	were	properly	stored	and	recovered
from	the	database.	We	can	write	adapters	and	converters	for	any	Python	class.	To
do	this,	we	need	to	invent	a	proper	byte	representation	of	the	object.	As	a	string
is	so	easily	transformed	into	bytes,	creating	and	parsing	strings	is	often	the
simplest	way	to	proceed.	Bytes	can	be	created	from	strings	using	the	encode()
method	of	a	string.	Similarly,	strings	can	be	recovered	from	bytes	using	the	bytes
decode()	method.

Let's	take	a	look	at	how	to	map	Python	objects	to	database	rows	manually.



Mapping	Python	objects	to	database
rows	manually
We	can	map	SQL	rows	to	class	definitions	so	that	we	can	create	proper	Python
object	instances	from	the	data	in	a	database.	If	we're	careful	with	our	database
and	class	definitions,	this	isn't	impossibly	complex.	If,	however,	we're	careless,
we	can	create	Python	objects	where	the	SQL	representation	is	quite	complex.
One	consequence	of	the	complexity	is	that	numerous	queries	are	involved	in
mapping	between	object	and	database	rows.	The	challenge	is	to	strike	a	balance
between	object-oriented	design	and	the	constraints	imposed	by	the	SQL
database.

We	will	have	to	modify	our	class	definitions	to	be	more	aware	of	the	SQL
implementation.	We'll	make	several	modifications	to	the	Blog	and	Post	class
designs	shown	in	Chapter	11,	Storing	and	Retrieving	Objects	via	Shelve.

Here's	a	Blog	class	definition:

@dataclass

class	Blog:

				title:	str

				underline:	str	=	field(init=False)

				#	Part	of	the	persistence,	not	essential	to	the	class.

				_id:	str	=	field(default="",	init=False,	compare=False)

				_access:	Optional[ref]	=	field(init=False,	repr=False,	default=None,	compare=False)

				def	__post_init__(self)	->	None:

								self.underline	=	"="	*	len(self.title)

				@property

				def	entries(self)	->	List['Post']:

								if	self._access	and	self._access():

												posts	=	cast('Access',	self._access()).post_iter(self)

												return	list(posts)

								raise	RuntimeError("Can't	work	with	Blog:	no	associated	Access	instance")

				def	by_tag(self)	->	Dict[str,	List[Dict[str,	Any]]]:

								if	self._access	and	self._access():

												return	cast('Access',	self._access()).post_by_tag(self)

								raise	RuntimeError("Can't	work	with	Blog:	no	associated	Access	instance")

The	core	elements	of	a	Blog	instance	are	present:	the	title	and	a	property	that



provides	a	list	of	Post	entries.	This	precisely	matches	the	feature	set	shown	in
previous	chapters.

In	order	to	work	with	the	persistence	of	objects,	it's	convenient	to	include	the
database	key	value.	In	this	definition,	it's	the	_id	field.	This	field	is	not	part	of	the
initialization,	nor	is	it	part	of	the	comparison	for	instances	of	the	Blog	class.	The
underline	attribute	is	computed,	as	in	previous	examples.

The	entries	property	relies	on	the	optional	_access	field.	This	provides	a	reference
to	the	Access	class	that	provides	a	database	connection	and	handles	the	SQL
mappings	from	the	database	tables.	This	value	is	injected	by	the	Access	class
when	an	object	is	retrieved.

The	list	of	Post	objects	requires	a	definition	of	the	required	class.	The		Post	class
definition	is	as	follows:

@dataclass

class	Post:

				date:	datetime.datetime

				title:	str

				rst_text:	str

				tags:	List[str]	=	field(default_factory=list)

				_id:	str	=	field(default="",	init=False,	compare=False)

				def	append(self,	tag):

								self.tags.append(tag)

The	fields	describe	an	individual	Post;	these	fields	include	the	date,	the	title,	the
body	in	RST	notation,	and	a	list	of	tags	to	further	categorize	posts.	As	with	Blog,
we've	allowed	for	a	database	_id	field	as	a	first-class	part	of	the	object.

Once	we	have	these	class	definitions,	we	can	write	an	access	layer	that	moves
data	between	objects	of	these	classes	and	the	database.	The	access	layer
implements	a	more	complex	version	of	converting	and	adapting	Python	classes
to	rows	of	a	table	in	the	database.

Let's	see	how	to	design	an	access	layer	for	SQLite.



Designing	an	access	layer	for	SQLite
For	this	small	object	model,	we	can	implement	the	entire	access	layer	in	a	single
class.	This	class	will	include	methods	to	perform	CRUD	operations	on	each	of
our	persistent	classes.	

This	example	won't	painstakingly	include	all	of	the	methods	for	a	complete
access	layer.	We'll	show	you	the	important	ones.	We'll	break	this	down	into
several	sections	to	deal	with	Blogs,	Posts,	and	iterators.	Here's	the	first	part	of	our
access	layer:

#	An	access	layer	to	map	back	and	forth	between	Python	objects	and	SQL	rows.

class	Access:

				get_last_id	=	"""

								SELECT	last_insert_rowid()

				"""

				def	open(self,	path:	Path)	->	None:

								self.database	=	sqlite3.connect(path)

								self.database.row_factory	=	sqlite3.Row

				def	get_blog(self,	id:	str)	->	Blog:

								query_blog	=	"""

												SELECT	*	FROM	blog	WHERE	id=?

								"""

								row	=	self.database.execute(query_blog,	(id,)).fetchone()

								blog	=	Blog(title=row["TITLE"])

								blog._id	=	row["ID"]

								blog._access	=	ref(self)

								return	blog

				def	add_blog(self,	blog:	Blog)	->	Blog:

								insert_blog	=	"""

												INSERT	INTO	blog(title)	VALUES(:title)

								"""

								self.database.execute(insert_blog,	dict(title=blog.title))

								row	=	self.database.execute(self.get_last_id).fetchone()

								blog._id	=	str(row[0])

								blog._access	=	ref(self)

								return	blog

In	addition	to	opening	the	database,	the	open()	method	sets	Connection.row_factory	to
use	the	sqlite3.Row	class	instead	of	a	simple	tuple.	The	Row	class	allows	access	via
the	numeric	index,	as	well	as	the	column	name.

The	get_blog()	method	constructs	a	Blog	object	from	the	database	row	that	is
fetched.	Because	we're	using	the	sqlite3.Row	object,	we	can	refer	to	columns	by
name.	This	clarifies	the	mapping	between	SQL	and	the	Python	class.	The	two



additional	attributes,	_id	and	_access	must	be	set	separately;	they're	part	of	the
access	layer,	and	not	central	to	the	problem	domain.

The	add_blog()	method	inserts	a	row	into	the	blog	table	based	on	the	value	of	a	Blog
object.	This	is	a	three-step	operation.	First,	we	create	the	new	row.	Then,	we
perform	an	SQL	query	to	get	the	row	key	that	was	assigned	to	the	row.	Finally,
the	original	blog	instance	is	updated	with	the	assigned	database	key	and	a
reference	to	the	Access	instance.

Note	that	our	table	definitions	use	INTEGER	PRIMARY	KEY	AUTOINCREMENT.	Because	of
this,	the	table's	primary	key	is	the	_id	attribute	of	the	row,	and	the	assigned	row
key	will	be	available	through	the	last_insert_rowid()	function.	This	allows	us	to
retrieve	the	row	key	that	was	created	by	SQLite;	we	can	then	put	this	into	the
Python	object	for	future	reference.	Here's	how	we	can	retrieve	an	individual	Post
object	from	the	database:

def	get_post(self,	id:	str)	->	Post:

				query_post	=	"""

								SELECT	*	FROM	post	WHERE	id=?

				"""

				row	=	self.database.execute(query_post,	(id,)).fetchone()

				post	=	Post(

								title=row["TITLE"],	date=row["DATE"],	rst_text=row["RST_TEXT"]

				)

				post._id	=	row["ID"]

				#	Get	tag	text,	too

				query_tags	=	"""

								SELECT	tag.*

								FROM	tag	JOIN	assoc_post_tag	ON	tag.id	=	assoc_post_tag.tag_id

								WHERE	assoc_post_tag.post_id=?

				"""

				results	=	self.database.execute(query_tags,	(id,))

				for	tag_id,	phrase	in	results:

								post.append(phrase)

				return	post

To	build	Post,	we	have	two	queries:	first,	we	fetch	a	row	from	the	post	table	to
build	part	of	the	Post	object.	This	includes	injecting	the	database	ID	into	the
resulting	instance.	Then,	we	fetch	the	association	rows	joined	with	the	rows	from
the	tag	table.	This	is	used	to	build	the	tag	list	for	the	Post	object.

When	we	save	a	Post	object,	it	will	also	have	several	parts.	A	row	must	be	added
to	the	POST	table.	Additionally,	rows	need	to	be	added	to	the	assoc_post_tag	table.	If
a	tag	is	new,	then	a	row	might	need	to	be	added	to	the	tag	table.	If	the	tag	exists,
then	we	simply	associate	the	post	with	an	existing	tag's	key.	Here's	the	add_post()
method	function:



def	add_post(self,	blog:	Blog,	post:	Post)	->	Post:

				insert_post	=	"""

								INSERT	INTO	post(title,	date,	rst_text,	blog_id)	VALUES(:title,	:date,	:rst_text,	:blog_id)

				"""

				query_tag	=	"""

								SELECT	*	FROM	tag	WHERE	phrase=?

				"""

				insert_tag	=	"""

								INSERT	INTO	tag(phrase)	VALUES(?)

				"""

				insert_association	=	"""

								INSERT	INTO	assoc_post_tag(post_id,	tag_id)	VALUES(:post_id,	:tag_id)

				"""

				try:

								with	closing(self.database.cursor())	as	cursor:

												cursor.execute(

																insert_post,

																dict(

																				title=post.title,

																				date=post.date,

																				rst_text=post.rst_text,

																				blog_id=blog._id,

																),

												)

												row	=	cursor.execute(self.get_last_id).fetchone()

												post._id	=	str(row[0])

												for	tag	in	post.tags:

																tag_row	=	cursor.execute(query_tag,	(tag,)).fetchone()

																if	tag_row	is	not	None:

																				tag_id	=	tag_row["ID"]

																else:

																				cursor.execute(insert_tag,	(tag,))

																				row	=	cursor.execute(self.get_last_id).fetchone()

																				tag_id	=	str(row[0])

																cursor.execute(

																				insert_association,	

																				dict(tag_id=tag_id,	post_id=post._id)

																)

								self.database.commit()

				except	Exception	as	ex:

								self.database.rollback()

								raise

				return	post

The	process	of	creating	a	complete	post	in	the	database	involves	several	SQL
steps.	We've	used	the	insert_post	statement	to	create	the	row	in	the	post	table.
We'll	also	use	the	generic	get_last_id	query	to	return	the	assigned	primary	key	for
the	new	post	row.

The	query_tag	statement	is	used	to	determine	whether	the	tag	exists	in	the
database	or	not.	If	the	result	of	the	query	is	not	None,	it	means	that	a	tag	row	was
found,	and	we	have	the	ID	for	that	row.	Otherwise,	the	insert_tag	statement	must
be	used	to	create	a	row;	the	get_last_id	query	must	be	used	to	determine	the
assigned	key.



Each	post	is	associated	with	the	relevant	tags	by	inserting	rows	into	the
assoc_post_tag	table.	The	insert_association	statement	creates	the	necessary	row.
Here	are	two	iterator-style	queries	to	locate	Blogs	and	Posts:

def	blog_iter(self)	->	Iterator[Blog]:

				query	=	"""

								SELECT	*	FROM	blog

				"""

				results	=	self.database.execute(query)

				for	row	in	results:

								blog	=	Blog(title=row["TITLE"])

								blog._id	=	row["ID"]

								blog._access	=	ref(self)

								yield	blog

def	post_iter(self,	blog:	Blog)	->	Iterator[Post]:

				query	=	"""

								SELECT	id	FROM	post	WHERE	blog_id=?

				"""

				results	=	self.database.execute(query,	(blog._id,))

				for	row	in	results:

								yield	self.get_post(row["ID"])

The	blog_iter()	method	function	locates	all	the	BLOG	rows	and	builds	Blog	instances
from	the	rows.	The	post_iter()	method	function	locates	POST	IDs	that	are
associated	with	a	BLOG	ID.	The	POST	IDs	are	used	with	the	get_post()	method	to
build	the	Post	instances.	As	get_post()	will	perform	another	query	against	the	POST
table,	there's	an	optimization	possible	between	these	two	methods.

Let's	see	how	to	implement	container	relationships	in	the	next	section.



Implementing	container	relationships
When	we	looked	at	Blog	objects	in	Chapter	11,	Storing	and	Retrieving	Objects	via
Shelve,	we	defined	a	by_tag()	method	to	emit	useful	dictionary	representations	of
the	posts	organized	by	the	relevant	tag	strings.	The	method	had	a	definition	with
a	type	hint	that	was	Dict[str,	List[Dict[str,	Any]]].	Because	it	provided
information	useful	for	creating	tags	with	links,	the	by_tag()	method	was	a	helpful
part	of	rendering	a	Blog	instance	as	RST	or	HTML.	Additionally,	the
entries	property	returns	the	complete	collection	of	Post	instances	attached	to	the
Blog.	

Ideally,	the	application	model	class	definitions	such	as	Blog	and	Post	are	utterly
divorced	from	the	access	layer	objects,	which	persist	them	in	the	external
storage.	These	two	use	cases	suggest	the	model	layer	objects	must	have
references	to	the	access	layer.	There	are	several	strategies,	including	the
following:

A	global	Access	object	is	used	by	client	classes	to	perform	these	query
operations.	This	breaks	the	encapsulation	idea:	a	Blog	is	no	longer	a
container	for	Post	entries.	Instead,	an	Access	object	is	a	container	for	both.
The	class	definitions	are	simplified.	All	other	processing	is	made	more
complex.

Include	a	reference	to	an	access	layer	object	within	each	Blog	object,
allowing	a	client	class	to	work	with	a	Blog	object	unaware	of	an	access	layer.
This	makes	the	model	layer	class	definitions	a	bit	more	complex.	It	makes
the	client	work	somewhat	simpler.	The	advantage	of	this	technique	is	it
makes	the	model	layer	objects	behave	more	like	complex	Python	objects.	A
complex	object	may	be	forced	to	fetch	child	objects	from	the	database,	but
if	this	can	be	done	transparently,	it	makes	the	overall	application	somewhat
simpler.

As	a	concrete	example,	we'll	add	a	Blog.by_tag()	feature.	The	idea	is	to	return	a
dictionary	of	tags	and	post	information	as	a	complex	dictionary.	This	requires
considerable	work	by	an	access	layer	object	to	locate	and	fetch	the	dictionary
representations	of	Post	instances.



There's	no	trivial	mapping	from	the	relational	columns	to	objects.	Therefore,	an
Access	class	must	build	each	class	of	object.	As	an	example,	the	method	for
fetching	a	Blog	instance	is	shown	as	follows:

def	get_blog(self,	id:	str)	->	Blog:

				query_blog	=	"""

								SELECT	*	FROM	blog	WHERE	id=?

				"""

				row	=	self.database.execute(query_blog,	(id,)).fetchone()

				blog	=	Blog(id=row["ID"],	title=row["TITLE"])

				blog._access	=	ref(self)

				return	blog

The	relational	query	retrieves	the	various	attributes	for	recreating	a	Blog	instance.
In	addition	to	creating	the	core	fields,	each	Blog	object	has	an	optional	_access
attribute.	This	is	not	provided	at	initialization,	nor	is	it	part	of	the	representation
or	comparison	of	Blog	objects.	The	value	is	a	weak	reference	to	an	instance	of	an
Access	class.	This	object	will	embody	the	rather	complex	SQL	query	required	to
do	the	work.	This	association	is	inserted	by	the	access	object	each	time	a	blog
instance	is	retrieved.

Associating	blogs,	posts,	and	tags	will	require	a	rather	complex	SQL	query.
Here's	the	SELECT	statement	required	to	traverse	the	associations	and	locate	tag
phrases	and	associated	post	identifiers:

query_by_tag	=	"""	

				SELECT	tag.phrase,	post.id

				FROM	tag	

				JOIN	assoc_post_tag	ON	tag.id	=	assoc_post_tag.tag_id	

				JOIN	post	ON	post.id	=	assoc_post_tag.post_id	

				JOIN	blog	ON	post.blog_id	=	blog.id	

				WHERE	blog.title=?	

"""

This	query's	result	set	is	a	table-like	sequence	of	rows	with	two	attributes:
tag.phrase,	post.id.	The	SELECT	statement	defines	three	join	operations	between	the
blog,	post,	tag,	and	assoc_post_tag	tables.	The	rules	are	provided	via	the	ON	clauses
within	each	JOIN	specification.	The	tag	table	is	joined	with	the	assoc_post_tag	table
by	matching	values	of	the	tag.id	column	with	values	of	the	assoc_post_tag.tag_id
column.	Similarly,	the	post	table	is	associated	by	matching	values	of	the	post.id
column	with	values	of	the	assoc_post_tag.post_id	column.	Additionally,	the	blog
table	is	associated	by	matching	values	of	the	post.blog_id	column	with	values	of
the	blog.id	column.	

The	by_tag()	method	of	the	Access	class	using	this	query	is	as	follows:



def	post_by_tag(self,	blog:	Blog)	->	Dict[str,	List[Dict[str,	Any]]]:

				results	=	self.database.execute(

								self.query_by_tag,	(blog.title,))

				tags:	DefaultDict[str,	List[Dict[str,	Any]]]	=	defaultdict(list)

				for	phrase,	post_id	in	results.fetchall():

								tags[phrase].append(asdict(self.get_post(post_id)))

				return	tags

It's	important	to	note	this	complex	SQL	query	is	dissociated	from	the	table
definitions.	SQL	is	not	an	object-oriented	programming	language.	There's	no
tidy	class	to	bundle	data	and	processing	together.	Using	procedural	programming
with	SQL	like	this	tends	to	break	the	object	model.

The	by_tag()	method	of	the	blog	class	uses	this	method	of	the	Access	class	to	do	the
actual	fetches	of	the	various	posts.	A	client	application	can	then	do	the
following:

blog	=	some_access_object.get_blog(id=1)

tag_link	=	blog.by_tag()

The	returned	Blog	instance	behaves	as	if	it	was	a	simple	Python	class	definition
with	a	simple	collection	of	Post	instances.	To	make	this	happen,	we	require	some
careful	injection	of	access	layer	references	into	the	returned	objects.

In	the	next	section,	we'll	see	how	to	improve	the	performance	with	indices.



Improving	performance	with	indices
One	of	the	ways	to	improve	the	performance	of	a	relational	database	such	as
SQLite	is	to	make	join	operations	faster.	The	ideal	way	to	do	this	is	to	include
enough	index	information	that	slow	search	operations	aren't	done	to	find
matching	rows.

When	we	define	a	column	that	might	be	used	in	a	query,	we	should	consider
building	an	index	for	that	column.	This	means	adding	yet	more	SQL	DDL
statements	to	our	table	definitions.

An	index	is	a	separate	storage	but	is	tied	to	a	specific	table	and	column.	The
SQL	looks	like	the	following	code:

CREATE	INDEX	ix_blog_title	ON	blog(title);	

This	will	create	an	index	on	the	title	column	of	the	blog	table.	Nothing	else	needs
to	be	done.	The	SQL	database	will	use	the	index	when	performing	queries	based
on	the	indexed	column.	When	data	is	created,	updated,	or	deleted,	the	index	will
be	adjusted	automatically.

Indexes	involve	storage	and	computational	overheads.	An	index	that's	rarely
used	might	be	so	costly	to	create	and	maintain	that	it	becomes	a	performance
hindrance	rather	than	a	help.	On	the	other	hand,	some	indexes	are	so	important
that	they	can	have	spectacular	performance	improvements.	In	all	cases,	we	don't
have	direct	control	over	the	database	algorithms	being	used;	the	best	we	can	do
is	create	the	index	and	measure	the	performance's	impact.

In	some	database	products,	defining	a	column	to	be	a	key	might	automatically
include	having	an	index	added.	In	other	cases,	it's	the	presence	of	an	index	that
forces	a	column	to	be	considered	as	a	unique	key.	The	rules	for	this	are	usually
stated	quite	clearly	in	the	database's	DDL	section.	The	documentation	for
SQLite,	for	example,	says	this:

In	most	cases,	UNIQUE	and	PRIMARY	KEY	constraints	are	implemented	by	creating	a	unique	index	in	the
database.



It	goes	on	to	list	two	exceptions.	One	of	these,	the	integer	primary	key
exception,	is	the	design	pattern	we've	been	using	to	force	the	database	to	create
surrogate	keys	for	us.	Therefore,	our	integer	primary	key	design	will	not	create
any	additional	indices.

In	the	next	section,	we'll	discuss	adding	an	ORM	layer.



Adding	an	ORM	layer
There	are	a	fairly	large	number	of	Python	ORM	projects.	A	list	of	these	can	be
found	at	https://wiki.python.org/moin/HigherLevelDatabaseProgramming.

We're	going	to	pick	just	one	of	these	as	an	example.	We'll	use	SQLAlchemy
because	it	offers	us	a	number	of	features	and	is	reasonably	popular.	As	with
many	things,	there's	no	best;	other	ORM	layers	have	different	advantages	and
disadvantages.

Because	of	the	popularity	of	using	a	relational	database	to	support	web
development,	web	frameworks	often	include	ORM	layers.	Django	has	its	own
ORM	layer,	as	does	web.py.	In	some	cases,	we	can	tease	the	ORMs	out	of	the
larger	framework.	However,	it	seems	simpler	to	work	with	a	standalone	ORM.

The	documentation,	installation	guide,	and	code	for	SQLAlchemy	is	available	at	
http://www.sqlalchemy.org.	When	installing,	using	--without-cextensions	can	simplify
the	process	if	the	high-performance	optimizations	aren't	required.

It's	important	to	note	that	SQLAlchemy	can	completely	replace	all	of	an
application's	SQL	statements	with	first-class	Python	constructs.	This	has	the
profound	advantage	of	allowing	us	to	write	applications	in	a	single	language,
Python,	even	though	a	second	language,	SQL,	is	used	under	the	hood	as	part	of
the	data	access	layer.	This	can	save	some	complexity	in	the	development	and
debugging	stages.

This	does	not,	however,	remove	the	obligation	to	understand	the	underlying	SQL
database	constraints	and	how	our	design	must	fit	within	these	constraints.	An
ORM	layer	doesn't	magically	obviate	the	design	considerations.	It	merely
changes	the	implementation	language	from	SQL	to	Python.

We'll	design	an	ORM-friendly	class	in	the	next	section.

https://wiki.python.org/moin/HigherLevelDatabaseProgramming
http://www.sqlalchemy.org


Designing	ORM-friendly	classes
When	using	an	ORM,	we	will	fundamentally	change	the	way	we	design	and
implement	our	persistent	classes.	We're	going	to	expand	the	semantics	of	our
class	definitions	to	have	the	following	three	distinct	levels	of	meaning:

The	class	will	be	used	to	create	Python	objects.	The	method	functions	are
used	by	these	objects.
The	class	will	also	describe	an	SQL	table	and	can	be	used	by	the	ORM	to
create	the	SQL	DDL	that	builds	and	maintains	the	database	structure.	The
attributes	will	be	mapped	to	SQL	columns.
The	class	will	also	define	the	mappings	between	the	SQL	table	and	Python
class.	It	will	be	the	vehicle	to	turn	Python	operations	into	SQL	DML	and
build	Python	objects	from	SQL	query	results.

Most	ORMs	are	designed	to	use	descriptors	to	formally	define	the	attributes	of
our	class.	We	do	not	simply	define	attributes	in	the	__init__()	method.	For	more
information	on	descriptors,	see	Chapter	4,	Attribute	Access,	Properties,	and
Descriptors.

SQLAlchemy	requires	us	to	build	a	declarative	base	class.	This	base	class
provides	a	metaclass	for	our	application's	class	definitions.	It	also	serves	as	a
repository	for	the	metadata	that	we're	defining	for	our	database.	If	we	follow	the
defaults,	it's	easy	to	call	this	class	Base.

Here's	the	list	of	imports	that	might	be	helpful:

from	sqlalchemy.ext.declarative	import	declarative_base	

from	sqlalchemy	import	Column,	Table

from	sqlalchemy	import	(

				BigInteger,

				Boolean,

				Date,

				DateTime,

				Enum,

				Float,

				Integer,

				Interval,

				LargeBinary,

				Numeric,

				PickleType,

				SmallInteger,

				String,



				Text,

				Time,

				Unicode,

				UnicodeText,

				ForeignKey,

)

from	sqlalchemy.orm	import	relationship,	backref

We	imported	the	essential	definitions	to	create	a	column	of	a	table,	column,	and
to	create	the	rare	table	that	doesn't	specifically	map	to	a	Python	class,	Table.	We
imported	all	of	the	generic	column	type	definitions.	We'll	only	use	a	few	of	these
column	types.	Not	only	does	SQLAlchemy	define	these	generic	types;	it	defines
the	SQL	standard	types,	and	it	also	defines	vendor-specific	types	for	the	various
supported	SQL	dialects.	It	is	best	to	stick	to	the	generic	types	and	allow
SQLAlchemy	to	map	between	generic,	standard,	and	vendor	types.

We	also	imported	two	helpers	to	define	the	relationships	among	tables,
relationship,	and	backref.	SQLAlchemy's	metaclass	is	built	by	the	declarative_base()
function	as	follows:

Base	=	declarative_base()	

The	Base	object	must	be	the	superclass	for	any	persistent	class	that	we're	going	to
define.	We'll	define	three	tables	that	are	mapped	to	Python	classes.	We'll	also
define	a	fourth	table	that's	simply	required	by	SQL	to	implement	a	many-to-
many	relationship.

Here's	the	Blog	class:

class	Blog(Base):

				__tablename__	=	"BLOG"

				id	=	Column(Integer,	primary_key=True)

				title	=	Column(String)

				def	as_dict(self):

								return	dict(

												title=self.title,

												underline="="	*	len(self.title),

												entries=[e.as_dict()	for	e	in	self.entries],

								)

Our	Blog	class	is	mapped	to	a	table	named	"BLOG".	We've	included	two	descriptors
for	the	two	columns	we	want	in	this	table.	The	id	column	is	defined	as	an	Integer
primary	key.	Implicitly,	this	will	be	an	autoincrement	field	so	that	surrogate	keys
are	generated	for	us.



The	title	column	is	defined	as	a	generic	string.	We	could	have	used	Text,	Unicode,
or	even	UnicodeText	for	this.	The	underlying	engine	might	have	different
implementations	for	these	various	types.	In	our	case,	SQLite	will	treat	all	of
these	nearly	identically.	Also	note	that	SQLite	doesn't	need	an	upper	limit	on	the
length	of	a	column;	other	database	engines	might	require	an	upper	limit	on	the
size	of	String.

The	as_dict()	method	function	refers	to	an	entries	collection	that	is	clearly	not
defined	in	this	class.	When	we	look	at	the	definition	of	the	Post	class,	we'll	see
how	this	entries	attribute	is	built.	Here's	the	definition	of	the	Post	class:

class	Post(Base):

				__tablename__	=	"POST"

				id	=	Column(Integer,	primary_key=True)

				title	=	Column(String)

				date	=	Column(DateTime)

				rst_text	=	Column(UnicodeText)

				blog_id	=	Column(Integer,	ForeignKey("BLOG.id"))

				blog	=	relationship("Blog",	backref="entries")

				tags	=	relationship("Tag",	secondary=assoc_post_tag,	backref="posts")

				def	as_dict(self):

								return	dict(

												title=self.title,

												underline="-"	*	len(self.title),

												date=self.date,

												rst_text=self.rst_text,

												tags=[t.phrase	for	t	in	self.tags],

								)

This	class	has	five	attributes,	two	relationships,	and	a	method	function.	The	id
attribute	is	an	integer	primary	key;	this	will	have	an	autoincremented	value	by
default.	The	title	attribute	is	a	simple	string.

The	date	attribute	will	be	a	DateTime	column;	rst_text	is	defined	as	UnicodeText	to
emphasize	our	expectation	of	any	Unicode	character	in	this	field.

The	blog_id	is	a	foreign	key	reference	to	the	parent	blog	that	contains	this	post.	In
addition	to	the	foreign	key	column	definition,	we	also	included	an	explicit
relationship	definition	between	the	post	and	the	parent	blog.	This	relationship
definition	becomes	an	attribute	that	we	can	use	for	navigation	from	the	post	to
the	parent	blog.

The	backref	option	includes	a	backward	reference	that	will	be	added	to	the	Blog
class.	This	reference	in	the	Blog	class	will	be	the	collection	of	Posts	that	are
contained	within	the	Blog.	The	backref	option	names	the	new	attribute	in	the	Blog



class	to	reference	the	child	Posts.

The	tags	attribute	uses	a	relationship	definition;	this	attribute	will	navigate	via	an
association	table	to	locate	all	the	Tag	instances	associated	with	the	post.	We'll
look	at	the	following	association	table.	This,	too,	uses	backref	to	include	an
attribute	in	the	Tag	class	that	references	the	related	collection	of	the	Post	instances.

The	as_dict()	method	makes	use	of	the	tags	attribute	to	locate	all	of	Tags
associated	with	this	Post.	Here's	a	definition	for	the	Tag	class:

class	Tag(Base):

				__tablename__	=	"TAG"

				id	=	Column(Integer,	primary_key=True)

				phrase	=	Column(String,	unique=True)

We	defined	a	primary	key	and	a	String	attribute.	We	included	a	constraint	to
ensure	that	each	tag	is	explicitly	unique.	An	attempt	to	insert	a	duplicate	will
lead	to	a	database	exception.	The	relationship	in	the	Post	class	definition	means
that	additional	attributes	will	be	created	in	this	class.

As	required	by	SQL,	we	need	an	association	table	for	the	many-to-many
relationship	between	tags	and	posts.	This	table	is	purely	a	technical	requirement
in	SQL	and	need	not	be	mapped	to	a	Python	class:

assoc_post_tag	=	Table(

				"ASSOC_POST_TAG",

				Base.metadata,

				Column("POST_ID",	Integer,	ForeignKey("POST.id")),

				Column("TAG_ID",	Integer,	ForeignKey("TAG.id")),

)

We	have	to	explicitly	bind	this	to	the	Base.metadata	collection.	This	binding	is
automatically	a	part	of	the	classes	that	use	Base	as	the	metaclass.	We	defined	a
table	that	contains	two	Column	instances.	Each	column	is	a	foreign	key	to	one	of
the	other	tables	in	our	model.

Let's	see	how	to	build	the	schema	with	the	ORM	layer.



Building	the	schema	with	the	ORM
layer
In	order	to	connect	to	a	database,	we'll	need	to	create	an	engine.	One	use	for	the
engine	is	to	build	the	database	instance	with	our	table	declarations.	The	other	use
for	the	engine	is	to	manage	the	data	from	a	session,	which	we'll	look	at	later.
Here's	a	script	that	we	can	use	to	build	a	database:

from	sqlalchemy	import	create_engine	

engine	=	create_engine('sqlite:///./p2_c11_blog2.db',	echo=True)	

Base.metadata.create_all(engine)	

When	we	create	an	Engine	instance,	we	use	a	URL-like	string	that	names	the
vendor	product	and	provides	all	the	additional	parameters	required	to	create	the
connection	to	that	database.	In	the	case	of	SQLite,	the	connection	is	a	filename.
In	the	case	of	other	database	products,	there	might	be	server	host	names	and
authentication	credentials.

Once	we	have	the	engine,	we've	done	some	fundamental	metadata	operations.
We've	shown	you	create_all(),	which	builds	all	of	the	tables.	We	might	also
perform	a	drop_all(),	which	will	drop	all	of	the	tables,	losing	all	the	data.	We	can,
of	course,	create	or	drop	an	individual	schema	item	too.

If	we	change	a	table	definition	during	software	development,	it	will	not
automatically	mutate	the	SQL	table	definition.	We	need	to	explicitly	drop	and
rebuild	the	table.	In	some	cases,	we	might	want	to	preserve	some	operational
data,	leading	to	potentially	complex	surgery	to	create	and	populate	new	table(s)
from	old	table(s).

The	echo=True	option	writes	log	entries	with	the	generated	SQL	statements.	This
can	be	helpful	to	determine	whether	the	declarations	are	complete	and	create	the
expected	database	design.	Here's	a	snippet	of	the	output	that	is	produced:

CREATE	TABLE	"BLOG"	(

				id	INTEGER	NOT	NULL,	

				title	VARCHAR,	

				PRIMARY	KEY	(id)

)



CREATE	TABLE	"TAG"	(

				id	INTEGER	NOT	NULL,	

				phrase	VARCHAR,	

				PRIMARY	KEY	(id),	

				UNIQUE	(phrase)

)

CREATE	TABLE	"POST"	(

				id	INTEGER	NOT	NULL,	

				title	VARCHAR,	

				date	DATETIME,	

				rst_text	TEXT,	

				blog_id	INTEGER,	

				PRIMARY	KEY	(id),	

				FOREIGN	KEY(blog_id)	REFERENCES	"BLOG"	(id)

)

CREATE	TABLE	"ASSOC_POST_TAG"	(

				"POST_ID"	INTEGER,	

				"TAG_ID"	INTEGER,	

				FOREIGN	KEY("POST_ID")	REFERENCES	"POST"	(id),	

				FOREIGN	KEY("TAG_ID")	REFERENCES	"TAG"	(id)

)

This	shows	SQL	that	the	CREATE	TABLE	statements	were	created	based	on	our	class
definitions.	This	can	be	helpful	to	see	how	the	ORM	definitions	are	implemented
in	a	database.	

Once	the	database	has	been	built,	we	can	create,	retrieve,	update,	and	delete
objects.	In	order	to	work	with	database	objects,	we	need	to	create	a	session	that
acts	as	a	cache	for	the	ORM-managed	objects.

We'll	see	how	to	manipulate	objects	with	the	ORM	layer	in	the	next	section.



Manipulating	objects	with	the	ORM
layer
In	order	to	work	with	objects,	we'll	need	a	session	cache.	This	is	bound	to	an
engine.	We'll	add	new	objects	to	the	session	cache.	We'll	also	use	the	session
cache	to	query	objects	in	the	database.	This	assures	us	that	all	objects	that	need
to	be	persistent	are	in	the	cache.	Here	is	a	way	to	create	a	working	session:

from	sqlalchemy.orm	import	sessionmaker	

Session	=	sessionmaker(bind=engine)	

session	=	Session()	

We	used	the	SQLAlchemy	sessionmaker()	function	to	create	a	Session	class.	This	is
bound	to	the	database	engine	that	we	created	previously.	We	then	used	the	Session
class	to	build	a	session	object	that	we	can	use	to	perform	data	manipulation.	A
session	is	required	to	work	with	the	objects	in	general.

Generally,	we	build	one	sessionmaker	class	along	with	the	engine.	We	can	then	use
that	one	sessionmaker	class	to	build	multiple	sessions	for	our	application
processing.

For	simple	objects,	we	create	them	and	load	them	into	the	session,	as	in	the
following	code:

blog	=	Blog(title="Travel	2013")	

session.add(blog)	

This	puts	a	new	Blog	object	into	the	session	named	session.	The	Blog	object	is	not
necessarily	written	to	the	database.	We	need	to	commit	the	session	before	the
database	writes	are	performed.	In	order	to	meet	the	atomicity	requirements,	we'll
finish	building	a	post	before	committing	the	session.

First,	we'll	look	up	the	Tag	instances	in	the	database.	If	they	don't	exist,	we'll
create	them.	If	they	do	exist,	we'll	use	the	tag	found	in	the	database	as	follows:

tags	=	[]	

for	phrase	in	"#RedRanger",	"#Whitby42",	"#ICW":	

				try:	

								tag	=	session.query(Tag).filter(Tag.phrase	==	phrase).one()	



				except	sqlalchemy.orm.exc.NoResultFound:	

								tag	=	Tag(phrase=phrase)	

								session.add(tag)	

				tags.append(tag)	

We	use	the	session.query()	function	to	examine	instances	of	the	given	class.	Each
filter()	function	appends	a	criterion	to	the	query.	The	one()	function	ensures	that
we've	found	a	single	row.	If	an	exception	is	raised,	then	it	means	that	Tag	doesn't
exist.	We	need	to	build	a	new	Tag	and	add	it	to	the	session.

Once	we've	found	or	created	the	Tag	instance,	we	can	append	it	to	a	local	list
named	tags;	we'll	use	this	list	of	Tag	instances	to	create	the	Post	object.	Here's	how
we	build	a	Post:

p2	=	Post(date=datetime.datetime(2013,11,14,17,25),	

				title="Hard	Aground",	

				rst_text="""Some	embarrassing	revelation.	Including	☹	and	⚓""",	
				blog=blog,	

				tags=tags	

				)	

session.add(p2)	

blog.posts	=	[p2]	

This	includes	a	reference	to	the	parent	blog.	It	also	includes	the	list	of	Tag
instances	that	we	built	(or	found	in	the	database).

The	Post.blog	attribute	was	defined	as	a	relationship	in	the	class	definitions.
When	we	assign	an	object,	SQLAlchemy	plucks	out	the	proper	ID	values	to
create	the	foreign	key	reference	that	the	SQL	database	uses	to	implement	the
relationship.

The	Post.tags	attribute	was	also	defined	as	a	relationship.	The	Tag	objects	are
referenced	via	the	association	table.	SQLAlchemy	tracks	the	ID	values	properly
to	build	the	necessary	rows	in	the	SQL	association	table	for	us.

In	order	to	associate	the	Post	with	the	Blog,	we'll	make	use	of	the	Blog.posts
attribute.	This,	too,	was	defined	as	a	relationship.	When	we	assign	a	list	of	Post
objects	to	this	relationship	attribute,	the	ORM	will	build	the	proper	foreign	key
reference	in	each	Post	object.	This	works	because	we	provided	the	backref
attribute	when	defining	the	relationship.	Finally,	we	commit	the	session	as
follows:

session.commit()	



The	database	inserts	are	all	handled	in	a	flurry	of	automatically	generated	SQL.
The	objects	remained	cached	in	the	session.	If	our	application	continues	using
this	session	instance,	then	the	pool	of	objects	remains	available	without
necessarily	performing	any	actual	queries	against	the	database.

If,	on	the	other	hand,	we	would	like	to	be	absolutely	sure	that	any	updates
written	by	other	concurrent	processes	are	included	in	a	query,	we	can	create	a
new,	empty	session	for	that	query.	When	we	discard	a	session	and	use	an	empty
session,	objects	must	be	fetched	from	the	database	to	refresh	the	session.

We	can	write	a	simple	query	as	follows	to	examine	and	print	all	of	the	Blog
objects:

session	=	Session()	

for	blog	in	session.query(Blog):	

				print("{title}\n{underline}\n".format(**blog.as_dict()))	

				for	p	in	blog.entries:	

								print(p.as_dict())	

This	will	retrieve	all	the	Blog	instances.	The	Blog.as_dict()	method	will	retrieve	all
of	the	posts	within	a	blog.	The	Post.as_dict()	will	retrieve	all	of	the	tags.	The	SQL
queries	will	be	generated	and	executed	automatically	by	SQLAlchemy.

We	didn't	include	the	rest	of	the	template-based	formatting	from	Chapter	10,
Serializing	and	Saving	-	JSON,	YAML,	Pickle,	CSV,	and	XML.	It	doesn't	change.
We	are	able	to	navigate	from	the	Blog	object	via	the	entries	list	to	the	Post	objects
without	writing	elaborate	SQL	queries.	Translating	navigation	into	queries	is	the
job	of	SQLAlchemy.	Using	a	Python	iterator	is	sufficient	for	SQLAlchemy	to
generate	the	right	queries	to	refresh	the	cache	and	return	the	expected	objects.

If	we	have	echo=True	defined	for	the	Engine	instance,	then	we'll	be	able	to	see	the
sequence	of	SQL	queries	performed	to	retrieve	the	Blog,	Post,	and	Tag	instances.
This	information	can	help	us	understand	the	workload	that	our	application	places
on	the	database	server	process.

Let's	see	how	to	query	posts	that	are	given	a	tag.



Querying	posts	that	are	given	a	tag
An	important	benefit	of	a	relational	database	is	our	ability	to	follow	the
relationships	among	the	objects.	Using	SQLAlchemy's	query	capability,	we	can
follow	the	relationship	from	Tag	to	Post	and	locate	all	Posts	that	share	a	given	Tag.

A	query	is	a	feature	of	a	session.	This	means	that	objects	already	in	the	session
don't	need	to	be	fetched	from	the	database,	which	is	a	potential	time	saver.
Objects	not	in	the	session	are	cached	in	the	session	so	that	updates	or	deletes	can
be	handled	at	the	time	of	the	commit.

To	gather	all	of	the	posts	that	have	a	given	tag,	we	need	to	use	the	intermediate
association	table	as	well	as	the	Post	and	Tag	tables.	We'll	use	the	query	method	of
the	session	to	specify	what	kinds	of	objects	we	expect	to	get	back.	We'll	use	the
fluent	interface	to	join	in	the	various	intermediate	tables	and	the	final	table	that
we	want	with	the	selection	criteria.	Here's	how	it	looks:

session2	=	Session()

results	=	(

				session2.query(Post).join(assoc_post_tag).join(Tag).filter(

								Tag.phrase	==	"#Whitby42"

				)

)

for	post	in	results:

				print(

								post.blog.title,	post.date,	

								post.title,	[t.phrase	for	t	in	post.tags]

				)

The	session.query()	method	specifies	the	table	that	we	want	to	see.	The	join()
methods	identify	the	additional	tables	that	must	be	matched.	Because	we
provided	the	relationship	information	in	the	class	definitions,	SQLAlchemy	can
work	out	the	SQL	details	required	to	use	primary	keys	and	foreign	keys	to	match
rows.	The	final	filter()	method	provides	the	selection	criteria	for	the	desired
subset	of	rows.	Here's	the	SQL	that	was	generated:

SELECT	"POST".id	AS	"POST_id",	

				"POST".title	AS	"POST_title",

				"POST".date	AS	"POST_date",	

				"POST".rst_text	AS	"POST_rst_text",	

				"POST".blog_id	AS	"POST_blog_id"	

FROM	"POST"	

JOIN	"ASSOC_POST_TAG"	ON	"POST".id	=	"ASSOC_POST_TAG"."POST_ID"	

JOIN	"TAG"	ON	"TAG".id	=	"ASSOC_POST_TAG"."TAG_ID"	



WHERE	"TAG".phrase	=	?	

The	Python	version	is	a	bit	easier	to	understand,	as	the	details	of	the	key
matching	can	be	elided.	The	print()	function	uses	post.blog.title	to	navigate	from
the	Post	instance	to	the	associated	blog	and	show	the	title	attribute.	If	the	blog
was	in	the	session	cache,	this	navigation	is	done	quickly.	If	the	blog	was	not	in
the	session	cache,	it	will	be	fetched	from	the	database.

This	navigation	behavior	applies	to	[t.phrase	for	t	in	post.tags]	too.	If	the	object
is	in	the	session	cache,	it's	simply	used.	In	this	case,	the	collection	of	the	Tag
objects	associated	with	a	post	might	lead	to	a	complex	SQL	query	as	follows:

SELECT	

				"TAG".id	AS	"TAG_id",	

				"TAG".phrase	AS	"TAG_phrase"	

FROM	"TAG",	"ASSOC_POST_TAG"	

WHERE	?	=	"ASSOC_POST_TAG"."POST_ID"	

AND	"TAG".id	=	"ASSOC_POST_TAG"."TAG_ID"	

In	Python,	we	simply	navigated	via	post.tags.	SQLAlchemy	generated	and
executed	the	SQL	for	us.



Defining	indices	in	the	ORM	layer
One	of	the	ways	to	improve	the	performance	of	a	relational	database	such	as
SQLite	is	to	make	join	operations	faster.	The	ideal	way	to	do	this	is	to	include
enough	index	information	so	that	slow	search	operations	aren't	done	to	find
matching	rows.

When	we	define	a	column	that	might	be	used	in	a	query,	we	should	consider
building	an	index	for	that	column.	This	is	a	simple	process	that	uses
SQLAlchemy.	We	simply	annotate	the	attribute	of	the	class	with	index=True.

We	can	make	fairly	minor	changes	to	our	Post	table,	for	example.	We	can	do	this
to	add	indexes:

class	Post(Base):	

				__tablename__	=	"POST"	

				id	=	Column(Integer,	primary_key=True)	

				title	=	Column(String,	index=True)	

				date	=	Column(DateTime,	index=True)	

				blog_id	=	Column(Integer,	ForeignKey('BLOG.id'),	index=True)	

Adding	two	indexes	for	the	title	and	date	will	usually	speed	up	queries	for	the
posts	by	the	title	or	by	the	date.	There's	no	guarantee	that	there	will	be	an
improvement	in	the	performance.	Relational	database	performance	involves	a
number	of	factors.	It's	important	to	measure	the	performance	of	a	realistic
workload	both	with	the	index	and	without	it.

Adding	an	index	by	blog_id,	similarly,	might	speed	up	the	join	operation	between
rows	in	the	Blog	and	Post	tables.	It's	also	possible	that	the	database	engine	uses	an
algorithm	that	doesn't	benefit	from	having	this	index	available.

Indexes	involve	storage	and	computational	overheads.	An	index	that's	rarely
used	might	be	so	costly	to	create	and	maintain	that	it	becomes	a	problem,	not	a
solution.	On	the	other	hand,	some	indexes	are	so	important	that	they	can	have
spectacular	performance	improvements.	In	all	cases,	we	don't	have	direct	control
over	the	database	algorithms	being	used;	the	best	we	can	do	is	create	the	index
and	measure	the	performance	impact.



Let's	take	a	look	at	schema	evolution	in	the	next	section.



Schema	evolution
When	working	with	an	SQL	database,	we	have	to	address	the	problem	of	schema
evolution.	Our	objects	have	a	dynamic	state	and	a	(relatively)	static	class
definition.	We	can	easily	persist	the	dynamic	state	of	an	object.	Our	class	defines
the	schema	for	the	persistent	data.	The	ORM	provides	mappings	from	our	class
to	an	SQL	implementation.

When	we	change	a	class	definition,	how	can	we	fetch	objects	from	the	database?
If	the	database	must	change,	how	do	we	upgrade	the	Python	mappings	and	still
access	the	data?	A	good	design	often	involves	some	combination	of	several
techniques.

The	changes	to	the	methods	and	properties	of	a	Python	class	will	not	change	the
mapping	to	the	SQL	rows.	These	can	be	termed	minor	changes,	as	the	tables	in
the	database	are	still	compatible	with	the	changed	class	definition.	A	new
software	release	can	have	a	new	minor	version	number.

Some	changes	to	Python	class	attributes	will	not	necessarily	change	the	persisted
object	state.	Adding	an	index,	for	example,	doesn't	change	the	underlying	table.
SQL	can	be	somewhat	flexible	when	converting	the	data	types	from	the	database
to	the	Python	objects.	An	ORM	layer	can	also	add	flexibility.	In	some	cases,	we
can	make	some	class	or	database	changes	and	call	it	a	minor	version	update
because	the	existing	SQL	schema	will	still	work	with	new	class	definitions.	

Other	changes	to	the	SQL	table	definitions	will	need	to	involve	modifying	the
persisted	objects.	These	can	be	called	major	changes	when	the	existing	database
rows	will	no	longer	be	compatible	with	the	new	class	definition.	These	kinds	of
changes	should	not	be	made	by	modifying	the	original	Python	class	definitions.
These	kinds	of	changes	should	be	made	by	defining	a	new	subclass	and
providing	an	updated	factory	function	to	create	instances	of	either	the	old	or	new
class.

Tools	such	as	Alembic	(see	https://pypi.org/project/alembic/)	and	Migrate	(https://s
qlalchemy-migrate.readthedocs.io/en/latest/)	can	help	manage	schema	evolution.	A
disciplined	history	of	schema	migration	steps	is	often	essential	for	properly

https://pypi.org/project/alembic/
https://sqlalchemy-migrate.readthedocs.io/en/latest/


converting	from	old	data	to	new	data.	

There	are	two	kinds	of	techniques	used	for	transforming	the	schema	from	one
version	to	the	next.	Any	given	application	will	use	some	combination	of	these
techniques,	as	follows:

SQL	ALTER	statements	modify	a	table	in	place.	There	are	a	number	of
constraints	and	restrictions	on	what	changes	can	be	done	with	an	ALTER.	This
generally	covers	a	number	of	minor	changes.
Creating	new	tables	and	dropping	old	tables.	Often,	SQL	schema	changes
require	a	new	version	of	tables	from	data	in	the	old	tables.	For	a	large
database,	this	can	be	a	time-consuming	operation.	For	some	kinds	of
structural	changes,	it's	unavoidable.

SQL	database	schema	changes	typically	involve	running	a	one-time	conversion
script.	This	script	will	use	the	old	schema	to	query	the	existing	data,	transform	it
to	new	data,	and	use	the	new	schema	to	insert	new	data	into	the	database.	Of
course,	this	must	be	tested	on	a	backup	database	before	being	run	on	the	user's
live	operational	database.	Once	the	schema	change	has	been	accomplished,	the
old	schema	can	be	safely	ignored	and	later	dropped	to	free	up	storage.

Tools	such	as	Alembic	require	two	separate	conversion	scripts.	The	upgrade
script	will	move	the	schema	forward	to	the	new	state.	A	downgrade	script	will
move	the	schema	back	to	the	previous	state.	Debugging	a	migration	may	involve
doing	an	upgrade,	finding	a	problem,	doing	a	downgrade,	and	using	the	previous
software	until	the	problem	can	be	sorted	out.



Summary
We	looked	at	the	basics	of	using	SQLite	in	three	ways:	directly,	via	an	access
layer,	and	via	the	SQLAlchemy	ORM.	We	have	to	create	SQL	DDL	statements;
we	can	do	this	directly	in	our	applications	or	in	an	access	layer.	We	can	also	have
DDL	built	by	the	SQLAlchemy	class	definitions.	To	manipulate	data,	we'll	use
SQL	DML	statements;	we	can	do	this	directly	in	a	procedural	style,	or	we	can
use	our	own	access	layer	or	SQLAlchemy	to	create	the	SQL.



Design	considerations	and	tradeoffs
One	of	the	strengths	of	the	sqlite3	module	is	that	it	allows	us	to	persist	distinct
objects,	each	with	its	own	unique	change	history.	When	using	a	database	that
supports	concurrent	writes,	we	can	have	multiple	processes	updating	the	data,
relying	on	SQLite	to	handle	concurrency	via	its	own	internal	locking.

Using	a	relational	database	imposes	numerous	restrictions.	We	must	consider
how	to	map	our	objects	to	rows	of	tables	in	the	database	as	follows:

We	can	use	SQL	directly,	using	only	the	supported	SQL	column	types	and
largely	eschewing	object-oriented	classes.
We	can	use	a	manual	mapping	that	extends	SQLite	to	handle	our	objects	as
SQLite	BLOB	columns.
We	can	write	our	own	access	layer	to	adapt	and	convert	between	our	objects
and	SQL	rows.
We	can	use	an	ORM	layer	to	implement	a	row-to-object	mapping.



Mapping	alternatives
The	problem	with	mixing	Python	and	SQL	is	that	there	can	be	an	impetus	toward
something	that	we	might	call	the	All	Singing,	All	Dancing,	All	SQL	solution.	The
idea	here	is	that	the	relational	database	is	somehow	the	ideal	platform	and
Python	corrupts	this	by	injecting	needless	object-oriented	features.

The	all-SQL,	object-free	design	strategy	is	sometimes	justified	as	being	more
appropriate	for	certain	kinds	of	problems.	Specifically,	the	proponents	will	point
out	summarizing	large	sets	of	data	using	the	SQL	GROUP	BY	clause	as	an	ideal	use
for	SQL.

This	kind	of	processing	is	implemented	very	effectively	by	Python's	defaultdict
and	Counter.	The	Python	version	is	often	so	effective	that	a	small	Python	program
querying	lots	of	rows	and	accumulating	summaries	using	defaultdict	might	be
faster	than	a	database	server	performing	SQL	with	GROUP	BY.

When	in	doubt,	measure.	When	confronted	with	claims	that	SQL	should
magically	be	faster	than	Python,	you	should	gather	evidence.	This	data	gathering
is	not	confined	to	one-time	initial	technical	spike	situations,	either.	As	usage
grows	and	changes,	the	relative	merit	of	SQL	database	versus	Python	will	shift
too.	A	home-brewed	access	layer	will	tend	to	be	highly	specific	to	a	problem
domain.	This	might	have	the	advantage	of	high	performance	and	relatively
transparent	mapping	from	row	to	object.	It	might	have	the	disadvantage	of	being
annoying	to	maintain	every	time	a	class	changes	or	the	database	implementation
changes.

A	well-established	ORM	project	might	involve	some	initial	effort	to	learn	the
features	of	the	ORM,	but	the	long-term	simplifications	are	important	benefits.
Learning	the	features	of	an	ORM	layer	can	involve	both	initial	work	and	rework
as	lessons	are	learned.	The	first	attempts	at	a	design	that	has	good	object	features
and	still	fits	within	the	SQL	framework	will	have	to	be	redone	as	the	application
trade-offs	and	considerations	become	clearer.



Key	and	key	design
Because	SQL	depends	on	keys,	we	must	take	care	to	design	and	manage	keys	for
our	various	objects.	We	must	design	a	mapping	from	an	object	to	the	key	that
will	be	used	to	identify	that	object.	One	choice	is	to	locate	an	attribute	(or
combination	of	attributes)	that	contains	proper	primary	keys	and	cannot	be
changed.	Another	choice	is	to	generate	surrogate	keys	that	cannot	be	changed;
this	allows	all	other	attributes	to	be	changed.

Most	relational	databases	can	generate	surrogate	keys	for	us.	This	is	usually	the
best	approach.	For	other	unique	attributes	or	candidate	key	attributes,	we	can
define	SQL	indexes	to	improve	the	processing	performance.

We	must	also	consider	the	foreign	key	relationships	among	objects.	There	are
several	common	design	patterns:	one-to-many,	many-to-one,	many-to-many,	and
optional	one-to-one.	We	need	to	be	aware	of	how	SQL	uses	keys	to	implement
these	relationships	and	how	SQL	queries	will	be	used	to	fill	in	the	Python
collections.



Application	software	layers
Because	of	the	relative	sophistication	available	when	using	sqlite3,	our
application	software	must	become	more	properly	layered.	Generally,	we'll	look
at	software	architectures	with	the	following	layers:

The	presentation	layer:	This	is	a	top-level	user	interface,	either	a	web
presentation	or	a	desktop	GUI.
The	application	layer:	This	is	the	internal	service	or	controllers	that	make
the	application	work.	This	could	be	called	the	processing	model,	and	is
different	from	the	logical	data	model.
The	business	layer	or	the	problem	domain	model	layer:	These	are	the
objects	that	define	the	business	domain	or	the	problem	space.	This	is
sometimes	called	the	logical	data	model.	We	looked	at	how	we	might	model
these	objects	using	a	microblog	blog	and	post	example.
Infrastructure:	This	often	includes	several	layers,	as	well	as	other	cross-
cutting	concerns,	such	as	logging,	security,	and	network	access.
The	data	access	layer:	These	are	protocols	or	methods	to	access	the	data
objects.	It	is	often	an	ORM	layer.	We've	looked	at	SQLAlchemy.	There	are
numerous	other	choices	for	this.
The	persistence	layer:	This	is	the	physical	data	model	as	seen	in	file
storage.	The	sqlite3	module	implements	persistence.	When	using	an	ORM
layer	such	as	SQLAlchemy,	we	only	reference	SQLite	when	creating	an
engine.

When	looking	at	sqlite3	in	this	chapter	and	shelve	in	Chapter	11,	Storing	and
Retrieving	Objects	via	Shelve,	it	becomes	clear	that	mastering	object-oriented
programming	involves	some	higher-level	design	patterns.	We	can't	simply
design	classes	in	isolation—we	need	to	look	at	how	classes	are	going	to	be
organized	into	larger	structures.



Looking	forward
In	the	next	chapter,	we'll	look	at	transmitting	and	sharing	objects	using	REST.
This	design	pattern	shows	us	how	to	manage	the	representation	of	the	state	and
how	to	transfer	the	object	state	from	process	to	process.	We'll	leverage	a	number
of	persistence	modules	to	represent	the	state	of	an	object	that	is	being
transmitted.

In	Chapter	14,	Configuration	Files	and	Persistence,	we'll	look	at	the	configuration
files.	We'll	look	at	several	ways	to	make	use	of	persistent	representations	of	data
that	controls	an	application.



Transmitting	and	Sharing	Objects
We'll	expand	on	our	serialization	techniques	for	the	object	representation	started
in	Chapter	10,	Serializing	and	Saving	–	JSON,	YAML,	Pickle,	CSV,	and	XML.
When	we	need	to	transmit	an	object,	we	perform	some	kind	of
REpresentational	State	Transfer	(REST),	which	includes	serializing	a
representation	of	the	state	of	the	object.	This	representation	can	then	be
transferred	to	another	process	(usually	on	another	host	computer);	the	receiving
process	can	then	build	a	version	of	the	original	object	from	the	representation	of
the	state	and	a	local	copy	of	the	class	definition.

Decomposing	REST	processing	into	the	two	aspects	of	representation	and
transfer	lets	us	solve	these	problems	independently.	There	are	a	variety	of
solutions	that	will	lead	to	many	workable	combinations.	We'll	limit	ourselves	to
two	popular	mechanisms:	the	RESTful	web	service,	and	the	multiprocessing
queue.	Both	will	serialize	and	transmit	objects	between	processes.

For	web-based	transfers,	we'll	leverage	the	Hypertext	Transfer
Protocol	(HTTP).	This	allows	us	to	implement	the	Create-Retrieve-Update-
Delete	(CRUD)	processing	operations	based	on	the	HTTP	methods	of	POST,	GET,
PATCH,	PUT,	and	DELETE.	We	can	use	this	to	build	a	RESTful	web	service.	Python's
Web	Service	Gateway	Interface	(WSGI)	standard	defines	a	general	pattern	for
web	services.	Any	practical	application	will	use	one	of	the	available	web
frameworks	that	implement	the	WSGI	standard.	RESTful	web	services	often	use
a	JSON	representation	of	object	state.

In	addition	to	HTTP,	we'll	look	at	local	transfers	among	processes	on	the	same
host.	This	can	be	done	more	efficiently	using	local	message	queues	provided	by
the	multiprocessing	module.	There	are	numerous	sophisticated	third-party	queue
management	products.	We'll	focus	on	the	Python	Standard	Library	offering.

There	is	an	additional	consideration	when	working	with	RESTful	transfers:	a
client	providing	data	to	a	server	might	not	be	trustworthy.	To	cope	with	this,	we
must	implement	some	security	in	cases	where	untrustworthy	data	might	be
present.	For	some	representations,	specifically	JSON,	there	are	few	security



considerations.	YAML	introduces	a	security	concern	and	supports	a	safe	load
operation;	see	Chapter	10,	Serializing	and	Saving	–	JSON,	YAML,	Pickle,	CSV,	and
XML,	for	more	information	on	this.	Because	of	this	security	issue,	the	pickle
module	also	offers	a	restricted	unpickler	that	can	be	trusted	to	not	import	unusual
modules	and	execute	damaging	code.

In	this	chapter,	we	will	cover	the	following	topics:

Class,	state,	and	representation
Using	HTTP	and	REST	to	transmit	objects
Using	Flask	to	build	a	RESTful	web	service
Handling	stateful	RESTful	services
Creating	a	secure	RESTful	service
Implementing	REST	with	a	web	application	framework
Using	a	message	queue	to	transmit	objects



Technical	requirements
The	code	files	for	this	chapter	are	available	at	https://git.io/fj2U6.

https://git.io/fj2U6


Class,	state,	and	representation
Many	applications	can	be	decomposed	into	the	processing	done	by	servers	and
by	clients.	A	single	server	will	exchange	data	with	multiple	remote	clients.	In	a
hybrid	situation,	an	application	can	be	both	a	client	of	other	remote	computers,
and	a	server	to	remote	clients.	There	is	an	intentional	asymmetry	that	is	used	to
simplify	the	definition	of	the	protocol:	a	client	makes	a	request	to	the	server,	and
the	server	responds	to	the	client.	The	client	initiates	each	request	and	waits	for
the	response.

Separating	clients	and	servers	means	that	objects	must	be	transmitted	between
the	two	processes.	We	can	decompose	the	larger	problem	into	two	smaller
problems.	The	inter-networking	protocols	define	a	way	to	transmit	bytes	from	a
process	on	one	host	to	a	process	on	another	host.	Serialization	techniques
transform	our	objects	into	bytes	and	then	reconstruct	the	bytes	from	the	objects.
It	helps,	when	designing	classes,	to	focus	on	object	state	as	the	content
exchanged	between	processes.

Unlike	the	object	state,	we	transmit	class	definitions	through	an	entirely	separate
method.	Class	definitions	change	relatively	slowly,	so	we	exchange	the	class
definitions	by	the	definition	of	the	class	in	the	form	of	the	Python	source.	If	we
need	to	supply	a	class	definition	to	a	remote	host,	we	can	install	the	Python
source	code	on	that	host.

When	a	client	is	written	in	a	language	other	than	Python,	then	an	equivalent
class	definition	must	be	provided.	A	JavaScript	client,	for	example,	will
construct	an	object	from	the	serialized	JSON	state	of	the	Python	object	on	the
server.	Two	objects	will	have	a	similar	state	by	sharing	a	common
representation.

We're	making	a	firm	distinction	between	the	entire,	working	object	in	Python's
working	memory,	and	the	representation	of	the	object's	state	that	is	transmitted.
The	whole	Python	object	includes	the	class,	superclasses,	and	other	relationships
in	the	Python	runtime	environment.	The	object's	state	may	be	represented	by	a
simple	string.	Consider	the	following:



>>>	from	dataclasses	import	dataclass,	asdict

>>>	import	json

>>>	@dataclass

...	class	Greeting:

...					message:	str

				

>>>	g	=	Greeting("Hello	World")

>>>	text	=	json.dumps(asdict(g))

>>>	text

'{"message":	"Hello	World"}'

>>>	text.encode('utf-8')

b'{"message":	"Hello	World"}'

This	example	shows	a	simple	class	definition,	Greeting,	where	the	state	is
characterized	by	a	single	attribute	value,	message.	The	asdict()	function,	applied	to
an	instance	of	a	dataclass,	creates	a	dictionary	that	we	can	serialize	in	JSON
notation.	Because	the	networks	transmit	bytes,	the	use	of	text.encode()	creates	a
stream	of	bytes.	This	tiny	example	shows	how	the	data	class	definition	is	entirely
separate	from	the	representation	of	the	state	of	this	example	instance	of	the	class.

Let's	see	how	we	can	use	HTTP	and	REST	to	transmit	objects.



Using	HTTP	and	REST	to	transmit
objects
HTTP	is	defined	through	a	series	of	Request	for	Comments	(RFC)	documents.
We	won't	review	all	of	the	particulars,	but	we	will	touch	on	the	three	main
points.

The	HTTP	protocol	includes	requests	and	replies.	A	request	includes	a	method,	a
Uniform	Resource	Identifier	(URI),	some	headers,	and	optional	attachments.	A
number	of	available	methods	are	defined	in	the	standards.	Most	browsers	focus
on	making	GET	and	POST	requests.	The	standard	browsers	include	the	GET,	POST,	PUT,
and	DELETE	requests,	which	are	the	ones	that	we'll	leverage,	because	they
correspond	to	CRUD	operations.	We'll	ignore	most	of	the	headers	and	focus	on
the	path	portion	of	the	URI.

An	HTTP	reply	includes	a	status	code	number	and	reason	text,	as	well	as	any
headers	and	attached	data.	There	are	a	variety	of	status	code	numbers.	The
response	codes	are	generally	understood	according	to	these	patterns:

The	1xx	codes	are	informational,	and	not	used	widely	in	RESTful	services.
The	2xx	replies	indicate	success.
The	3xx	status	codes	indicate	the	redirection	of	a	request	to	a	different	host
or	a	different	URI	path.
The	4xx	response	codes	tell	the	client	that	the	request	is	erroneous,	and	the
reply	should	include	a	more	detailed	error	message.
The	5xx	codes	generally	mean	that	the	server	has	had	some	kind	of	problem.

Of	these	general	ranges,	we're	interested	in	just	a	few,	as	follows:

The	200	status	code	is	the	generic	OK	response	from	a	server.
The	201	status	code	is	the	Created	response,	which	might	be	used	to	show	us
that	a	POST	request	worked	and	an	object	was	successfully	created.
The	204	status	code	is	the	No	Content	response,	which	might	be	used	for
a	DELETE	request.	
The	400	status	code	is	a	Bad	Request	response,	used	to	reject	invalid	data	used



to	POST,	PUT,	or	PATCH	an	object.
The	401	status	code	is	Unauthorized;	this	would	be	used	in	a	secure
environment	to	reject	invalid	credentials.	It	may	also	be	used	if	valid	user
credentials	are	used,	but	the	user	lacks	the	authorization	to	take	the	action
they	requested.
The	404	status	code	is	Not	Found,	which	is	generally	used	when	the	URI	path
information	does	not	identify	a	resource.	

HTTP	is	defined	as	stateless.	The	server	is	not	expected	to	have	any	recollection
of	previous	interactions	with	a	client.	In	some	cases,	this	is	a	profound
limitation,	and	there	are	several	commonly	used	workarounds	to	manage	state	by
exchanging	state	details	with	the	client	of	the	transaction.	For	interactive
websites,	cookies	are	sent	from	the	server	to	the	client.	The	client	embeds	the
cookies	with	the	request	to	the	server,	allowing	the	server	to	recover	the
transaction	state	and	offer	rich,	stateful	application	behavior.

Cookies	are	often	used	when	a	web	server	provides	the	user	experience	through
HTML	forms.	By	sending	cookies	back	to	the	browser,	a	server	can	track	user
login	and	session	information.	As	the	user	takes	actions,	the	server	records
details	in	the	session	objects	that	are	serialized	as	cookies.	

For	RESTful	web	services,	however,	the	client	will	not	be	a	person	sitting	at	a
browser.	The	client	of	a	RESTful	service	will	be	an	application	that	can	maintain
the	state	of	the	user	experience.	This	means	that	RESTful	services	can	leverage
simpler,	stateless	HTTP	without	cookies.	This	also	means	that	states	such	as
logged-in	and	logged-out	don't	apply	to	web	services.	For	authentication
purposes,	credentials	of	some	kind	are	often	provided	with	each	request.	This
imposes	an	obligation	to	secure	the	connection.	In	practice,	all	RESTful	web
servers	will	use	a	Secure	Sockets	Layer	(SSL)	and	an	HTTPS	connection.

In	the	next	section,	we'll	look	at	how	to	implement	CRUD	operations	via	REST.



Implementing	CRUD	operations	via
REST
We'll	look	at	three	fundamental	ideas	behind	the	REST	protocols.	The	first	idea
is	to	use	the	text	serialization	of	an	object's	state.	The	second	is	to	use	the	HTTP
request	URI	to	name	an	object;	a	URI	can	include	any	level	of	detail,	including	a
schema,	module,	class,	and	object	identity	in	a	uniform	format.	Finally,	we	can
use	the	HTTP	method	to	map	to	CRUD	rules	to	define	the	action	to	be
performed	on	the	named	object.

The	use	of	HTTP	for	RESTful	services	pushes	the	envelope	of	the	original
definitions	of	HTTP	requests	and	replies.	This	means	that	some	of	the	request
and	reply	semantics	are	open	to	active,	ongoing	discussion.	Rather	than
presenting	all	of	the	alternatives,	we'll	suggest	an	approach.	Our	focus	is	on	the
Python	language,	not	the	more	general	problem	of	designing	RESTful	web
services.	A	REST	server	will	often	support	CRUD	operations	via	the	following
five	abstract	use	cases:

Create:	We'll	use	an	HTTP	POST	request	to	create	a	new	object	and	a	URI
that	provides	class	information	only.	A	path	such	as	/app/blog/	might	name
the	class.	The	response	could	be	a	201	message	that	includes	a	copy	of	the
object	as	it	was	finally	saved.	The	returned	object	information	may	include
the	URI	assigned	by	the	RESTful	server	for	the	newly	created	object	or	the
relevant	keys	to	construct	the	URI.	A	POST	request	is	expected	to	change	the
RESTful	resources	by	creating	something	new.
Retrieve	–	Search:	This	is	a	request	that	can	retrieve	multiple	objects.	We'll
use	an	HTTP	GET	request	and	a	URI	that	provides	search	criteria,	usually	in
the	form	of	a	query	string	after	the	?	character.	The	URI	might	be	/app/blog/?
title="Travel	2012-2013".	Note	that	GET	never	makes	a	change	to	the	state	of
any	RESTful	resources.
Retrieve	–	Single	Instance:	This	is	a	request	for	a	single	object.	We'll	use
an	HTTP	GET	request	and	a	URI	that	names	a	specific	object	in	the	URI	path.
The	URI	might	be	/app/blog/id/.	While	the	response	is	expected	to	be	a
single	object,	it	might	still	be	wrapped	in	a	list	to	make	it	compatible	with	a
search	response.	As	this	response	is	GET,	there's	no	change	in	the	state.



Update:	We'll	use	an	HTTP	PUT	request	and	a	URI	that	identifies	the	object
to	be	replaced.	We	can	also	use	an	HTTP	PATCH	request	with	a	document
payload	that	provides	an	incremental	update	to	an	object.	The	URI	might	be
/app/blog/id/.	The	response	could	be	a	200	message	that	includes	a	copy	of
the	revised	object.	
Delete:	We'll	use	an	HTTP	DELETE	request	and	a	URI	that	looks	like
/app/blog/id/.	The	response	could	be	a	simple	204	NO	CONTENT	message	without
any	object	details	in	the	response.

As	the	HTTP	protocol	is	stateless,	there's	no	provision	for	logon	and	logoff.
Each	request	must	be	separately	authenticated.	We	will	often	make	use	of	the
HTTP	Authorization	header	to	provide	the	username	and	password	credentials.
When	doing	this,	we	absolutely	must	also	use	SSL	to	provide	security	for	the
content	of	the	Authorization	header.	There	are	more	sophisticated	alternatives	that
leverage	separate	identity	management	servers	to	provide	authentication	tokens
rather	than	credentials.

The	next	section	shows	how	to	implement	non-CRUD	operations.



Implementing	non-CRUD	operations
Some	applications	will	have	operations	that	can't	easily	be	characterized	via
CRUD	verbs.	We	might,	for	example,	have	a	Remote	Procedure	Call	(RPC)
style	application	that	performs	a	complex	calculation.	Nothing	is	really	created
on	the	server.	We	might	think	of	RPC	as	an	elaborate	retrieve	operation	where
the	calculation's	arguments	are	provided	in	each	request.

Most	of	the	time,	these	calculation-focused	operations	can	be	implemented	as
the	GET	requests,	where	there	is	no	change	to	the	state	of	the	objects	in	the	server.
An	RPC-style	request	is	often	implemented	via	the	HTTP	POST	method.	The
response	can	include	a	Universally	Unique	Identifier	(UUID)	as	part	of
tracking	the	request	and	responses.	It	allows	for	the	caching	of	responses	in	the
cases	where	they	are	very	complex	or	take	a	very	long	time	to	compute.	HTTP
headers,	including	ETag	and	If-None-Match,	can	be	used	to	interact	with	the	caching
to	optimize	performance.

This	is	justified	by	the	idea	of	preserving	a	log	of	the	request	and	reply	as	part	of
a	non-repudiation	scheme.	This	is	particularly	important	in	websites	where	is	a
fee	is	charged	for	the	services.

Let's	take	a	look	at	the	REST	protocol	and	ACID	in	the	next	section.



The	REST	protocol	and	ACID
The	ACID	properties	were	defined	in	Chapter	11,	Storing	and	Retrieving	Objects
via	Shelve.	These	properties	can	be	summarized	as	Atomic,	Consistent,
Isolated,	and	Durable.	These	are	the	essential	features	of	a	transaction	that
consists	of	multiple	database	operations.	These	properties	don't	automatically
become	part	of	the	REST	protocol.	We	must	consider	how	HTTP	works	when
we	also	need	to	ensure	that	the	ACID	properties	are	met.

Each	HTTP	request	is	atomic;	therefore,	we	should	avoid	designing	an
application	that	makes	a	sequence	of	related	POST	requests	and	hopes	that	the
individual	steps	are	processed	as	a	single,	atomic	update.	Instead,	we	should
look	for	a	way	to	bundle	all	of	the	information	into	a	single	request	to	achieve	a
simpler,	atomic	transaction.

Additionally,	we	have	to	be	aware	that	requests	will	often	be	interleaved	from	a
variety	of	clients;	therefore,	we	don't	have	a	tidy	way	to	handle	isolation	among
interleaved	sequences	of	requests.	If	we	have	a	properly	multilayered	design,	we
should	delegate	the	durability	to	a	separate	persistence	module.	In	order	to
achieve	the	ACID	properties,	a	common	technique	is	to	define	bodies	for	the
POST,	PUT,	or	DELETE	requests	that	contain	all	the	relevant	information.	By	providing
a	single	composite	object,	the	application	can	perform	all	of	the	operations	in	an
atomic	request.	These	larger	objects	become	documents	that	might	contain
several	items	that	are	part	of	a	complex	transaction.

When	looking	at	our	blog	and	post	relationships,	we	see	that	we	might	want	to
handle	two	kinds	of	HTTP	POST	requests	to	create	a	new	Blog	instance.	The	two
requests	are	as	follows:

A	blog	with	only	a	title	and	no	additional	post	entries:	We	can	easily
implement	the	ACID	properties	for	this,	as	it's	only	a	single	object.
A	composite	object	that	is	a	blog	plus	a	collection	of	post	entries:	We
need	to	serialize	the	blog	and	all	of	the	relevant	Post	instances.	This	needs	to
be	sent	as	a	single	POST	request.	We	can	then	implement	the	ACID	properties
by	creating	the	blog,	the	related	posts,	and	returning	a	single	201	Created
status	when	the	entire	collection	of	objects	have	been	made	durable.	This



may	involve	a	complex	multi-statement	transaction	in	the	database	that
supports	the	RESTful	web	server.

Let's	look	at	how	we	can	choose	a	representation	out	of	JSON,	XML,	or	YAML.



Choosing	a	representation	–	JSON,
XML,	or	YAML
There's	no	clear	reason	to	pick	a	single	representation;	it's	relatively	easy	to
support	a	number	of	representations.	The	client	should	be	permitted	to	demand	a
representation.	There	are	several	places	where	a	client	can	specify	the
representation:

The	client	can	use	a	part	of	a	query	string,	such	as	https://host/app/class/id/?
form=XML.	The	portion	of	the	URL	after	?	uses	the	form	value	to	define	the
output	format.
The	client	can	use	a	part	of	the	URI,	such	as	https://host/app;XML/class/id/.
The	app;XML	syntax	names	the	application,	app,	and	the	format,	XML,	by	using	a
sub-delimiter	of	;	within	the	path.
The	client	can	use	the	https://host/app/class/id/#XML	fragment	identifier.	The
portion	of	the	URL	after	#	specifies	a	fragment,	often	a	tag	on	a	heading
within	an	HTML	page.	For	a	RESTful	request,	the	#XML	fragment	provides
the	format.
The	client	can	use	a	separate	header.	The	Accept	header,	for	example,	can	be
used	to	specify	the	representation	as	part	of	the	MIME	type.	We	might	include
Accept:	application/json	to	specify	that	a	JSON-formatted	response	is
expected.

None	of	these	are	obviously	superior,	but	compatibility	with	some	existing
RESTful	web	services	may	suggest	a	particular	format.	The	relative	ease	with
which	a	framework	parses	a	URI	pattern	may	also	suggest	a	particular	format.

JSON	is	preferred	by	many	JavaScript	presentation	layers.	Other	representations,
such	as	XML	or	YAML,	can	be	helpful	for	other	presentation	layers	or	other
kinds	of	clients.	In	some	cases,	there	may	be	yet	another	representation.	For
example,	MXML	or	XAML	might	be	required	by	a	particular	client	application.

In	the	next	section,	we'll	see	how	to	use	Flask	to	build	a	RESTful	web	service.



Using	Flask	to	build	a	RESTful	web
service
Since	the	REST	concepts	are	built	on	the	HTTP	protocol,	a	RESTful	API	is	an
extension	to	an	HTTP	service.	For	robust,	high-performance,	secure	operations,
a	common	practice	is	to	build	on	a	server	such	as	Apache	HTTPD	or	NGINX.
These	servers	don't	support	Python	directly;	they	require	an	extension	module	to
interface	with	a	Python	application.	

Any	interface	between	externally-facing	web	servers	and	Python	will	adhere	to
the	Web	Services	Gateway	Interface	(WSGI).	For	more	information,	see	http:/
/www.wsgi.org.	The	Python	standard	library	includes	a	WSGI	reference
implementation.	See	PEP	3333,	http://www.python.org/dev/peps/pep-3333/,	for	details
on	this	standard.	See	https://wiki.python.org/moin/WebServers	for	a	number	of	web
servers	that	support	WSGI.	When	working	with	NGINX,	for	example,	the
uWSGI	plugin	provides	the	necessary	bridge	to	Python.

The	WSGI	standard	defines	a	minimal	set	of	features	shared	by	all	Python	web
frameworks.	It's	challenging	to	work	with,	however,	because	many	features	of
web	services	aren't	part	of	this	minimal	interface.	For	example,	authentication
and	session	management	can	be	implemented	in	a	way	that	adheres	to	the	WSGI
standard,	but	it	can	be	rather	complex.

There	are	several	high-level	application	frameworks	that	adhere	to	the	WSGI
standard.	When	we	build	a	RESTful	web	service,	we'll	often	use	a	framework
that	makes	it	very	easy	to	create	our	application.	For	the	examples	in	this
chapter,	we'll	use	the	Flask	framework.	For	more	information,	see	http://flask.poc
oo.org/docs/1.0/.	

A	Flask	application	is	an	instance	of	the	Flask	class.	An	essential	feature	of	Flask
is	the	routing	table	to	map	URI	paths	to	specific	functions.	We'll	start	with	a
simple	application	with	a	few	routes	to	show	how	this	works.	First,	however,	we
need	some	objects	to	transfer	via	RESTful	services.

Let's	take	a	look	at	the	problems	faced	while	transferring	domain	objects.	

http://www.wsgi.org
http://www.python.org/dev/peps/pep-3333/
https://wiki.python.org/moin/WebServers
http://flask.pocoo.org/docs/1.0/


Problem-domain	objects	to	transfer
A	RESTful	web	server	works	by	transferring	representations	of	object	state.
We'll	define	a	few	simple	objects	to	transfer	from	a	RESTful	server	to	a	RESTful
client.	This	application	serves	a	collection	of	tuples	that	represent	dominoes.
We'll	include	a	property	to	discern	whether	a	domino	has	the	same	value	on	both
sides;	a	piece	sometimes	called	a	spinner	or	a	double.	The	core	definition	of	the
Domino	class	is	as	follows:

from	dataclasses	import	dataclass,	asdict,	astuple

from	typing	import	List,	Dict,	Any,	Tuple,	NamedTuple

import	random

@dataclass(frozen=True)

class	Domino:

				v_0:	int

				v_1:	int

				@property

				def	double(self):

								return	self.v_0	==	self.v_1

				def	__repr__(self):

								if	self.double:

												return	f"Double({self.v_0})"

								else:

												return	f"Domino({self.v_0},	{self.v_1})"

When	we	play	a	game	of	dominoes,	the	tiles	are	often	shuffled	by	the	players
and	dealt	into	hands.	The	remaining	dominoes	form	a	pile	sometimes	called	a
boneyard.	This	is	analogous	to	a	deck	of	cards,	but	dominoes	aren't	often
stacked,	and	can	instead	be	left	lying	in	a	corner	of	the	table.	In	some	four-player
games,	all	28	dominoes	are	used.	The	Boneyard	class	definition	is	as	follows:

class	Boneyard:

				def	__init__(self,	limit=6):

								self._dominoes	=	[

												Domino(x,	y)	for	x	in	range(0,	limit	+	1)	for	y	in	range(0,	x	+	1)

								]

								random.shuffle(self._dominoes)

				def	deal(self,	tiles:	int	=	7,	hands:	int	=	4)	->	List[List[Tuple[int,	int]]]:

								if	tiles	*	hands	>	len(self._dominoes):

												raise	ValueError(f"tiles={tiles},	hands={hands}")

								return	[self._dominoes[h:h	+	tiles]	

												for	h	in	range(0,	tiles	*	hands,	tiles)]



The	individual	Domino	instances	are	created	from	a	rather	complex-looking	list
comprehension.	The	two	for	clauses	can	be	transformed	into	for	statements	that
look	like	the	following:

for	x	in	range(0,	limit+1):

				for	y	in	range(0,	x+1):

								Domino(x,	y)

This	design	assures	that	 ;	it	will	generate	a	Domino(2,	1)	instance	but	will
not	create	a	Domino(1,	2)	instance.	This	will	create	the	28	dominoes	in	a	standard
double-six	set.	

Once	the	dominoes	are	shuffled,	then	dealing	them	is	a	matter	of	taking	slices
from	the	list.	When	dealing	hands	of	seven	tiles,	the	h	variable	has	values	of	0,	7,
14,	and	21.	This	leads	to	slices	as	[0:	7],	[7:	14],	[14:	21],	and	[21:	28];	this	divides
the	pool	into	four	hands	of	seven	tiles	each.

