The Definitive Guide to
Java Swing

Third Edition

JOHN ZUKOWSKI

Apress*

The Definitive Guide to Java Swing, Third Edition
Copyright © 2005 by John Zukowski

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-447-9
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin

Technical Reviewer: Robert Castaneda

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Assistant Publisher: Grace Wong

Project Manager: Beth Christmas

Copy Edit Manager: Nicole LeClerc

Copy Editor: Marilyn Smith

Production Manager: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor: Susan Glinert

Proofreaders: Linda Seifert, Liz Welch

Indexer: Michael Brinkman

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads section.

Contents at a Glance

About the AULNOT e Xix
About the Technical ReVIBWEIS oot e xXxi
ACKNOWIBAgMENTS ...t e Xxiii
INtrOdUCHION e XXV
CHAPTER 1 SWING OVEIVIEWoii e 1
CHAPTER 2 Event Handling with the Swing Component Set 17
CHAPTER 3 The Model-View-Controller Architecture 59
CHAPTER 4 Core Swing Componentsccviiiiiiiiinnnnn. 67
CHAPTER 5 ToggleButtons ... 115
CHAPTER 6 Swing Menus and Toolbarscccooiiinnn.. 151
CHAPTER 7 Borderso 211
CHAPTER 8 Root Pane Containerscooiiiiiiiiinnnns. 235
CHAPTER 9 Pop-Upsand Chooserscooiiiiiiiiianan... 267
CHAPTER 10 Layout Managerso.oviiiiiii i 343
CHAPTER 11 Advanced Swing Containersccoovvnennn. 377
CHAPTER 12 Bounded Range Componentsooeennn. 419
CHAPTER 13 List Model Controlscccoiiiiiiiii i, 451
CHAPTER 14 Spinner Model Controlsl 509
CHAPTER 15 Basic Text Components ..., 521
CHAPTER 16 Advanced Text Capabilitiesoo..L. 585
CHAPTER 17 TrBBS i 623
CHAPTER 18 Tables ... 675
CHAPTER 19 Drag-and-Drop Support 729
CHAPTER 20 The Pluggable Look and Feel Architecture 4
CHAPTER 21 The Undo Framework ... 783

iv

CONTENTS AT A GLANCE

CHAPTER 22 Accessibility
APPENDIX Ul Manager Propertiesccooiiiiiiiiiiiiian...
INDEX ... e

Contents

Aboutthe AUTNOr e Xix
About the Technical REVIBWEISottt i e i eaas XXi
ACKNOWIBAgMENTS ...t e Xxiii
IMtrOAUCHION ottt e e e e XXV
CHAPTER1 Swing Overviewcooiiiiiiiiiiiiiiaainns 1
Getting to Know the Swing Components 2

AWT Component Replacementsccoovvieiinnnnn.. 3

Non-AWT Upgraded Components...............ccvievinnnn... 5

Event Handling and Layout Management 10

UNdo Frameworkoveii e i 11

SwingSet Demonstration i 11

Swing Component to Chapter Mappingccovvinn..t. 12

SUMMANY ..ttt e e e e 15

CHAPTER 2 Event Handling with the Swing Component Set 17
Delegation-Based EventHandling, 17

Event Delegation Modelt 17

Event Listeners As Observerscccvvvvvininnnnnn.. 19

Multithreaded Swing EventHandlingcovennt. 21

Using SwingUtilities for Mouse Button Identification 23

Using Property Change Listeners As Observers 26

Managing Listener ListS.ccooiiiiiiiii i 29

TImer Class . ..o e i e 34

Swing-Specific EventHandlingcoiiiiii i 37

ActionInterface. ... 37

AbstractAction Class.covvvviii i 38

KeyStroke Classc.vvvvvi it 41

Using Mnemonics and Accelerators.......................... 46

vi

CONTENTS

CHAPTER 3

CHAPTER 4

Swing Focus Management ...t 46
Movingthe FOCUSt i 48
Examining Focus Cyclescooviiiiiiii it 50
FocusTraversalPolicy Classcovvievii it 52
KeyboardFocusManager Classccovvviiinnnnnnns. 55
Verifying Input During Focus Traversal 56

QUMM .ot i e i e e e 57

The Model-View-Controller Architecture 59

Understanding the Flow of MVC ...t 59
MVC Communication ...ttt 59
Ul Delegates for Swing Componentsccovvvvvnnnn. 60

Sharing DataModels ...t 61

Understanding the Predefined Data Models 63

QUMM .ot i e i e e e 65

Core Swing Components 67

JCOmMPONENt Classovvviiii i et 67
Component PieCeSoviie i i e 69
JComponent Properties 74
Handling JComponentEvents............ccoovviiiii et 80

JTOOITIPClasS ..o e e e e e 84
Creating @ JTOOITIP. .. oo v e e 84
Creating Customized JToolTip Objects 84
Displaying Positional Tooltip Text...................ooooetat. 85
Customizing a JToolTip Look and Feel........................ 86
ToolTipManager Classo.vvvi i i i enss 86
ToolTipManager Propertiesc.ovviie i, 87