A	simple	demonstration	of	how	this	works	is	shown	as	follows:

>>>	random.seed(2)

>>>	b	=	Boneyard(limit=6)

>>>	b.deal(tiles=7,	hands=2)

[[Domino(2,	0),	Double(5),	Domino(5,	2),	Domino(5,	0),	Double(0),	Domino(6,	3),	Domino(2,	1)],	[Domino(3,	1),	Double(4),	Domino(5,	1),	Domino(5,	4),	Domino(6,	2),	Domino(4,	2),	Domino(5,	3)]]

First,	a	Boneyard	object	is	built;	the	limit	value	defines	this	as	a	double-six	set	of
28	individual	pieces.	When	two	hands	of	seven	tiles	are	dealt,	a	predictable	pair
of	hands	are	created	because	the	random	number	generator	is	seeded	with	a	fixed
value,	two,	for	the	seed.

In	some	games,	the	highest	double	determines	who	plays	first.	In	these	two
hands,	the	player	with	Double(5)	would	be	the	first	to	play.

Let's	look	at	how	we	can	create	a	simple	application	and	server.



Creating	a	simple	application	and
server
We'll	write	a	very	simple	REST	server	that	provides	a	series	of	hands	of
dominoes.	This	will	work	by	routing	a	URI	to	a	function	that	will	provide	the
hands.	The	function	must	create	a	response	object	that	includes	one	or	more	of
the	following	items:

A	status	code:	The	default	is	200,	which	indicates	success.
Headers:	The	default	is	a	minimal	set	of	response	headers	with	the	content
size.
Content:	This	can	be	a	stream	of	bytes.	In	many	cases,	RESTful	web
services	will	return	a	document	using	JSON	notation.	The	Flask	framework
provides	us	with	a	handy	function	for	converting	objects	to	JSON	Notation,
jsonify().

A	Flask	application	that	deals	a	simple	hand	of	dominoes	can	be	defined	as
follows:

from	flask	import	Flask,	jsonify,	abort

from	http	import	HTTPStatus

app	=	Flask(__name__)

@app.route("/dominoes/<n>")

def	dominoes(n:	str)	->	Tuple[Dict[str,	Any],	int]:

				try:

								hand_size	=	int(n)

				except	ValueError:

								abort(HTTPStatus.BAD_REQUEST)

				if	app.env	==	"development":

								random.seed(2)

				b	=	Boneyard(limit=6)

				hand_0	=	b.deal(hand_size)[0]

				app.logger.info("Send	%r",	hand_0)

				return	jsonify(status="OK",	dominoes=[astuple(d)	for	d	in	hand_0]),	HTTPStatus.OK

This	shows	us	some	of	the	ingredients	in	a	Flask	application.	The	most	essential
ingredient	is	the	Flask	object	itself,	assigned	to	an	app	variable.	In	small
applications,	this	is	often	located	in	a	module	that	provides	a	useful
__name__	string	for	the	application.	In	larger	applications,	a	__name__	string	may	be



more	helpful	than	a	module	name	to	help	identify	log	messages	from	the	Flask
object.	If	the	application	is	assigned	to	the	app	variable,	then	the	automated	Flask
execution	environment	will	locate	it.	If	we	don't	call	it	app,	we'll	have	to	provide
a	function	to	start	the	execution.

The	@app.route	decorator	is	used	for	each	function	that	will	handle	requests	and
create	responses.	There	are	a	number	of	features	of	the	route	definition.	In	this
example,	we've	used	the	parsing	capability.	The	second	item	on	the	path	is
separated	and	assigned	to	the	n	parameter	for	the	dominoes()	function.

Generally,	there	are	four	important	steps	in	completing	a	RESTful	transaction:

Parsing:	The	routing	did	some	of	the	parsing.	After	the	initial	path
decomposition,	the	parameter	value	was	checked	to	be	sure	that	it	would
lead	to	valid	behavior.	In	case	of	a	problem,	the	abort()	function	is	used	to
return	an	HTTP	status	code	showing	a	bad	request.
Evaluating:	This	section	computes	the	response.	In	this	case,	a	fresh	set	of
dominoes	is	created.	The	limit	of	double-six	is	hard-wired	into	this
application.	To	make	this	more	useful	for	other	games,	the	limit	should	be	a
configuration	value.	The	deal()	method	of	the	Boneyard	class	creates	a	list	of
hands.	This	function,	however,	only	returns	a	single	hand,	so	hand_0	is
assigned	the	first	of	the	hands	in	the	list	returned	by	deal().
Logging.	The	Flask	logger	is	used	to	write	a	message	to	a	log	showing	the
response.	In	larger	applications,	the	logging	will	be	more	complex.	In	some
cases,	there	can	be	multiple	logs	to	provide	separate	details	of
authentication	or	audit	history.
Responding.	The	response	from	a	function	in	Flask	can	have	from	one	to
three	items	in	it.	In	this	case,	two	values	are	provided.	The	jsonify()	function
is	used	to	return	the	JSON	representation	of	a	dictionary	with	two	keys:
"status",	and	"dominoes".	The	status	code	is	built	from	the	value	of
HTTPStatus.OK.	Note	that	each	of	the	Domino	objects	were	converted	into	a	tuple
using	the	dataclasses.astuple()	function.	These	kind	of	serialization
considerations	are	an	important	part	of	REST.

The	type	hints	that	Flask	functions	use	are	generally	very	simple.	Most	functions
in	a	RESTful	application	will	have	some	combination	of	the	following	results:

Dict[str,	Any]:	This	is	the	simple	result	produced	by	jsonify().	It	will	yield	the
default	status	of	HTTPStatus.OK.



Tuple[Dict[str,	Any],	int]:	This	is	a	result	with	a	non-default	status	code.
Tuple[Dict[str,	Any],	int,	Dict[str,	str]]:	This	is	a	result	with	headers	in
addition	to	a	status	code	and	a	document.

Other	combinations	of	return	values	are	possible,	but	are	relatively	rare.	A
function	that	implements	a	deletion,	for	example,	might	return	only
HTTPStatus.NO_CONTENT	to	show	success	without	any	further	details.

We	can	start	a	demonstration	version	of	this	server	from	the	Bash	or	Terminal
prompt	as	follows:

$	FLASK_APP=ch13_ex2.py	FLASK_ENV=development	python	-m	flask	run

This	command	sets	two	environment	variables,	then	runs	the	flask	module.	The
FLASK_APP	variable	defines	which	module	contains	the	app	object.	The	FLASK_ENV
environment	variable	sets	this	as	a	development	server,	providing	some	additional
debugging	support.	This	will	produce	an	output	similar	to	the	following:

	*	Serving	Flask	app	"ch13_ex2.py"	(lazy	loading)

	*	Environment:	development

	*	Debug	mode:	on

	*	Running	on	http://127.0.0.1:5000/	(Press	CTRL+C	to	quit)

	*	Restarting	with	stat

	*	Debugger	is	active!

	*	Debugger	PIN:	154-541-338

The	Flask	app	name,	ch13_ex2.py,	came	from	the	FLASK_APP	environment	variable.	The
development	environment	came	from	the	FLASK_ENV	environment	variable.	debug	mode
was	enabled	because	the	environment	was	development.	We	can	browse	the	given
URL	to	interact	with	those	portions	of	the	application	that	happen	to	be	browser-
friendly.

This	application	responds	to	GET	requests.	We	can	use	a	browser	to	perform	a
request	on	http://127.0.0.1:5000/dominoes/7	and	see	a	result	similar	to	the	following:

{"dominoes":	[[2,	0],	[5,	5],	[5,	2],	[5,	0],	[0,	0],	[6,	3],	[2,	1]],	"status":	"OK"}

In	the	development	mode,	the	random	number	generator	is	seeded	with	a	fixed
value,	so	the	value	is	always	as	shown	in	the	preceding	code.	

The	response	document	shown	above	contains	two	features	that	are	typical	of
RESTful	web	services:



A	status	item:	This	is	a	summary	of	the	response.	In	some	cases,	the	HTTP
status	code	will	provide	similar	information.	In	many	cases,	this	will	be	far
more	nuanced	than	the	simplistic	HTTP	status	code	of	200	OK.	
The	requested	object:	In	this	case,	dominoes	is	a	list	of	two-tuples.	This	is	a
representation	of	the	state	of	a	single	hand.	From	this,	the	original	Domino
instances	can	be	reconstructed	by	a	client.

The	original	documents	can	be	rebuilt	with	the	following	code:

document	=	response.get_json()

hand	=	list(Domino(*d)	for	d	in	document['dominoes'])

The	client	software	must	include	the	capability	of	parsing	the	JSON	from	the
body	of	the	response.	The	Domino	class	definition	is	used	to	reproduce	objects
from	the	transferred	representation.

In	the	next	section,	we'll	discuss	more	sophisticated	routing	and	responses.



More	sophisticated	routing	and
responses
We'll	look	at	two	additional	features	common	to	Flask	applications	and	RESTful
APIs:

The	first	is	more	sophisticated	path	parsing.
The	second	is	an	Open	API	specification	document.

Flask	provides	several	clever	parsing	features	to	decompose	the	path	in	a	URI.
Perhaps	one	of	the	most	useful	parsers	is	used	to	extract	individual	field	items
from	the	URL	string.	We	can	use	this	as	shown	in	the	following	example:

@app.route("/hands/<int:h>/dominoes/<int:c>")

def	hands(h:	int,	c:	int)	->	Tuple[Dict[str,	Any],	int]:

				if	h	==	0	or	c	==	0:

								return	jsonify(

												status="Bad	Request",	error=[f"hands={h!r},	dominoes={c!r}	is	invalid"]

								),	HTTPStatus.BAD_REQUEST

				if	app.env	==	"development":

								random.seed(2)

				b	=	Boneyard(limit=6)

				try:

								hand_list	=	b.deal(c,	h)

				except	ValueError	as	ex:

								return	jsonify(

												status="Bad	Request",	error=ex.args

								),	HTTPStatus.BAD_REQUEST

				app.logger.info("Send	%r",	hand_list)

				return	jsonify(

								status="OK",	

								dominoes=[[astuple(d)	for	d	in	hand]	for	hand	in	hand_list]

				),	HTTPStatus.OK

This	uses	<int:h>	and	<int:c>	to	both	parse	the	values	from	the	path	and	ensure
that	the	values	are	integers.	Any	requests	with	paths	that	don't	match	this	pattern
will	receive	a	404	Not	Found	error	status.

The	four	steps	of	handling	the	response	are	slightly	more	complex.	The	details
are	as	follows:

The	parsing	step	includes	a	range	check	on	the	parameter	values.	In	the



case	of	a	0	value,	this	will	lead	to	400	Bad	Request	errors.	The	pattern	of	the
request	fits	the	route's	template,	but	the	values	were	invalid.
The	evaluating	step	includes	an	exception	handler.	If	the	underlying
application	model,	the	Boneyard	object	in	this	example,	raises	an	exception,
this	Flask	container	will	produce	a	useful,	informative	error	message.
Without	this	exception-handling	block,	ValueError	would	lead	to	an	HTTP
status	code	of	500	Internal	Server	Error.
The	logging	step	didn't	change	from	the	previous	example.
The	responding	step	builds	the	list	of	individual	hands	by	dealing	tiles.
This	uses	a	more	complex	nested	list	comprehension.	The	nested
comprehension	can	be	read	from	right	to	left.	The	Python	syntax	is	as
follows:

[[astuple(d)	for	d	in	hand]	for	hand	in	hand_list]

If	we	read	the	code	in	reverse,	we	can	see	that	the	nested	comprehension
has	the	following	structure.	It	processes	each	hand	in	hand_list.	Given	hand,	it
then	processes	each	domino	in	hand.	The	processing	is	provided	first,	which
represents	the	domino	object,	d,	as	a	tuple.	

The	goal	of	most	RESTful	web	services	development	is	to	create	an	underlying
application	model	that	permits	simple	wrapper	functions	such	as	the	following
example.	

An	additional	feature	that	is	central	to	a	successful	RESTful	server	is	a
specification	of	the	contract	that	the	server	adheres	to.	A	document	that	follows
the	OpenAPI	specification	is	a	useful	way	to	present	this	contract.	For	more
information	on	the	Open	API	specification,	see	https://swagger.io/specification/.
The	document	service	will	look	as	follows:

OPENAPI_SPEC	=	{

				"openapi":	"3.0.0",

				"info":	{

								"description":	"Deals	simple	hands	of	dominoes",

								"version":	"2019.02",

								"title":	"Chapter	13.	Example	2",

				},

				"paths":	{}

}

@app.route("/openapi.json")

def	openapi()	->	Dict[str,	Any]:

				return	jsonify(OPENAPI_SPEC)

The	specification	in	this	example	is	a	tiny	skeleton	with	only	a	few	required
fields.	In	many	applications,	the	specification	will	be	kept	in	a	static	file	and

https://swagger.io/specification/


served	separately.	In	very	complex	environments,	there	will	be	external
references	and	the	document	may	be	provided	in	multiple,	separate	sections.	To
an	extent,	it's	possible	to	deduce	elements	of	the	OpenAPI	specification	from	the
Flask	routes	themselves.

While	this	is	technically	possible,	it	subverts	the	idea	of	having	a	formal	and
independent	contract	for	the	features	of	the	RESTful	API.	It	seems	better	to	have
an	external	contract	and	check	compliance	against	that	contract.

The	function	that	implements	the	route	does	almost	nothing	to	transform	the
Python	dictionary	into	JSON	notation	and	respond	with	a	document	and	the
default	status	of	200	OK.

We'll	see	how	to	implement	a	REST	client	in	the	next	section.



Implementing	a	REST	client
Before	looking	at	a	smarter	REST	server	application,	we'll	look	at	writing	a
REST	client.	The	standard	library	has	two	packages	useful	for	creating	a	client:
http.client	and	urllib.	These	packages	both	provide	features	required	to	make
RESTful	requests	over	HTTP.	Both	packages	include	features	to	create	requests
with	bodies,	include	headers,	add	complex	URLs	and	retrieve	a	result,	save	the
result	headers,	save	any	attachments,	and	track	the	status	code.	A	popular
alternative	to	urllib	is	the	requests	package.	For	further	information,	check	out	htt
p://docs.python-requests.org/en/master/.

You	can	get	the	Open	API	specification	with	the	following	simple	code:

import	requests

get_openapi	=	requests.get(

				"http://127.0.0.1:5000/openapi.json")

if	get_openapi.status_code	==	200:

				document	=	get_openapi.json()

This	will	make	an	HTTP	GET	request	to	the	given	URI.	The	response	object,
get_openapi,	will	be	examined	and	a	few	useful	fields	extracted.	The	value
of	get_openapi.status_code	is	the	HTTP	status	code	returned	from	the	server.
The	get_openapi.json()	method	will	attempt	to	read	and	parse	the	body	of	the
response.	If	it	is	valid	JSON,	the	resulting	Python	object	can	be	examined
further.	In	the	case	of	Open	API	specifications,	the	object	will	be	a	Python
dictionary.	For	these	examples,	we'd	expect	document['info']['version']	!=	'2019.02'.
Any	other	result	indicates	a	potential	problem	between	the	client	and	server.

In	the	next	section,	we'll	unit	test	the	RESTful	services.

http://docs.python-requests.org/en/master/


Demonstrating	and	unit	testing	the
RESTful	services
For	proper	unit	testing,	we	want	a	more	formal	exchange	between	a	client	and	a
server.	The	Flask	framework	provides	test_client(),	which	gives	us	the	features
required	to	make	requests	of	a	Flask	server	to	be	sure	that	the	responses	are
correct.	Once	a	test	client	object	has	been	created,	we	can	make	our	get,	post,	put,
patch,	and	delete	requests	to	confirm	that	a	function	behaves	correctly.	

The	doctest	module	will	locate	Python	examples	inside	document	strings	for	a
module	or	function.	This	makes	it	easy	to	include	examples	inside	the	definition
of	the	relevant	function.	Here's	an	example	of	using	the	doctest	features	to	test	a
Flask	module:

@app.route("/openapi.json")

def	openapi()	->	Dict[str,	Any]:

				"""

				>>>	client	=	app.test_client()

				>>>	response	=	client.get("/openapi.json")

				>>>	response.get_json()['openapi']

				'3.0.0'

				>>>	response.get_json()['info']['title']

				'Chapter	13.	Example	2'

				"""

				return	jsonify(OPENAPI_SPEC)

This	test	code	uses	app.test_client()	to	create	a	client.	Then,	client.get()	is	used	to
execute	a	GET	request	to	the	/openapi.json	path.	The	results	can	be	examined	to	be
sure	that	an	Open	API	specification	document	really	will	be	provided	by	the
defined	route.	This	test	case	depends	on	the	value	of	app	being	the	Flask
application	module.	This	is	usually	true,	because	this	code	is	in	the	same	module
where	the	app	object	is	defined.

There	are	a	variety	of	approaches	to	packaging	unit	tests:

In	a	separate	tests	package:	This	will	contain	a	number	of	test	modules.	If
the	filenames	all	begin	with	test_,	then	tools	such	as	pytest	can	locate	and
execute	these	tests.	This	is	appropriate	when	tests	are	relatively	complex.
This	often	happens	when	mock	objects	must	be	provided.



In	module	and	function	docstrings:	This	is	the	technique	that	was	shown
previously.	The	doctest	tool	can	locate	examples	within	docstrings	and
execute	these	tests.	The	doctest	module	can	also	locate	tests	as	the	values	of
a	global	__test__	dictionary.	This	is	appropriate	when	the	tests	are	relatively
simple	and	the	setup	for	each	test	is	easily	accomplished	through
application	configuration.

The	preceding	test	can	be	executed	from	the	command	line	by	using	a	command
such	as	the	following:

$	python3	-m	doctest	ch13_ex2.py

This	command	runs	the	doctest	module.	The	command-line	argument	is	the
module	to	be	examined.	All	Python	examples	marked	with	>>>	will	be	executed
to	confirm	that	the	function	operates	properly.



Handling	stateful	REST	services
A	RESTful	server	is	often	called	upon	to	maintain	the	state	of	the	resources	it
manages.	The	canonical	CRUD	operations	map	nicely	to	the	HTTP	methods
available	in	RESTful	processing.	There	may	be	POST	requests	to	create	new
resources,	PATCH	requests	to	update	those	resources,	and	DELETE	requests	to	remove
resources.

In	order	to	properly	work	with	individual	resources,	unique	resource
identification	becomes	important.	We'll	look	into	RESTful	object	identification,
before	looking	at	the	Flask	server	design	that	works	with	multiple	objects.



Designing	RESTful	object	identifiers
Object	serialization	involves	defining	some	kind	of	identifier	for	each	object.	For
shelve	or	sqlite,	we	need	to	define	a	string	key	for	each	object.	A	RESTful	web
server	makes	the	same	kinds	of	demands	to	define	a	workable	key	that	can	be
used	to	unambiguously	track	down	objects.	A	simple,	surrogate	key	can	also
work	out	for	a	RESTful	web	service	identifier.	It	can	easily	parallel	the	key	used
for	shelve	or	sqlite.

What's	important	is	this	idea:	cool	URIs	don't	change.	See	http://www.w3.org/Provid
er/Style/URI.html.

It	is	important	for	us	to	define	a	URI	that	is	never	going	to	change.	It's	essential
that	the	stateful	aspects	of	an	object	are	never	used	as	part	of	the	URI.	For
example,	a	microblogging	application	may	support	multiple	authors.	If	we
organize	blog	posts	into	folders	by	the	author,	we	create	problems	for	shared
authorship	and	we	create	larger	problems	when	one	author	takes	over	another
author's	content.	We	don't	want	the	URI	to	switch	when	a	purely	administrative
feature,	such	as	the	ownership,	changes.

A	RESTful	application	may	offer	a	number	of	indices	or	search	criteria.
However,	the	essential	identification	of	a	resource	or	object	should	never	change
as	the	indices	are	changed	or	reorganized.

For	relatively	simple	objects,	we	can	often	identify	some	sort	of	identifier	–
often	a	database	surrogate	key.	In	the	case	of	blog	posts,	it's	common	to	use	a
publication	date	(as	that	can't	change)	and	a	version	of	the	title	with	punctuation
and	spaces	replaced	by	_	characters.	The	idea	is	to	create	an	identifier	that	will
not	change,	no	matter	how	the	site	gets	reorganized.	Adding	or	changing	indexes
can't	change	the	essential	identification	of	a	microblog	post.

For	more	complex	objects	that	are	containers,	we	have	to	decide	on	the
granularity	with	which	we	will	refer	to	these	more	complex	objects.	Continuing
the	microblog	example,	we	have	blogs	as	a	whole,	which	contain	a	number	of
individual	posts.

http://www.w3.org/Provider/Style/URI.html


The	URI	for	a	blog	can	be	something	simple	like	this:

/microblog/blog/bid/	

The	top-most	name	(microblog)	is	the	overall	application.	Then,	we	have	the	type
of	resource	(blog)	and	finally,	an	ID,	bid,	for	a	specific	instance.

The	URI	names	for	a	post,	however,	have	several	choices:

/microblog/post/title_string/	

/microblog/post/bid/title_string/	

/microblog/blog/bid/post/title_string/	

The	first	URI	doesn't	work	well	if	multiple	posts	have	the	same	title.	In	this	case,
something	would	have	to	be	done	to	make	the	title	unique.	An	author	may	see
their	title	made	unique	with	an	extra	_2	or	some	other	decoration.	This	is	often
undesirable.

The	second	URI	uses	the	blog	ID	(bid)	as	a	context	or	namespace	to	ensure	that
the	Post	titles	are	treated	as	unique	within	the	context	of	a	blog.	This	kind	of
technique	is	often	extended	to	include	additional	subdivisions,	such	as	a	date,	to
further	shrink	the	search	space.	This	example	is	a	little	awkward,	because	the
classification,	post,	is	followed	by	the	blog's	ID.

The	third	example	uses	an	explicit	class/object	naming	at	two	levels:
blog/bid	and	post/title_string.	This	has	the	disadvantage	of	a	longer	path,	but	it	has
the	advantage	of	allowing	a	complex	container	to	have	multiple	items	in	distinct
internal	collections.

Note	that	REST	services	have	the	effect	of	defining	paths	to	resources	in
persistent	storage.	The	URIs	must	be	chosen	with	an	eye	toward	clarity,
meaning,	and	durability.	A	cool	URI	doesn't	change.

Let's	learn	about	the	different	layers	of	REST	services.



Multiple	layers	of	REST	services
It's	common	for	a	complex	RESTful	application	to	use	a	database	to	save
persistent	objects,	as	well	as	change	the	state	of	those	persistent	objects.	This
often	leads	to	a	multi-tier	web	application.	One	view	of	a	design	will	focus	on
these	three	tiers:

Presentation	to	people	is	handled	by	HTML	pages,	possibly	including
JavaScript.	The	HTML	content	often	starts	as	templates,	and	a	tool	such	as
Jinja	(http://jinja.pocoo.org)	is	used	to	inject	data	into	the	HTML	template.	In
many	cases,	the	presentation	layer	is	a	separate	Flask	application	focused
on	supporting	features	of	a	rich	user	experience,	including	stateful	sessions
and	secure	authentication.	This	layer	will	make	a	request	to	the	application
layer	via	RESTful	requests.
Application	processing	is	done	via	a	RESTful	server	that	models	the
problem	domain.	Concerns	such	as	user	authentication	or	stateful
interactions	are	not	part	of	this	layer.
Persistence	is	done	via	a	database	of	some	kind.	In	many	practical
applications,	a	complex	module	will	define	an	init_app()	function	to
initialize	a	database	connection.

As	we	saw	in	Chapter	11,	Storing	and	Retrieving	Objects	with	Shelve,	it's	quite
easy	to	have	a	database	that	has	an	interface	similar	to	a	dictionary.	We'll
leverage	this	simple-looking	interface	to	create	a	RESTful	service	that	tracks	a
stateful	object.

http://jinja.pocoo.org


Using	a	Flask	blueprint
Before	defining	the	blueprint,	we'll	define	some	classes	and	functions	that
establish	the	problem	domain.	We'll	define	an	enumeration	of	the	Status	values,
with	"Updated"	and	"Created"	as	the	only	two	values.	We'll	define	a	set	of	dice	using
a	dataclass	named	Dice.	This	class	includes	the	current	state	of	the	dice,	a	unique
identifier	for	this	particular	collection	of	dice,	and	an	overall	status	to	show
whether	it	was	initially	created	or	has	been	updated.	Separate	from	the	class,	it's
helpful	to	have	a	make_dice()	function	to	create	a	Dice	instance.

For	this	example,	here	are	the	definitions:

from	typing	import	Dict,	Any,	Tuple,	List

from	dataclasses	import	dataclass,	asdict

import	random

import	secrets

from	enum	import	Enum

class	Status(str,	Enum):

				UPDATED	=	"Updated"

				CREATED	=	"Created"

@dataclass

class	Dice:

				roll:	List[int]

				identifier:	str

				status:	str

				def	reroll(self,	keep_positions:	List[int])	->	None:

								for	i	in	range(len(self.roll)):

												if	i	not	in	keep_positions:

																self.roll[i]	=	random.randint(1,	6)

								self.status	=	Status.UPDATED

def	make_dice(n_dice:	int)	->	Dice:

				return	Dice(

								roll=[random.randint(1,	6)	for	_	in	range(n_dice)],

								identifier=secrets.token_urlsafe(8),

								status=Status.CREATED

				)

The	Dice	class	represents	a	handful	of	six-sided	dice.	A	particular	roll	of	the	dice
also	has	an	identifier;	this	is	a	surrogate	key	used	to	identify	an	initial	toss	of	the
dice.	Selected	dice	can	be	rerolled,	which	is	consistent	with	a	number	of	dice
games.

The	status	attribute	is	used	as	part	of	a	RESTful	response	to	show	the	current



state	of	the	object.	The	status	attribute	is	either	the	"Created"	or	"Updated"	string
based	on	the	Status	class	definition.

The	make_dice()	function	creates	a	new	Dice	instance.	It's	defined	outside	the	Dice
class	definition	to	emphasize	its	roll	as	creating	a	Dice	instance.	This	could	be
defined	as	a	method	within	the	Dice	class,	and	decorated	with	the	@classmethod	or
@staticmethod	decorator.	

While	a	very	strict	object-oriented	design	approach	mandates	that	everything	be
part	of	a	class,	Python	imposes	no	such	restriction.	It	seems	simpler	to	have	a
function	outside	a	class,	rather	than	a	decorated	function	within	the	class.	Both
are	defined	in	a	common	module,	so	the	relationship	between	function	and	class
is	clear.

The	reroll()	method	of	a	Dice	instance	updates	the	object's	internal	state.	This	is
the	important	new	feature	in	this	section.	

The	Open	API	Specification	for	this	service	has	a	skeleton	definition	as	follows:

OPENAPI_SPEC	=	{

				"openapi":	"3.0.0",

				"info":	{

								"title":	"Chapter	13.	Example	3",

								"version":	"2019.02",

								"description":	"Rolls	dice",

				},

				"paths":	{

								"/rolls":	{

												"post":	{

																"description":	"first	roll",

																"responses":	{201:	{"description":	"Created"}},

												},

												"get":	{

																"description":	"current	state",

																"responses":	{200:	{"description":	"Current	state"}},

												},

												"patch":	{

																"description":	"subsequent	roll",

																"responses":	{200:	{"description":	"Updated"}},

												}

								}

				}

}

This	specification	provides	one	path,	/rolls,	which	responds	to	a	variety	of
method	requests.	A	post	request	has	a	very	terse	description	of	"first	roll";	only
one	of	the	possible	responses	is	defined	in	this	example	specification.	Similarly,
the	get	and	patch	requests	have	the	minimal	definition	required	to	pass	a	simple



schema	check.

This	specification	omits	the	lengthy	definition	of	the	parameters	required	for	the
post	and	patch	requests.	The	post	request	requires	a	document	in	JSON	Notation.
Here's	an	example:	{"dice":	5}.	The	patch	request	also	requires	a	document	in
JSON	Notation,	the	body	of	this	document	specifies	which	dice	must	be	left
alone,	and	which	must	be	re-rolled.	The	content	of	the	document	only	specifies
which	dice	to	keep;	all	of	the	others	will	be	re-rolled.	It	will	look	like	this:
{"keep":	[0,	1,	2]}.	

One	of	the	tools	for	decomposing	a	complex	Flask	application	is	a	blueprint.	A
blueprint	is	registered	with	a	Flask	application	with	a	specific	path	prefix.	This
allows	us	to	have	multiple,	related	portions	of	a	complex	application	by	using
several	instances	of	a	common	blueprint.

For	this	example,	we'll	only	register	a	single	instance	of	a	Blueprint	object.	The
definition	of	a	Blueprint	object	starts	as	follows:

from	flask	import	Flask,	jsonify,	request,	url_for,	Blueprint,	current_app,	abort

from	typing	import	Dict,	Any,	Tuple,	List

SESSIONS:	Dict[str,	Dice]	=	{}

rolls	=	Blueprint("rolls",	__name__)

@rolls.route("/openapi.json")

def	openapi()	->	Dict[str,	Any]:

				return	jsonify(OPENAPI_SPEC)

@rolls.route("/rolls",	methods=["POST"])

def	make_roll()	->	Tuple[Dict[str,	Any],	HTTPStatus,	Dict[str,	str]]:

				body	=	request.get_json(force=True)

				if	set(body.keys())	!=	{"dice"}:

								raise	BadRequest(f"Extra	fields	in	{body!r}")

				try:

								n_dice	=	int(body["dice"])

				except	ValueError	as	ex:

								raise	BadRequest(f"Bad	'dice'	value	in	{body!r}")

				dice	=	make_dice(n_dice)

				SESSIONS[dice.identifier]	=	dice

				current_app.logger.info(f"Rolled	roll={dice!r}")

				headers	=	{

								"Location":	

								url_for("rolls.get_roll",	identifier=dice.identifier)

				}

				return	jsonify(asdict(dice)),	HTTPStatus.CREATED,	headers

The	SESSIONS	object	uses	an	all-caps	name	to	show	that	it	is	a	global	module.	This



can	become	our	database.	Currently,	it's	initialized	as	an	empty	dictionary	object.
In	a	more	sophisticated	application,	it	could	be	a	shelve	object.	Pragmatically,	this
would	be	replaced	with	a	proper	database	driver	to	handle	locking	and
concurrent	access.

The	Blueprint	object,	like	the	Flask	object,	is	assigned	a	name.	In	many	cases,	the
module	name	can	be	used.	For	this	example,	the	module	name	will	be	used	by
the	overall	Flask	application,	so	the	name	"rolls"	was	used.

In	this	example,	we've	assigned	the	Blueprint	object	to	a	rolls	variable.	It's	also
common	to	see	a	name	such	as	bp	used	for	this.	A	shorter	name	makes	it	slightly
easier	to	type	the	route	decorator	name.

The	preceding	example	defines	two	routes:

One	route	is	for	the	Open	API	Specification	document.
The	second	route	is	for	the	/rolls	path,	when	used	with	the	POST	method.

This	combination	will	lead	to	the	typical	four-part	process	of	handling	a
RESTful	request:

	Parsing:	The	Flask	request	object	is	interrogated	to	get	the	body	of	the
request.	The	request.get_json(force=True)	will	use	a	JSON	parser	on	the	body
of	the	request,	irrespective	of	Content-Type	header.	While	a	well-written	client
application	should	provide	appropriate	headers,	this	code	will	tolerate	a
missing	or	incorrect	header.	A	few	validity	checks	are	applied	to	the	body
of	the	request.	In	this	example,	a	specialized	exception	is	raised	if	the
request	doesn't	include	the	'dice'	key,	and	if	the	value	for	the	'dice'	key	isn't
a	valid	integer.	More	checks	for	valid	inputs	might	include	being	sure	the
number	of	dice	was	between	1	and	100;	this	can	help	to	avoid	the	problem
of	rolling	millions	or	billions	of	dice.	In	the	following	example,	we'll	see
how	this	exception	is	mapped	to	a	proper	HTTP	status	code	of	400	Bad
Request.
Evaluating:	The	make_dice()	function	creates	a	Dice	instance.	This	is	saved
into	the	global	module	SESSIONS	database.	Because	each	Dice	instance	is	given
a	unique,	randomized	key,	the	SESSIONS	database	retains	a	history	of	all	of	the
Dice	objects.	This	is	a	simple	in-memory	database,	and	the	information	only
lasts	as	long	as	the	server	is	running.	A	more	complete	application	would
use	a	separate	persistence	layer.



Logging.	The	Flask	current_app	object	is	used	to	get	access	to	the	Flask
logger	and	write	a	log	message	on	the	response.
Responding.	The	Flask	jsonify()	function	is	used	to	serialize	the	response
into	JSON	Notation.	This	includes	an	additional	Location	header.	This
additional	header	is	offered	to	a	client	to	provide	the	correct,	canonical	URI
for	locating	the	object	that	was	created.	We've	used	the	Flask	url_for()
function	to	create	the	proper	URL.	This	function	uses	the	name	of	the
function,	qualified	by	the	"rolls.get_roll"	blueprint	name;	the	URI	path	is
reverse-engineered	from	the	function	and	the	argument	value.

The	function	for	retrieving	a	roll	uses	a	GET	request,	and	is	as	follows:

@rolls.route("/rolls/<identifier>",	methods=["GET"])

def	get_roll(identifier)	->	Tuple[Dict[str,	Any],	HTTPStatus]:

				if	identifier	not	in	SESSIONS:

								abort(HTTPStatus.NOT_FOUND)

				return	jsonify(asdict(SESSIONS[identifier])),	HTTPStatus.OK

This	function	represents	a	minimalist	approach.	If	the	identifier	is	unknown,	a
404	Not	Found	message	is	returned.	There's	no	additional	evaluation	or	logging,
since	no	state	change	occurred.	This	function	serializes	the	current	state	of	the
dice.

The	response	to	a	PATCH	request	is	as	follows:

@rolls.route("/rolls/<identifier>",	methods=["PATCH"])

def	patch_roll(identifier)	->	Tuple[Dict[str,	Any],	HTTPStatus]:

				if	identifier	not	in	SESSIONS:

								abort(HTTPStatus.NOT_FOUND)

				body	=	request.get_json(force=True)

				if	set(body.keys())	!=	{"keep"}:

								raise	BadRequest(f"Extra	fields	in	{body!r}")

				try:

								keep_positions	=	[int(d)	for	d	in	body["keep"]]

				except	ValueError	as	ex:

								raise	BadRequest(f"Bad	'keep'	value	in	{body!r}")

				dice	=	SESSIONS[identifier]

				dice.reroll(keep_positions)

				return	jsonify(asdict(dice)),	HTTPStatus.OK

This	has	two	kinds	of	validation	to	perform:

The	identifier	must	be	valid.
The	document	provided	in	the	body	of	the	request	must	also	be	valid.



This	example	performs	a	minimal	validation	to	develop	a	list	of	positions
assigned	to	the	keep_positions	variable.

The	evaluation	is	performed	by	the	reroll()	method	of	the	Dice	instance.	This	fits
the	idealized	notion	of	separating	the	Dice	model	from	the	RESTful	application
that	exposes	the	model.	There's	relatively	little	substantial	state-change
processing	in	the	Flask	application.	

Consider	a	desire	for	additional	validation	to	confirm	that	the	position	values	are
between	zero	and	the	number	of	dice	in	SESSIONS[identifier].roll.	Is	this	a	part	of
the	Flask	application?	Or,	is	this	the	responsibility	of	the	Dice	class	definition?

There	are	two	kinds	of	validations	involved	here:

Serialization	syntax:	This	validation	includes	a	JSON	syntax,	a	data	type
representation,	and	the	isolated	constraints	expressed	in	the	Open	API
Specification.	This	validation	is	limited	to	simple	constraints	on	the	values
that	can	be	serialized	in	JSON.	We	can	formalize	the	{"dice":	d}	document
schema	to	ensure	that	k	is	a	positive	integer.	Similarly,	we	can	formalize	the
{"keep":	[k,	k,	k,	...]}	document	schema	to	require	the	values	for	k	to	be
positive	integers.	However,	there's	no	way	to	express	a	relationship	between
the	values	for	n	and	k.	There's	also	no	way	to	express	the	requirement	that
the	values	for	k	be	unique.	
Problem	domain	data:	This	validation	goes	beyond	what	can	be	specified
in	the	Open	API	specification.	It	is	tied	to	the	problem	domain	and	requires
the	JSON	serialization	be	valid.	This	can	include	actions	such	as
validating	relationships	among	objects,	confirming	that	state	changes	are
permitted,	or	checking	more	nuanced	rules	such	as	string	formats	for	email
addresses.

This	leads	to	multiple	tiers	of	RESTful	request	parsing	and	validation.	Some
features	of	the	request	are	tied	directly	to	serialization	and	simple	data	type
questions.	Other	features	of	a	request	are	part	of	the	problem	domain,	and	must
be	deferred	to	the	classes	that	support	the	RESTful	API.



Registering	a	blueprint	
A	Flask	application	must	have	the	blueprints	registered.	In	some	cases,	there	will
be	multiple	instances	of	a	blueprint,	each	at	a	different	point	in	the	URI	path.	In
our	case,	we	only	have	a	single	instance	of	the	blueprint	at	the	root	of	the	URI
path.

In	the	preceding	examples,	the	bad	request	data	was	signaled	by	raising	a
BadRequest	exception.	A	Flask	error	handler	can	be	defined	to	transform	an
exception	object	to	a	standardized	RESTful	response	document	in	JSON	format.

The	example	Flask	application	is	shown	here:

class	BadRequest(Exception):

				pass

def	make_app()	->	Flask:

				app	=	Flask(__name__)

				@app.errorhandler(BadRequest)

				def	error_message(ex)	->	Tuple[Dict[str,	Any],	HTTPStatus]:

								current_app.logger.error(f"{ex.args}")

								return	jsonify(status="Bad	Request",	message=ex.args),	HTTPStatus.BAD_REQUEST

				app.register_blueprint(rolls)

				return	app

The	function	name,	make_app(),	is	expected	by	Flask.	Using	this	standard	name
makes	it	easy	to	launch	the	application.	It	also	makes	it	easier	to	integrate	with
products	such	as	uWSGI	or	Gunicorn.

Once	the	Flask	object,	app,	is	created,	the	@app.errorhandler	decorator	can	be	used	to
map	Python	exceptions	to	generic	responses.	This	technique	will	replace	Flask's
default	HTML-based	responses	with	JSON-based	responses.	The	advantage	of
JSON-format	responses	is	that	they	make	the	RESTful	API	provide	more
consistent	behavior.

The	rolls	blueprint,	defined	in	previous	examples,	is	registered	at	the	root	of	the
URI	path.	This	make_app()	function	can	also	be	used	to	include	configuration
parameters.	It's	also	common	to	see	a	sequence	of	extension.init_app(app)	function



calls	for	any	of	the	Flask	extensions	being	used.

Let's	look	at	how	we	can	create	a	secure	REST	service	in	the	next	section.



Creating	a	secure	REST	service
We	can	decompose	application	security	into	two	considerations:	authentication
and	authorization.	We	need	to	authenticate	who	the	user	is	and	we	also	need	to
be	sure	that	the	user	is	authorized	to	execute	a	particular	function.	There	are	a
variety	of	techniques	available	for	offering	a	secure	RESTful	service.	All	of
them	depend	on	using	SSL.	It's	essential	to	create	proper	certificates	and	use
them	to	ensure	that	all	data	transmissions	are	encrypted.

The	details	of	setting	up	a	certificate	for	SSL	encryption	are	outside	the	scope	of
this	book.	The	OpenSSL	toolkit	can	be	used	to	create	self-signed	certificates.
The	Flask	application	can	then	use	these	certificates	as	part	of	a	testing	or
development	environment.

When	HTTP	over	SSL	(HTTPS)	is	used,	then	the	handling	of	credentials	and
authentication	can	be	simplified.	Without	HTTPS,	the	credentials	must	be
encrypted	in	some	way	to	be	sure	they	aren't	sniffed	in	transmission.	With
HTTPS,	credentials	such	as	usernames	and	passwords	can	be	included	in	headers
by	using	a	simple	base-64	serialization	of	the	bytes.

There	are	a	number	of	ways	of	handling	authentication;	here	are	two	common
techniques:

The	HTTP	Authorization	header	can	be	used	(the	header's	purpose	is
authentication,	but	it's	called	Authorization).	The	Basic	type	is	used	to	provide
username	and	password.	The	Bearer	type	can	be	used	to	provide	an	OAuth
token.	This	is	often	used	by	the	presentation	layer	where	a	human	supplies
their	password.	
The	HTTP	Api-Key	header	can	be	used	to	provide	a	role	or	authorization.
This	is	often	provided	by	an	API	client	application,	and	is	configured	by
trusted	administrators.	This	can	involve	relatively	simple	authorization
checks.

We'll	show	the	simpler	approach	of	working	with	internal	Api-Key	headers	first.
It's	best	to	use	a	library	such	as	https://authlib.org	for	dealing	with	user
credentials	and	the	Authorization	header.	While	the	essential	rules	for	handling

https://authlib.org


passwords	are	generally	simple,	it's	easier	to	use	a	well-respected	package.

Using	an	Api-Key	header	for	authorization	checks	is	something	that's	designed	to
fit	within	the	Flask	framework.	The	general	approach	requires	three	elements:

A	repository	of	valid	Api-Key	values,	or	an	algorithm	for	validating	a	key.
An	init_app()	function	to	do	any	one-time	preparation.	This	might	include
reading	a	file,	or	opening	a	database.
A	decorator	for	the	application	view	functions.

Each	of	these	elements	is	shown	in	the	following	example:

from	functools	import	wraps

from	typing	import	Callable,	Set

VALID_API_KEYS:	Set[str]	=	set()

def	init_app(app):

				global	VALID_API_KEYS

				if	app.env	==	"development":

								VALID_API_KEYS	=	{"read-only",	"admin",	"write"}

				else:

								app.logger.info("Loading	from	{app.config['VALID_KEYS']}")

								raw_lines	=	(

												Path(app.config['VALID_KEYS'])

																.read_text()

																.splitlines()

								)

								VALID_API_KEYS	=	set(filter(None,	raw_lines))

def	valid_api_key(view_function:	Callable)	->	Callable:

				@wraps(view_function)

				def	confirming_view_function(*args,	**kw):

								api_key	=	request.headers.get("Api-Key")

								if	api_key	not	in	VALID_API_KEYS:

												current_app.logger.error(f"Rejecting	Api-Key:{api_key!r}")

												abort(HTTPStatus.UNAUTHORIZED)

								return	view_function(*args,	**kw)

				return	confirming_view_function

VALID_API_KEYS	is	a	global	module	that	contains	the	current	set	of	valid	values	for
the	Api-Keys	header.	It	has	a	type	hint	suggesting	that	it	is	a	set	of	string	values.
We're	using	this	instead	of	a	more	formal	database.	In	many	cases,	this	is	all
that's	required	to	confirm	that	the	Api-Key	values	sent	by	a	client	application	meets
the	authorization	requirement.

The	init_app()	function	will	load	this	global	module	from	a	file.	For	development,
a	simple	set	of	Api-Key	values	are	provided.	This	allows	simple	unit	tests	to



proceed.

valid_api_key()	is	a	decorator.	It's	used	to	make	a	consistent	check	that	can	be	used
in	all	view	function	definitions	to	be	sure	that	an	Api-Key	header	is	present	and	the
value	is	known.	It's	a	common	practice	to	use	the	Flask	g	object	to	save	this
information	for	use	in	later	logging	messages.	We	might	also	add	a	line	such
as	g.api_key	=	api_key	in	this	function	to	save	the	value	for	the	duration	of	the
interaction.

Here's	how	we	would	modify	a	view	function	to	use	this	new	decorator:

@roll.route("/roll/<identifier>",	methods=["GET"])

@valid_api_key

def	get_roll(identifier)	->	Tuple[Dict[str,	Any],	HTTPStatus]:

				if	identifier	not	in	SESSIONS:

								abort(HTTPStatus.NOT_FOUND)

				return	jsonify(

								roll=SESSIONS[identifier],	identifier=identifier,	status="OK"

				),	HTTPStatus.OK

This	is	a	copy	of	the	get_roll()	function	shown	in	an	earlier	example.	The	change
is	to	add	the	@valid_api_key	authorization	decorator	after	the	route	decorator.	This
provides	assurance	that	only	requests	with	an	Api-Key	header	in	the	short	list	of
valid	keys	will	be	able	to	retrieve	the	roll	values.

A	parameterized	version	of	the	@valid_api_key	decorator	is	a	bit	more	complex.

Hashing	user	passwords	will	be	discussed	in	the	next	section.



Hashing	user	passwords
Perhaps	the	most	important	advice	that	can	possibly	be	offered	on	the	subject	of
security	is	the	following:

Never	Store	Passwords
Only	a	repeated	cryptographic	hash	of	password	plus	salt	can	be	stored	on	a	server.	The
password	itself	must	be	utterly	unrecoverable.	Do	not	ever	store	any	recoverable	password	as
part	of	an	application.

Here's	an	example	class	that	shows	us	how	salted	password	hashing	might	work:

from	hashlib	import	sha256

import	os

class	Authentication:

				iterations	=	1000

				def	__init__(self,	username:	bytes,	password:	bytes)	->	None:

								"""Works	with	bytes.	Not	Unicode	strings."""

								self.username	=	username

								self.salt	=	os.urandom(24)

								self.hash	=	self._iter_hash(

												self.iterations,	self.salt,	username,	password)

				@staticmethod

				def	_iter_hash(iterations:	int,	salt:	bytes,	username:	bytes,	password:	bytes):

								seed	=	salt	+	b":"	+	username	+	b":"	+	password

								for	i	in	range(iterations):

												seed	=	sha256(seed).digest()

								return	seed

				def	__eq__(self,	other:	Any)	->	bool:

								other	=	cast("Authentication",	other)

								return	self.username	==	other.username	and	self.hash	==	other.hash

				def	__hash__(self)	->	int:

								return	hash(self.hash)

				def	__repr__(self)	->	str:

								salt_x	=	"".join("{0:x}".format(b)	for	b	in	self.salt)

								hash_x	=	"".join("{0:x}".format(b)	for	b	in	self.hash)

								return	f"{self.username}	{self.iterations:d}:{salt_x}:{hash_x}"

				def	match(self,	password:	bytes)	->	bool:

								test	=	self._iter_hash(

												self.iterations,	self.salt,	

												self.username,	password)

								return	self.hash	==	test		#	Constant	Time	is	Best

This	class	defines	an	Authentication	object	for	a	given	username.	The	object
contains	the	username,	a	unique	random	salt	created	each	time	the	password	is



set	or	reset,	and	the	final	hash	of	the	salt	plus	the	password.

This	class	also	defines	a	match()	method	that	will	determine	whether	a	given
password	will	produce	the	same	hash	as	the	original	password.

There	are	several	ways	to	transform	bytes	to	strings.	The	"".join("{0:x}".format(b)
for	b	in	self.salt)	expression	transforms	the	salt	value	into	a	string	of
hexadecimal	digit	pairs.	Here's	an	example	showing	the	result	of	the
transformation.

>>>	salt	=	b'salt'

>>>	"".join("{0:x}".format(b)	for	b	in	salt)

'73616c74'

Note	that	no	password	is	stored	by	this	class.	Only	hashes	of	passwords	are
retained.	We	provided	a	comment	(#	Constant	Time	is	Best)	on	the	comparison
function	as	a	note	that	this	implementation	is	incomplete.	An	algorithm	that	runs
in	constant	time	and	isn't	particularly	fast	is	better	than	the	built-in	equality
comparison	among	strings.

We	also	included	a	hash	computation	to	emphasize	that	this	object	is
immutable.	An	additional	design	feature	would	be	to	consider	using	__slots__	to
save	storage.	

Note	that	these	algorithms	work	with	byte	strings,	not	Unicode	strings.	We	either
need	to	work	with	bytes	or	we	need	to	work	with	the	ASCII	encoding	of	a
Unicode	username	or	password.

Let's	see	how	to	implement	REST	with	a	web	application	framework.



Implementing	REST	with	a	web
application	framework
A	RESTful	web	server	is	a	web	application.	This	means	we	can	leverage	any	of
the	popular	Python	web	application	frameworks.	The	complexity	of	creating
RESTful	services	is	low.	The	preceding	examples	illustrate	how	simple	it	is	to
map	the	CRUD	rules	to	HTTP	Methods.

Some	of	the	Python	web	frameworks	include	one	or	more	REST	components.	In
some	cases,	the	RESTful	features	are	almost	entirely	built-in.	In	other	cases,	an
add-on	project	can	help	define	RESTful	web	services	with	minimal
programming.	For	example,	https://flask-restful.readthedocs.io/en/latest/	is	a
REST	framework	that	can	be	used	as	a	Flask	extension.

Searching	PyPI	(https://pypi.python.org)	for	REST	will	turn	up	a	large	number	of
packages.	There	are	numerous	solutions	that	are	already	available.	Most	of	these
will	offer	some	levels	of	simplification	for	common	cases.	

A	list	of	Python	web	frameworks	can	be	found	at	https://wiki.python.org/moin/WebFra
meworks.	The	point	of	these	projects	is	to	provide	a	reasonably	complete
environment	to	build	web	applications.	Any	of	these	can	be	used	in	place	of
Flask	to	create	RESTful	web	services.

There	are	several	compelling	reasons	for	writing	a	RESTful	service	directly	in
Flask,	and	some	are	listed	here:

The	REST	service	views	are	generally	short	and	involve	the	minimal
overheads	required	to	deserialize	JSON	requests	and	serialize	JSON
responses.	The	remainder	of	the	processing	is	unique	to	the	problem
domain.
If	there	is	unique	processing	that	does	not	map	to	a	REST	package	in	an
obvious	way,	it	may	be	better	to	simply	write	the	view	functions.	In
particular,	validation	rules	and	state	transition	rules	are	often	difficult	to
standardize	and	may	be	difficult	to	integrate	with	the	built-in	assumptions
behind	an	existing	REST	package.	

https://flask-restful.readthedocs.io/en/latest/
https://pypi.python.org
https://wiki.python.org/moin/WebFrameworks


If	there's	an	unusual	or	atypical	access	layer	or	persistence	mechanism,
many	REST	packages	have	default	assumptions	about	database	operations,
and	are	often	tailored	toward	a	package	such	as	SQLAlchemy;	for
example,	https://flask-restless.readthedocs.io/en/stable/.

Security,	in	particular,	can	be	challenging.	There	are	several	best	practices
including	the	following:

Always	use	SSL.	For	final	production	use,	purchase	a	certificate	from	a
trusted	Certification	Authority	(CA).
Never	encrypt	or	store	passwords,	always	use	salted	hashing.
Avoid	building	home-brewed	authentication.	Use	project	such	as	https://flas
k-dance.readthedocs.io/en/latest/	or	https://authlib.org.

For	the	final	production	deployment,	there	are	a	number	of	alternatives.	See	http:
//flask.pocoo.org/docs/1.0/deploying/	for	a	long	list	of	the	ways	that	Flask
applications	can	be	deployed	at	scale.

Let's	see	how	to	use	a	message	queue	to	transmit	objects.

https://flask-restless.readthedocs.io/en/stable/
https://flask-dance.readthedocs.io/en/latest/
https://authlib.org
http://flask.pocoo.org/docs/1.0/deploying/


Using	a	message	queue	to	transmit
objects
The	multiprocessing	module	uses	both	the	serialization	and	transmission	of	objects.
We	can	use	queues	and	pipes	to	serialize	objects	that	are	then	transmitted	to
other	processes.	There	are	numerous	external	projects	to	provide	sophisticated
message	queue	processing.	We'll	focus	on	the	multiprocessing	queue	because	it's
built	in	to	Python	and	works	nicely.

For	high-performance	applications,	a	faster	message	queue	may	be	necessary.	It
may	also	be	necessary	to	use	a	faster	serialization	technique	than	pickling.	For
this	chapter,	we'll	focus	only	on	the	Python	design	issues.	The	multiprocessing
module	relies	on	pickle	to	encode	objects.	See	Chapter	10,	Serializing	and	Saving	–
	JSON,	YAML,	Pickle,	CSV,	and	XML,	for	more	information.	We	can't	provide	a
restricted	unpickler	easily;	therefore,	this	module	offers	us	some	relatively
simple	security	measures	put	into	place	to	prevent	any	unpickle	problems.

There	is	one	important	design	consideration	when	using	multiprocessing:	it's
generally	best	to	avoid	having	multiple	processes	(or	multiple	threads)
attempting	to	update	shared	objects.	The	synchronization	and	locking	issues	are
so	profound	(and	easy	to	get	wrong)	that	the	standard	joke	goes	as	follows:

When	confronted	with	a	problem,	the	programmer	thinks,	"I'll	use	multiple	threads."

problems	Now.	two	programmer	the	has

It's	very	easy	for	locking	and	buffering	to	make	a	mess	of	multithreaded
processing.

Using	process-level	synchronization	via	RESTful	web	services	or	multiprocessing
can	prevent	synchronization	issues	because	there	are	no	shared	objects.	The
essential	design	principle	is	to	look	at	the	processing	as	a	pipeline	of	discrete
steps.	Each	processing	step	will	have	an	input	queue	and	an	output	queue;	the
step	will	fetch	an	object,	perform	some	processing,	and	write	the	object.

The	multiprocessing	philosophy	matches	the	POSIX	concept	of	a	shell	pipeline,



written	as	process1	|	process2	|	process3.	This	kind	of	shell	pipeline	involves	three
concurrent	processes	interconnected	with	pipes.	The	important	difference	is	that
we	don't	need	to	use	STDIN,	STDOUT,	or	an	explicit	serialization	of	the	objects.	We
can	trust	the	multiprocessing	module	to	handle	the	operating	system	(OS)-level
infrastructure.

The	POSIX	shell	pipelines	are	limited	in	that	each	pipe	has	a	single	producer	and
a	single	consumer.	The	Python	multiprocessing	module	allows	us	to	create	message
queues	that	include	multiple	consumers.	This	allows	us	to	have	a	pipeline	that
fans	out	from	one	source	process	to	multiple	sink	processes.	A	queue	can	also
have	multiple	consumers	that	allow	us	to	build	a	pipeline	where	the	results	of
multiple	source	processes	can	be	combined	by	a	single	sink	process.

To	maximize	throughput	on	a	given	computer	system,	we	need	to	have	enough
work	pending	so	that	no	processor	or	core	is	ever	left	with	nothing	useful	to	do.
When	any	given	OS	process	is	waiting	for	a	resource,	at	least	one	other	process
should	be	ready	to	run.

When	looking	at	our	simulations,	for	example,	we	need	to	gather	statistically
significant	simulation	data	by	exercising	a	player	strategy	or	betting	strategy	(or
both)	a	number	of	times.	The	idea	is	to	create	a	queue	of	processing	requests	so
that	our	computer's	processors	(and	cores)	are	fully	engaged	in	processing	our
simulations.

Each	processing	request	can	be	a	Python	object.	The	multiprocessing	module	will
pickle	that	object	so	that	it	is	transmitted	via	the	queue	to	another	process.

We'll	revisit	this	in	Chapter	16,	The	Logging	and	Warning	Modules,	when	we	look
at	how	the	logging	module	can	use	multiprocessing	queues	to	provide	a	single,
centralized	log	for	separate	producer	processes.	In	these	examples,	the	objects
transmitted	from	process	to	process	will	be	the	logging.LogRecord	instances.

In	the	next	section,	we'll	learn	how	to	define	processes.



Defining	processes
We	must	design	each	processing	step	as	a	simple	loop	that	gets	a	request	from	a
queue,	processes	that	request,	and	places	the	results	into	another	queue.	This
decomposes	the	larger	problem	into	a	number	of	stages	that	form	a	pipeline.
Because	each	of	these	stages	runs	concurrently,	the	system	resource	use	will	be
maximized.	Furthermore,	as	the	stages	involve	simple	gets	and	puts	into
independent	queues,	there	are	no	problems	with	complex	locking	or	shared
resources.	A	process	can	be	a	simple	function	or	a	callable	object.	We'll	focus	on
defining	processes	as	subclasses	of	multiprocessing.Process.	This	gives	us	the	most
flexibility.

For	the	simulation	of	a	stateful	process	such	as	a	game,	we	can	break	the
simulation	down	into	a	three-step	pipeline:

1.	 An	overall	driver	puts	simulation	requests	into	a	processing	queue.
2.	 A	pool	of	simulators	will	get	a	request	from	the	processing	queue,	perform

the	simulation,	and	put	the	statistics	into	a	results	queue.
3.	 A	summarizer	will	get	the	results	from	the	result	queue	and	create	a	final

tabulation	of	the	results.

Using	a	process	pool	allows	us	to	have	as	many	simulations	running
concurrently	as	our	CPU	can	handle.	The	pool	of	simulators	can	be	configured	to
ensure	that	simulations	run	as	quickly	as	possible.

Here's	a	definition	of	the	simulator	process:

import	multiprocessing

class	Simulation(multiprocessing.Process):

				def	__init__(

								self,

								setup_queue:	multiprocessing.SimpleQueue,

								result_queue:	multiprocessing.SimpleQueue,

				)	->	None:

								self.setup_queue	=	setup_queue

								self.result_queue	=	result_queue

								super().__init__()

				def	run(self)	->	None:

								"""Waits	for	a	termination"""



								print(f"{self.__class__.__name__}	start")

								item	=	self.setup_queue.get()

								while	item	!=	(None,	None):

												table,	player	=	item

												self.sim	=	Simulate(table,	player,	samples=1)

												results	=	list(self.sim)

												self.result_queue.put((table,	player,	results[0]))

												item	=	self.setup_queue.get()

								print(f"{self.__class__.__name__}	finish")

We've	extended	multiprocessing.Process.	This	means	that	we	must	do	two	things	to
work	properly	with	multiprocessing:	we	must	ensure	that	super().__init__()	is
executed,	and	we	must	override	run().

Within	the	body	of	run(),	we're	using	two	queues.	setup_queue	will	contain	two-
tuples	of	the	Table	and	Player	objects.	The	process	will	use	these	two	objects	to
run	a	simulation.	It	will	put	the	resulting	three-tuple	into	result_queue.	The	API	for
the	Simulate	class	is	this:

class	Simulate:

				def	__init__(

												self,

												table:	Table,

												player:	Player,

												samples:	int

				)	->	None:	...

				def	__iter__(self)	->	Iterator[Tuple]:	...

The	iterator	will	yield	the	requested	number,	samples,	of	statistical	summaries.
We've	included	a	provision	for	a	sentinel	object	to	arrive	via	setup_queue.	This
object	will	be	used	to	gracefully	close	down	the	processing.	If	we	don't	use	a
sentinel	object,	we'll	be	forced	to	terminate	the	processes,	which	can	disrupt
locks	and	other	system	resources.	Here's	the	summarization	process:

class	Summarize(multiprocessing.Process):

				def	__init__(self,	queue:	multiprocessing.SimpleQueue)	->	None:

								self.queue	=	queue

								super().__init__()

				def	run(self)	->	None:

								"""Waits	for	a	termination"""

								print(f"{self.__class__.__name__}	start")

								count	=	0

								item	=	self.queue.get()

								while	item	!=	(None,	None,	None):

												print(item)

												count	+=	1

												item	=	self.queue.get()

								print(f"{self.__class__.__name__}	finish	{count}")



This	also	extends	multiprocessing.Process.	In	this	case,	we're	fetching	items	from	a
queue	and	simply	counting	them.	A	more	useful	processing	might	use	several
collection.Counter	objects	to	accumulate	more	interesting	statistics.

As	with	the	Simulation	class,	we're	also	going	to	detect	a	sentinel	and	gracefully
close	down	the	processing.	The	use	of	a	sentinel	object	allows	us	to	close	down
processing	as	soon	as	the	work	is	completed	by	the	process.	In	some
applications,	the	child	process	can	be	left	running	indefinitely.

Let's	see	how	to	build	queues	and	supply	data	in	the	next	section.



Building	queues	and	supplying	data
Objects	are	transferred	among	processes	through	queues	or	pipes.	Building
queues	involves	creating	instances	of	multiprocessing.Queue	or	one	of	its	subclasses.
For	this	example,	we	can	use	the	following:

setup_q	=	multiprocessing.SimpleQueue()	

results_q	=	multiprocessing.SimpleQueue()	

We	created	two	queues	that	define	the	processing	pipeline.	When	we	put	a
simulation	request	into	setup_q,	we	expect	that	a	Simulation	process	will	get	the
request	pair	and	run	the	simulation.	This	should	generate	a	results	triple,	which
is	put	in	results_q.	The	results	triple	should,	in	turn,	lead	the	work	being	done	by
the	Summarize	process.	Here's	how	we	can	start	a	single	Summarize	process:

result	=	Summarize(results_q)	

result.start()	

Here's	how	we	can	create	four	concurrent	simulation	processes:

				simulators	=	[]	

				for	i	in	range(4):	

								sim	=	Simulation(setup_q,	results_q)	

								sim.start()	

								simulators.append(sim)	

The	four	concurrent	simulators	will	be	competing	for	work.	Each	one	will	be
attempting	to	grab	the	next	request	from	the	queue	of	pending	requests.	Once	all
the	four	simulators	are	busy	working,	the	queue	will	start	to	get	filled	with
unprocessed	requests.	The	ideal	size	of	the	pool	of	workers	is	difficult	to	predict.
It	depends	on	the	number	of	cores	a	processor	has,	and	it	also	depends	on	the
workload.	A	pool	of	processors	doing	a	great	deal	of	input	and	output	(I/O)
work	will	also	do	a	lot	of	waiting	for	I/O	to	complete;	so,	the	pool	can	be	very
large.	On	a	smaller	machine	with	only	a	four	cores	and	a	compute-intensive
workload,	the	pool	will	be	smaller.

After	the	queues	and	processes	are	waiting	for	work,	the	driver	function	can	start
putting	requests	into	the	setup_q	queue.	Here's	a	loop	that	will	generate	a	flood	of
requests:



table	=	Table(

				decks=6,	limit=50,	dealer=Hit17(),	split=ReSplit(),	

				payout=(3,	2)

)

for	bet	in	Flat,	Martingale,	OneThreeTwoSix:

				player	=	Player(SomeStrategy(),	bet(),	100,	25)

				for	sample	in	range(5):

								setup_q.put((table,	player))

We	have	created	a	Table	object.	For	each	of	the	three	betting	strategies,	we	have
created	a	Player	object,	and	then	queued	up	a	simulation	request.	The	pickled
two-tuple	will	be	fetched	from	the	queue	by	the	Simulation	object	and	then	it	will
be	processed.	In	order	to	have	an	orderly	termination,	we'll	need	to	queue
sentinel	objects	for	each	simulator:

for	sim	in	simulators:

				setup_q.put((None,	None))

#	Wait	for	the	simulations	to	all	finish.

for	sim	in	simulators:

				sim.join()

We	put	a	sentinel	object	into	the	queue	for	each	simulator	to	consume.	Once	all
the	simulators	have	consumed	the	sentinels,	we	can	wait	for	the	processes	to
finish	execution	and	join	back	into	the	parent	process.

Once	the	Process.join()	operation	is	finished,	no	more	simulation	data	will	be
created.	We	can	enqueue	a	sentinel	object	into	the	simulation	results	queue,	as
well:

results_q.put((None,	None,	None))

result.join()

Once	the	results	sentinel	object	is	processed,	the	Summarize	process	will	stop
accepting	input	and	we	can	join()	it	as	well.

We	used	multiprocessing	to	transmit	objects	from	one	process	to	another.	This
gives	us	a	relatively	simple	way	to	create	high-performance,	multi-processing
data	pipelines.	The	multiprocessing	module	uses	pickle,	so	there	are	few	limitations
on	the	nature	of	objects	that	can	be	pushed	through	the	pipelines.

It's	informative	to	adjust	the	pool	size	to	see	the	impact	of	more	workers	and
fewer	workers	on	the	elapsed	runtime.	The	interaction	among	processing	cores,
memory,	and	the	nature	of	the	workload	is	difficult	to	predict,	and	an	empirical
study	is	helpful	to	find	the	optimum	number	of	workers	in	the	pool.



Summary
We	have	looked	at	transmitting	and	sharing	objects	using	RESTful	web	services.
RESTful	web	services	via	Flask	are	one	way	to	do	this.	The	multiprocessing
module	embodies	a	radically	different	solution	to	the	same	problem.	Both	of
these	architectures	provide	for	communicating	a	representation	of	an	object's
state.	In	the	case	of	multiprocessing,	pickle	is	used	to	represent	the	state.	In	the	case
of	building	RESTful	web	services,	we	have	to	choose	the	representation(s)	used.
In	the	examples	used	here,	we	focused	on	JSON,	because	it's	widely	used	and
has	a	simple	implementation.

RESTful	web	services	often	use	a	framework	to	simplify	the	code	required	for
the	standard	features	of	HTTP	request	and	response	processing.	In	the	examples,
we	identified	four	steps:	parsing,	evaluating,	logging,	and	responding.	The	Flask
framework	provides	a	simple,	extensible	framework	for	this.	Because	WSGI
applications	have	a	simple,	standardized	API,	we	can	easily	a	variety	of
frameworks	for	web	applications.	In	this	chapter,	we	looked	at	using	Flask	for
implementing	RESTful	services.

We	also	looked	at	using	multiprocessing	to	enqueue	and	dequeue	messages	from
shared	queues.	This	works	nicely	for	passing	objects	from	process	to	process.
The	beauty	of	using	interprocess	message	queues	is	that	we	can	avoid	the
locking	problems	associated	with	concurrent	updates	to	objects	shared	by
multiple	threads.



Design	considerations	and	tradeoffs
When	building	applications	that	involve	concurrency,	we	must	decide	what	grain
of	objects	to	make	available	and	how	to	identify	those	objects	with	sensible
URIs.	With	larger	objects,	we	can	easily	achieve	ACID	properties.	However,	we
may	also	be	uploading	and	downloading	too	much	data	for	our	application's	use
cases.	In	some	cases,	we'll	need	to	provide	alternative	levels	of	access:	large
objects	to	support	ACID	properties,	and	small	objects	to	allow	rapid	response
when	a	client	application	wants	a	subset	of	the	data.

To	implement	more	localized	processing,	we	can	leverage	the	multiprocessing
module.	This	is	focused	more	on	building	high-performance	processing	pipelines
within	a	trusted	host	or	network	of	hosts.

In	some	cases,	the	two	design	patterns	are	combined	such	that	a	RESTful	request
is	handled	by	a	multiprocessing	pipeline.	A	conventional	web	server	(such	as
NGINX)	working	through	uWSGI	will	use	multiprocessing	techniques	to	pass
the	request	through	a	named	pipe	from	the	frontend	to	the	uWSGI-compliant
Python	application	backend.



Schema	evolution
When	working	with	a	public-facing	API	for	RESTful	services,	we	have	to
address	the	schema	evolution	problem.	If	we	change	a	class	definition,	how	will
we	change	the	response	messages?	If	the	external	RESTful	API	must	change	for
compatibility	with	other	programs,	how	do	we	upgrade	the	Python	web	services
to	support	a	changing	API?

Often,	we'll	have	to	provide	a	major	release	version	number	as	part	of	our	API.
This	might	be	provided	explicitly	as	part	of	the	path,	or	implicitly	via	data	fields
included	in	the	POST,	PUT,	and	DELETE	requests.

We	need	to	distinguish	between	changes	that	don't	alter	the	URI	paths	or
responses,	and	changes	that	will	alter	a	URI	or	response.	Minor	changes	to
functionality	will	not	change	a	URI	or	the	structure	of	a	response.

Changes	to	the	URIs	or	the	structure	of	a	response	may	break	an	existing
application.	These	are	major	changes.	One	way	to	make	an	application	work
gracefully	through	schema	upgrades	is	to	include	version	numbers	in	the	URI
paths.	For	example,	/roulette_2/wheel/	specifically	names	the	second	release	of	the
roulette	server.



Application	software	layers
Because	of	the	relative	sophistication	available	when	using	sqlite3,	our
application	software	must	become	more	properly	layered.	For	a	REST	client,	we
might	look	at	a	software	architecture	with	layers.

When	we	are	building	a	RESTful	server,	the	presentation	layer	becomes	greatly
simplified.	It	is	pared	down	to	the	essential	request-response	processing.	It
parses	URIs	and	responds	with	documents	in	JSON	or	XML	(or	some	other
representation.)	This	layer	should	be	reduced	to	a	thin	RESTful	facade	over	the
lower-level	features.

In	some	complex	cases,	the	front-most	application,	as	viewed	by	human	users,
involves	data	from	several	distinct	sources.	One	easy	way	to	integrate	data	from
diverse	sources	is	to	wrap	each	source	in	a	RESTful	API.	This	provides	us	with	a
uniform	interface	over	distinct	sources	of	data.	It	also	allows	us	to	write
applications	that	gather	these	diverse	kinds	of	data	in	a	uniform	way.



Looking	forward
In	the	next	chapter,	we'll	use	persistence	techniques	to	handle	configuration	files.
A	file	that's	editable	by	humans	is	the	primary	requirement	for	the	configuration
data.	If	we	use	a	well-known	persistence	module,	then	our	application	can	parse
and	validate	the	configuration	data	with	less	programming	on	our	part.



Configuration	Files	and	Persistence
A	configuration	file	is	a	form	of	object	persistence.	It	contains	a	serialized,	plain-
text,	editable	representation	of	some	default	state	for	an	application	program.
We'll	expand	on	the	serialization	techniques	shown	in	Chapter	10,	Serializing	and
Saving	–	JSON,	YAML,	Pickle,	CSV,	and	XML	to	create	files	that	are	specifically
used	for	application	configuration.	The	focus	on	plain	text	means	that	pickle
representation	will	be	excluded.	Due	to	the	relative	complexity	of	application
configurations,	CSV	files	aren't	often	used	for	this	purpose,	either.

Before	a	user	can	make	use	of	an	editable	plain-text	configuration	file,	we	must
design	our	application	to	be	configurable.	This	can	often	require	careful
consideration	of	dependencies	and	limitations.	Additionally,	we	must	define
some	kind	of	configuration	object	that	our	application	will	use.	In	many	cases,	a
configuration	will	be	based	on	default	values;	we	might	want	to	allow	for
system-wide	defaults	with	user-specific	overrides	to	those	defaults.	We'll	explore
six	representations	for	the	configuration	data,	as	follows:

INI	files	use	a	format	that	was	pioneered	as	part	of	Windows.	The	file	is
popular,	in	part,	because	it	is	an	incumbent	among	available	formats	and
has	a	long	history.
PY	files	are	plain-old	Python	code.	They	have	numerous	advantages
because	of	the	familiarity	and	simplicity	of	the	syntax.	The	configuration
can	be	used	by	an	import	statement	in	the	application.
JSON	and	YAML	are	both	designed	to	be	user-friendly	and	easy	to	edit.
Properties	files	are	often	used	in	a	Java	environment.	They're	relatively	easy
to	work	with	and	they	are	also	designed	to	be	human-friendly.	There's	no
built-in	parser	for	this,	and	this	chapter	includes	regular	expressions	for	this
file	format.
XML	files	are	popular	but	they	are	wordy,	which	means	that,	sometimes,
they	are	difficult	to	edit	properly.	macOS	uses	an	XML-based	format	called
a	property	list	or	a	PLIST	file.

Each	of	these	forms	offers	us	some	advantages	and	some	disadvantages;	there's
no	single	technique	that	can	be	described	as	the	best.	In	many	cases,	the	choice
is	based	on	familiarity	and	compatibility	with	other	software.	In	Chapter



15,	Design	Principles	and	Patterns,	we'll	return	to	this	topic	of	configuration.
Additionally,	in	later	chapters,	we'll	make	extensive	use	of	configuration	options.
In	this	chapter,	we	will	cover	the	following	topics:

Configuration	file	use	cases
Representation,	persistence,	state,	and	usability
Storing	configurations	in	INI	files	and	PY	files
Handling	more	literals	via	the	eval()	variant
Storing	configurations	in	PY	files
Why	exec()	is	a	non-problem
Using	ChainMap	for	defaults	and	overrides
Storing	configurations	in	JSON	or	YAML
Using	XML	files	such	as	PLIST	and	others



Technical	requirements
The	code	files	for	this	chapter	are	available	at	https://git.io/fj2UP.

https://git.io/fj2UP


Configuration	file	use	cases
There	are	two	configuration	file	use	cases.	Sometimes,	we	can	stretch	the
definition	slightly	to	add	a	third	use	case.	The	first	two	should	be	pretty	clear:

A	person	needs	to	edit	a	configuration	file
A	piece	of	software	will	read	a	configuration	file	and	make	use	of	the
options	and	arguments	to	tailor	its	behavior

Configuration	files	are	rarely	the	primary	input	of	an	application	program.
Generally,	they	only	tailor	the	program's	behavior.	For	example,	a	web	server's
configuration	file	might	tailor	the	behavior	of	the	server,	but	the	web	requests	are
one	primary	input,	and	the	database	or	filesystem	is	the	other	primary	input.	In
the	case	of	a	GUI	application,	the	user's	interactive	events	are	one	input,	and	the
files	or	database	may	be	another	input;	a	configuration	file	may	fine-tune	the
application.	The	most	notable	exception	to	this	general	pattern	is	a	simulation
application;	in	this	case,	the	configuration	parameters	might	be	the	primary
input.	

There's	also	a	blurry	edge	to	the	distinction	between	the	application	program	and
configuration	input.	Ideally,	an	application	has	one	behavior	irrespective	of	the
configuration	details.	Pragmatically,	however,	the	configuration	might	introduce
additional	strategies	or	states	to	an	existing	application,	changing	its	behavior	in
fundamental	ways.	In	this	case,	the	configuration	parameters	become	part	of	the
code,	not	merely	options	or	limits	applied	to	a	fixed	code	base.

In	addition	to	being	changed	by	a	person,	another	use	case	for	a	configuration
file	is	to	save	an	application's	current	state.	For	example,	in	GUI	applications,	it's
common	to	save	the	locations	and	sizes	of	various	windows.	As	another
example,	a	web	interface	often	uses	cookies	to	save	the	transaction	state.	It's
generally	helpful	to	segregate	slowly-changing	user-oriented	configuration	from
the	more	dynamic	attributes	of	the	application's	current	operating	state.	The
same	types	of	file	formats	can	be	used,	but	the	two	kinds	of	uses	are	distinct.

A	configuration	file	can	provide	a	number	of	domains	of	arguments	and
parameter	values	to	an	application.	We	need	to	explore	some	of	these	various



kinds	of	data	in	more	detail	in	order	to	decide	how	to	represent	them	best.	Some
common	types	of	parameters	are	listed	as	follows:

Device	names,	which	may	overlap	with	the	filesystem's	location
Filesystem	locations	and	search	paths
Limits	and	boundaries
Message	templates	and	data	format	specifications
Message	text,	possibly	translated	for	internationalization
Network	names,	addresses,	and	port	numbers
Optional	behaviors,	which	are	sometimes	called	feature	toggles
Security	keys,	tokens,	usernames,	and	passwords

These	values	come	from	a	number	of	distinct	domains.	Often,	the
configuration	values	have	relatively	common	representations	using	strings,
integers,	and	floating-point	numbers.	The	intent	is	to	use	a	tidy	textual
representation	that's	relatively	easy	for	a	person	to	edit.	This	means	our	Python
applications	must	parse	the	human-oriented	input.

In	some	cases,	we	may	have	lists	of	values	where	separators	are	required.	We
may	also	have	large,	multiline	blocks	of	text.	In	these	cases,	the	representation	of
the	values	may	involve	more	complex	punctuation	and	more	complex	parsing
algorithms.

There	is	one	additional	configuration	value	that	isn't	a	simple	type	with	a	tidy
text	representation.	We	could	add	this	bullet	to	the	preceding	list:

Additional	features,	plugins,	and	extensions;	in	effect,	additional	code

This	kind	of	configuration	value	is	challenging.	We're	not	necessarily	providing
a	simple	string	input	or	numeric	limitation.	In	fact,	we're	providing	the	code	to
extend	the	application.	When	the	plugin	is	in	Python	code,	one	option	is	to
provide	the	path	to	an	installed	Python	module	as	it	would	be	used	in	an	import
statement	using	this	dotted	name:	package.module.object.	An	application	can	then
perform	a	variation	of	from	package.module	import	object	and	use	the	given	class	or
function	as	part	of	the	application.

For	a	configuration	that	introduces	non-Python	code	as	part	of	a	plugin	or
extension,	we	have	two	other	techniques	to	make	the	external	code	usable:



For	binaries	that	aren't	proper	executable	programs,	we	can	try	using	the
ctypes	module	to	call	defined	API	methods
For	binaries	that	are	executable	programs,	the	subprocess	module	gives	us
ways	to	execute	them

Both	of	these	techniques	are	beyond	the	scope	of	this	book.	This	chapter	will
focus	on	the	core	issue	of	getting	the	arguments	or	the	parameter	values,	which
are	conventional	Python	values.

Representation,	persistence,	state,	and	usability	are	discussed	in	the	next	section.



Representation,	persistence,	state,
and	usability
When	looking	at	a	configuration	file,	we're	looking	at	a	human-friendly	version
of	an	object	state.	Often,	we'll	provide	the	state	of	more	than	one	object.	When
we	edit	a	configuration	file,	we're	changing	the	persistent	state	of	an	object	that
will	get	reloaded	when	the	application	is	started	(or	restarted).	We	have	two
common	ways	of	looking	at	a	configuration	file:

A	mapping	or	a	group	of	mappings	from	parameter	names	to	configuration
values.	Note	that	even	when	there	are	nested	mappings,	the	structure	is
essentially	keys	and	values.
A	serialized	object	that	has	complex	attributes	and	properties	with	the
configuration	values.	The	distinguishing	feature	is	the	possibility	of
properties,	methods,	and	derived	values	in	addition	to	the	user-supplied
values.

Both	of	these	views	are	equivalent;	the	mapping	view	relies	on	a	built-in
dictionary	or	namespace	object.	The	serialized	object	will	be	a	more	complex
Python	object,	which	has	been	created	from	an	external,	human
editable	representation	of	the	object.	The	advantage	of	a	dictionary	is	the
simplicity	of	putting	a	few	parameters	into	a	simple	structure.	The	advantage	of
a	serialized	object	is	its	ability	to	track	the	number	of	complex	relationships.

For	a	flat	dictionary	or	namespace	to	work,	the	parameter	names	must	be	chosen
carefully.	Part	of	designing	the	configuration	is	to	design	useful	keys,	which	is
something	we	looked	at	in	Chapter	11,	Storing	and	Retrieving	Objects	via	Shelve,
and	Chapter	12,	Storing	and	Retrieving	Objects	via	SQLite.	A	mapping	requires
unique	names	so	that	other	parts	of	the	application	can	refer	to	it	properly.

When	we	try	to	reduce	a	configuration	file	to	a	single	mapping,	we	often
discover	that	there	are	groups	of	related	parameters.	This	leads	to	namespaces
within	the	overall	collection	of	names.	Let's	consider	a	web	application	that	uses
other	web	services;	we	might	have	two	parallel	groups	of	parameters:
service_one_host_name	and	service_one_port_number,	as	well	as	service_two_host_name	and



service_two_port_number.	These	could	be	four	separate	names,	or	we	could	use	a
more	complex	structure	to	combine	the	names	into	two	related	groups;	for
example,	by	perhaps	creating	a	configuration	data	structure	such
as	{"service_one":	{"host_name":	"example.com",	"port_number":	8080},	etc.}.	

There	is	a	blurry	space	between	using	simple	mappings	and	using	more	complex
serialized	Python	objects.	Some	of	the	modules	we'll	look	at	in	this	chapter	use
complex	nested	dictionaries	and	namespace	objects.	The	variety	of	alternative
solutions	suggests	there	is	no	single	best	way	to	organize	the	configuration
parameters.

It's	helpful	to	look	at	the	logging	configuration	for	examples	of	how	it	can	be	very
challenging	to	configure	a	complex	system.	The	relationships	between	Python
logging	object-loggers,	formatters,	filters,	and	handlers	must	all	be	bound
together	to	create	a	logger	usable	by	the	application.	If	any	pieces	are	missing,
the	logger	will	not	produce	output.	Section	16.8	of	the	Standard	Library
Reference	describes	two	different	syntaxes	for	logging	configuration	files.	We'll
look	at	logging	in	Chapter	16,	The	Logging	and	Warning	Modules.

In	some	cases,	it	may	be	simpler	to	use	Python	code	directly	as	the	configuration
file.	In	this	case,	the	configuration	is	a	Python	module,	and	the	details	are
brought	in	using	a	simple	import	statement.	If	a	configuration	file's	syntax	adds
too	much	complexity,	then	it	may	not	be	of	any	real	value.

Once	we've	decided	on	the	overall	data	structure,	there	are	two	common	design
patterns	for	the	scope	of	that	structure.



Application	configuration	design
patterns
There	are	two	core	design	patterns	for	the	scope	of	objects	used	to	configure	a
Python	application:

A	global	property	map:	A	global	object	can	contain	all	of	the
configuration	parameters.	A	simple	class	definition	is	perhaps	an	ideal	way
to	provide	names	and	values;	this	tends	to	follow	the	Singleton	design
pattern	ensuring	that	only	one	instance	exists.	Alternatives	include	a
dictionary	with	pairs	of	name:	value,	or	a	types.SimpleNamespace	object	of
attribute	values.
Object	construction:	Instead	of	a	single	object,	we'll	define	a	kind	of
Factory	or	collection	of	Factories	that	use	the	configuration	data	to	build
the	objects	of	the	application.	In	this	case,	the	configuration	information	is
used	once	when	a	program	is	started	and	never	again.	The	configuration
information	isn't	kept	around	as	a	global	object.

The	global	property	map	design	is	very	popular	because	it	is	simple	and
extensible.	The	first	example	of	this	is	using	a	class	object,	which	is	defined	as
follows:

class	Configuration:	

			some_attribute	=	"default_value"	

We	can	use	the	preceding	class	definition	as	a	global	container	of	attributes.
During	the	initialization,	we	might	have	something	similar	to	this	as	part	of
parsing	the	configuration	file:

Configuration.some_attribute	=	"user-supplied	value"	

Everywhere	else	in	the	program,	we	can	use	the	value	of
Configuration.some_attribute.	A	variation	on	this	theme	is	to	make	a	more	formal
Singleton	class	design	pattern.	This	is	often	done	with	a	global	module,	as	it	can
be	easily	imported	in	a	way	that	provides	us	with	an	accessible	global	definition.

The	second	example	involves	using	a	module	for	the	configuration.	We	might



have	a	module	named	configuration.py.	In	that	file,	we	can	have	a	definition	like
the	following:

settings	=	{

				"some_attribute":	"user-supplied	value"

}

Now,	the	application	can	use	configuration.settings	as	a	global	repository	for	all	of
the	application's	settings.	A	function	or	class	can	parse	the	configuration	file,
loading	this	dictionary	with	the	configuration	values	that	the	application	will
then	use.

In	a	Blackjack	simulation,	we	might	see	the	following	code:

shoe	=	Deck(configuration.settings['decks'])	

Alternatively,	we	might	possibly	see	the	following	code:

If	bet	>	configuration.settings['limit']:	raise	InvalidBet()	

Generally,	we'll	try	to	avoid	having	a	global	variable	for	the	configuration.
Because	a	global	variable	is	implicitly	present	everywhere,	it	can	be	misused	to
carry	stateful	processing	in	addition	to	configuration	values.	Instead	of	a	global
variable,	we	can	often	handle	the	configuration	relatively	more	neatly	through
object	construction.	In	the	next	section,	we	will	look	at	examples	of	constructing
objects	as	a	way	to	implement	the	configuration	changes.



Configuring	via	object	construction
When	configuring	an	application	through	object	construction,	the	objective	is	to
build	the	required	objects	at	startup	time.	In	effect,	the	configuration	file	defines
the	various	initialization	parameters	for	the	objects	that	will	be	built.

We	can	often	centralize	much	of	this	initial	object	construction	in	a	single	main()
function.	This	will	create	the	objects	that	do	the	real	work	of	the	application.
We'll	revisit	and	expand	on	these	design	issues	in	Chapter	18,	Coping	with	the
Command	Line.

Let's	now	consider	a	simulation	of	Blackjack	playing	and	betting	strategies.
When	we	run	a	simulation,	we	want	to	gather	the	performance	of	a	particular
combination	of	independent	variables.	These	variables	might	include	some
casino	policies	including	the	number	of	decks,	table	limits,	and	dealer	rules.	The
variables	might	include	the	player's	game	strategies	for	when	to	hit,	stand,	split,
and	double	down.	It	could	also	include	the	player's	betting	strategies	of	flat
betting,	Martingale	betting,	or	some	more	Byzantine	type	of	betting	system;	our
baseline	code	starts	out	like	this:

import	csv

def	simulate_blackjack()	->	None:

				#	Configuration

				dealer_rule	=	Hit17()

				split_rule	=	NoReSplitAces()

				table	=	Table(

								decks=6,	limit=50,	dealer=dealer_rule,	

								split=split_rule,	payout=(3,	2)

				)

				player_rule	=	SomeStrategy()

				betting_rule	=	Flat()

				player	=	Player(

								play=player_rule,	betting=betting_rule,	

								max_rounds=100,	init_stake=50

				)

				#	Operation

				simulator	=	Simulate(table,	player,	samples=100)

				result_path	=	Path.cwd()	/	"data"	/	"ch14_simulation.dat"

				with	result_path.open("w",	newline="")	as	results:

								wtr	=	csv.writer(results)

								wtr.writerows(gamestats)

In	this	example,	the	Configuration	part	of	the	code	builds	the	six	individual	objects



to	be	used	in	the	Operation	phase.	These	objects	include	dealer_rule,	split_rule,
table,	player_rule,	betting_rule,	and	player.	Additionally,	there	is	a	complex	set	of
dependencies	between	table	and	subsidiary	objects	as	well	as	player	and	two	other
objects.

The	second	part	of	the	code,	Operation,	builds	a	Simulate	instance	using	table	and
player.	A	csv	writer	object	then	writes	rows	from	the	simulator	instance.	This	final
writerows()	function	depends	on	the	Simulate	class	providing	a	__next__()	method.

The	preceding	example	is	a	kind	of	technology	spike	–	an	initial	draft	solution	–
with	hardcoded	object	instances	and	initial	values.	Any	change	is	essentially	a
rewrite.	A	more	polished	application	will	rely	on	externally-supplied
configuration	parameters	to	determine	the	classes	of	objects	and	their	initial
values.	When	we	separate	the	configuration	parameters	from	the	code,	it	means
we	don't	have	to	tweak	the	code	to	make	a	change.	This	gives	us	consistent,
testable	software.	A	small	change	is	accomplished	by	changing	the	configuration
inputs	instead	of	changing	the	code.

The	Simulate	class	has	an	API	that	is	similar	to	the	following	code:

from	dataclasses	import	dataclass

@dataclass

class	Simulate:

				"""Mock	simulation."""

				table:	Table

				player:	Player

				samples:	int

				def	__iter__(self)	->	Iterator[Tuple]:

								"""Yield	statistical	samples."""

								#	Actual	processing	goes	here...

This	allows	us	to	build	the	Simulate()	object	with	some	appropriate	initialization
parameters.	Once	we've	built	an	instance	of	Simulate(),	we	can	iterate	through	that
object	to	get	a	series	of	statistical	summary	objects.

The	next	version	of	this	can	use	configuration	parameters	from	a	configuration
file	instead	of	the	hardcoded	class	names.	For	example,	a	parameter	should	be
used	to	decide	whether	to	create	an	instance	of	Hit17	or	Stand17	for	the	dealer_rule
value.	Similarly,	the	split_rule	value	should	be	a	choice	among	several	classes
that	embody	several	different	split	rules	used	in	casinos.



In	other	cases,	parameter	values	should	be	used	to	provide	arguments	to	the
Simulate	class	__init__()	method.	For	example,	the	number	of	decks,	the	house
betting	limit,	and	the	Blackjack	payout	values	are	configuration	values	used	to
create	the	Table	instance.

Once	the	objects	are	built,	they	interact	normally	through	the	Simulate.__next__()
method	to	produce	a	sequence	of	statistical	output	values.	No	further	need	of	a
global	pool	of	parameters	is	required:	the	parameter	values	are	bound	into	the
objects	through	their	instance	variables.

The	object	construction	design	is	not	as	simple	as	a	global	property	map.	While
more	complex,	it	has	the	advantage	of	avoiding	a	global	variable,	and	it	also	has
the	advantage	of	making	the	parameter	processing	central	and	obvious	in	the
main	factory	function.

Adding	new	parameters	when	using	object	construction	may	lead	to	refactoring
the	application	to	expose	a	parameter	or	a	relationship.	This	can	make	it	seem
more	complex	than	a	global	mapping	from	name	to	value.

One	significant	advantage	of	this	technique	is	the	removal	of	the	complex	if
statements	deep	within	the	application.	Using	the	Strategy	design	pattern	tends	to
push	decision-making	forward	into	object	construction.	In	addition	to
simplifying	the	processing,	the	elimination	of	the	if	statements	means	there	are
fewer	statements	to	execute	and	this	can	lead	to	a	performance	boost.

In	the	next	section,	we	will	demonstrate	how	to	implement	a	configuration
hierarchy.



Implementing	a	configuration
hierarchy
We	often	have	several	choices	as	to	where	a	configuration	file	should	be	placed.
There	are	several	common	locations,	and	we	can	use	any	combination	of	choices
to	create	a	kind	of	inheritance	hierarchy	for	the	parameters:

The	Python	installation	directory:	We	can	find	the	installed	location	for	a
module	using	the	__file__	attribute	of	the	module.	From	here,	we	can	use	a
Path	object	to	locate	a	configuration	file:

>>>	import	this	

>>>	from	pathlib	import	Path

>>>	Path(this.__file__)

PosixPath('/Users/slott/miniconda3/envs/mastering/lib/python3.7/this.py')

The	system	application	installation	directory:	This	is	often	based	on	an
owning	username.	In	some	cases,	we	can	simply	create	a	special	user	ID	to
own	the	application	itself.	This	lets	us	use	~theapp/	as	a	configuration
location.	We	can	use	Path("~theapp").expanduser()	to	track	down	the
configuration	defaults.	In	other	cases,	the	application's	code	may	live	in
the	/opt	or	/var	directories.
A	system-wide	configuration	directory:	This	is	often	present	in	/etc.	Note
that	this	can	be	transformed	into	C:\etc	on	Windows.
The	current	user's	home	directory:	We	generally	use	Path.home()	to
identify	the	user's	home	directory.
The	current	working	directory:	We	generally	use	Path.cwd()	to	identify	the
current	working	directory.
A	file	named	in	the	command-line	parameters:	This	is	an	explicitly
named	file	and	no	further	processing	should	be	done	to	the	name.

An	application	can	integrate	configuration	options	from	all	of	these	sources.	Any
installation	default	values	should	be	considered	the	most	generic	and	least	user-
specific;	these	defaults	can	be	overridden	by	more	specific	values.

This	can	lead	to	a	list	of	files	like	the	following	code:

from	pathlib	import	Path



config_locations	=	(

				Path(__file__),

				#	Path("~thisapp").expanduser(),	requires	special	username

				Path("/opt")	/	"someapp",

				Path("/etc")	/	"someapp",

				Path.home(),

				Path.cwd(),

)

candidates	=	(dir	/	"someapp.config"	

					for	dir	in	config_locations)

config_paths	=	[path	for	path	in	candidates	if	path.exists()]

Here,	the	config_locations	variable	is	a	tuple	of	alternative	paths	where	a
configuration	file	might	be	located.	The	candidates	generator	will	create	paths	that
include	a	base	path	with	a	common	base	name,	someapp.config.	A	final	list	object,
config_paths,	is	built	for	those	paths	that	actually	exist.	The	idea	is	to	provide	the
most	generic	names	first,	and	the	most	user-specific	names	last.

Once	we	have	this	list	of	configuration	filenames,	we	can	append	any	filename
supplied	through	the	command-line	arguments	to	the	end	of	the	list	with	the
following	code:

config_paths.append(command_line_option)	

This	gives	us	a	list	of	locations	to	place	a	user-updated	configuration	file	as	well
as	the	configuration	default	values.

Let's	take	a	look	at	how	to	store	the	configuration	in	INI	files.



Storing	the	configuration	in	INI	files
The	INI	file	format	has	historical	origins	from	early	Windows	OS.	The	module
to	parse	these	files	is	configparser.	For	additional	details	on	the	INI	file,	you	can
refer	to	this	Wikipedia	article	for	numerous	useful	links:	http://en.wikipedia.org/wik
i/INI_file.

An	INI	file	has	sections	and	properties	within	each	section.	Our	sample	main
program	has	three	sections:	the	table	configuration,	player	configuration,	and
overall	simulation	data	gathering.	For	this	simulation,	we	will	use	an	INI	file	that
is	similar	to	the	following	example:

;	Default	casino	rules	

[table]	

				dealer=	Hit17	

				split=	NoResplitAces	

				decks=	6	

				limit=	50	

				payout=	(3,2)	

	

;	Player	with	SomeStrategy	

;	Need	to	compare	with	OtherStrategy	

[player]	

				play=	SomeStrategy	

				betting=	Flat	

				max_rounds=	100	

				init_stake=	50	

	

[simulator]	

				samples=	100	

				outputfile=	p2_c13_simulation.dat	

We've	broken	the	parameters	into	three	sections.	Within	each	section,	we've
provided	some	named	parameters	that	correspond	to	the	class	names	and
initialization	values	shown	in	our	preceding	model	application	initialization.

A	single	file	can	be	parsed	with	the	code	shown	in	this	example:

import	configparser	

config	=	configparser.ConfigParser()	

config.read('blackjack.ini')	

Here,	we've	created	an	instance	of	the	parser	and	provided	the	target
configuration	filename	to	that	parser.	The	parser	will	read	the	file,	locate	the
sections,	and	locate	the	individual	properties	within	each	section.

http://en.wikipedia.org/wiki/INI_file


If	we	want	to	support	multiple	locations	for	files,	we	can	use
config.read(config_names).	When	we	provide	the	list	of	filenames	to
ConfigParser.read(),	it	will	read	the	files	in	a	particular	order.	We	want	to	provide
the	files	from	the	most	generic	first	to	the	most	specific	last.	The	generic
configuration	files	that	are	part	of	the	software	installation	will	be	parsed	first	to
provide	defaults.	The	user-specific	configuration	will	be	parsed	later	to	override
these	defaults.

Once	we've	parsed	the	file,	we	need	to	make	use	of	the	various	parameters	and
settings.	Here's	a	function	that	constructs	our	objects	based	on	a	given
configuration	object	created	by	parsing	the	configuration	files.	We'll	break	this
into	three	parts;	here's	the	part	that	builds	the	Table	instance:

def	main_ini(config:	configparser.ConfigParser)	->	None:

				dealer_nm	=	config.get("table",	"dealer",	fallback="Hit17")

				dealer_rule	=	{

								"Hit17":	Hit17(),

								"Stand17":	Stand17(),

				}.get(dealer_nm,	Hit17())

				split_nm	=	config.get("table",	"split",	fallback="ReSplit")

				split_rule	=	{

								"ReSplit":	ReSplit(),

								"NoReSplit":	NoReSplit(),

								"NoReSplitAces":	NoReSplitAces(),

				}.get(split_nm,	ReSplit())

				decks	=	config.getint("table",	"decks",	fallback=6)

				limit	=	config.getint("table",	"limit",	fallback=100)

				payout	=	eval(

								config.get("table",	"payout",	fallback="(3,2)")

				)

				table	=	Table(

								decks=decks,	limit=limit,	dealer=dealer_rule,	

								split=split_rule,	payout=payout

				)

We've	used	properties	from	the	[table]	section	of	the	INI	file	to	select	class
names	and	provide	initialization	values.	There	are	three	broad	kinds	of	cases
here:

Mapping	a	string	to	a	class	name:	We've	used	a	mapping	to	look	up	an
object	based	on	a	string	class	name.	This	was	done	to	create	dealer_rule	and
split_rule.	If	the	pool	of	classes	was	subject	to	considerable	change,	we
might	move	this	mapping	into	a	separate	factory	function.	The	.get()
method	of	a	dictionary	includes	a	default	object	instance,	for
example,	Hit17().
Getting	a	value	that	ConfigParser	can	parse	for	us:	The	class	can	directly
handle	values	of	built-in	types	such	as	str,	int,	float,	and	bool.	Methods	such



as	getint()	handle	these	conversions.	The	class	has	a	sophisticated	mapping
from	a	string	to	a	Boolean,	using	a	wide	variety	of	common	codes	and
synonyms	for	True	and	False.
Evaluating	something	that's	not	built-in:	In	the	case	of	payout,	we	had	a
string	value,	'(3,2)',	that	is	not	a	directly	supported	data	type	for	ConfigParser.
We	have	two	choices	to	handle	this.	We	can	try	and	parse	it	ourselves,	or
we	can	insist	that	the	value	be	a	valid	Python	expression	and	make	Python
do	this.	In	this	case,	we've	used	eval().	Some	programmers	call	this	a
security	problem.	The	next	section	deals	with	this.

Here's	the	second	part	of	this	example,	which	uses	properties	from	the	[player]
section	of	the	INI	file	to	select	classes	and	argument	values:

				player_nm	=	config.get(

								"player",	"play",	fallback="SomeStrategy")

				player_rule	=	{

								"SomeStrategy":	SomeStrategy(),

								"AnotherStrategy":	AnotherStrategy()

				}.get(player_nm,	SomeStrategy())

				bet_nm	=	config.get("player",	"betting",	fallback="Flat")

				betting_rule	=	{

								"Flat":	Flat(),

								"Martingale":	Martingale(),

								"OneThreeTwoSix":	OneThreeTwoSix()

				}.get(bet_nm,	Flat())

				max_rounds	=	config.getint("player",	"max_rounds",	fallback=100)

				init_stake	=	config.getint("player",	"init_stake",	fallback=50)

				player	=	Player(

								play=player_rule,	

								betting=betting_rule,

								max_rounds=max_rounds,	

								init_stake=init_stake

				)

This	uses	string-to-class	mapping	as	well	as	built-in	data	types.	It	initializes	two
strategy	objects	and	then	creates	Player	from	those	two	strategies,	plus	two
integer	configuration	values.

Here's	the	final	part;	this	creates	the	overall	simulator:

outputfile	=	config.get(

				"simulator",	"outputfile",	fallback="blackjack.csv")

samples	=	config.getint("simulator",	"samples",	fallback=100)

simulator	=	Simulate(table,	player,	samples=samples)

with	Path(outputfile).open("w",	newline="")	as	results:

				wtr	=	csv.writer(results)

				wtr.writerows(simulator)

We've	used	two	parameters	from	the	[simulator]	section	that	are	outside	the
narrow	confines	of	object	creation.	The	outputfile	property	is	used	to	name	a	file;



the	samples	property	is	provided	as	an	argument	to	a	method	function.

The	next	section	demonstrates	how	to	handle	more	literals	through	the	eval()
variants.



Handling	more	literals	via	the	eval()
variants
A	configuration	file	may	have	values	of	types	that	don't	have	simple	string
representations.	For	example,	a	collection	might	be	provided	as	a	tuple	or	a	list
literal;	a	mapping	might	be	provided	as	a	dict	literal.	We	have	several	choices	to
handle	these	more	complex	values.

The	choices	resolve	the	issue	of	how	much	Python	syntax	the	conversion	is	able
to	tolerate.	For	some	types	(int,	float,	bool,	complex,	decimal.Decimal,
and	fractions.Fraction),	we	can	safely	convert	the	string	to	a	literal	value	because
the	__init__()	object	for	these	types	can	handle	string	values.

For	other	types,	however,	we	can't	simply	do	the	string	conversion.	We	have
several	choices	on	how	to	proceed:

Forbid	these	data	types	and	rely	on	the	configuration	file	syntax	plus
processing	rules	to	assemble	complex	Python	values	from	very	simple
parts;	this	is	tedious	but	it	can	be	made	to	work.	In	the	case	of	the	table
payout,	we	need	to	break	the	payout	into	two	separate	configuration	items
for	the	numerator	and	denominator.	This	is	a	lot	of	configuration	file
complexity	for	a	simple	two-tuple.
Use	ast.literal_eval()	as	it	handles	many	cases	of	Python	literal	values.	This
is	often	the	ideal	solution.
Use	eval()	to	simply	evaluate	the	string	and	create	the	expected	Python
object.	This	will	parse	more	kinds	of	objects	than	ast.literal_eval().	But,	do
consider	whether	this	level	of	generality	is	really	needed.
Use	the	ast	module	to	compile	and	then	vet	the	resulting	code	object.	This
vetting	process	can	check	for	the	import	statements	as	well	as	use	some	small
set	of	permitted	modules.	This	is	quite	complex;	if	we're	effectively
allowing	code,	perhaps	we	should	be	designing	a	framework	and	simply
including	Python	code.

If	we	are	performing	RESTful	transfers	of	Python	objects	through	the	network,
eval()	of	the	resulting	text	cannot	be	trusted.	You	can	refer	to	Chapter



10,	Serializing	and	Saving	–	JSON,	YAML,	Pickle,	CSV,	and	XML.

In	the	case	of	reading	a	local	configuration	file,	however,	eval()	is	certainly
usable.	In	some	cases,	the	Python	application	code	is	as	easily	modified	as	the
configuration	file.	Worrying	about	eval()	may	not	be	helpful	when	the	base	code
can	be	tweaked.

Here's	how	we	use	ast.literal_eval()	instead	of	eval():

>>>	import	ast	

>>>	ast.literal_eval('(3,2)')	

(3,	2)	

This	broadens	the	domain	of	possible	values	in	a	configuration	file.	It	doesn't
allow	arbitrary	Python	objects,	but	it	allows	a	broad	spectrum	of	literal	values
including	tuples.

Let's	take	a	look	at	how	to	store	the	configuration	in	PY	files.



Storing	the	configuration	in	PY	files
The	PY	file	format	means	using	Python	code	as	the	configuration	file.	This	pairs
nicely	with	the	use	of	the	same	language	implementing	the	application.	We	will
have	a	configuration	file	that's	simply	a	module;	the	configuration	is	written	in
the	Python	syntax.	This	can	remove	the	need	for	sophisticated	parsing	to	get	the
configuration	values.

Using	Python	gives	us	a	number	of	design	considerations.	We	have	two	overall
strategies	to	use	Python	as	the	configuration	file:

A	top-level	script:	In	this	case,	the	configuration	file	is	simply	the	top-most
main	program.
An	exec()	import:	In	this	case,	our	configuration	file	provides	parameter
values	that	are	collected	into	module	global	variables.

We	can	design	a	top-level	script	file	that	looks	like	the	following	code:

from	simulator	import	*

def	simulate_SomeStrategy_Flat()	->	None:

				dealer_rule	=	Hit17()

				split_rule	=	NoReSplitAces()

				table	=	Table(

								decks=6,	limit=50,	dealer=dealer_rule,	split=split_rule,	payout=(3,	2)

				)

				player_rule	=	SomeStrategy()

				betting_rule	=	Flat()

				player	=	Player(

								play=player_rule,	betting=betting_rule,	max_rounds=100,	init_stake=50)

				simulate(table,	player,	Path.cwd()/"data"/"ch14_simulation2a.dat",	100)

	

if	__name__	==	"__main__":	

				simulate_SomeStrategy_Flat()	

This	presents	a	number	of	configuration	parameters	used	to	create	and	initialize
objects.	In	this	kind	of	application,	the	configuration	is	simply	written	as	code.
We've	factored	out	the	common	processing	into	a	separate	function,	simulate(),
which	uses	the	configured	objects,	table	and	player;	the	Path	target;	and	the
number	of	samples	to	generate.	Rather	than	parsing	and	converting	strings,	the
configuration	is	presented	as	code.



One	potential	disadvantage	of	using	Python	as	the	configuration	language	is	the
potential	complexity	of	the	Python	syntax.	This	is	usually	an	irrelevant	problem
for	two	reasons.	First,	with	some	careful	design,	the	syntax	of	the	configuration
should	be	simple	assignment	statements	with	a	few	()	and	,	instances.		Second,
and	more	importantly,	other	configuration	files	have	their	own	complex	syntax,
which	are	distinct	from	the	Python	syntax.	Using	a	single	language	is	a	net
reduction	in	complexity.

The	simulate()	function	is	imported	from	the	overall	simulator	application.	This
simulate()	function	is	similar	to	the	following	code:

import	csv

from	pathlib	import	Path

def	simulate(table:	Table,	player:	Player,	outputpath:	Path,	samples:	int)	->	None:

				simulator	=	Simulate(table,	player,	samples=samples)

				with	outputpath.open("w",	newline="")	as	results:

								wtr	=	csv.writer(results)

								for	gamestats	in	simulator:

												wtr.writerow(gamestats)

This	function	is	generic	with	respect	to	the	table,	player,	filename,	and	number
of	samples.	Given	the	required	configuration	objects,	it	builds	the	final	Simulate
instance	and	collects	the	resulting	data.

A	potential	difficulty	with	this	kind	of	configuration	technique	is	the	lack	of
handy	default	values.	The	top-level	script	must	be	complete,	that	is,	all	of	the
configuration	parameters	must	be	present.	In	most	cases,	this	is	not	a	limitation.
In	the	few	cases	where	default	values	are	important,	we'll	look	at	two	ways	to
provide	helpful	default	values.



Configuration	via	class	definitions
The	difficulty	that	we	sometimes	have	with	top-level	script	configuration	is	the
lack	of	handy	default	values.	To	provide	defaults,	we	can	use	ordinary	class
inheritance.	Here's	how	we	can	use	the	class	definition	to	build	an	object	with
the	configuration	values:

class	Example2(simulation.AppConfig):

				dealer_rule	=	Hit17()

				split_rule	=	NoReSplitAces()

				table	=	Table(

								decks=6,	limit=50,	dealer=dealer_rule,	split=split_rule,	payout=(3,	2)

				)

				player_rule	=	SomeStrategy()

				betting_rule	=	Flat()

				player	=	Player(play=player_rule,	betting=betting_rule,	max_rounds=100,	init_stake=50

				outputfile	=	Path.cwd()/"data"/"ch14_simulation2b.dat"

				samples	=	100

This	allows	us	to	define	the	AppConfig	class	with	default	configuration	values.	The
class	that	we've	defined	here,	Example2,	can	override	the	default	values	defined	in
the	AppConfig	class.

We	can	also	use	mixins	to	break	the	definition	down	into	reusable	pieces.	We
might	break	our	classes	down	into	the	table,	player,	and	simulation	components
and	combine	them	via	mixins.	For	more	information	on	the	mixin	class	design,
see	Chapter	9,	Decorators	and	Mixins	–	Cross-Cutting	Aspects.

In	two	small	ways,	this	use	of	a	class	definition	pushes	the	envelope	on	object-
oriented	design.	This	kind	of	class	has	no	method	definitions;	we're	only	going
to	use	this	class	as	a	Singleton	object.	However,	it	is	a	very	tidy	way	of	packing
up	a	small	block	of	code	so	that	the	assignment	statements	fill	in	a	small
namespace.

We	can	modify	our	simulate()	function	to	accept	this	class	definition	as	an
argument:

def	simulate_c(config:	Union[Type[AppConfig],	SimpleNamespace])	->	None:

				simulator	=	Simulate(config.table,	config.player,	config.samples)

				with	Path(config.outputfile).open("w",	newline="")	as	results:

								wtr	=	csv.writer(results)

								wtr.writerow(simulator)



This	function	has	picked	out	the	relevant	values,	config.table,	config.player,	and
config.samples,	from	the	overall	configuration	object	and	used	them	to	build	a
Simulate	instance	and	execute	that	instance.	The	results	are	the	same	as	the
previous	simulate()	function,	but	the	argument	structure	is	different.	Here's	how
we	provide	the	single	instance	of	the	class	to	this	function:

if	__name__	==	"__main__":	

				simulation.simulate_c(Example2)	

Note	that	we're	not	providing	an	instance	of	the	Example2	class.	We're	using	the
class	object	itself.	The	Type[AppConfig]	type	hint	shows	the	class	itself	is	expected,
not	an	instance	of	the	class.

One	potential	disadvantage	of	this	approach	is	that	it	is	not	compatible	with
argparse	to	gather	command-line	arguments.	We	can	solve	this	by	defining	the
interface	to	be	compatible	with	a	types.SimpleNamespace	object.	This	overlap	is
formalized	in	the	type	hint:	Union[Type[AppConfig],	SimpleNamespace].	This	type
definition	permits	a	wide	variety	of	objects	to	be	used	to	provide	configuration
parameters.

In	addition	to	using	a	class,	we	can	also	create	a	SimpleNamespace	object	to	have	a
similar-looking	syntax	for	using	the	configuration	parameter	values.



Configuration	via	SimpleNamespace
Using	a	types.SimpleNamespace	object	allows	us	to	simply	add	attributes	as	needed;
this	is	similar	to	using	a	class	definition.	When	defining	a	class,	all	of	the
assignment	statements	are	localized	to	the	class.	When	creating	a	SimpleNamespace
object,	we'll	need	to	explicitly	qualify	every	name	with	the	NameSpace	object	that
we're	populating.	Ideally,	we	can	create	SimpleNamespace	like	the	following	code:

>>>	import	types	

>>>	config	=	types.SimpleNamespace(		

...					param1="some	value",	

...					param2=3.14,	

...	)	

>>>	config	

namespace(param1='some	value',	param2=3.14)	

This	works	delightfully	well	if	all	of	the	configuration	values	are	independent	of
each	other.	In	our	case,	however,	we	have	some	complex	dependencies	among
the	configuration	values.	We	can	handle	this	in	one	of	the	following	two	ways:

Provide	only	the	independent	values	and	leave	it	to	the	application	to	build
the	dependent	values
Build	the	values	in	the	namespace	incrementally

To	create	only	the	independent	values,	we	might	do	something	like	this:

import	types

config2c	=	types.SimpleNamespace(	

		dealer_rule=Hit17(),	

		split_rule=NoReSplitAces(),	

		player_rule=SomeStrategy(),	

		betting_rule=Flat(),	

		outputfile=Path.cwd()/"data"/"ch14_simulation2c.dat",	

		samples=100,	

		)	

config2c.table	=	Table(

				decks=6,

				limit=50,

				dealer=config2c.dealer_rule,

				split=config2c.split_rule,

				payout=(3,	2),

)

config2c.player	=	Player(

				play=config2c.player_rule,	

				betting=config2c.betting_rule,	

				max_rounds=100,	

				init_stake=50

)



Here,	we	created	SimpleNamespace	with	the	six	independent	values	for	the
configuration.	Then,	we	updated	the	configuration	to	add	two	more	values	that
are	dependent	on	four	of	the	independent	values.

The	config2c	object	is	nearly	identical	to	the	object	that	was	created	by	evaluating
Example4()	in	the	preceding	example.	Note	that	the	base	class	is	different,	but	the
set	of	attributes	and	their	values	are	identical.	Here's	the	alternative,	where	we
build	the	configuration	incrementally	in	a	top-level	script:

from	types	import	SimpleNamespace

config2d	=	SimpleNamespace()

config2d.dealer_rule	=	Hit17()

config2d.split_rule	=	NoReSplitAces()

config2d.table	=	Table(

				decks=6,

				limit=50,

				dealer=config2d.dealer_rule,

				split=config2d.split_rule,

				payout=(3,	2),

)

config2d.player_rule	=	SomeStrategy()

config2d.betting_rule	=	Flat()

config2d.player	=	Player(

				play=config2d.player_rule,	

				betting=config2d.betting_rule,	

				max_rounds=100,	

				init_stake=50

)

config2d.outputfile	=	Path.cwd()	/	"data"	/	"ch14_simulation2d.dat"

config2d.samples	=	100

The	same	simulate_c()	function	shown	previously	can	be	used	for	this
configuration	object.

Sadly,	this	suffers	from	the	same	problem	as	configuration	using	a	top-level
script.	There's	no	handy	way	to	provide	default	values	to	a	configuration	object.

An	easy	way	to	provide	defaults	is	through	a	function	that	includes	default
parameter	values.

We	might	want	to	have	a	factory	function	that	we	can	import,	which	creates
SimpleNamespace	with	the	appropriate	default	values:

From	simulation	import		make_config	

config2	=	make_config()

If	we	used	something	like	the	preceding	code,	then	the	config2	object	would	have



the	default	values	assigned	by	the	factory	function,	make_config().	A	user-supplied
configuration	only	needs	to	provide	overrides	for	the	default	values.

Our	default-supplying	make_config()	function	can	use	the	following	code:

def	make_config(

				dealer_rule:	DealerRule	=	Hit17(),

				split_rule:	SplitRule	=	NoReSplitAces(),

				decks:	int	=	6,

				limit:	int	=	50,

				payout:	Tuple[int,	int]	=	(3,	2),

				player_rule:	PlayerStrategy	=	SomeStrategy(),

				betting_rule:	BettingStrategy	=	Flat(),

				base_name:	str	=	"ch14_simulation2e.dat",

				samples:	int	=	100,

)	->	SimpleNamespace:

				return	SimpleNamespace(

								dealer_rule=dealer_rule,

								split_rule=split_rule,

								table=Table(

												decks=decks,

												limit=limit,

												dealer=dealer_rule,

												split=split_rule,

												payout=payout,

								),

								payer_rule=player_rule,

								betting_rule=betting_rule,

								player=Player(

												play=player_rule,	

												betting=betting_rule,	

												max_rounds=100,	

												init_stake=50

								),

								outputfile=Path.cwd()	/	"data"	/	base_name,

								samples=samples,

				)

Here,	the	make_config()	function	will	build	a	default	configuration	through	a
sequence	of	assignment	statements.	The	derived	configuration	values,	including
the	table	attribute	and	the	player	attribute,	are	built	from	the	original	inputs.

An	application	can	then	set	only	the	interesting	override	values,	as	follows:

config_b	=	make_config(dealer_rule=Stand17())	

simulate_c(config_b)	

This	seems	to	maintain	considerable	clarity	by	specifying	only	the	override
values.

All	of	the	techniques	from	Chapter	2,	The	__init__()	Method,	apply	to	the
definition	of	this	kind	of	configuration	factory	function.	We	can	build	in	a	great



deal	of	flexibility	if	we	need	to.	This	has	the	advantage	of	fitting	nicely	with	the
way	that	the	argparse	module	parses	command-line	arguments.	We'll	expand	on
this	in	Chapter	18,	Coping	with	the	Command	Line.

Let's	explore	how	to	use	Python	with	exec()	for	configuration.



Using	Python	with	exec()	for	the
configuration
When	we	decide	to	use	Python	as	the	notation	for	a	configuration,	we	can	use
the	exec()	function	to	evaluate	a	block	of	code	in	a	constrained	namespace.	We
can	imagine	writing	configuration	files	that	look	like	the	following	code:

#	SomeStrategy	setup

#	Table

dealer_rule	=	Hit17()

split_rule	=	NoReSplitAces()

table	=	Table(decks=6,	limit=50,	dealer=dealer_rule,

								split=split_rule,	payout=(3,2))

#	Player

player_rule	=	SomeStrategy()

betting_rule	=	Flat()

player	=	Player(play=player_rule,	betting=betting_rule,

								max_rounds=100,	init_stake=50)

#	Simulation

outputfile	=	Path.cwd()/"data"/"ch14_simulation3a.dat"

samples	=	100

This	is	a	pleasant,	easy-to-read	set	of	configuration	parameters.	It's	similar	to	the
INI	file	and	properties	file	that	we'll	explore	in	the	following	section.	We	can
evaluate	this	file,	creating	a	kind	of	namespace,	using	the	exec()	function:

code	=	compile(py_file.read(),	"stringio",	"exec")

assignments:	Dict[str,	Any]	=	dict()

exec(code,	globals(),	assignments)

config	=	SimpleNamespace(**assignments)

simulate(config.table,	config.player,	config.outputfile,	config.samples)

In	this	example,	the	code	object,	code,	is	created	with	the	compile()	function.	Note
that	this	isn't	required;	we	can	simply	provide	the	text	of	the	file	to	the	exec()
function	and	it	will	compile	the	code	and	execute	it.

The	call	to	exec()	provides	three	arguments:

The	compiled	code	object
A	dictionary	that	should	be	used	to	resolve	any	global	names



A	dictionary	that	will	be	used	for	any	locals	that	get	created

When	the	code	block	is	finished,	the	assignment	statements	will	have	been	used
to	build	values	in	the	local	dictionary;	in	this	case,	the	assignments	variable.	The
keys	will	be	the	variable	names.	This	is	then	transformed	into	a	SimpleNamespace
object	so	it's	compatible	with	other	initialization	techniques	mentioned
previously.

The	assignments	dictionary	will	have	a	value	that	looks	like	the	following	output:

{'betting_rule':	Flat(),

	'dealer_rule':	Hit17(),

	'outputfile':	PosixPath('/Users/slott/mastering-oo-python-2e/data/ch14_simulation3a.dat'),

	'player':	Player(play=SomeStrategy(),	betting=Flat(),	max_rounds=100,	init_stake=50,	rounds=100,	stake=50),

	'player_rule':	SomeStrategy(),

	'samples':	100,

	'split_rule':	NoReSplitAces(),

	'table':	Table(decks=6,	limit=50,	dealer=Hit17(),	split=NoReSplitAces(),	payout=(3,	2))}

This	is	used	to	create	a	SimpleNamespace	object,	config.	The	namespace	object	can
then	be	used	by	the	simulate()	function	to	perform	the	simulation.	Using	a
SimpleNamespace	object	makes	it	easier	to	refer	to	the	individual	configuration
settings.	The	initial	dictionary	requires	code	such	as	assignments['samples'].	The
resulting	config	object	can	be	used	with	code	such	as	config.samples.	

The	next	section	is	a	digression	on	why	using	exec()	to	parse	Python	code	is	not	a
security	risk.



Why	exec()	is	a	non-problem
The	previous	section	discussed	eval();	the	same	considerations	also	apply	to
exec().

Generally,	the	set	of	available	globals()	is	tightly	controlled.	Access	to	the	os	and
subprocess	modules,	or	the	__import__()	function,	can	be	eliminated	by	removing
them	from	the	globals	provided	to	exec().

If	you	have	an	evil	programmer	who	will	cleverly	corrupt	the	configuration	files,
then	recall	that	they	have	complete	access	to	the	entire	Python	source.	So,	why
would	they	waste	time	cleverly	tweaking	configuration	files	when	they	can	just
change	the	application	code	itself?

One	question	can	be	summarized	like	this:	What	if	someone	thinks	they	can
monkey	patch	the	application	by	forcing	new	code	in	via	the	configuration
file?	The	person	trying	this	is	just	as	likely	to	break	the	application	through	a
number	of	other	equally	clever	or	deranged	channels.	Avoiding	Python
configuration	files	won't	stop	the	unscrupulous	programmer	from	breaking
things	by	doing	something	else	that's	ill-advised.	The	Python	source	is	directly
available	for	modification,	so	unnecessarily	worrying	about	exec()	may	not	be
beneficial.

In	some	cases,	it	may	be	necessary	to	change	the	philosophy.	An	application
that's	highly	customizable	might	actually	be	a	general	framework,	not	a	tidy,
finished	application.	A	framework	is	designed	to	be	extended	with	additional
code.

In	the	case	where	configuration	parameters	are	downloaded	through	a	web
application,	then	exec(),	eval(),	and	Python	syntax	should	not	be	used.	For	these
cases,	the	parameters	need	to	be	in	a	language	such	as	JSON	or	YAML.
Accepting	a	configuration	file	from	a	remote	computer	is	a	type	of	RESTful
state	transfer.	This	is	covered	in	Chapter	13,	Transmitting	and	Sharing	Objects.

In	the	next	section,	we'll	explore	one	of	the	collections	as	a	way	to	provide
override	values	and	default	values	in	a	single,	convenient	object.



Using	ChainMap	for	defaults	and
overrides
We'll	often	have	a	configuration	file	hierarchy.	Previously,	we	listed	several
locations	where	configuration	files	can	be	installed.	The	configparser	module,	for
example,	is	designed	to	read	a	number	of	files	in	a	particular	order	and	integrate
the	settings	by	having	later	files	override	values	from	earlier	files.

We	can	implement	elegant	default-value	processing	using	the	collections.ChainMap
class.	You	can	refer	to	Chapter	7,	Creating	Containers	and	Collections	for	some
background	on	this	class.	We'll	need	to	keep	the	configuration	parameters	as	dict
instances,	which	is	something	that	works	out	well	using	exec()	to	evaluate
Python-language	initialization	files.

Using	this	will	require	us	to	design	our	configuration	parameters	as	a	flat
dictionary	of	values.	This	may	be	a	bit	of	a	burden	for	applications	with	a	large
number	of	complex	configuration	values,	which	are	integrated	from	several
sources.	We'll	show	you	a	sensible	way	to	flatten	the	names.

First,	we'll	build	a	list	of	files	based	on	the	standard	locations:

from	collections	import	ChainMap	

from	pathlib	import	Path	

config_name	=	"config.py"

config_locations	=	(

				Path.cwd(),

				Path.home(),

				Path("/etc/thisapp"),

				#	Optionally	Path("~thisapp").expanduser(),	when	an	app	has	a	"home"	directory

				Path(__file__),

)

candidates	=	(dir	/	config_name	for	dir	in	config_locations)

config_paths	=	(path	for	path	in	candidates	if	path.exists())

We	started	with	a	list	of	directories	showing	the	order	in	which	to	search	for
values.	First,	look	at	the	configuration	file	found	in	the	current	working
directory;	then,	look	in	the	user's	home	directory.	An	/etc/thisapp	directory	(or
possibly	a	~thisapp	directory)	can	contain	installation	defaults.	Finally,	the	Python
library	will	be	examined.	Each	candidate	location	for	a	configuration	file	was
used	to	create	a	generator	expression,	assigned	to	the	candidates	variable.	The



config_paths	generator	applies	a	filter	so	only	the	files	that	actually	exist	are
loaded	into	the	ChainMap	instance.

Once	we	have	the	names	of	the	candidate	files,	we	can	build	ChainMap	by	folding
each	file	into	the	map,	as	follows:

cm_config:	typing.ChainMap[str,	Any]	=	ChainMap()

for	path	in	config_paths:

				config_layer:	Dict[str,	Any]	=	{}

				source_code	=	path.read_text()

				exec(source_code,	globals(),	config_layer)

				cm_config.maps.append(config_layer)

simulate(config.table,	config.player,	config.outputfile,	config.samples)

Each	file	is	included	by	creating	a	new,	empty	map	that	can	be	updated	with
local	variables.	The	exec()	function	will	add	the	file's	local	variables	to	an	empty
map.	The	new	maps	are	appended	to	the	maps	attribute	of	the	ChainMap	object,
cm_config.

In	ChainMap,	every	name	is	resolved	by	searching	through	the	sequence	of	maps
and	looking	for	the	requested	key	and	associated	value.	Consider	loading	two
configuration	files	into	ChainMap,	giving	a	structure	that	is	similar	to	the	following
example:

ChainMap({},

	{'betting_rule':	Martingale(),

	...

	},

	{'betting_rule':	Flat(),

	...

	})

Here,	many	of	the	details	have	been	replaced	with	...	to	simplify	the	output.	The
chain	has	a	sequence	of	three	maps:

1.	 The	first	map	is	empty.	When	values	are	assigned	to	the	ChainMap	object,	they
go	into	this	initial	map,	which	will	be	searched	first.

2.	 The	second	map	is	from	the	most	local	file,	that	is,	the	first	file	loaded	into
the	map;	they	are	overrides	to	the	defaults.

3.	 The	last	map	has	the	application	defaults;	they	will	be	searched	last.

The	only	downside	is	that	the	reference	to	the	configuration	values	will	be	using
dictionary	notation,	for	example,	config['betting_rule'].	We	can	extend	ChainMap()
to	implement	the	attribute	access	in	addition	to	the	dictionary	item	access.



Here's	a	subclass	of	ChainMap,	which	we	can	use	if	we	find	the	getitem()	dictionary
notation	too	cumbersome:

class	AttrChainMap(ChainMap):

				def	__getattr__(self,	name:	str)	->	Any:

								if	name	==	"maps":

												return	self.__dict__["maps"]

								return	super().get(name,	None)

				def	__setattr__(self,	name:	str,	value:	Any)	->	None:

								if	name	==	"maps":

												self.__dict__["maps"]	=	value

												return

								self[name]	=	value

We	can	now	say	config.table	instead	of	config['table'].	This	reveals	an	interesting
restriction	on	our	extension	to	ChainMap,	that	is,	we	can't	use	maps	as	an	attribute.
The	maps	key	is	a	first-class	attribute	of	the	parent	ChainMap	class,	and	must	be	left
untouched	by	this	extension.

We	can	define	mappings	from	keys	to	values	using	a	number	of	different
syntaxes.	In	the	next	section,	we'll	take	a	look	at	JSON	and	YAML	format	for
defining	the	parameter	values.



Storing	the	configuration	in	JSON	or
YAML	files
We	can	store	configuration	values	in	JSON	or	YAML	files	with	relative	ease.
The	syntax	is	designed	to	be	user-friendly.	While	we	can	represent	a	wide
variety	of	things	in	YAML,	we're	somewhat	restricted	to	representing	a	narrower
variety	of	object	classes	in	JSON.	We	can	use	a	JSON	configuration	file	that	is
similar	to	the	following	code:

{	

				"table":{	

								"dealer":"Hit17",	

								"split":"NoResplitAces",	

								"decks":6,	

								"limit":50,	

								"payout":[3,2]	

				},	

				"player":{	

								"play":"SomeStrategy",	

								"betting":"Flat",	

								"rounds":100,	

								"stake":50	

				},	

				"simulator":{	

								"samples":100,	

								"outputfile":"p2_c13_simulation.dat"	

				}	

}	

The	JSON	document	looks	like	a	dictionary	of	dictionaries;	this	is	precisely	the
same	object	that	will	be	built	when	we	load	this	file.	We	can	load	a	single
configuration	file	using	the	following	code:

import	json	

config	=	json.load("config.json")	

This	allows	us	to	use	config['table']['dealer']	to	look	up	the	specific	class	to	be
used	for	the	dealer's	rules.	We	can	use	config['player']['betting']	to	locate	the
player's	particular	betting	strategy	class	name.

Unlike	INI	files,	we	can	easily	encode	tuple	like	a	sequence	of	values.	So,	the
config['table']['payout']	value	will	be	a	proper	two-element	sequence.	It	won't,
strictly	speaking,	be	tuple,	but	it	will	be	close	enough	for	us	to	use	it	without



having	to	use	ast.literal_eval().

Here's	how	we'd	use	this	nested	structure.	We'll	only	show	you	the	first	part	of
the	main_nested_dict()	function:

def	main_nested_dict(config:	Dict[str,	Any])	->	None:

				dealer_nm	=	config.get("table",	{}).get("dealer",	"Hit17")

				dealer_rule	=	{

								"Hit17":	Hit17(),	

								"Stand17":	Stand17()

				}.get(dealer_nm,	Hit17())

				split_nm	=	config.get("table",	{}).get("split",	"ReSplit")

				split_rule	=	{

								"ReSplit":	ReSplit(),	

								"NoReSplit":	NoReSplit(),	

								"NoReSplitAces":	NoReSplitAces()

				}.get(split_nm,	ReSplit())

				decks	=	config.get("table",	{}).get("decks",	6)

				limit	=	config.get("table",	{}).get("limit",	100)

				payout	=	config.get("table",	{}).get("payout",	(3,	2))

				table	=	Table(

								decks=decks,	limit=limit,	dealer=dealer_rule,	split=split_rule,	payout=payout

				)

This	is	very	similar	to	the	main_ini()	function	mentioned	previously.	When	we
compare	this	with	the	preceding	version,	using	configparser,	it's	clear	that	the
complexity	is	almost	the	same.	The	naming	is	slightly	simpler,	that	is,	we	use
config.get('table',{}).get('decks')	instead	of	config.getint('table','decks').

The	main	difference	is	shown	in	the	highlighted	line.	JSON	format	provides	us
with	properly	decoded	integer	values	and	proper	sequences	of	values.	We	don't
need	to	use	eval()	or	ast.literal_eval()	to	decode	the	tuple.	The	other	parts,	to
build	Player	and	configure	the	Simulate	object,	are	similar	to	the	main_ini()	version.

In	some	cases,	the	nested	structure	of	a	JSON	file	can	be	confusing	to	edit.	One
way	to	simplify	the	syntax	is	to	use	a	slightly	different	approach	to	organizing
the	data.	In	the	next	section,	we'll	explore	a	way	to	remove	some	of	the
complexity	by	using	a	flatter	structure.



Using	flattened	JSON	configurations
If	we	want	to	provide	for	default	values	by	integrating	multiple	configuration
files,	we	can't	use	both	ChainMap	and	a	nested	dictionary-of-dictionaries	like	this.
We	have	to	either	flatten	out	our	program's	parameters	or	look	at	an	alternative
to	merging	the	parameters	from	different	sources.

We	can	easily	flatten	the	names	by	using	simple	.	separators	between	names	to
reflect	a	top-level	section	and	a	lower-level	property	within	the	section.	In	that
case,	our	JSON	file	might	look	like	the	following	code:

{'player.betting':	'Flat',

		'player.play':	'SomeStrategy',

		'player.rounds':	'100',

		'player.stake':	'50',

		'simulator.outputfile':	'data/ch14_simulation5.dat',

		'simulator.samples':	'100',

		'table.dealer':	'Hit17',

		'table.decks':	'6',

		'table.limit':	'50',

		'table.payout':	'(3,2)',

		'table.split':	'NoResplitAces'}

This	has	the	advantage	of	allowing	us	to	use	ChainMap	to	accumulate	the
configuration	values	from	various	sources.	It	also	slightly	simplifies	the	syntax
to	locate	a	particular	parameter	value.	Given	a	list	of	configuration	filenames,
config_names,	we	might	do	something	like	this:

config	=	ChainMap(*[json.load(file)	for	file	in	config_names])	

This	builds	a	proper	ChainMap	from	a	list	of	configuration	filenames.	Here,	we're
loading	a	list	of	dict	literals	into	ChainMap	and	the	first	dict	literal	will	be	the	first
one	searched	for	by	the	key.

We	can	use	a	method	like	this	to	exploit	ChainMap.	We'll	only	show	you	the	first
part,	which	builds	the	Table	instance:

def	main_cm(config:	Dict[str,	Any])	->	None:

				dealer_nm	=	config.get("table.dealer",	"Hit17")

				dealer_rule	=	{"Hit17":	Hit17(),	"Stand17":	Stand17()}.get(dealer_nm,	Hit17())

				split_nm	=	config.get("table.split",	"ReSplit")

				split_rule	=	{

								"ReSplit":	ReSplit(),	

								"NoReSplit":	NoReSplit(),	



								"NoReSplitAces":	NoReSplitAces()

				}.get(

								split_nm,	ReSplit()

				)

				decks	=	int(config.get("table.decks",	6))

				limit	=	int(config.get("table.limit",	100))

				payout	=	config.get("table.payout",	(3,	2))

				table	=	Table(

								decks=decks,	

								limit=limit,	

								dealer=dealer_rule,	

								split=split_rule,	

								payout=payout

				)

The	other	parts,	to	build	Player	and	configure	the	Simulate	object,	are	similar	to	the
main_ini()	version.	However,	they're	omitted	from	this	example.

When	we	compare	this	to	the	previous	version,	using	configparser,	it's	clear	that
the	complexity	is	almost	the	same.	But,	the	naming	is	slightly	simpler;	here,	we
use	int(config.get('table.decks'))	instead	of	config.getint('table','decks').

The	JSON	format	for	properties	is	convenient	to	use.	The	syntax,	however,	isn't
very	friendly	for	people	to	use.	In	the	next	section,	we'll	take	a	look	at	using
YAML	syntax	instead	of	JSON	syntax.



Loading	a	YAML	configuration
As	YAML	syntax	contains	JSON	syntax,	the	previous	examples	can	be	loaded
with	YAML	as	well	as	JSON.	Here's	a	version	of	the	nested	dictionary-of-
dictionaries	technique	from	the	JSON	file:

#	Complete	Simulation	Settings

table:	!!python/object:Chapter_14.simulation_model.Table

		dealer:	!!python/object:Chapter_14.simulation_model.Hit17	{}

		decks:	6

		limit:	50

		payout:	!!python/tuple	[3,	2]

		split:	!!python/object:Chapter_14.simulation_model.NoReSplitAces	{}

player:	!!python/object:Chapter_14.simulation_model.Player

		betting:		!!python/object:Chapter_14.simulation_model.Flat	{}

		init_stake:	50

		max_rounds:	100

		play:	!!python/object:Chapter_14.simulation_model.SomeStrategy	{}

		rounds:	0

		stake:	63.0

samples:	100

outputfile:	data/ch14_simulation4c.dat

This	is	often	easier	for	people	to	edit	than	pure	JSON.	For	applications	where	the
configuration	is	dominated	by	strings	and	integers,	this	has	a	number	of
advantages.	The	process	to	load	this	file	is	the	same	as	the	process	to	load	the
JSON	file:

import	yaml	

config	=	yaml.load("config.yaml")	

This	has	the	same	limitations	as	the	nested	dictionaries.	We	don't	have	an	easy
way	to	handle	default	values	unless	we	flatten	out	the	names.

When	we	move	beyond	simple	strings	and	integers,	however,	we	can	try	to
leverage	YAML's	ability	to	encode	class	names	and	create	instances	of	our
customized	classes.	Here's	a	YAML	file	that	will	directly	build	the	configuration
objects	that	we	need	for	our	simulation:

#	Complete	Simulation	Settings	

table:	!!python/object:__main__.Table	

		dealer:	!!python/object:__main__.Hit17	{}	

		decks:	6	

		limit:	50	

		payout:	!!python/tuple	[3,	2]	

		split:	!!python/object:__main__.NoReSplitAces	{}	

player:	!!python/object:__main__.Player	



		betting:		!!python/object:__main__.Flat	{}	

		init_stake:	50	

		max_rounds:	100	

		play:	!!python/object:__main__.SomeStrategy	{}	

		rounds:	0	

		stake:	63.0	

samples:	100	

outputfile:	data/ch14_simulation4c.dat

We	have	encoded	class	names	and	instance	construction	in	YAML,	allowing	us
to	define	the	complete	initialization	for	Table	and	Player.	We	can	use	this
initialization	file	as	follows:

import	yaml

if	__name__	==	"__main__":

				config	=	yaml.load(yaml1_file)

				print(config)

				simulate(

								config["table"],	

								config["player"],

								Path(config["outputfile"]),	

								config["samples"]

				)

This	shows	us	that	a	YAML	configuration	file	can	be	used	for	human	editing.
YAML	provides	us	with	the	same	capabilities	as	Python	but	with	a	different
syntax.	For	this	type	of	example,	a	Python	configuration	script	might	be	better
than	YAML.

Another	format	available	for	configuration	parameters	is	called	the	properties
file.	We'll	examine	the	structure	and	parsing	of	properties	files,	and	learn	how	to
use	them	in	the	next	section.



Storing	the	configuration	in
properties	files
The	properties	files	are	often	used	with	Java	programs.	However,	there's	no
reason	why	we	can't	use	them	with	Python.	They're	relatively	easy	to	parse	and
allow	us	to	encode	the	configuration	parameters	in	a	handy,	easy-to-use	format.
For	more	information	about	the	format,	you	can	refer	to	http://en.wikipedia.org/wik
i/.properties	and	https://docs.oracle.com/javase/10/docs/api/java/util/Properties.html#loa
d(java.io.Reader).

Here's	what	a	properties	file	might	look	like:

#	Example	Simulation	Setup	

	

player.betting:	Flat	

player.play:	SomeStrategy	

player.rounds:	100	

player.stake:	50	

	

table.dealer:	Hit17	

table.decks:	6	

table.limit:	50	

table.payout:	(3,2)	

table.split:	NoResplitAces	

	

simulator.outputfile	=	data/ch14_simulation5.dat

simulator.samples	=	100	

This	has	some	advantages	in	terms	of	simplicity.	The	section.property	qualified
names	are	commonly	used	to	structure	related	properties	into	sections.	These	can
become	long	in	a	very	complex	configuration	file	if	too	many	levels	of	nesting
are	used.

This	format	has	a	great	deal	of	flexibility.	The	individual	lines,	however,	can	be
parsed	to	create	a	mapping	from	property	name	to	property	value.	In	the	next
section,	we'll	take	a	look	at	parsing	a	properties	file.

http://en.wikipedia.org/wiki/.properties
https://docs.oracle.com/javase/10/docs/api/java/util/Properties.html#load(java.io.Reader)


Parsing	a	properties	file
There's	no	built-in	properties	parser	in	the	Python	standard	library.	We	can
download	a	properties	file	parser	from	the	Python	Package	Index	(https://pypi.pyt
hon.org/pypi).	However,	it's	not	a	very	complex	class,	and	it's	a	good	exercise	in
advanced	object-oriented	programming.

We'll	break	the	class	down	into	the	top-level	API	functions	and	the	lower-level
parsing	functions.	Here	are	some	of	the	overall	API	methods:

import	re

class	PropertyParser:

				def	read_string(self,	data:	str)	->	Iterator[Tuple[str,	str]]:

								return	self._parse(data)

				def	read_file(self,	file:	IO[str])	->	Iterator[Tuple[str,	str]]:

								data	=	file.read()

								return	self.read_string(data)

				def	read(self,	path:	Path)	->	Iterator[Tuple[str,	str]]:

								with	path.open("r")	as	file:

												return	self.read_file(file)

The	essential	feature	here	is	that	it	will	parse	a	filename,	a	file,	or	a	block	of	text.
This	follows	the	design	pattern	from	configparser.	A	common	alternative	is	to
have	fewer	methods	and	use	isinstance()	to	determine	the	type	of	the	argument
and	to	also	determine	what	processing	to	perform	on	it.

Filenames	are	given	as	Path	objects.	While	the	file	is	generally	an	instance	of
io.TextIOBase,	the	typing	module	provides	the	IO[str]	hint;	a	block	of	text	is	also	a
string.	For	this	reason,	many	libraries	use	load()	to	work	with	files	or	filenames
and	use	loads()	to	work	with	a	simple	string.	Something	like	this	would	echo	the
design	pattern	of	json:

def	load(self,	file_name_or_path:	Union[TextIO,	str,	Path])	->	Iterator[Tuple[str,	str]]:

				if	isinstance(file_name_or_path,	io.TextIOBase):

								return	self.loads(file_name_or_path.read())

				else:

								name_or_path	=	cast(Union[str,	Path],	file_name_or_path)

								with	Path(name_or_path).open("r")	as	file:

												return	self.loads(file.read())

def	loads(self,	data:	str)	->	Iterator[Tuple[str,	str]]:

				return	self._parse(data)

https://pypi.python.org/pypi


These	methods	will	also	handle	a	file,	filename,	or	block	of	text.	When	a	file	is
provided,	it	can	be	read	and	parsed.	When	a	path	or	a	string	is	provided,	it's	used
to	open	a	file	with	the	given	name.	These	extra	methods	give	us	an	alternative
API	that	might	be	easier	to	work	with.	The	deciding	factor	is	achieving	a
coherent	design	among	the	various	libraries,	packages,	and	modules.	Here's	the
_parse()	method:

key_element_pat	=	re.compile(r"(.*?)\s*(?<!\\)[:=\s]\s*(.*)")

def	_parse(self,	data:	str)	->	Iterator[Tuple[str,	str]]:

				logical_lines	=	(

								line.strip()	for	line	in	re.sub(r"\\\n\s*",	"",	data).splitlines()

				)

				non_empty	=	(line	for	line	in	logical_lines	if	len(line)	!=	0)

				non_comment	=	(

								line

								for	line	in	non_empty

								if	not	(line.startswith("#")	or	line.startswith("!"))

				)

				for	line	in	non_comment:

								ke_match	=	self.key_element_pat.match(line)

								if	ke_match:

												key,	element	=	ke_match.group(1),	ke_match.group(2)

								else:

												key,	element	=	line,	""

								key	=	self._escape(key)

								element	=	self._escape(element)

								yield	key,	element

This	method	starts	with	three	generator	expressions	to	handle	some	overall
features	of	the	physical	lines	and	logical	lines	within	a	properties	file.	The
generator	expressions	separate	three	syntax	rules.	Generator	expressions	have
the	advantage	of	being	executed	lazily;	this	means	that	no	intermediate	results
are	created	from	these	expressions	until	they're	evaluated	by	the	for	line	in
non_comment	statement.

The	first	expression,	assigned	to	logical_lines,	merges	physical	lines	that	end	with
\	to	create	longer	logical	lines.	The	leading	(and	trailing)	spaces	are	stripped
away,	leaving	just	the	line	content.	The	r"\\\n\s*"	Regular	Expression	(RE)	is
intended	to	locate	continuations.	It	matches	\	at	the	end	of	a	line	and	all	of	the
leading	spaces	from	the	next	line.

The	second	expression,	assigned	to	non_empty,	will	only	iterate	over	lines	with	a
nonzero	length;	note	that	blank	lines	will	be	rejected	by	this	filter.

The	third	expression,	non_comment,	will	only	iterate	over	lines	that	do	not	start	with
#	or	!.	Lines	that	start	with	#	or	!	will	be	rejected	by	this	filter;	this	eliminates



comment	lines.

Because	of	these	three	generator	expressions,	the	for	line	in	non_comment	loop	only
iterates	through	non-comment,	non-blank,	and	logical	lines	that	are	properly
stripped	of	extra	spaces.	The	body	of	the	loop	picks	apart	each	remaining	line	to
separate	the	key	and	element	and	then	apply	the	self._escape()	function	to	expand
any	escape	sequences.

The	key-element	pattern,	key_element_pat,	looks	for	explicit	separators	of	non-
escaped	characters,	such	as	:,	=,	or	a	space.	This	pattern	uses	the	negative
lookbehind	assertion,	that	is,	a	RE	of	(?<!\\),	to	indicate	that	the	following	RE
must	be	non-escaped;	therefore,	the	following	pattern	must	not	be	preceded	by	\.
The	(?<!\\)[:=\s]	subpattern	matches	the	non-escaped	:,	=,	or	space	characters.	It
permits	a	strange-looking	property	line	such	as	a\:b:	value;	the	property	is	a:b.
The	element	is	value.	The	:	in	the	key	must	be	escaped	with	a	preceding	\.

The	brackets	in	the	RE	capture	the	property	and	the	element	associated	with	it.	If
a	two-part	key-element	pattern	can't	be	found,	there's	no	separator	and	the	line	is
just	the	property	name,	with	an	element	of	"".

The	properties	and	elements	form	a	sequence	of	two-tuples.	The	sequence	can
easily	be	turned	into	a	dictionary	by	providing	a	configuration	map,	which	is
similar	to	other	configuration	representation	schemes	that	we've	seen.	They	can
also	be	left	as	a	sequence	to	show	the	original	content	of	the	file	in	a	particular
order.	The	final	part	is	a	small	method	function	to	transform	any	escape
sequences	in	an	element	to	their	final	Unicode	character:

def	_escape(self,	data:	str)	->	str:

				d1	=	re.sub(r"\\([:#!=\s])",	lambda	x:	x.group(1),	data)

				d2	=	re.sub(r"\\u([0-9A-Fa-f]+)",	lambda	x:	chr(int(x.group(1),	16)),	d1)

				return	d2

This	_escape()	method	function	performs	two	substitution	passes.	The	first	pass
replaces	the	escaped	punctuation	marks	with	their	plain-text	versions:	\:,	\#,	\!,
\=,	and	\	all	have	\	removed.	For	the	Unicode	escapes,	the	string	of	digits	is	used
to	create	a	proper	Unicode	character	that	replaces	the	\uxxxx	sequence.	The	hex
digits	are	turned	into	an	integer,	which	is	turned	into	a	character	for	the
replacement.

The	two	substitutions	can	be	combined	into	a	single	operation	to	save	creating



an	intermediate	string	that	will	only	get	discarded.	This	will	improve	the
performance;	it	should	look	like	the	following	code:

d2	=	re.sub(

				r"\\([:#!=\s])|\\u([0-9A-Fa-f]+)",

				lambda	x:	x.group(1)	if	x.group(1)	else	chr(int(x.group(2),	16)),

				data,

)

The	benefit	of	better	performance	might	be	outweighed	by	the	complexity	of	the
RE	and	the	replacement	function.

Once	we	have	parsed	the	properties	values,	we	need	to	use	them	in	an
application.	In	the	next	section,	we'll	examine	ways	of	using	a	properties	file.



Using	a	properties	file
We	have	two	choices	for	how	we	use	a	properties	file.	We	could	follow	the
design	pattern	of	configparser	and	parse	multiple	files	to	create	a	single	mapping
from	the	union	of	the	various	values.	Alternatively,	we	could	follow	the	ChainMap
pattern	and	create	a	sequence	of	property	mappings	for	each	configuration	file.

The	ChainMap	processing	is	reasonably	simple	and	provides	us	with	all	the	required
features:

pp	=	PropertyParser()

candidate_list	=	[prop_file]

config	=	ChainMap(

				*[dict(pp.read_file(file))	

						for	file	in	reversed(candidate_list)

						]

)

We've	taken	the	list	in	reverse	order:	the	most	specific	settings	will	be	first	in	the
internal	list,	while	the	most	general	settings	will	be	the	last.	Once	ChainMap	has
been	loaded,	we	can	use	the	properties	to	initialize	and	build	our	Player,	Table,	and
Simulate	instances.

This	seems	simpler	than	updating	a	single	mapping	from	several	sources.
Additionally,	this	follows	the	pattern	used	to	process	JSON	or	YAML
configuration	files.

We	can	use	a	method	like	this	to	exploit	ChainMap.	This	is	very	similar	to	the
main_cm()	function	mentioned	previously.	We'll	only	show	you	the	first	part,	which
builds	the	Table	instance:

import	ast

def	main_cm_prop(config):

				dealer_nm	=	config.get("table.dealer",	"Hit17")

				dealer_rule	=	{"Hit17":	Hit17(),	"Stand17":	Stand17()}.get(dealer_nm,	Hit17())

				split_nm	=	config.get("table.split",	"ReSplit")

				split_rule	=	{

								"ReSplit":	ReSplit(),	"NoReSplit":	NoReSplit(),	"NoReSplitAces":	NoReSplitAces()

				}.get(

								split_nm,	ReSplit()

				)

				decks	=	int(config.get("table.decks",	6))

				limit	=	int(config.get("table.limit",	100))



				payout	=	ast.literal_eval(config.get("table.payout",	"(3,2)"))

				table	=	Table(

								decks=decks,	limit=limit,	dealer=dealer_rule,	split=split_rule,	payout=payout

				)

The	difference	between	this	version	and	the	main_cm()	function	is	the	handling	of
the	payout	tuple.	In	the	previous	version,	JSON	(and	YAML)	could	parse	the
tuple.	When	using	the	properties	files,	all	values	are	simple	strings.	We	must	use
eval()	or	ast.literal_eval()	to	evaluate	the	given	value.	The	other	portions	of	this
main_cm_str()	function	are	identical	to	main_cm().

Using	the	properties	file	format	is	one	way	to	persist	configuration	data.	In	the
next	section,	we'll	look	at	using	XML	syntax	to	represent	configuration
parameters.



Using	XML	files	–	PLIST	and	others
As	we	noted	in	Chapter	10,	Serializing	and	Saving	–	JSON,	YAML,	Pickle,	CSV,
and	XML,	Python's	xml	package	includes	numerous	modules	that	parse	the	XML
files.	Because	of	the	wide	adoption	of	the	XML	files,	it	often	becomes	necessary
to	convert	between	XML	documents	and	Python	objects.	Unlike	JSON	or
YAML,	the	mapping	from	XML	is	not	simple.

One	common	way	to	represent	the	configuration	data	in	XML	is	the	PLIST	file.
For	more	information	on	the	PLIST	format,	you	can	refer	to	https://developer.appl
e.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introducti

on.html.	

Macintosh	users	with	XCode	installed	can	perform	man	plist	to	see	extensive
documentation	on	the	XML-based	format.	The	advantage	of	the	PLIST	format	is
that	it	uses	a	few,	very	general	tags.	This	makes	it	easy	to	create	PLIST	files	and
parse	them.	Here's	the	sample	PLIST	file	with	our	configuration	parameters:

<?xml	version="1.0"	encoding="UTF-8"?>	

<!DOCTYPE	plist	PUBLIC	"-//Apple//DTD	PLIST	1.0//EN"	"http://www.apple.com/DTDs/PropertyList-1.0.dtd">	

<plist	version="1.0">	

<dict>	

		<key>player</key>	

		<dict>	

				<key>betting</key>	

				<string>Flat</string>	

				<key>play</key>	

				<string>SomeStrategy</string>	

				<key>rounds</key>	

				<integer>100</integer>	

				<key>stake</key>	

				<integer>50</integer>	

		</dict>	

		<key>simulator</key>	

		<dict>	

				<key>outputfile</key>	

				<string>ch14_simulation6a.dat</string>	

				<key>samples</key>	

				<integer>100</integer>	

		</dict>	

		<key>table</key>	

		<dict>	

				<key>dealer</key>	

				<string>Hit17</string>	

				<key>decks</key>	

				<integer>6</integer>	

				<key>limit</key>	

				<integer>50</integer>	

				<key>payout</key>	

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html


				<array>	

						<integer>3</integer>	

						<integer>2</integer>	

				</array>	

				<key>split</key>	

				<string>NoResplitAces</string>	

		</dict>	

</dict>	

</plist>	

Here,	we're	showing	you	the	nested	dictionary-of-dictionary	structure	in	this
example.	There	are	a	number	of	Python-compatible	types	encoded	with	XML
tags:

Python	type Plist	tag

str <string>

float <real>

int <integer>

datetime <date>

boolean <true/>	or	<false/>

bytes <data>

list <array>

dict <dict>

	

As	shown	in	the	preceding	example,	the	dict	<key>	values	are	strings.	This	makes



the	PLIST	file	a	very	pleasant	encoding	of	our	parameters	for	our	simulation
application.	We	can	load	a	PLIST-compliant	XML	file	with	relative	ease:

import	plistlib

print(plistlib.load(plist_file))

This	will	reconstruct	our	configuration	parameter	from	the	XML	serialization.
We	can	then	use	this	nested	dictionary-of-dictionaries	structure	with	the
main_nested_dict()	function	shown	in	the	preceding	section	on	JSON	configuration
files.

Using	a	single	module	function	to	parse	the	file	makes	the	PLIST	format	very
appealing.	The	lack	of	support	for	any	customized	Python	class	definitions
makes	this	equivalent	to	JSON	or	a	properties	file.	

In	addition	to	the	standardized	PLIST	schema,	we	can	define	our	own
customized	schema.	In	the	next	section,	we'll	look	at	creating	XML	that's	unique
to	our	problem	domain.



Customized	XML	configuration	files
For	a	more	complex	XML	configuration	file,	you	can	refer	to	http://wiki.metawerx.
net/wiki/Web.xml.	These	files	contain	a	mixture	of	special-purpose	tags	and
general-purpose	tags.	These	documents	can	be	challenging	to	parse.	There	are
two	general	approaches:

Write	a	document	processing	class	that	uses	XPath	queries	to	locate	the	tags
in	the	XML	document	structure.	In	this	case,	we'll	create	a	class	with
properties	(or	methods)	to	locate	the	requested	information	in	the	XML
document.
Unwind	the	XML	document	into	a	Python	data	structure.	This	is	the
approach	followed	by	the	plist	module,	mentioned	previously.	This	will
convert	the	XML	text	values	into	native	Python	objects.

Based	on	examples	of	the	web.xml	files,	we'll	design	our	own	customized	XML
document	to	configure	our	simulation	application:

<?xml	version="1.0"	encoding="UTF-8"?>	

<simulation>	

				<table>	

								<dealer>Hit17</dealer>	

								<split>NoResplitAces</split>	

								<decks>6</decks>	

								<limit>50</limit>	

								<payout>(3,2)</payout>	

				</table>	

				<player>	

								<betting>Flat</betting>	

								<play>SomeStrategy</play>	

								<rounds>100</rounds>	

								<stake>50</stake>	

				</player>	

				<simulator>	

								<outputfile>data/ch14_simulation6b.dat</outputfile>	

								<samples>100</samples>	

				</simulator>	

</simulation>	

This	is	a	specialized	XML	file.	We	didn't	provide	a	DTD	or	an	XSD,	so	there's
no	formal	way	to	validate	the	XML	against	a	schema.	However,	this	file	is	small,
easily	debugged,	and	parallels	other	example	initialization	files.	Here's	a
Configuration	class	that	can	use	XPath	queries	to	retrieve	information	from	this
file:

http://wiki.metawerx.net/wiki/Web.xml


import	xml.etree.ElementTree	as	XML

class	Configuration:

				def	read_file(self,	file):

								self.config	=	XML.parse(file)

				def	read(self,	filename):

								self.config	=	XML.parse(filename)

				def	read_string(self,	text):

								self.config	=	XML.fromstring(text)

				def	get(self,	qual_name,	default):

								section,	_,	item	=	qual_name.partition(".")

								query	=	"./{0}/{1}".format(section,	item)

								node	=	self.config.find(query)

								if	node	is	None:

												return	default

								return	node.text

				def	__getitem__(self,	section):

								query	=	"./{0}".format(section)

								parent	=	self.config.find(query)

								return	dict((item.tag,	item.text)	for	item	in	parent)

We've	implemented	three	methods	to	load	the	XML	document:	read(),	read_file(),
and	read_string().	Each	of	these	simply	delegates	itself	to	an	existing	method
function	of	the	xml.etree.ElementTree	class.	This	parallels	the	configparser	API.	We
could	use	load()	and	loads()	method	names	too,	as	they	would	delegate
themselves	to	parse()	and	fromstring(),	respectively.

For	access	to	the	configuration	data,	we	implemented	two	methods:	get()	and
__getitem__().	These	methods	build	XPath	queries	to	locate	the	section	and	item
within	the	XML	structure.	The	get()	method	allows	us	to	use	code	like	this:	stake
=	int(config.get('player.stake',	50)).	The	__getitem__()	method	allows	us	to	use	code
like	this:	stake	=	config['player']['stake'].

The	parsing	is	a	trifle	more	complex	than	a	PLIST	file.	However,	the	XML
document	is	much	simpler	than	an	equivalent	PLIST	document.

We	can	use	the	main_cm_prop()	function,	mentioned	in	the	previous	section	on	the
properties	files,	to	process	this	configuration.



Summary
In	this	chapter,	we	explored	a	number	of	ways	to	represent	the	configuration
parameters.	Most	of	these	are	based	on	more	general	serialization	techniques	that
we	saw	in	Chapter	10,	Serializing	and	Saving	–	JSON,	YAML,	Pickle,	CSV,	and
XML.	The	configparser	module	provides	an	additional	format	that's	comfortable
for	some	users.

The	key	feature	of	a	configuration	file	is	that	the	content	can	be	easily	edited	by
a	human.	For	this	reason,	pickle	files	aren't	recommended	as	a	good
representation.



Design	considerations	and	trade-offs
Configuration	files	can	simplify	running	application	programs	or	starting
servers.	This	can	put	all	the	relevant	parameters	in	one	easy-to-read	and	easy-to-
modify	file.	We	can	put	these	files	under	the	configuration	control,	track	change
history,	and	generally	use	them	to	improve	the	software's	quality.

We	have	several	alternative	formats	for	these	files,	all	of	which	are	reasonably
human-friendly	to	edit.	They	vary	in	how	easy	they	are	to	parse	and	any
limitations	on	the	Python	data	that	can	be	encoded:

INI	files:	These	files	are	easy	to	parse	and	are	limited	to	strings	and
numbers.
Python	code	(PY	files):	We	can	use	the	main	script	for	the	configuration;	in
this	case,	there	will	be	no	additional	parsing	and	no	limitations.	We	can	also
use	exec()	to	process	a	separate	file;	this	makes	it	trivial	to	parse	and,	again,
there	are	no	limitations.
JSON	or	YAML	files:	These	files	are	easy	to	parse.	They	support	strings,
numbers,	dicts,	and	lists.	YAML	can	encode	Python,	but	then	why	not	just
use	Python?
Properties	files:	These	files	require	a	special	parser.	They	are	limited	to
strings.
XML	files:

PLIST	files:	These	files	are	easy	to	parse.	They	support	strings,
numbers,	dicts,	and	lists.
Customized	XML:	These	files	require	a	special	parser.	They	are
limited	to	strings,	but	a	mapping	to	a	Python	object	allows	a	variety	of
conversions	to	be	performed	by	the	class.

Coexistence	with	other	applications	or	servers	will	often	determine	a	preferred
format	for	the	configuration	files.	If	we	have	other	applications	that	use	PLIST
or	INI	files,	then	our	Python	applications	should	make	choices	that	are	more
comfortable	for	users	to	work	with.

Viewed	from	the	breadth	of	objects	that	can	be	represented,	we	have	four	broad
categories	of	configuration	files:



Simple	files	with	only	strings:	Custom	XML	and	properties	files.
Simple	files	with	Python	literals:	INI	files.
More	complex	files	with	Python	literals,	lists,	and	dicts:	JSON,	YAML,
PLIST,	and	XML.
Anything	that	is	Python:	We	can	use	YAML	for	this,	but	it	seems	silly
when	Python	has	a	clearer	syntax	than	YAML.	Providing	configuration
values	through	Python	class	definitions	is	very	simple	and	leads	to	a
pleasant	hierarchy	of	default	and	override	values.



Creating	a	shared	configuration
When	we	look	at	module	design	considerations	in	Chapter	19,	Module	and
Package	Design,	we'll	see	how	a	module	conforms	to	the	Singleton	design
pattern.	This	means	that	we	can	import	a	module	only	once,	and	the	single
instance	is	shared.

Because	of	this,	it's	often	necessary	to	define	a	configuration	in	a	distinct	module
and	import	it.	This	allows	separate	modules	to	share	a	common	configuration.
Each	module	will	import	the	shared	configuration	module;	the	configuration
module	will	locate	the	configuration	file(s)	and	create	the	actual	configuration
objects.



Schema	evolution
The	configuration	file	is	part	of	the	public-facing	API.	As	application	designers,
we	have	to	address	the	problem	of	schema	evolution.	If	we	change	a	class
definition,	how	will	we	change	the	configuration?

Because	configuration	files	often	have	useful	defaults,	they	are	often	very
flexible.	In	principle,	the	content	is	entirely	optional.

As	a	piece	of	software	undergoes	major	version	changes	–	changes	that	alter	the
APIs	or	the	database	schema	–	the	configuration	files	too	might	undergo	major
changes.	The	configuration	file's	version	number	may	have	to	be	included	in
order	to	disambiguate	legacy	configuration	parameters	from	current	release
parameters.

For	minor	version	changes,	the	configuration	files,	such	as	database,	input	and
output	files,	and	APIs,	should	remain	compatible.	Any	configuration	parameter
handling	should	have	appropriate	alternatives	and	defaults	to	cope	with	minor
version	changes.

A	configuration	file	is	a	first-class	input	to	an	application.	It's	not	an	afterthought
or	a	workaround.	It	must	be	as	carefully	designed	as	the	other	inputs	and	outputs.
When	we	look	at	larger	application	architecture	design	in	Chapter	16,	The	Logging
and	Warning	Modules,	and	Chapter	18,	Coping	with	the	Command	Line,	we'll
expand	on	the	basics	of	parsing	a	configuration	file.



Looking	forward
In	the	following	chapters,	we'll	explore	larger-scale	design	considerations.	Chapter
15,	Design	Principles	and	Patterns	will	address	some	general	principles	that	can
help	structure	the	class	definitions	of	an	object-oriented	program.	Chapter	16,	The
Logging	and	Warning	Modules	will	look	at	using	the	logging	and	warnings	modules
to	create	audit	information	as	well	as	to	debug.	We'll	look	at	designing	for
testability	and	how	we	use	unittest	and	doctest	in	Chapter	17,	Designing	for
Testability.	Chapter	18,	Coping	with	the	Command	Line	will	look	at	using	the
argparse	module	to	parse	options	and	arguments.	We'll	take	this	a	step	further	and
use	the	Command	design	pattern	to	create	program	components	that	can	be
combined	and	expanded	without	resorting	to	writing	shell	scripts.	In	Chapter	19,
Module	and	Package	Design,	we'll	look	at	module	and	package	design.	In	Chapter
20,	Quality	and	Documentation,	we'll	look	at	how	we	can	document	our	design	to
ensure	that	our	software	is	correct	and	is	properly	implemented.



Section	3:	Object-Oriented	Testing
and	Debugging
A	finished	application	includes	automated	unit	testing,	as	well	as	support	for
debugging	via	the	Python	logging	system.	Beyond	that,	documentation	of	the
application's	structure,	support,	and	operation	is	also	essential.	This	section	looks
at	logging,	testing,	and	documenting	your	code.

The	following	chapters	will	be	covered	in	this	section:

Chapter	15,	Design	Principles	and	Patterns
Chapter	16,	The	Logging	and	Warning	Modules
Chapter	17,	Designing	for	Testability
Chapter	18,	Coping	with	the	Command	Line
Chapter	19,	Module	and	Package	Design
Chapter	20,	Quality	and	Documentation



Design	Principles	and	Patterns
There	are	a	number	of	considerations	for	object-oriented	design.	In	this	chapter,
we'll	take	a	step	back	from	the	details	of	the	Python	language	to	look	at	a	few
general	principles.	These	principles	provide	fundamental	guidance	on	how	to
design	stateful	objects.	We'll	look	at	concrete	applications	of	the	principles	in
Python.

The	general	approach	we'll	follow	is	defined	by	the	SOLID	design	principles,
which	are	as	follows:

Single	Responsibility
Open/Closed
Liskov	Substitution
Interface	Segregation
Dependency	Inversion

While	the	principles	have	a	clever	mnemonic,	we	won't	cover	them	in	this	order.
The	Interface	Segregation	Principle	(ISP)	seems	to	be	the	most	helpful	for
decomposing	a	complex	problem	into	individual	class	definitions.	Most	of	the
remaining	principles	help	to	refine	the	features	of	class	definitions.	The	Single
Responsibility	Principle	(SRP)	seems	a	little	less	focused	than	the	others,
making	it	more	useful	as	a	summary	than	a	starting	point.	For	more	information,
see	http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod	for	the	original	concepts.
The	linked	site	also	includes	a	number	of	additional	concepts.	Our	purpose	in
this	book	is	to	provide	some	Pythonic	context	to	these	principles.	In	this	chapter,
we	will	cover	the	following	topics:

The	SOLID	design	principles
SOLID	principle	design	test
Building	features	through	inheritance	or	composition
Parallels	between	Python	and	libstdc++

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod


Technical	requirements
The	code	files	for	this	chapter	are	available	at	https://git.io/fj2UX.

https://git.io/fj2UX
https://git.io/fj2UX


The	SOLID	design	principles
One	goal	for	the	SOLID	design	principles	is	to	limit	the	effects	of	change	or
extension	on	a	design.	Making	a	change	to	established	software	is	a	bit	like
casting	a	pebble	into	the	sea:	there	will	be	an	initial	splash,	followed	by	ripples
of	change	spreading	outward.	When	trying	to	fix	or	extend	badly	designed
software,	the	initial	splash	radius	covers	everything;	the	ripples	are	large	and
lead	to	numerous	problems.	In	well-designed	software,	the	splash	radius	is	tiny.

As	a	concrete	example,	consider	a	class	to	represent	dominoes.	Each	tile	has	2
numbers,	from	0	to	6,	leading	to	28	distinct	tiles.	The	class	design	looks	more	or
less	like	a	two-tuple.	The	overall	collection	of	28	tiles	can	be	generated	with	a
nested	pair	of	for	statements,	or	a	generator	expression	with	two	for	clauses.

In	some	games,	however,	the	tiles	could	have	an	upper	limit	of	9,	12,	or	even	15.
Having	different	upper	limits	leads	to	a	change	to	the	class	that	represents	the
overall	collection	of	dominoes.	In	Python,	this	change	may	be	as	tiny	as	adding	a
default	parameter,	limit=6,	to	an	object	constructor.	In	poorly-designed	software,
the	number	6	appears	in	more	than	one	place	in	the	class	definition,	and	the
change	has	a	large	splash	radius.

While	playing,	some	dominoes	with	double	numbers,	especially	the	double-six,
can	have	special	roles.	In	some	games,	double-numbers	tiles	are	called
spinners	and	have	a	dramatic	impact	on	the	state	of	play.	In	other	games,	the
double-number	tiles	are	merely	used	to	determine	who	plays	first,	and	have	little
overall	impact.	These	changes	in	role	can	lead	to	changes	in	the	design	for	a
class	definition.	A	SOLID	design	will	isolate	changes	to	one	portion	of	the
application,	limiting	the	ripples	from	disturbing	unrelated	portions	of	the
software.

In	many	games,	the	sum	of	the	two	numbers	is	the	value	of	the	tile;	the	winner's
points	are	based	on	the	sum	of	the	values	of	the	unplayed	tiles	in	the	other
player's	hands.	This	means	that	tiles	with	higher	point	values	should	often	be
played	first,	and	tiles	with	lower	point	values	represent	less	risk.	This	suggests	a
variety	of	policies	for	sorting	tiles	into	order,	leading	to	design	variations.



All	of	these	variations	in	the	rules	suggest	we	need	to	be	flexible	in	our	class
design.	If	we	focus	on	the	rules	for	one	specific	game,	then	our	class	definition
cannot	easily	be	reused	or	modified	for	other	games.	To	maximize	the	value	of	a
class	definition	means	providing	a	class	general	enough	to	solve	a	number	of
closely	related	problems.	We'll	start	with	a	class	definition	containing	a	number
of	design	flaws.	The	poor	design	is	as	follows:

import	random

from	typing	import	Tuple,	List,	Iterator

class	DominoBoneYard:

				def	__init__(self,	limit:	int	=	6)	->	None:

								self._dominoes	=	[

												(x,	y)	for	x	in	range(limit	+	1)	

												for	y	in	range(x	+	1)

								]

								random.shuffle(self._dominoes)

				def	double(self,	domino:	Tuple[int,	int])	->	bool:

								x,	y	=	domino

								return	x	==	y

				def	score(self,	domino:	Tuple[int,	int])	->	int:

								return	domino[0]	+	domino[1]

				def	hand_iter(self,	players:	int	=	4)	->	Iterator[List[Tuple[int,	int]]]:

								for	p	in	range(players):

												yield	self._dominoes[p	*	7:p	*	7	+	7]

				def	can_play_first(self,	hand:	List[Tuple[int,	int]])	->	bool:

	for	d	in	hand:

	if	self.double(d)	and	d[0]	==	6:

	return	True

	return	False

				def	score_hand(self,	hand:	List[Tuple[int,	int]])	->	int:

								return	sum(d[0]+d[1]	for	d	in	hand)

				def	rank_hand(self,	hand:	List[Tuple[int,	int]])	->	None:

								hand.sort(key=self.score,	reverse=True)

				def	doubles_indices(self,	hand:	List[Tuple[int,	int]])	->	List[int]:

								return	[i	for	i	in	range(len(hand))	if	self.double(hand[i])]

While	this	class	can	be	used	for	some	common	games,	it	has	many	problems.	If
we	want	to	extend	or	modify	this	definition	for	other	games,	almost	any	change
seems	to	create	a	large	splash	with	extensive	ripples.

We'll	call	out	a	particularly	difficult	method,	the	can_play_first()	method.	In	a
double-6	game	with	4	players,	it's	common	for	all	28	dominoes	to	be	dealt.	One
of	the	4	hands	will	have	the	double-6;	that	player	goes	first.	In	a	2-player
variation,	however,	only	14	dominoes	will	be	dealt,	and	there's	a	50%	chance



that	neither	player	has	the	double-6.	To	cover	that	common	case,	the	rule	is	often
stated	as	highest	double	plays	first.	This	class	doesn't	easily	find	any	double
other	than	double-6.

This	class	should	have	been	decomposed	into	a	number	of	smaller	classes.	We'll
look	at	each	of	the	SOLID	design	principles	in	the	following	sections	to	see	how
they	guide	us	toward	better	design.	We	want	to	build	object	models	to	better
support	solving	a	variety	of	closely	related	problems.



The	Interface	Segregation	Principle
One	definition	of	the	Interface	Segregation	Principle	(ISP)	is	that	clients
should	not	be	forced	to	depend	on	methods	that	they	do	not	use.	The	idea	is	to
provide	the	smallest	number	of	methods	in	a	class.	This	leads	to	focused
definitions,	often	separating	a	design	into	multiple	classes	to	isolate	the	impact
of	any	changes.

This	principle	seems	to	have	the	most	dramatic	impact	on	a	design	because	it
decomposes	the	model	into	a	number	of	classes,	each	with	a	focused	interface.
The	other	four	principles	seem	to	follow	from	this	beginning	by	providing
improvements	after	the	initial	decomposition.

The	type	hints	embedded	in	the	class	definition	shown	earlier	suggest	there	are
at	least	three	different	interfaces	involved	in	the	class.	We	can	see	type	hints	for
the	following:

The	overall	collection	of	dominoes,	List[Tuple[int,	int]],	used	to	deal	hands.	
Each	individual	domino,	defined	by	a	type	hint	in	the	form	of	Tuple[int,	int].
A	hand	of	dominoes,	also	defined	by	the	type	hint	in	the	form
of	List[Tuple[int,	int]].	This	is,	perhaps,	an	ambiguity	that	is	exposed	by
having	similar	types	with	different	purposes.
The	doubles_indices()	query	about	specific	dominoes	within	a	hand,	where
the	result	is	List[int].	This	may	not	be	different	enough	to	merit	yet	another
class	definition.

If	we	decompose	the	initial	class	based	on	these	separate	interfaces,	we'll	have	a
number	of	classes	that	can	then	evolve	independently.	Some	classes	can	be
reused	widely	in	a	variety	of	games;	other	classes	will	have	to	have	game-
specific	extensions	created.	The	revised	pair	of	classes	is	shown	in	the	following
code:

class	Domino(NamedTuple):

				v1:	int

				v2:	int

				def	double(self)	->	bool:

								return	self.v1	==	self.v2



				def	score(self)	->	int:

								return	self.v1	+	self.v2

class	Hand(list):

				def	__init__(self,	*args:	Domino)	->	None:

								super().__init__(cast(Tuple[Any],	args))

				def	score(self)	->	int:

								return	sum(d.score()	for	d	in	self)

				def	rank(self)	->	None:

								self.sort(key=lambda	d:	d.score(),	reverse=True)

				def	doubles_indices(self)	->	List[int]:

								return	[i	for	i	in	range(len(self))	if	self[i].double()]

The	Domino	class	preserves	the	essential	Tuple[int,	int]	structure,	but	provides	a
sensible	name	for	the	class	and	names	for	the	two	values	shown	on	the	tile.	A
consequence	of	using	a	NamedTuple	is	a	more	useful	repr()	value	when	we	print
objects.

The	__init__()	method	of	the	Hand	class	doesn't	really	do	much	useful	work.	The
cast()	function	applied	to	a	type,	Type[Any],	and	the	args	object	does	nothing	at
runtime.	The	cast()	is	a	hint	to	mypy	that	the	values	of	args	should	be	considered	as
having	the	Tuple[Any]	type,	instead	of	the	more	restrictive	Domino	type.	Without	this,
we	get	a	misleading	error	about	the	list.__init__()	method	expecting	objects	of
the	Any	type.

The	score	of	a	Hand	instance	depends	on	scores	of	the	various	Domino	objects	in	the
Hand	collection.	Compare	this	with	the	score_hand()	and	score()	functions	shown
previously.	The	poor	design	repeats	important	algorithmic	details	in	two	places.
A	small	change	to	one	of	these	places	must	also	be	made	to	another	place,
leading	to	a	wider	splash	from	a	change.

The	double_indices()	function	is	rather	complex	because	it	works	with	index
positions	of	dominoes	rather	than	the	domino	objects	themselves.	Specifically,
the	use	of	for	i	in	range(len(self))	means	the	value	of	the	i	variable	will	be	an
integer,	and	self[i]	will	be	the	Domino	object	with	the	index	value	equal	to	the
value	of	the	i	variable.	This	function	provides	the	indices	of	dominoes	for	which
the	double()	method	is	True.

To	continue	this	example,	the	overall	collection	of	dominoes	is	shown	in	the
following	code:



class	DominoBoneYard2:

				def	__init__(self,	limit:	int	=	6)	->	None:

								self._dominoes	=	[Domino(x,	y)	for	x	in	range(limit	+	1)	for	y	in	range(x	+	1)]

								random.shuffle(self._dominoes)

				def	hand_iter(self,	players:	int	=	4)	->	Iterator[Hand]:

								for	p	in	range(players):

												yield	Hand(self._dominoes[p	*	7:p	*	7	+	7])

This	creates	individual	Domino	instances	when	the	initial	set	of	dominoes	is
created.	Then,	it	creates	individual	Hand	instances	when	dealing	dominoes	to
players.

Because	the	interfaces	have	been	minimized,	we	can	consider	changing	the	way
dominoes	are	dealt	without	breaking	the	essential	definition	of	each	tile	or	a
hand	of	tiles.	Specifically,	the	design	as	shown	doesn't	work	well	with	the	tiles
not	dealt	to	the	players.	In	a	2-player	game,	for	example,	there	will	be	14	unused
tiles.	In	some	games,	these	are	simply	ignored.	In	other	games,	players	are
forced	to	choose	from	this	pool.	Adding	this	feature	to	the	original	class	runs	the
risk	of	disturbing	other	interfaces,	unrelated	to	the	mechanics	of	dealing.	Adding
a	feature	to	the	DominoBoneyard2	class	doesn't	introduce	the	risk	of	breaking	the
behavior	of	Domino	or	Hand	objects.

We	can,	for	example,	make	the	following	code	change:

class	DominoBoneYard3(DominoBoneYard2):

				def	hand_iter(self,	players:	int	=	4)	->	Iterator[Hand3]:

								for	p	in	range(players):

												hand,	self._dominoes	=	Hand3(self._dominoes[:7]),	self._dominoes[7:]

												yield	hand

This	would	preserve	any	undealt	dominoes	in	the	self._dominoes	sequence.	A	draw()
method	could	consume	dominoes	one	at	a	time	after	the	initial	deal.	This	change
does	not	involve	changes	to	any	other	class	definitions;	this	isolation	reduces	the
risk	of	introducing	astonishing	or	confusing	problems	in	other	classes.



The	Liskov	Substitution	Principle
The	Liskov	Substitution	Principle	(LSP)	is	named	after	computer	scientist
Barbara	Liskov,	inventor	of	the	CLU	language.	This	language	emphasizes	the
concept	of	a	cluster	containing	a	description	of	the	representation	of	an	object
and	the	implementations	of	all	the	operations	on	that	object.	For	more
information	on	this	early	object-oriented	programming	language,	see	http://www.pm
g.lcs.mit.edu/CLU.html.	

The	LSP	is	often	summarized	as	subtypes	must	be	substitutable	for	their	base
types.	This	advice	tends	to	direct	us	toward	creating	polymorphic	type
hierarchies.	If,	for	example,	we	wish	to	add	features	to	the	Hand	class,	we	should
make	sure	any	subclass	of	Hand	can	be	used	as	a	direct	replacement	for	Hand.	

In	Python,	a	subclass	that	extends	a	superclass	by	adding	new	methods	is
an	ideal	design.	This	subclass	extension	demonstrates	the	LSP	directly.

When	a	subclass	method	has	a	different	implementation	but	the	same	type	hint
signature	as	a	superclass,	this	also	demonstrates	elegant	Liskov	substitutability.
The	examples	shown	previously	include	DominoBoneYard2	and	DominoBoneYard3.	Both
of	these	classes	have	the	same	methods	with	the	same	type	hints	and	parameters.
The	implementations	are	different.	The	subclass	can	substitute	for	the	parent
class.

In	some	cases,	we'd	like	to	have	a	subclass	that	uses	additional	parameters	or	has
a	slightly	different	type	signature.	A	design	where	a	subclass	method	doesn't
match	the	superclass	method	is	often	less	than	ideal,	and	an	alternative	design
should	be	considered.	In	many	cases,	this	should	be	done	by	wrapping	the
superclass	instead	of	extending	it.

Wrapping	a	class	to	add	features	is	a	way	to	create	a	new	entity	without	creating
Liskov	Substitution	problems.	Here	is	an	example:

class	FancyDealer4:

				def	__init__(self):

								self.boneyard	=	DominoBoneYard3()

http://www.pmg.lcs.mit.edu/CLU.html


				def	hand_iter(self,	players:	int,	tiles:	int)	->	Iterator[Hand3]:

								if	players	*	tiles	>	len(self.boneyard._dominoes):

												raise	ValueError(f"Can't	deal	players={players}	tiles={tiles}")

								for	p	in	range(players):

												hand	=	Hand3(self.boneyard._dominoes[:tiles])

												self.boneyard._dominoes	=	self.boneyard._dominoes[tiles:]

												yield	hand

The	FancyDealer4	class	definition	is	not	a	subclass	of	the	previous	DominoBoneYard2	or
DominoBoneYard3	classes.	This	wrapper	defines	a	distinct	signature	for	the	hand_iter()
method:	this	is	an	additional	parameter,	and	there	are	no	default	values.	Each
instance	of	FancyDealer4	wraps	a	DominoBoneYard3	instance;	this	object	is	used	to
manage	the	details	of	the	available	tiles.	

Wrapping	a	class	makes	an	explicit	claim	that	the	LSP	is	not	a	feature	of	the
class	design.	The	choice	between	writing	a	wrapper	or	creating	a	subclass	is
often	informed	by	the	LSP.

Python's	use	of	default	values	and	keyword	parameters	provides	a	tremendous
amount	of	flexibility.	In	many	cases,	we	can	consider	rewriting	a	superclass	to
provide	suitable	defaults.	This	is	often	a	way	to	avoid	creating	more	subclasses
or	more	wrapper	classes.	In	some	languages,	the	compiler	rules	for	inheritance
require	considerable	cleverness	to	get	to	a	class	hierarchy	where	a	subclass	can
be	used	in	place	of	the	superclass.	In	Python,	cleverness	is	rarely	required;
instead,	we	can	often	add	optional	parameters.



The	Open/Closed	Principle
The	Open/Closed	Principle	(OCP)	suggests	two	complementary	objectives.	On
the	one	hand,	a	class	should	be	open	to	extension.	On	the	other	hand,	it	should
also	be	closed	to	modification.	We	want	to	design	our	classes	to	support
extension	via	wrapping	or	subclasses.	As	a	general	habit,	we'd	like	to	avoid
modifying	classes.	When	new	features	are	needed,	a	sound	approach	is	to	extend
classes	to	add	the	features.

When	we	want	to	introduce	changes	or	new	features,	the	ideal	path	is	via
extension	of	existing	classes.	This	leaves	all	of	the	legacy	features	in	place,
leaving	the	original	tests	in	place	to	confirm	no	previous	feature	was	broken	by
adding	a	new	feature.

When	keeping	a	class	open	to	extension,	there	are	two	kinds	of	design	changes
or	adaptations	that	arise:

A	subclass	needs	to	be	added	where	the	method	signatures	match	the	parent
class.	The	subclass	may	have	additional	methods,	but	it	will	contain	all	of
the	parent	class	features	and	can	be	used	in	place	of	the	parent	class.	This
design	also	follows	the	LSP.
A	wrapper	class	needs	to	be	added	to	provide	additional	features	that	are
not	compatible	with	another	class	hierarchy.	A	wrapper	class	steps	outside
direct	Liskov	Substitution	because	the	new	features	of	the	wrapper	will	not
be	directly	compatible	with	the	other	classes.

In	either	case,	the	original	class	definitions	remain	unmodified	as	the	design
evolves.	The	new	features	are	either	extensions	that	satisfy	the	LSP,	or	wrappers
that	create	a	new	class	from	an	old	class	definition.	This	kind	of	design	is	a
consequence	of	keeping	the	classes	open	to	extension.

Our	example	classes,	DominoBoneYard2	and	DominoBoneYard3,	shown	previously,	both
suffer	from	a	profound	failure	to	follow	the	OCP.	In	both	of	these	classes,	the
number	of	tiles	in	a	hand	is	fixed	at	seven.	This	literal	value	makes	the	class
difficult	to	extend.	We	were	forced	to	create	the	FancyDealer4	class	to	work	around
this	design	flaw.



A	better	design	of	the	DominoBoneYard2	class	would	lead	to	easier	extension	to	all	of
the	classes	in	this	hierarchy.	A	small	change	that	works	very	nicely	in	Python	is
to	make	the	constant	value	into	a	class-level	attribute.	This	change	is	shown	in
the	following	code	sample:

class	DominoBoneYard2b:

				hand_size:	int	=	7

				def	__init__(self,	limit:	int	=	6)	->	None:

								self._dominoes	=	[Domino(x,	y)	for	x	in	range(limit	+	1)	for	y	in	range(x	+	1)]

								random.shuffle(self._dominoes)

				def	hand_iter(self,	players:	int	=	4)	->	Iterator[Hand3]:

								for	p	in	range(players):

												hand	=	Hand3(self._dominoes[:self.hand_size])

												self._dominoes	=	self._dominoes[self.hand_size:]

												yield	hand

The	DominoBoneYard2b	class	introduces	a	class-level	variable	to	make	the	size	of
each	hand	into	a	parameter.	This	makes	the	class	more	open	to	extension:	a
subclass	can	make	changes	without	the	need	to	modify	any	further
programming.	This	isn't	always	the	best	kind	of	rework,	but	it	has	the	advantage
of	being	a	very	small	change.	The	Python	language	facilitates	these	kinds	of
changes.	The	self.hand_size	reference	can	either	be	a	property	of	the	instance,	or	a
property	of	the	class	as	a	whole.

There	are	other	places	we	can	open	this	class	to	extension.	We'll	look	at	some	of
them	as	part	of	the	Dependency	Inversion	Principle.	



The	Dependency	Inversion	Principle
The	Dependency	Inversion	Principle	(DIP)	has	an	unfortunate	name;	the	word
inversion	seems	to	imply	there's	some	kind	of	obvious	dependency	and	we
should	invert	the	obvious	dependency	rules.	Practically,	the	principle	is
described	as	having	class	dependencies	based	on	the	most	abstract	superclass
possible,	not	on	a	specific,	concrete	implementation	class.

In	languages	with	formal	type	declarations,	for	example,	Java	or	C++,	this
advice	to	refer	to	abstract	superclasses	can	be	helpful	to	avoid	complex
recompiles	for	small	changes.	These	languages	also	need	fairly	complex
dependency	injection	frameworks	to	be	sure	that	classes	can	be	altered	via
runtime	configuration	changes.	In	Python,	the	runtime	flexibility	means	the
advice	changes	somewhat.

Because	Python	uses	duck	typing,	there	isn't	always	a	single,	abstract	superclass
available	to	summarize	a	variety	of	alternative	implementations.	We	may,	for
example,	define	a	function	parameter	to	be	Iterable,	telling	mypy	to	permit	any
object	that	follows	the	Iterable	protocol:	this	will	include	iterators	as	well	as
collections.	

In	Python,	the	DIP	leads	us	to	two	techniques:

Type	hints	should	be	as	abstract	as	possible.	In	many	cases,	it	will	name	a
relevant	protocol	used	by	a	method	or	a	function.
Concrete	type	names	should	be	parameterized.

In	our	preceding	examples,	the	various	DominoBoneYard	class	definitions	all	suffer
from	a	dependency	problem:	they	all	refer	to	concrete	class	names	when	creating
the	initial	pool	of	Domino	objects	and	when	creating	the	Hand	objects.	We	are	not
free	to	replace	these	classes	as	needed,	but	need	to	create	subclasses	to	replace	a
reference.

A	more	flexible	definition	of	the	class	is	shown	in	the	following	example:

class	DominoBoneYard3c:



				domino_class:	Type[Domino]	=	Domino

				hand_class:	Type[Hand]	=	Hand3

				hand_size:	int	=	7

				def	__init__(self,	limit:	int	=	6)	->	None:

								self._dominoes	=	[

												self.domino_class(x,	y)	for	x	in	range(limit	+	1)	for	y	in	range(x	+	1)

								]

								random.shuffle(self._dominoes)

				def	hand_iter(self,	players:	int	=	4)	->	Iterator[Hand]:

								for	p	in	range(players):

												hand	=	self.hand_class(

																self._dominoes[:self.hand_size])

												self._dominoes	=	self._dominoes[self.hand_size:]

												yield	hand

This	example	shows	how	the	dependencies	can	be	defined	in	a	central	place,	as
attributes	of	the	class	definition.	This	refactors	the	dependencies	from	deep
within	several	methods	to	a	much	more	visible	position.	We've	provided	a
complete	type	hint	in	order	to	help	spot	potential	misuse	of	the	type
expectations.	For	the	Domino	class,	we	don't	have	any	alternatives,	and	the	hint,
Type[Domino],	does	seem	redundant.	For	the	Hand3	class,	however,	we've	provided
the	hint	of	Type[Hand]	to	show	the	most	abstract	class	that	will	be	usable	here.

Because	these	values	are	variables,	it	becomes	very	easy	to	perform	dependency
injection	and	supply	configuration	information	at	runtime.	We	can	use	code
along	the	lines	of	DominoBoneYard3c.hand_class	=	Hand4	to	change	the	class	used	to
build	a	hand.	Generally,	this	should	be	done	before	any	instances	are	created.
The	class	identification	can	be	taken	from	a	configuration	file	and	used	to	tailor
the	details	of	the	application's	operation.

We	can	imagine	a	top-level	program	that	includes	the	following:

configuration	=	get_configuration()

DominoBoneYard3c.hand_class	=	configuration['hand_class']

DominoBoneYard3c.domino_class	=	configuration['domino_class']

Once	the	class	definitions	have	the	proper	dependencies	injected	into	them,	the
application	can	then	work	with	those	configured	class	definitions.	For	more
ideas	on	providing	the	configuration,	see	Chapter	14,	Configuration	Files	and
Persistence.	It's	important	to	note	that	the	type	hints	are	not	used	to	check
runtime	configuration	values.	The	type	hints	are	only	used	to	confirm	that	the
source	code	appears	to	be	consistent	in	its	use	of	objects	and	types.



The	Single	Responsibility	Principle
The	Single	Responsibility	Principle	(SRP)	can	be	the	most	difficult	principle	to
understand.	The	general	statement	that	"a	class	should	have	one,	and	only	one,
reason	to	change"	shifts	the	definition	of	responsibility	to	the	understanding	of
change	in	an	object-oriented	design.	There	are	several	reasons	for	change;	the
most	salient	reason	for	changing	a	class	is	to	add	a	new	feature.	As	noted	earlier
in	the	Open/Closed	principle	section,	a	feature	should	be	added	as	an	extension
rather	than	a	modification.

In	many	cases,	the	Interface	Segregation	Principle	(ISP)	seems	to	provide
more	concrete	guidance	for	class	design	than	the	SRP.	The	SRP	seems	to	be	a
summary	of	how	a	class	looks	when	we've	followed	the	other	principles.

When	we	review	the	classes	defined	in	the	preceding	examples,	there	are	some
potential	changes	that	this	principle	implies.	In	particular,	the
various	DominoBoneYard	class	definitions	provide	the	features	listed	here:

Build	the	collection	of	Domino	instances.
Deal	the	initial	hands	to	the	players.	Often	this	is	four	hands	of	seven
dominoes,	but	this	rule	varies	from	game	to	game.	This	may	exhaust	the
collection	of	dominoes,	or	it	may	leave	some	dominoes	undealt.
When	there	is	a	collection	of	undealt	dominoes,	manage	the	collection	by
allowing	players	to	draw,	to	supplement	their	hands.

We	can	claim	this	is	a	single	responsibility:	dealing	dominoes	to	players.	There
are	two	different	ways	players	get	dominoes	(the	initial	deal	and	drawing	later	in
the	game)	and	both	mechanisms	are	part	of	the	responsibilities	of	a	single	class.
This	is	a	fairly	high	level	of	abstraction,	looking	at	the	pool	of	dominoes	as	a
single	thing.

We	can	also	claim	there	are	two	responsibilities	here.	We	can	argue	that	creating
the	initial	collection	of	Domino	objects	is	a	different	responsibility	from	dealing
Domino	objects	to	players.	We	can	counter-argue	that	adding	and	removing
dominoes	is	the	single	responsibility	of	maintaining	the	collection	contents.	This
is	a	fairly	low	level	of	abstraction.



The	general	guiding	principles	often	lead	to	situations	where	expert	judgment	is
required	to	make	the	final	decision.	There	is	no	simple	rule	for	distinguishing	the
level	of	abstraction	appropriate	for	a	design.

These	principles	must	be	used	to	guide	the	design	process.	They	aren't
immutable	laws.	The	final	decisions	depend	on	a	number	of	other	factors,	like
the	overall	complexity	of	the	application	and	the	sweep	of
anticipated	programming	changes.	It	helps	to	consider	the	SOLID	design
principles	as	conversation	starters.	When	reviewing	a	design,	the	splash	radius
around	a	change	and	the	consequences	of	the	change	need	to	be	evaluated	and
these	principles	provide	a	few	dimensions	for	evaluating	the	quality	of	the
design.

Let's	take	a	look	at	the	SOLID	principle	design	test	in	the	next	section.



A	SOLID	principle	design	test
We	generally	think	of	testing	as	something	applied	to	the	final	code	(in	Chapter	17,
Design	for	Testability,	we'll	look	at	automated	testing	in	detail).	However,	we
can	also	apply	a	test	to	a	SOLID	design.	The	test	is	to	replace	a	given	class	with
an	equivalent	class	to	provide	an	alternative	algorithm	to	accomplish	the	same
purpose.	If	we've	done	our	design	job	well,	then	a	change	to	one	class	should
have	a	minimal	splash	with	few	ripples.

As	a	concrete	example,	consider	the	Domino	class	shown	earlier	in	this	chapter,
under	the	Interface	Segregation	Principle	section.	We	used	a	NamedTuple	to
represent	the	pair	of	numbers.	Some	alternatives	are	possible:

Use	a	frozenset	to	retain	one	or	two	distinct	values.	If	there's	one	value	in	the
set,	the	tile	is	actually	a	double,	or	spinner.
Use	a	Counter	to	retain	the	counts	for	the	values.	If	there's	a	single	value,
with	a	count	of	two,	the	tile	is	a	double.	Otherwise,	there	will	be	two	values
with	counts	of	one	each.

Do	these	kinds	of	change	to	the	Domino	class	have	any	effect	on	other	classes	in
the	design?	If	not,	then	the	design	is	nicely	encapsulated.	If	these	kinds	of
changes	do	break	the	design,	then	the	design	effort	should	continue	to	rearrange
the	class	definitions	in	a	way	where	the	impact	of	a	change	is	minimized.

In	the	next	section,	we'll	build	features	through	inheritance	and	composition.



Building	features	through	inheritance
and	composition
As	noted	earlier	in	the	Liskov	Substitution	Principle	section,	there	are	two
general	ways	to	add	features	to	a	class	definition:

Inheritance	to	extend	a	class	by	creating	a	subclass
Composition	of	a	new	class	from	one	or	more	other	classes

In	general,	these	choices	are	always	present.	Every	object-oriented	design
decision	involves	choosing	between	inheritance	and	composition.

To	make	the	decision	more	nuanced,	Python	allows	multiple	inheritance.	While
combining	multiple	mixing	classes	is	partially	a	kind	of	inheritance,	it	is	more
fundamentally	an	exercise	in	composition.	

The	LSP	can	lead	to	avoiding	inheritance	in	favor	of	composition.	The	general
suggestion	is	to	reserve	inheritance	for	those	situations	where	the	child	class	can
fully	replace	the	parent	class.	When	features	are	changed	in	some	way	to	create	a
child	that	is	not	a	direct	replacement	for	the	parent,	then	composition	may	be
more	appropriate.

Consider	the	consequences	of	adding	some	features	to	the	Hand	class	shown
earlier.	Here	are	two	examples:	

The	Hand3	subclass	extended	the	Hand	class	by	introducing	an	additional
method.	This	extension	is	compatible	with	the	superclass,	and	Hand3	can	be
used	as	a	substitute	for	Hand.	This	seems	to	be	a	sensible	extension	via
inheritance.
The	FancyDealer4	class	introduced	a	new	class	composed	of	a	new	method
making	use	of	the	DominoBoneYard3	class.	This	class	introduced	a	profound
change	to	the	hand_iter()	method;	the	change	was	not	trivially	compatible
with	the	superclass.

There	are	yet	more	composition	techniques	available	in	Python.	In	Chapter	9,



Decorators	and	Mixins	–	Cross-cutting	Aspects,	we	addressed	two	additional
composition	techniques.	We'll	look	at	some	other	patterns	of	class	composition
in	the	next	section.



Advanced	composition	patterns
One	of	the	classic	books	of	design	patterns,	Design	Patterns:	Elements	of
Reusable	Object-Oriented	Software,	identified	a	number	of	common	patterns	of
object	composition.	Some	of	these	patterns	are	more	relevant	to	C++	or	Java
programming,	and	less	relevant	to	Python	programming.	For	example,	the
Singleton	pattern	is	a	first-class	aspect	of	a	Python	module	and	a	Python	class
definition;	the	complexities	of	Java	static	variables	aren't	necessary	to	implement
this	pattern.

A	better	source	for	Python	design	patterns	is	available	at	https://python-patterns.gu
ide.	The	pattern	descriptions	on	this	Python	Patterns	website	are	focused	on
Python	specifically.	It's	important	to	recognize	that	some	of	the	complexity	in
object-oriented	design	pattern	literature	stems	from	creating	elegant	ways	to
create	a	runtime	behavior	in	the	presence	of	very	strict	compile-time	checking.
Python	doesn't	suffer	from	the	same	kinds	of	type	management	issues,	making
Python	programming	simpler.	

A	central	concept	in	Python	is	duck	typing.	The	concept	is	based	on	the
following	quote:

"When	I	see	a	bird	that	walks	like	a	duck	and	swims	like	a	duck	and	quacks	like	a	duck,	I	call	that	bird	a
duck."

In	Python,	an	object	is	usable	when	the	methods	and	attributes	fit	a	needed
protocol.	The	actual	base	type	doesn't	matter;	the	available	methods	are	what
defines	a	class's	suitability	in	a	particular	context.

We	can,	for	example,	define	two	similar-looking	classes	as	shown	in	the
following	code.	The	first	uses	the	typing.NamedTuple	as	a	base	class:

from	typing	import	NamedTuple

from	dataclasses	import	dataclass

class	Domino_1(NamedTuple):

				v1:	int

				v2:	int

				@property

				def	double(self):

								return	self.v1	==	self.v2

https://python-patterns.guide


This	alternative	version	uses	a	@dataclass	decorator	to	create	a	frozen	object,
similar	to	a	tuple:

from	dataclasses	import	dataclass

@dataclass(frozen=True,	eq=True,	order=True)

class	Domino_2:

				v1:	int

				v2:	int

				@property

				def	double(self):

								return	self.v1	==	self.v2

These	two	classes	have	nearly	identical	behavior.	The	only	class	they	have	in
common	is	the	superclass	for	all	objects,	the	object	class.	Yet,	these	two	classes
are	functionally	interchangeable,	and	can	be	freely	substituted	for	each	other.

This	ability	to	have	equivalent	types	without	a	common	superclass	permits
flexibility,	but	can	also	lead	to	a	difficulty	when	trying	to	check	types	with
mypy.	In	some	cases,	we	may	find	the	need	to	define	an	abstract	superclass
purely	for	the	purposes	of	providing	assurance	that	several	distinct
implementations	all	provide	common	features.	In	other	cases,	we	may	need	to
add	a	type	hint	like	the	following:

Domino	=	Union[Domino_1,	Domino_2]

This	definition	provides	a	type	name,	Domino,	with	two	concrete	implementations.
This	provides	information	mypy	can	use	to	validate	our	software	without	the
needless	complexity	of	creating	an	abstract	superclass.	We	can	introduce	new
classes	to	this	Union	type	without	having	to	worry	about	inheritance.	In	order	for
this	to	work,	the	only	requirement	is	for	the	classes	to	support	the	methods
actually	used	by	the	application.

With	this	definition,	we	can	use	the	following	kind	of	factory	method	for
building	Domino	instances:

class	DominoBoneYard:

				domino_class:	Type[Domino]	=	Domino_1

				def	__init__(self,	limit:	int	=	6)	->	None:

								self._dominoes:	List[Domino]	=	[

												self.domino_class(x,	y)	

												for	x	in	range(limit	+	1)	

																for	y	in	range(x	+	1)

								]



								random.shuffle(self._dominoes)

The	__init__()	method	builds	the	self._dominoes	object	with	a	type	hint	of
List[Domino].	This	hint	embraces	all	of	the	classes	in	the	Union[]	type	hint	for	the
Domino	type	name.	

If	we	were	to	make	a	terrible	mistake	in	using	this	class	and	try	to	use	some	code
like	DominoBoneYard.domino_class	=	tuple	to	create	tuple	objects,	the	mypy	program
would	spot	the	type	incompatibility	and	report	an	error	with	a	message	along	the
lines	of	Incompatible	types	in	assignment	(expression	has	type	"Type[Tuple[Any,	...]]",
variable	has	type	"Union[Type[Domino_1],	Type[Domino_2]]").	This	message	would	inform
us	that	the	configuration	choice	of	tuple	is	unlikely	to	work	correctly.



Parallels	between	Python	and
libstdc++
The	C++	Standard	Template	Library	provides	a	number	of	design	patterns
realized	as	class	templates.	These	templates	must	be	filled	in	with	specific	types
in	order	to	satisfy	the	C++	compiler	requirements.	We	can	use	this	library	as	a
suggestion	for	common	design	patterns.	We'll	look	at	a	few	elements	of	the
modern	GNU	libstdc++	implementation	as	a	representative	sample	of	current
thinking	from	other	languages.	The	website
at	https://en.cppreference.com/w/	provides	a	thorough	reference.

The	intent	here	is	to	use	this	library	as	a	list	of	suggestions	or	hints	about	design
patterns.	This	can	provide	a	perspective	on	the	features	available	in	Python.
There	is	no	single,	correct,	gold	standard	for	class	libraries.	Any	comparison
among	languages	is	fraught	with	difficulties	because	it	can	appear	as	if	one
language	is	deficient	because	of	a	missing	feature.	In	all	cases	when	comparing
languages,	any	missing	feature	can	be	trivially	built	from	existing	components.

An	overview	of	various	classes	and	templates	in	C++	library	is	available	in
chapters	4	to	15	of	The	GNU	C++	Library	Manual.	Here	is	a	comparison	of
some	common	patterns	from	another	language	and	the	mapping	to	similar
features	available	in	Python;	they	are	as	follows:

Support	describes	some	foundational	features,	including	the	atomic	data
types.	The	types	defined	here	parallel	int,	float,	and	str	in	Python.
Diagnostics	describes	the	C++	implementation	of	exceptions	and	error
handling.
Utilities	describes	Functors	and	Pairs,	which	correspond	to	Python
functions	and	two-tuples.	Python	extends	the	Pair	concept	to	the	more
general	tuple	and	adds	NamedTuple.
Strings	describes	more	string	features.	Some	of	this	is	part	of	the	str	type,
the	string	module,	and	the	shlex	module.
Localization	describes	some	additional	features	of	the	C++	libraries	for
localization.	This	is	part	of	the	Python	locale	module.
Containers	describes	a	number	of	C++	container	class	templates.	We'll

https://en.cppreference.com/w/cpp


provide	details	in	a	following	section.	
Iterators	describes	the	C++	features	similar	to	Python	iterator.	The	C++
implementations	include	a	variety	of	iterator	categories.	A	random	access
iterator,	for	example,	is	similar	to	integer	index	values	for	a	list.	A	forward
iterator	parallels	the	Python	implementation	of	iterators.	An	input	or	output
iterator	in	C++	is	similar	to	iterable	file-like	objects	in	Python.	In	Python,	a
class	that	offers	the	__iter__()	method	is	iterable.	An	object	with	the
__next__()	method	is	an	iterator.	There	are	bidirectional	iterators	available	in
C++	–	it's	not	clear	how	important	these	are,	but	there	is	a	place	in	the	class
hierarchy	for	them.
Algorithms	describes	classes,	and	expands	on	features	in	the	Iterators
chapter.	It	provides	some	tools	for	parallelizing	algorithms.	Most
importantly,	it	contains	a	number	of	common	operations.	Some	of	these	are
parts	of	Python	collections,	others	are	part	of	itertools,	and	others	are	Python
built-in	functions.
Numeric's	describes	some	more	advanced	numeric	types.	The	Python
complex	type	and	the	numbers	module	provide	Python	versions	of	these
features.	The	array	module	and	packages,	such	as	numpy	and	pandas,	amplify
these	core	features.
Input	and	Output	describes	the	C++	I/O	classes.	The	Python	io	module
defines	equivalents	for	these	C++	features.
Atomics	provides	a	way	to	define	thread-safe	objects	where	writes	to
memory	are	guaranteed	to	be	completed	before	another	thread	can	read
them.	In	Python,	the	threading	library	can	be	used	to	build	objects	with	this
behavior.
Concurrency	describes	additional	ways	of	handling	threads	in	an
application.	This	is	also	part	of	the	Python	threading	library.

The	containers	library	in	C++	includes	the	following	kinds	of	categories	and
container	class	definitions:

Sequences	include	the	following:
Array.	This	is	for	fixed-size	arrays.	We	can	use	a	built-in	list,	or	the
array	module,	or	even	the	numpy	package	for	this.
Vector.	This	corresponds	to	the	Python	list	class.
Deque.	While	the	list	class	has	these	features,	the	Collections.deque
class	provides	better	performance.
List.	This	also	corresponds	to	the	Python	list	class.
Forward	List.	This	is	an	extension	to	a	list	that	permits	removing



elements	while	iterating	through	them.	Because	this	isn't	directly
available	in	Python,	we'll	often	use	list(filter(rule,	data))	to	create	a
new	list	that	is	a	subset	of	the	old	list.

Associations	are	essentially	the	same	as	the	unordered	associations	listed	in
the	following	bullet	point.	In	the	C++	implementation,	a	tree	data	structure
is	used	to	keep	keys	in	order.	In	Python,	an	equivalent	set	of	features	can	be
built	by	using	sorted()	on	the	keys.
Unordered	Associations	include	the	following:

Set.	This	corresponds	roughly	to	the	Python	set	class.
Multiset.	This	corresponds	to	the	Python	collections.Counter	class.
Map.	This	corresponds	to	the	Python	dict	class.
Multimap.	This	can	be	built	using	defaultdict(list).	Several	add-on
packages	provide	implementations	for	this.	See	http://werkzeug.pocoo.org
/docs/0.14/datastructures/	for	the	MultiDict	class,	as	one	example.

When	we	consider	the	C++	libraries	as	a	kind	of	benchmark,	it	appears	Python
provides	similar	features.	This	is	a	way	to	judge	the	completeness	of	Python
design	patterns.	This	alternative	organization	of	these	classes	can	be	helpful	to
visualize	the	variety	of	implementation	patterns	present	in	Python.

http://werkzeug.pocoo.org/docs/0.14/datastructures/


Summary
In	this	chapter,	we	took	a	step	back	from	the	details	of	Python	to	look	at	the
SOLID	design	principles.	These	considerations	are	fundamental	to	how	a
stateful	object	should	be	designed.	The	principles	provide	us	a	useful	collection
of	ideas	for	structuring	an	object-oriented	design.	It	seems	most	useful	to
consider	the	principles	in	the	following	order:

Interface	Segregation:	Build	the	smallest	interface	to	each	class,
refactoring	to	split	a	big	class	definition	into	smaller	pieces.
Liskov	Substitution:	Be	sure	that	any	subclass	can	replace	the	parent	class;
otherwise,	consider	a	composition	technique	instead	of	inheritance.
Open/Closed:	A	class	should	be	open	to	extension	but	closed	to	direct
modification.	This	requires	careful	consideration	of	what	extensions	are
sensible	for	a	given	class.
Dependency	Inversion:	A	class	shouldn't	have	a	simple,	direct	dependency
on	another	class.	A	class	should	be	provided	via	a	variable	so	a	runtime
configuration	can	change	the	class	used.
Single	Responsibility:	This	summarizes	the	objective	of	defining	classes
with	a	single,	narrow	purpose,	so	changes	are	confined	to	one	or	a	very	few
classes.

These	principles	will	be	implicit	in	the	following	chapters.	The	next	chapter,	Chap
ter	16,	The	Logging	and	Warning	Modules,	will	look	at	using	the	logging	and
warnings	modules	to	create	audit	information	as	well	as	to	debug.	We'll	look	at
designing	for	testability	and	how	we	use	unittest	and	doctest	in	Chapter	17,
Designing	for	Testability.	Later	chapters	will	look	at	the	design	of	applications,
packages,	and	the	general	concepts	of	producing	high-quality	software.



The	Logging	and	Warning	Modules
We	often	need	to	make	internal	object	state	and	state	transitions	more	visible.
There	are	the	following	three	common	cases	for	increased	visibility:

One	case	is	for	auditing	an	application,	where	we	want	to	keep	a	history	of
state	changes	for	an	object.
Another	situation	is	to	track	the	secure	operations	of	an	application	and
identify	who	is	carrying	out	sensitive	actions.
A	third	common	situation	is	to	help	debug	problems	that	arise	during	use.

The	Python	logger	is	a	flexible	way	to	make	internal	object	states	and	state
transitions	visible.	

There	are	times	when	we	have	multiple	logs	with	different	kinds	of	information.
We	might	distribute	security,	audit,	and	debugging	into	separate	logs.	In	other
cases,	we	might	want	a	unified	log.	The	logging	module	permits	a	variety	of
configurations.

Some	users	may	want	verbose	output	to	confirm	that	the	program	works	as	they
understand	it.	Allowing	them	to	set	a	verbosity	level	produces	a	variety	of	log
details	focused	on	the	needs	of	users.

The	warnings	module	can	also	provide	helpful	information	for	developers	as	well
as	users,	including	the	following:

In	the	case	of	developers,	we	may	use	warnings	to	show	them	that	an	API
has	been	deprecated
In	the	case	of	users,	we	might	want	to	show	them	the	results	are
questionable	but	not	erroneous

There	might	be	questionable	assumptions	or	possibly	confusing	default	values
that	should	be	pointed	out	to	users.

Software	maintainers	will	need	to	selectively	enable	logging	to	perform	useful
debugging.	We	rarely	want	blanket	debugging	output:	the	resulting	log	might	be



unreadably	dense.	We	often	need	focused	debugging	to	track	down	a	specific
problem	in	a	specific	class	or	module.	The	idea	of	multiple	logs	being	sent	a
single	handler	can	be	used	to	enable	detailed	logging	in	some	places	and
summary	logging	in	others.	The	logging	package	in	the	Python	3.7.2	version	of
the	standard	library	doesn't	have	complete	type	hints.	Consequently,	the
examples	in	this	chapter	won't	have	type	details.	In	this	chapter,	we	will	cover
the	following	topics:

Creating	a	basic	log
Configuration	Gotcha
Specialized	logging	for	control,	debug,	audit,	and	security
Using	the	warnings	module
Advanced	logging—the	last	few	messages	and	network	destinations



Technical	requirements
The	code	files	for	this	chapter	are	available	at	https://git.io/fj2U1.

https://git.io/fj2U1


Creating	a	basic	log
There	are	three	steps	to	producing	a	log.	The	two	necessary	steps	are	the
following:

1.	 Get	a	logging.Logger	instance	with	the	logging.getLogger()	function;	for
example,	logger=logging.getLogger("demo").

2.	 Create	messages	with	that	Logger.	There	are	a	number	of	methods,	with
names	such	as	warn(),	info(),	debug(),	error(),	and	fatal(),	that	create	messages
with	different	levels	of	importance.	For	example,	logger.info("hello	world").

These	two	steps	are	not	sufficient	to	give	us	any	output,	however.	There's	a	third,
optional	step	that	we	take	when	we	want	to	see	logged	messages.	The	reason	for
having	a	third	step	is	because	seeing	a	log	isn't	always	required.	Consider	a
debugging	log	that	is	generally	left	silent.	The	optional	step	is	to	configure	the
logging	module's	handlers,	filters,	and	formatters.	We	can	use	the
logging.basicConfig()	function	for	this;	for	example,
logging.basicConfig(stream=sys.stderr,	level=logging.INFO).

It's	technically	possible	to	skip	the	first	step.	We	can	use	the	default	logger,
which	is	part	of	the	logging	module's	top-level	functions.	We	showed	you	this	in	C
hapter	9,	Decorators	and	Mixins	–	Cross-Cutting	Aspects,	because	the	focus	was
on	decoration,	not	logging.	It	is	advisable	not	to	use	the	default	root	logger	and
suggest	that	it's	universally	more	configurable	to	use	named	loggers	that	are
children	of	the	root	logger.

Instances	of	the	Logger	class	are	identified	by	a	name	attribute.	The	names	are
dot-separated	strings	that	form	a	hierarchy.	There's	a	root	logger	with	the
name	"",	the	empty	string.	All	other	Logger	instances	are	children	of	this	root
Logger	instance.	A	complex	application	named	foo	might	have	an	internal	package
named	services	with	a	module	named	persistence	and	a	class	named	SQLStore.	This
could	lead	to	loggers	named	"",	"foo",	"foo.services",	"foo.services.persistence",	and
"foo.services.persistence.SQLStore".	

We	can	often	use	the	root	Logger	to	configure	the	entire	tree	of	Logger	instances.
When	we	choose	names	to	form	a	proper	hierarchy,	we	can	enable	or	disable



whole	subtrees	of	related	instances	by	configuring	an	appropriate	parent	Logger
object.	In	our	preceding	example,	we	might	enable	debugging	for
"foo.services.persistence"	to	see	messages	from	all	of	the	classes	with	a	common
prefix	for	their	logger	name.

In	addition	to	a	name,	each	Logger	object	can	be	configured	with	a	list	of	Handler
instances	that	determines	where	the	messages	are	written	and	a	list	of	Filter
objects	to	determine	which	kinds	of	messages	are	passed	or	rejected.	These	Logger
instances	have	the	essential	API	for	logging;	we	use	a	Logger	object	to	create
LogRecord	instances.	These	records	are	then	routed	to	Filter	and	Handler	objects;	the
passed	records	are	formatted	and	eventually	wind	up	getting	stored	in	a	local
file,	or	transmitted	over	a	network.

The	best	practice	is	to	have	a	distinct	logger	for	each	of	our	classes	or	modules.
As	Logger	object	names	are	dot-separated	strings,	the	Logger	instance	names	can
parallel	class	or	module	names;	our	application's	hierarchy	of	component
definitions	will	have	a	parallel	hierarchy	of	loggers.	We	might	have	a	class	that
starts	like	the	following	code:

import	logging	

class	Player:

				def	__init__(self,	bet:	str,	strategy:	str,	stake:	int)	->	None:

								self.logger	=	logging.getLogger(

												self.__class__.__qualname__)

								self.logger.debug(

												"init	bet	%r,	strategy	%r,	stake	%r",	

												bet,	strategy,	stake

								)

The	unique	value	of	self.__class__.__qualname__	will	ensure	that	the	Logger	object
used	for	this	class	will	have	a	name	that	matches	the	qualified	name	of	the	class.

As	a	general	approach	to	logging,	this	works	well.	The	only	downside	of	this
approach	is	that	each	logger	instance	is	created	as	part	of	the	object,	a	tiny
redundancy.	It	would	be	a	somewhat	better	use	of	memory	to	create	the	logger	as
part	of	the	class	instead	of	each	instance	of	the	class.

In	the	next	section,	we'll	look	at	a	few	ways	to	create	a	class-level	logger	shared
by	all	instances	of	the	class.



Creating	a	class-level	logger
As	we	noted	in	Chapter	9,	Decorators	and	Mixins	–	Cross-Cutting	Aspects,
creating	a	class-level	logger	can	be	done	with	a	decorator.	This	will	separate
logger	creation	from	the	rest	of	the	class.	A	common	decorator	idea	that	is	very
simple	has	a	hidden	problem.	Here's	the	example	decorator:

def	logged(cls:	Type)	->	Type:

				cls.logger	=	logging.getLogger(cls.__qualname__)

				return	cls

The	@logged	decorator	creates	the	logger	attribute	as	a	feature	of	a	class.	This	can
then	be	shared	by	all	of	the	instances.	With	this	decorator,	we	can	define	a	class
with	code	like	the	following	example:

@logged

class	Player_1:

				def	__init__(self,	bet:	str,	strategy:	str,	stake:	int)	->	None:

								self.logger.debug("init	bet	%s,	strategy	%s,	stake	%d",	bet,	

								strategy,	stake)

This	will	assure	us	that	the	Player_1	class	has	the	logger	with	the	expected	name
of	logger.	We	can	then	use	self.logger	in	the	various	methods	of	this	class.

The	problem	with	this	design	is	mypy	is	unable	to	detect	the	presence	of	the	logger
instance	variable.	This	gap	will	lead	mypy	to	report	potential	problems.	There	are
several	better	approaches	to	creating	loggers.

We	can	create	a	class-level	debugger	using	code	like	the	following	example:

class	Player_2:

				logger	=	logging.getLogger("Player_2")

				def	__init__(self,	bet:	str,	strategy:	str,	stake:	int)	->	None:

								self.logger.debug("init	bet	%s,	strategy	%s,	stake	%d",	bet,	strategy,	stake)

This	is	simple	and	very	clear.	It	suffers	from	a	small	Don't	Repeat	Yourself
(DRY)	problem.	The	class	name	is	repeated	within	the	class-level	logger
creation.	This	is	a	consequence	of	the	way	classes	are	created	in	Python,	and
there	is	no	easy	way	to	provide	the	class	name	to	an	object	created	before	the
class	exists.	It's	the	job	of	the	metaclass	to	do	any	finalization	of	the	class



definition;	this	can	include	providing	the	class	name	to	internal	objects.

We	can	use	the	following	design	to	build	a	consistent	logging	attribute	in	a
variety	of	related	classes:

class	LoggedClassMeta(type):

				def	__new__(cls,	name,	bases,	namespace,	**kwds):

								result	=	type.__new__(cls,	name,	bases,	dict(namespace))

								result.logger	=	logging.getLogger(result.__qualname__)

								return	result

class	LoggedClass(metaclass=LoggedClassMeta):

				logger:	logging.Logger

This	metaclass	uses	the	__new__()	method	to	create	the	resulting	object	and	add	a
logger	to	the	class.	As	an	example,	a	class	named	C	will	then	have	a	C.logger
object.	The	LoggedClass	can	be	used	as	a	mixin	class	to	provide	the	visible	logger
attribute	name	and	also	be	sure	it's	properly	initialized.

We'll	use	this	class	as	shown	in	the	following	example:

class	Player_3(LoggedClass):

				def	__init__(self,	bet:	str,	strategy:	str,	stake:	int)	->	None:

								self.logger.debug(

												"init	bet	%s,	strategy	%s,	stake	%d",	

												bet,	strategy,	stake)

When	we	create	an	instance	of	Player_3,	we're	going	to	exercise	the	logger
attribute.	Because	this	attribute	is	set	by	the	metaclass	for	LoggedClass,	it	is
dependably	set	for	every	instance	of	the	Player_3	class.

The	metaclass	and	superclass	pair	is	superficially	complex-looking.	It	creates	a
shared	class-level	logger	for	each	instance.	The	name	of	the	class	is	not	repeated
in	the	code.	The	only	obligation	on	the	client	is	to	include	LoggedClass	as	a	mixin.

By	default,	we	won't	see	any	output	from	a	definition	like	this.	The	initial
configuration	for	the	logging	module	doesn't	include	a	handler	or	a	level	that
produces	any	output.	We'll	also	need	to	change	the	logging	configuration	to	see
any	output.

The	most	important	benefit	of	the	way	the	logging	module	works	is	that	we	can
include	logging	features	in	our	classes	and	modules	without	worrying	about	the
overall	configuration.	The	default	behavior	will	be	silent	and	introduce	very	little



overhead.	For	this	reason,	we	can	always	include	logging	features	in	every	class
that	we	define.



Configuring	loggers
There	are	the	following	two	configuration	details	that	we	need	to	provide	in
order	to	see	the	output	in	our	logs:

The	logger	we're	using	needs	to	be	associated	with	at	least	one	handler	that
produces	conspicuous	output.
The	handler	needs	a	logging	level	that	will	pass	our	logging	messages.

The	logging	package	has	a	variety	of	configuration	methods.	We'll	show	you
logging.basicConfig()	here.	We'll	take	a	look	at	logging.config.dictConfig()	separately.

The	logging.basicConfig()	method	permits	a	few	parameters	to	create	a	single
logging.handlers.StreamHandler	for	logging	the	output.	In	many	cases,	this	is	all	we
need:

>>>	import	logging	

>>>	import	sys	

>>>	logging.basicConfig(stream=sys.stderr,	level=logging.DEBUG)

This	will	configure	a	StreamHandler	instance	that	will	write	to	sys.stderr.	It	will	pass
messages	that	have	a	level	that	is	greater	than	or	equal	to	the	given	level.	By
using	logging.DEBUG,	we're	assured	of	seeing	all	the	messages.	The	default	level	is
logging.WARN.

After	performing	the	basic	configuration,	we'll	see	our	debugging	messages
when	we	create	the	class,	as	follows:

>>>	pc3	=	Player_3("Bet3",	"Strategy3",	3)

DEBUG:Player_3:init	bet	Bet3,	strategy	Strategy3,	stake	3

The	default	log	format	shows	us	the	level	(DEBUG),	the	name	of	the	logger
(Player_3),	and	the	string	that	we	produced.	There	are	more	attributes	in	LogRecord
that	can	also	be	added	to	the	output.	Often,	this	default	format	is	acceptable.



Starting	up	and	shutting	down	the
logging	system
The	logging	module	is	defined	in	a	way	that	avoids	manually	managing	the	global
state	information.	The	global	state	is	handled	within	the	logging	module.	We	can
write	applications	in	separate	parts	and	be	well	assured	that	those	components
will	cooperate	properly	through	the	logging	interface.	We	can,	for	example,
include	logging	in	some	modules	and	omit	it	entirely	from	other	modules	without
worrying	about	the	compatibility	or	configuration.

Most	importantly,	we	can	include	logging	requests	throughout	an	application	and
never	configure	any	handlers.	A	top-level	main	script	can	omit	import	logging
entirely.	In	this	case,	logging	is	a	stand-by	feature,	ready	for	use	when	needed	for
debugging.

Because	of	the	decentralized	nature	of	logging,	it's	best	to	configure	it	only	once,
at	the	top	level	of	an	application.	We	should	configure	logging	inside	the	if
__name__	==	"__main__":	portion	of	an	application.	We'll	look	at	this	in	more	detail	in
Chapter	18,	Coping	with	the	Command	Line.

Many	of	our	logging	handlers	involve	buffering.	For	the	most	part,	data	will	be
flushed	from	the	buffers	in	the	normal	course	of	events.	While	we	can	ignore
how	logging	shuts	down,	it's	slightly	more	reliable	to	use	logging.shutdown()	to	be
sure	that	all	of	the	buffers	are	flushed	to	the	devices.

When	handling	top-level	errors	and	exceptions,	we	have	two	explicit	techniques
to	ensure	that	all	buffers	are	written.	One	technique	is	to	use	a	finally	clause	on	a
try:	block,	as	follows:

import	sys	

if	__name__	==	"__main__":	

				logging.config.dictConfig(yaml.load("log_config.yaml"))	

				try:	

								application	=	Main()	

								status	=	application.run()	

				except	Exception	as	e:	

								logging.exception(e)	

								status	=	1	



				finally:	

								logging.shutdown()	

				sys.exit(status)	

This	example	shows	us	how	we	configure	logging	as	early	as	possible	and	shut
down	logging	as	late	as	possible.	This	ensures	that	as	much	of	the	application	as
possible	is	properly	bracketed	by	properly	configured	loggers.	This	includes	an
exception	logger;	in	some	applications,	the	main()	function	handles	all	exceptions,
making	the	except	clause	here	redundant.

Another	approach	is	to	include	an	atexit	handler	to	shut	down	logging,	as	follows:

import	atexit	

import	sys

if	__name__	==	"__main__":	

				logging.config.dictConfig(yaml.load("log_config.yaml"))	

				atexit.register(logging.shutdown)	

				try:	

								application	=	Main()	

								status	=	application.run()	

				except	Exception	as	e:	

								logging.exception(e)	

								status	=	2	

				sys.exit(status)	

This	version	shows	us	how	to	use	the	atexit	handler	to	invoke	logging.shutdown().
When	the	application	exits,	the	given	function	will	be	called.	If	the	exceptions
are	properly	handled	inside	the	main()	function,	the	try:	block	can	be	replaced
with	the	much	simpler	status	=	main();	sys.exit(status).

There's	a	third	technique,	which	uses	a	context	manager	to	control	logging.	We'll
look	at	that	alternative	in	Chapter	18,	Coping	with	the	Command	Line.



Naming	loggers
There	are	four	common	use	cases	for	using	logging.getLogger()	to	name	our	Loggers.
We	often	pick	names	to	parallel	our	application's	architecture,	as	described	in	the
following	examples:

Module	names:	We	might	have	a	module	global	Logger	instance	for	modules
that	contain	a	large	number	of	small	functions	or	classes	for	which	a	large
number	of	objects	are	created.	When	we	extend	tuple,	for	example,	we	don't
want	a	reference	to	Logger	in	each	instance.	We'll	often	do	this	globally,	and
usually	close	to	the	front	of	the	module,	as	follows:

import	logging	

logger	=	logging.getLogger(__name__)	

Object	instances:	This	was	shown	previously,	when	we	created	Logger	in
the	__init__()	method.	This	Logger	will	be	unique	to	the	instance;	using	only	a
qualified	class	name	might	be	misleading,	because	there	will	be	multiple
instances	of	the	class.	A	better	design	is	to	include	a	unique	instance
identifier	in	the	logger's	name,	as	follows:

def	__init__(self,	player_name)	

				self.name	=	player_name	

				self.logger	=	logging.getLogger(

								f"{self.__class__.__qualname__}.{player_name}")

Class	names:	This	was	shown	previously,	when	we	defined	a	simple
decorator.	We	can	use	__class__.__qualname__	as	the	Logger	name	and	assign
Logger	to	the	class	as	a	whole.	It	will	be	shared	by	all	instances	of	the	class.
Function	names:	For	small	functions	that	are	used	frequently,	we'll	often
use	a	module-level	log,	as	shown	previously.	For	larger	functions	that	are
rarely	used,	we	might	create	a	log	within	the	function,	as	follows:

def	main():	

				log	=	logging.getLogger("main")	

The	idea	here	is	to	be	sure	that	our	Logger	names	match	the	names	of	components
in	our	software	architecture.	This	provides	us	with	the	most	transparent	logging,
simplifying	debugging.



In	some	cases,	however,	we	might	have	a	more	complex	collection	of	Loggers.	We
might	have	several	distinct	types	of	informational	messages	from	a	class.	Two
common	examples	are	financial	audit	logs	and	security	access	logs.	We	might
want	several	parallel	hierarchies	of	Loggers;	one	with	names	that	start	with	audit.
and	another	with	names	that	start	with	security.	A	class	might	have	more
specialized	Loggers,	with	names	such	as	audit.module.Class	or	security.module.Class,	as
shown	in	the	following	example:

self.audit_log	=	logging.getLogger(

				f"audit.{self.__class__.__qualname__}")	

Having	multiple	logger	objects	available	in	a	class	allows	us	to	finely	control	the
kinds	of	output.	We	can	configure	each	Logger	to	have	different	handlers.	We'll	use
the	more	advanced	configurations	in	the	following	section	to	direct	the	output	to
different	destinations.



Extending	logger	levels
The	logging	module	has	five	predefined	levels	of	importance.	Each	level	has	a
global	variable	(or	two)	with	the	level	number.	The	level	of	importance
represents	a	spectrum	of	optionality,	from	debugging	messages	(rarely	important
enough	to	show)	to	critical	or	fatal	errors	(always	important),	as	shown	in	the
following	table:

Logging	module	variable Value

DEBUG 10

INFO 20

WARNING	or	WARN 30

ERROR 40

CRITICAL	or	FATAL 50

	

We	can	add	additional	levels	for	even	more	nuanced	control	over	what	messages
are	passed	or	rejected.	For	example,	some	applications	support	multiple	levels	of
verbosity.	Similarly,	some	applications	include	multiple	levels	of	debugging
details.	We	might	want	to	add	an	additional,	verbose	output	level,	set	to	15,	for
example.	This	fits	between	information	and	debugging.	It	can	follow	the	pattern
of	informative	messages	without	devolving	to	the	details	of	a	debugging	log.



For	ordinary,	silent	processing,	we	might	set	the	logging	level	to	logging.WARNING
so	that	only	warnings	and	errors	are	shown.	For	the	first	level	of	verbosity,	we
can	set	the	level	of	logging.INFO	to	see	informational	messages.	For	the	second
level	of	verbosity,	we	might	want	to	add	a	level	with	a	value	of	15	and	set	the
root	logger	to	include	this	new	level.

We	can	use	the	following	to	define	our	new	level	of	verbose	messages:

logging.addLevelName(15,	"VERBOSE")	

logging.VERBOSE	=	15	

This	code	needs	to	be	written	prior	to	the	configuration	of	the	loggers.	It	would
be	part	of	a	top-level,	main	script.	We	can	use	our	new	levels	via	the	Logger.log(	)
method,	which	takes	the	level	number	as	an	argument,	as	follows:

self.logger.log(logging.VERBOSE,	"Some	Message")	

While	there's	little	overhead	to	add	levels	such	as	these,	they	can	be	overused.
The	subtlety	is	that	a	level	conflates	multiple	concepts—visibility	and	erroneous
behavior—into	a	single	numeric	code.	The	levels	should	be	confined	to	a	simple
visibility	or	error	spectrum.	Anything	more	complex	must	be	done	via	the	Logger
names	or	the	actual	Filter	objects.



Defining	handlers	for	multiple
destinations
We	have	several	use	cases	for	sending	the	log	output	to	multiple	destinations,
which	are	shown	in	the	following	bullet	list:

We	might	want	duplicate	logs	to	improve	the	reliability	of	operations.
We	might	be	using	sophisticated	Filter	objects	to	create	distinct	subsets	of
messages.
We	might	have	different	levels	for	each	destination.	We	can	use	the
debugging	level	to	separate	debugging	messages	from	informational
messages.
We	might	have	different	handlers	based	on	the	Logger	names	to	represent
different	foci.

Of	course,	we	can	also	combine	these	different	choices	to	create	quite	complex
scenarios.	In	order	to	create	multiple	destinations,	we	must	create	multiple
Handler	instances.	Each	Handler	might	contain	a	customized	Formatter;	it	could
contain	an	optional	level,	and	an	optional	list	of	filters	that	can	be	applied.

Once	we	have	multiple	Handler	instances,	we	can	bind	one	or	more	Logger	objects
to	the	desired	Handler	instances.	A	Handler	object	can	have	a	level	filter.	Using	this,
we	can	have	multiple	handler	instances;	each	can	have	a	different	filter	to	show
different	groups	of	messages	based	on	the	level.	Also,	we	can	explicitly
create	Filter	objects	if	we	need	even	more	sophisticated	filtering	than	the	built-in
filters,	which	only	check	the	severity	level.

While	we	can	configure	this	through	the	logging	module	API,	it's	often	more	clear
to	define	most	of	the	logging	details	in	a	separate	configuration	file.	One	elegant
way	to	handle	this	is	to	use	YAML	notation	for	a	configuration	dictionary.	We
can	then	load	the	dictionary	with	a	relatively	straightforward	use	of
logging.config.dictConfig(yaml.load(somefile)).

The	YAML	notation	is	somewhat	more	compact	than	the	notation	accepted	by
configparser.	The	documentation	for	logging.config	in	the	Python	standard	library



uses	YAML	examples	because	of	their	clarity.	We'll	follow	this	pattern.

Here's	an	example	of	a	configuration	file	with	two	handlers	and	two	families	of
loggers:

version:	1	

handlers:	

		console:	

				class:	logging.StreamHandler	

				stream:	ext://sys.stderr	

				formatter:	basic	

		audit_file:	

				class:	logging.FileHandler	

				filename:	data/ch16_audit.log	

				encoding:	utf-8	

				formatter:	basic	

formatters:	

		basic:	

				style:	"{"	

				format:	"{levelname:s}:{name:s}:{message:s}"	

loggers:	

		verbose:	

				handlers:	[console]	

				level:	INFO	

		audit:	

				handlers:	[audit_file]	

				level:	INFO	

We	defined	two	handlers:	console	and	audit_file.	The	console	is	StreamHandler	that	is
sent	to	sys.stderr.	Note	that	we	have	to	use	a	URI-style	syntax	of	ext://sys.stderr
to	name	an	external	Python	resource.	In	this	context,	external	means	external	to
the	configuration	file.	This	complex	string	is	mapped	to	the	sys.stderr	object.	The
audit_file	is	FileHandler	that	will	write	to	a	given	file.	By	default,	files	are	opened
with	a	mode	of	a	to	append.

We	also	defined	the	formatter,	named	basic,	with	a	format	to	produce	messages
that	match	the	ones	created	when	logging	is	configured	via	basicConfig().	If	we
don't	use	this,	the	default	format	used	by	dictConfig()	only	has	the	message	text.

Finally,	we	defined	two	top-level	loggers,	verbose	and	audit.	The	verbose	instance
will	be	used	by	all	the	loggers	that	have	a	top-level	name	of	verbose.	We	can	then
use	a	Logger	name	such	as	verbose.example.SomeClass	to	create	an	instance	that	is	a
child	of	verbose.	Each	logger	has	a	list	of	handlers;	in	this	case,	there's	just	one
element	in	each	list.	Additionally,	we've	specified	the	logging	level	for	each
logger.

Here's	how	we	can	load	this	configuration	file:



import	logging.config	

import	yaml	

config_dict	=	yaml.load(config)	

logging.config.dictConfig(config_dict)	

We	parsed	the	YAML	text	into	dict	and	then	used	the	dictConfig()	function	to
configure	the	logging	with	the	given	dictionary.	Here	are	some	examples	of
getting	loggers	and	writing	messages:

verbose	=	logging.getLogger("verbose.example.SomeClass")	

audit	=	logging.getLogger("audit.example.SomeClass")	

verbose.info("Verbose	information")	

audit.info("Audit	record	with	before	and	after	state")	

We	created	two	Logger	objects;	one	under	the	verbose	family	tree	and	the	other
under	the	audit	family	tree.	When	we	write	to	the	verbose	logger,	we'll	see	the
output	on	the	console.	When	we	write	to	the	audit	logger,	however,	we'll	see
nothing	on	the	console;	the	record	will	go	to	the	file	that	is	named	in	the
configuration.

When	we	look	at	the	logging.handlers	module,	we	see	a	large	number	of	handlers
that	we	can	leverage.	By	default,	the	logging	module	uses	old-style	%	style
formatting	specifications.	These	are	not	like	the	format	specifications	for	the
str.format()	method.	When	we	defined	our	formatter	parameters,	we	used	{	style
formatting,	which	is	consistent	with	str.format().



Managing	propagation	rules
The	default	behavior	for	Loggers	is	for	a	logging	record	to	propagate	from	the
named	Logger	up	through	all	parent-level	Logger	instances	to	the	root	Logger
instance.	We	may	have	lower-level	Loggers	that	have	special	behaviors	and	a	root
Logger	that	defines	the	default	behavior	for	all	Loggers.

Because	logging	records	propagate,	a	root-level	logger	will	also	handle	any	log
records	from	the	lower-level	Loggers	that	we	define.	If	child	loggers	allow
propagation,	this	will	lead	to	duplicated	output:	first,	there	will	be	output	from
the	child,	and	then	the	output	when	the	log	record	propagates	to	the	parent.	If	we
want	to	avoid	duplication,	we	must	turn	the	propagation	off	for	lower-level
loggers	when	there	are	handlers	on	several	levels.

Our	previous	example	does	not	configure	a	root-level	Logger.	If	some	part	of	our
application	creates	a	logger	with	a	name	that	doesn't	start	with	audit.	or	verbose.,
then	that	additional	logger	won't	be	associated	with	Handler.	Either	we	need	more
top-level	names	or	we	need	to	configure	a	catch-all,	root-level	logger.

If	we	add	a	root-level	logger	to	capture	all	these	other	names,	then	we	have	to	be
careful	about	propagation	rules.	Here's	a	modification	to	the	configuration	file:

loggers:	

		verbose:	

				handlers:	[console]	

				level:	INFO	

				propagate:	False	#	Added	

		audit:	

				handlers:	[audit_file]	

				level:	INFO	

				propagate:	False	#	Added	

root:	#	Added	

		handlers:	[console]	

		level:	INFO	

We	turned	propagation	off	for	the	two	lower-level	loggers,	verbose	and	audit.	We
added	a	new	root-level	logger.	As	this	logger	has	no	name,	this	was	done	as	a
separate	top-level	dictionary	named	root:	in	parallel	with	the	loggers:	entry.

If	we	didn't	turn	propagation	off	in	the	two	lower-level	loggers,	each	verbose	or
audit	record	would	have	been	handled	twice.	In	the	case	of	an	audit	log,	double



handling	may	actually	be	desirable.	The	audit	data	would	go	to	the	console	as
well	as	the	audit	file.

What's	important	about	the	logging	module	is	that	we	don't	have	to	make	any
application	changes	to	refine	and	control	the	logging.	We	can	do	almost	anything
required	through	the	configuration	file.	As	YAML	is	relatively	elegant	notation,
we	can	encode	a	lot	of	capability	very	simply.



Configuration	Gotcha
The	basicConfig()	method	of	logging	is	careful	about	preserving	any	loggers
created	before	the	configuration	is	made.	The	logging.config.dictConfig()	method,
however,	has	the	default	behavior	of	disabling	any	loggers	created	prior	to
configuration.

When	assembling	a	large	and	complex	application,	we	may	have	module-level
loggers	that	are	created	during	the	import	process.	The	modules	imported	by	the
main	script	could	potentially	create	loggers	before	logging.config	is	created.	Also,
any	global	objects	or	class	definitions	might	have	loggers	created	prior	to	the
configuration.

We	often	have	to	add	a	line	such	as	this	to	our	configuration	file:

disable_existing_loggers:	False	

This	will	ensure	that	all	the	loggers	created	prior	to	the	configuration	will	still
propagate	to	the	root	logger	created	by	the	configuration.



Specialized	logging	for	control,
debugging,	audit,	and	security
There	are	many	kinds	of	logging;	we'll	focus	on	these	four	varieties:

Errors	and	Control:	Basic	errors	and	the	control	of	an	application	leads	to
a	main	log	that	helps	users	confirm	that	the	program	really	is	doing	what	it's
supposed	to	do.	This	would	include	enough	error	information	with	which
users	can	correct	their	problems	and	rerun	the	application.	If	a	user	enables
verbose	logging,	it	will	amplify	this	main	error	and	control	the	log	with
additional	user-friendly	details.
Debugging:	This	is	used	by	developers	and	maintainers;	it	can	include
rather	complex	implementation	details.	We'll	rarely	want	to	enable	blanket
debugging,	but	will	often	enable	debugging	for	specific	modules	or	classes.
Audit:	This	is	a	formal	confirmation	that	tracks	the	transformations	applied
to	data	so	that	we	can	be	sure	that	processing	was	done	correctly.
Security:	This	can	be	used	to	show	us	who	has	been	authenticated;	it	can
help	confirm	that	the	authorization	rules	are	being	followed.	It	can	also	be
used	to	detect	some	kinds	of	attacks	that	involve	repeated	password
failures.

We	often	have	different	formatting	and	handling	requirements	for	each	of	these
kinds	of	logs.	Also,	some	of	these	are	enabled	and	disabled	dynamically.	The
main	error	and	control	log	is	often	built	from	non-debug	messages.	We	might
have	an	application	with	a	structure	like	the	following	code:

from	collections	import	Counter

from	Chapter_16.ch16_ex1	import	LoggedClass

class	Main(LoggedClass):

				def	__init__(self)	->	None:

								self.counts:	Counter[str]	=	collections.Counter()

				def	run(self)	->	None:

								self.logger.info("Start")

								#	Some	processing	in	and	around	the	counter	increments

								self.counts["input"]	+=	2000

								self.counts["reject"]	+=	500

								self.counts["output"]	+=	1500



								self.logger.info("Counts	%s",	self.counts)

We	used	the	LoggedClass	class	to	create	a	logger	with	a	name	that	matches	the	class
qualified	name	(Main).	We've	written	informational	messages	to	this	logger	to
show	you	that	our	application	started	normally	and	finished	normally.	In	this
case,	we	used	Counter	to	accumulate	some	balance	information	that	can	be	used	to
confirm	that	the	right	amount	of	data	was	processed.

In	some	cases,	we'll	have	more	formal	balance	information	displayed	at	the	end
of	the	processing.	We	might	do	something	like	this	to	provide	a	slightly	easier-
to-read	display:

				for	k	in	self.counts:

								self.logger.info(

												f"{k:.<16s}	{self.counts[k]:>6,d}")

This	version	will	show	us	the	keys	and	values	on	separate	lines	in	the	log.	The
errors	and	control	log	often	uses	the	simplest	format;	it	might	show	us	just	the
message	text	with	little	or	no	additional	context.	A	formatter	like	this	might	be
used:

formatters:	

		control:	

				style:	"{"	

				format:	"{levelname:s}:{message:s}"	

This	configures	formatter	to	show	us	the	level	name	(INFO,	WARNING,	ERROR,	or	CRITICAL)
along	with	the	message	text.	This	eliminates	a	number	of	details,	providing	just
the	essential	facts	for	the	benefit	of	the	users.	We	called	the	formatter	control.

In	the	following	code,	we	associate	the	formatter	with	the	handler:

handlers:	

		console:	

				class:	logging.StreamHandler	

				stream:	ext://sys.stderr	

				formatter:	control	

This	will	use	the	control	formatter	with	the	console	handler.

It's	important	to	note	that	loggers	will	be	created	when	the	Main	class,	is	created.
This	is	long	before	the	logging	configuration	is	applied.	In	order	to	be	sure	the
loggers	that	are	defined	as	part	of	the	classes	are	honored	properly,	the
configuration	must	include	the	following:



disable_existing_loggers:	False

This	will	guarantee	that	loggers	created	as	part	of	the	class	definition	will	be
preserved	when	logging.config.dictConfig()	is	used	to	set	the	configuration.



Creating	a	debugging	log
A	debugging	log	is	usually	enabled	by	a	developer	to	monitor	a	program	under
development.	It's	often	narrowly	focused	on	specific	features,	modules,	or
classes.	Consequently,	we'll	often	enable	and	disable	loggers	by	name.	A
configuration	file	might	set	the	level	of	a	few	loggers	to	DEBUG,	leaving	others	at
INFO,	or	possibly	even	a	WARNING	level.

We'll	often	design	debugging	information	into	our	classes.	Indeed,	we	might	use
the	debugging	ability	as	a	specific	quality	feature	for	a	class	design.	This	may
mean	introducing	a	rich	set	of	logging	requests.	For	example,	we	might	have	a
complex	calculation	for	which	the	class	state	is	essential	information	as	follows:

from	Chapter_16.ch16_ex1	import	LoggedClass

class	BettingStrategy(LoggedClass):

				def	bet(self)	->	int:

								raise	NotImplementedError("No	bet	method")

				def	record_win(self)	->	None:

								pass

				def	record_loss(self)	->	None:

								pass

class	OneThreeTwoSix(BettingStrategy):

				def	__init__(self)	->	None:

								self.wins	=	0

				def	_state(self)	->	Dict[str,	int]:

								return	dict(wins=self.wins)

				def	bet(self)	->	int:

								bet	=	{0:	1,	1:	3,	2:	2,	3:	6}[self.wins	%	4]

								self.logger.debug(f"Bet	{self._state()};	based	on	{bet}")

								return	bet

				def	record_win(self)	->	None:

								self.wins	+=	1

								self.logger.debug(f"Win:	{self._state()}")

				def	record_loss(self)	->	None:

								self.wins	=	0

								self.logger.debug(f"Loss:	{self._state()}")

In	these	class	definitions,	we	defined	a	superclass,	BettingStrategy,	which	provides
some	features	of	a	betting	strategy.	Specifically,	this	class	defines	methods	for
getting	a	bet	amount,	recording	a	win,	or	recording	a	loss.	The	idea	behind	this



class	is	the	common	fallacy	that	the	modification	of	bets	can	somehow	mitigate
losses	in	a	game	of	chance.

The	concrete	implementation,	OneThreeTwoSix,	created	a	_state()	method	that
exposes	the	relevant	internal	state.	This	method	is	only	used	to	support
debugging.	We've	avoided	using	self.__dict__	because	this	often	has	too	much
information	to	be	helpful.	We	can	then	audit	the	changes	to	the	self._state
information	in	several	places	in	our	method	functions.

In	many	of	the	previous	examples,	we	relied	on	the	logger's	use	of	%r	and	%s
formatting.	We	might	have	used	a	line	like	self.logger.info("template	with	%r	and
%r",	some_item,	another_variable).	This	kind	of	line	provides	a	message	with	fields
that	pass	through	the	filters	before	being	handled	by	the	formatter.	A	great	deal
of	control	can	be	exercised	over	lines	like	this.	

In	this	example,	we've	used	self.logger.debug(f"Win:	{self._state()}"),	which	uses	an
f-string.	The	logging	package's	filter	and	formatter	cannot	be	used	to	provide
fine-grained	control	over	this	output.	In	the	cases	of	audit	and	security	logs,	the
logging	%	style	formatting,	controlled	by	the	logger,	is	preferred.	It	allows	a	log
filter	to	redact	sensitive	information	in	a	consistent	way.	For	informal	log	entries,
f-strings	can	be	handy.	It's	important,	however,	to	be	very	careful	of	what
information	is	placed	in	a	log	using	f-string.

Debugging	output	is	often	selectively	enabled	by	editing	the	configuration	file	to
enable	and	disable	debugging	in	certain	places.	We	might	make	a	change	such	as
this	to	the	logging	configuration	file:

loggers:	

				betting.OneThreeTwoSix:	

							handlers:	[console]	

							level:	DEBUG	

							propagate:	False	

We	identified	the	logger	for	a	particular	class	based	on	the	qualified	name	for	the
class.	This	example	assumes	that	there's	a	handler	named	console	already	defined.
Also,	we've	turned	off	the	propagation	to	prevent	the	debugging	messages	from
being	duplicated	into	the	root	logger.

Implicit	in	this	design	is	the	idea	that	debugging	is	not	something	we	want	to
simply	enable	from	the	command	line	via	a	simplistic	-D	option	or	a	--DEBUG



option.	In	order	to	perform	effective	debugging,	we'll	often	want	to	enable
selected	loggers	via	a	configuration	file.	We'll	look	at	command-line	issues	in	Cha
pter	18,	Coping	with	the	Command	Line.



Creating	audit	and	security	logs
Audit	and	security	logs	are	often	duplicated	between	two	handlers:	the	main
control	handler	and	a	file	handler	that	is	used	for	audit	and	security	reviews.	This
means	that	we'll	do	the	following	things:

Define	additional	loggers	for	audit	and	security
Define	multiple	handlers	for	these	loggers
Optionally,	define	additional	formats	for	the	audit	handler

As	shown	previously,	we'll	often	create	separate	hierarchies	of	the	audit
and	security	logs.	Creating	separate	hierarchies	of	loggers	is	considerably	simpler
than	trying	to	introduce	audit	or	security	via	a	new	logging	level.	Adding	new
levels	is	challenging	because	the	messages	are	essentially	INFO	messages;	they
don't	belong	on	the	WARNING	side	of	INFO	because	they're	not	errors,	nor	do	they
belong	on	the	DEBUG	side	of	INFO	because	they're	not	optional.

Here's	an	extension	to	the	metaclass	shown	earlier.	This	new	metaclass	will	build
a	class	that	includes	an	ordinary	control	or	debugging	logger	as	well	as	a	special
auditing	logger:

from	Chapter_16.ch16_ex1	import	LoggedClassMeta

class	AuditedClassMeta(LoggedClassMeta):

				def	__new__(cls,	name,	bases,	namespace,	**kwds):

								result	=	LoggedClassMeta.__new__(cls,	name,	bases,	dict(namespace))

								for	item,	type_ref	in	result.__annotations__.items():

												if	issubclass(type_ref,	logging.Logger):

																prefix	=	""	if	item	==	"logger"	else	f"{item}."

																logger	=	logging.getLogger(

																				f"{prefix}{result.__qualname__}")

																setattr(result,	item,	logger)

								return	result

class	AuditedClass(LoggedClass,	metaclass=AuditedClassMeta):

				audit:	logging.Logger

				pass

The	AuditedClassMeta	definition	extends	LoggedClassMeta.	The	base	metaclass
initialized	the	logged	attribute	with	a	specific	logger	instance	based	on	the	class
name.	This	extension	does	something	similar.	It	looks	for	all	type	annotations



that	reference	the	logging.Logger	type.	All	of	these	references	are	automatically
initialized	with	a	class-level	logger	with	a	name	based	on	the	attribute	name	and
the	qualified	class	name.	This	lets	us	build	an	audit	logger	or	some	other
specialized	logger	with	nothing	more	than	a	type	annotation.

The	AuditedClass	definition	extends	the	LoggedClass	definition	to	provide	a
definition	for	a	logger	attribute	of	the	class.	This	class	adds	the	audit	attribute	to
the	class.	Any	subclass	will	be	created	with	two	loggers.	One	logger	has	a	name
simply	based	on	the	qualified	name	of	the	class.	The	other	logger	uses	the
qualified	name,	but	with	a	prefix	that	puts	it	in	the	audit	hierarchy.	Here's	how	we
can	use	this	class:

class	Table(AuditedClass):

				def	bet(self,	bet:	str,	amount:	int)	->	None:

								self.logger.info("Betting	%d	on	%s",	amount,	bet)

								self.audit.info("Bet:%r,	Amount:%r",	bet,	amount)

We	created	a	class	that	will	produce	records	on	a	logger	with	a	name	that	has	a
prefix	of	'audit.'.	The	idea	is	to	have	two	separate	streams	of	log	records	from
the	application.	In	the	main	console	log,	we	might	want	to	see	a	simplified	view,
like	the	following	example	records:

INFO:Table:Betting	1	on	Black

INFO:audit.Table:Bet:'Black',	Amount:1

In	the	detailed	audit	file,	however,	we	want	more	information,	as	shown	in	the
following	example	records:

INFO:audit.Table:2019-03-19	07:34:58:Bet:'Black',	Amount:1

INFO:audit.Table:2019-03-19	07:36:06:Bet:'Black',	Amount:1

There	are	two	different	handlers	for	the	audit.Table	records.	Each	handler	has	a
different	format.	We	can	configure	logging	to	handle	this	additional	hierarchy	of
loggers.	We'll	look	at	the	two	handlers	that	we	need,	as	follows:

handlers:	

		console:	

				class:	logging.StreamHandler	

				stream:	ext://sys.stderr	

				formatter:	basic	

		audit_file:	

				class:	logging.FileHandler	

				filename:	data/ch16_audit.log	

				encoding:	utf-8	

				formatter:	detailed	



The	console	handler	has	the	user-oriented	log	entries,	which	use	the	basic	format.
The	audit_file	handler	uses	a	more	complex	formatter	named	detailed.	Here	are
the	two	formatters	referenced	by	these	handlers:

formatters:	

		basic:	

				style:	"{"	

				format:	"{levelname:s}:{name:s}:{message:s}"	

		detailed:	

				style:	"{"	

				format:	"{levelname:s}:{name:s}:{asctime:s}:{message:s}"	

				datefmt:	"%Y-%m-%d	%H:%M:%S"	

The	basic	format	shows	us	just	three	attributes	of	the	message.	The	detailed
format	rules	are	somewhat	complex	because	the	date	formatting	is	done
separately	from	the	rest	of	the	message	formatting.	The	datetime	module	uses	%
style	formatting.	We	used	{	style	formatting	for	the	overall	message.	Here	are	the
two	Logger	definitions:

loggers:	

		audit:	

				handlers:	[console,audit_file]	

				level:	INFO	

				propagate:	True	

root:	

		handlers:	[console]	

		level:	INFO	

We	defined	a	logger	for	the	audit	hierarchy.	All	the	children	of	audit	will	write
their	messages	to	both	console	Handler	and	audit_file	Handler.	The	root	logger	will
define	all	the	other	loggers	to	use	the	console	only.	We'll	now	see	two	forms	of
the	audit	messages.

The	duplicate	handlers	provide	us	with	the	audit	information	in	the	context	of
the	main	console	log,	plus	a	focused	audit	trail	in	a	separate	log	that	can	be
saved	for	later	analysis.	



Using	the	warnings	module
Object-oriented	development	often	involves	performing	a	significant	refactoring
of	a	class	or	module.	It's	difficult	to	get	the	API	exactly	right	the	very	first	time
we	write	an	application.	Indeed,	the	design	time	required	to	get	the	API	exactly
right	might	get	wasted.	Python's	flexibility	permits	us	great	latitude	in	making
changes,	as	we	learn	more	about	the	problem	domain	and	the	user's
requirements.

One	of	the	tools	that	we	can	use	to	support	the	design	evolution	is	the	warnings
module.	There	are	the	following	two	clear	use	cases	for	warnings	and	one	fuzzy
use	case:

Warnings	should	be	used	to	alert	developers	of	API	changes;	usually,
features	that	are	deprecated	or	pending	deprecation.	Deprecation	and
pending	deprecation	warnings	are	silent	by	default.	These	messages	are	not
silent	when	running	the	unittest	module;	this	helps	us	ensure	that	we're
making	proper	use	of	upgraded	library	packages.
Warnings	should	alert	users	about	a	configuration	problem.	For	example,
there	might	be	several	alternative	implementations	of	a	module;	when	the
preferred	implementation	is	not	available,	we	might	want	to	provide	a
warning	that	an	optimal	implementation	is	not	being	used.
We	might	push	the	edge	of	the	envelope	by	using	warnings	to	alert	users
that	the	results	of	the	computation	may	have	a	problem.	From	outside	the
Python	environment,	one	definition	of	a	warning	says,	...indicate	that	the
service	might	have	performed	some,	but	not	all,	of	the	requested
functions.	This	idea	of	an	incomplete	result	leading	to	a	warning	is	open	to
dispute:	it	may	be	better	to	produce	no	result	rather	than	a	potentially
incomplete	result.

For	the	first	two	use	cases,	we'll	often	use	Python's	warnings	module	to	show	you
that	there	are	correctable	problems.	For	the	third	blurry	use	case,	we	might	use
the	logger.warn()	method	to	alert	the	user	about	the	potential	issues.	We	shouldn't
rely	on	the	warnings	module	for	this,	because	the	default	behavior	is	to	show	a
warning	just	once.



The	value	of	the	warnings	module	is	to	provide	messages	that	are	optional	and
aimed	at	optimizations,	compatibility,	and	a	small	set	of	runtime	questions.	The
use	of	experimental	features	of	a	complex	library	or	package,	for	example,	might
lead	to	a	warning.	



Showing	API	changes	with	a	warning
When	we	change	the	API	for	one	of	our	modules,	packages,	or	classes,	we	can
provide	a	handy	marker	via	the	warnings	module.	This	will	raise	a	warning	in	the
method	that	is	deprecated	or	is	pending	deprecation,	as	follows:

import	warnings

class	Player:

				"""version	2.1"""

				def	bet(self)	->	None:

								warnings.warn(

												"bet	is	deprecated,	use	place_bet",

												DeprecationWarning,	stacklevel=2)

								pass

When	we	do	this,	any	part	of	the	application	that	uses	Player.bet()	will	receive
DeprecationWarning.	By	default,	this	warning	is	silent.	We	can,	however,	adjust	the
warnings	filter	to	see	the	message,	as	shown	here:

>>>	warnings.simplefilter("always",	category=DeprecationWarning)	

>>>	p2	=	Player()	

>>>	p2.bet()	__main__:4:	DeprecationWarning:	bet	is	deprecated,	use			

				place_bet	

This	technique	allows	us	to	locate	all	of	the	places	where	our	application	must
change	because	of	an	API	change.	If	we	have	unit	test	cases	with	close	to	100
percent	code	coverage,	this	simple	technique	is	likely	to	reveal	all	the	uses	of
deprecated	methods.

Some	integrated	development	environments	(IDEs)	can	spot	the	use	of
warnings	and	highlight	the	deprecated	code.	PyCharm,	for	example,	will	draw	a
small	line	through	any	use	of	the	deprecated	bet()	method.

Because	this	is	so	valuable	for	planning	and	managing	software	changes,	we
have	the	following	three	ways	to	make	the	warnings	visible	in	our	applications:

The	command-line	-Wd	option	will	set	the	action	to	default	for	all	warnings.
This	will	enable	the	normally	silent	deprecation	warnings.	When	we	run
python3.7	-Wd,	we'll	see	all	the	deprecation	warnings.



Using	unittest,	which	always	executes	in	the	warnings.simplefilter('default')
mode.
Including	warnings.simplefilter('default')	in	our	application	program.	This
will	also	apply	the	default	action	to	all	warnings;	it's	equivalent	to	the	-Wd
command-line	option.



Showing	configuration	problems	with
a	warning
We	may	have	multiple	implementations	for	a	given	class	or	module.	We'll	often
use	a	configuration	file	parameter	to	decide	which	implementation	is
appropriate.	See	Chapter	14,	Configuration	Files	and	Persistence,	for	more
information	on	this	technique.

In	some	cases,	however,	an	application	may	silently	depend	on	whether	or	not
other	packages	are	part	of	the	Python	installation.	One	implementation	may	be
optimal,	and	another	implementation	may	be	the	fallback	plan.	This	is	used	by	a
number	of	Python	library	modules	to	choose	between	optimized	binary	modules
and	pure	Python	modules.

A	common	technique	is	to	try	multiple	import	alternatives	to	locate	a	package
that's	installed.	We	can	produce	warnings	that	show	us	the	possible	configuration
difficulties.	Here's	a	way	to	manage	this	alternative	implementation	import:

import	warnings

try:

				import	simulation_model_1	as	model

except	ImportError	as	e:

				warnings.warn(repr(e))

if	'model'	not	in	globals():

				try:

								import	simulation_model_2	as	model

				except	ImportError	as	e:

								warnings.warn(repr(e))

if	'model'	not	in	globals():	

				raise	ImportError("Missing	simulation_model_1	and	simulation_model_2")	

We	tried	one	import	for	a	module.	If	this	had	failed,	we'd	have	tried	another
import.	We	used	an	if	statement	to	reduce	the	nesting	of	exceptions.	If	there	are
more	than	two	alternatives,	nested	exceptions	can	lead	to	a	very	complex-
looking	exception.	By	using	extra	if	statements,	we	can	flatten	a	long	sequence
of	alternatives	so	that	the	exceptions	aren't	nested.

We	can	better	manage	this	warning	message	by	changing	the	class	of	the
message.	In	the	preceding	code,	this	will	be	UserWarning.	These	are	shown	by



default,	providing	users	with	some	evidence	that	the	configuration	is	not
optimal.

If	we	change	the	class	to	ImportWarning,	it	will	be	silent	by	default.	This	provides	a
normally	silent	operation	in	cases	where	the	choice	of	package	doesn't	matter	to
users.	The	typical	developer's	technique	of	running	with	the	-Wd	option	will
reveal	the	ImportWarning	messages.

To	change	the	class	of	the	warning,	we	change	the	call	to	warnings.warn(),	as
follows:

warnings.warn(e,	ImportWarning)	

This	changes	the	warning	to	a	class	that	is	silent	by	default.	The	message	can
still	be	visible	to	developers,	who	should	be	using	the	-Wd	option.



Showing	possible	software	problems
with	a	warning
The	idea	of	warnings	aimed	at	end	users	is	a	bit	nebulous;	did	the	application
work	or	did	it	fail?	What	does	a	warning	really	mean?	Is	there	something	the
user	should	do	differently?

Because	of	this	potential	ambiguity,	warnings	in	the	user	interface	aren't	a	great
idea.	To	be	truly	usable,	a	program	should	either	work	correctly	or	should	not
work	at	all.	When	there's	an	error,	the	error	message	should	include	advice	for
the	user's	response	to	the	problem.	We	shouldn't	impose	a	burden	on	the	user	to
judge	the	quality	of	the	output	and	determine	its	fitness	for	purpose.	We'll
elaborate	on	this	point.

A	program	should	either	work	correctly	or	it	should	not	work	at	all.

One	potential	unambiguous	use	for	end	user	warnings	is	to	alert	the	user	that	the
output	is	incomplete.	An	application	may	have	a	problem	completing	a	network
connection,	for	example;	the	essential	results	are	correct,	but	one	of	the	data
sources	didn't	work	properly.

There	are	situations	where	an	application	takes	an	action	that	is	not	what	the	user
requested,	and	the	output	is	valid	and	useful.	In	the	case	of	a	network	problem,	a
default	behavior	can	be	used	in	spite	of	the	network	problem.	Generally,
replacing	something	faulty	with	something	correct	but	not	exactly	what	the	user
requested	is	a	good	candidate	for	a	warning.	This	kind	of	warning	is	best	done
with	logging	at	the	WARN	level,	not	with	the	warnings	module.	The	warnings	module
produces	one-time	messages;	we	may	want	to	provide	more	details	to	the	user.
Here's	how	we	might	use	a	simple	Logger.warn()	message	to	describe	the	problem
in	the	log:

try:	

				with	urllib.request.urlopen("http://host/resource/",	timeout=30)	as	resource:	

								content	=	json.load(resource)	

except	socket.timeout	as	e:	

				self.log.warn(

								"Missing	information	from		http://host/resource")	



				content=	[]	

If	a	timeout	occurs,	a	warning	message	is	written	to	the	log	and	the	program
keeps	running.	The	content	of	the	resource	will	be	set	to	an	empty	list.	The	log
message	will	be	written	every	time.	A	warnings	module	warning	is	ordinarily
shown	only	once	from	a	given	location	in	the	program	and	is	suppressed	after
that.



Advanced	logging	–	the	last	few
messages	and	network	destinations
We'll	look	at	two	more	advanced	techniques	that	can	help	provide	useful
debugging	information.	The	first	of	these	is	a	log	tail;	this	is	a	buffer	of	the	last
few	log	messages	before	some	significant	event.	The	idea	is	to	have	a	small	file
that	can	be	read	to	show	why	an	application	died.	It's	a	bit	like	having	the	OS
tail	command	automatically	applied	to	the	full	log	output.

The	second	technique	uses	a	feature	of	the	logging	framework	to	send	log
messages	through	a	network	to	a	centralized	log-handling	service.	This	can	be
used	to	consolidate	logs	from	a	number	of	parallel	web	servers.	We	need	to
create	both	senders	and	receivers	for	the	logs.



Building	an	automatic	tail	buffer
The	log	tail	buffer	is	an	extension	to	the	logging	framework.	We're	going	to
extend	MemoryHandler	to	slightly	alter	its	behavior.	The	built-in	behavior	for
MemoryHandler	includes	three	use	cases	for	writing—it	will	write	to	another	handler
when	the	capacity	is	reached;	it	will	write	any	buffered	messages	when	logging
shuts	down;	most	importantly,	it	will	write	the	entire	buffer	when	a	message	of	a
given	level	is	logged.

We'll	change	the	first	use	case	slightly.	Instead	of	writing	to	the	output	file	when
the	buffer	is	full,	we'll	remove	the	oldest	messages,	leaving	the	others	in	the
buffer.	The	other	two	use	cases	for	writing	on	exit	and	writing	when	a	high-
severity	record	is	handled	will	be	left	alone.	This	will	have	the	effect	of	dumping
the	last	few	messages	before	the	shutdown,	as	well	as	dumping	the	last	few
messages	before	an	error.

The	default	configuration	for	a	MemoryHandler	instance	is	to	buffer	messages	until	a
message	greater	than	or	equal	to	the	ERROR	level	is	logged.	This	will	lead	to
dumping	the	buffer	when	logging	an	error.	It	will	tend	to	silence	the	business	as
usual	messages	that	aren't	immediate	precursors	of	the	error.

In	order	to	understand	this	example,	it's	important	to	locate	your	Python
installation	and	review	the	logging.handlers	module	in	detail.

This	extension	to	MemoryHandler	will	keep	the	last	few	messages,	based	on	the
defined	capacity	when	the	TailHandler	class	is	created,	as	follows:

class	TailHandler(logging.handlers.MemoryHandler):

				def	shouldFlush(self,	record:	logging.LogRecord)	->	bool:

								"""

								Check	for	buffer	full	

								or	a	record	at	the	flushLevel	or	higher.

								"""

								if	record.levelno	>=	self.flushLevel:

												return	True

								while	len(self.buffer)	>	self.capacity:

												self.acquire()

												try:

																del	self.buffer[0]

												finally:

																self.release()

								return	False



We	extended	MemoryHandler	so	that	it	will	accumulate	log	messages	up	to	the	given
capacity.	When	the	capacity	is	reached,	old	messages	will	be	removed	as	new
messages	are	added.	Note	that	we	must	lock	the	data	structure	to	permit
multithreaded	logging.

If	a	message	with	an	appropriate	level	is	received,	then	the	entire	structure	is
emitted	to	the	target	handler.	Usually,	the	target	is	FileHandler,	which	writes	to	a
tail	file	for	debugging	and	support	purposes.

Additionally,	when	logging	shuts	down,	the	final	few	messages	will	also	be
written	to	the	tail	file.	This	should	indicate	a	normal	termination	that	doesn't
require	any	debugging	or	support.

Generally,	we'd	send	DEBUG	level	messages	to	this	kind	of	handler	so	that	we	have
a	great	deal	of	detail	surrounding	a	crash	situation.	The	configuration	should
specifically	set	the	level	to	DEBUG	rather	than	allowing	the	level	to	default.

Here's	a	configuration	that	uses	this	TailHandler:

version:	1	

disable_existing_loggers:	False	

handlers:	

		console:	

				class:	logging.StreamHandler	

				stream:	ext://sys.stderr	

				formatter:	basic	

		tail:	

				():	__main__.TailHandler	

				target:	cfg://handlers.console	

				capacity:	5	

formatters:	

		basic:	

				style:	"{"	

				format:	"{levelname:s}:{name:s}:{message:s}"	

loggers:	

		test:	

				handlers:	[tail]	

				level:	DEBUG	

				propagate:	False	

root:	

		handlers:	[console]	

		level:	INFO	

The	definition	of	TailHandler	shows	us	several	additional	features	of	the	logging
configuration.	It	shows	us	class	references	as	well	as	other	elements	of	the
configuration	file.

We	referred	to	a	customized	class	definition	in	the	configuration.	A	label	of	()



specifies	that	the	value	should	be	interpreted	as	a	module	and	class	name.	In	this
case,	it	is	an	instance	of	our	__main__.TailHandler	class.	A	label	of	class	instead	of	()
uses	a	module	and	class	that	are	part	of	the	logging	package.

We	referred	to	another	logger	that's	defined	within	the	configuration.
cfg://handlers.console	refers	to	the	console	handler	defined	within	the	handlers
section	of	this	configuration	file.	For	demonstration	purposes,	we	used	the
StreamHandler	tail	target,	which	uses	sys.stderr.	As	noted	previously,	a	better	design
might	be	using	FileHandler,	which	targets	a	debugging	file.

We	created	the	test	hierarchy	of	loggers	that	used	our	tail	handler.	The	messages
written	to	these	loggers	will	be	buffered	and	only	shown	on	the	error	or
shutdown.

Here's	a	demonstration	script:

logging.config.dictConfig(yaml.load(config8))

log	=	logging.getLogger("test.demo8")

log.info("Last	5	before	error")

for	i	in	range(20):

				log.debug(f"Message	{i:d}")

log.error("Error	causes	dump	of	last	5")

log.info("Last	5	before	shutdown")

for	i	in	range(20,	40):

				log.debug(f"Message	{i:d}")

log.info("Shutdown	causes	dump	of	last	5")

logging.shutdown()

We	generated	20	messages	prior	to	an	error.	Then,	we	generated	20	more
messages	before	shutting	down	the	logging	and	flushing	the	buffers.	This	will
produce	output	like	the	following:

DEBUG:test.demo8:Message	15

DEBUG:test.demo8:Message	16

DEBUG:test.demo8:Message	17

DEBUG:test.demo8:Message	18

DEBUG:test.demo8:Message	19

ERROR:test.demo8:Error	causes	dump	of	last	5

DEBUG:test.demo8:Message	36

DEBUG:test.demo8:Message	37

DEBUG:test.demo8:Message	38

DEBUG:test.demo8:Message	39

INFO:test.demo8:Shutdown	causes	dump	of	last	5

The	intermediate	messages	were	silently	dropped	by	the	TailHandler	object.	As	the
capacity	was	set	to	five,	the	last	five	messages	prior	to	an	error	(or	shutdown)	are



displayed.	The	last	five	messages	include	four	debug	messages	plus	a	final
informational	message.



Sending	logging	messages	to	a	remote
process
One	high-performance	design	pattern	is	to	have	a	cluster	of	processes	that	are
being	used	to	solve	a	single	problem.	We	might	have	an	application	that	is
spread	across	multiple	application	servers	or	multiple	database	clients.	For	this
kind	of	architecture,	we	often	want	a	centralized	log	among	all	of	the	various
processes.

One	technique	for	creating	a	unified	log	is	to	include	accurate	timestamps	and
then	sort	records	from	separate	log	files	into	a	single,	unified	log.	This	sorting
and	merging	is	extra	processing	that	can	be	avoided.	Another,	more	responsive
technique	is	to	send	log	messages	from	a	number	of	concurrent	producer
processes	to	a	single	consumer	process.

Our	shared	logging	solution	makes	use	of	the	shared	queues	from	the
multiprocessing	module.	For	additional	information	on	multiprocessing,	see	Chapter
13,	Transmitting	and	Sharing	Objects.

The	following	is	the	three-step	process	to	build	a	multiprocessing	application:

Firstly,	we'll	create	a	queue	object	shared	by	producers	and	consumers.
Secondly,	we'll	create	the	consumer	process,	which	gets	the	logging	records
from	the	queue.	The	logging	consumer	can	apply	filters	to	the	messages	and
write	them	to	a	unified	file.
Thirdly,	we'll	create	the	pool	of	producer	processes	that	do	the	real	work	of
our	application	and	produce	logging	records	in	the	queue	they	share	with
the	consumer.

As	an	additional	feature,	the	ERROR	and	FATAL	messages	can	provide	immediate
notification	via	an	SMS	or	email	to	concerned	users.	The	consumer	can	also
handle	the	(relatively)	slow	processing	associated	with	rotating	log	files.

Here's	the	definition	of	a	consumer	process:

import	collections



import	logging

import	multiprocessing

class	Log_Consumer_1(multiprocessing.Process):

				def	__init__(self,	queue):

								self.source	=	queue

								super().__init__()

								logging.config.dictConfig(yaml.load(consumer_config))

								self.combined	=	logging.getLogger(f"combined.{self.__class__.__qualname__}")

								self.log	=	logging.getLogger(self.__class__.__qualname__)

								self.counts	=	collections.Counter()

				def	run(self):

								self.log.info("Consumer	Started")

								while	True:

												log_record	=	self.source.get()

												if	log_record	==	None:	

																break

												self.combined.handle(log_record)

												self.counts[log_record.getMessage()]	+=	1

								self.log.info("Consumer	Finished")

								self.log.info(self.counts)

This	process	is	a	subclass	of	multiprocessing.Process.	The	multiprocessing.Process
class	provides	a	start()	method,	which	will	fork	a	subprocess	and	executes	the
run()	method	provided	here.

The	self.counts	object	tracks	individual	messages	from	the	producers.	The	idea
here	is	to	create	a	summary	showing	the	types	of	messages	received.	This	is	not
a	common	practice,	but	it	helps	here	to	reveal	how	the	demonstration	works.

While	the	process	is	running,	this	object	will	use	the	Queue.get()	method	to	get	the
log	records	from	the	queue.	The	messages	will	be	routed	to	a	logger	instance.	In
this	case,	we're	going	to	create	a	special	logger	named	with	a	parent	name	of
combined.;	this	will	be	given	each	record	from	a	source	process.

A	sentinel	object,	None,	will	be	used	to	signal	the	end	of	processing.	When	this	is
received,	the	while	statement	will	finish	and	the	final	log	messages	will	be
written.	The	self.counts	object	will	demonstrate	how	many	messages	were	seen.
This	lets	us	tune	the	queue	size	to	be	sure	messages	aren't	lost	due	to	queue
overruns.

Here's	a	logging	configuration	file	for	this	process:

version:	1

disable_existing_loggers:	False

handlers:

		console:

				class:	logging.StreamHandler



				stream:	ext://sys.stderr

				formatter:	basic

formatters:

		basic:

				style:	"{"

				format:	"{levelname:s}:{name:s}:{message:s}"

loggers:

		combined:

				handlers:	[console]

				formatter:	detail

				level:	INFO

				propagate:	False

root:

		handlers:	[console]

		level:	INFO

We	defined	a	simple	console	Logger	with	a	basic	format.	We	also	defined	the	top-
level	of	a	hierarchy	of	loggers	with	names	that	begin	with	combined..	These
loggers	will	be	used	to	display	the	combined	output	of	the	various	producers.

Here's	a	logging	producer:

import	multiprocessing

import	time

import	logging

import	logging.handlers

class	Log_Producer(multiprocessing.Process):

				handler_class	=	logging.handlers.QueueHandler

				def	__init__(self,	proc_id,	queue):

								self.proc_id	=	proc_id

								self.destination	=	queue

								super().__init__()

								self.log	=	logging.getLogger(

												f"{self.__class__.__qualname__}.{self.proc_id}")

								self.log.handlers	=	[self.handler_class(self.destination)]

								self.log.setLevel(logging.INFO)

				def	run(self):

								self.log.info(f"Started")

								for	i	in	range(100):

												self.log.info(f"Message	{i:d}")

												time.sleep(0.001)

								self.log.info(f"Finished")

The	producer	doesn't	do	much	in	the	way	of	configuration.	It	gets	a	logger	to	use
the	qualified	class	name	and	an	instance	identifier	(self.proc_id).	It	sets	the	list	of
handlers	to	be	just	QueueHandler	wrapped	around	the	destination—a	Queue	instance.
The	level	of	this	logger	is	set	to	INFO.

We	made	handler_class	an	attribute	of	the	class	definition	because	we	plan	to
change	it.	For	the	first	example,	it	will	be	logging.handlers.QueueHandler.	It	allows
the	example	producer	to	be	reused	with	other	kinds	of	handlers.



The	process	to	actually	do	this	work	uses	the	logger	to	create	log	messages.
These	messages	will	be	enqueued	for	processing	by	the	centralized	consumer.	In
this	case,	the	process	simply	floods	the	queue	with	102	messages	as	quickly	as
possible.

Here's	how	we	can	start	the	consumer	and	producers.	We'll	show	this	in	small
groups	of	steps.	First,	we	create	the	queue	as	follows:

import	multiprocessing	

queue=	multiprocessing.Queue(10)	

This	queue	is	way	too	small	to	handle	10	producers	blasting	102	messages	in	a
fraction	of	a	second.	The	idea	of	a	small	queue	is	to	see	what	happens	when
messages	are	lost.	Here's	how	we	start	the	consumer	process:

consumer	=	Log_Consumer_1(queue)	

consumer.start()	

Here's	how	we	start	an	array	of	producer	processes:

producers	=	[]	

for	i	in	range(10):	

				proc=	Log_Producer(i,	queue)	

				proc.start()	

				producers.append(proc)	

As	expected,	10	concurrent	producers	will	overflow	the	queue.	Each	producer
will	receive	a	number	of	queues	full	of	exceptions	to	show	us	that	the	messages
were	lost.

Here's	how	we	cleanly	finish	the	processing:

for	p	in	producers:	

				p.join()	

queue.put(None)	

consumer.join()	

First,	we	wait	for	each	producer	process	to	finish	and	then	rejoin	the	parent
process.	Then,	we	put	a	sentinel	object	into	the	queue	so	that	the	consumer	will
terminate	cleanly.	Finally,	we	wait	for	the	consumer	process	to	finish	and	join
the	parent	process.



Preventing	queue	overrun
The	default	behavior	of	the	logging	module	puts	messages	into	the	queue	with
the	Queue.put_nowait()	method.	The	advantage	of	this	is	that	it	allows	the	producers
to	run	without	the	delays	associated	with	logging.	The	disadvantage	of	this	is
that	messages	will	get	lost	if	the	queue	is	too	small	to	handle	a	very	large	burst
of	logging	messages.

We	have	the	following	two	choices	to	gracefully	handle	a	burst	of	messages:

We	can	switch	from	Queue	to	SimpleQueue.	SimpleQueue	has	an	indefinite	size.	As
it	has	a	slightly	different	API,	we'll	need	to	extend	QueueHandler	to	use
Queue.put()	instead	of	Queue.put_nowait().
We	can	slow	down	the	producer	in	the	rare	case	that	the	queue	is	full.	This
is	a	small	change	to	QueueHandler	to	use	Queue.put()	instead	of	Queue.put_nowait().

Interestingly,	the	same	API	change	works	for	both	Queue	and	SimpleQueue.	Here's
the	change:

class	WaitQueueHandler(logging.handlers.QueueHandler):

				def	enqueue(self,	record):

								self.queue.put(record)

We	replaced	the	body	of	the	enqueue()	method	to	use	a	different	method	of	Queue.
Now,	we	can	use	SimpleQueue	or	Queue.	If	we	use	Queue,	it	will	wait	until	the	queue	is
full,	preventing	the	loss	of	logging	messages.	If	we	use	SimpleQueue,	the	queue	will
silently	expand	to	hold	all	the	messages.

Here's	the	revised	producer	class:

class	Log_Producer_2(Log_Producer):	

				handler_class	=	WaitQueueHandler	

This	class	uses	our	new	WaitQueueHandler.	Otherwise,	the	producer	is	identical	to
the	previous	version.

The	rest	of	the	script	to	create	Queue	and	start	the	consumer	is	identical.	The
producers	are	instances	of	Log_Producer_2,	but	otherwise,	the	script	to	start	and	join



remains	identical	to	the	first	example.

This	variation	runs	more	slowly,	but	never	loses	a	message.	We	can	improve	the
performance	by	creating	a	larger	queue	capacity.	If	we	create	a	queue	with	a
capacity	of	1,020	messages,	the	performance	is	maximized	because	that's	the
largest	possible	size	of	a	burst.	Finding	an	optimal	queue	capacity	requires	some
experimentation.	While	the	exact	size	depends	on	the	operating	system,	a	size	of
30,	for	example,	doesn't	lose	too	many	messages.	The	relative	performance	of
the	producer	and	consumer	is	important.	To	see	the	effects,	change	the	sleep	time
in	the	producer	to	larger	or	smaller	numbers.	Also,	it	can	be	helpful	to
experiment	by	changing	the	number	of	producers	from	10	to	100.



Summary
We	saw	how	to	use	the	logging	module	with	more	advanced	object-oriented
design	techniques.	We	created	logs	associated	with	modules,	classes,	instances,
and	functions.	We	used	decorators	to	create	logging	as	a	consistent	cross-cutting
aspect	across	multiple	class	definitions.

We	saw	how	to	use	the	warnings	module	to	show	you	that	there's	a	problem	with
the	configuration	or	the	deprecated	methods.	We	can	use	warnings	for	other
purposes,	but	we	need	to	be	cautious	about	the	overuse	of	warnings	and	creating
murky	situations	where	it's	not	clear	whether	the	application	worked	correctly	or
not.



Design	considerations	and	trade-offs
The	logging	module	supports	auditability	and	debugging	ability,	as	well	as	some
security	requirements.	We	can	use	logging	as	a	simple	way	to	keep	records	of	the
processing	steps.	By	selectively	enabling	and	disabling	logging,	we	can	support
developers	who	are	trying	to	learn	what	the	code	is	really	doing	when	processing
real-world	data.

The	warnings	module	supports	the	debugging	ability	as	well	as	maintainability
features.	We	can	use	warnings	to	alert	developers	about	API	problems,
configuration	problems,	and	other	potential	sources	of	bugs.

When	working	with	the	logging	module,	we'll	often	be	creating	large	numbers	of
distinct	loggers	that	feed	a	few	handlers.	We	can	use	the	hierarchical	nature	of
Logger	names	to	introduce	new	or	specialized	collections	of	logging	messages.
There's	no	reason	why	a	class	can't	have	two	loggers:	one	for	audit	and	one	for
more	general-purpose	debugging.

We	can	introduce	new	logging	level	numbers,	but	this	should	be	done
reluctantly.	Levels	tend	to	conflate	developer	focus	(debug,	info,	and	warning)
with	user	focus	(info,	error,	and	fatal).	There's	a	kind	of	spectrum	of	optionality
from	debug	messages	that	is	not	required	for	fatal	error	messages,	which	should
never	be	silenced.	We	might	add	a	level	for	verbose	information	or	possibly
detailed	debugging,	but	that's	about	all	that	should	be	done	with	levels.

The	logging	module	allows	us	to	provide	a	number	of	configuration	files	for
different	purposes.	As	developers,	we	may	use	a	configuration	file	that	sets	the
logging	levels	to	DEBUG	and	enables	specific	loggers	for	modules	under
development.	For	final	deployment,	we	can	provide	a	configuration	file	that	sets
the	logging	levels	to	INFO	and	provides	different	handlers	to	support	more	formal
audit	or	security	review	needs.

We'll	include	some	thoughts	from	The	Zen	of	Python	(https://www.python.org/dev/pep
s/pep-0020/):

"Errors	should	never	pass	silently.

https://www.python.org/dev/peps/pep-0020/


Unless	explicitly	silenced."

The	warnings	and	logging	modules	directly	support	this	idea.

These	modules	are	oriented	more	toward	overall	quality	than	toward	the	specific
solution	of	a	problem.	They	allow	us	to	provide	consistency	via	fairly	simple
programming.	As	our	object-oriented	designs	become	larger	and	more	complex,
we	can	focus	more	on	the	problem	being	solved	without	wasting	time	on	the
infrastructure	considerations.	Further,	these	modules	allow	us	to	tailor	the	output
to	provide	information	needed	by	the	developer	or	user.



Looking	ahead
In	the	following	chapters,	we'll	take	a	look	at	designing	for	testability	and	how
we	use	unittest,	doctest,	and	the	pytest	package	for	testing.	Automated	testing	is
essential;	no	program	should	be	considered	complete	until	there	are	automated
unit	tests	that	provide	ample	evidence	to	show	us	that	the	code	works.	We'll	also
look	at	object-oriented	design	techniques	that	make	software	easier	to	test.



Designing	for	Testability
High-quality	programs	have	automated	tests.	We	need	to	use	everything	at	our
disposal	to	be	sure	that	our	software	works.	The	golden	rule	is	this:	to	be
deliverable,	a	feature	must	have	an	automated	unit	test.	Without	an	automated
unit	test,	a	feature	cannot	be	trusted	to	work	and	should	not	be	used.	According
to	Kent	Beck,	in	Extreme	Programming	Explained:

"Any	program	feature	without	an	automated	test	simply	doesn't	exist."

There	are	the	following	two	essential	points	regarding	the	automated	testing	of
program	features:

Automated:	This	means	that	there's	no	human	judgment	involved.	The
testing	involves	a	script	that	compares	actual	responses	to	expected
responses.
Features:	Elements	of	the	software	are	tested	in	isolation	to	be	sure	that
they	work	separately.	In	some	contexts,	features	are	quite	broad	concepts
involving	functionality	observed	by	the	user.	When	unit	testing,	features	are
often	much	smaller,	and	refer	to	behaviors	of	single	software	components.
Each	unit	is	enough	software	to	implement	a	given	feature.	Ideally,	it's	a
Python	class.	However,	it	can	also	be	a	larger	unit,	such	as	a	module	or
package.

Python	has	two	built-in	testing	frameworks,	making	it	easy	to	write	automated
unit	tests.	We'll	look	at	using	both	doctest	and	unittest	for	automated	testing.
doctest	offers	a	very	simple	approach	to	test	writing.	The	unittest	package	is
much	more	sophisticated.

We'll	also	look	at	the	popular	pytest	framework,	which	is	simpler	to	use	than
unittest.	In	some	cases,	we'll	write	tests	using	the	unittest.TestCase	class,	but
execute	the	tests	using	pytest's	sophisticated	test	discovery.	In	other	cases,	we'll
do	almost	everything	with	pytest.

We'll	look	at	some	of	the	design	considerations	required	to	make	testing
practical.	It's	often	necessary	to	decompose	complex	classes	for	testability.	As



we	noted	in	Chapter	15,	Design	Principles	and	Patterns,	we	want	expose
dependencies	to	have	a	flexible	design;	the	dependency	inversion	principle	will
also	help	to	create	testable	classes.

For	more	ideas,	read	about	Ottinger	and	Langr's	FIRST	unit	test	properties
—Fast,	Isolated,	Repeatable,	Self-Validating,	and	Timely.	For	the	most	part,
Repeatable	and	Self-Validating	require	an	automated	test	framework.	Timely
means	that	the	test	is	written	before	the	code	under	test.	For	more	information,
refer	to	http://pragprog.com/magazines/2012-01/unit-tests-are-first.

In	this	chapter,	we	will	cover	the	following	topics:

Defining	and	isolating	units	for	testing
Using	doctest	to	define	test	cases
Using	setup	and	teardown
The	TestCase	class	hierarchy
Using	externally	defined	expected	results
Using	pytest	and	fixtures
Automated	integration	testing	or	automated	performance	testing

http://pragprog.com/magazines/2012-01/unit-tests-are-first


Technical	requirements
The	code	files	for	this	chapter	are	available	at	https://git.io/fj2UM.

https://git.io/fj2UM


Defining	and	isolating	units	for
testing
When	we	consider	testing	to	be	essential,	testability	is	an	important	design
consideration	for	object-oriented	programming.	Our	designs	must	also	support
testing	and	debugging,	because	a	class	that	merely	appears	to	work	is	of	no
value.	A	class	that	has	evidence	that	it	works	is	much	more	valuable.

Different	types	of	tests	form	a	kind	of	hierarchy.	At	the	foundation	of	that
hierarchy	is	unit	testing.	Here,	we	test	each	class	or	function	in	isolation	to	be
sure	that	it	meets	the	contractual	obligations	of	the	API.	Each	class	or	function	is
an	isolated	unit	under	test.	Above	this	layer	comes	integration	testing.	Once	we
know	that	each	class	and	function	works	individually,	we	can	test	groups	and
clusters	of	classes.	We	can	test	whole	modules	and	whole	packages	too.	Once	the
integration	tests	work,	the	next	layer	is	the	automated	testing	of	the	complete
application.	This	is	not	an	exhaustive	list	of	the	types	of	tests.	We	can	do
performance	testing	and	security	vulnerability	testing	too.

In	this	chapter,	we'll	focus	on	automated	unit	testing	because	it	is	central	to	all
applications.	The	hierarchy	of	testing	reveals	important	complexity.	Test	cases
for	an	individual	class	or	group	of	classes	can	be	very	narrowly	defined.	As	we
introduce	more	units	into	integration	testing,	the	domain	of	inputs	grows.	When
we	attempt	to	test	a	whole	application,	the	entire	spectrum	of	human	behavior
becomes	potential	input.	As	we	look	more	broadly,	we	see	that	it	could	include
shutting	devices	off,	pulling	out	plugs,	or	even	pushing	devices	off	tables	to	see
whether	they	still	work	after	being	dropped	three	feet	onto	a	hardwood	floor.	The
hugeness	of	the	domain	of	human	behavior	makes	it	difficult	to	fully	automate
all	possible	kinds	of	application	testing.	We'll	focus	on	the	things	that	are	easiest
to	test	automatically.	Once	the	unit	tests	work,	the	larger	aggregate	systems	are
more	likely	to	work.



Minimizing	dependencies
When	we	design	a	class,	we	must	also	consider	the	network	of	dependencies
around	that	class:	classes	on	which	it	depends	and	classes	that	depend	on	it.	In
order	to	simplify	testing	a	class	definition,	we	need	to	isolate	it	from	the
surrounding	classes.	For	more	ideas	on	this,	refer	to	Chapter	15,	Design	Principles
and	Patterns.

An	example	of	this	is	the	Deck	class,	which	depends	on	the	Card	class.	We	can
easily	test	Card	in	isolation,	but	when	we	want	to	test	the	Deck	class,	we	need	to
tease	it	away	from	the	definition	of	Card.

Here's	one	(of	many)	previous	definition	of	Card	that	we've	looked	at:

import	enum

class	Suit(enum.Enum):

				CLUB	=	"♣"

				DIAMOND	=	"♦"

				HEART	=	"♥"

				SPADE	=	"♠"

class	Card:

				def	__init__(

								self,	rank:	int,	suit:	Suit,	hard:	int	=	None,	soft:	int	=	None

				)	->	None:

								self.rank	=	rank

								self.suit	=	suit

								self.hard	=	hard	or	int(rank)

								self.soft	=	soft	or	int(rank)

				def	__str__(self)	->	str:

								return	f"{self.rank!s}{self.suit.value!s}"

class	AceCard(Card):

				def	__init__(self,	rank:	int,	suit:	Suit)	->	None:

								super().__init__(rank,	suit,	1,	11)

class	FaceCard(Card):

				def	__init__(self,	rank:	int,	suit:	Suit)	->	None:

								super().__init__(rank,	suit,	10,	10)

We	can	see	that	each	of	these	classes	has	a	straightforward	inheritance
dependency.	Each	class	can	be	tested	in	isolation	because	there	are	only	two
methods	and	four	attributes.

We	can	(mis-)design	the	Deck	class.	The	following	is	a	bad	example,	and	has
some	problematic	dependencies:

import	random



class	Deck1(list):

				def	__init__(self,	size:	int=1)	->	None:

								super().__init__()

								self.rng	=	random.Random()

								for	d	in	range(size):

												for	s	in	iter(Suit):

																cards:	List[Card]	=	(

																				[cast(Card,	AceCard(1,	s))]

																				+	[Card(r,	s)	for	r	in	range(2,	12)]

																				+	[FaceCard(r,	s)	for	r	in	range(12,	14)]

																)

																super().extend(cards)

								self.rng.shuffle(self)

This	design	has	two	deficiencies.	First,	it's	intimately	bound	to	the	three	classes
in	the	Card	class	hierarchy.	We	can't	isolate	Deck	from	Card	for	a	standalone	unit
test.	Second,	it	is	dependent	on	the	random	number	generator,	making	it	difficult
to	create	a	repeatable	test.	When	we	look	back	at	Chapter	15,	Design	Principles
and	Patterns,	we	can	see	these	problems	as	a	failure	to	follow	the	dependency
inversion	principle.

On	the	one	hand,	Card	is	a	pretty	simple	class.	We	could	test	this	version	of	Deck
with	Card	left	in	place.	On	the	other	hand,	we	might	want	to	reuse	Deck	with	poker
cards	or	pinochle	cards,	which	have	different	behaviors	from	blackjack	cards.

The	ideal	situation	is	to	make	Deck	independent	of	any	particular	Card
implementation.	If	we	do	this	well,	then	we	can	not	only	test	Deck	independently
of	any	Card	implementation,	but	we	can	also	use	any	combination	of	Card	and	Deck
definitions.

Here's	our	preferred	method	to	separate	one	of	the	dependencies.	We	can	put
these	dependencies	into	a	factory	function,	as	shown	in	the	following	example:

class	LogicError(Exception):

				pass

def	card(rank:	int,	suit:	Suit)	->	Card:

				if	rank	==	1:

								return	AceCard(rank,	suit)

				elif	2	<=	rank	<	11:

								return	Card(rank,	suit)

				elif	11	<=	rank	<	14:

								return	FaceCard(rank,	suit)

				else:

								raise	LogicError(f"Rank	{rank}	invalid")

The	card()	function	will	build	proper	subclasses	of	Card	based	on	the	requested



rank.	This	allows	the	Deck	class	to	use	this	function	instead	of	directly	building
instances	of	the	Card	class.	We	separated	the	two	class	definitions	by	inserting	an
intermediate	function.

There	are	other	techniques	to	separate	the	Card	class	from	the	Deck	class.	We	can
refactor	the	factory	function	to	be	a	method	of	Deck.	We	can	also	make	the	class
names	a	separate	binding	via	class-level	attributes	or	even	initialization	method
parameters.	Here's	an	example	that	avoids	a	factory	function	by	using	more
complex	bindings	in	the	initialization	method:

class	Deck2(list):

				def	__init__(

								self,

								size:	int=1,

								random:	random.Random=random.Random(),

								ace_class:	Type[Card]=AceCard,

								card_class:	Type[Card]=Card,

								face_class:	Type[Card]=FaceCard,

				)	->	None:

								super().__init__()

								self.rng	=	random

								for	d	in	range(size):

												for	s	in	iter(Suit):

																cards	=	(

																				[ace_class(1,	s)]

																				+	[card_class(r,	s)	for	r	in	range(2,	12)]

																				+	[face_class(r,	s)	for	r	in	range(12,	14)]

																)

																super().extend(cards)

								self.rng.shuffle(self)

While	this	initialization	is	wordy,	the	Deck	class	is	no	longer	intimately	bound	to
the	Card	class	hierarchy	or	a	specific	random	number	generator.	For	testing
purposes,	we	can	provide	a	random	number	generator	that	has	a	known	seed.	We
can	also	replace	the	various	Card	class	definitions	with	other	classes	(such	as
tuple)	that	can	simplify	our	testing.

Note	the	type	hints	for	the	default	values	provided	to	this	class.	The	object
provided	for	the	random	parameter	should	be	an	instance	of	the	random.Random	type,
and	the	default	value	is	an	object	of	that	exact	type.	Similarly,	for	the	three	card
classes,	each	must	be	a	Type,	and	a	subclass	of	the	Card	class.	The	Type[Card]	hint
permits	any	class	derived	from	Card.	This	permits	mypy	to	confirm	that	overrides
are	likely	to	work.	It	can	be	difficult	to	check	type	hints	in	the	test	modules
because,	as	of	version	3.8.2,	pytest	doesn't	have	complete	type	hint	stubs.

In	the	next	section,	we'll	focus	on	another	variation	of	the	Deck	class.	This	will



use	the	card()	factory	function.	That	factory	function	encapsulates	the	Card
hierarchy	bindings	and	the	rules	for	separating	card	classes	by	rank	into	a	single,
testable	location.



Creating	simple	unit	tests
We'll	create	some	simple	unit	tests	of	the	Card	class	hierarchy	and	the	card()
factory	function.

As	the	Card	classes	are	so	simple,	there's	no	reason	for	overly	sophisticated
testing.	It's	always	possible	to	err	on	the	side	of	needless	complication.	An
unthinking	slog	through	a	test-driven	development	process	can	make	it	seem	like
we	need	to	write	a	fairly	large	number	of	not	very	interesting	unit	tests	for	a
class	that	only	has	a	few	attributes	and	methods.

It's	important	to	understand	that	test-driven	development	is	advice,	not	a	natural
law	like	the	conservation	of	mass.	Nor	is	it	a	ritual	that	must	be	followed	without
thinking.

There	are	several	schools	of	thought	on	naming	test	methods.	We'll	focus	on	a
style	of	naming	that	includes	describing	a	test	condition	and	the	expected	results.
Here	are	three	variations	on	this	theme:

StateUnderTest_should_ExpectedBehavior

when_StateUnderTest_should_ExpectedBehavior

UnitOfWork_StateUnderTest_ExpectedBehavior

For	more	information,	refer	to:

	http://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html

The	StateUnderTest	portion	of	the	name	is	often	evident	from	the	class	that
contains	the	test,	and	can	be	omitted	from	the	method	name.	This	means	the
individual	test	cases	can	emphasize	the	should_ExpectedBehavior	portion	of	the	name.
In	order	to	comply	with	the	way	the	unittest.TestCase	class	works,	each	test
behavior	must	begin	with	test_.	This	leads	us	to	suggest
test_should_ExpectedBehavior	as	a	pattern	for	test	case	names	when	using	individual
test	methods	for	a	unittest.TestCase	subclass.	For	pytest	functions,	we'll	use	a
different	pattern	of	naming.

http://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html


It's	possible	to	configure	the	unittest	module	to	use	different	patterns	for	naming
the	test	methods.	We	could	change	it	to	look	for	when_	instead	of	test_.	The
improvement	in	names	doesn't	seem	to	be	worth	the	effort	required.

This,	for	example,	is	a	test	of	the	Card	class:

class	TestCard(unittest.TestCase):

				def	setUp(self)	->	None:

								self.three_clubs	=	Card(3,	Suit.CLUB)

				def	test_should_returnStr(self)	->	None:

								self.assertEqual("3♣",	str(self.three_clubs))

				def	test_should_getAttrValues(self)	->	None:

								self.assertEqual(3,	self.three_clubs.rank)

								self.assertEqual(Suit.CLUB,	self.three_clubs.suit)

								self.assertEqual(3,	self.three_clubs.hard)

								self.assertEqual(3,	self.three_clubs.soft)

We	defined	a	test	setUp()	method	that	creates	an	object	of	the	class	that	is	being
tested.	We	also	defined	two	tests	on	this	object.	As	there's	no	real	interaction
here,	there's	no	state	under	test	in	the	test	names;	they're	simple	universal
behaviors	that	should	always	work.

This	is	a	lot	of	test	code	for	a	very	small	class	definition.	This	raises	a	question
as	to	whether	or	not	the	volume	of	test	code	is	in	some	way	excessive.	The
answer	is	no;	this	is	not	an	excessive	amount	of	test	code.	There's	no	law	that
says	that	there	should	be	more	application	code	than	test	code.	Indeed,	it	doesn't
make	sense	to	compare	the	volume	of	test	code	with	the	volume	of	application
code.	Most	importantly,	even	a	tiny	class	definition	can	still	have	bugs,	and	it
may	require	complex	tests	to	assure	the	bugs	don't	exist.

Simply	testing	the	values	of	attributes	doesn't	seem	to	test	the	processing	in	this
class.	There	are	two	perspectives	on	testing	attribute	values:

The	black-box	perspective	means	that	we	disregard	the	implementation.	In
this	case,	we	need	to	test	all	of	the	attributes.	The	attributes	could,	for
example,	be	properties,	and	they	must	be	tested.
The	white-box	perspective	means	that	we	can	examine	the	implementation
details.	When	performing	this	style	of	testing,	we	can	be	a	little	more
circumspect	in	which	attributes	we	test.	The	suit	attribute,	for	example,
doesn't	deserve	much	testing.	The	hard	and	soft	attributes,	however,	do
require	testing.



For	more	information,	refer	to:

	http://en.wikipedia.org/wiki/White-box_testing	and	http://en.wikipedia.org/wiki/Black-box
_testing

Of	course,	we	need	to	test	the	rest	of	the	Card	class	hierarchy.	We'll	just	show	you
the	AceCard	test	case.	The	FaceCard	test	case	should	be	clear	after	this	example:

class	TestAceCard(unittest.TestCase):

				def	setUp(self)	->	None:

								self.ace_spades	=	AceCard(1,	Suit.SPADE)

				@unittest.expectedFailure

				def	test_should_returnStr(self)	->	None:

								self.assertEqual("A♠",	str(self.ace_spades))

				def	test_should_getAttrValues(self)	->	None:

								self.assertEqual(1,	self.ace_spades.rank)

								self.assertEqual(Suit.SPADE,	self.ace_spades.suit)

								self.assertEqual(1,	self.ace_spades.hard)

								self.assertEqual(11,	self.ace_spades.soft)

This	test	case	also	sets	up	a	particular	Card	instance	so	that	we	can	test	the	string
output.	It	checks	the	various	attributes	of	this	fixed	card.

Note	that	the	test_should_returnStr()	test	will	fail.	The	definition	of	the	AceCard	class
does	not	display	the	value	as	shown	in	this	test	definition.	Either	the	test	is
incorrect	or	the	class	definition	is	incorrect.	The	unit	test	uncovered	this	fault	in
the	class	design.

A	similar	test	is	required	for	the	FaceCard	class.	It	will	be	similar	to	the	test	shown
for	the	AceCard	class.	We	won't	present	it	here,	but	will	leave	it	as	an	exercise	for
you.

When	we	have	a	number	of	tests,	it	can	be	helpful	to	combine	them	into	a	suite
of	tests.	We'll	turn	to	this	next.

http://en.wikipedia.org/wiki/White-box_testing
http://en.wikipedia.org/wiki/Black-box_testing


Creating	a	test	suite
It	is	often	helpful	to	formally	define	a	test	suite.	The	unittest	package	is	capable
of	discovering	tests	by	default.	When	aggregating	tests	from	multiple	test
modules,	it's	sometimes	helpful	to	create	a	test	suite	in	every	test	module.	If	each
module	defines	a	suite()	function,	we	can	replace	test	discovery	with	importing
the	suite()	functions	from	each	module.	Also,	if	we	customize	TestRunner,	we	must
use	a	suite.	We	can	execute	our	tests	as	follows:

def	suite2()	->	unittest.TestSuite:

				s	=	unittest.TestSuite()

				load_from	=	unittest.defaultTestLoader.loadTestsFromTestCase

				s.addTests(load_from(TestCard))

				s.addTests(load_from(TestAceCard))

				s.addTests(load_from(TestFaceCard))

				return	s

We	build	a	suite	from	our	three	TestCase	class	definitions	and	then	provide	that
suite	to	a	unittest.TextTestRunner()	instance.	We	use	the	default	TestLoader	in
unittest.	This	TestLoader	examines	a	TestCase	class	to	locate	all	the	test	methods.
The	value	of	TestLoader.testMethodPrefix	is	test,	which	is	how	test	methods	are
identified	within	a	class.	Each	method	name	is	used	by	the	loader	to	create	a
separate	test	object.

Using	TestLoader	to	build	test	instances	from	appropriately	named	methods	of
TestCase	is	one	of	the	two	ways	to	use	TestCase.	In	a	later	section,	we'll	look	at
creating	instances	of	TestCase	manually;	we	won't	rely	on	TestLoader	for	these
examples.	We	can	run	this	suite	with	the	following	code:

if	__name__	==	"__main__":

				t	=	unittest.TextTestRunner()

				t.run(suite2())

We'll	see	output	like	the	following	code:

...F.F	

======================================================================	

FAIL:	test_should_returnStr	(__main__.TestAceCard)	

----------------------------------------------------------------------	

Traceback	(most	recent	call	last):	

		File	"p3_c15.py",	line	80,	in	test_should_returnStr	

				self.assertEqual("A♠",	str(self.ace_spades))	

AssertionError:	'A♠'	!=	'1♠'	

-	A♠	



+	1♠	

	

	

======================================================================	

FAIL:	test_should_returnStr	(__main__.TestFaceCard)	

----------------------------------------------------------------------	

Traceback	(most	recent	call	last):	

		File	"p3_c15.py",	line	91,	in	test_should_returnStr	

				self.assertEqual("Q♥",	str(self.queen_hearts))	

AssertionError:	'Q♥'	!=	'12♥'	

-	Q♥	

+	12♥	

	

	

----------------------------------------------------------------------	

Ran	6	tests	in	0.001s	

	

FAILED	(failures=2)	

The	TestLoader	class	created	two	tests	from	each	TestCase	class.	This	gives	us	a
total	of	six	tests.	The	test	names	are	the	method	names,	which	begin	with	test.

Clearly,	we	have	a	problem.	Our	tests	provide	an	expected	result	that	our	class
definitions	don't	meet.	We've	got	more	development	work	to	do	for	the	Card
classes	in	order	to	pass	this	simple	suite	of	unit	tests.	We'll	leave	the	fixes	as
exercises	for	you.

Starting	to	design	tests	can	seem	daunting	at	first.	There	are	a	few	guidelines	that
can	be	helpful.	In	the	next	section,	we	will	talk	about	edges—often	limits,	and
corners—often	the	interfaces	between	components,	which	can	help	us	design
better	tests.



Including	edge	and	corner	cases
When	we	move	to	testing	the	Deck	class	as	a	whole,	we'll	need	to	have	some
things	confirmed:	that	it	produces	all	of	the	required	Cards	class,	and	that	it
actually	shuffles	properly.	We	don't	really	need	to	test	that	it	deals	properly
because	we're	depending	on	the	list	and	list.pop()	method;	as	these	are	first-class
parts	of	Python,	they	don't	require	additional	testing.

We'd	like	to	test	the	Deck	class	construction	and	shuffling	independently	of	any
specific	Card	class	hierarchy.	As	noted	previously,	we	can	use	a	factory	function
to	make	the	two	Deck	and	Card	definitions	independent.	Introducing	a	factory
function	introduces	yet	more	testing.	Not	a	bad	thing,	considering	the	bugs
previously	revealed	in	the	Card	class	hierarchy.

Here's	a	test	of	the	factory	function:

class	TestCardFactory(unittest.TestCase):

				def	test_rank1_should_createAceCard(self)	->	None:

								c	=	card(1,	Suit.CLUB)

								self.assertIsInstance(c,	AceCard)

				def	test_rank2_should_createCard(self)	->	None:

								c	=	card(2,	Suit.DIAMOND)

								self.assertIsInstance(c,	Card)

				def	test_rank10_should_createCard(self)	->	None:

								c	=	card(10,	Suit.HEART)

								self.assertIsInstance(c,	Card)

				def	test_rank10_should_createFaceCard(self)	->	None:

								c	=	card(11,	Suit.SPADE)

								self.assertIsInstance(c,	Card)

				def	test_rank13_should_createFaceCard(self)	->	None:

								c	=	card(13,	Suit.CLUB)

								self.assertIsInstance(c,	Card)

				def	test_otherRank_should_exception(self)	->	None:

								with	self.assertRaises(LogicError):

												c	=	card(14,	Suit.DIAMOND)

								with	self.assertRaises(LogicError):

												c	=	card(0,	Suit.DIAMOND)

We	didn't	test	all	13	ranks,	as	2	through	10	should	all	be	identical.	Instead,	we
followed	this	advice	from	Boris	Beizer	in	the	book	Software	Testing	Techniques:



"Bugs	lurk	in	corners	and	congregate	at	boundaries."

The	test	cases	involve	the	edge	values	for	each	card	range.	Consequently,	we
have	test	cases	for	the	values	1,	2,	10,	11,	and	13,	as	well	as	the	illegal	values	0
and	14.	We	bracketed	each	range	with	the	least	value,	the	maximum	value,	one
below	the	least	value,	and	one	above	the	maximum	value.

We've	modified	the	pattern	for	test	naming.	In	this	case,	we	have	several
different	states	being	tested.	We've	modified	the	simpler	names	from	these	to
followthe	pattern	test_StateUnderTest_should_ExpectedBehavior.	There	doesn't	seem	to
be	a	compelling	reason	to	break	these	tests	into	separate	classes	to	decompose
the	state	under	test.	

In	the	next	section,	we'll	look	at	ways	to	handle	dependent	objects.	This	will
allow	us	to	test	each	unit	in	isolation.



Using	mock	objects	to	eliminate
dependencies
In	order	to	test	Deck,	we	have	the	following	two	choices	for	handling	the
dependencies	in	the	Card	class	hierarchy:

Mocking:	We	can	create	a	mock	(or	stand-in)	class	for	the	Card	class	and	a
mock	card()	factory	function	that	produces	instances	of	the	mock	class.	The
advantage	of	using	mock	objects	is	that	we	create	real	confidence	that	the
unit	under	test	is	free	from	workarounds	in	one	class,	which	make	up	for
bugs	in	another	class.	A	rare	potential	disadvantage	is	that	we	may	have	to
debug	the	behavior	of	a	super-complex	mock	class	to	be	sure	it's	a	valid
stand-in	for	a	real	class.	A	complex	mock	object	suggests	the	real	object	is
too	complex	and	needs	to	be	refactored.
Integrating:	If	we	have	a	degree	of	trust	that	the	Card	class	hierarchy	works,
and	the	card()	factory	function	works,	we	can	leverage	these	to	test	Deck.
This	strays	from	the	high	road	of	pure	unit	testing,	in	which	all
dependencies	are	omitted	for	test	purposes.	The	disadvantage	of	this	is	that
a	broken	foundational	class	will	cause	a	large	number	of	testing	failures	in
all	the	classes	that	depend	on	it.	Also,	it's	difficult	to	make	detailed	tests	of
API	conformance	with	non-mock	classes.	Mock	classes	can	track	the	call
history,	making	it	possible	to	track	the	details	of	calls	to	mock	objects.

The	unittest	package	includes	the	unittest.mock	module	which	can	be	used	to	patch
the	existing	classes	for	test	purposes.	It	can	also	be	used	to	provide	complete
mock	class	definitions.	Later,	when	we	look	at	pytest,	we'll	combine	unittest.mock
objects	with	the	pytest	test	framework.

The	examples	in	this	section	do	not	use	extensive	type	hinting	in	the	tests.	For
the	most	part,	the	tests	should	pass	through	mypy	without	difficulty.	As	we	noted
earlier,	pytest	version	3.8.2.	doesn't	have	a	complete	set	of	type	stubs,	so	the	--
ignore-missing-imports	option	must	be	used	when	running	mypy.	The	mock	objects,
for	the	most	part,	provide	type	hints	that	permit	mypy	to	confirm	that	they	are
being	used	properly.



When	we	design	a	class,	we	must	consider	the	dependencies	that	must	be
mocked	for	unit	testing.	In	the	case	of	Deck,	we	have	the	following	three
dependencies	to	mock:

The	Card	class:	This	class	is	so	simple	that	we	could	create	a	mock	for	this
class	without	basing	it	on	an	existing	implementation.	As	the	Deck	class
behavior	doesn't	depend	on	any	specific	feature	of	Card,	our	mock	object	can
be	simple.
The	card()	factory:	This	function	needs	to	be	replaced	with	a	mock	that	we
can	use	to	determine	whether	Deck	makes	proper	calls	to	this	function.
The	random.Random.shuffle()	method:	To	determine	whether	the	method	was
called	with	proper	argument	values,	we	can	provide	a	mock	that	will	track
usage	rather	than	actually	doing	any	shuffling.

Here's	a	version	of	Deck	that	uses	the	card()	factory	function:

class	DeckEmpty(Exception):

				pass

class	Deck3(list):

				def	__init__(

												self,

												size:	int=1,

												random:	random.Random=random.Random(),

												card_factory:	Callable[[int,	Suit],	Card]=card

				)	->	None:

								super().__init__()

								self.rng	=	random

								for	d	in	range(size):

												super().extend(

																[card_factory(r,	s)

																	for	r	in	range(1,	14)

																	for	s	in	iter(Suit)])

								self.rng.shuffle(self)

				def	deal(self)	->	Card:

								try:

												return	self.pop(0)

								except	IndexError:

												raise	DeckEmpty()

This	definition	has	two	dependencies	that	are	specifically	called	out	as
arguments	to	the	__init__()	method.	It	requires	a	random	number	generator,
random,	and	a	card	factory,	card_factory.	It	has	suitable	default	values	so	that	it	can
be	used	in	an	application	very	simply.	It	can	also	be	tested	by	providing	mock
objects	instead	of	the	default	objects.

We've	included	a	deal()	method	that	makes	a	change	to	the	object	by	using	pop()



to	remove	an	instance	of	Card	from	the	collection.	If	the	deck	is	empty,	the	deal()
method	will	raise	a	DeckEmpty	exception.

Here's	a	test	case	to	show	you	that	the	deck	is	built	properly:

import	unittest

import	unittest.mock

class	TestDeckBuild(unittest.TestCase):

				def	setUp(self)	->	None:

								self.mock_card	=	unittest.mock.Mock(return_value=unittest.mock.sentinel.card)

								self.mock_rng	=	unittest.mock.Mock(wraps=random.Random())

								self.mock_rng.shuffle	=	unittest.mock.Mock()

				def	test_Deck3_should_build(self)	->	None:

								d	=	Deck3(size=1,	random=self.mock_rng,	card_factory=self.mock_card)

								self.assertEqual(52	*	[unittest.mock.sentinel.card],	d)

								self.mock_rng.shuffle.assert_called_with(d)

								self.assertEqual(52,	len(self.mock_card.mock_calls))

								expected	=	[

												unittest.mock.call(r,	s)

												for	r	in	range(1,	14)

												for	s	in	(Suit.CLUB,	Suit.DIAMOND,	Suit.HEART,	Suit.SPADE)

								]

								self.assertEqual(expected,	self.mock_card.mock_calls)

We	created	two	mocks	in	the	setUp()	method	of	this	test	case.	The	mock	card
factory	function,	mock_card,	is	a	Mock	function.	The	defined	return	value	is	a	single
mock.sentinel,card	object	instead	of	a	distinct	Card	instances.	When	we	refer	to	an
attribute	of	the	mock.sentinel	object,	with	an	expression	like	mock.sentinel.card,	this
expression	creates	a	new	object	if	necessary,	or	retrieves	an	existing	object.	It
implements	a	Singleton	design	pattern;	there's	only	one	sentinel	object	with	a
given	name.	This	will	be	a	unique	object	that	allows	us	to	confirm	that	the	right
number	of	instances	were	created.	Because	the	sentinel	is	distinct	from	all	other
Python	objects,	we	can	distinguish	functions	without	proper	return	statements
that	return	None.

We	created	a	mock	object,	mock_rng,	to	wrap	an	instance	of	the	random.Random()
generator.	This	Mock	object	will	behave	as	a	proper	random	object,	with	one
difference.	We	replaced	the	shuffle()	method	with	a	Mock	behaving	as	a	function
that	returns	None.	This	provides	us	with	an	appropriate	return	value	for	the
method	and	allows	us	to	determine	that	the	shuffle()	method	was	called	with	the
proper	argument	values.

Our	test	creates	a	Deck3	instance	with	our	two	mock	objects.	We	can	then	make
the	following	assertions	about	the	Deck3	instance,	d:



52	objects	were	created.	These	are	expected	to	be	52	copies	of	mock.sentinel,
showing	us	that	only	the	factory	function	was	used	to	create	objects;	all	of
the	objects	are	sentinels,	created	by	the	mock.
The	shuffle()	method	was	called	with	the	Deck	instance	as	the	argument.	This
shows	us	how	a	mock	object	tracks	its	calls.	We	can	use	assert_called_with()
to	confirm	that	the	argument	values	were	as	required	when	shuffle()	was
called.
The	factory	function	was	called	52	times.	The	mock_calls	attribute	of	a	mock
object	is	the	entire	history	of	the	object's	use.	This	assertion	is,	technically,
redundant,	since	the	next	test	will	imply	this	condition.
The	factory	function	was	called	with	a	specific	list	of	expected	rank	and
suit	values.

The	mock	objects	will	record	the	sequence	of	methods	that	were	invoked.	In	the
next	section,	we'll	look	at	ways	to	examine	a	mock	object	to	ensure	that	other
units	are	using	the	mock	object	correctly.



Using	mocks	to	observe	behaviors
The	preceding	mock	objects	were	used	to	test	how	a	Deck	class	was	built.	Having
52	identical	sentinels	makes	it	difficult	to	confirm	that	a	Deck	deals	properly.	We'll
define	a	different	mock	to	test	the	deal	feature.

Here's	a	second	test	case	to	ensure	that	the	Deck	class	deals	properly:

class	TestDeckDeal(unittest.TestCase):

				def	setUp(self)	->	None:

								self.mock_deck	=	[

												getattr(unittest.mock.sentinel,	str(x))	for	x	in	range(52)

								]

								self.mock_card	=	unittest.mock.Mock(

												side_effect=self.mock_deck)

								self.mock_rng	=	unittest.mock.Mock(

												wraps=random.Random())

								self.mock_rng.shuffle	=	unittest.mock.Mock()

				def	test_Deck3_should_deal(self)	->	None:

								d	=	Deck3(size=1,	random=self.mock_rng,	card_factory=self.mock_card)

								dealt	=	[]

								for	i	in	range(52):

												card	=	d.deal()

												dealt.append(card)

								self.assertEqual(dealt,	self.mock_deck)

				def	test_empty_deck_should_exception(self)	->	None:

								d	=	Deck3(size=1,	random=self.mock_rng,	card_factory=self.mock_card)

								for	i	in	range(52):

												card	=	d.deal()

								self.assertRaises(DeckEmpty,	d.deal)

This	mock	for	the	card	factory	function	uses	the	side_effect	argument	to	Mock().
When	provided	with	an	iterable,	the	side_effect	feature	returns	another	value	of
the	iterable	each	time	it's	called.

In	this	case,	we	used	the	sentinel	object	to	build	52	distinct	sentinel	objects;	we'll
use	these	instead	of	Card	objects	to	isolate	the	Deck3	class	from	the	Card	class
hierarchy.	The	getattr(unittest.mock.sentinel,	str(x))	expression	will	use	a	string
version	of	a	number,	x,	and	create	52	unique	sentinel	objects.

We	mocked	the	shuffle()	method	to	be	sure	that	the	cards	aren't	actually
rearranged.	The	wrapper	means	that	most	features	of	the	Random	class	will	be
accessible.	The	shuffle	method,	however,	was	replaced.	We	want	the	sentinel



objects	to	stay	in	their	original	order	so	that	our	tests	have	a	predictable	expected
value.

The	first	test,	test_Deck3_should_deal,	accumulates	the	results	of	dealing	52	cards
into	a	variable,	dealt.	It	then	asserts	that	this	variable	has	the	52	expected	values
from	the	original	mock	card	factory.	Because	the	card	factory	was	a	mock	object,
it	returned	the	various	sentinel	objects	via	the	side_effect	feature	of	Mock.

The	second	test,	test_empty_deck_should_exception,	deals	all	of	the	cards	from	a	Deck
instance.	However,	it	makes	one	more	API	request.	The	assertion	is	that	the
Deck.deal()	method	will	raise	the	proper	exception	after	dealing	all	of	the	cards.

Because	of	the	relative	simplicity	of	the	Deck	class,	it's	possible	to	combine	both
TestDeckBuild	and	TestDeckDeal	into	a	single,	more	sophisticated	mock.	While	that's
possible	with	this	example,	it's	neither	essential,	nor	necessarily	desirable	to
refactor	the	test	cases	to	make	them	simpler.	Indeed,	the	overs	simplification	of
tests	may	fail	to	properly	test	API	features.



Using	doctest	to	define	test	cases
The	doctest	module	provides	us	with	a	way	to	validate	documentation	strings.	In
addition	to	docstrings	in	the	code,	any	document	with	a	Python	REPL-style
response	can	be	tested	via	doctest.	This	will	combine	the	documentation	for
modules,	classes,	functions,	and	test	cases	into	one	tidy	package.

doctest	cases	are	written	into	docstrings.	A	doctest	case	shows	us	the	interactive
Python	prompt,	>>>;	statements;	and	the	expected	responses.	The	doctest	module
contains	an	application	that	looks	for	these	examples	in	docstrings.	It	runs	the
given	examples	and	compares	the	expected	results	shown	in	the	docstrings	with
the	actual	outputs.

With	the	careful	design	of	an	API,	we	can	create	a	class	that	can	be	used
interactively.	If	it	can	be	used	interactively,	then	a	doctest	example	can	be	built	to
show	the	expected	results	of	the	interaction.

Indeed,	two	attributes	of	a	well-designed	class	are	that	it	can	be	used
interactively	and	it	has	doctest	examples	in	the	documentation	strings.	Many
built-in	modules	contain	doctest	examples	of	the	API.	Many	other	packages	that
we	might	choose	to	download	will	also	include	doctest	examples.

With	a	simple	function,	we	can	provide	documentation	such	as	the	following:

def	ackermann(m:	int,	n:	int)	->	int:

				"""Ackermann's	Function

				ackermann(m,	n)	=	$2	\\uparrow^{m-2}	(n+3)-3$

				See	http://en.wikipedia.org/wiki/Ackermann_function	and

				http://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation.

				>>>	from	Chapter_17.ch17_ex1	import	ackermann

				>>>	ackermann(2,4)

				11

				>>>	ackermann(0,4)

				5

				>>>	ackermann(1,0)

				2

				>>>	ackermann(1,1)

				3

				"""

				if	m	==	0:

								return	n	+	1



				elif	m	>	0	and	n	==	0:

								return	ackermann(m	-	1,	1)

				elif	m	>	0	and	n	>	0:

								return	ackermann(m	-	1,	ackermann(m,	n	-	1))

				else:

								raise	LogicError()

We've	defined	a	version	of	the	Ackermann	function.	The	function	is	rather
complex,	and	the	definition	involves	some	odd-looking	mathematical	notation.
The	formal	definition	is	shown	in	the	following	two	ways:

.	This	definition	uses	the	extended	up-arrow
notation	for	recursive	exponentiation.

.	This	is	the	recursive
definition	implemented	previously.

The	definition	includes	docstring	comments	that	include	five	sample	responses
from	interactive	Python.	The	first	sample	output	is	the	import	statement,	which
should	produce	no	output.	The	other	four	sample	outputs	show	us	the	different
values	of	the	function.

We	can	run	these	tests	with	the	doctest	module.	When	the	doctest	module	is	run	as
a	program,	the	command-line	argument	is	the	file	that	should	be	tested.	The
doctest	program	locates	all	docstrings	and	looks	for	interactive	Python	examples
in	those	strings.	It's	important	to	note	that	the	doctest	documentation	provides
details	on	the	regular	expressions	used	to	locate	the	strings.	In	our	example,	we
added	a	hard-to-see	blank	line	after	the	last	doctest	example	to	help	the	doctest
parser.

We	can	run	doctest	from	the	command	line	as	follows:

$	python3	-m	doctest	Chapter_17/ch17_ex1.py

If	everything	is	correct,	this	is	silent.	We	can	make	it	show	us	some	details	by
adding	the	-v	option	as	follows:

$	python3	-m	doctest	-v	Chapter_17/ch17_ex1.py

This	will	provide	us	with	the	details	of	each	docstring	parsed	and	each	test	case
gleaned	from	the	docstrings.



The	output	will	include	the	following:

Trying:

	from	Chapter_17.ch17_ex1	import	ackermann

Expecting	nothing

ok

Trying:

	ackermann(2,4)

Expecting:

	11

ok

Trying:

	ackermann(0,4)

Expecting:

	5

ok

Trying:

	ackermann(1,0)

Expecting:

	2

ok

Trying:

	ackermann(1,1)

Expecting:

	3

ok

The	Trying:	clause	shows	the	statement	found	in	a	>>>	example.	Expecting:	shows
the	following	result	lines.	The	final	ok	tells	us	the	example	worked	as	expected.
The	verbose	output	will	show	us	all	of	the	classes,	functions,	and	methods
without	any	tests,	as	well	as	the	components	that	have	tests.	This	provides	some
confirmation	that	our	tests	were	properly	formatted	in	the	docstrings.

In	some	cases,	we	will	have	output	that	will	not	match	interactive	Python	easily.
In	these	cases,	we	may	need	to	supplement	the	docstring	with	some	annotations
that	modify	how	the	test	cases	and	expected	results	are	parsed.

There's	a	special	comment	string	that	we	can	use	for	more	complex	outputs.	We
can	append	any	one	of	the	following	two	commands	to	enable	(or	disable)	the
various	kinds	of	directives	that	are	available.	The	following	is	the	first
command:

#	doctest:	+DIRECTIVE

The	following	is	the	second	command:

#	doctest:	-DIRECTIVE

There	are	a	dozen	modifications	that	we	can	make	to	how	the	expected	results



are	handled.	Most	of	them	are	rare	situations	regarding	spacing	and	how	actual
and	expected	values	should	be	compared.

The	doctest	documentation	emphasizes	the	Exact	Match	Principle:

"doctest	is	serious	about	requiring	exact	matches	in	expected	output."
If	even	a	single	character	doesn't	match,	the	test	fails.	You'll	need	to	build	flexibility	into	some
of	the	expected	outputs.	If	building	in	flexibility	gets	too	complex,	it	suggests	that	unitest	might
be	a	better	choice.

Here	are	some	specific	situations	where	the	expected	and	actual	values	of	doctest
won't	match	easily:

The	id()	and	default	repr()	of	an	object	involve	physical	memory	addresses;
Python	makes	no	guarantee	that	they	will	be	consistent.	If	you	show	id()	or
repr(),	use	the	#doctest:	+ELLIPSIS	directive	and	replace	the	ID	or	address	with
...	in	the	sample	output.
Floating-point	results	may	not	be	consistent	across	platforms.	Always	show
floating-point	numbers	with	formatting	or	rounding	to	reduce	the	number	of
digits	to	digits	that	are	meaningful.	Use	"{:.4f}".format(value)	or	round(value,4)
to	ensure	that	insignificant	digits	are	ignored.
While	dictionary	keys	are	now	ordered,	set	ordering	is	not	guaranteed	by
Python.	Use	a	construct	such	as	sorted(some_set)	instead	of	some_set.
The	current	date	or	time,	of	course,	cannot	be	used,	as	that	won't	be
consistent.	A	test	that	involves	date	or	time	needs	to	force	a	specific	date	or
time	generally	by	mocking	time	or	datetime.
Operating	system	details,	such	as	file	sizes	or	timestamps,	are	likely	to	vary
and	should	not	be	used	without	ellipses.	Sometimes,	it's	possible	to	include
a	useful	setup	or	teardown	in	the	doctest	script	to	manage	OS	resources.	In
other	cases,	mocking	the	os	module	is	helpful.

These	considerations	mean	that	our	doctest	module	may	contain	some	additional
processing	that's	not	simply	a	part	of	the	API.	We	may	have	done	something
such	as	this	at	the	interactive	Python	prompt:

>>>	sum(values)/len(values)	

3.142857142857143	

This	shows	us	the	full	output	from	a	particular	implementation.	We	can't	simply
copy	and	paste	this	into	a	docstring.	The	floating-point	results	might	differ.	We'll
need	to	do	something	like	the	following	code:



>>>	round(sum(values)/len(values),	4)	

3.1429	

This	is	rounded	to	a	value	that	should	not	vary	between	implementations.

It	is	sometimes	helpful	to	combine	the	doctest	and	unit	tests	in	a	comprehensive
test	package.	We'll	look	at	ways	to	include	doctest	cases	with	unittest	test	cases
later.



Combining	doctest	and	unittest
There's	a	hook	in	the	doctest	module	that	will	create	a	proper	unittest.TestSuite
from	docstring	comments.	This	allows	us	to	use	both	doctest	and	unittest	in	a
large	application.

What	we'll	do	is	create	an	instance	of	doctest.DocTestSuite().	This	will	build	a	suite
from	a	module's	docstrings.	If	we	don't	specify	a	module,	the	module	that	is
currently	running	is	used	to	build	the	suite.	We	can	use	a	module	such	as	the
following	one:

				import	doctest	

				suite5	=	doctest.DocTestSuite()	

				t	=	unittest.TextTestRunner(verbosity=2)	

				t.run(suite5)	

We	built	a	suite,	suite5,	from	the	doctest	strings	in	the	current	module.	We	used
unittestTextTestRunner	on	this	suite.	As	an	alternative,	we	can	combine	the	doctest
suite	with	other	TestCase	to	create	a	larger,	more	complete	suite.

As	our	tests	become	more	complex,	we	need	to	organize	our	test	modules.	In	the
next	section,	we'll	look	at	the	big	picture	of	creating	a	tests	folder	within	a
Python	project.



Creating	a	more	complete	test
package
For	larger	applications,	each	application	module	can	have	a	parallel	module	that
includes	TestCase	for	that	module.	This	can	form	two	parallel	package	structures:
an	src	structure	with	the	application	module	and	a	test	structure	with	the	test
modules.	Here	are	two	parallel	directory	trees	that	show	us	the	collections	of
modules:

src	

				__init__.py	

				__main__.py	

				module1.py	

				module2.py	

				setup.py	

tests	

				__init__.py	

				module1.py	

				module2.py	

				all.py	

Clearly,	the	parallelism	isn't	exact.	We	don't	usually	have	an	automated	unit	test
for	setup.py.	A	well-designed	__main__.py	may	not	require	a	separate	unit	test,	as	it
shouldn't	have	much	code	in	it.	We'll	look	at	some	ways	to	design	__main__.py	in	Ch
apter	18,	Coping	with	the	Command	Line.

We	can	create	a	top-level	test/all.py	module	with	a	body	that	builds	all	of	the
tests	into	a	single	suite	as	follows:

import	module1	

import	module2	

import	unittest	

import	doctest	

all_tests	=	unittest.TestSuite()	

for	mod	in	module1,	module2:	

				all_tests.addTests(mod.suite())	

				all_tests.addTests(doctest.DocTestSuite(mod))	

t	=	unittest.TextTestRunner()	

t.run(all_tests)	

We	built	a	single	suite,	all_tests,	from	the	suites	within	the	other	test	modules.
This	provides	us	with	a	handy	script	that	will	run	all	of	the	tests	that	are
available	as	part	of	the	distribution.



There	are	ways	to	use	the	test	discovery	features	of	the	unittest	module	to	do	this
as	well.	We	perform	package-wide	testing	from	the	command	line,	with
something	like	the	following	code:

python3	-m	unittest	tests/*.py

This	will	use	the	default	test	discovery	features	of	unittest	to	locate	TestCase	in	the
given	files.	This	has	the	disadvantage	of	relying	on	shell	script	features	rather
than	pure	Python	features.	The	wildcard	file	specification	can	sometimes	make
development	more	complex	because	incomplete	modules	might	get	tested.

Using	pytest	has	some	advantages	over	using	unittest	to	discover	and	run	the
overall	suite	of	tests.	As	we'll	see	later,	pytest	is	somewhat	simpler.	More
importantly,	it	can	locate	a	wider	variety	of	test	cases,	including	functions	as
well	as	subclasses	of	unittest.TestCase.	This	allows	even	more	flexibility	and	more
rapid	development	of	new	software	features.



Using	setup	and	teardown
There	are	three	levels	of	setup	and	teardown	available	for	the	unittest	modules.
These	define	different	kinds	of	testing	scopes:	method,	class,	and	module,	as
follows:

Test	case	setUp()	and	tearDown()	methods:	These	methods	ensure	that	each
individual	test	method	within	a	TestCase	class	has	a	proper	context.	Often,
we'll	use	the	setUp()	method	to	create	the	units	being	tested	and	any	mock
objects	that	are	required.	
Test	case	setUpClass()	and	tearDownClass()	methods:	These	methods	perform	a
one-time	setup	(and	teardown)	of	all	the	tests	in	a	TestCase	class.	These
methods	bracket	the	sequence	of	setUp()-testMethod()-tearDown()	for	each
method.	This	can	be	a	good	place	to	insert	and	delete	the	data	required	by
the	test	inside	a	database.
Module	setUpModule()	and	tearDownModule()	functions:	These	two	standalone
functions	provide	us	with	a	one-time	setup	before	all	of	the	TestCase	classes
in	a	module.	This	is	a	good	place	to	create	and	destroy	a	test	database	as	a
whole	before	running	a	series	of	TestCase	classes.

We	rarely	need	to	define	all	of	these	setUp()	and	tearDown()	methods.	There	are
several	testing	scenarios	that	are	going	to	be	part	of	our	design	for	testability.
The	essential	difference	between	these	scenarios	is	the	degree	of	integration
involved.	As	noted	previously,	we	have	three	tiers	in	our	testing	hierarchy:
isolated	unit	tests,	integration	tests,	and	overall	application	tests.	There	are
several	ways	in	which	these	tiers	of	testing	work	with	the	various	setup	and
teardown	features	including	the	following:

Isolated	unit,	no	integration,	no	dependencies.	Some	classes	or	functions
have	no	external	dependencies;	they	don't	rely	on	files,	devices,	other
processes,	or	other	hosts.	Other	classes	have	some	external	resources	that
can	be	mocked.	When	the	cost	and	complexity	of	the	TestCase.setUp()	method
is	small,	we	can	create	the	necessary	objects	there.	If	the	mock	objects	are
particularly	complex,	a	class-level	TestCase.setUpClass()	might	be	more
appropriate	to	amortize	the	cost	of	recreating	the	mock	objects	over	several
test	methods.



Internal	integration,	some	dependencies:	Automated	integration	testing
among	classes	or	modules	often	involves	more	complex	setup	situations.
We	may	have	a	complex	setUpClass()	or	even	a	module-level	setUpModule()	to
prepare	a	context	for	integration	testing.	When	working	with	the	database
access	layers	in	Chapter	11,	Storing	and	Retrieving	Objects	via	Shelve,	and	Ch
apter	12,	Storing	and	Retrieving	Objects	via	SQLite,	we	often	perform
integration	testing	that	includes	our	class	definitions	as	well	as	our	access
layer.	This	may	involve	seeding	a	test	database	or	shelf	with	appropriate
data	for	the	tests.
External	integration:	We	may	perform	automated	integration	testing	on
larger	and	more	complex	pieces	of	an	application.	In	these	cases,	we	may
need	to	spawn	external	processes	or	create	databases	and	seed	them	with
data.	In	this	case,	we	may	have	setUpModule()	to	prepare	an	empty	database
for	use	by	all	of	the	TestCase	classes	in	a	module.	When	working	with
RESTful	web	services	in	Chapter	13,	Transmitting	and	Sharing	Objects,	or
testing	Programming	In	The	Large	(PITL)	in	Chapter	19,	Module	and
Package	Design,	this	approach	could	be	helpful.

Note	that	the	concept	of	unit	testing	does	not	define	what	the	unit	under	test	is.
The	unit	can	be	a	class,	a	module,	a	package,	or	even	an	integrated	collection	of
software	components.	The	unit	needs	to	be	isolated	from	its	environment	to
create	a	focused	test.

When	designing	automated	integration	tests,	it's	important	to	choose	the
components	to	be	tested.	For	example,	we	don't	need	to	test	Python	libraries;
they	have	their	own	tests.	Similarly,	we	don't	need	to	test	the	OS.	For	example,	if
our	software	deletes	a	file,	we	don't	need	to	include	a	check	of	the	filesystem
integrity	after	the	file	is	removed.	We	don't	need	to	be	sure	the	space	was
reclaimed.	We	generally	need	to	trust	that	libraries	and	operating	systems	work
correctly.	If	we're	doubtful	of	the	infrastructure,	we	can	run	the	test	suite	for	the
OS	or	libraries;	we	don't	need	to	reinvent	it.	An	integration	test	must	focus	on
testing	the	code	we	wrote,	not	the	code	we	downloaded	and	installed.	



Using	setup	and	teardown	with	OS
resources
In	many	cases,	a	test	case	may	require	a	particular	OS	environment.	When
working	with	external	resources	such	as	files,	directories,	or	processes,	we	may
need	to	create	or	initialize	them	before	a	test.	We	may	also	need	to	remove	the
resources	before	a	test,	or	we	may	need	to	tear	down	the	resources	at	the	end	of
the	test.

Let's	assume	that	we	have	a	function,	rounds_final(),	which	is	supposed	to	process
a	given	file.	We	need	to	test	the	function's	behavior	in	the	rare	case	that	the	file
doesn't	exist.	It's	common	to	see	TestCase	with	a	structure	such	as	the	following
one:

import	os

class	Test_Missing(unittest.TestCase):

				def	setUp(self)	->	None:

								try:

												(Path.cwd()	/	"data"	/	"ch17_sample.csv").unlink()

								except	OSError	as	e:

												pass		#	OK	if	file	didn't	exist

				def	test_missingFile_should_returnDefault(self)	->	None:

								self.assertRaises(

												FileNotFoundError,	rounds_final,	(Path.cwd()	/	"data"	/	"ch17_sample.csv")

								)

We	have	to	handle	the	possible	exception	of	trying	to	remove	a	file	that	doesn't
exist	in	the	first	place.	This	test	case	has	a	setUp()	method	that	ensures	that	the
required	file	is	missing.	Once	setuUp()ensures	that	the	file	is	truly	gone,	we	can
execute	the	rounds_final()	function	with	an	argument	of	the	missing	file,
p3_c15_sample.csv.	We	expect	this	to	raise	a	FileNotFoundError	error.

Note	that	raising	FileNotFoundError	is	a	default	behavior	of	Python's	open()	method.
This	may	not	require	testing	at	all.	This	leads	to	an	important	question:	why	test
a	built-in	feature?	If	we're	performing	black	box	testing,	we	need	to	exercise	all
features	of	the	external	interface,	including	the	expected	default	behaviors.	If
we're	performing	white	box	testing,	we	may	need	to	test	the	exception	handling



try:	statement	within	the	body	of	the	rounds_final()	function.

The	ch17_sample.csv	filename	is	repeated	within	the	body	of	the	test.	Some	folks
feel	that	the	DRY	rule	should	apply	even	to	test	code.	There's	a	limit	to	how
much	of	this	kind	of	optimization	is	valuable	while	writing	tests:

It's	okay	for	test	code	to	be	brittle.	If	a	small	change	to	the	application	leads	to	test	failures,
this	really	is	a	good	thing.	Tests	should	value	simplicity	and	clarity,	not	robustness	and
reliability.

In	the	next	section,	we'll	look	at	some	other	examples	of	using	setUp()	and
tearDown()	for	databases.



Using	setup	and	teardown	with
databases
When	working	with	a	database	and	ORM	layer,	we	often	have	to	create	test
databases,	files,	directories,	or	server	processes.	We	may	need	to	tear	down	a	test
database	after	the	tests	pass,	to	be	sure	that	the	other	tests	can	run.	We	may	not
want	to	tear	down	a	database	after	failed	tests;	we	may	need	to	leave	the
database	alone	so	that	we	can	examine	the	resulting	rows	to	diagnose	the	test
failures.

It's	important	to	manage	the	scope	of	testing	in	a	complex,	multilayered
architecture.	Looking	back	at	Chapter	12,	Storing	and	Retrieving	Objects	via
SQLite,	we	don't	need	to	specifically	test	the	SQLAlchemy	ORM	layer	or	the
SQLite	database.	These	components	have	their	own	test	procedures	outside	our
application	tests.	However,	because	of	the	way	the	ORM	layer	creates	database
definitions,	SQL	statements,	and	Python	objects	from	our	code,	we	can't	easily
mock	SQLAlchemy	and	hope	that	we've	used	it	properly.	We	need	to	test	the
way	our	application	uses	the	ORM	layer	without	digressing	into	testing	the
ORM	layer	itself.

One	of	the	more	complex	test	case	setup	situations	will	involve	creating	a
database	and	then	populating	it	with	appropriate	sample	data	for	the	given	test.
When	working	with	SQL,	this	can	involve	running	a	fairly	complex	script	of
SQL	DDL	to	create	the	necessary	tables	and	then	another	script	of	SQL	DML	to
populate	those	tables.	The	associated	teardown	will	be	another	complex	SQL
DDL	script.

This	kind	of	test	case	can	become	long-winded,	so	we'll	break	it	into	three
sections:	a	useful	function	to	create	a	database	and	schema,	the	setUpClass()
method,	and	the	rest	of	the	unit	test.

Here's	the	create	database	function:

from	Chapter_12.ch12_ex4	import	Base,	Blog,	Post,	Tag,	assoc_post_tag

import	datetime

import	sqlalchemy.exc



from	sqlalchemy	import	create_engine

def	build_test_db(name="sqlite:///./data/ch17_blog.db"):

				"""

				Create	Test	Database	and	Schema

				"""

				engine	=	create_engine(name,	echo=True)

				Base.metadata.drop_all(engine)

				Base.metadata.create_all(engine)

				return	engine

This	builds	a	fresh	database	by	dropping	all	of	the	tables	associated	with	the
ORM	classes	and	recreating	the	tables.	The	idea	is	to	ensure	a	fresh,	empty
database	that	conforms	to	the	current	design,	no	matter	how	much	that	design
has	changed	since	the	last	time	the	unit	tests	were	run.

In	this	example,	we	built	an	SQLite	database	using	a	file.	We	can	use	the	in-
memory	SQLite	database	feature	to	make	the	test	run	somewhat	more	quickly.
The	downside	of	using	an	in-memory	database	is	that	we	have	no	database	that
we	can	use	to	debug	failed	tests.

Here's	how	we	use	this	in	a	TestCase	subclass:

from	sqlalchemy.orm	import	sessionmaker

class	Test_Blog_Queries(unittest.TestCase):

				@staticmethod

				def	setUpClass():

								engine	=	build_test_db()

								Test_Blog_Queries.Session	=	sessionmaker(bind=engine)

								session	=	Test_Blog_Queries.Session()

								tag_rr	=	Tag(phrase="#RedRanger")

								session.add(tag_rr)

								tag_w42	=	Tag(phrase="#Whitby42")

								session.add(tag_w42)

								tag_icw	=	Tag(phrase="#ICW")

								session.add(tag_icw)

								tag_mis	=	Tag(phrase="#Mistakes")

								session.add(tag_mis)

								blog1	=	Blog(title="Travel	2013")

								session.add(blog1)

								b1p1	=	Post(

												date=datetime.datetime(2013,	11,	14,	17,	25),

												title="Hard	Aground",

												rst_text="""Some	embarrassing	revelation.	Including	☹	and	⚓""",
												blog=blog1,

												tags=[tag_rr,	tag_w42,	tag_icw],

								)

								session.add(b1p1)

								b1p2	=	Post(

												date=datetime.datetime(2013,	11,	18,	15,	30),

												title="Anchor	Follies",



												rst_text="""Some	witty	epigram.	Including	☺	and	☀""",
												blog=blog1,

												tags=[tag_rr,	tag_w42,	tag_mis],

								)

								session.add(b1p2)

								blog2	=	Blog(title="Travel	2014")

								session.add(blog2)

								session.commit()

We	defined	setUpClass()	so	that	a	database	is	created	before	the	tests	from	this
class	are	run.	This	allows	us	to	define	a	number	of	test	methods	that	will	share	a
common	database	configuration.	Once	the	database	has	been	built,	we	can	create
a	session	and	add	data.

We've	put	the	session	maker	object	into	the	class	as	a	class-level	attribute,
Test_Blog_Queries.Session	=	sessionmaker(bind=engine).	This	class-level	object	can	then
be	used	in	setUp()	and	individual	test	methods.

Here	is	setUp()	and	two	of	the	individual	test	methods:

def	setUp(self):

				self.session	=	Test_Blog_Queries.Session()

def	test_query_eqTitle_should_return1Blog(self):

				results	=	self.session.query(Blog).filter(Blog.title	==	"Travel	2013").all()

				self.assertEqual(1,	len(results))

				self.assertEqual(2,	len(results[0].entries))

def	test_query_likeTitle_should_return2Blog(self):

				results	=	self.session.query(Blog).filter(Blog.title.like("Travel	%")).all()

				self.assertEqual(2,	len(results))

The	setUp()	method	creates	a	new,	empty	session	object	from	the	class-level
sessionmaker	instance.	This	will	ensure	that	every	query	is	able	to	properly
generate	SQL	and	fetch	data	from	the	database	using	an	SQLAlchemy	session.

The	query_eqTitle_should_return1Blog()	test	will	find	the	requested	Blog	instance	and
navigate	to	the	Post	instances	via	the	entries	relationship.	The	filter()	portion	of
the	request	doesn't	really	test	our	application	definitions;	it	exercises
SQLAlchemy	and	SQLite.	The	results[0].entries	test	in	the	final	assertion	is	a
meaningful	test	of	our	class	definitions.

The	query_likeTitle_should_return2Blog()	test	is	almost	entirely	a	test	of
SQLAlchemy	and	SQLite.	It	isn't	really	making	meaningful	use	of	anything	in
our	application	except	the	presence	of	an	attribute	named	title	in	Blog.	These
kinds	of	tests	are	often	left	over	from	creating	initial	technical	spikes.	They	can



help	clarify	an	application	API,	even	if	they	don't	provide	much	value	as	a	test
case.

Here	are	two	more	test	methods:

def	test_query_eqW42_tag_should_return2Post(self):

				results	=	self.session.query(Post).join(assoc_post_tag).join(Tag).filter(

								Tag.phrase	==	"#Whitby42"

				).all()

				self.assertEqual(2,	len(results))

def	test_query_eqICW_tag_should_return1Post(self):

				results	=	self.session.query(Post).join(assoc_post_tag).join(Tag).filter(

								Tag.phrase	==	"#ICW"

				).all()

				self.assertEqual(1,	len(results))

				self.assertEqual("Hard	Aground",	results[0].title)

				self.assertEqual("Travel	2013",	results[0].blog.title)

				self.assertEqual(

								set(["#RedRanger",	"#Whitby42",	"#ICW"]),

								set(t.phrase	for	t	in	results[0].tags),

				)

The	query_eqW42_tag_should_return2Post()	test	performs	a	more	complex	query	to
locate	the	posts	that	have	a	given	tag.	This	exercises	a	number	of	relationships
defined	in	the	classes.	When	both	of	the	relevant	blog	entries	are	located,	this
test	has	been	passed.

The	query_eqICW_tag_should_return1Post()	test,	similarly,	exercises	a	complex	query.	It
tests	the	navigation	from	Post	to	the	Blog	instance	which	contains	the	Post	via
results[0].blog.title.	It	also	tests	navigation	from	Post	to	an	associated	collection
of	Tags	via	set(t.phrase	for	t	in	results[0].tags).	We	must	use	an	explicit	set()
because	the	order	of	results	in	SQL	is	not	guaranteed.

What's	important	about	this	Test_Blog_Queries	subclass	of	TestCase	is	that	it	creates	a
database	schema	and	a	specific	set	of	defined	rows	via	the	setUpClass()	method.
This	kind	of	test	setup	is	helpful	for	database	applications.	It	can	become	rather
complex	and	is	often	supplemented	by	loading	sample	rows	from	files	or	JSON
documents,	rather	than	coding	the	rows	in	Python.



The	TestCase	class	hierarchy
Inheritance	works	among	the	TestCase	classes.	Ideally,	each	TestCase	is	unique.
Pragmatically,	there	may	be	common	features	among	cases.	There	are	the
following	three	common	ways	in	which	TestCase	classes	may	overlap:

Common	setUp():	We	may	have	some	data	that	is	used	in	multiple	TestCase.
There's	no	reason	to	repeat	the	data.	A	TestCase	class	that	only	defines	setUp()
or	tearDown()	with	no	test	methods	is	legal,	but	it	may	lead	to	a	confusing	log,
because	there	are	zero	tests	involved.
Common	tearDown():	It's	common	to	have	a	common	cleanup	for	tests	that
involve	OS	resources.	We	might	need	to	remove	files	and	directories	or	kill
subprocesses.
Common	results	checking:	For	algorithmically	complex	tests,	we	may
have	a	results	checking	method	that	verifies	some	properties	of	a	result.

Looking	back	at	Chapter	4,	Attribute	Access,	Properties,	and	Descriptors,	for
example,	consider	the	RateTimeDistance	class.	This	class	fills	in	a	missing	value	in	a
dictionary	based	on	two	other	values,	as	follows:

@dataclass

class	RateTimeDistance:

				rate:	Optional[float]	=	None

				time:	Optional[float]	=	None

				distance:	Optional[float]	=	None

				def	__post_init__(self)	->	None:

								if	self.rate	is	not	None	and	self.time	is	not	None:

												self.distance	=	self.rate	*	self.time

								elif	self.rate	is	not	None	and	self.distance	is	not	None:

												self.time	=	self.distance	/	self.rate

								elif	self.time	is	not	None	and	self.distance	is	not	None:

												self.rate	=	self.distance	/	self.time

Each	unit	test	method	for	the	RateTimeDistance	class	can	include	the	following
code:

self.assertAlmostEqual(

				self.rtd.distance,	self.rtd.rate	*	self.rtd.time,	places=2

)

If	we	use	a	number	of	TestCase	subclasses,	we	can	inherit	this	validity	check	as	a



separate	method	as	follows:

def	validate(self,	object):

				self.assertAlmostEqual(

								self.rtd.distance,	self.rtd.rate	*	self.rtd.time,	places=2

				)

This	way,	each	test	need	only	include	self.validate(object)	to	be	sure	that	all	the
tests	provide	a	consistent	definition	of	correctness.

An	important	feature	of	the	definition	of	the	unittest	module	is	that	the	test	cases
are	proper	classes	with	proper	inheritance.	We	can	design	the	TestCase	class
hierarchy	with	the	same	care	and	attention	to	detail	that	we	apply	to	the
application	classes.



Using	externally	defined	expected
results
For	some	applications,	the	users	can	articulate	processing	rules	that	describe	the
software's	behavior.	In	other	cases,	the	job	of	an	analyst	or	a	designer	transforms
the	user's	desires	into	procedural	descriptions	of	the	software.

It's	often	easiest	to	provide	concrete	examples	of	expected	results.	Either	the
ultimate	users	or	intermediary	analysts	may	find	it	helpful	to	create	a	spreadsheet
that	shows	sample	inputs	and	expected	results.	Working	from	user-supplied,
concrete	sample	data	can	simplify	the	software	being	developed.

Whenever	possible,	have	real	users	produce	concrete	examples	of	correct	results.
Creating	procedural	descriptions	or	software	specifications	is	remarkably
difficult.	Creating	concrete	examples	and	generalizing	from	the	examples	to	a
software	specification	is	less	fraught	with	complexity	and	confusion.	Further,	it
plays	into	a	style	of	development	where	test	cases	drive	development	efforts.	A
suite	of	test	cases	provides	a	developer	with	a	concrete	definition	of	done.
Tracking	the	software	development	project	status	leads	to	asking	how	many	test
cases	we	have	today	and	how	many	of	them	pass.

Given	a	spreadsheet	of	concrete	examples,	we	need	to	turn	each	row	into	a
TestCase	instance.	We	can	then	build	a	suite	from	these	objects.

For	the	previous	examples	in	this	chapter,	we	loaded	the	test	cases	from	a
TestCase-based	class.	We	used	unittest.defaultTestLoader.loadTestsFromTestCase	to
locate	all	the	methods	with	a	name	that	starts	with	test.	The	loader	creates	a	test
object	from	each	method	with	the	proper	name	prefix	and	combines	them	into	a
test	suite.

There's	an	alternative	approach,	however.	For	this	example,	we're	going	to	build
test	case	instances	individually.	This	is	done	by	defining	a	class	with	a	single
runTest()	method.	We	can	load	multiple	instances	of	this	class	into	a	suite.	For
this	to	work,	the	TestCase	class	must	define	only	one	test	with	the	name	runTest().
We	won't	be	using	the	loader	to	create	the	test	objects;	we'll	be	creating	them



directly	from	rows	of	externally	supplied	data.

Let's	take	a	look	at	a	concrete	function	that	we	need	to	test.	This	is	from	Chapter
4,	Attribute	Access,	Properties,	and	Descriptors:

from	Chapter_4.ch04_ex3	import	RateTimeDistance

This	is	a	class	that	eagerly	computes	a	number	of	attributes	when	it	is	initialized.
The	users	of	this	simple	function	provided	us	with	some	test	cases	as	a
spreadsheet,	from	which	we	extracted	the	CSV	file.	For	more	information	on
CSV	files,	see	Chapter	10,	Serializing	and	Saving	-	JSON,	YAML,	Pickle,	CSV,	and
XML.	We	need	to	transform	each	row	into	a	TestCase.	Here's	the	data	in	the	CSV
file:

rate_in,time_in,distance_in,rate_out,time_out,distance_out	

2,3,,2,3,6	

5,,7,5,1.4,7	

,11,13,1.18,11,13	

We're	not	going	to	define	a	class	using	a	name	that	starts	with	test	because	the
class	isn't	going	to	be	simply	discovered	by	a	loader.	Instead,	the	class	is	used	to
build	instances	into	a	larger	suit	of	tests.	Here's	the	test	case	template	that	we	can
use	to	create	test	instances	from	each	row	of	the	CSV	file:

class	Test_RTD(unittest.TestCase):

				def	runTest(self)	->	None:

								with	(Path.cwd()	/	"data"	/	"ch17_data.csv").open()	as	source:

												rdr	=	csv.DictReader(source)

												for	row	in	rdr:

																self.example(**row)

				def	example(

								self,

								rate_in:	str,

								time_in:	str,

								distance_in:	str,

								rate_out:	str,

								time_out:	str,

								distance_out:	str,

				)	->	None:

								args	=	dict(

												rate=float_or_none(rate_in),

												time=float_or_none(time_in),

												distance=float_or_none(distance_in),

								)

								expected	=	dict(

												rate=float(rate_out),	time=float(time_out),	distance=float(distance_out)

								)

								rtd	=	RateTimeDistance(**args)

								assert	rtd.distance	and	rtd.rate	and	rtd.time

								self.assertAlmostEqual(rtd.distance,	rtd.rate	*	rtd.time,	places=2)



								self.assertAlmostEqual(rtd.rate,	expected["rate"],	places=2)

								self.assertAlmostEqual(rtd.time,	expected["time"],	places=2)

								self.assertAlmostEqual(rtd.distance,	expected["distance"],	places=2)

The	testing	is	embodied	in	the	runTest()	method	of	this	class.	In	previous
examples,	we	used	method	names	starting	with	test_	to	provide	the	test	case
behavior.	Instead	of	multiple	test_	method	names,	a	single	runTest()	method	can
be	provided.	This	will	also	change	the	way	a	test	suite	is	built,	as	we'll	see	next.

This	method	parses	a	row	of	a	spreadsheet	into	a	dictionary.	For	this	to	work
correctly,	the	sample	data	column	headings	must	match	the	parameter	names
required	by	the	example()	method.	The	input	values	are	placed	in	a	dictionary
named	args;	the	expected	result	values	are,	similarly,	placed	into	a	dictionary
named	expected.

The	float_or_none()	function	helps	handle	the	CSV	source	data	where	a	None	value
will	be	represented	by	an	empty	string.	It	converts	the	text	of	a	cell	to	a	float
value	or	None.	The	function	is	defined	as	follows:

def	float_or_none(text:	str)	->	Optional[float]:

				if	len(text)	==	0:

								return	None

				return	float(text)

Each	row	of	the	spreadsheet	is	processed	through	the	example()	method.	This
gives	us	a	relatively	flexible	approach	to	testing.	We	can	permit	users	or	business
analysts	to	create	all	the	examples	required	to	clarify	proper	operation.

We	can	build	a	suite	from	this	test	object	as	follows:

def	suite9():

				suite	=	unittest.TestSuite()

				suite.addTest(Test_RTD())

				return	suite

Note	that	we	do	not	use	the	loadTestsFromTestCase	method	to	discover	the	methods
with	test_	names.	Instead,	we	create	an	instance	of	the	test	case	that	can	simply
be	added	to	the	test	suite.

The	suite	is	executed	using	the	kind	of	script	we've	seen	earlier.	Here's	an
example:

if	__name__	==	"__main__":

				t	=	unittest.TextTestRunner()	

				t.run(suite9())	



The	output	looks	like	this:

..F	

======================================================================	

FAIL:	runTest	(__main__.Test_RTD)	

{'rate':	None,	'distance':	13.0,	'time':	11.0}	->	{'rate':	1.18,	'distance':	13.0,	'time':	11.0}	

----------------------------------------------------------------------	

Traceback	(most	recent	call	last):	

		File	"p3_c15.py",	line	504,	in	runTest	

				self.assertAlmostEqual(	self.rtd.rate,	self.result['rate']	)	

AssertionError:	1.1818181818181819	!=	1.18	within	7	places	

	

----------------------------------------------------------------------	

Ran	3	tests	in	0.000s	

	

FAILED	(failures=1)	

The	user-supplied	data	has	a	small	problem.	The	users	provided	a	value	that	has
been	rounded	off	to	only	two	places.	Either	the	sample	data	needs	to	provide
more	digits,	or	our	test	assertions	need	to	cope	with	the	rounding.

This	can	also	be	run	from	the	command	line	using	unittest	test	discovery.	Here's
the	command	we	can	run	to	use	the	built-in	test	discovery	features	of	the	unittest
module:

python3	-m	unittest	Chapter_17/ch17_ex1.py

This	produces	an	abbreviated	output	with	many	of	the	testing	examples	from	this
chapter.	It	looks	like	this:

.x............x..Run	time	0.931446542

..

----------------------------------------------------------------------

Ran	19	tests	in	0.939s

Each	.	is	a	test	that	passed.	The	x	marks	are	tests	that	are	expected	to	fail.	As	we
noted	previously,	some	of	the	tests	reveal	problems	with	the	defined	classes,	and
those	tests	will	fail	until	the	classes	are	fixed.

The	Run	time	0.931446542	output	is	from	a	print()	within	a	test.	It's	not	a	standard
part	of	the	output.	Because	of	the	way	the	output	is	structured,	it	can	be	difficult
to	print	other	debugging	or	performance	data	output	inside	a	test	case.	This
example	shows	how	it	can	be	confusing	to	have	the	additional	output	in	the
middle	of	the	simple	line	of	periods	showing	test	execution	progress.



Using	pytest	and	fixtures
An	alternative	to	the	unittest	runner	is	the	pytest	test	runner.	The	pytest
framework	has	an	excellent	test	discovery	feature	that	goes	beyond	what	the
unittest	tool	can	discover.

The	unittest	runner	can	be	used	in	the	following	two	ways.

With	a	test	suite	object.	The	previous	examples	have	focused	on	this.
To	search	for	classes	that	are	extensions	of	unittest.TestCase,	build	a	test	suite
from	those,	and	then	run	the	suite.	This	offers	considerable	flexibility.	We
can	add	test	cases	without	also	having	to	update	the	code	to	build	the	test
suite.

The	pytest	tool	can	also	locate	unittest.TestCase	class	definitions,	build	a	suite	of
tests,	and	execute	the	tests.	It	can	go	beyond	this	and	also	locate	functions	with
names	starting	with	test_	in	modules	where	the	name	starts	with	test_.	Using
simple	functions	has	some	advantages	over	the	more	complex	unittest.TestCase
class	definitions.

The	primary	advantage	of	using	separate	functions	is	the	resulting	simplification
of	the	test	module.	In	particular,	when	we	look	back	at	the	TestCardFactory
example,	we	see	that	there	is	no	setUp()	required	for	the	tests	within	the	class.
Because	all	of	the	methods	are	independent,	there's	no	real	need	to	bind	these
methods	into	a	single	class	definition.	Even	though	this	is	a	book	on	object-
oriented	Python,	there's	no	reason	to	use	class	definitions	when	they	don't
improve	the	code.	In	many	cases,	class-oriented	test	case	definition	isn't	helpful
and	separate	functions	executed	by	pytest	have	advantages.

The	pytest	approach	leads	to	the	following	two	other	consequences:

The	self.assert...()	methods	are	not	available.	When	using	pytest,	the
Python	assert	statement	is	used	to	compare	expected	results	with	actual
results.
The	stateful	class	variables	used	by	setUp()	and	tearDown()	aren't	available.	In
order	to	set	up	and	tear	down	test	contexts,	we'll	use	the	pytest	@fixture



functions.

As	a	concrete	example	of	the	simplifications	possible,	we'll	review	some
examples	from	earlier,	starting	with	tests	for	the	Card	class.	The	pytest	version	is
as	follows:

def	test_card():

				three_clubs	=	Card(3,	Suit.CLUB)

				assert	"3♣"	==	str(three_clubs)

				assert	3	==	three_clubs.rank

				assert	Suit.CLUB	==	three_clubs.suit

				assert	3	==	three_clubs.hard

				assert	3	==	three_clubs.soft

The	function's	name	must	begin	with	test_	to	be	sure	pytest	can	discover	it.	The
test	setup	creates	a	card	instance,	and	a	number	of	assert	statements	to	confirm
that	it	has	the	expected	behavior.	We	don't	have	quite	as	much	overhead	when
using	functions	with	the	assert	statement	as	we	do	when	using	unitest.TestCase
subclasses.



Assertion	checking
To	confirm	the	exception	raised	by	a	test,	the	unittest.TestCase	class	has	methods
like	assertRaises().	When	working	with	pytest,	we	have	a	distinct	approach	to
testing	this	feature.	The	pytest	package	offers	a	context	manager	named	raises	to
help	detect	the	exception	that	is	raised.	The	raises	context	is	shown	in	this
example:	

from	pytest	import	raises

def	test_card_factory():

				c1	=	card(1,	Suit.CLUB)

				assert	isinstance(c1,	AceCard)

				c2	=	card(2,	Suit.DIAMOND)

				assert	isinstance(c1,	Card)

				c10	=	card(10,	Suit.HEART)

				assert	isinstance(c10,	Card)

				cj	=	card(11,	Suit.SPADE)

				assert	isinstance(cj,	FaceCard)

				ck	=	card(13,	Suit.CLUB)

				assert	isinstance(ck,	FaceCard)

				with	raises(LogicError):

								c14	=	card(14,	Suit.DIAMOND)

				with	raises(LogicError):

								c0	=	card(0,	Suit.DIAMOND)

We've	used	pytest.raises	as	a	context	manager.	When	this	is	provided	with	a	class
definition,	the	statements	within	the	context	are	expected	to	raise	the	named
exception.	If	the	exception	is	raised,	the	test	passes;	if	the	exception	is	not	raised,
this	is	a	test	failure.



Using	fixtures	for	test	setup
The	test	setup	and	teardown	features	of	pytest	are	often	handled	by	@fixture
functions.	These	functions	form	the	fixture	into	which	a	unit	is	connected	for
testing.	In	the	realm	of	hardware	testing,	it	might	also	be	called	a	test	harness	or
test	bench.

Fixtures	can	be	used	to	do	any	kind	of	setup	or	teardown	related	to	a	test.
Because	of	the	way	pytest	invokes	a	test,	it	implicitly	calls	the	fixture	functions,
simplifying	our	test	code	considerably.	The	fixtures	can	reference	other	fixtures,
letting	us	create	composite	objects	that	can	help	to	isolate	the	unit	being	tested.

Previously,	we	looked	at	two	complex	test	case	subclasses:	TestDeckBuild	and
TestDeckDeal.	These	two	test	cases	covered	separate	features	of	the	Deck3	class
definition.	We	can	build	similar	test	cases	using	a	common	fixture.	Here's	the
fixture	definition:

import	unittest.mock

from	types	import	SimpleNamespace

from	pytest	import	fixture

@fixture

def	deck_context():

				mock_deck	=	[

								getattr(unittest.mock.sentinel,	str(x))

								for	x	in	range(52)

				]

				mock_card	=	unittest.mock.Mock(side_effect=mock_deck)

				mock_rng	=	unittest.mock.Mock(

								wraps=random.Random,

								shuffle=unittest.mock.Mock(return_value=None)

				)

				return	SimpleNamespace(**locals())

The	deck_context()	function,	creates	the	following	three	mock	objects:

The	mock_deck	object	is	a	list	of	52	individual	mock.sentinel	objects.	Each
sentinel	object	is	customized	by	getting	a	unique	attribute	of	the	sentinel.
The	attribute	name	is	a	string	built	from	the	integer	values	in	range(52).
There	will	be	objects	with	names	such	as	mock.sentinel.0.	This	is	not	a	valid
syntax	for	a	simple	Python	attribute	reference	in	source	code,	but	we	only
need	to	be	sure	the	sentinel	is	unique.
The	mock_card	object	is	a	mock	with	a	side_effect.	This	will	behave	like	a



function.	Each	time	it's	invoked,	it	will	return	another	value	from	the	list
provided	to	the	side_effect	parameter.	This	can	be	used	to	simulate	a
function	that	reads	values	from	files	or	a	network	connection.
The	mock_rng	object	is	a	wrapped	version	of	the	random.Random	class.	This	will
behave	like	a	random	object,	except	for	two	features.	First,	the	shuffle()
method	doesn't	do	anything.	And,	second,	the	Mock	wrapper	will	track
individual	calls	to	the	methods	of	this	object	so	we	can	determine	whether
it's	being	used	properly	by	the	unit	being	tested.

The	return	step	packages	all	of	the	local	variables	into	a	single	SimpleNamespace
object.	This	object	lets	us	use	syntax	such	as	deck_context.mock_card	to	refer	to	the
Mock	function.	We	can	use	this	fixture	in	a	test	function.	The	following	is	an
example:

def	test_deck_build(deck_context):

				d	=	Deck3(

								size=1,

								random=deck_context.mock_rng,

								card_factory=deck_context.mock_card

				)

				deck_context.mock_rng.shuffle.assert_called_once_with(d)

				assert	52	==	len(deck_context.mock_card.mock_calls)

				expected	=	[

								unittest.mock.call(r,	s)	for	r	in	range(1,	14)	for	s	in	iter(Suit)

				]

				assert	expected	==	deck_context.mock_card.mock_calls

This	test	references	the	deck_context	fixture.	Nothing	special	is	done	in	the	code;
pytest	will	implicitly	evaluate	the	function,	and	the	resulting	SimpleNamespace	object
will	be	the	value	of	the	deck_context	parameter.	The	mapping	between
the	parameter	and	the	fixture	is	very	simple:	all	parameter	names	must	be	the
names	of	fixture	functions,	and	these	functions	are	evaluated	automatically.

The	test	builds	a	Deck3	instance	using	mock	objects	for	the	random	parameter	and
the	card_factory	parameter.	Once	the	Deck3	instance	is	built,	we	can	examine	the
mock	objects	to	see	if	they	had	the	proper	number	of	calls	with	the	expected
argument	values.



Using	fixtures	for	setup	and	teardown
The	fixture	functions	can	also	provide	a	teardown	capability	as	well	as	a	setup
capability.	This	relies	on	the	lazy	way	generator	functions	work.	Some	example
code	for	a	fixture	that	does	setup	and	teardown	is	as	follows:

@fixture

def	damaged_file_path():

				file_path	=	Path.cwd()	/	"data"	/	"ch17_sample.csv"

				with	file_path.open("w",	newline="")	as	target:

								print("not_player,bet,rounds,final",	file=target)

								print("data,1,1,1",	file=target)

				yield	file_path

				file_path.unlink()

The	damaged_file_path()	function	creates	a	file	with	a	relative	path	of
data/ch17_sample.csv.	A	few	lines	of	data	are	written	to	the	file.

The	yield	statement	provides	an	initial	result	value.	This	is	used	by	a	test
function.	When	the	test	completes,	then	a	second	value	is	retrieved	from	the
fixture.	When	this	second	result	is	requested,	the	fixture	function	can	do	any
teardown	work	that	is	required.	In	this	example,	the	teardown	work	deletes	the
test	file	that	was	created.

The	fixture	function	will	be	called	implicitly	when	the	test	is	run.	Here	is	an
example	test	that	uses	this	fixture:

def	test_damaged(damaged_file_path):

				with	raises(AssertionError):

								stats	=	rounds_final(Path.cwd()/"data"/"ch17_sample.csv")

This	test	confirms	that	the	rounds_final()	function,	when	given	the	example	file,
will	raise	AssertionError.	Because	the	damaged_file_path	fixture	uses	yield,	it	can	tear
down	the	test	context,	removing	the	file.



Building	parameterized	fixtures
It's	common	to	have	a	large	number	of	similar	examples	for	a	test	case.	In
previous	sections,	we	talked	about	having	users	or	analysts	create	spreadsheets
with	examples	of	inputs	and	outputs.	This	can	be	helpful	for	permitting	direct
input	to	the	software	development	process.	We	need	our	testing	tools	to	work
with	the	CSV	example	files	as	directly	as	possible.

With	pytest,	we	can	apply	parameters	to	a	fixture.	The	pytest	runner	will	use	each
object	in	the	parameter	collection	to	run	the	test	function	repeatedly.	To	build	a
parameterized	fixture,	we	can	use	code	like	the	following	example:

import	csv

with	(Path.cwd()	/	"Chapter_17"	/	"ch17_data.csv").open()	as	source:

				rdr	=	csv.DictReader(source)

				rtd_cases	=	list(rdr)

@fixture(params=rtd_cases)

def	rtd_example(request):

				yield	request.param

We've	opened	the	CSV	file	in	a	context	manager.	The	file	is	used	to	build	a
reader	that	transforms	each	row	of	data	into	a	dictionary.	The	keys	are	the
column	titles	and	the	values	are	the	strings	from	each	cell	in	a	given	row.	The
final	rtd_cases	variable	will	be	a	list	of	dictionaries;	a	type	hint	of	List[Dict[str,
str]]	would	capture	the	structure.

The	rtd_example	fixture	was	built	with	the	params=	argument.	Each	item	in	the	params
collection	will	be	provided	as	a	context	to	a	function	under	test.	This	means	the
test	will	be	run	several	times,	and	each	time	it	will	use	a	different	value	from	the
params	sequence.	To	use	this	fixture,	we'll	have	a	test	case	like	the	following
example:

from	pytest	import	approx

def	test_rtd(rtd_example):

				args	=	dict(

								rate=float_or_none(rtd_example['rate_in']),

								time=float_or_none(rtd_example['time_in']),

								distance=float_or_none(rtd_example['distance_in']),

				)

				result	=	dict(

								rate=float_or_none(rtd_example['rate_out']),



								time=float_or_none(rtd_example['time_out']),

								distance=float_or_none(rtd_example['distance_out']),

				)

				rtd	=	RateTimeDistance(**args)

				assert	rtd.distance	==	approx(rtd.rate	*	rtd.time)

				assert	rtd.rate	==	approx(result["rate"],	abs=1E-2)

				assert	rtd.time	==	approx(result["time"])

				assert	rtd.distance	==	approx(result["distance"])

This	case	depends	on	the	rtd_example	fixture.	Since	the	fixture	had	a	list	of	values
for	the	params,	this	case	will	be	called	multiple	times;	each	time,	the	value
of	rtd_example	will	be	a	different	row	from	the	sequence	of	values.	This	makes	it
convenient	to	write	a	common	test	for	a	variety	of	input	values.	

This	test	also	uses	the	pytest.approx	object.	This	object	is	used	to	wrap	floating-
point	values	so	the	__eq__()	method	is	an	approximately	equal	algorithm	instead
of	a	simple	exact	equality	test.	This	is	a	very	convenient	way	to	ignore	the	tiny
floating-point	discrepancies	that	arise	from	the	truncation	of	the	binary
representation	of	a	number.



Automated	integration	or
performance	testing
We	can	use	the	unittest	package	to	perform	testing	that	isn't	focused	on	a	single,
isolated	class	definition.	As	noted	previously,	we	can	use	unittest	automation	to
test	a	unit	that	is	an	integration	of	multiple	components.	This	kind	of	testing	can
only	be	performed	on	software	that	has	passed	unit	tests	on	isolated	components.
There's	no	point	in	trying	to	debug	a	failed	integration	test	when	a	component's
unit	test	didn't	work	correctly.

Performance	testing	can	be	done	at	several	levels	of	integration.	For	a	large
application,	performance	testing	with	the	entire	build	may	not	be	completely
helpful.	One	traditional	view	is	that	a	program	spends	90	percent	of	its	time
executing	just	10	percent	of	the	available	code.	Therefore,	we	don't	often	need	to
optimize	an	entire	application;	we	only	need	to	locate	the	small	fraction	of	the
program	that	represents	the	real	performance	bottleneck.

In	some	cases,	it	will	be	clear	that	we	have	a	data	structure	that	involves
searching.	We	know	that	removing	searching	will	lead	to	a	tremendous
improvement	in	performance.	As	we	saw	in	Chapter	6,	Using	Callables	and
Contexts,	implementing	memoization	can	lead	to	dramatic	performance
improvements	by	avoiding	recalculation.

In	order	to	perform	proper	performance	testing,	we	need	to	follow	this	three-step
work	cycle:

1.	 Use	a	combination	of	design	reviews	and	code	profiling	to	locate	the	parts
of	the	application	that	are	likely	to	be	a	performance	problem.	Python	has
two	profiling	modules	in	the	standard	library.	Unless	there	are	more
complex	requirements,	cProfile	will	locate	the	part	of	the	application	that
requires	focus.

2.	 Create	an	automated	test	scenario	with	unittest	to	demonstrate	any	actual
performance	problems.	Collect	the	performance	data	with	timeit	or
time.perf_counter().

3.	 Optimize	the	code	for	the	selected	test	case	until	the	performance	is



acceptable.

The	point	is	to	automate	as	much	as	possible	and	avoid	vaguely	tweaking	things
in	the	hope	of	an	improvement	in	performance.	Most	of	the	time,	a	central	data
structure	or	algorithm	(or	both)	must	be	replaced,	leading	to	extensive
refactoring.	Having	automated	unit	tests	makes	wholesale	refactoring	practical.

An	awkward	situation	can	arise	when	a	performance	test	lacks	specific	pass-fail
criteria.	There	can	be	a	drive	to	make	software	faster	without	a	concrete
definition	of	fast	enough.	It's	always	simpler	when	there	are	measurable
performance	objectives.	Given	a	concrete	objective,	then	formal,	automated
testing	can	be	used	to	assert	both	that	the	results	are	correct	and	that	the	time
taken	to	get	those	results	is	acceptable.

For	performance	testing,	we	might	use	something	like	the	following	code:

import	unittest

import	timeit

class	Test_Performance(unittest.TestCase):

				def	test_simpleCalc_shouldbe_fastEnough(self):

								t	=	timeit.timeit(

												stmt="""RateTimeDistance(rate=1,	time=2)""",

												setup="""from	Chapter_4.ch04_ex3	import	RateTimeDistance""",

								)

								print("Run	time",	t)

								self.assertLess(t,	10,	f"run	time	{t}	>=	10")

This	use	of	unittest	can	create	an	automated	performance	test.	As	the	timeit
module	executes	the	given	statement	1,000,000	times,	this	should	minimize	the
variability	in	the	measurements	from	the	background	work	on	the	computer	that
does	the	testing.

In	the	preceding	example,	each	execution	of	the	RTD	constructor	is	required	to
take	less	than	1/100,000	of	a	second.	A	million	executions	should	take	less	than
10	seconds.



Summary
We	looked	at	using	unittest	and	doctest	to	create	automated	unit	tests.	We	also
looked	at	creating	a	test	suite	so	that	collections	of	tests	can	be	packaged	for
reuse	and	aggregation	into	suites	with	larger	scopes,	without	relying	on	the
automated	test	discovery	process.

We	looked	at	how	to	create	mock	objects	so	that	we	can	test	software	units	in
isolation.	We	also	looked	at	the	various	kinds	of	setup	and	teardown	features.
These	allowed	us	to	write	tests	with	complex	initial	states	or	persistent	results.

The	FIRST	unit	test	properties	fit	well	with	both	doctest	and	unittest.	The	FIRST
properties	are	as	follows:

Fast:	Unless	we	write	egregiously	bad	tests,	the	performance	of	doctest	and
unitest	should	be	very	fast.
Isolated:	The	unittest	package	offers	us	a	mock	module	that	we	can	use	to
isolate	our	class	definitions.	In	addition,	we	can	exercise	some	care	in	our
design	to	ensure	that	our	components	are	isolated	from	each	other.
Repeatable:	Using	doctest	and	unittest	for	automated	testing	ensures
repeatability.
Self-validating:	Both	doctest	and	unittest	bind	test	results	with	the	test	case
condition,	ensuring	that	no	subjective	judgment	is	involved	in	testing.
Timely:	We	can	write	and	run	test	cases	as	soon	as	we	have	the	skeleton	of
a	class,	function,	or	module.	A	class	whose	body	has	simply	pass	is
sufficient	to	run	the	test	script.

For	the	purposes	of	project	management,	a	count	of	written	tests	and	passed	tests
is	sometimes	a	very	useful	status	report.



Design	considerations	and	trade-offs
Test	cases	are	required	to	be	deliverable	when	creating	software.	Any	feature
that	is	without	an	automated	test	might	as	well	not	exist.	A	feature	certainly	can't
be	trusted	to	be	correct	if	there's	no	test.	If	it	can't	be	trusted,	it	shouldn't	be	used.

The	only	real	trade-off	question	is	whether	to	use	doctest	or	unittest	or	both.	For
simple	programming,	doctest	may	be	perfectly	suitable.	For	more	complex
situations,	unittest	will	be	necessary.	For	frameworks	where	the	API
documentation	needs	to	include	examples,	a	combination	works	well.

In	some	cases,	simply	creating	a	module	full	of	TestCase	class	definitions	may	be
sufficient.	The	TestLoader	class	and	test	discovery	features	may	be	perfectly
adequate	to	locate	all	of	the	tests.

More	generally,	unittest	involves	using	TestLoader	to	extract	multiple	test	methods
from	each	TestCase	subclass.	We	package	the	test	methods	into	a	single	class
based	on	who	they	can	share	class-level	setUp(),	and	possibly	setUpClass(),
methods	with.

We	can	also	create	TestCase	instances	without	TestLoader.	In	this	case,	the	default
method	of	runTest()	is	defined	to	have	the	test	case	assertions.	We	can	create	a
suite	from	instances	of	this	kind	of	class.

The	most	difficult	part	can	be	designing	for	testability.	Removing	dependencies
so	that	units	can	be	tested	independently	can	sometimes	feel	like	adding	to	the
software	design's	complexity.	In	most	cases,	the	time	expended	exposing
dependencies	is	time	invested	in	creating	more	maintainable	and	more	flexible
software.

The	general	rule	is	this:	an	implicit	dependency	between	classes	is	bad	design.

A	testable	design	has	explicit	dependencies;	these	can	easily	be	replaced	with
mock	objects.	The	pytest	framework	provides	the	monkeypatch	fixture.	This	permits
us	to	write	tests	that	isolate	the	unit	being	tested	by	patching	the	dependencies.
While	this	is	handy,	it's	often	simpler	and	more	reliable	to	provide	for	simple,



visible	dependency	injection.



Looking	forward
In	the	Chapter	18,	Coping	With	the	Command	Line,	we	will	look	at	writing
complete	applications	that	are	started	from	the	command	line.	We'll	look	at	ways
to	handle	startup	options,	environment	variables,	and	configuration	files	in
Python	applications.

In	Chapter	19,	Module	and	Package	Design,	we'll	expand	on	the	application
design.	We'll	add	the	ability	to	compose	applications	in	larger	applications,	as
well	as	to	decompose	applications	into	smaller	modules	or	packages.



Coping	with	the	Command	Line
Command-line	startup	options,	environment	variables,	and	configuration	files
are	important	to	many	applications,	particularly	when	it	comes	to	the
implementation	of	servers.	There	are	a	number	of	ways	of	dealing	with	program
startup	and	object	creation.	This	chapter	will	focus	on	argument	parsing,	and	the
overall	architecture	of	an	application.

This	chapter	will	extend	the	configuration	file	handling	from	Chapter	14,
Configuration	Files	and	Persistence,	with	yet	more	techniques	for	command-
line	programs	and	the	top	level	of	a	server.	The	core	design	principles	from	Chapte
r	15,	Design	Principles	and	Patterns,	are	essential	when	designing	an	application
of	any	size.	This	chapter	will	also	extend	some	logging	design	features	from	Chap
ter	16,	The	Logging	and	Warning	Modules.

In	Chapter	19,	Module	and	Package	Design,	we'll	extend	these	principles	to	look
at	a	kind	of	architectural	design	that	we'll	call	programming	in	the	large.	We'll
use	the	Command	design	pattern	to	define	software	components	that	can	be
aggregated	without	resorting	to	shell	scripts.	This	is	particularly	helpful	when
writing	the	background	processing	components	used	by	application	servers.



Technical	requirements
The	code	files	for	this	chapter	are	available	at	https://git.io/fj2UD.

https://git.io/fj2UD


The	OS	interface	and	the	command
line
Generally,	the	operating	system's	shell	starts	applications	with	several	pieces	of
information	that	constitute	the	OS	API:

The	shell	provides	each	application	with	its	collection	of	environment
variables.	In	Python,	these	are	accessed	through	os.environ.
The	shell	prepares	three	standard	files.	In	Python,	these	are	mapped	to
sys.stdin,	sys.stdout,	and	sys.stderr.	There	are	some	other	modules,	such	as
fileinput,	that	can	provide	access	to	sys.stdin.
The	command	line	is	parsed	by	the	shell	into	words.	Parts	of	the	command
line	are	available	in	sys.argv.	For	POSIX	operating	systems,	the	shell	may
replace	shell	environment	variables	and	glob	wildcard	filenames.	In
Windows,	the	simple	cmd.exe	shell	will	not	glob	filenames	for	us.
The	OS	also	maintains	context	settings,	such	as	the	current	working
directory,	user	identity,	and	user	group	information,	among	many	other
things.	These	are	available	through	the	os	module.	They	aren't	provided	as
arguments	on	the	command	line.

The	OS	expects	an	application	to	provide	a	numeric	status	code	when	it
terminates.	If	we	want	to	return	a	specific	numeric	code,	we	can	use	sys.exit()	in
our	applications.	The	os	module	defines	a	number	of	values,	such	as	os.EX_OK,	to
help	return	codes	with	common	meanings.	Python	will	return	a	zero	if	our
program	is	terminated	normally,	a	value	of	one	if	the	program	ended	with	an
unhandled	exception,	and	a	value	of	two	if	the	command-line	arguments	were
invalid.

The	shell's	operation	is	an	important	part	of	this	OS	API.	Given	a	line	of	input,
the	shell	performs	a	number	of	substitutions,	depending	on	the	(rather	complex)
quoting	rules	and	substitution	options.	It	then	parses	the	resulting	line	into	space-
delimited	words.	The	first	word	must	be	either	a	built-in	shell	command	(such	as
cd	or	set)	or	it	must	be	the	name	of	a	file,	such	as	python3.	The	shell	searches	its
defined	PATH	for	this	file.



To	make	effective	use	of	executable	files,	it's	imperative	that	you	are	sure	that
the	directory	with	those	files	is	named	by	the	PATH	environment	variable.	In	most
OSes,	you	should	append	a	colon	(:)	and	the	directory	for	your	script.	In
Windows,	you	should	append	a	semicolon	(;)	and	the	directory	for	your	script.

The	file	named	on	the	first	word	of	a	command	must	have	execute,	x,
permission.	The	chmod	+x	somefile.py	shell	command	marks	a	file	as	executable.	A
filename	that	isn't	executable	gets	an	OS	Permission	Denied	error.	Use	the	OS	ls	-
l	(or	the	Windows	equivalent)	command	to	see	file	permissions.

The	first	bytes	of	an	executable	file	have	a	magic	number	that	is	used	by	the
shell	to	decide	how	to	execute	that	file.	Some	magic	numbers	indicate	that	the
file	is	a	binary	executable;	the	shell	can	fork	a	subshell	and	execute	it.	Other
magic	numbers,	specifically	the	value	encoded	by	two	bytes	b'#!',	indicate	that
the	file	is	a	proper	text	script	and	requires	an	interpreter.	The	rest	of	the	first	line
of	this	kind	of	file	is	the	name	of	the	interpreter.

We	often	use	a	line	like	the	following	in	a	Python	file:

#!/usr/bin/env	python3

If	the	Python	file	has	permission	to	execute,	and	has	this	as	the	first	line,	then	the
shell	will	run	the	env	program.	The	env	program's	argument	(python3)	will	cause	it
to	set	up	an	environment	and	run	the	Python	3	program	with	the	Python	file	as
the	first	positional	argument.

After	setting	the	PATH	correctly,	what	happens	when	we	enter	ch18_demo.py	-s
someinput.csv	at	the	command	line?	The	sequence	of	steps	that	the	program	works
through	from	the	OS	shell	via	an	executable	script	to	Python	looks	like	the
following:

1.	 The	shell	parses	the	ch18_demo.py	-s	someinput.csv	line.	The	first	word	is
ch18_demo.py.	This	file	is	on	the	shell's	PATH	and	has	the	x	executable
permission.	The	shell	opens	the	file	and	finds	the	#!	bytes.	The	shell	reads
the	rest	of	this	line	and	finds	the	/usr/bin/env	python3	command.

2.	 The	shell	parses	the	new	/usr/bin/env	command,	which	is	a	binary
executable.	The	shell	starts	the	env	program.	This	program,	in	turn,	starts
python3.	The	sequence	of	words	from	the	original	command	line,	as	parsed



by	the	shell	['ch18_demo.py',	'-s',	'someinput.csv'],	is	provided	to	Python.
3.	 Python	will	extract	any	options	that	are	prior	to	the	first	argument.	Options

are	distinguished	from	arguments	by	having	a	leading	hyphen,	-.	These	first
options	are	used	by	Python	during	startup.	In	this	example,	there	are	no
options.	The	first	argument	must	be	the	Python	filename	that	is	to	be	run.
This	filename	argument	and	all	of	the	remaining	words	on	the	line	will	be
assigned	to	sys.argv.

4.	 The	Python	startup	is	based	on	the	options	found.	Depending	on	the	-s
option,	the	site	module	may	be	used	to	set	up	the	import	path,	sys.path.	If	we
used	the	-m	option,	then	Python	will	use	the	runpy	module	to	start	our
application.	The	given	script	files	may	be	(re)compiled	to	byte	code.	The	-v
option	will	expose	the	imports	that	are	being	performed.

5.	 Our	application	can	make	use	of	sys.argv	to	parse	options	and	arguments
with	the	argparse	module.	Our	application	can	use	environment	variables	in
os.environ.	It	can	also	parse	configuration	files;	you	can	read	Chapter	14,
Configuration	Files	and	Persistence,	for	more	on	this	topic.

If	there	is	no	filename,	the	Python	interpreter	will	read	from	standard	input.	If
the	standard	input	is	a	console	(called	a	TTY,	in	Linux	parlance),	then	Python
will	enter	a	read-execute-print	loop	(REPL)	and	display	the	>>>	prompt.	While
we	use	this	mode	as	developers,	we	don't	generally	make	use	of	this	mode	for	a
finished	application.

Because	of	Python's	flexibility,	there	are	some	other	ways	of	providing	input	to
the	Python	runtime.	The	standard	input	can	be	a	redirected	file—for	example,
python	<some_file	or	some_app	|	python.	While	both	examples	are	valid	uses	of
Python,	they	are	potentially	confusing	because	the	application	source	is	not	very
obvious.



Arguments	and	options
In	order	to	run	programs,	the	shell	parses	a	command	line	into	words.	The	words
can	be	understood	as	a	mixture	of	options	and	arguments.	The	following	are
some	essential	guidelines:

Options	come	first.	They	are	preceded	by	-	or	--.	There	are	two	formats:	-l
and	--word.	There	are	two	species	of	options:	options	with	no	arguments	and
options	with	arguments.	A	couple	of	examples	of	options	without
arguments	involve	using	-V	to	show	a	version	or	using	--version	to	show	the
version.	An	example	of	an	option	with	arguments	is	-m	module,	where	the	-m
option	must	be	followed	by	a	module	name.
Short	format	(single-letter)	options	with	no	arguments	can	be	grouped
behind	a	single	-.	We	might	use	-bqv	to	combine	the	-b	-q	-v	options	for
convenience.
Generally,	arguments	come	after	options,	and	they	don't	have	a	leading	-	or
--	(although	some	Linux	applications	break	this	rule).	There	are	two
common	kinds	of	arguments:

Positional	arguments,	where	the	order	is	semantically	significant.	We
might	have	two	positional	arguments:	an	input	filename	and	an	output
filename.	The	order	matters	because	the	output	file	will	be	modified.
When	files	will	be	overwritten,	simply	distinguishing	by	position
needs	to	be	done	carefully	to	prevent	confusion.	The	cp,	mv,	and	ln
commands	are	rare	examples	of	positional	arguments	where	the	order
matters.	It's	slightly	more	clear	to	use	an	option	to	specify	the	output
file—for	example,	-o	output.csv.
A	list	of	arguments,	all	of	which	are	semantically	equivalent.	We	might
have	arguments	that	are	all	the	names	of	input	files.	This	fits	nicely
with	the	way	the	shell	performs	filename	globing.	When	we	say
process.py	*.html,	the	*.html	command	is	expanded	by	the	shell	to
filenames	that	become	the	positional	parameters.	(This	doesn't	work	in
Windows,	so	the	glob	module	must	be	used.)

For	more	information,	refer	to:	http://pubs.opengroup.org/onlinepubs/9699919799/basedef
s/V1_chap12.html#tag_12_02.

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html#tag_12_02


The	Python	command	line	has	a	dozen	or	so	options	that	can	control	some
details	of	Python's	behavior.	See	the	Python	Setup	and	Usage	document	(https://
docs.python.org/3/using/index.html)	for	more	information	on	what	these	options	are.
The	positional	argument	to	the	Python	command	is	the	name	of	the	script	that	is
to	be	run;	this	will	be	our	application's	topmost	file.

https://docs.python.org/3/using/index.html


Using	the	pathlib	module
One	of	our	principle	forms	of	interaction	with	the	OS	is	working	with	files.	The
pathlib	module	makes	this	particularly	flexible.	While	the	OS	can	represent	a
path	to	a	file	as	a	string,	there	is	considerable	syntactic	subtlety	to	the	strings	that
are	used.	Rather	than	try	to	parse	the	strings	directly,	it's	much	more	pleasant	to
create	Path	objects.	These	can	both	compose	and	decompose	paths	from	their
constituent	parts.

Path	composition	uses	the	/	operator	to	assemble	a	Path	from	starting	Path	and	str
objects.	This	operator	works	for	Windows	as	well	as	POSIX-compliant	operating
systems,	such	as	Linux	and	macOS.	Because	a	single	operator	will	build
appropriate	paths,	it's	best	to	use	Path	objects	for	all	filesystem	access.

Here	are	some	examples	of	building	a	Path	object:

Path.home()	/	"some_file.dat":	This	names	a	given	file	in	the	user's	home
directory.
Path.cwd()	/	"data"	/	"simulation.csv":	This	names	a	file	relative	to	the	current
working	directory.
Path("/etc")	/	"profile":	This	names	a	file	starting	from	the	root	of	the
filesystem.

There	are	a	number	of	interesting	inquiries	that	we	can	make	to	find	details
about	a	given	Path	object.	In	some	cases,	we	might	want	to	know	a	path's	parent
directory	or	the	extension	on	a	filename.	Here	are	some	examples:

p	=	Path.cwd()	/	"data"	/	"simulation.csv"

>>>	p.parent

PosixPath('/Users/slott/mastering-oo-python-2e/data')

>>>	p.name

'simulation.csv'

>>>	p.suffix

'.csv'

>>>	p.exists()

False

Note	that	these	queries	about	a	Path	object	do	not	depend	on	the	path	representing
an	actual	object	in	the	filesystem.	In	this	example,	the	various	properties	of
parent,	name,	and	suffix	are	all	reported	correctly	for	a	file	that	does	not	actually



exist.	This	is	very	useful	for	creating	output	filenames	from	input	files.

For	example,	we	might	do	the	following:

>>>	results	=	p.with_suffix('.json')

>>>	results

PosixPath('/Users/slott/mastering-oo-python-2e/data/simulation.json')

We've	taken	an	input	Path	object,	p,	and	created	an	output	Path	object,	results.	The
resulting	object	has	the	same	name,	but	a	different	suffix.	The	new	name	was
built	by	the	with_suffix()	method	of	a	Path.	This	lets	us	create	related	files	without
having	to	parse	the	(relatively)	complex	path	names.

As	we	noted	in	Chapter	6,	Using	Callables	and	Contexts,	a	file	should	be	used	as	a
context	manager	to	ensure	that	it's	closed	properly.	A	Path	object	can	open	a	file
directly,	leading	to	programs	that	work	like	the	following	example:

output	=	Path("directory")	/	"file.dat"

with	output.open('w')	as	output_file:

				output_file.write("sample	data\n")

This	example	creates	a	Path	object.	An	OS	will	use	a	path	without	a	leading
/	relative	to	the	current	working	directory.	The	open()	method	of	a	Path	will	create
a	file	object	that	can	then	be	used	for	reading	or	writing.	In	this	case,	we're
writing	a	constant	string	to	a	file.

We	can	use	Path	objects	to	manage	directories	as	well	as	files.	We	often	want	to
create	working	directories	with	code	like	the	following:

>>>	target	=	Path("data")/"ch18_directory"

>>>	target.mkdir(exist_ok=True,	parents=True)

We've	assembled	the	Path	object	from	a	relative	reference	to	the	data	directory
and	a	specific	subdirectory,	ch18_directory.	The	mkdir()	method	of	this	Path	object
will	ensure	that	the	required	directory	structures	are	present	in	the	filesystem.
We've	provided	two	common	options.	The	exists_ok	option	will	suppress	the
FileExistsError	exception	that	would	be	raised	if	the	file	already	exists.	The	parents
option	will	create	all	of	the	required	parent	directories.	This	can	be	handy	when
creating	complex,	nested	directory	trees.

A	common	use	case	when	working	with	web	logs	is	to	segregate	the	logs	by
date.	We	can	create	date-specific	directories	with	code	similar	to	the	following



example:

>>>	import	datetime

>>>	today	=	datetime.datetime.today()

>>>	target	=	Path("data")/today.strftime("%Y%m%d")

>>>	target.mkdir(exists_ok=True)

In	this	example,	we've	computed	the	current	date.	From	this,	we	can	create	a
directory	path	using	the	data	subdirectory	and	the	year,	month,	and	day	of	the
current	date.	We	want	to	be	tolerant	of	the	directory	that	already	exists,	so	we
suppress	the	exception.	This	will	not	create	parent	directories,	and	if	the	data
directory	does	not	exist,	there	will	be	a	FileNotFoundError	exception	raised.



Parsing	the	command	line	with
argparse
The	general	approach	to	using	argparse	involves	the	following	four	steps:

1.	 First,	we	create	an	ArgumentParser	instance.	We	can	provide	this	object	with
overall	information	about	the	command-line	interface.	This	might	include	a
description,	format	changes	for	the	displayed	options	and	arguments,	and
whether	or	not	-h	is	the	help	option.	Generally,	we	only	need	to	provide	the
description;	the	rest	of	the	options	have	sensible	defaults.

2.	 Then,	we	define	the	command-line	options	and	arguments.	This	is	done	by
adding	arguments	with	the	ArgumentParser.add_argument()	method	function.

3.	 Next,	we	parse	the	sys.argv	command	line	to	create	a	namespace	object	that
details	the	options,	option	arguments,	and	overall	command-line	arguments.

4.	 Lastly,	we	use	the	namespace	object	to	configure	the	application	and	process
the	arguments.	There	are	a	number	of	alternative	approaches	to	handle	this
gracefully.	This	may	involve	parsing	configuration	files	as	well	as
command-line	options.	We'll	look	at	several	designs	in	this	section.

An	important	feature	of	argparse	is	that	it	provides	us	with	a	unified	view	of
options	and	arguments.	The	principle	difference	between	the	two	is	the	number
of	times	an	option	or	argument	value	can	occur.	Options	are—well,	optional,	and
can	occur	one	or	no	times.	Arguments	generally	occur	one	or	more	times.

We	can	create	a	parser	with	code	like	the	following:

parser	=	argparse.ArgumentParser(

				description="Simulate	Blackjack")	

We	provided	the	description,	as	there's	no	good	default	value	for	that.	Here	are
some	common	patterns	to	define	the	command-line	API	for	an	application:

A	simple	on–off	option:	We'll	often	see	this	as	a	-v	or	--verbose	option.
An	option	with	an	argument:	This	might	be	a	-s	','	or	--separator	'|'
option.
Any	positional	argument:	This	might	be	used	when	we	have	an	input	file



and	an	output	file	as	command-line	arguments.	This	is	rare,	and	should	be
avoided	because	it's	never	perfectly	clear	what	the	order	should	be.
All	other	arguments:	We'd	use	these	when	we	have	a	list	of	input	files.
--version:	This	is	a	special	option	to	display	the	version	number	and	exit.
--help:	This	option	will	display	help	and	exit.	This	is	a	default,	and	so	we
don't	need	to	do	anything	to	make	this	happen.

Once	the	arguments	have	been	defined,	we	can	parse	them	and	use	them.	Here's
how	we	parse	them:

config	=	parser.parse_args()	

The	config	object	is	an	argparse.Namespace	object;	the	class	is	similar	to
types.SimpleNamespace.	It	will	have	a	number	of	attributes,	and	we	can	easily	add
more	attributes	to	this	object.

We'll	look	at	each	of	these	six	common	kinds	of	arguments	individually.	There
are	a	lot	of	clever	and	sophisticated	parsing	options	available	in	the	ArgumentParser
class.	Most	of	them	go	beyond	the	simplistic	guidelines	commonly	suggested	for
command-line	argument	processing.	In	general,	we	should	avoid	the	kind	of
super-complex	options	that	characterize	programs	such	as	find.	When	command-
line	options	get	terribly	complex,	we	may	have	drifted	into	creating	a	domain-
specific	language	on	top	of	Python.	This	often	means	we're	creating	a	kind	of
framework,	not	simply	creating	an	application.



A	simple	on–off	option
We	will	define	a	simple	on–off	option	with	a	one-letter	short	name	or	a	longer
name.	We	should	also	provide	an	explicit	action.	We	might	want	to	provide	a
destination	variable	if	we	omit	the	longer	name,	or	if	the	longer	name	is
unpleasant	as	a	Python	variable.	Let's	set	this	up	using	the	following	code:

parser.add_argument(

				'-v',	'--verbose',	action='store_true',	default=False)	

This	will	define	the	long	and	short	versions	of	the	command-line	option.	If	the
option	is	present,	the	action	will	set	the	verbose	option	to	True.	If	the	option	is
absent,	the	verbose	option	will	default	to	False.	Here	are	some	common	variations
of	this	theme:

We	might	change	the	action	to	'store_false'	with	a	default	of	True.
Sometimes,	we'll	have	a	default	of	None	instead	of	True	or	False.
Sometimes,	we'll	use	an	action	of	'store_const'	with	an	additional	const=
argument.	This	allows	us	to	move	beyond	simple	Boolean	values	and	store
things	such	as	logging	levels	or	other	objects.
We	might	also	have	an	action	of	'count',	which	allows	the	option	to	get
repeated,	increasing	the	count.	In	this	case,	the	default	is	often	zero.

If	we're	using	the	logger,	we	might	define	a	debugging	option	like	the	following
code:

parser.add_argument(	

				'--debug',	action='store_const',	const=logging.DEBUG,

				default=logging.INFO,	dest="logging_level"	)	

We	changed	the	action	to	store_const,	which	stores	a	constant	value	and	provides
a	specific	constant	value	of	logging.DEBUG.	This	means	that	the	resulting	options
object	will	directly	provide	the	value	needed	to	configure	the	root	logger.	We	can
then	simply	configure	the	logger	using	config.logging_level	without	any	further
mapping	or	conditional	processing.



An	option	with	an	argument
We'll	define	an	option	that	has	an	argument	with	the	long	and	optional	short
name.	We'll	provide	an	action	that	stores	the	value	provided	with	the	argument.
We	can	also	provide	a	type	conversion,	in	case	we	want	float	or	int	values
instead	of	a	string.	Let's	set	this	up	using	the	following	code:

parser.add_argument(

				"-b",	"--bet",	action="store",	default="Flat",	

				choices=["Flat",	"Martingale",	"OneThreeTwoSix"],

				dest='betting_rule')	

parser.add_argument(

				"-s",	"--stake",	action="store",	default=50,	type=int)	

The	first	example	will	define	two	versions	of	the	command-line	syntax,	both
long	and	short	version.	When	parsing	the	command-line	argument	values,	a
string	value	must	follow	the	option,	and	it	must	be	from	the	available	choices.
The	destination	name,	betting_rule,	will	receive	the	option's	argument	string.

The	second	example	also	defines	two	versions	of	the	command-line	syntax.	It
includes	a	type	conversion.	When	parsing	argument	values,	this	will	store	an
integer	value	that	follows	the	option.	The	long	name,	stake,	will	be	the	value	in
the	options	object	created	by	the	parser.

In	some	cases,	there	may	be	a	list	of	values	associated	with	the	argument.	In	this
case,	we	may	provide	a	nargs="+"	option	to	collect	multiple	values	separated	by
spaces	in	a	list.



Positional	arguments
We	define	positional	arguments	using	a	name	with	no	"-"	decoration.	In	a	case
where	we	have	a	fixed	number	of	positional	arguments,	we'll	add	them
appropriately	to	the	parser,	as	shown	in	the	following	code:

parser.add_argument("input_filename",	action="store")	

parser.add_argument("output_filename",	action="store")	

When	parsing	argument	values,	the	two	positional	argument	strings	will	be
stored	in	the	final	namespace	object.	We	can	use	config.input_filename	and
config.output_filename	to	work	with	these	argument	values.

As	noted	previously,	using	simple	positional	parameters	to	identify	output	files
can	cause	problems	for	users.	The	GNU/Linux	cp,	mv,	and	ln	programs	should	be
considered	exceptional	cases	where	a	file	can	get	overwritten.	The	preferred
approach	is	to	use	an	option	with	a	value	to	specify	the	files	that	can	be
destroyed.	It's	almost	always	safer	to	force	users	to	use	an	option	like	-o	name.csv
to	make	it	perfectly	clear	what	the	output	filename	will	be.

Avoid	defining	commands	where	the	exact	order	of	arguments	is	significant.



All	other	arguments
We	define	argument	lists	with	a	name	that	has	no	-	decoration	and	a	piece	of
advice	in	the	nargs=	parameter.	If	the	rule	is	one	or	more	argument	values,	we
specify	nargs="+".	If	the	rule	is	zero	or	more	argument	values,	we	specify	nargs="*",
as	shown	in	the	following	code.	If	the	rule	is	optional,	we	specify	nargs="?".	This
will	collect	all	other	argument	values	into	a	single	sequence	in	the	resulting
namespace:

parser.add_argument(	

				"filenames",	action="store",	nargs="*",	metavar="file...")	

When	the	list	of	filenames	is	optional,	it	generally	means	that	STDIN	or	STDOUT	will
be	used	if	no	specific	filenames	are	provided.

If	we	specify	a	nargs=	value,	then	the	result	becomes	a	list.	If	we	specify	nargs=1,
then	the	resulting	object	is	a	one-element	list;	this	generalizes	nicely	if	we	need
to	change	to	nargs='+'.	As	a	special	case,	omitting	nargs,	leads	to	a	result	that	is	a
single	value;	this	does	not	generalize	well.

Creating	a	list	(even	if	it	has	only	one	element)	is	handy	because	we	might	want
to	process	the	arguments	in	the	following	manner:

for	filename	in	config.filenames:	

				process(filename)	

In	some	cases,	we	may	want	to	provide	a	sequence	of	input	files	that	includes
STDIN.	The	common	convention	for	this	is	a	filename	of	-	as	an	argument.	We'll
have	to	handle	this	within	our	application	with	something	like	the	following
code:

for	filename	in	config.filenames:	

				if	filename	==	'-':	

								process(sys.stdin)	

				else:	

								with	open(filename)	as	input:	

												process(input)	

This	shows	us	a	loop	that	will	attempt	to	handle	a	number	of	filenames,
potentially	including	-	to	show	when	to	process	standard	input	among	a	list	of



files.	A	try:	block	should	probably	be	used	around	the	with	statement.



--version	display	and	exit
The	option	to	display	the	version	number	is	so	common	that	there's	a	special
shortcut	to	show	us	the	version	information:

parser.add_argument(

				"-V",	"--version",	action="version",	version=__version__	)	

This	example	assumes	that	we	have	a	global	__version__=	"3.3.2"	module
somewhere	in	the	file.	This	special	action="version"	will	have	the	side	effect	of
exiting	the	program	after	displaying	the	version	information.



--help	display	and	exit
An	option	to	display	help	is	a	default	feature	of	argparse.	Another	special	case
allows	us	to	change	the	help	option	from	the	defaults	to-h	or	--help.	This	requires
two	things.	First,	we	must	create	the	parser	with	add_help=False.	This	will	turn	off
the	built-in	-h,	--help	feature.	After	doing	that,	we	will	add	the	argument	that	we
want	to	use	(for	example,	'-?')	with	action="help".	This	will	display	the	help	text
and	exit.



Integrating	command-line	options
and	environment	variables
The	general	policy	for	environment	variables	is	to	provide	configuration	inputs,
similar	to	command-line	options	and	arguments.	For	the	most	part,	we	use
environment	variables	for	settings	that	rarely	change.	We'll	often	set	them	via	the
.bashrc	or	.bash_profile	files	so	that	the	values	are	set	every	time	we	log	in.	We
may	set	the	environment	variables	more	globally	in	an	/etc/bashrc	file	so	that	they
apply	to	all	users.	We	can	also	set	environment	variables	on	the	command	line,
but	these	settings	only	apply	to	the	program	being	run.

In	some	cases,	all	of	our	configuration	settings	can	be	provided	on	the	command
line.	In	this	case,	the	environment	variables	could	be	used	as	a	kind	of	backup
syntax	for	slowly	changing	variables.

In	other	cases,	the	configuration	values	providing	environment	variables	may	be
disconnected	from	the	configuration	performed	by	command-line	options.	We
may	need	to	get	some	values	from	the	environment	and	merge	in	values	that
come	from	the	command	line.

We	can	leverage	environment	variables	to	set	the	default	values	in	a
configuration	object.	We	want	to	gather	these	values	prior	to	parsing	the
command-line	arguments.	This	way,	command-line	arguments	can	override
environment	variables.	There	are	two	common	approaches	to	this:

Explicitly	setting	the	values	when	defining	the	command-line	options:
This	has	the	advantage	of	making	the	default	value	show	up	in	the	help
message.	It	only	works	for	environment	variables	that	overlap	with
command-line	options.	We	might	do	something	like	the	following	to	use	the
SIM_SAMPLES	environment	variable	to	provide	a	default	value	that	can	be
overridden:

parser.add_argument(	

				"--samples",	

				action="store",	

				default=int(os.environ.get("SIM_SAMPLES",100)),	

				type=int,	



				help="Samples	to	generate")	

Implicitly	setting	the	values	as	part	of	the	parsing	process:	This	makes	it
simple	to	merge	environment	variables	with	command-line	options	into	a
single	configuration.	We	can	populate	a	namespace	with	default	values	and
then	overwrite	it	with	the	parsed	values	from	the	command	line.	This
provides	us	with	three	levels	of	option	values:	the	default	defined	in	the
parser,	an	override	value	seeded	into	the	namespace,	and	finally,	any
override	value	provided	on	the	command	line,	as	shown	in	the	following
code:

config4	=	argparse.Namespace()	

config4.samples	=	int(os.environ.get("SIM_SAMPLES",100))	

config4a	=	parser.parse_args(sys.argv[1:],	namespace=config4)	

The	argument	parser	can	perform	type	conversions	for	values	that	are	not	simple	strings.
However,	gathering	environment	variables	doesn't	automatically	involve	a	type	conversion.
For	options	that	have	non-string	values,	we	must	perform	the	type	conversion	in	our
application.



Providing	more	configurable	defaults
We	can	incorporate	configuration	files	along	with	environment	variables	and	the
command-line	options.	This	gives	us	three	ways	to	provide	a	configuration	to	an
application	program:

A	hierarchy	of	configuration	files	can	provide	default	values.	See	Chapter	14,
Configuration	Files	and	Persistence,	for	examples	of	the	various	ways	to
do	this.
Environment	variables	can	provide	overrides	to	the	configuration	files.	This
may	mean	translating	from	an	environment	variable	namespace	to	the
configuration	namespace.
The	command-line	options	define	the	final	overrides.

Using	all	three	may	be	too	much	of	a	good	thing.	Tracking	down	a	setting	can
become	difficult	if	there	are	too	many	places	to	search.	The	final	decision	about
the	configuration	often	rests	on	staying	consistent	with	the	overall	collection	of
applications	and	frameworks.	We	should	strive	to	make	our	programming	fit
seamlessly	with	other	components.



Overriding	configuration	file	settings
with	environment	variables
We'll	use	a	three-stage	process	to	incorporate	environment	variables.	For	this
application,	the	environment	variables	will	be	used	to	override	configuration	file
settings.	The	first	stage	is	to	gather	the	default	values	from	the	various	files.	This
is	based	on	the	examples	shown	in	Chapter	14,	Configuration	Files	and
Persistence.	We	can	use	code	like	the	following:

config_locations	=	(

				Path.cwd(),

				Path.home(),

				Path.cwd()	/	"opt",		#	A	testing	stand-in	for	Path("/opt")

				Path(__file__)	/	"config",

				#	Other	common	places...

				#	Path("~someapp").expanduser(),

)

candidate_paths	=	(dir	/	"ch18app.yaml"	for	dir	in	config_locations)

config_paths	=	(path	for	path	in	candidate_paths	if	path.exists())

files_values	=	[yaml.load(str(path))	for	path	in	config_paths]

This	example	uses	a	sequence	of	locations,	ranked	in	order	of	importance.	The
value	in	the	current	working	directory	provides	the	most	immediate
configuration.	For	values	not	set	here,	the	user's	home	directory	is	a	place	to
keep	general	settings.	We	should	use	an	opt	subdirectory	of	the	current	working
directory,	Path.cwd()/"opt";	this	stands	in	place	of	Path("/etc")	or	Path("/opt").	A
standard	name,	"ch18app.yaml",	is	put	after	the	various	directory	paths	to	create	a
number	of	concrete	paths	for	configuration	files	to	set	the	candidate_paths	variable.
A	generator	expression	assigned	to	config_paths	will	yield	an	iterable	sequence	of
paths	that	actually	exists.

The	final	result	in	files_values	is	a	sequence	of	configuration	values	taken	from
the	files	that	are	found	to	exist.	Each	file	should	create	a	dictionary	that	maps
parameter	names	to	parameter	values.	This	list	can	be	used	as	part	of	a	final
ChainMap	object.

The	second	stage	is	to	build	the	user's	environment-based	settings.	We	can	use
code	like	the	following	to	set	this	up:



env_settings	=	[

				("samples",	nint(os.environ.get("SIM_SAMPLES",	None))),

				("stake",	nint(os.environ.get("SIM_STAKE",	None))),

				("rounds",	nint(os.environ.get("SIM_ROUNDS",	None))),

]

env_values	=	{k:	v	for	k,	v	in	env_settings	if	v	is	not	None}

Creating	a	mapping	like	this	has	the	effect	of	rewriting	external	environment
variable	names	like	SIM_SAMPLES	into	internal	configuration	names	like	samples.
Internal	names	will	match	our	application's	configuration	attributes.	External
names	are	often	defined	in	a	way	that	makes	them	unique	in	a	complex
environment.

For	environment	variables	that	were	not	defined,	the	nint()	function,	shown	in
the	following	code,	will	provide	None	as	a	default	value	if	the	environment
variable	is	not	defined.	When	we	create	the	env_values,	the	None	objects	are
removed	from	the	initial	collection	of	environment	values.

Given	a	number	of	dictionaries,	we	can	use	ChainMap	to	combine	them,	as	shown
in	the	following	code:

defaults	=	argparse.Namespace(

				**ChainMap(

								env_values,		#	Checks	here	first

								*files_values		#	All	of	the	files,	in	order

				)

)

We	combined	the	various	mappings	into	a	single	ChainMap.	The	environment
variables	are	searched	first.	When	values	are	present	there,	the	values	are	looked
up	from	the	user's	configuration	file	first	and	then	other	configurations,	if	the
user	configuration	file	didn't	provide	a	value.

The	*files_values	ensures	that	the	list	of	values	will	be	provided	as	a	sequence	of
positional	argument	values.	This	allows	a	single	sequence	(or	iterable)	to	provide
values	for	a	number	of	positional	parameters.	**ChainMap	ensures	that	a	dictionary
is	turned	into	a	number	of	named	parameter	values.	Each	key	becomes	a
parameter	name	associated	with	the	value	from	the	dictionary.	Here's	an	example
of	how	this	works:

>>>	argparse.Namespace(a=1,	b=2)

Namespace(a=1,	b=2)

>>>	argparse.Namespace(**{'a':	1,	'b':	2})

Namespace(a=1,	b=2)



The	resulting	Namespace	object	can	be	used	to	provide	defaults	when	parsing	the
command-line	arguments.	We	can	use	the	following	code	to	parse	the	command-
line	arguments	and	update	these	defaults:

config	=	parser.parse_args(sys.argv[1:],	namespace=defaults)	

We	transformed	our	ChainMap	of	configuration	file	settings	into	an	argparse.Namespace
object.	Then	we	parsed	the	command-line	options	to	update	that	namespace
object.	As	the	environment	variables	are	first	in	ChainMap,	they	override	any
configuration	files.



Making	the	configuration	aware	of
the	None	values
This	three-stage	process	to	set	the	environment	variables	includes	many	common
sources	of	parameters	and	configuration	settings.	We	don't	always	need
environment	variables,	configuration	files,	and	command-line	options;	some
applications	may	only	need	a	subset	of	these	techniques.

We	often	need	type	conversions	that	will	preserve	None	values.	Keeping	the	None
values	will	ensure	that	we	can	tell	when	an	environment	variable	was	not	set.
Here's	a	more	sophisticated	type	conversion	that	can	be	called	None-aware:

from	typing	import	Optional

def	nint(x:	Optional[str])	->	Optional[int]:

				if	x	is	None:

								return	x

				return	int(x)

We	use	this	when	converting	environment	variable	values	to	integers.	If	an
environment	variable	is	not	set,	a	default	of	None	will	be	used.	If	the	environment
variable	is	set,	then	the	value	will	be	converted	to	an	integer.	In	later	processing
steps,	we	can	depend	on	the	None	value	to	build	a	dictionary	from	only	the	proper
values	that	are	not	None.

We	can	use	similar	None-aware	conversions	to	handle	float	values.	We	don't
need	to	do	any	conversion	for	strings,	and	os.environ.get("SIM_NAME")	will	provide
the	environment	variable	value	or	None.



Customizing	the	help	output
Here's	some	typical	output	that	comes	directly	from	the	default
argparse.print_help()	code:

usage:	ch18_ex1.py	[-v]	[--debug]	[--dealerhit	{Hit17,Stand17}]

																			[--resplit	{ReSplit,NoReSplit,NoReSplitAces}]

																			[--decks	DECKS]	[--limit	LIMIT]	[--payout	PAYOUT]

																			[-p	{SomeStrategy,AnotherStrategy}]

																			[-b	{Flat,Martingale,OneThreeTwoSix}]	[-r	ROUNDS]

																			[-s	STAKE]	[--samples	SAMPLES]	[-V]	[-?]

																			output

Simulate	Blackjack

positional	arguments:

		output

optional	arguments:

		-v,	--verbose

		--debug

		--dealerhit	{Hit17,Stand17}

		--resplit	{ReSplit,NoReSplit,NoReSplitAces}

		--decks	DECKS	Decks	to	deal	(default:	6)

		--limit	LIMIT

		--payout	PAYOUT

		-p	{SomeStrategy,AnotherStrategy},	--playerstrategy	{SomeStrategy,AnotherStrategy}

		-b	{Flat,Martingale,OneThreeTwoSix},	--bet	{Flat,Martingale,OneThreeTwoSix}

		-r	ROUNDS,	--rounds	ROUNDS

		-s	STAKE,	--stake	STAKE

		--samples	SAMPLES	Samples	to	generate	(default:	100)

		-V,	--version	show	program's	version	number	and	exit

		-?,	--help

The	default	help	text	is	built	from	four	things	in	our	parser	definition:

The	usage:	line	is	a	summary	of	the	options.	We	can	replace	the	default
calculation	with	our	own	usage	text	that	omits	the	less	commonly	used
details.
This	is	followed	by	the	description.	By	default,	the	text	we	provide	is
cleaned	up	a	bit.	In	this	example,	we	provided	a	shabby	two-word
description,	Simulate	Blackjack,	so	there's	no	obvious	cleanup.
Then,	the	arguments	are	shown.	These	come	in	two	subgroups:

The	positional	arguments
The	options,	in	the	order	that	we	defined	them.

After	this,	an	optional	epilogue	text	may	be	shown;	we	didn't	provide	any
for	this	definition.



In	some	cases,	this	kind	of	terse	reminder	is	adequate.	In	other	cases,	however,
we	may	need	to	provide	more	details.	We	have	three	tiers	of	support	for	more
detailed	help:

Add	help=	to	the	argument	definitions:	This	is	the	place	to	start	when
customizing	the	help	details.	This	will	supplement	the	option	description
with	more	meaningful	details.
Use	one	of	the	other	help	formatter	classes:	This	is	done	with	the
formatter_class=	argument	when	building	ArgumentParser.	If	we	want	to	use
ArgumentDefaultsHelpFormatter,	then	this	works	with	the	help=	values	for	each
argument	definition.
Extend	the	ArgumentParser	class	and	override	the	print_usage()	and
print_help()	methods:	This	allows	us	to	write	very	sophisticated	output.	This
should	not	be	used	casually.	If	we	have	options	so	complex	that	ordinary
help	features	don't	work,	then	perhaps	we've	gone	too	far.

Our	goal	is	to	improve	usability.	Even	if	our	programs	work	correctly,	we	can
build	trust	by	providing	command-line	support	that	makes	our	program	easier	to
use.



Creating	a	top-level	main()	function
In	Chapter	14,	Configuration	Files	and	Persistence,	we	suggested	two	application
configuration	design	patterns:

A	global	property	map:	In	the	previous	examples,	we	implemented	the
global	property	map	with	a	Namespace	object	created	by	ArgumentParser.
Object	construction:	The	idea	behind	object	construction	was	to	build	the
required	object	instances	from	the	configuration	parameters,	effectively
demoting	the	global	property	map	to	a	local	property	map	inside	the	main()
function	and	not	saving	the	properties.

What	we	showed	you	in	the	previous	section	was	the	use	of	a	local	Namespace
object	to	collect	all	of	the	parameters.	From	this,	we	can	build	the	necessary
application	objects	that	will	do	the	real	work	of	the	application.	The	two	design
patterns	aren't	a	dichotomy;	they're	complementary.	We	used	Namespace	to
accumulate	a	consistent	set	of	values	and	then	built	the	various	objects	based	on
the	values	in	that	namespace.

This	leads	us	to	a	design	for	a	top-level	function.	Before	looking	at	the
implementation,	we	need	to	consider	a	proper	name	for	this	function.	There	are
two	ways	to	name	the	function:

Name	it	main(),	because	that's	a	common	term	for	the	starting	point	of	the
application	as	a	whole;	everyone	expects	this.
Don't	name	it	main(),	because	main()	is	too	vague	to	be	meaningful	in	the
long	run	and	limits	reuse.	If	we	follow	this	path,	we	can	make	a	meaningful
top-level	function	with	a	name	that's	a	verb_noun()	phrase	to	describe	the
operation	fairly.	We	can	also	add	a	line	main	=	verb_noun	that	provides	an	alias
of	main().

Using	the	second,	two-part	implementation,	lets	us	change	the	definition	of	main()
through	extension.	We	can	add	a	new	function	and	reassign	the	name	main	to	the
newer	function.	Old	function	names	are	left	in	place	as	part	of	a	stable,	growing
API.



Here's	a	top-level	application	script	that	builds	objects	from	a	configuration
Namespace	object:

import	ast	

import	csv

import	argparse

def	simulate_blackjack(config:	argparse.Namespace)	->	None:

				dealer_classes	=	{"Hit17":	Hit17,	"Stand17":	Stand17}

				dealer_rule	=	dealer_classes[config.dealer_rule]()

				split_classes	=	{

								"ReSplit":	ReSplit,	"NoReSplit":	NoReSplit,	"NoReSplitAces":	NoReSplitAces

				}

				split_rule	=	split_classes[config.split_rule]()

				try:

								payout	=	ast.literal_eval(config.payout)

								assert	len(payout)	==	2

				except	Exception	as	ex:

								raise	ValueError(f"Invalid	payout	{config.payout}")	from	ex

				table	=	Table(

								decks=config.decks,

								limit=config.limit,

								dealer=dealer_rule,

								split=split_rule,

								payout=payout,

				)

				player_classes	=	{"SomeStrategy":	SomeStrategy,	"AnotherStrategy":	AnotherStrategy}

				player_rule	=	player_classes[config.player_rule]()

				betting_classes	=	{

								"Flat":	Flat,	"Martingale":	Martingale,	"OneThreeTwoSix":	OneThreeTwoSix

				}

				betting_rule	=	betting_classes[config.betting_rule]()

				player	=	Player(

								play=player_rule,

								betting=betting_rule,

								max_rounds=config.rounds,

								init_stake=config.stake,

				)

				simulate	=	Simulate(table,	player,	config.samples)

				with	Path(config.outputfile).open("w",	newline="")	as	target:

								wtr	=	csv.writer(target)

								wtr.writerows(simulate)

main	=	simulate_blackjack

The	simulate_blackjack	function	depends	on	an	externally	supplied	Namespace	object
with	the	configuration	attributes.	It's	not	named	main()	so	that	we	can	make	future
additions	and	changes.	We	can	reassign	main	to	any	new	function	that	replaces	or
extends	this	function.

This	function	builds	the	various	objects—Table,	Player,	and	Simulate—that	are
required.	We	configured	these	objects	based	on	the	supplied	configuration
parameters.

We've	set	up	the	object	that	does	the	real	work.	After	the	object	construction,	the



actual	work	is	a	single,	highlighted	line:	wtr.writerows(simulate).	About	90	percent
of	the	program's	time	will	be	spent	here,	generating	samples	and	writing	them	to
the	required	file.

A	similar	pattern	holds	for	GUI	applications.	They	enter	a	main	loop	to	process
GUI	events.	The	pattern	also	holds	for	servers	that	enter	a	main	loop	to	process
requests.

We've	depended	on	having	a	configuration	object	passed	in	as	an	argument.	This
follows	from	our	testing	strategy	of	minimizing	dependencies.	This	top-level
simulate_blackjack()	function	doesn't	depend	on	the	details	of	how	the
configuration	was	created.	We	can	then	use	this	function	in	an	application	script,
as	follows:

if	__name__	==	"__main__":	

				logging.config.dictConfig(yaml.load("logging.config"))	

				config5	=	get_options_2(sys.argv[1:])	

				simulate_blackjack(config5)	

				logging.shutdown()	

This	represents	a	separation	of	concerns.	The	work	of	the	application	is
separated	into	three	separate	parts:

The	outermost	level	is	defined	by	logging.	We	configured	logging	outside
of	all	other	application	components	to	ensure	that	there	are	no	conflicts
between	other	top-level	packages	configuring	logging.	When	we	look	at
combining	applications	into	larger	composite	processing,	we	need	to	be
sure	that	several	applications	being	combined	doesn't	result	in	conflicting
logging	configurations.
The	inner	level	is	defined	by	the	application's	configuration.	We	don't	want
conflicts	among	separate	application	components.	We'd	like	to	allow	a
single	command-line	API	to	evolve	separately	from	our	application
implementations.	We'd	like	to	be	able	to	embed	our	application	processing
into	separate	environments,	perhaps	defined	by	multiprocessing	or	a	RESTful
web	server.
The	final	portion	is	the	simulate_blackjack()	function.	This	is	separated	from
the	logging	and	configuration	issues.	This	allows	a	variety	of	techniques	to
be	used	to	provide	a	configuration	of	parameters.	Furthermore,	when	we
look	at	combining	this	with	other	processing,	the	separation	of	logging	and
configuration	will	be	helpful.



Ensuring	DRY	for	the	configuration
We	have	a	potential	Don't	Repeat	Yourself	(DRY)	issue	between	our
construction	of	the	argument	parser	and	the	use	of	the	arguments	to	configure	the
application.	We	built	the	arguments	using	some	keys	that	are	repeated.

We	can	eliminate	this	repetition	by	creating	some	internal	configurations	that
map	to	the	externally	visible	values.	For	example,	we	might	define	this	global	as
follows:

dealer_rule_map	=	{"Hit17":	Hit17,	"Stand17",	Stand17}	

We	can	use	it	to	create	the	argument	parser,	as	follows:

parser.add_argument(

				"--dealerhit",	action="store",	default="Hit17",	

				choices=dealer_rule_map.keys(),	

				dest='dealer_rule')	

We	can	use	it	to	create	the	working	objects,	as	follows:

dealer_rule	=	dealer_rule_map[config.dealer_rule]()	

This	eliminates	the	repetition.	It	allows	us	to	add	new	class	definitions	and
parameter	key	mappings	in	one	place	as	the	application	evolves.	It	also	allows	us
to	abbreviate	or	otherwise	rewrite	the	external	API,	as	shown	here:

dealer_rule_map	={"H17":	Hit17,	"S17":	Stand17}	

There	are	four	of	these	kinds	of	mappings	from	the	command-line	(or
configuration	file)	string	to	the	application	class.	Using	these	internal	mappings
simplifies	the	simulate_blackjack()	function.



Managing	nested	configuration
contexts
In	a	way,	the	presence	of	nested	contexts	means	that	top-level	scripts	ought	to
look	like	the	following	code:

if	__name__	==	"__main__":	

				with	Setup_Logging():

								with	Build_Config(arguments)	as	config_3:

												simulate_blackjack_betting(config_3)

We've	added	two	context	managers	to	formalize	the	creation	of	the	working
context.	For	more	information,	see	Chapter	6,	Using	Callables	and	Contexts.	Here
is	a	context	manager	for	logging:

class	Setup_Logging:	

				def	__enter__(self,	filename="logging.config")	->	"Setup_Logging":	

							logging.config.dictConfig(yaml.load(filename))	

				def	__exit__(self,	*exc)	->	None:	

							logging.shutdown()

The	idea	is	to	be	sure	that	the	logging	process	is	properly	configured	and	shut
down	when	the	application	runs.	This	removes	any	doubts	about	whether	or	not
a	final	buffer	was	saved	and	the	log	file	was	properly	closed.

Similarly,	we	can	define	a	context	manager	to	build	the	configuration	required	to
run	the	application.	In	this	case,	the	context	manager	is	a	very	thin	wrapper
around	the	get_options_2()	function,	as	shown	in	the	preceding	code.	The	context
manager	looks	like	this:

from	typing	import	List

class	Build_Config:

				def	__init__(self,	argv:	List[str])	->	None:

								self.options	=	get_options_2(argv)

				def	__enter__(self)	->	argparse.Namespace:

								return	self.options

				def	__exit__(self,	*exc)	->	None:

								return



The	Build_Config	context	manager	can	gather	the	configuration	from	a	number	of
files,	as	well	as	command-line	arguments.	The	use	of	a	context	manager	isn't
essential	in	this	case;	however,	it	leaves	room	for	extension	in	case	the
configuration	becomes	more	complex.

This	design	pattern	may	clarify	the	various	concerns	that	surround	the
application	startup	and	shutdown.	While	it	may	be	a	bit	much	for	most
applications,	the	essential	fit	with	the	Python	context	managers	seems	like	it
could	be	helpful	as	an	application	grows	and	expands.

When	we're	confronted	with	an	application	that	grows	and	expands,	we	often
wind	up	doing	larger-scale	programming.	For	this,	it's	important	to	separate	the
changeable	application	processing	from	the	less	changeable	processing	context.



Programming	in	the	large
Let's	add	a	feature	to	our	blackjack	simulation:	analysis	of	results.	We	have
several	paths	to	implement	this	added	feature.	There	are	two	dimensions	to	the
considerations	that	we	must	make,	leading	to	a	large	number	of	combinations.
One	dimension	is	how	to	design	the	new	features:

We	can	add	a	function	and	work	out	ways	to	integrate	it	into	the	whole.
We	can	use	the	Command	design	pattern	and	create	a	hierarchy	of
commands,	some	of	which	are	single	functions	and	others	of	which	are
sequences	of	functions.

Another	dimension	of	the	design	that	we	must	consider	is	how	to	package	the
new	features:

We	can	write	a	new	top-level	script	file.	This	tends	to	create	new
commands	based	on	filenames.	We	might	start	with	commands	such	as
simulate.py	and	analyze.py.
We	can	add	a	parameter	to	an	application	that	allows	one	script	to	perform
either	the	simulation	or	the	analysis,	or	both.	We	would	have	commands
that	look	like	app.py	simulate	and	app.py	analyze.

This	leads	to	four	combinations	of	implementation	choices.	We'll	focus	on	using
the	Command	design	pattern.	First,	we'll	revise	our	existing	application	to	use
the	Command	design	pattern.	Then,	we'll	extend	our	application	by	adding
features	in	the	form	of	new	command	subclasses.



Designing	command	classes
Many	applications	involve	an	implicit	Command	design	pattern;	after	all,	we're
processing	data.	To	do	this,	there	must	be	at	least	one	active-voice	verb,	or
command,	that	defines	how	the	application	transforms,	creates,	or	consumes
data.	A	simple	application	may	have	only	a	single	verb,	implemented	as	a
function.	Using	the	command	class	design	pattern	may	not	be	helpful	for	simple
applications.

More	complex	applications	will	have	multiple,	related	verbs.	One	of	the	key
features	of	GUIs	and	web	servers	is	that	they	can	do	multiple	things,	leading	to
multiple	commands.	In	many	cases,	the	GUI	menu	options	define	the	domain	of
the	verbs	for	an	application.

In	some	cases,	an	application's	design	stems	from	a	decomposition	of	a	larger,
more	complex	verb.	We	may	factor	the	overall	processing	into	several	smaller
command	steps	that	are	combined	in	the	final	application.

When	we	look	at	the	evolution	of	an	application,	we	often	see	a	pattern	where
new	functionality	is	accreted.	In	these	cases,	each	new	feature	can	become	a
kind	of	separate	command	subclass	that	is	added	to	the	application	class
hierarchy.

An	abstract	superclass	for	commands	has	the	following	design:

class	Command:

				def	__init__(self)	->	None:

								self.config:	Dict[str,	Any]	=	{}

				def	configure(self,	namespace:	argparse.Namespace)	->	None:

								self.config.update(vars(namespace))

				def	run(self)	->	None:

								"""Overridden	by	a	subclass"""

								pass

We	configure	this	Command	class	by	setting	the	config	property	to	argparse.Namespace.
This	will	populate	the	instance	variables	from	the	given	namespace	object.

Once	the	object	is	configured,	we	can	set	it	to	doing	the	work	of	the	command



by	calling	the	run()	method.	This	class	implements	a	relatively	simple	use	case,
as	shown	in	the	following	code:

				main	=	SomeCommand()	

				main.configure	=	some_config	

				main.run()	

This	captures	the	general	flavor	of	creating	an	object,	configuring	it,	and	then
letting	it	do	the	work	it	was	configured	for.	We	can	expand	on	this	idea	by
adding	features	to	the	command	subclass	definition.

Here's	a	concrete	subclass	that	implements	a	blackjack	simulation:

class	Simulate_Command(Command):

				dealer_rule_map	=	{

								"Hit17":	Hit17,	"Stand17":	Stand17}

				split_rule_map	=	{

								"ReSplit":	ReSplit,	"NoReSplit":	NoReSplit,	"NoReSplitAces":	NoReSplitAces

				}

				player_rule_map	=	{

								"SomeStrategy":	SomeStrategy,	"AnotherStrategy":	AnotherStrategy}

				betting_rule_map	=	{

								"Flat":	Flat,	"Martingale":	Martingale,	"OneThreeTwoSix":	OneThreeTwoSix

				}

				def	run(self)	->	None:

								dealer_rule	=	self.dealer_rule_map[self.config["dealer_rule"]]()

								split_rule	=	self.split_rule_map[self.config["split_rule"]]()

								payout:	Tuple[int,	int]

								try:

												payout	=	ast.literal_eval(self.config["payout"])

												assert	len(payout)	==	2

								except	Exception	as	e:

												raise	Exception(f"Invalid	payout	{self.config['payout']!r}")	from	e

								table	=	Table(

												decks=self.config["decks"],

												limit=self.config["limit"],

												dealer=dealer_rule,

												split=split_rule,

												payout=payout,

								)

								player_rule	=	self.player_rule_map[self.config["player_rule"]]()

								betting_rule	=	self.betting_rule_map[self.config["betting_rule"]]()

								player	=	Player(

												play=player_rule,

												betting=betting_rule,

												max_rounds=self.config["rounds"],

												init_stake=self.config["stake"],

								)

								simulate	=	Simulate(table,	player,	self.config["samples"])

								with	Path(self.config["outputfile"]).open("w",	newline="")	as	target:

												wtr	=	csv.writer(target)

												wtr.writerows(simulate)

This	class	implements	the	essential	top-level	function	that	configures	the	various
objects	and	then	executes	the	simulation.	This	class	refactors	the



simulate_blackjack()	function	shown	previously	to	create	a	concrete	extension	of
the	Command	class.	This	can	be	used	in	the	main	script,	as	shown	in	the	following
code:

if	__name__	==	"__main__":	

				with	Setup_Logging():	

								with	Build_Config(sys.argv[1:])	as	config:					

												main	=	Simulate_Command()	

												main.configure(config)

												main.run()	

While	we	could	make	this	command	into	Callable	and	use	main()	instead	of
main.run(),	the	use	of	a	callable	can	be	confusing.	We're	explicitly	separating	the
following	three	design	issues:

Construction:	We've	specifically	kept	the	initialization	empty.	In	a	later
section,	we'll	show	you	some	examples	of	PITL,	where	we'll	build	a	larger
composite	command	from	smaller	component	commands.
Configuration:	We've	put	the	configuration	in	via	a	property	setter,	isolated
from	the	construction	and	control.
Control:	This	is	the	real	work	of	the	command	after	it's	been	built	and
configured.

When	we	look	at	a	callable	or	a	function,	the	construction	is	part	of	the
definition.	The	configuration	and	control	are	combined	into	the	function	call
itself.	We	sacrifice	a	small	bit	of	flexibility	if	we	try	to	define	a	callable.



Adding	the	analysis	command
subclass
We'll	extend	our	application	by	adding	the	analysis	feature.	As	we're	using	the
Command	design	pattern,	we	can	add	yet	another	subclass	for	analysis.

Here's	our	analysis	feature,	also	designed	as	a	subclass	of	the	Command	class:

class	Analyze_Command(Command):

				def	run(self)	->	None:

								with	Path(self.config["outputfile"]).open()	as	target:

												rdr	=	csv.reader(target)

												outcomes	=	(float(row[10])	for	row	in	rdr)

												first	=	next(outcomes)

												sum_0,	sum_1	=	1,	first

												value_min	=	value_max	=	first

												for	value	in	outcomes:

																sum_0	+=	1		#	value**0

																sum_1	+=	value		#	value**1

																value_min	=	min(value_min,	value)

																value_max	=	max(value_max,	value)

												mean	=	sum_1	/	sum_0

												print(

																f"{self.config['outputfile']}\n"

																f"Mean	=	{mean:.1f}\n"

																f"House	Edge	=	{1	-	mean	/	50:.1%}\n"

																f"Range	=	{value_min:.1f}	{value_max:.1f}"

												)

This	class	inherits	the	general	features	of	the	Command	class.	In	this	case,	there's
only	one	small	feature,	which	is	to	save	the	configuration	information.	The	work
performed	by	the	run()	method	is	not	too	statistically	meaningful—true,	but	the
point	is	to	show	you	a	second	command	that	uses	the	configuration	namespace
to	do	work	related	to	our	simulation.	We	used	the	outputfile	configuration
parameter	to	name	the	file	that	is	read	to	perform	some	statistical	analysis.



Adding	and	packaging	more	features
into	an	application
Previously,	we	noted	one	common	approach	to	supporting	multiple	features.
Some	applications	use	multiple	top-level	main	programs	in	separate	.py	script
files.	If	we	do	this,	then	combining	commands	from	separate	files	forces	us	to
write	a	shell	script.	It	doesn't	seem	optimal	to	introduce	yet	another	tool	and
another	language	to	do	programming	in-the-large	(PITL).

A	slightly	more	flexible	alternative	to	creating	separate	script	files	is	using	a
positional	parameter	to	select	a	specific	top-level	Command	object.	For	our	example,
we'd	like	to	select	either	the	simulation	or	the	analysis	command.	To	do	this,	we
would	add	a	parameter	to	the	command-line	argument	parsing	the	following
code:

parser.add_argument(

				"command",	action="store",	default='simulate',	

				choices=['simulate',	'analyze'])	

parser.add_argument("outputfile",	action="store",	metavar="output")	

This	would	change	the	command-line	API	to	add	the	top-level	verb	to	the
command	line.	We	can	then	map	our	argument	values	to	class	names	that
implement	the	desired	command,	as	shown	in	the	following	code:

command_map	=	{

				'simulate':	Simulate_Command,	

				'analyze':	Analyze_Command

}

command	=	command_map[options.command]	

command.configure(options)

command.run()

This	allows	us	to	create	even	higher-level	composite	features.	For	example,	we
might	want	to	combine	simulation	and	analysis	into	a	single,	overall	program.
We	also	might	like	to	do	this	without	resorting	to	using	the	shell.



Designing	a	higher-level,	composite
command
We	can	also	design	a	composite	command	that's	built	from	other	commands.	For
this,	we	have	two	design	strategies:	object	composition	and	class	composition.

If	we	use	object	composition,	then	our	composite	command	is	based	on	the	built-
in	list	or	tuple.	We	can	extend	or	wrap	one	of	the	existing	sequences.	We'll	create
the	composite	Command	object	as	a	collection	of	instances	of	other	Command	objects.
We	might	consider	writing	something	like	the	following	code:

simulate_and_analyze	=	[Simulate(),	Analyze()]	

This	has	the	disadvantage	that	we	haven't	created	a	new	class	for	our	unique
composite	command.	We	created	a	generic	composite	and	populated	it	with
instances.	If	we	want	to	create	even	higher-level	compositions,	we'll	have	to
address	this	asymmetry	between	low-level	Command	classes	and	higher-level
composite	Command	objects	based	on	built-in	sequence	classes.

We'd	prefer	to	have	a	composite	command	that	was	also	a	subclass	of	a
command.	If	we	use	class	composition,	then	we'll	have	a	more	consistent
structure	for	our	low-level	commands	and	our	higher-level	composite
commands.

Here's	a	class	that	implements	a	sequence	of	other	commands:

class	Command_Sequence(Command):

				steps:	List[Type[Command]]	=	[]

				def	__init__(self)	->	None:

								self._sequence	=	[class_()	for	class_	in	self.steps]

				def	configure(self,	config:	argparse.Namespace)	->	None:

								for	step	in	self._sequence:

												step.configure(config)

				def	run(self)	->	None:

								for	step	in	self._sequence:

												step.run()

We	defined	a	class-level	variable,	steps,	to	contain	a	sequence	of	command



classes.	During	the	object	initialization,	__init__()	will	construct	an	internal
instance	variable,	_sequence,	with	objects	of	the	named	classes	in	self.steps.

When	the	configuration	is	set,	it	will	be	pushed	into	each	constituent	object.
When	the	composite	command	is	executed	via	run(),	it	is	delegated	to	each
component	in	the	composite	command.

Here's	a	Command	subclass	built	from	two	other	Command	subclasses:

class	Simulate_and_Analyze(Command_Sequence):	

				steps	=	[Simulate_Command,	Analyze_Command]	

This	class	is	only	a	single	line	of	code	to	define	the	sequence	of	steps.	As	this	is
a	subclass	of	the	Command	class	itself,	it	has	the	necessary	polymorphic	API.	We
can	now	create	compositions	with	this	class	because	it's	compatible	with	all
other	subclasses	of	Command.

We	can	now	make	the	following	very	small	modification	to	the	argument	parsing
to	add	this	feature	to	the	application:

parser.add_argument(

				"command",	action="store",	default='simulate',	

				choices=['simulate',	'analyze',	'simulate_analyze']

)	

We	simply	added	another	choice	to	the	argument	option	values.	We'll	also	need
to	tweak	the	mapping	from	the	argument	option	string	to	the	class,	as	follows:

command_map	=	{

				'simulate':	Simulate_Command,	

				'analyze':	Analyze_Command,	

				'simulate_analyze':	Simulate_and_Analyze}

Note	that	we	shouldn't	use	a	vague	name	such	as	both	to	combine	two	commands.
If	we	avoid	vagueness,	we	create	opportunities	to	expand	or	revise	our
application.	Using	the	Command	design	pattern	makes	it	pleasant	to	add
features.	We	can	define	composite	commands,	or	we	can	decompose	a	larger
command	into	smaller	subcommands.

Packaging	and	implementation	may	involve	adding	an	option	choice	and
mapping	that	choice	to	a	class	name.	If	we	use	a	more	sophisticated
configuration	file	(see	Chapter	14,	Configuration	Files	and	Persistence),	we	can
provide	the	class	name	directly	in	the	configuration	file	and	save	the	mapping



from	an	option	string	to	a	class.



Additional	composite	Command
design	patterns
We	can	identify	a	number	of	composite	Command	design	patterns.	In	the
previous	example,	we	designed	a	composite	object	that	implemented	a	sequence
of	operations.	For	inspiration,	we	can	look	at	the	bash	shell	composite	operators:
;,	&amp;,	|,	as	well	as	()	for	grouping.	Beyond	these,	we	have	if,	for,	and	while
loops	within	the	shell.

We	looked	at	the	semantic	equivalent	of	the	shell	sequence	operator,	;,	in	the
Command_Sequence	class	definition.	This	concept	of	a	sequence	is	so	ubiquitous	that
many	programming	languages	(such	as	the	shell	and	Python)	don't	require	an
explicit	operator;	the	shell's	syntax	simply	uses	end-of-line	as	an	implied
sequence	operator.

The	shell's	&amp;	operator	creates	two	commands	that	run	concurrently	instead	of
sequentially.	We	can	create	a	Command_Concurrent	class	definition	with	a	run()
method	that	uses	multiprocessing	to	create	two	subprocesses	and	waits	for	both	to
finish.

The	|	operator	in	the	shell	creates	a	pipeline:	one	command's	output	buffer	is
another	command's	input	buffer—the	commands	run	concurrently.	In	Python,
we'd	need	to	create	a	queue	as	well	as	two	processes	to	read	and	write	that
queue.	This	is	a	more	complex	situation:	it	involves	populating	the	queue	objects
into	the	configurations	of	each	of	the	various	children.	Chapter	13,	Transmitting
and	Sharing	Objects,	has	some	examples	of	using	multiprocessing	with	queues	to
pass	objects	among	concurrent	processes.

The	if	command	in	the	shell	has	a	number	of	use	cases;	however,	there's	no
compelling	reason	to	provide	anything	more	than	a	native	Python
implementation	via	a	method	in	a	subclass	of	Command.	Creating	a	complex	Command
class	to	mimic	Python's	if-elif-else	processing	isn't	helpful;	we	can—and	should
—use	Python	directly.

The	while	and	for	commands	in	the	shell,	similarly,	aren't	the	sorts	of	things	we



need	to	define	in	a	higher-level	Command	subclass.	We	can	simply	write	this	in	a
method	in	Python.

Here's	an	example	of	a	for-all	class	definition	that	applies	an	existing	command
to	all	the	values	in	a	collection:

class	ForAllBets_Simulate(Command):

				def	run(self)	->	None:

								for	bet_class	in	"Flat",	"Martingale",	"OneThreeTwoSix":

												self.config["betting_rule"]	=	bet_class

												self.config["outputfile"]	=	Path("data")/f"ch18_simulation7_{bet_class}.dat"

												sim	=	Simulate_Command()

												sim.configure(argparse.Namespace(**self.config))

												sim.run()

We	enumerated	the	three	classes	of	betting	in	our	simulation.	For	each	of	these
classes,	we	tweaked	the	configuration,	created	a	simulation,	and	executed	that
simulation.

Note	that	this	for-all	class	won't	work	with	the	Analyze_Command	class	defined
previously.	We	can't	simply	create	composites	that	reflect	different	scopes	of
work.	The	Analyze_Command	class	runs	a	single	simulation,	but	the	ForAllBets_Simulate
class	runs	a	collection	of	simulations.	We	have	two	choices	to	create	compatible
scopes	of	work:	we	could	create	an	Analyze_All	command	or	a
ForAllBets_Sim_and_Analyze	command.	The	design	decision	depends	on	the	needs	of
the	users.



Integrating	with	other	applications
There	are	several	ways	in	which	we	can	use	Python	when	integrating	with	other
applications.	It's	difficult	to	provide	a	comprehensive	overview,	as	there	are	so
many	applications,	each	with	unique,	distinctive	features.	We	can	show	you
some	broad	design	patterns	in	the	following	list:

Python	can	be	the	application's	scripting	language.	You	can	find	a	list	of
applications	that	simply	include	Python	as	the	primary	method	to	add
features	at	https://wiki.python.org/moin/AppsWithPythonScripting.
A	Python	module	can	implement	the	application's	API.	There	are	numerous
applications	that	include	Python	modules	that	provide	a	binding	to	the
application's	API.	Application	developers	working	in	one	language	will
often	provide	API	libraries	for	other	languages,	including	Python.
We	can	use	the	ctypes	module	to	implement	another	application's	API
directly	in	Python.	This	works	out	well	in	the	case	of	an	application	library
that	is	focused	on	C	or	C++.
We	can	use	sys.stdin	and	sys.stdout	to	create	a	shell-level	pipeline	that
connects	us	to	another	application.	We	might	also	want	to	look	at	the
fileinput	module	when	building	shell-compatible	applications.
We	can	use	the	subprocess	module	to	access	an	application's	command-line
interface.	This	may	also	involve	connecting	to	an	application's	stdin	and
stdout	to	interact	properly	with	it.
We	can	also	write	our	own	Python-compatible	module	in	C	or	C++.	In	this
case,	we	can	implement	the	foreign	application's	API	in	C,	offering	classes
or	functions	that	a	Python	application	can	leverage.	This	may	offer	better
performance	than	using	the	ctypes	API.	As	this	requires	compiling	C	or
C++,	it's	also	a	bit	more	tool	intensive.

This	level	of	flexibility	means	that	we	often	use	Python	as	the	integration
framework	or	glue	to	create	a	larger,	composite	application	from	smaller
applications.	When	using	Python	for	integration,	we'll	often	have	Python	classes
and	objects	that	mirror	the	definitions	in	another	application.

There	are	some	additional	design	considerations	that	we'll	save	for	Chapter	19,
Modules	and	Package	Design.	These	are	higher-level	architectural	design

https://wiki.python.org/moin/AppsWithPythonScripting


considerations,	above	and	beyond	coping	with	the	command	line.



Summary
In	this	chapter,	we	looked	at	how	to	use	argparse	and	os.environ	to	gather
command-line	argument	and	configuration	parameters.	This	builds	on	the
techniques	shown	in	Chapter	14,	Configuration	Files	and	Persistence.

We	learned	how	to	implement	a	number	of	common	command-line	features
using	argparse.	This	includes	common	features,	such	as	showing	the	version
number	and	exiting	or	showing	the	help	text	and	exiting.

We	looked	at	using	the	Command	design	pattern	to	create	applications	that	can
be	expanded	or	refactored	to	offer	new	features.	Our	goal	is	to	explicitly	keep
the	body	of	the	top-level	main	function	as	small	as	possible.



Design	considerations	and	trade-offs
The	command-line	API	is	an	important	part	of	a	finished	application.	While
most	of	our	design	effort	focuses	on	what	the	program	does	while	it's	running,
we	do	need	to	address	two	boundary	states:	startup	and	shutdown.	An
application	must	be	easy	to	configure	when	we	start	it	up.	It	must	also	shut	down
gracefully,	properly	flushing	all	of	the	output	buffers	and	releasing	all	of	the	OS
resources.

When	working	with	a	public-facing	API,	we	have	to	address	a	variation	on	the
problem	of	schema	evolution.	As	our	application	evolves—and	as	our
knowledge	of	the	users	evolves—we	will	modify	the	command-line	API.	This
may	mean	that	we'll	have	legacy	features	or	legacy	syntax.	It	may	also	mean	that
we	need	to	break	the	compatibility	with	the	legacy	command-line	design.

In	many	cases,	we'll	need	to	be	sure	that	the	major	version	number	is	part	of	our
application's	name.	We	shouldn't	write	a	top-level	module	named	someapp.	When
we	need	to	make	major	release	three,	which	is	incompatible	with	major	release
two,	we	may	find	it	awkward	to	explain	that	the	name	of	the	application	has
changed	to	someapp3.	We	should	consider	starting	with	someapp1	so	that	the	number
is	always	part	of	the	application	name.



Looking	forward
In	the	next	chapter,	we'll	expand	some	of	these	top-level	design	ideas	and	look	at
module	and	package	design.	A	small	Python	application	can	also	be	a	module,
which	means	it	can	be	imported	into	a	larger	application.	A	complex	Python
application	may	be	a	package.	It	may	include	other	application	modules	and	it
may	be	included	in	larger-scale	applications.



Module	and	Package	Design
Python	gives	us	several	constructs	to	group	and	organize	our	software.	In	Section	
1,	Tighter	Integration	via	Special	Methods,	we	looked	at	several	techniques	for
using	a	class	definition	to	combine	data	structures	and	behavior	together,	and
create	discrete	objects	defined	by	structure	and	behavior.	In	this	chapter,	we'll
look	at	modules	to	encapsulate	class	and	function	definitions,	as	well	as	shared
objects.	We'll	also	look	at	packages	as	a	design	pattern	to	group	related	modules
together.

Python	makes	it	very	easy	to	create	simple	modules.	Any	time	we	create	a
Python	file,	we're	creating	a	module.	As	the	scope	of	our	designs	gets	larger	and
more	sophisticated,	the	use	of	packages	becomes	more	important	to	maintain	a
clear	organization	among	the	modules.	This	chapter	will	suggest	patterns	for
module	definition.

Some	languages	encourage	putting	a	single	class	in	a	single	file;	this	rule	doesn't
apply	to	Python.	The	Pythonic	practice	is	to	treat	a	whole	module	as	a	unit	of
reuse;	it's	common	practice	to	have	many	closely-related	class	and	function
definitions	in	a	single	module.

Python	has	some	specialized,	reserved	module	names.	For	a	larger	application,
we	may	implement	a	__main__	module.	This	module	must	be	designed	to	expose
the	OS	command-line	interface	for	a	complex	application.	We	also	have	some
flexibility	in	how	we	install	the	modules	associated	with	an	application.	We	can
use	the	default	working	directory,	an	environment	variable	setting,	or	the	Python
lib/site-packages	directory.	Each	of	these	approaches	has	advantages	and
disadvantages.



Technical	requirements
The	code	files	for	this	chapter	are	available	at	https://git.io/fj2US.

One	common	approach	is	a	single	module.	The	overall	organization	can	be
imagined	this	way:

module.py

	┣━━	class	A:
	┃				┗━━	def	method(self):	...
	┣━━	class	B:
	┃				┗━━	def	method(self):	...
	┗━━	def	function():	...

This	example	shows	a	single	module	with	a	number	of	classes	and	functions.
We'll	turn	to	module	design	in	the	Designing	a	module	section,	later	in	this
chapter.

A	more	complex	approach	is	a	package	of	modules,	which	can	be	imagined	as
follows:

package

	┣━━	__init__.py
	┣━━	module1.py
	┃				┣━━	class	A:
	┃				┃				┗━━	def	method(self):	...
	┃				┗━━	def	function():	...
	┗━━	module2.py
	┗━━	...

This	example	shows	a	single	package	with	two	modules.	Each	module	contains
classes	and	functions.	We'll	look	at	package	design	in	the	Designing	a	package
section	later	in	this	chapter.

We're	going	to	avoid	the	more	complex	problem	of	distributing	Python	code.
There	are	a	number	of	techniques	to	create	a	source	distribution	for	a	Python
project.	The	various	distribution	technologies	are	outside	the	scope	of	this	book.
The	Software	Packaging	and	Distribution	section	of	the	Python	Standard
Library	addresses	some	of	the	physical	file	packaging	issues.	The	Distributing
Python	Modules	document	provides	information	on	creating	a	code	distribution.

In	this	chapter,	we	will	cover	the	following	topics:

https://git.io/fj2US


Designing	a	module
Whole	modules	versus	module	items
Designing	a	package
Designing	a	main	script	and	the	main	module
Designing	long-running	applications
Organizing	code	into	src,	scripts,	tests,	and	docs
Installing	Python	modules



Designing	a	module
In	chapters	two	through	nine	of	this	book,	we	looked	at	a	number	of	techniques
for	designing	classes,	which	are	the	foundation	of	object-oriented	design	and
programming.	The	module	is	a	collection	of	classes;	it	is	a	higher-level	grouping
of	related	classes	and	functions.	It's	rare	to	try	to	reuse	a	single	class	in	isolation.	

Consequently,	the	module	is	a	fundamental	component	of	Python
implementation	and	reuse.	A	properly	designed	module	can	be	reused	because
the	needed	classes	and	functions	are	bundled	together.	All	Python	programming
is	provided	at	the	module	level.

A	Python	module	is	a	file.	The	filename	extension	must	be	.py.	The	filename	in
front	of	.py	must	be	a	valid	Python	name.	Section	2.3	of	Python	Language
Reference	provides	us	with	the	complete	definition	of	a	name.	One	of	the	clauses
in	this	definition	is	as	follows:

"Within	the	ASCII	range	(U+0001..U+007F),	the	valid	characters	for	identifiers	are	the	uppercase	and
lowercase	letters	A	through	Z,	the	underscore	_	and,	except	for	the	first	character,	the	digits	0	through	9."

Operating	system	(OS)	filenames	permit	more	characters	from	the	ASCII	range
than	Python	names;	this	extra	OS	complexity	must	be	avoided.	In	particular,
hyphens	are	a	potential	problem	in	Python	module	names;	use	underscores
instead	in	complex	file	names.	Because	the	stem	of	the	filename	(without	the	.py
extension)	becomes	the	module	name,	these	names	should	also	be	valid	Python
identifiers.

The	Python	runtime	may	also	create	additional	.pyc	and	.pyo	files	for	its	own	private	purposes;
it's	best	to	simply	ignore	these	files.	Generally,	they're	cached	copies	of	code	objects	used	to
reduce	the	time	to	load	a	module.	These	files	should	be	ignored.

Every	time	we	create	a	.py	file,	we	create	a	module.	Often,	we'll	create	Python
files	without	doing	much	design	work.	This	simplicity	is	a	benefit	of	using
Python.	In	this	chapter,	we'll	take	a	look	at	some	of	the	design	considerations	to
create	a	reusable	module.

Now	let's	take	a	look	at	some	of	the	design	patterns	for	Python	modules.



Some	module	design	patterns
There	are	three	commonly	seen	design	patterns	for	Python	modules:

Importable	library	modules:	These	are	meant	to	be	imported.	They
contain	definitions	of	classes,	functions,	and	perhaps	some	assignment
statements	to	create	a	few	global	variables.	They	do	not	do	any	real	work;
they	can	be	imported	without	any	worry	about	the	side	effects	of	the	import
operation.	There	are	two	use	cases	that	we'll	look	at:

Whole	module:	Some	modules	are	designed	to	be	imported	as	a
whole,	creating	a	module	namespace	that	contains	all	of	the	items.
Item	collection:	Some	modules	are	designed	to	allow	individual	items
to	be	imported,	instead	of	creating	a	module	object;	the	math	module	is
a	prime	example	of	this	design.

Runnable	script	modules:	These	are	meant	to	be	executed	from	the
command	line.	They	contain	more	than	class	and	function	definitions.	A
script	will	include	statements	to	do	the	real	work.	The	presence	of	side
effects	means	they	cannot	be	meaningfully	imported.
Conditional	Script	modules:	These	modules	are	hybrids	of	the	two
aforementioned	use	cases:	they	can	be	imported	and	they	can	also	be	run
from	the	command	line.	These	modules	will	have	the	main-import	switch	as
described	in	the	Python	Standard	Library,	in	the	__main__	–	Top-level
script	environment	section.

Here's	the	conditional	script	switch	from	the	library	documentation:

if	__name__	==	"__main__":	

				main()	

This	requires	a	main()	function	to	do	the	work	of	the	script.	This	design	supports
two	use	cases:	both	runnable	and	importable.	When	the	module	is	run	from	the
command	line,	it	evaluates	main()	and	does	the	expected	work.	When	the	module
is	imported,	the	function	will	not	be	evaluated,	and	the	import	will	simply	create
the	various	definitions	without	doing	any	real	work.

We	suggest	something	a	bit	more	sophisticated,	as	shown	in	Chapter	18,	Coping
with	the	Command	Line:



if	__name__	==	"__main__":	

				with	Setup_Logging():	

								with	Build_Config()	as	config:					

												main	=	Simulate_Command()	

												main.configure(config)

												main.run()	

This	leads	to	the	following	essential	design	tip:

Importing	a	module	should	have	few	side	effects.

Creating	a	few	module-level	variables	is	an	acceptable	side	effect	of	an	import.
The	real	work	–	accessing	network	resources,	printing	output,	updating	files,	and
other	kinds	of	processing	–	should	not	happen	when	a	module	is	being	imported.

A	main	script	module	without	a	__name__	==	"__main__"	section	is	often	a	bad	idea
because	it	can't	be	imported	and	reused.	Beyond	that,	it's	difficult	for
documentation	tools	to	work	with	a	main	script	module,	and	it's	difficult	to	test.
The	documentation	tools	tend	to	import	modules,	causing	work	to	be	done
unexpectedly.	Similarly,	testing	requires	care	to	avoid	importing	the	module	as
part	of	a	test	setup.

In	the	next	section,	we'll	compare	a	module	with	a	class	definition.	The	two
concepts	are	similar	in	many	respects.



Modules	compared	with	classes
There	are	numerous	parallels	between	the	definitions	for	modules	and	classes:

Both	modules	and	classes	have	names	defined	by	the	Python	syntax	rules.
To	help	distinguish	them,	modules	usually	have	a	leading	lowercase	letter;
classes	usually	have	a	leading	uppercase	letter.
Module	and	class	definitions	are	namespaces	that	contain	other	objects.
A	module	is	a	Singleton	object	within	a	global	namespace,	sys.modules.	A
class	definition	is	unique	within	a	namespace,	either	the	global	namespace,
__main__,	or	some	local	namespace.	A	class	definition	is	slightly	different
from	a	module	Singleton,	because	a	class	definition	can	be	replaced.	Once
imported,	a	module	can't	be	imported	again	without	using	special	functions
such	as	importlib.reload().
The	definitions	of	both	class	and	module	are	evaluated	as	a	sequence	of
statements	within	a	namespace.
A	function	defined	in	a	module	is	analogous	to	a	static	method	within	a
class	definition.
A	class	defined	in	a	module	is	analogous	to	a	class	defined	within	another
class.

There	are	two	significant	differences	between	a	module	and	class:

We	can't	create	an	instance	of	a	module;	it's	always	a	Singleton.	We	can
create	multiple	instances	of	a	class.
An	assignment	statement	in	a	module	creates	a	variable	that's	global	within
the	module's	namespace;	it	can	be	used	by	other	functions	in	a	module
without	using	the	module	name	as	a	qualifier	for	the	namespace.	An
assignment	statement	within	a	class	definition,	however,	creates	a	variable
that's	part	of	the	class	namespace:	it	requires	a	qualifier	to	distinguish	it
from	the	global	variables	outside	the	class.

Modules,	packages,	and	classes	can	all	be	used	to	encapsulate	data	and	process	it	into	a	tidy
object.	Classes	can	have	multiple	instances;	modules	cannot.

The	similarities	between	modules	and	classes	mean	that	choosing	between	them
is	a	design	decision,	with	tradeoffs	and	alternatives.	In	most	cases,	the	need	for



multiple	instances	with	distinct	states	is	the	deciding	factor.	Because	a	module	is
a	Singleton,	we	cannot	have	discrete	instances.

A	module's	Singleton	pattern	means	that	we'll	use	a	module	(or	package)	to
contain	class	and	function	definitions.	These	definitions	are	then	created	exactly
once,	even	if	an	import	statement	mentions	them	multiple	times.	This	is	a
wonderful	simplification,	allowing	us	to	repeat	import	statements	in	a	variety	of
contexts.	

The	logging	module,	for	example,	is	often	imported	in	multiple	other	modules.
The	Singleton	pattern	means	that	the	logging	configuration	can	be	done	once,
and	will	apply	to	all	other	modules.	A	configuration	module,	similarly,	might	be
imported	in	several	places.	The	singleton	nature	of	a	module	ensures	that	the
configuration	can	be	imported	by	any	module	but	will	be	truly	global.

When	writing	applications	that	work	with	a	single	connected	database,	a	module
with	a	number	of	access	functions	will	be	similar	to	a	singleton	class.	The
database	access	layer	can	be	imported	throughout	an	application	but	will	be	a
single,	shared	global	object.

Once	we've	decided	on	the	general	design	pattern	for	a	module,	the	next
consideration	is	to	be	sure	it	has	all	of	the	commonly-expected	elements.

In	the	next	section,	we'll	look	at	the	expected	content	of	a	module.



The	expected	content	of	a	module
Python	modules	have	a	typical	organization.	To	an	extent,	this	is	defined	by	PEP
8,	about	which	more	information	can	be	found	at	http://www.python.org/dev/peps/pep-
0008/.

The	first	line	of	a	module	can	be	a	#!	comment;	a	typical	version	looks	like	the
following	code:

#!/usr/bin/env	python3

This	is	used	to	help	OS	tools,	such	as	bash,	locate	the	Python	interpreter	for	an
executable	script	file.	For	Windows,	this	line	may	be	something	along	the	lines
of	#!C:\Python3\python.exe.

Older	Python	2	modules	may	include	a	coding	comment	to	specify	the	encoding
for	the	rest	of	the	text.	This	may	look	like	the	following	code:

#	-*-	coding:	utf-8	-*-	

The	coding	comment	is	avoided	for	Python	3;	the	OS	encoding	information	is
adequate.

The	next	lines	of	a	module	should	be	a	triple-quoted	module	docstring	that
defines	the	contents	of	the	module	file.	As	with	other	Python	docstrings,	the	first
paragraph	of	the	text	should	be	a	summary.	This	should	be	followed	by	a	more
complete	definition	of	the	module's	contents,	purpose,	and	usage.	This	may
include	RST	markup	so	that	the	documentation	tools	can	produce	elegant-
looking	results	from	the	docstring.	We'll	address	this	in	Chapter	20,	Quality	and
Documentation.

After	the	docstring,	we	can	include	any	version	control	information.	For
example,	we	might	have	the	following	code:

__version__	=	"2.7.18"	

This	is	a	module	global	variable	that	we	might	use	elsewhere	in	our	application
to	determine	the	version	number	of	the	module.	This	is	included	after	the

http://www.python.org/dev/peps/pep-0008/


docstring,	but	before	the	body	of	the	module.	Below	this,	come	all	of	the
module's	import	statements.	Conventionally,	they're	in	a	big	block	at	the	front	of
the	module.

After	the	import	statements,	come	the	various	class	and	function	definitions	of	the
module.	These	are	presented	in	whatever	order	is	required	to	ensure	that	they
work	correctly	and	make	sense	to	someone	who	is	reading	the	code.

Java	and	C++	tend	to	focus	on	one	class	per	file.		That's	a	silly	limitation.	It	doesn't	apply	to
Python.

If	the	file	has	a	lot	of	classes,	we	might	find	that	the	module	is	a	bit	hard	to
follow.	If	we	find	ourselves	using	big	comment	billboards	to	break	a	module	into
sections,	this	is	a	hint	that	what	we're	writing	may	be	more	complex	than	a	single
module.

A	billboard	comment	looks	like	the	following	example:

################################

#	FUNCTIONS	RELATED	TO	API	USE	#

################################

Rather	than	use	a	billboard-style	comment,	it's	better	to	decompose	the	module
into	separate	modules.	The	billboard	comment	should	become	the	docstring	for	a
new	module.	In	some	cases,	class	definitions	might	be	a	good	idea	for
decomposing	a	complex	module.	

Sometimes,	global	variables	within	a	module	are	handy.	The	logging	module
makes	use	of	this	to	keep	track	of	all	of	loggers	that	an	application	might	create.
Another	example	is	the	way	the	random	module	creates	a	default	instance	of	the
Random	class.	This	allows	a	number	of	module-level	functions	to	provide	a	simple
API	for	random	numbers.	We're	not	forced	to	create	an	instance	of	random.Random.

The	PEP-8	conventions	suggest	these	module	globals	should	have	ALL_CAPS	style
names	to	make	them	visible.	Using	a	tool	like	pylint	for	code	quality	checks	will
result	in	this	suggestion	for	global	variables.

The	next	section	compares	whole	modules	with	module	items.



Whole	modules	versus	module	items
There	are	two	approaches	to	designing	the	contents	of	a	library	module.	Some
modules	are	an	integrated	whole,	while	others	are	more	like	a	collection	of
loosely	related	items.	When	we've	designed	a	module	as	a	whole,	it	will	often
have	a	few	classes	or	functions	that	are	the	public-facing	API	of	the	module.
When	we've	designed	a	module	as	a	collection	of	loosely	related	items,	each
individual	class	or	function	tends	to	stand	alone.

We	often	see	this	distinction	in	the	way	we	import	and	use	a	module.	We'll	look
at	three	variations:

Using	the	import	some_module	command:	This	leads	to	the	some_module.py	module
being	evaluated	and	the	resulting	objects	are	collected	into	a	single
namespace	called	some_module.	This	requires	us	to	use	qualified	names	for	all
of	the	objects	in	the	module,	for	example,	some_module.this	and
some_module.that.	This	use	of	qualified	names	makes	the	module	an	integrated
whole.
Using	the	from	some_module	import	this,	that	command:	This	leads	to	the
some_module.py	module	file	being	evaluated	and	only	the	named	objects	are
created	in	the	current	local	namespace.	We	can	now	use	this	or	that	without
the	module	namespace	as	a	qualifier.	This	use	of	unqualified	names	is	why
a	module	can	seem	like	a	collection	of	disjointed	objects.	A	common
example	is	a	statement	like	from	math	import	sqrt,	sin,	cos	to	import	a	few
math	functions.
Using	the	from	some_module	import	*	command:	This	will	import	the	module
and	make	all	non-private	names	part	of	the	namespace	performing	the
import.	A	private	name	begins	with	_,	and	will	not	be	retained	as	one	of	the
imported	names.	We	can	explicitly	limit	the	number	of	names	imported	by	a
module	by	providing	an	__all__	list	within	the	module.	This	list	of	string
object	names	will	be	elaborated	by	the	import	*	statement.	We	often	use	the
__all__	variable	to	conceal	the	utility	functions	that	are	part	of	building	the
module,	but	not	part	of	the	API	that's	provided	to	clients	of	the	module.

When	we	look	back	at	our	design	for	decks	of	cards,	we	could	elect	to	keep	the
suits	as	an	implementation	detail	that's	not	imported	by	default.	If	we	had	a



cards.py	module,	we	could	include	the	following	code:

from	enum	import	Enum

__all__	=	["Deck",	"Shoe"]

class	Suit(str,	Enum):

				Club	=	"\N{BLACK	CLUB	SUIT}"

				Diamond	=	"\N{BLACK	DIAMOND	SUIT}"

				Heart	=	"\N{BLACK	HEART	SUIT}"

				Spade	=	"\N{BLACK	SPADE	SUIT}"

class	Card:	...

def	card(rank:	int,	suit:	Suit)	->	Card:	...

class	Deck:	...

class	Shoe(Deck):	...

The	use	of	the	__all__	variable	makes	the	Suit	and	Card	names	visible.	The
card()	function,	the	Suit	class,	and	the	Deck	class	are	implementation	details	not
imported	by	default.	For	example,	suppose	we	perform	the	following	code:

from	cards	import	*				

The	preceding	statement	will	only	create	Deck	and	Shoe	in	an	application	script,	as
those	are	the	only	explicitly	given	names	in	the	__all__	variable.

When	we	execute	the	following	command,	it	will	import	the	module	without
putting	any	names	into	the	global	namespace:

import	cards	

Even	though	it's	not	imported	into	the	namespace,	we	can	still	access	the
qualified	cards.card()	method	to	create	a	Card	instance.

There	are	advantages	and	disadvantages	of	each	technique.	A	whole	module
requires	using	the	module	name	as	a	qualifier;	this	makes	the	origin	of	an	object
explicit.	Importing	items	from	a	module	shortens	their	names,	which	can	make
complex	programming	more	compact	and	easier	to	understand.

In	the	next	section,	we'll	see	how	to	design	a	package.



Designing	a	package
One	important	consideration	when	designing	a	package	is	don't.	The	Zen	of
Python	poem	(also	known	as	import	this)	includes	this	line:

"Flat	is	better	than	nested"

We	can	see	this	in	the	Python	standard	library.	The	structure	of	the	library	is
relatively	flat;	there	are	few	nested	modules.	Deeply	nested	packages	can	be
overused.	We	should	be	skeptical	of	excessive	nesting.

A	Python	package	is	a	directory	with	an	extra	file,	__init__.py.	The	directory
name	must	be	a	proper	Python	name.	OS	names	include	a	lot	of	characters	that
are	not	allowed	in	Python	names.

We	often	see	three	design	patterns	for	packages:

Simple	packages	are	a	directory	with	an	empty	__init__.py	file.	This	package
name	becomes	a	qualifier	for	a	collection	of	modules	inside	the	package.
We'll	use	the	following	code	to	pick	one	of	the	modules	from	the	package:

import	package.module	

A	module-package	hybrid	can	have	an	__init__.py	file	that	is	effectively	a
module	definition.	This	top-level	module	will	import	elements	from
modules	inside	the	package,	exposing	them	via	the	__init__		module.	We'll
use	the	following	code	to	import	the	whole	package	as	if	it	was	a	single
module:

import	package	

Another	variation	on	the	module-package	hybrid	uses	the	__init__.py	file	to
choose	among	alternative	implementations.	We	use	the	package	as	if	it	was
a	single	module	via	code,	as	in	the	following	example:

import	package	

The	first	kind	of	package	is	relatively	simple.	We	add	an	__init__.py	file	to	a
directory,	and,	with	that,	we're	done	creating	a	package.	The	other	two	are	a	bit



more	involved;	we'll	look	at	these	in	detail.

Let's	see	how	to	design	a	module-package	hybrid.



Designing	a	module-package	hybrid
In	some	cases,	a	design	evolves	into	a	module	that	is	very	complex;	it	can
become	so	complex	that	a	single	file	becomes	a	bad	idea.	When	we	start	putting
billboard	comments	in	a	module,	it's	a	hint	that	we	should	consider	refactoring	a
complex	module	into	a	package	built	from	several	smaller	modules.

In	this	case,	the	package	can	be	as	simple	as	the	following	kind	of	structure.	We
can	create	a	directory,	named	blackjack;	within	this	directory,	the	__init__.py	file
would	look	like	the	following	example:

"""Blackjack	package"""	

from	blackjack.cards	import	Shoe	

from	blackjack.player	import	Strategy_1,	Strategy_2	

from	blackjack.casino	import	ReSplit,	NoReSplit,	NoReSplitAces,		Hit17,	Stand17	

from	blackjack.simulator	import	Table,	Player,	Simulate	

from	betting	import	Flat,	Martingale,	OneThreeTwoSix	

This	shows	us	how	we	can	build	a	module-like	package	that	is	actually	an
assembly	of	parts	imported	from	subsidiary	modules.	An	overall	application
could	be	named	simulate.py,	containing	code	that	looks	like	the	following:

from	blackjack	import	*

table	=	Table(

				decks=6,	limit=500,	dealer=Hit17(),	split=NoReSplitAces(),

				payout=(3,2))	

player	=	Player(

				play=Strategy_1(),	betting=Martingale(),	rounds=100,	

				stake=100)	

simulate	=	Simulate(table,	player,	100)	

for	result	in	simulate:	

				print(result)	

This	snippet	shows	us	how	we	can	use	from	blackjack	import	*	to	create	a	number
of	class	definitions	that	originate	in	a	number	of	other	modules	within	the
blackjack	package.	Specifically,	there's	an	overall	blackjack	package	that	has	the
following	modules	within	it:

The	blackjack.cards	package	contains	the	Card,	Deck,	and	Shoe	definitions.
The	blackjack.player	package	contains	various	strategies	for	play.
The	blackjack.casino	package	contains	a	number	of	classes	that	customize
how	casino	rules	vary.
The	blackjack.simulator	package	contains	the	top-level	simulation	tools.



The	betting	package	is	also	used	by	the	application	to	define	various	betting
strategies	that	are	not	unique	to	Blackjack	but	apply	to	any	casino	game.

The	architecture	of	this	package	may	simplify	how	we	upgrade	or	extend	our
design.	If	each	module	is	smaller	and	more	focused,	it's	more	readable	and	more
understandable.	It	may	be	simpler	to	update	each	module	in	isolation.

Let's	see	how	to	design	a	package	with	alternate	implementations.



Designing	a	package	with	alternate
implementations
In	some	cases,	we'll	have	a	top-level	__init__.py	file	that	chooses	between	some
alternative	implementations	within	the	package	directory.	The	decision	might	be
based	on	the	platform,	CPU	architecture,	or	the	availability	of	OS	libraries.

There	are	two	common	design	patterns	and	one	less	common	design	pattern	for
packages	with	alternative	implementations:

Examine	platform	or	sys	to	determine	the	details	of	the	implementation	and
decide	what	to	import	with	an	if	statement.
Attempt	import	and	use	a	try	block	exception	handling	to	work	out	the
configuration	details.
As	a	less	common	alternative,	an	application	may	examine	a	configuration
parameter	to	determine	what	should	be	imported.	This	is	a	bit	more
complex.	We	have	an	ordering	issue	between	importing	an	application
configuration	and	importing	other	application	modules	based	on	the
configuration.	It's	far	simpler	to	import	without	this	potentially	complex
sequence	of	steps.

We'll	show	the	structure	of	a	hypothetical	package	named	some_algorithm.	This	will
be	the	name	of	the	top-level	directory.	To	create	the	complex	package,	the
some_algorithm	directory	must	include	a	number	of	files,	described	as	follows:

An	__init__.py	module	will	decide	which	of	the	two	implementations	to
import.	This	name	is	required	to	define	a	package.	The	contents	of	this
module	will	be	shown	in	the	following	code	block.
An	abstraction.py	can	provide	any	necessary	abstract	definitions	for	the	two
implementations.	Using	a	single,	common	module	can	help	to	provided
consistent	type	hints	for	mypy	checking.
Each	implementation	will	be	another	module	in	the	package.	We'll	outline
two	implementation	choices,	called	short_module.py	and	long_module.py.	Neither
of	these	module	names	will	be	visible	outside	the	package.



Here's	__init__.py	for	a	some_algorithm	package.	This	module	chooses	an
implementation	based	on	the	platform	information.	This	might	look	like	the
following	example:

import	sys

from	typing	import	Type

from	Chapter_19.some_algorithm.abstraction	import	AbstractSomeAlgorithm

SomeAlgorithm:	Type[AbstractSomeAlgorithm]

if	sys.platform.endswith("32"):

				from	Chapter_19.some_algorithm.short_version	import	*

				SomeAlgorithm	=	Implementation_Short

else:

				from	Chapter_19.some_algorithm.long_version	import	*

				SomeAlgorithm	=	Implementation_Long

This	module	defines	the	SomeAlgorithm	class	based	on	one	of	two	available
implementation	modules.	For	32-bit	platforms,	the	short_version.py	module
provides	a	class	named	Implementation_Short	that	will	be	used.	For	64-bit	platforms,
the	long_version.py	module	provides	the	Implementation_Long	class.

We	need	to	also	provide	two	modules	within	the	some_algorithm	package;	the
long_version.py	module	provides	an	implementation	appropriate	for	a	64-bit
architecture;	the	short_version	module	provides	an	alternate	implementation.	The
design	must	have	module	isomorphism;	this	is	similar	to	class	isomorphism.
Both	the	modules	must	contain	classes	and	functions	with	the	same	names	and
same	APIs.

If	both	the	files	define	a	class	named	SomeClass,	then	we	can	write	the	following
code	in	an	application:

from	Chapter_19	import	some_algorithm

x	=	some_algorithm.SomeAlgorithm()	

We	can	import	the	some_algorithm	package	as	if	it	were	a	module.	This	will	import
the	some_algorithm/__init__.py	module.	This	module	locates	an	appropriate
implementation	and	provides	the	needed	class	definition.

Each	implementation	is	similar.	Both	will	incorporate	the	abstract	class	to	make
it	clear	to	tools	such	as	mypy	that	the	two	implementations	are	identical.	Here	is
the	content	of	the	short_implementation.py	module.

from	.abstraction	import	AbstractSomeAlgorithm



class	Implementation_Short(AbstractSomeAlgorithm):

				def	value(self)	->	int:

								return	42

This	module	imports	an	abstract	class	definition.	It	then	defines	a	proper
subclass.	This	overhead	helps	mypy	confirm	the	defined	class	is	a	complete
implementation	of	the	abstract	class	definition.

For	complex	applications,	this	kind	of	alternative	implementation	strategy	can	be
very	helpful.	It	lets	a	single	code	base	work	in	a	number	of	environments	where
configuration	changes	are	made	as	late	in	the	deployment	pipelines	as	possible.

The	next	section	shows	how	to	use	the	ImportError	exception.



Using	the	ImportError	exception
An	alternative	to	an	if	statement	is	to	use	a	try	statement	to	locate	a	candidate's
implementation.	This	technique	works	well	when	there	are	different
distributions.	Often,	a	platform-specific	distribution	may	include	files	that	are
unique	to	the	platform.

In	Chapter	16,	The	Logging	and	Warning	Modules,	we	showed	you	this	design
pattern	in	the	context	of	providing	warnings	in	the	event	of	a	configuration	error
or	problem.	In	some	cases,	tracking	down	variant	configurations	doesn't	deserve
a	warning,	because	the	variant	configuration	is	a	design	feature.

Here's	__init__.py	for	a	some_algorithm	package,	which	chooses	an	implementation
based	on	the	availability	of	the	module	files	within	the	package:

try:	

				from	some_algorithm.long_version	import	*	

except	ImportError	as	e:	

				from	some_algorithm.short_version	import	*	

This	depends	on	having	two	distinct	distributions	that	will	include	either	the
some_algorithm/long_version.py	file	or	the	some_algorithm/short_version.py	file.	If	the
some_algorithm.long_version	module	is	not	found,	then	some_alogirithm.short_version
will	be	imported.	The	content	of	the	implementation	modules	doesn't	change
from	what	was	shown	in	the	preceding	code	block.	Only	the	__init__.py	module
will	change.

Creating	variant	distributions	is	outside	the	scope	of	this	book.	The	Python
Packaging	Authority,	PyPA,	has	documentation	showing	how	platform-specific
wheel	and	egg	files	can	be	created.

This	try/except	technique	doesn't	scale	to	more	than	two	or	three	alternative
implementations.	As	the	number	of	choices	grows,	the	except	blocks	will	become
very	deeply	nested.	

Let's	see	how	to	design	a	main	script	and	the	main	module.



Designing	a	main	script	and	the
__main__	module
A	top-level	main	script	will	execute	our	application.	In	some	cases,	we	may	have
multiple	main	scripts	because	our	application	does	several	things.	We	have	three
general	approaches	to	writing	the	top-level	main	script:

For	very	small	applications,	we	can	run	the	application	with	python3
some_script.py.	This	is	the	style	that	we've	shown	you	in	most	examples.
For	some	larger	applications,	we'll	have	one	or	more	files	that	we	mark	as
executable	with	the	OS	chmod	+x	command.	We	can	put	these	executable	files
into	Python's	scripts	directory	with	our	setup.py	installation.	We	run	these
applications	with	some_script.py	at	the	command	line.
For	complex	applications,	we	might	add	a	__main__.py	module	in	the
application's	package.	To	provide	a	tidy	interface,	the	standard	library	offers
the	runpy	module	and	the	-m	command-line	option	that	will	use	this	specially
named	module.	We	can	run	this	with	python3	-m	some_app.

We'll	look	at	the	last	two	options	in	detail.



Creating	an	executable	script	file
To	use	an	executable	script	file,	we	have	a	two-step	implementation:	make	it
executable	and	include	a	#!	(sharp-bang,	or	shebang)	line.	We	will	take	a	look	at
the	details.

The	Linux	command	to	mark	a	script	file	as	executable	looks	like	the	following
example:

chmod	+x	some_script.py

The	shebang	line	will	often	look	like	this	example:

#!/usr/bin/env	python3

This	line	will	direct	the	OS	to	use	the	named	program	to	execute	the	script	file.
In	this	case,	we	used	the	/usr/bin/env	program	to	locate	the	python3	program	to	run
the	script.	The	python3	program	will	be	given	the	script	file	as	its	input.

When	a	script	file	is	marked	executable,	and	the	file	includes	the	#!	line,	we	can
use	some_script.py	at	the	command	line	to	run	the	script.

For	a	more	complex	application,	this	top-level	script	may	import	other	modules
and	packages.	It's	important	that	these	top-level	executable	script	files	should	be
as	simple	as	possible	to	promote	reuse	of	the	various	components.	Key	design
principles	include	the	following:

Keep	the	script	module	as	small	as	possible.	Any	complexity	should	be	in
the	modules	which	are	imported.	
A	script	module	should	have	no	new	or	distinctive	code.	It	should
emphasize	importing	and	using	code	from	other	modules.
In	the	long	run,	no	program	will	ever	stand	alone.	Any	valuable	software
will	be	extended	and	repurposed.	Even	the	top-level	script	for	an
application	may	be	integrated	into	an	even	larger	wrapper.

Our	design	goals	must	always	include	the	idea	of	composite,	larger-scale
programming.	A	main	script	file	should	be	as	short	as	possible.	Here's	our



example:

import	simulation

if	__name__	==	"__main__":

				with	simulation.Setup_Logging():	

							with	simulation.Build_Config()	as	config:					

											main	=	simulation.Simulate_Command()	

											main.configure(config)

											main.run()	

All	of	the	relevant	working	code	is	imported	from	a	module	named	simulation.
There's	no	unique	or	distinctive	new	code	introduced	in	this	module.

In	the	next	section,	we'll	see	how	to	create	a	_main_	module	.



Creating	a	__main__	module
To	work	with	the	runpy	interface,	we	must	add	a	small	__main__.py	module	to	our
application's	top-level	package.	We	have	emphasized	the	design	of	this	top-level
executable	script	file.

We	should	always	permit	refactoring	an	application	to	build	a	larger,	more
sophisticated	composite	application.	If	there's	functionality	buried	in	__main__.py,
we	need	to	pull	this	into	a	module	with	a	clear,	importable	name	so	that	it	can	be
used	by	other	applications.

A	__main__.py	module	follows	the	kind	of	code	shown	in	the	previous	section,
Creating	an	executable	script	file.		The	only	real	distinction	is	using	the	special
name,	__main__.py,	to	make	it	easier	for	the	Python	runtime	to	locate	the	main
module	of	a	package.	It	also	makes	it	easier	for	other	people	to	locate	the	main
part	of	a	package's	processing.

One	of	the	important	considerations	in	Python	programming	is	combining
multiple,	smaller	programs	into	useful,	larger	programs.	In	the	next	section,	we'll
look	at	aggregation,	or	programming	in	the	large.



Programming	in	the	large
Here's	an	example	that	shows	us	why	we	shouldn't	put	unique,	working	code
into	the	__main__.py	module.	We'll	show	you	a	quick	hypothetical	example	based
on	extending	an	existing	package.

Imagine	that	we	have	a	generic	statistical	package,	named	analysis,	with	a	top-
level	__main__.py	module.	This	implements	a	command-line	interface	that	will
compute	descriptive	statistics	of	a	given	CSV	file.	This	application	has	a
command-line	API	as	follows:

python3	-m	analysis	-c	10	some_file.csv	

This	command	uses	a	-c	option	to	specify	which	column	to	analyze.	The	input
filename	is	provided	as	a	positional	argument	on	the	command	line.

Let's	assume,	further,	that	we	have	a	terrible	design	problem.	We've	defined	a
high-level	function,	analyze(),	in	the	analysis/__main__.py	module.	Here's	an	outline
of	the	__main__.py	module:

import	argparse

from	analysis	import	some_algorithm

def	analyze(config:	argparse.Namespace)	->	None:	...

def	main(argv:	List[str]	=	sys.argv[1:])	->	None:	...

if	__name__	==	"__main__":

				main(sys.argv[1:])

The	analysis	package	includes	a	__main__.py	module.	This	module	does	more	than
just	simply	run	functions	and	classes	defined	elsewhere.	It	also	includes	a
unique,	reusable	function	definition,	analyze().	This	is	not	a	problem	until	we	try
to	reuse	elements	of	the	analysis	package.

Our	goal	is	to	combine	this	with	our	Blackjack	simulation.	Because	of	the	design
error	here,	this	won't	work	out	well.	We	might	think	we	can	do	this:

import	analysis	

import	simulation	

import	types	



def	sim_and_analyze():	

				with	simulation.Build_Config()	as	config_sim:	

								config_sim.outputfile	=	"some_file.csv"	

								s	=	simulation.Simulate()

								s.configure(config_sim)	

								s.run()	

				config_stats	=	types.SimpleNamespace(

								column=10,	input="some_file.csv")	

				analysis.analyze(config_stats)	

We	tried	to	use	analysis.analyze(),	assuming	that	the	useful	analyze()	function	was
part	of	a	simple	module.	The	Python	naming	rules	make	it	appear	as	though
analysis	is	a	module	with	a	function	named	analyze().	Most	of	the	time,	the
implementation	details	of	the	module	and	package	structure	don't	matter	for
successful	use.	This,	however,	is	an	example	of	reuse	and	Programming	In	The
Large,	where	the	structure	needs	to	be	transparent.

This	kind	of	simple	composition	was	made	needlessly	difficult	by	defining	a
function	in	__main__.	We	want	to	avoid	being	forced	to	do	this:

def	analyze(column,	filename):	

				import	subprocess	

				subprocess.run(

								["python3",	"-m",	"stats",	"-c",	column,	filename])

We	shouldn't	need	to	create	composite	Python	applications	via	the	command-line
API.	In	order	to	create	a	sensible	composition	of	the	existing	applications,	we
might	be	forced	to	refactor	analysis/__main__.py	to	remove	any	definitions	from
this	module	and	push	them	up	into	the	package	as	a	whole.

The	next	section	shows	how	to	design	long-running	applications.



Designing	long-running	applications
A	long-running	application	server	will	be	reading	requests	from	some	kind	of
queue	and	formulating	responses	to	those	requests.	In	many	cases,	we	leverage
the	HTTP	protocol	and	build	application	servers	into	a	web	server	framework.
See	Chapter	13,	Transmitting	and	Sharing	Objects,	for	details	on	how	to
implement	RESTful	web	services	following	the	Web	Server	Gateway	Interface
(WSGI)	design	pattern.

A	desktop	GUI	application	has	a	lot	of	features	in	common	with	a	server.	It	reads
events	from	a	queue	that	includes	mouse	and	keyboard	actions.	It	handles	each
event	and	gives	some	kind	of	GUI	response.	In	some	cases,	the	response	may	be
a	small	update	to	a	text	widget.	In	other	cases,	a	file	might	get	opened	or	closed,
and	the	state	of	menu	items	may	change.

In	both	cases,	the	central	feature	of	the	application	is	a	loop	that	runs	forever,
handling	events	or	requests.	Because	these	loops	are	simple,	they're	often	part	of
the	framework.	For	a	GUI	application,	we	might	have	a	loop	like	that	in	the
following	code:

root	=	Tkinter.Tk()	

app	=	Application(root)	

root.mainloop()	

For	Tkinter	applications,	the	top-level	widget's	mainloop()	gets	each	GUI	event	and
hands	it	to	the	appropriate	framework	component	for	handling.	When	the	object
handling	events—the	top-level	widget,	root,	in	the	example—executes	the	quit()
method,	then	the	loop	will	be	gracefully	terminated.

For	a	WSGI-based	web	server	framework,	we	might	have	a	loop	like	the
following	code:

httpd	=	make_server('',	8080,	debug)	

httpd.serve_forever()	

In	this	case,	the	server's	serve_forever()	method	gets	each	request	and	hands	it	to
the	application—debug	in	this	example—for	handling.	When	the	application
executes	the	server's	shutdown()	method,	the	loop	will	be	gracefully	terminated.



We	often	have	some	additional	requirements	that	distinguish	long-running
applications:

Robust:	When	dealing	with	external	OS	or	network	resources,	there	are
timeouts	and	other	errors	that	must	be	confronted	successfully.	An
application	framework	that	allows	for	plugins	and	extensions,	enjoys	the
possibility	of	an	extension	component	harboring	an	error	that	the	overall
framework	must	handle	gracefully.	Python's	ordinary	exception	handling	is
perfectly	adequate	for	writing	robust	servers.	In	Chapter	15,	Design
Principles	and	Patterns,	we	addressed	some	of	the	high-level
considerations.
Auditable:	A	simple,	centralized	log	is	not	always	sufficient.	In	Chapter	16,
The	Logging	and	Warning	Modules,	we	addressed	techniques	to	create
multiple	logs	to	support	the	security	or	financial	audit	requirements.
Debuggable:	Ordinary	unit	testing	and	integration	testing	reduces	the	need
for	complex	debugging	tools.	However,	external	resources	and	software
plugins	or	extensions	create	complexities	that	may	be	difficult	to	handle
without	providing	some	debugging	support.	More	sophisticated	logging	can
be	helpful.
Configurable:	Except	for	simple	technology	spikes,	we	want	to	be	able	to
enable	or	disable	the	application	features.	Enabling	or	disabling	debugging
logs,	for	example,	is	a	common	configuration	change.	In	some	cases,	we
want	to	make	these	changes	without	completely	stopping	and	restarting	an
application.	In	Chapter	14,	Configuration	Files	and	Persistence,	we	looked	at
some	techniques	to	configure	an	application.	In	Chapter	18,	Coping	with	the
Command	Line,	we	extended	these	techniques.
Controllable.	A	simplistic	long-running	server	can	simply	be	killed	in
order	to	restart	it	with	a	different	configuration.	In	order	to	ensure	that
buffers	are	flushed	properly	and	OS	resources	are	released	properly,	it's
better	to	use	a	signal	other	than	SIGKILL	to	force	termination.	Python	has
signal-handling	capabilities	available	in	the	signal	module.

These	last	two	requirements	for	a	dynamic	configuration	and	clean	way	to	shut
down	a	server,	lead	us	to	separate	the	primary	input	stream	from	a	secondary
control	input.	This	control	input	can	provide	additional	requests	for
configuration	or	shutdown.

We	have	a	number	of	ways	to	provide	asynchronous	inputs	through	an	additional
channel:



One	of	the	simplest	ways	is	to	create	a	queue	using	the	multiprocessing
module.	In	this	case,	a	simple	administrative	client	can	interact	with	this
queue	to	control	or	interrogate	the	server	or	GUI.	For	more	examples	of
multiprocessing,	see	Chapter	13,	Transmitting	and	Sharing	Objects.	We	can
transmit	the	control	or	status	objects	between	the	administrative	client	and
the	server.
Lower-level	techniques	are	defined	in	the	Networking	and	Interprocess
Communication	section	of	the	Python	Standard	Library.	These	modules	can
also	be	used	to	coordinate	with	a	long-running	server	or	GUI	application.
Use	persistent	storage	of	state	so	the	long-running	process	can	be	killed	and
restarted	with	a	different	configuration.	We	looked	at	persistence	techniques
in	Chapter	10,	Serializing	and	Saving	-	JSON,	YAML	Pickle,	CSV	and
Shelve;	Chapter	11,	Storing	and	Retrieving	Objects	via	Shelve;	and	Chapter	12,
Storing	and	Retrieving	Objects	via	SQLite.	Any	of	these	can	be	used	to	save
the	state	of	a	server	leading	to	a	seamless	restart.

There	are	two	common	use	cases	for	web-based	servers:

Some	servers	provide	a	RESTful	API.
Some	servers	are	focused	on	providing	the	User	Experience	(UX).

The	RESTful	API	servers	are	often	used	by	mobile	applications,	and	the	UX	is
packaged	separately.	A	RESTful	API	server	generally	maintains	state	in	a
persistent	database.	As	part	of	server	reliability	engineering,	there	may	be
multiple	copies	of	the	server	to	share	the	workload,	and	software	upgrades	often
happen	by	introducing	the	new	release	and	shifting	the	workload	from	the	old
servers	to	the	new	servers.	When	there	are	multiple	copies	of	a	server,	then
shared	persistent	storage	is	required	to	keep	the	state	of	a	user's	transaction	when
each	individual	request	could	be	handled	by	different	servers.	The	dynamic
configuration	and	control	is	handled	by	shifting	workloads	and	stopping	the	old
servers	so	the	work	is	handled	by	new	servers.

Providing	a	UX	from	a	web	server	often	requires	maintaining	session	state	on
the	server.	In	this	case,	killing	the	server	means	the	user's	session	state	is	lost.
We	don't	want	to	have	angry	users	losing	the	contents	of	their	shopping	carts
	because	we	reconfigured	a	server.	If	the	session	information	is	cached	in	a
database,	and	the	cookie	sent	to	the	user	is	nothing	more	than	a	database	key,	we
can	create	very	robust	web	servers.	The	FlaskSession	project	(more	info



available	at	https://pythonhosted.org/Flask-Session)	provides	a	number	of	ways	of
saving	session	information	in	a	cache	so	servers	can	be	stopped	and	restarted.

The	next	section	shows	how	to	organize	code	into	src,	scripts,	tests,	and	docs.

https://pythonhosted.org/Flask-Session


Organizing	code	into	src,	scripts,
tests,	and	docs
As	we	noted	in	the	previous	section,	there's	no	essential	need	for	a	complex
directory	structure	in	a	Python	project.	The	ideal	structure	follows	the	standard
library,	and	is	a	relatively	flat	list	of	modules.	This	will	include	overheads	such
as	the		setup.py	and	README	files.	This	is	pleasantly	simple	and	easy	to	work	with.

When	the	modules	and	packages	get	more	complex,	we'll	often	need	to	impose
some	structure.	For	complex	applications,	one	common	approach	is	to	segregate
Python	code	into	a	few	bundles.	To	make	the	examples	concrete,	let's	assume
that	our	application	is	called	my_app:

my_app/src:	This	directory	has	all	of	the	working	application	code.	All	of	the
various	modules	and	packages	are	here.	In	some	cases,	there's	only	a	single
top-level	package	name	in	this	src	directory.	In	other	cases,	there	may	be
many	modules	or	packages	listed	under	src.	The	advantage	of	a	src	directory
is	the	simplicity	of	doing	static	analysis	with	mypy,	pylint,	or	pyflakes.
my_app/scripts	or	my_app/bin:	This	directory	can	have	any	scripts	that	form	an
OS-level	command-line	API.	These	scripts	can	be	copied	to	the	Python
scripts	directory	by	setup.py.	As	noted	previously,	these	should	be	like	the
__main__.py	module;	they	should	be	very	short,	and	they	can	be	thought	of	as
OS	filename	aliases	for	Python	code.
my_app/tests:	This	directory	can	have	the	various	test	modules.	Most	of	the
modules	will	have	names	beginning	with	test_	so	they	can	be	discovered	by
pytest	automatically.
my_app/docs:	This	directory	will	have	the	documentation.	We'll	look	at	this	in	
Chapter	20,	Quality	and	Documentation.

The	top-level	directory	name,	my_app,	might	be	augmented	with	a	version	number
to	permit	having	multiple	branches	or	versions	available,	leading	to	my_app-v1.1	as
a	top-level	directory	name.	A	better	strategy	is	to	use	a	sophisticated	version
control	tool,	such	as	git.	This	can	manage	having	multiple	versions	of	software
in	a	single	directory	structure.	Using	git	commands	to	switch	branches	works	out
better	than	trying	to	have	multiple	branches	in	adjacent	directories.



The	top-level	directory	will	contain	the	setup.py	file	to	install	the	application	into
Python's	standard	library	structure.	See	Distributing	Python	Modules	(https://docs
.python.org/3/distributing/index.html)	for	more	information.	Additionally,	of	course,
a	README.rst	file	would	be	placed	in	this	directory.	Other	common	files	found	here
are	the	tox.ini	file,	for	configuring	the	overall	testing	environment,	and
the	environment.yaml	file,	for	building	the	Conda	environment	for	using	the
application.

When	the	application	modules	and	test	modules	are	in	separate	directories,	we
need	to	refer	to	the	application	as	an	installed	module	when	running	tests.	We
can	use	the	PYTHONPATH	environment	variable	for	this.	We	can	run	the	test	suite	as
in	the	following	code:

PYTHONPATH=my_app/src	python3	-m	test	

We	set	an	environment	variable	on	the	same	line	where	we	execute	a	command.
This	may	be	surprising,	but	it's	a	first-class	feature	of	the	bash	shell.	This	allows
us	to	make	a	very	localized	override	to	the	PYTHONPATH	environment	variable.

The	next	section	shows	how	to	install	Python	modules.

https://docs.python.org/3/distributing/index.html


Installing	Python	modules
We	have	several	techniques	to	install	a	Python	module	or	package:

We	can	write	setup.py	and	use	the	distribution	utilities	module,	distutils,	to
install	the	package	into	Python's	lib/site-packages	directory.	This	is	described
in	detail	in	the	Python	Packaging	Authority	documentation.	See	https://www.p
ypa.io/en/latest/	for	information.	Building	software	for	other	people	to
install	can	be	complex,	and	will	often	require	sophisticated	test	cases	using
the	tox	tool	to	build	environments,	run	tests,	and	create	distribution	kits.
See	https://tox.readthedocs.io/en/latest/	for	more	information.
We	can	set	the	PYTHONPATH	environment	variable	to	include	our	packages	and
modules.	We	can	set	this	temporarily	in	a	shell,	or	we	can	set	it	more
permanently	by	editing	our	~/.bash_profile	or	the	system's	/etc/profile.	We'll
take	a	look	at	this	later	in	this	section.
The	current	working	directory	is	a	package	as	well.	It's	always	first	on	the
sys.path	list.	When	working	on	a	simple	one-module	Python	application,	this
is	very	handy.	

Setting	the	environment	variable	can	be	done	transiently	or	persistently.	We	can
set	it	in	an	interactive	session	with	a	command,	as	follows:

export	PYTHONPATH=~/my_app-v1.2/src

This	sets	PYTHONPATH	to	include	the	named	directory	when	searching	for	a	module.
The	module	is	effectively	installed	through	this	simple	change	to	the
environment.	Nothing	is	written	to	Python's	lib/site-packages.

This	is	a	transient	setting	that	may	be	lost	when	we	end	the	terminal	session.	The
alternative	is	to	update	our	~/.bash_profile	to	include	a	more	permanent	change	to
the	environment.	We	simply	append	that	export	line	to	.bash_profile	so	that	the
package	is	used	every	time	we	log	in.

For	web	server	applications,	the	Apache,	NGINX,	or	uWSGI	configuration	may
need	to	be	updated	to	include	access	to	the	necessary	Python	modules.	There	are
two	approaches	to	creating	web	servers:

https://www.pypa.io/en/latest/
https://tox.readthedocs.io/en/latest/


Install	Everything.	Use	Python	package	installation	to	create	the	entire
web	server.	This	will	involve	using	a	local	package	index	for	customized
application	components.	More	work	is	done	in	the	integration	phase	of
continuous	integration/continuous	deployment	(CI/CD).
Install	Open	Source	Only.	Use	Python	package	installation	for	open
source	components.	Use	Git	checkout	and	PYTHONPATH	for	the	customized
application	components.	More	work	is	done	in	the	deployment	phase	of
CI/CD.

Either	approach	will	work	nicely.	While	the	install	everything	approach	has	the
superficial	advantage	of	simplicity,	it	leads	to	creating	installable	versions	of	all
of	our	customized	application	software.	For	software	that	is	proprietary,	and	will
not	be	released	as	open	source,	this	seems	like	needless	integration	work	to
create	an	installable	version.

Installing	only	open	source	components	leads	to	a	more	complex	application
deployment.	There	will	be	a	conda	(or	pip)	installation	of	open	source
components,	in	addition	to	git	checkout	of	proprietary	components.	



Summary
We	looked	at	a	number	of	considerations	to	design	modules	and	packages.	The
parallels	between	a	module	and	singleton	class	are	deep.	When	we	design	a
module,	the	essential	questions	of	the	encapsulation	of	the	structure	and
processing	are	as	relevant	as	they	are	for	class	design.

When	we	design	a	package,	we	need	to	be	skeptical	of	the	need	for	deeply
nested	structures.	We'll	need	to	use	packages	when	there	are	varying
implementations;	we	looked	at	a	number	of	ways	to	handle	this	variability.	We
may	also	need	to	define	a	package	to	combine	a	number	of	modules	into	a	single
module-like	package.	We	looked	at	how	__init__.py	can	import	from	within	the
package.



Design	considerations	and	tradeoffs
We	have	a	deep	hierarchy	of	packaging	techniques.	We	can	simply	organize	the
functionality	into	defined	functions.	We	can	combine	the	defined	functions	and
their	related	data	into	a	class.	We	can	then	combine	related	classes	into	a
module.	Lastly,	we	can	combine	related	modules	into	a	package.

When	we	think	of	software	as	a	language	to	capture	knowledge	and
representation,	we	have	to	consider	what	a	class	or	module	means.	A	module	is
the	unit	of	the	Python	software	construction,	distribution,	use,	and	reuse.	With
rare	exceptions,	modules	must	be	designed	around	the	possibility	of	reuse.

In	most	cases,	we'll	use	a	class,	because	we	expect	to	have	multiple	objects	that
are	instances	of	the	class.	Often	–	but	not	always	–	a	class	will	have	stateful
instance	variables.

When	we	look	at	classes	with	only	a	single	instance,	it's	not	perfectly	clear	if	a
class	is	truly	necessary.	Standalone	functions	may	be	as	meaningful	as	a	single-
instance	class.	In	some	instances,	a	module	of	separate	functions	may	be	an
appropriate	design,	because	modules	are	inherently	singletons.

The	general	expectation	is	a	simple	stateful	collection	of	definitions.	A	module	is
a	namespace	that	can	also	contain	some	local	variables.	This	parallels	a	class
definition,	but	lacks	the	ability	to	create	instances.

While	we	can	create	immutable	classes	(using	__slots__,	extending	NamedTuple,
using	a	frozen	@dataclass,	or	overriding	the	attribute	setter	methods),	we	can't
easily	create	an	immutable	module.	There	doesn't	seem	to	be	a	use	case	for	an
immutable	module	object.

	

A	small	application	may	be	a	single	module.	A	larger	application	will	often	be	a
package.	As	with	module	design,	packages	should	be	designed	for	reuse.	A
larger	application	package	should	properly	include	a	__main__	module.



Looking	forward
In	the	next	chapter,	we'll	consolidate	a	number	of	our	object-oriented	design
techniques.	We'll	take	a	look	at	the	overall	quality	of	our	design	and
implementation.	One	consideration	is	assuring	others	that	our	software	is
trustworthy.	One	aspect	of	trustworthy	software	is	coherent,	easy-to-use
documentation.



Quality	and	Documentation
To	be	valuable,	software	must	be	trusted.	The	general	goal	of	trustworthiness
relies	on	a	number	of	software	quality	attributes.	For	more	information	on	this,
refer	to	the	S-Cube	Quality	Reference	Model	section	in	https://s-cube-network.eu/km
/qrm/index.html.	Good	documentation	is	an	underlying	technique	for
demonstrating	that	the	various	quality	attributes	have	been	met.

In	this	chapter,	we'll	look	at	two	tools	to	produce	the	documentation	from	the
code:	pydoc	and	Sphinx.	The	pydoc	tool	extracts	documentation	from	the	Python
code	and	produces	useful	views	of	the	docstrings.	The	Sphinx	tool	allows	us	to
create	complete	and	sophisticated	documentation	using	a	lightweight	markup
language	coupled	with	the	source	code.	We'll	describe	some	features	of
reStructuredText	(RST)	to	help	make	our	documentation	more	readable.

For	more	information,	refer	to	PEP	257	in	https://www.python.org/dev/peps/pep-0257/.
This	describes	the	minimum	standard	for	docstrings.	The	use	of	formatting
markup	such	as	RST	extends	this	baseline	proposal.

Complete	test	cases	are	another	aspect	of	high-quality	software.	We	can	use
the	doctest	module	to	execute	test	cases.	Doing	this	addresses	two	quality	aspects
—documentation	and	testing—with	a	single	tool.

We'll	also	take	a	brief	look	at	literate	programming	techniques.	The	idea	is	to
write	a	pleasant,	easy-to-understand	document	that	contains	the	entire	body	of
the	source	code	along	with	explanatory	notes	and	design	details.	Literate
programming	isn't	simple,	but	it	can	produce	good	code	coupled	with	a	resulting
document	that	is	very	clear	and	complete.

In	this	chapter,	we	will	cover	the	following	topics:

Writing	docstrings	for	the	help()	function
Using	pydoc	for	documentation
Better	output	via	RST	markup
Writing	effective	docstrings
Writing	file-level	docstrings,	including	modules	and	packages

https://s-cube-network.eu/km/qrm/index.html
https://www.python.org/dev/peps/pep-0257/


More	sophisticated	markup	techniques
Using	Sphinx	to	produce	the	documentation
Writing	the	documentation
Literate	programming



Technical	requirements
The	code	files	for	this	chapter	are	available	at	https://git.io/fj2U9.

https://git.io/fj2U9


Writing	docstrings	for	the	help()
function
Python	provides	numerous	places	to	include	the	documentation.	The	definition
of	a	package,	module,	class,	or	function	has	room	for	a	string	that	includes	a
description	of	the	object	that	is	being	defined.

Throughout	this	book,	we	avoided	showing	you	lengthy	docstrings	in	each
example	because	our	focus	is	on	the	Python	programming	details,	not	the	overall
software	product	that	is	being	delivered.

As	we	move	beyond	advanced	OO	design	and	look	at	the	overall	deliverable
product,	docstrings	become	an	important	part	of	the	deliverable.	Docstrings	can
provide	us	with	several	key	pieces	of	information:

The	API:	the	parameters,	return	values,	and	exceptions	raised.
A	description	of	what	to	expect.
Optionally,	the	doctest	test	results.	For	more	information,	refer	to	Chapter	17,
Designing	for	Testability.

We	can,	of	course,	write	even	more	in	a	docstring.	We	can	provide	more	details
on	the	design,	architecture,	and	requirements.	At	some	point,	these	more
abstract,	higher-level	considerations	are	not	directly	tied	to	the	Python	code.	This
higher-level	design	and	the	requirements	don't	properly	belong	to	the	code	or	the
docstrings.

The	help()	function	extracts	and	displays	the	docstrings.	It	performs	some
minimal	formatting	on	the	text.	The	help()	function	is	installed	in	the	interactive
Python	environment	by	the	site	package.	The	function	is	actually	defined	in	the
pydoc	package.	In	principle,	we	can	import	and	extend	this	package	to	customize
the	help()	output.

Writing	documentation	that	is	suitable	for	help()	is	relatively	simple.	Here's	a
typical	example	of	output	from	help(round):

Help	on	built-in	function	round	in	module	builtins:



round(number,	ndigits=None)

				Round	a	number	to	a	given	precision	in	decimal	digits.

	

				The	return	value	is	an	integer	if	ndigits	is	omitted	or	None.	Otherwise

				the	return	value	has	the	same	type	as	the	number.	ndigits	may	be	negative.

This	shows	us	the	required	elements:	the	summary,	the	API,	and	the	description.
The	API	and	the	summary	are	the	first	line:	round(number,	ndigits=None).

The	description	text	defines	what	the	function	does.	More	complex	functions
may	describe	exceptions	or	edge	cases	that	may	be	important	or	unique	to	this
function.	The	round()	function,	for	example,	doesn't	detail	elements	such	as
TypeError	that	might	get	raised.

A	help()-oriented	docstring	is	expected	to	be	pure	text	with	no	markup.	We	can
add	some	RST	markup,	but	it	isn't	used	by	help().

To	make	help()	work,	we	simply	provide	docstrings.	As	it's	so	simple,	there's	no
reason	not	to	do	it.	Every	function	or	class	needs	a	docstring	so	that	help()	shows
us	something	useful.

Now,	let's	see	how	to	use	pydoc	for	documentation.



Using	pydoc	for	documentation
We	use	the	library	module,	pydoc,	to	produce	HTML	documentation	from	Python
code.	It	turns	out	that	we're	using	it	when	we	evaluate	help()	in	interactive
Python.	This	function	produces	the	text	mode	documentation	with	no	markup.

When	we	use	pydoc	to	produce	the	documentation,	we'll	use	it	in	one	of	the
following	ways:

Prepare	text-mode	documentation	files	and	view	them	with	command-line
tools	such	as	more	or	less.
Run	an	HTTP	server	and	browse	the	documentation	directly.

We	can	run	the	following	command-line	tool	to	prepare	the	text-based
documentation	for	a	module:

pydoc	somemodule	

We	can	also	use	the	following	code:

python3	-m	pydoc	somemodule	

Either	command	will	create	text	documentation	based	on	the	Python	code.	The
output	will	be	displayed	with	programs	such	as	less	(on	Linux	or	macOS)	or	more
(on	Windows),	which	paginate	the	long	stream	of	output.

Ordinarily,	pydoc	presumes	that	we're	providing	a	module	name	to	import.	This
means	that	the	module	must	be	on	the	Python	path	for	ordinary	import.	As	an
alternative,	we	can	specify	a	physical	filename.	Something	along	the	lines
of	pydoc	./mymodule.py	will	work	to	pick	a	file	instead	of	a	module.

The	program	can	also	start	a	special-purpose	web	server	to	browse	a	package	or
module's	documentation.	In	addition	to	simply	starting	the	server,	we	can
combine	starting	the	server	and	launching	our	default	browser.	The	-b	option
starts	a	browser.	Here's	a	way	to	simply	start	a	server	and	also	launch	a	browser
at	the	same	time:

python3	-m	pydoc	-b	



This	will	locate	an	unused	port,	start	a	server,	and	then	launch	your	default
browser	to	point	at	the	server.	

It's	not	easy	to	customize	the	output	from	pydoc.	The	various	styles	and	colors	are
effectively	hardcoded	into	the	class	definitions.	Revising	and	expanding	pydoc	to
use	the	external	CSS	styles	would	be	an	interesting	exercise.

The	following	screenshot	shows	the	default	styling:





Now,	let's	see	how	to	obtain	a	better	output	using	RST	markup.



Better	output	via	RST	markup
Our	documentation	could	be	much	nicer	if	we	use	a	more	sophisticated	toolset.

There	are	several	things	that	we'd	like	to	be	able	to	do,	such	as	the	following:

Fine-tune	the	presentation	to	include	emphasis	such	as	bold,	italic,	or	color.
Provide	the	semantic	markup	for	the	parameters,	return	values,	exceptions,
and	cross-references	among	Python	objects.
Provide	a	link	to	view	the	source	code.

Filter	the	code	that's	included	or	rejected.	This	includes	fine-tuning	the
presence	of	standard	library	modules,	private	objects	with	a	leading	_,
system	objects	with	a	leading	__,	or	superclass	members.
Adjust	the	CSS	to	provide	a	different	style	for	the	resulting	HTML	pages.

We	can	address	the	first	two	requirements	through	more	sophisticated	markup	in
our	docstrings.	We'll	need	to	use	the	RST	markup	language,	and	we'll	also	need
an	additional	tool	to	address	the	last	three	requirements.

Once	we	start	using	more	sophisticated	markup,	we	can	branch	out	beyond

HTML	to	include	 	for	even	better-looking	documentation.	This	allows
us	to	also	produce	the	PostScript	or	PDF	output	in	addition	to	HTML	from	a
single	source.

RST	is	a	simple,	lightweight	markup.	There	are	plenty	of	good	tutorials	and
summaries	associated	with	the	Python	docutils	project.	Refer	to	http://docutils.sou
rceforge.net	for	details.

A	quick	overview	is	available	here:	http://docutils.sourceforge.net/docs/user/rst/quic
kstart.html.

The	point	of	the	docutils	toolset	is	that	a	very	smart	parser	allows	us	to	use	very
simple	markup.	HTML	and	XML	rely	on	a	relatively	unsophisticated	parser	and
put	the	burden	on	the	human	(or	an	editing	tool)	to	create	the	complex	markup.
While	XML	and	HTML	allow	for	a	wide	variety	of	use	cases,	the	docutils	parser

http://docutils.sourceforge.net
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is	more	narrowly	focused	on	the	natural	language	text.	Because	of	the	narrow
focus,	docutils	is	able	to	deduce	our	intent,	based	on	the	use	of	blank	lines	and
some	ASCII	punctuation	characters.

For	our	purposes,	the	docutils	parser	recognizes	the	following	three	fundamental
things:

Blocks	of	text:	paragraphs,	headings,	lists,	block	quotes,	code	samples,	and
the	doctest	blocks.	These	are	all	separated	by	blank	lines.
Inline	markup	can	appear	inside	the	text	blocks.	This	involves	the	use	of
simple	punctuation	to	mark	the	characters	within	the	text	block.	There	are
two	kinds	of	inline	markup;	we'll	look	at	the	details	in	the	later	section.
Directives	are	also	blocks	of	text,	but	they	begin	with	..	as	the	first	two
characters	of	the	line.	Directives	are	open-ended	and	can	be	extended	to	add
features	to	docutils.

The	essential	ingredient	in	writing	text	that	can	be	transformed	into	good-
looking	documents	is	to	clearly	separate	the	blocks	of	text.	In	the	next	section,
we'll	look	at	the	different	kinds	of	text	blocks.



Blocks	of	text
A	block	of	text	is	simply	a	paragraph,	set	off	from	other	paragraphs,	by	a	blank
line.	This	is	the	fundamental	unit	of	the	RST	markup.	RST	recognizes	a	number
of	kinds	of	paragraphs,	based	on	the	pattern	that	is	followed.	Here's	an	example
of	a	heading:

This	Is	A	Heading	

=================	

This	is	recognized	as	a	heading	because	it's	underlined	with	a	repeated	string	of
special	characters.

The	docutils	parser	deduces	the	hierarchy	of	title	underlines	based	entirely	on
their	usage.	We	must	be	consistent	with	our	headings	and	their	nesting.	It	helps
to	pick	a	standard	and	stick	to	it.	It	also	helps	to	keep	documents	fairly	flat
without	complex,	nested	headings.	Three	levels	are	often	all	that's	needed;	this
means	that	we	can	use	====,	----,	and	~~~~	for	the	three	levels.

A	bullet	list	item	begins	with	a	special	character;	the	content	must	also	be
indented.	As	Python	uses	a	4-space	indent,	this	is	common	in	RST	as	well.
However,	almost	any	consistent	indent	will	work:

Bullet	Lists	

	

-			Leading	Special	Character.	

	

-			Consistent	Indent.	

Note	the	blank	line	between	paragraphs.	For	some	kinds	of	simple	bullet	lists,
the	blank	lines	aren't	required.	In	general,	blank	lines	are	a	good	idea.

A	numerical	list	begins	with	a	digit	or	letter	and	a	roman	numeral.	To	have
numbers	generated	automatically,	#	can	be	used	as	the	list	item:

Number	Lists	

	

1.		Leading	digit	or	letter.	

	

#.		Auto-numbering	with	#.	

	

#.		Looks	like	this.	



We	can	use	the	indent	rules	to	create	lists	within	lists.	It	can	be	complex,	and	the
docutils	RST	parser	will	usually	figure	out	what	you	meant.

A	block	quote	is	simply	indented	text:

Here's	a	paragraph	with	a	cool	quote.	

	

				Cool	quotes	might	include	a	tip.	

	

Here's	another	paragraph.	

Code	samples	are	indicated	with	a	::	double	colon;	they	are	indented,	and	they
end	with	a	blank	line.	While	::	can	be	at	the	end	of	a	line	or	on	a	line	by	itself,
putting	::	on	a	separate	line	makes	it	slightly	easier	to	find	code	samples.

Here's	a	code	sample:

Here's	an	example:

::	

	

				x	=	Deck()	

				first_card	=	x.pop()	

	

This	shows	two	lines	of	code.	It	will	be	distinguished	from	surrounding	text.	

The	docutils	parser	will	also	locate	the	doctest	material	and	set	it	aside	for	special
formatting,	similar	to	a	code	block.	They	begin	with	>>>	and	end	with	a	blank
line.

Here's	some	sample	output	from	doctest:

Here's	an	example:

::

	

				>>>	x	=	Unsorted_Deck()	

				>>>	x.pop()	

				'A♣'	

	

This	shows	how	the	:class:`Unsorted_Deck`	class	works.

A	blank	line	at	the	end	of	the	test	output	is	essential	and	is	easily	overlooked.
When	the	doctest	error	messages	include	the	surrounding	text,	this	means	that
additional	blank	lines	are	required.	

One	way	in	which	we	can	annotate	our	text	is	by	providing	inline	markup	to
identify	things	that	should	be	emphasized	in	different	ways.	It	might	be	code,	or
an	important	word,	or	a	cross-reference.	In	the	next	section,	we'll	show	how



inline	markup	is	used	in	RST.



The	RST	inline	markup
Within	most	blocks	of	text,	we	can	include	inline	markup.	We	can't	include
inline	markup	in	the	code	samples	or	doctest	blocks.	Note	that	we	cannot	nest
inline	markup,	either.

The	RST	inline	markup	includes	a	variety	of	common	ASCII	treatments	of	text.
For	example,	we	have	*emphasis*	and	**strong	emphasis**,	which	will	usually
produce	italic	and	bold,	respectively.	We	may	want	to	emphasize	code	segments
within	a	block	of	text;	we	use	``literal``	to	force	a	monospaced	font.

We	can	also	include	cross-references	as	the	inline	markup.	A	trailing	_	indicates
a	reference,	and	it	points	away	from	the	preceding	words;	a	leading	_	indicates	a
target,	and	it	points	toward	the	following	words.	For	example,	we	might	have
`some	phrase`_	as	a	reference.	We	can	then	use	_`some	phrase`	as	the	target	for	that
reference.	We	don't	need	to	provide	explicit	targets	for	section	titles:	we	can
reference	`This	Is	A	Heading`_	because	all	the	section	titles	are	already	defined	as
targets.	For	the	HTML	output,	this	will	generate	the	expected	<a>	tags.	For	the
PDF	output,	in-text	links	will	be	generated.

We	cannot	nest	inline	markup.	There's	little	need	for	nested	inline	markup;	too
many	typographic	tricks	devolve	to	visual	clutter.	If	our	writing	is	so	sensitive	to
typography,	we	should	probably	use	LaTeX	directly.

Inline	markup	can	also	have	explicit	role	indicators;	this	is	:role:,	followed	by
`text`.	Simple	RST	has	relatively	few	roles.	We	might	use	:code:`some	code`	to	be
more	explicit	regarding	the	presence	of	a	code	sample	in	the	text.	When	we	look
at	Sphinx,	there	are	numerous	role	indicators.	The	use	of	explicit	roles	can
provide	a	great	deal	of	semantic	information.

When	doing	things	that	have	more	complex	math,	we	might	use	the	LaTeX	math
typesetting	capabilities.	This	uses	the	:math:	role;	it	looks	like	this:	:math:`a=\pi
r^2`.	

Roles	are	open-ended.	We	can	provide	a	configuration	to	docutils	that	adds	new
roles.	This	is	done	by	means	of	tools	such	as	Sphinx.	



In	addition	to	inline	role	definitions,	RST	has	a	number	of	directives.	In	the	next
section,	we'll	look	at	these	directives.



RST	directives
RST	also	includes	directives.	A	directive	is	written	in	a	block	that	starts	with	...
A	directive	may	contain	content	that's	indented.	It	may	also	have	parameters.
RST	has	a	large	number	of	directives	that	we	might	use	to	create	a	more
sophisticated	document.	For	docstring	preparation,	we'll	rarely	use	more	than	a
few	of	the	directives	available.	The	directives	are	open-ended;	tools	such	as
Sphinx	will	add	directives	to	produce	more	sophisticated	documentation.

Three	commonly	used	directives	are	image,	csv-table,	and	math.	If	we	have	an
image	that	should	be	part	of	our	document,	we	might	include	it	in	the	following
way:

..		image::	media/some_file.png	

				:width:	6in	

We	named	the	file	media/some_file.png.	We	also	provided	it	with	a	width	parameter
to	ensure	that	our	image	fits	our	document	page	layout.	There	are	a	number	of
other	parameters	that	we	can	use	to	adjust	the	presentation	of	an	image.

:align::	We	can	provide	keywords	such	as	top,	middle,	bottom,	left,	center,	or
right.	This	value	will	be	provided	to	the	align	attribute	of	the	HTML	<img>
tag.
:alt::	This	is	the	alternative	text	for	the	image.	This	value	will	be	provided
to	the	alt	attribute	of	the	HTML	<img>	tag.
:height::	This	is	the	height	of	the	image.
:scale::	This	is	a	scale	factor	that	can	be	provided	instead	of	the	height	and
width.
:width::	This	is	the	width	of	the	image.
:target::	This	is	a	target	hyperlink	for	the	image.	This	can	be	a	complete
URI	or	an	RST	reference	of	the	`name`_	form.

For	the	height	and	width,	any	of	the	length	units	available	in	CSS	can	be	used.
These	include	em	(the	height	of	the	element's	font),	ex	(the	height	of	the	letter	x),
px	(pixels),	as	well	as	absolute	sizes;	in,	cm,	mm,	pt	(point),	and	pc	(pica).

We	can	include	a	table	in	our	document	in	the	following	manner:



..		csv-table::	Suits	

				:header:	symbol,	name	

					

				"'♣'",	Clubs	

				"'♦'",	Diamonds	

				"'♥'",	Hearts	

				"'♠'",	Spades	

This	allows	us	to	prepare	data	that	will	become	a	complex	HTML	table	in	a
simple	CSV	notation.	We	can	have	a	more	complex	formula	using	the	math
directive:

..		math::	

				\textbf{O}(2^n)

This	allows	us	to	write	larger	LaTeX	math	to	create	a	separate	equation.	These
can	be	numbered	and	cross-referenced	as	well.	Note	the	blank	lines	and	the
indentation	around	the	formula;	these	are	essential	for	helping	the	RST	tools
locate	the	relevant	text	to	be	treated	as	math.

There	are	a	number	of	other	RST	markup	techniques.	In	the	next	section,	we'll
suggest	some	ways	to	learn	how	to	annotate	text	so	that	it	is	properly	formatted
and	indexed.



Learning	RST
One	way	to	build	skills	in	RST	is	to	install	docutils	and	use	the	rst2html.py	script
to	parse	an	RST	document	and	convert	it	to	HTML	pages.	A	simple	practice
document	can	easily	show	us	the	various	RST	features.

All	of	a	project's	requirements,	architecture,	and	documentation	can	be	written
using	RST	and	transformed	into	HTML	or	LaTeX.	It's	relatively	inexpensive	to
write	user	stories	in	RST	and	drop	those	files	into	a	directory	that	can	be
organized	and	reorganized,	since	stories	are	groomed,	put	into	development,	and
implemented.	More	complex	tools	may	not	be	any	more	valuable	than	docutils.

The	advantage	of	using	pure	text	files	and	the	RST	markup	is	that	we	can	easily
manage	our	documentation	in	parallel	with	our	source	code.	We're	not	using	a
proprietary	word	processing	file	format.	We're	not	using	a	wordy	and	long-
winded	HTML	or	XML	markup	that	must	be	compressed	to	be	practical.	We're
simply	storing	more	text	along	with	the	source	code.

If	we're	using	RST	to	create	the	documentation,	we	can	also	use	the	rst2latex.py
script	to	create	a	.tex	file	that	we	can	run	through	a	LaTeX	toolset	to	create
postscript	or	PDF	documents.	This	requires	a	LaTeX	toolset,	and	usually,	the
TeXLive	distribution	is	used	for	this.	Refer	to	http://www.tug.org/texlive/	for	a
comprehensive	set	of	tools	to	transform	TeX	into	elegant,	final	documents.
TeXLive	includes	the	pdfTeX	tool,	which	can	be	used	to	convert	the	LaTeX
output	to	a	PDF	file.

	In	the	next	section,	we'll	see	how	to	write	effective	docstrings.

http://www.tug.org/texlive/


Writing	effective	docstrings
When	writing	docstrings,	we	need	to	focus	on	the	essential	information	that	our
audience	needs.	When	we	look	at	using	a	library	module,	what	do	we	need	to
know?	Whatever	questions	we	ask	means	that	other	programmers	will	often
have	similar	questions.	There	are	two	boundaries	that	we	should	stay	inside
when	we	write	docstrings:

It's	best	to	avoid	abstract	overviews,	high-level	requirements,	user	stories,
or	background	that	is	not	tied	directly	to	the	code.	We	should	provide	the
background	in	a	separate	document.	A	tool	such	as	Sphinx	can	combine
background	material	and	code	in	a	single	document.
It's	best	to	also	avoid	overly	detailed	how	it	works	implementation	trivia.
The	code	is	readily	available,	so	there's	no	point	in	recapitulating	the	code
in	the	documentation.	If	the	code	is	too	obscure,	perhaps	it	should	be
rewritten	to	make	it	clearer.

Perhaps	the	single	most	important	thing	that	developers	want	is	a	working
example	of	how	to	use	the	Python	object.	The	RST	::	literal	block	is	the
backbone	of	these	examples.

We'll	often	write	RST	code	samples	in	the	following	manner:

Here's	an	example::	

	

				d	=	Deck()	

				c	=	d.pop()	

	

The	double	colon,	::,	precedes	an	indented	block.	The	indented	block	is
recognized	by	the	RST	parser	as	code	and	will	be	literally	passed	through	to	the
final	document.

In	addition	to	an	example,	the	formal	API	is	also	important.	We'll	take	a	look	at
several	API	definition	techniques	in	the	later	section.	These	rely	on	the	RST	field
list	syntax.	It's	very	simple,	which	makes	it	very	flexible.

Once	we're	past	the	example	and	the	API,	there	are	a	number	of	other	things	that



compete	for	the	third	place.	What	else	we	need	to	write	depends	on	the	context.
There	appear	to	be	three	cases:

Files,	including	packages	and	modules:	In	these	cases,	we're	providing	an
overview	or	introduction	to	a	collection	of	modules,	classes,	or	function
definitions.	We	need	to	provide	a	simple	roadmap	or	overview	of	the
various	elements	in	the	file.	In	the	case	where	the	module	is	relatively
small,	we	might	provide	the	doctest	and	code	samples	at	this	level.
Classes,	including	method	functions:	This	is	where	we	often	provide	code
samples	and	doctest	blocks	that	explain	the	class	API.	Because	a	class	may
be	stateful	and	may	have	a	relatively	complex	API,	we	may	need	to	provide
rather	lengthy	documentation.	Individual	method	functions	will	often	have
detailed	documentation.
Functions:	We	may	provide	code	samples	and	doctest	blocks	that	explain
the	function.	Because	a	function	is	often	stateless,	we	may	have	a	relatively
simple	API.	In	some	cases,	we	may	avoid	more	sophisticated	RST	markup
and	focus	on	the	help()	function's	documentation.

We'll	take	a	look	at	each	of	these	broad,	vague	documentation	contexts	in	some
detail.



Writing	file-level	docstrings,
including	modules	and	packages
A	package	or	a	module's	purpose	is	to	contain	a	number	of	elements.	A	package
contains	modules	as	well	as	classes,	global	variables,	and	functions.	A	module
contains	classes,	global	variables,	and	functions.	The	top-level	docstrings	on
these	containers	can	act	as	roadmaps	to	explain	the	general	features	of	the
package	or	module.	The	details	are	delegated	to	the	individual	classes	or
functions.

We	might	have	a	module	docstring	that	looks	like	the	following	code:

Blackjack	Cards	and	Decks

=========================

This	module	contains	a	definition	of	:class:`Card`,	

:class:`Deck`	and	:class:`Shoe`	suitable	for	Blackjack.

The	:class:`Card`	class	hierarchy

---------------------------------

The	:class:`Card`	class	hierarchy	includes	the	following	class	definitions.

:class:`Card`	is	the	superclass	as	well	as	being	the	class	for	number	cards.

:class:`FaceCard`	defines	face	cards:	J,	Q	and	K.

:class:`AceCard`	defines	the	Ace.	This	is	special	in	Blackjack	because	it	creates	a	soft	total	for	a	hand.

We	create	cards	using	the	:func:`card`	factory	function	to	create	the	proper

:class:`Card`	subclass	instances	from	a	rank	and	suit.

The	:class:`Suit`	enumeration	has	all	of	the	Suit	instances.

::

				>>>	from	ch20_ex1	import	cards

				>>>	ace_clubs=	cards.card(	1,	cards.suits[0]	)

				>>>	ace_clubs

				'A♣'

				>>>	ace_diamonds=	cards.card(	1,	cards.suits[1]	)

				>>>	ace_clubs.rank	==		ace_diamonds.rank

				True

The	:class:`Deck`	and	:class:`Shoe`	class	hierarchy

---------------------------------------------------

The	basic	:class:`Deck`	creates	a	single	52-card	deck.	

The	:class:`Shoe`	subclass	creates	a	given	number	of	decks.	

A	:class:`Deck`	can	be	shuffled	before	the	cards	can	be	

extracted	with	the	:meth:`pop`	method.	

A	:class:`Shoe`	must	be	shuffled	and



*burned*.	The	burn	operation	sequesters	a	random	number	of	cards	

based	on	a	mean	and	standard	deviation.	The	mean	is	a	number	of	

cards	(52	is	the	default.)	

The	standard	deviation	for	the	burn	is	

also	given	as	a	number	of	cards	(2	is	the	default.)

Most	of	the	text	in	this	docstring	provides	a	roadmap	to	the	contents	of	this
module.	It	describes	the	class	hierarchies,	making	it	slightly	easier	to	locate	a
relevant	class.	References	to	classes	use	RST	inline	markup.	There	is	a	role
prefix	followed	by	the	reference;	for	example,	:class:`Card`	generates	text	that
will	be	a	hyperlink	to	the	definition	of	the	Card	class.	We'll	look	at	these
references	later.	In	a	purely	Python	environment,	these	simple	references	work
nicely;	in	a	polyglot	environment,	or	when	using	Sphinx	outside	Python,	there
are	some	important	variations	on	the	role	names.

The	docstring	includes	a	simple	example	of	the	card()	factory	function	based	on
doctest.	This	advertises	this	function	as	an	important	feature	of	the	module	as	a
whole.	It	might	make	sense	to	provide	the	doctest	explanation	of	the	Shoe	class,	as
that's	perhaps	the	most	important	part	of	this	module.

This	docstring	includes	some	inline	RST	markup	to	put	class	names	into	a
monospaced	font.	The	section	titles	are	underlined	with	===	and	---	lines.	The
RST	parser	can	determine	that	the	heading	underlined	with	===	is	the	parent	of
the	headings	underlined	with	---.

We'll	look	at	using	Sphinx	to	produce	the	documentation	in	a	later	section.
Sphinx	will	leverage	the	RST	markup	to	produce	great-looking	HTML
documentation.

Now,	let's	look	at	how	to	write	API	details	in	RST	markup.



Writing	API	details	in	RST	markup
One	of	the	benefits	of	using	the	RST	markup	is	that	we	can	provide	formal	API
documentation.	The	API	parameters	and	return	values	are	formatted	using	an
RST	field	list.	Generally,	a	field	list	has	the	following	form:

:field1:	some	value	

:field2:	another	value	

A	field	list	is	a	sequence	of	field	labels	(as	:label:)	and	a	value	associated	with
that	label.	The	label	is	generally	short,	and	the	value	can	be	as	long	as	needed.
Field	lists	are	also	used	to	provide	parameters	to	directives.

We'll	use	an	extended	form	of	the	RST	field	list	syntax	to	write	the	API
documentation.	We'll	extend	the	field	name	to	become	a	multipart	item.	We'll
add	prefixes	with	keywords	such	as	param	or	type.	The	prefix	will	be	followed	by
the	parameter's	name.

There	are	several	field	prefixes.	We	can	use	any	of	these:	param,	parameter,	arg,
argument,	key,	and	keyword.	For	example,	we	might	write	the	following	code:

:param	rank:	Numeric	rank	of	the	card	

:param	suit:	Suit	of	the	card	

We	generally	use	param	(or	parameter)	for	the	positional	parameters,	and	key	(or
keyword)	for	the	keyword	parameters.	These	field	list	definitions	will	be	collected
in	an	indented	section.	The	Sphinx	tool	will	also	compare	the	names	in	the
documentation	with	the	names	in	the	function	argument	list,	to	be	sure	that	they
match.

We	can	also	define	the	type	of	a	parameter	using	type	as	a	prefix:

:type	rank:	integer	in	the	range	1-13.	

While	this	can	be	helpful,	it's	far	better	to	use	proper	type	hints	in	the	function
and	method	definitions.	The	type	hints	are	used	by	Sphinx	and	other	tools.	They
are	checked	by	mypy,	also.

For	functions	that	return	a	value,	we	should	describe	the	result.	We	can



summarize	the	return	value	with	the	field	label	of	returns	or	return.	

:returns:	soft	total	for	this	card

Additionally,	we	should	also	include	information	about	exceptions	that	are
unique	to	this	function.	We	have	four	aliases	for	this	field:	raises,	raise,	except,
and	exception.	We	would	write	the	following	code:

:raises	TypeError:	rank	value	not	in	range(1,	14).	

We	can	also	describe	the	attributes	of	a	class.	For	this,	we	can	use	var,	ivar,	or
cvar.	We	might	write	the	following	code:

:ivar	soft:	soft	points	for	this	card;	usually	hard	points,	except	for	aces.	

:ivar	hard:	hard	points	for	this	card;	usually	the	rank,	except	for	face	cards.	

We	should	use	ivar	for	instance	variables,	and	cvar	for	class	variables.	However,
there's	no	visible	difference	in	the	final	HTML	output.

These	field	list	constructs	are	used	to	prepare	docstrings	for	classes,	class
methods,	and	standalone	functions.	We'll	look	at	each	case	in	the	later	section.

Now,	let's	see	how	to	write	class	and	method	function	docstrings.



Writing	class	and	method	function
docstrings
A	class	will	often	contain	a	number	of	elements,	including	attributes	and	method
functions.	A	stateful	class	may	also	have	a	relatively	complex	API.	Objects	will
be	created,	undergo	changes	in	state,	and	possibly	be	garbage-collected	at	the
end	of	their	lives.	We	might	want	to	describe	some	(or	all)	of	these	state	changes
in	the	class	docstring	or	the	method	function	docstrings.

We'll	use	the	field	list	technique	to	document	the	class	variables	in	the	overall
class	docstring.	This	will	generally	focus	on	using	the	:ivar	variable:,	:cvar
variable:,	and	:var	variable:	field	list	items.

Each	individual	method	function	will	also	use	field	lists	to	define	the	parameters
and	return	the	values	and	exceptions	raised	by	each	method	function.	Here's	how
we	might	start	to	write	a	class	with	docstrings	for	the	class	and	method
functions:

class	Card:

				"""

				Definition	of	a	numeric	rank	playing	card.

				Subclasses	will	define	:py:class:`FaceCard`	and	:py:class:`AceCard`.

				:ivar	rank:	int	rank	of	the	card

				:ivar	suit:	Suit	suit	of	the	card

				:ivar	hard:	int	Hard	point	total	for	a	card

				:ivar	soft:	int	Soft	total;	same	as	hard	for	all	cards	except	Aces.

				"""

				def	__init__(

								self,	rank:	int,	suit:	Suit,	hard:	int,	soft:	Optional[int]	=	None

				)	->	None:

								"""Define	the	values	for	this	card.

								:param	rank:	Numeric	rank	in	the	range	1-13.

								:param	suit:	Suit	object	from	:class:`Suits`

								:param	hard:	Hard	point	total	(or	10	for	FaceCard	or	1	for	AceCard)

								:param	soft:	The	soft	total	for	AceCard,	otherwise	defaults	to	hard.

								"""

								self.rank	=	rank

								self.suit	=	suit

								self.hard	=	hard

								self.soft	=	soft	if	soft	is	not	None	else	hard

				def	__str__(self)	->	str:

								return	f"{self.rank}{self.suit}"



				def	__repr__(self)	->	str:

								return	f"{self.__class__.__name__}(rank={self.rank},	suit={self.suit})"

When	we	include	this	kind	of	RST	markup	in	the	docstring,	then	a	tool	such	as
Sphinx	can	format	very	nice-looking	HTML	output.	We've	provided	you	with
both	class-level	documentation	of	the	instance	variables	as	well	as	method-level
documentation	of	the	parameters	to	one	of	the	method	functions.

This	example	uses	the	text	:py:class:`Card`	to	generate	a	reference	to	the	class
card.	The	role	name	in	this	markup	is	a	complex-looking	:py:class:	to	help
distinguish	the	Python	language	domain.	In	complex	projects,	there	may	be
multiple	language	domains,	and	the	role	names	can	reflect	the	variety	of
domains.

When	we	look	at	this	class	with	help(Card),	the	RST	markup	will	be	visible.	It's
not	too	objectionable,	as	it's	semantically	meaningful.	This	points	out	a	balance
that	we	may	need	to	strike	between	the	help()	text	and	the	Sphinx	documents.



Writing	function	docstrings
A	function	docstring	can	be	formatted	using	field	lists	to	define	the	parameters
and	return	the	values	and	raised	exceptions.	Here's	an	example	of	a	function	that
includes	a	docstring:

def	card(rank:	int,	suit:	Suit)	->	Card:

				"""

				Create	a	:py:class:`Card`	instance	from	rank	and	suit.

				:param	suit:	Suit	object

				:param	rank:	Numeric	rank	in	the	range	1-13

				:returns:	:py:class:`Card`	instance

				:raises	TypeError:	rank	out	of	range

				>>>	from	Chapter_20.ch20_ex1	import	card

				>>>	str(card(3,	Suit.Heart))

				'3♥'

				>>>	str(card(1,	Suit.Heart))

				'A♥'

				"""

				if	rank	==	1:

								return	AceCard(rank,	suit,	1,	11)

				elif	2	<=	rank	<	11:

								return	Card(rank,	suit,	rank)

				elif	11	<=	rank	<	14:

								return	FaceCard(rank,	suit,	10)

				else:

								raise	TypeError

The	docstring	for	this	function	includes	parameter	definitions,	return	values,	and
the	raised	exceptions.	There	are	four	individual	field	list	items	that	formalize	the
API.	We've	included	a	doctest	sequence	as	well.	When	we	document	this	module
in	Sphinx,	we'll	get	very	nice-looking	HTML	output.	Additionally,	we	can	use
the	doctest	tool	to	confirm	that	the	function	matches	the	simple	test	case.

Sphinx	will	expand	the	type	hints	slightly.	The	preceding	code	uses	the
source,	card(rank:	int,	suit:	Suit)	->	Card.	This	will	be	expanded
to	ch20_ex1.card(rank:	int,	suit:	ch20_ex1.Suit)	->	ch20_ex1.Card	in	the	HTML	page
that's	created	by	Sphinx.	The	class	names	have	a	prefix	added	to	help	readers
understand	the	software.



More	sophisticated	markup
techniques
There	are	some	additional	markup	techniques	that	can	make	a	document	easier
to	read.	In	particular,	we	often	want	useful	cross-references	between	class
definitions.	We	may	also	want	cross-references	between	sections	and	topics
within	a	document.

In	pure	RST	(that	is,	without	Sphinx),	we	need	to	provide	proper	URLs	that
reference	different	sections	of	our	documents.	We	have	three	kinds	of	references:

Implicit	references	to	section	titles:	We	can	use	`Some	Heading`_	to	refer	to
the	Some	Heading	section.	This	will	work	for	all	the	headings	that	docutils
recognizes.
Explicit	references	to	targets:	We	can	use	target_	to	reference	the	location
of	_target	in	the	document.
Inter-document	references:	We	have	to	create	a	full	URL	that	explicitly
references	a	section	title.	Docutils	will	translate	section	titles	into	all
lowercase,	replacing	the	punctuation	with	-.	This	allows	us	to	create	a
reference	to	a	section	title	in	an	external	document	like	this:	`Design
<file:build.py.html#design>`_.

When	we	use	Sphinx,	we	get	more	inter-document,	cross-reference	capabilities.
These	extensions	to	basic	RST	allow	us	to	avoid	trying	to	write	detailed	URLs.
To	do	this,	we'll	include	a	target	label	in	front	of	a	heading,	and	use	the
:ref:`label`	syntax	to	refer	to	the	label.

We	might	have	one	document	with	some	RST,	as	shown	in	the	following	code
snippet:

..	_user_stories:

User	Stories

============

The	user	generally	has	three	tasks:	customize	the	simulation's	parameters,	run	a	simulation,	and	analyze	the	results	of	a	simulation.

Note	that	the	label	begins	with	_	to	show	it's	a	target;	the	label	itself	follows	the



leading	_.	The	..	at	the	beginning	of	the	line,	and	the	:	make	this	a	directive	to
RST.	The	rules	of	the	RST	process	specifically	stipulate	ignoring	unknown
directives.	RST	can	be	processed	by	many	tools,	and	tool-specific	directives	are
common.	One	tool	will	quietly	ignore	directives	intended	for	a	different	tool.	For
that	reason,	this	label-as-directive	technique	works	very	elegantly.

In	a	separate	document,	we	might	have	:ref:`user_stories`.	Note	the	lack	of	a
leading	_;	this	is	a	reference	to	the	label,	not	a	definition	of	a	label.	Sphinx	tracks
all	of	the	labels	and	the	associated	titles	so	that	it	can	create	a	proper	HTML
reference.

Now,	let's	see	how	to	use	Sphinx	to	produce	documentation.



Using	Sphinx	to	produce	the
documentation
The	Sphinx	tool	produces	very	good-looking	documentation	in	a	variety	of
formats.	It	can	easily	combine	documentation	from	source	code	as	well	as
external	files	with	additional	design	notes,	requirements,	or	background.

The	Sphinx	tool	can	be	found	at	http://sphinx-doc.org.	The	download	can	become
complex	because	Sphinx	depends	on	several	other	projects.	The	Sphinx	tutorial
is	outstanding.

Most	projects	will	start	by	using	sphinx-quickstart	to	create	the	initial	set	of	files.
Once	the	files	are	available,	details	can	be	added.	To	finalize	the	documentation,
the	sphinx-build	program	will	be	used.

Often,	running	sphinx-build	is	handled	via	the	make	program,	which	slightly
simplifies	the	command-line	use	of	Sphinx.	In	some	cases,	make	may	not	be
available.

macOS	users	won't	have	make	available	by	default.	It's	part	of	the	XCode
package	of	developer	tools	from	Apple.	While	the	download	is	very	large,
the	XCode	tools	are	easy	to	install	and	use.	Instead	of	XCode,	some	people
like	to	use	Homebrew	to	install	make.	Visit	https://brew.sh	for	information
on	the	Homebrew	tool.	The	brew	install	make	command	will	create	a	useful
make	utility	for	macOS.	
For	Window	users,	sphinx-quickstart	will	create	a	make.bat	script	that	behaves
like	the	make	utility.

The	make	utility	is	not	required,	but	it's	convenient.	We	can	always	use	sphinx-
build	directly.

Let's	learn	how	to	use	Sphinx	quickstart	in	the	next	section.

http://sphinx-doc.org


Using	Sphinx	quickstart
The	handy	feature	of	sphinx-quickstart	is	that	it	populates	the	rather	complex
config.py	file	via	an	interactive	question-and-answer	session.	Here's	a	part	of	one
such	session	that	shows	how	the	dialog	looks;	we've	highlighted	a	few	responses
where	the	defaults	don't	seem	to	be	optimal.

For	more	complex	projects,	it's	simpler	in	the	long	run	to	separate	the
documentation	from	the	working	code.	It's	often	a	good	idea	to	create	a	doc
directory	within	the	overall	project	tree:

Enter	the	root	path	for	documentation.	>	Root	path	for	the	documentation	[.]:	docs	

For	very	small	documents,	it's	fine	to	interleave	the	source	and	HTML.	For
larger	documents,	particularly	documents	where	there	may	be	a	need	to	produce
LaTeX	and	PDF,	it's	handy	to	keep	these	files	separate	from	the	HTML	version
of	the	documentation:

You	have	two	options	for	placing	the	build	directory	for	Sphinx	output.	

Either,	you	use	a	directory	"_build"	within	the	root	path,	or	you	separate	

"source"	and	"build"	directories	within	the	root	path.	

>	Separate	source	and	build	directories	(y/N)	[n]:	n	

The	next	batch	of	questions	identifies	specific	add-ons.	It	starts	with	the
following	note:

Please	indicate	if	you	want	to	use	one	of	the	following	Sphinx	extensions:	

We'll	suggest	a	set	of	add-ons	that	seem	most	useful	for	general	Python
development.	For	first-time	users	of	Sphinx,	this	will	be	enough	to	get	started
and	produce	excellent	documentation.	Clearly,	specific	project	needs	and
objectives	will	override	these	generic	suggestions.

We'll	almost	always	want	to	include	the	autodoc	feature	to	produce	the
documentation	from	the	docstrings.	If	we're	using	Sphinx	to	produce	the
documentation	outside	of	the	Python	programming,	we	may	want	to	turn	autodoc
off:

>	autodoc:	automatically	insert	docstrings	from	modules	(y/N)	[n]:	y	



If	we	have	doctest	examples,	we	can	have	Sphinx	run	the	doctest	for	us.	For
small	projects,	where	most	of	the	testing	is	done	via	doctest,	this	can	be	very
handy.	For	larger	projects,	we'll	often	have	a	unit	test	script	that	includes	doctest.
Performing	the	doctest	via	Sphinx,	as	well	as	through	the	formal	unit	test,	is	still
a	good	idea:

>	doctest:	automatically	test	code	snippets	in	doctest	blocks	(y/N)	[n]:	y	

A	mature	development	effort	may	have	many	projects	that	are	closely	related;
closely-related	projects	might	have	multiple,	related	Sphinx	documentation
directories:

>	intersphinx:	link	between	Sphinx	documentation	of	different	projects	(y/N)	[n]:	

The	todo	extension	allows	us	to	include	a	..	todo::	directive	in	our	docstrings.	We
can	then	add	a	special	..	todolist::	directive	to	create	an	official	to-do	list	in	the
documentation:

>	todo:	write	"todo"	entries	that	can	be	shown	or	hidden	on	build	(y/N)	[n]:	

The	coverage	report	could	be	a	handy	quality	assurance	metric:

>	coverage:	checks	for	documentation	coverage	(y/N)	[n]:	

For	projects	that	involve	any	math,	having	a	LaTeX	toolset	allows	us	to	have	the
math	nicely	typeset	as	graphic	images	and	included	in	HTML.	It	also	leaves	the
raw	math	in	the	LaTeX	output.	MathJax	is	a	web-based	JavaScript	library	that
also	works	in	the	following	manner:

>	pngmath:	include	math,	rendered	as	PNG	images	(y/N)	[n]:	y	

>	mathjax:	include	math,	rendered	in	the	browser	by	MathJax	(y/N)	[n]:	

For	very	complex	projects,	we	might	need	to	produce	the	variant	documentation:

>	ifconfig:	conditional	inclusion	of	content	based	on	config	values	(y/N)	[n]:	

Most	application	documentations	describe	an	API.	We	should	include	both	the
autodoc	and	viewcode	features.	The	viewcode	option	allows	the	reader	to	view	the
source	so	that	they	can	understand	the	implementation	in	detail:

>	viewcode:	include	links	to	the	source	code	of	documented	Python	objects	(y/N)	[n]:	y	

Finally,	when	working	with	GitHub,	it	helps	to	include	a	special	file	to	prevent



using	the	Jekyll	tools	to	render	the	pages.

>	githubpages:	create	.nojekyll	file	to	publish	the	document	on	GitHub	pages	(y/n)	[n]:	y

The	autodoc	and	doctest	features	mean	that	we	can	focus	on	writing	docstrings
within	our	code.	We	only	need	to	write	very	small	Sphinx	documentation	files	to
extract	the	docstring	information.	For	some	developers,	the	ability	to	focus	on
the	code	reduces	the	fear	factor	associated	with	writing	the	documentation.

In	the	next	section,	we'll	see	how	to	write	the	Sphinx	documentation.



Writing	Sphinx	documentation
It's	often	helpful	to	start	with	an	outline	of	placeholders	for	the	documentation
that	will	accumulate	as	the	software	development	proceeds.	One	structure	that
might	be	helpful	is	based	on	the	4+1	views	of	an	architecture.	For	more
information,	refer	to	The	Software	Architects	Handbook	available	from	Packt
Publishing.

We	can	create	five	top-level	documents	under	our	index.html	root:	user_stories,
logical,	process,	implementation,	and	physical.	Each	of	these	needs	an	RST	title
paragraph,	but	nothing	more	is	required.

We	can	then	update	the	..	toctree::	directive	that's	generated	in	the	Sphinx
index.rst	file	by	default:

..	Mastering	OO	Python	documentation	master	file,	created	by	

			sphinx-quickstart	on	Fri	Jan	31	09:21:55	2014.	

			You	can	adapt	this	file	completely	to	your	liking,	but	it	should	at	least	

			contain	the	root	`toctree`	directive.	

	

Welcome	to	Mastering	OO	Python's	documentation!	

===============================================	

	

Contents:	

	

..	toctree::	

			:maxdepth:	2	

	

			user_stories	

			logical	

			process	

			implementation	

			physical	

	

Indices	and	tables	

==================	

	

*	:ref:`genindex`	

*	:ref:`modindex`	

*	:ref:`search`	

Once	we	have	a	top-level	structure,	we	can	use	the	make	command	to	build	our
documentation:

make	doctest	html	

This	will	run	our	doctests,	and,	if	all	the	tests	pass,	it	will	create	the	HTML



documentation.

In	the	next	section,	we'll	look	at	filling	in	the	details	for	the	various	views	of	the
application	software.



Filling	in	the	4+1	views	for
documentation
As	the	development	proceeds,	the	4+1	views	can	be	used	to	organize	the	details
that	accumulate.	The	idea	is	to	collect	the	information	that	belongs	outside	the
narrow	focus	of	docstrings	in	the	code.

The	user_stories.rst	document	is	where	we	can	collect	user	stories,	requirements,
and	other	high-level	background	notes.	This	might	evolve	into	a	directory	tree	if
the	user	stories	become	complex.

The	logical.rst	document	is	a	place	to	collect	our	initial	OO	designs	for	the	class,
module,	and	package.	This	should	be	the	origin	of	our	design	thinking.	It	might
contain	alternatives,	notes,	mathematical	backgrounds,	proofs	of	correctness,	and
diagrams	of	the	logical	software	design.	For	relatively	simple	projects,	where	the
design	is	relatively	clear,	this	may	remain	empty.	For	complex	projects,	this	may
describe	some	sophisticated	analysis	and	design	that	serves	as	the	background	or
justification	for	the	implementation.

The	final	OO	design	will	be	the	Python	modules	and	classes	that	belong	in	the
implementation.rst	file.	We'll	take	a	look	at	this	in	a	little	more	detail,	as	this	will
become	our	API	documentation.	This	part	will	be	based	in	a	direct	way	on	our
Python	code	and	the	RST-markup	docstrings.

The	process.rst	document	can	collect	information	about	the	dynamic,	runtime
behavior.	This	would	include	topics	such	as	concurrency,	distribution,	and
integration.	It	may	also	contain	information	on	performance	and	scalability.	The
network	design	and	protocols	used	might	be	described	here.

For	smaller	applications,	it	may	not	be	perfectly	clear	what	material	should	go
into	the	process	document.	This	document	may	overlap	with	the	logical	design
and	the	overall	architectural	information.	When	in	doubt,	we	have	to	strive	for
clarity	based	on	the	audience's	need	for	information.	For	some	users,	many	small
documents	are	helpful.	For	other	users,	a	single	large	document	is	preferred.



The	physical.rst	file	is	where	the	deployment	details	can	be	recorded.	A
description	of	the	configuration	details	would	go	here,	specifically,	the
environment	variables,	the	configuration	file	format	details,	the	available	logger
names,	and	other	information	required	for	administration	and	support.	This	may
also	include	configuration	information	such	as	server	names,	IP	addresses,
account	names,	directory	paths,	and	related	notes.	In	some	organizations,	an
administrator	may	feel	that	some	of	these	details	are	not	appropriate	for	general
software	documentation.

In	the	next	section,	we'll	see	how	to	write	the	implementation	document.



Writing	the	implementation
document
The	implementation.rst	document	can	be	based	on	the	use	of	automodule	to	create	the
documentation.	Here's	how	an	implementation.rst	document	might	start:

Implementation

==============

Here's	a	reference	to	the	`inception	document	<_static/inception_doc/index.html>`_

Here's	a	reference	to	the	:ref:`user_story`

The	ch20_ex1	module

-------------------

..		automodule::	ch20_ex1

				:members:

				:undoc-members:

				:special-members:

Some	Other	Module

-----------------

We'd	have	an	``..		automodule::``	directive	here,	too.

We	used	two	kinds	of	RST	headings:	there's	a	single,	top-level	heading,	and	two
subheadings.	RST	deduces	the	relationship	between	the	parent	and	the	children.
In	this	example,	we've	used	===	for	the	parent	heading	(also	the	title)	and	---	for
the	subheadings.

We've	provided	you	with	an	explicit	reference	to	a	document	that	was	copied
into	the	_static	directory	as	inception_doc.	We	created	a	sophisticated	RST	link
from	the	words	inception	document	to	the	actual	document's	index.html	file.

:ref:`user_story`	is	an	internal	cross-reference	to	another	section.	Sphinx	tracks	all
of	the	titles	and	headings	that	are	preceded	by	directives	used	as	labels.	In	this
case,	there	will	be	title	with	..	_user_story:	on	the	line	in	front	of	the	title.
_user_story	is	an	RST	target;	it	must	begin	with	_.	The	title	following	the	target
will	be	referred	to	by	the	:ref:`user_story`	link.	We	can	change	the	title,	and	the
HTML	will	be	updated	properly.

Within	the	two	subheadings,	we	used	the	Sphinx	..	automodule::	directive	to



extract	the	docstrings	from	two	modules.	We've	provided	you	with	three
parameters	to	the	automodule	directives:

:members::	This	includes	all	the	members	of	the	module.	We	can	list	explicit
member	classes	and	functions,	instead	of	listing	all	the	members.
:undoc-members::	This	includes	members	who	lack	proper	docstrings.	This	is
handy	when	starting	development;	we'll	still	get	some	API	information,	but
it	will	be	minimal.
:special-members::	This	includes	special-method	name	members,	which	are
not	included	in	the	Sphinx	documentation	by	default.

This	gives	us	a	relatively	complete	view.	If	we	leave	out	all	of	these	parameters,
:undoc-members:	and	:special-members:,	we'll	get	a	smaller,	more	focused	document.

Our	implementation.rst	can	evolve	as	our	project	evolves.	We'll	add	the	automodule
references	as	the	modules	are	completed.

The	organization	of	the	..	automodule::	directives	can	provide	us	with	a	useful
roadmap	or	overview	of	a	complex	collection	of	modules	or	packages.	A	little
time	spent	organizing	the	presentation	so	that	it	shows	us	how	the	software
components	work	together	is	more	valuable	than	a	great	deal	of	verbiage.	The
point	is	not	to	create	great	narrative	literature;	the	point	is	to	provide	guidance	to
the	other	developers.



Creating	Sphinx	cross-references
Sphinx	expands	the	cross-reference	techniques	available	via	RST.	The	most
important	set	of	cross-reference	capabilities	is	the	ability	to	directly	refer	to
specific	Python	code	features.	These	make	use	of	the	inline	RST	markup	using
the	:role:`text`	syntax.	In	this	case,	a	large	number	of	additional	roles	are	part	of
Sphinx.

We	have	the	following	kinds	of	cross-reference	roles	available:

The	:py:mod:`some_module`	syntax	will	generate	a	link	to	the	definition	of	this
module	or	package.
The	:py:func:`some_function`	syntax	will	generate	a	link	to	the	definition	of	the
function.	A	qualified	name	with	module.function	or	package.module.function	can
be	used.
The	:py:data:`variable`	and	:py:const:`variable`	syntax	will	generate	a	link	to	a
module	variable	that's	defined	with	a	..	py:data::	variable	directive.	A
constant	is	simply	a	variable	that	should	not	be	changed.
The	:py:class:`some_class`	syntax	will	link	to	the	class	definition.	Qualified
names	such	as	module.class	can	be	used.
The	:py:meth:`class.method`	syntax	will	link	to	a	method	definition.
The	:py:attr:`class.attribute`	syntax	will	link	to	an	attribute	that's	defined
with	a	..	py:attribute::	name	directive.
The	:py:exc:`exception`	syntax	will	link	to	a	defined	exception.
The	:py:obj:`some_object`	syntax	can	create	a	generic	link	to	an	object.

If	we	use	``SomeClass``	in	our	docstring,	we'll	get	the	class	name	in	a	monospaced
font.	If	we	use	:py:class:`SomeClass`,	we	get	a	proper	link	to	the	class	definition,
which	is	often	far	more	helpful.

The	:py:	prefix	on	each	role	is	there	because	Sphinx	can	be	used	to	write	the
documentation	about	other	languages	in	addition	to	Python.	By	using	this	:py:
prefix	on	each	role,	Sphinx	can	provide	proper	syntax	additions	and
highlighting.

Here's	a	docstring	that	includes	explicit	cross-references	to	other	classes	and



exceptions:

def	card(rank:	int,	suit:	Suit)	->	Card:

				"""

				Create	a	:py:class:`Card`	instance	from	rank	and	suit.

				Can	raise	:py:exc:`TypeError`	for	ranks	out	of	the	range	1	to	13,	inclusive.

				:param	suit:	Suit	object

				:param	rank:	Numeric	rank	in	the	range	1-13

				:returns:	:py:class:`Card`	instance

				:raises	TypeError:	rank	out	of	range

				"""

By	using	:py:class:`Card`	instead	of	``Card``,	we're	able	to	create	explicit	links
between	this	comment	block	and	the	definition	of	the	Card	class.	While	it's	a	bit
of	typing	overhead	to	include	the	role	prefix,	the	resulting	web	of	cross-
references	leads	to	very	useful	documentation.

When	our	projects	get	larger,	we	may	need	to	use	directories	to	organize	the
files.	In	the	next	section,	we'll	look	at	techniques	for	refactoring	a	long	flat
sequence	of	files	into	directories	to	impose	some	structure	and	organization.



Refactoring	Sphinx	files	into
directories
For	larger	projects,	we'll	need	to	use	directories	instead	of	simple	files.	It's
common	to	have	a	project	expand	from	a	few	simple	files	to	a	more	complex
structure,	where	the	files	are	replaced	by	directories.	In	this	case,	we'll	perform
the	following	steps	to	refactor	an	RST	file	into	a	directory	that	contains	RST
files:

1.	 Add	the	directory	–	implementation,	for	example.
2.	 Move	the	original	implementation.rst	to	implementation/index.rst.
3.	 Change	the	original	index.rst	file.	Switch	the	..	toctree::	directive	to

reference	implementation/index	instead	of	implementation.

We	can	then	work	within	the	implementation	directory	using	the	..	toctree::
directive	in	the	implementation/index.rst	file	to	include	other	files	that	are	in	this
directory.

When	our	documentation	is	split	into	simple	directories	of	simple	text	files,	we
can	edit	small,	focused	files.	Individual	developers	can	make	significant
contributions	without	encountering	any	file-sharing	conflicts	that	arise	when
trying	to	edit	a	word-processing	document.



Handling	legacy	documents
A	software	development	project	often	starts	with	a	collection	of	documents
describing	the	reasons	for	the	project.	These	documents	can	be	called
inception	documents	because	they	describe	the	project	at	its	inception.	These
documents	may	include	memos	and	presentations	justifying	the	project.	They
often	describe	the	most	essential	user	stories.

Ideally,	these	inception	documents	are	already	text	files.	Pragmatically,	they're
almost	never	text.	Often,	the	inception	document	is	a	slideshow	format,	perhaps
Microsoft	PowerPoint,	Apple	Keynote,	or	Google	Slides.	These	documents	mix
text	with	diagrams,	making	them	a	challenge	to	work	with.

The	goal	is	to	create	a	text	file	that	can	be	part	of	the	RST-based	documentation.
For	example,	many	word	processors	can	save	a	document	as	text.	Some	word
processors	can	produce	Markdown	markup;	this	is	easily	converted	to	RST.	In
some	cases,	we	might	want	to	use	a	tool	such	as	pandoc	to	extract	RST	markup
from	the	original	document.	This	lets	us	import	the	document	into	the	project
and	work	with	it	via	the	Sphinx	tools.	For	more	information	on	pandoc,	refer	to	h
ttps://pandoc.org.

One	of	the	difficult	cases	is	a	project	where	some	of	the	inception	documentation
is	a	slideshow.	The	diagrams	and	images	are	first-class	parts	of	the	content	and
don't	have	handy	text	representations.	In	these	cases,	it's	sometimes	best	to
export	the	presentation	as	an	HTML	document	and	put	this	into	the	Sphinx
doc/source/_static	directory.	This	will	allow	us	to	integrate	the	original	material
into	Sphinx	via	simple	RST	links	of	the	`Inception
<_static/inception_doc/index.html>`_	form.

In	some	cases,	an	interactive,	web-based	tool,	such	as	Trello,	is	used	to	manage
the	project	or	user	stories.	In	this	case,	the	inception	and	background
documentation	can	be	handled	via	simple	URL	references	of	this	form:
`Background	<http://someservice/path/to/page.html>`_.

In	the	next	section,	we'll	see	how	to	write	the	documentation.

https://pandoc.org


Writing	the	documentation
An	important	part	of	software	quality	comes	from	noting	that	the	final	product	of
software	development	is	far	more	than	the	code.	As	we	noted	in	Chapter	17,
Designing	for	Testability,	code	that	cannot	be	trusted	cannot	be	used.	In	that
chapter,	we	suggested	testing	was	essential	to	establishing	trust.	We'd	like	to
generalize	that	a	bit.	In	addition	to	detailed	testing,	there	are	several	other	quality
attributes	that	make	the	code	usable.	Trustworthiness	supports	usability.

There	are	a	number	of	aspects	of	trustworthy	code:

We	understand	the	use	cases
We	understand	the	data	model	and	processing	model
We	understand	the	test	cases

When	we	look	at	more	technical	quality	attributes,	we	see	that	these	are	really
about	understanding.	For	example,	debugging	seems	to	mean	that	we	can
confirm	our	understanding	of	how	the	application	works.	Auditability	also	seems
to	mean	that	we	can	confirm	our	understanding	of	processing	by	viewing
specific	examples	to	show	that	they	work	as	expected.

Documentation	creates	trust.	For	more	information	on	the	software	quality,	start
here:	https://s-cube-network.eu/km/qrm/index.html.	There	is	a	lot	to	learn	about
software	quality;	it's	a	very	large	area,	and	this	is	only	one	small	aspect.	

One	way	to	create	detailed	documentation	is	to	produce	both	the	final	human-
readable	document	and	the	working	source	code	from	the	same	source.	This	is
the	idea	of	literate	programming,	which	is	the	subject	of	the	next	section.

https://s-cube-network.eu/km/qrm/index.html


Literate	programming
The	idea	of	separating	documentation	from	code	can	be	viewed	as	an	artificial
distinction.	Historically,	we	wrote	documentation	outside	the	code	because	the
programming	languages	were	relatively	opaque	and	biased	toward	efficient
compilation	rather	than	clear	exposition.	Different	techniques	have	been	tried	to
reduce	the	distance	between	the	working	code	and	documentation	pertaining	to
the	code.	Embedding	more	sophisticated	comments,	for	example,	is	a	long-
standing	tradition	for	reducing	the	distance	between	code	and	notes.	Python
takes	this	a	step	further	by	including	a	formal	docstring	in	packages,	modules,
classes,	and	functions.

The	literate	programming	approach	to	software	development	was	pioneered	by
Donald	Knuth.	The	idea	is	that	a	single	source	document	can	produce	efficient
code,	as	well	as	good-looking	documentation.	For	machine-oriented	assembler
languages,	and	languages	such	as	C,	there's	an	additional	benefit	of	moving
away	from	the	source	language	–	a	notation	that	emphasizes	translation	–	toward
a	document	that	emphasizes	clear	exposition.	Additionally,	some	literate
programming	languages	act	as	a	higher-level	programming	language;	this	might
be	appropriate	for	C	or	Pascal,	but	it	is	decidedly	unhelpful	for	Python.

Literate	programming	is	about	promoting	a	deeper	understanding	of	the	code.	In
the	case	of	Python,	the	source	starts	out	very	readable.	Sophisticated	literate
programming	isn't	required	to	make	a	Python	program	understandable.	Indeed,
the	main	benefit	of	literate	programming	for	Python	is	the	idea	of	carrying
deeper	design	and	use	case	information	in	a	form	that	is	more	readable	than
simple	Unicode	text.

For	more	information,	refer	to	http://www.literateprogramming.com	and	http://xml.cover
pages.org/xmlLitProg.html.	The	book	Literate	Programming,	by	Donald	Knuth,	is
the	seminal	title	on	this	topic.

http://www.literateprogramming.com
http://xml.coverpages.org/xmlLitProg.html


Use	cases	for	literate	programming
There	are	two	essential	goals	when	creating	a	literate	program:

A	working	program:	This	is	the	code,	extracted	from	the	source
document(s)	and	prepared	for	the	compiler	or	interpreter.
Easy-to-read	documentation:	This	is	the	explanation,	plus	the	code,	plus
any	helpful	markup	prepared	for	the	presentation.	This	document	could	be
in	HTML,	ready	to	be	viewed,	or	it	could	be	in	RST,	and	we'd	use	docutils
rst2html.py	to	convert	it	to	HTML.	Alternatively,	it	could	be	in	LaTeX	and
we	run	it	through	a	LaTeX	processor	to	create	a	PDF	document.

The	working	program	goal	means	that	our	literate	programming	document	will
cover	the	entire	suite	of	the	source	code	files.	While	this	seems	daunting,	we
have	to	remember	that	well-organized	code	snippets	don't	require	a	lot	of
complex	hand-waving;	in	Python,	code	itself	can	be	clear	and	meaningful.

The	easy-to-read	documentation	goal	means	that	we	want	to	produce	a
document	that	uses	something	other	than	a	single	font.	While	most	code	is
written	in	a	monospaced	font,	it	isn't	the	easiest	on	our	eyes.	The	essential
Unicode	character	set	doesn't	include	helpful	font	variants	such	as	bold	or	italic
either.	These	additional	display	details	(the	font	change,	size	change,	style
change)	have	evolved	over	the	centuries	to	make	a	document	more	readable.

In	many	cases,	our	Python	IDE	will	color-code	the	Python	source.	This	is
helpful,	too.	The	history	of	written	communication	includes	a	lot	of	features	that
can	enhance	readability,	none	of	which	are	available	in	simple	Python	source
using	a	single	font.

Additionally,	a	document	should	be	organized	around	the	problem	and	the
solution.	In	many	languages,	the	code	itself	cannot	follow	a	clear	organization
because	it's	constrained	by	purely	technical	considerations	of	syntax	and	the
order	of	the	compilation.

Our	two	goals	boil	down	to	two	technical	use	cases:



Converting	an	original	source	text	into	the	code.
Converting	an	original	source	text	into	the	final	documentation.

We	can,	to	an	extent,	refactor	these	two	use	cases	in	some	profound	ways.	For
example,	we	can	extract	the	documentation	from	the	code.	This	is	what	the	pydoc
module	does,	but	it	doesn't	handle	the	markup	very	well.

Both	versions,	code	and	final	document,	can	be	made	isomorphic.	This	is	the
approach	taken	by	the	PyLit	project.	The	final	documentation	can	be	embedded
entirely	in	Python	code	via	docstrings	as	well	as	#	comments.	The	code	can	be
embedded	entirely	in	RST	documents	using	::	literal	blocks.

The	next	section	shows	how	to	work	with	a	literate	programming	tool.



Working	with	a	literate	programming
tool
Many	Literate	Programming	(LP)	tools	are	available.	The	essential	ingredient,
which	varies	from	tool	to	tool,	is	the	high-level	markup	language	that	separates
the	explanation	from	the	code.

The	source	files	that	we	write	will	contain	the	following	three	things:

Text	with	markup	that	constitutes	the	explanation	and	the	description
Working	Code	in	Python
High-level	markup	to	separate	the	text	(with	markup)	from	the	code

Because	of	the	flexibility	of	XML,	this	can	be	used	as	the	high-level	markup	for
literate	programming.	It's	not	easy	to	write,	however.	There	are	tools	that	work
with	a	LaTeX-like	markup	based	on	the	original	web	(and	later	CWeb)	tools.
There	are	some	tools	that	work	with	RST	as	the	high-level	markup.

The	essential	step	in	choosing	a	tool,	then,	is	to	take	a	look	at	the	high-level
markup	that	is	used.	If	we	find	that	the	markup	is	easy	to	write,	we	can
comfortably	use	it	to	produce	the	source	document.

Python	presents	an	interesting	challenge.	Because	we	have	RST-based	tools	such
as	Sphinx,	we	can	have	very	literate	docstrings.	This	leads	us	to	two	tiers	of
documentation:

Explanations	and	background.	This	is	outside	the	code.	It	provides
supporting	information	on	the	design	decisions	that	helped	to	organize	the
code.
Reference	and	API.	This	is	inside	the	Python	docstrings.

This	leads	to	a	pleasant,	evolutionary	approach	to	literate	programming:

Initially,	we	can	start	by	embedding	the	RST	markup	in	our	docstrings.	A
Sphinx-produced	document	looks	good	and	provides	a	tidy	explanation	for
the	implementation	choices.



We	can	step	beyond	the	docstrings	to	create	the	background	documentation.
This	might	include	information	on	the	design	decisions,	architecture,
requirements,	and	user	stories.	In	particular,	descriptions	of	non-functional
quality	requirements	belong	outside	the	code.
Once	we've	started	to	formalize	this	higher-level	design	documentation,	we
can	more	easily	pick	an	LP	tool.	This	tool	will	then	dictate	how	we	combine
the	documentation	and	code	into	a	single,	overall	documentation	structure.
We	can	use	an	LP	tool	to	extract	the	code	and	produce	the	documentation.
Some	LP	tools	can	be	used	to	run	the	test	suite	too.

Our	goal	is	to	create	software	that	is	not	only	well	designed,	but	also	trustworthy.
As	noted	previously,	we	create	trust	in	a	number	of	ways,	including	providing	a
tidy,	clear	explanation	of	why	our	design	is	good.

We'll	show	some	examples	using	PyLit3.	For	more	information,	see	https://pypi.o
rg/project/pylit3/3.1.1/.		The	conversion	from	RST	to	HTML	can	be	done	with
Python's	docutils	package,	specifically,	the	rst2html.py	script.	The	math
typesetting	can	be	handled	through	MathJax	or	one	of	the	TeX	tools.	Refer	to	htt
ps://www.mathjax.org	or		https://www.tug.org/texlive/.	

If	we	use	a	tool	such	as	PyLit3,	we	might	create	RST	files	that	look	like	the
following	code:

	

#############	

Combinations	

#############	

	

..		contents::	

	

Definition	

==========	

	

For	some	deeper	statistical	calculations,	

we	need	the	number	of	combinations	of	*n*	things	

taken	*k*	at	a	time,	:math:`\binom{n}{k}`.	

	

..		math::	

	

				\binom{n}{k}	=	\dfrac{n!}{k!(n-k)!}	

	

The	function	will	use	an	internal	``fact()``	function	because	

we	don't	need	factorial	anywhere	else	in	the	application.	

	

We'll	rely	on	a	simplistic	factorial	function	without	memoization.	

	

Test	Case	

=========	

	

https://pypi.org/project/pylit3/3.1.1/
https://www.mathjax.org
https://www.tug.org/texlive/


Here	are	two	simple	unit	tests	for	this	function	provided	

as	doctest	examples.	

	

>>>	from	combo	import	combinations	

>>>	combinations(4,2)	

6	

>>>	combinations(8,4)	

70	

	

Implementation	

===============	

	

Here's	the	essential	function	definition,	with	docstring:	

::	

	

		def	combinations(n:	int,	k:	int)	->	int:	

						"""Compute	:math:`\binom{n}{k}`,	the	number	of	

						combinations	of	*n*	things	taken	*k*	at	a	time.	

	

						:param	n:	integer	size	of	population	

						:param	k:	groups	within	the	population	

						:returns:	:math:`\binom{n}{k}`	

						"""	

	

An	important	consideration	here	is	that	someone	hasn't	confused	

the	two	argument	values.	

::	

	

						assert	k	<=	n	

	

Here's	the	embedded	factorial	function.	It's	recursive.	The	Python	

stack	limit	is	a	limitation	on	the	size	of	numbers	we	can	use.	

::	

	

						def	fact(a:	int)	->	int:	

										if	a	==	0:	return	1	

										return	a*fact(a-1)	

	

Here's	the	final	calculation.	Note	that	we're	using	integer	division.	

Otherwise,	we'd	get	an	unexpected	conversion	to	float.	

::	

	

						return	fact(n)//(fact(k)*fact(n-k))	

	

This	is	a	file	written	entirely	in	an	RST	markup.	It	contains	some	explanatory
text,	some	formal	math,	and	even	some	test	cases.	These	provide	us	with
additional	details	to	support	the	relevant	code	sections.	Because	of	the	way	PyLit
works,	we	named	the	file	combo.py.txt.	There	are	three	things	we	can	do	with	this
file:

We	can	use	PyLit3	to	extract	the	code	from	this	text	file	in	the	following
manner:

python3	-m	pylit	combo.py.txt	

This	creates	combo.py	from	combo.py.txt.	This	is	a	Python	module	that	is	ready	to	be



used.

We	can	also	use	docutils	to	format	this	RST	into	an	HTML	page	that
provides	the	documentation	and	code	in	a	form	that	we	can	read	more
easily	than	the	original	single-font	text:

rst2html.py	combo.py.txt	combo.py.html	

This	creates	combo.py.html	ready	for	browsing.	The	mathjax	package	will	be	used	by
docutils	to	typeset	the	mathematical	portions,	leading	to	very	nice-looking
output.

We	can,	additionally,	use	PyLit	to	run	doctest	and	confirm	that	this	program
really	works:

python3	-m	pylit	--doctest	combo.py.txt	

This	will	extract	the	doctest	blocks	from	the	code	and	run	them	through	the
doctest	tool.	We'll	see	that	the	three	tests	(the	import	and	the	two	function
evaluations)	all	produce	the	expected	results.

The	final	web	page	produced	by	this	would	look	something	like	the	following
screenshot:





The	HTML	details	are	handled	seamlessly	by	the	RST	to	HTML	tool,	letting	us
focus	on	simple	markup	and	correct	software.

Our	goal	is	to	create	software	that	is	trustworthy.	A	tidy,	clear	explanation	of
why	our	design	is	good	is	an	important	part	of	this	trust.	By	writing	the	software
and	the	documentation	side-by-side	in	a	single	source	text,	we	can	be	sure	that
our	documentation	is	complete	and	provides	a	sensible	review	of	the	design
decisions	and	the	overall	quality	of	the	software.	A	simple	tool	can	extract
working	code	and	documentation	from	a	single	source,	making	it	easy	for	us	to
create	the	software	and	the	documentation.



Summary
In	this	chapter,	we	looked	at	four	ways	to	create	usable	documentation.	We	can
incorporate	the	information	into	the	docstrings	in	our	software.	We	can	use	pydoc
to	extract	the	API	reference	information	from	our	software.	We	can	use	Sphinx
to	create	more	sophisticated	and	elaborate	documentation.	Also,	we	can	use	a
literate	programming	tool	to	create	even	deeper	and	more	meaningful
documentation.



Design	considerations	and	tradeoffs
The	docstring	should	be	considered	as	essential	as	any	other	part	of	the	Python
source.	This	ensures	that	the	help()	function	and	pydoc	will	work	correctly.	As
with	unit	test	cases,	this	should	be	viewed	as	a	mandatory	element	of	the
software.

The	documentation	created	by	Sphinx	can	be	very	good	looking;	it	will	tend	to
parallel	the	Python	documentation.	Our	objective	all	along	has	been	seamless
integration	with	the	other	features	of	Python.	Using	Sphinx	tends	to	introduce	an
additional	directory	structure	for	the	documentation	source	and	build.

As	we	design	our	classes,	the	question	of	how	to	describe	the	design	is	almost	as
important	as	the	resulting	design	itself.	Software	that	can't	be	explained	quickly
and	clearly	will	be	viewed	as	untrustworthy.

Taking	the	time	to	write	an	explanation	may	identify	hidden	complexities	or
irregularities.	In	these	cases,	we	might	refactor	a	design,	neither	to	correct	a	bug
nor	to	improve	performance,	but	to	make	it	easier	to	explain.	The	ability	to
explain	is	a	quality	factor	that	has	tremendous	value.
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