JLabel Class ... e 88
Creatinga JLabelcoiiiii i 89
JLabel Propertiesovviii i e 89
JLabel EventHandling ... 91
Customizing a JLabel Lookand Feel 92

Interface ICoNo e 92
Creatinganlconcovieiiiiii e 93
Usinganlcon. ...t i 94
Imagelcon Classccoeiii i 94

GrayFilter Class.ccvvr i e e e e 97

CHAPTER 5

CHAPTER 6

CONTENTS

AbstractButton Classc.ooviiiiii i 98
AbstractButton Properties ..o 98
Handling AbstractButton Events 102

JBULON Classoiri e 104
CreatingaJButton ... 104
JButton Properties ...t 105
Handling JButtonEvents ..., 106
Customizing a JButton Look and Feel 108

JPanel Classoviiiiii i e 110
CreatingadJPanel ...t 110
UsingadPanel ...t 110
Customizing a JPanel Look and Feel 112

SUMMANY ..t e e e 112

ToggleButtonsll. 115

ToggleButtonModel Classccvvriiiiii i 115

ButtonGroup Class ... 116

JToggleButton Classove i e i 119
Creating JToggleButton Components.covvvvnn... 119
JToggleButton Properties.ccoiiiiiiii it 120
Handling JToggleButton SelectionEvents 121
Customizing a JToggleButton Look and Feel.................. 124

JCheCckBOX Classccoieiiiiiiiiii i i 125
Creating JCheckBox Components..............c.covvvievnnn.. 126
JCheckBox Propertiesoviiii i 127
Handling JCheckBox Selection Events....................... 130
Customizing a JCheckBox Look and Feel 133

JRadioButton Class ... 134
Creating JRadioButton Components......................... 135
JRadioButton Properties ... 136
Grouping JRadioButton Components in a ButtonGroup 136
Handling JRadioButton Selection Events..................... 139
Customizing a JRadioButton Look and Feel 147

QUMM ottt i i e i e i i e 149

Swing Menusand Toolbars 151

Workingwith Menus e 152
Menu Class Hierarchyccciiiiii i, 156

JMeENUBAr Class . ..o oo e e 157

vii

viii

CONTENTS

CHAPTER 7

SingleSelectionModel Interface...............ccoviiiniat. 161
JMenultem Classooveii it 162
JMenU Class oo 168
JSeparator Class.ov v 175
JPOpUPMENU Class. ... i e 176
JCheckBoxMenultem Class...........ccvviieeinnnnnnn.. 184
JRadioButtonMenultem Class ...t 189
Creating Custom MenuElement Components:
The MenuElement Interface.ttt 195
Working with Pop-Ups: The Popup Classccountt. 200
Creating Pop-Up Components..............ccovvviinnennn. 200
A Complete Popup/PopupFactory Usage Example 200
Working with Toolbars: The JToolBar Class 202
Creating JToolBar Components.coovvvieiiniinennn.ns 202
Adding Componentstoa JToolBar.......................... 202
JToolBar Propertiesccoviiii i 203
Handling JToolBarEventscccoiiiiiin.t, 205
Customizing a JToolBar Look and Feel 205
A Complete JToolBar Usage Example 206
JToolBar.Separator Class.ocoviiiiiiiinanns. 208
SUMMANY ..t i i e et i i i 208
Borders 211
Some Basics on Working with Borderso... 211
Exploring the Border Interface.....................ccont. 212
Introducing BorderFactory. ..., 215
Starting with AbstractBorder.................cooiiiiiiat. 216
Examining the Predefined Borderscccoiieiin... 218
EmptyBorder Class.ccoviiiiiii i 218
LineBorder Class.coovvrvie i 219
BevelBorder Class.vvvvi it i 220
SoftBevelBorder Class ...t 222
EtchedBorderClassccovviiiiiiiii e 223
MatteBorder Classovvviiiiii it i i 224
CompoundBorder Class..........coviviiiiii it 226
TitledBorder Class.ovvrvie it 227
Creating Your OWn Bordersc.ovvviiiiniiiiiiiennnn. 232

SUMMAIY ..t i i i et it i 234

CHAPTER 8

CHAPTER 9

CONTENTS

Root Pane Containers 235
JRootPane Classcoiiiii i e 235
Creatinga JRootPane.................coiiiiiiiiit, 236
JRootPane Properties. ... 236
Customizing a JRootPane Look and Feel..................... 238
RootPaneContainer Interface.......................oon. L. 239
JLayeredPane Class.c.oveviiiie it 239
JFrame Classo v e 242
CreatingaJFrame ... 243
JFrame Properties ... 243
Adding ComponentstoaJFrame..............coovvvevnnn.n. 245
Handling JFrame Eventst 245
Extending JFrame.......... ... 246
JWINdow Classovirii i e 247
Creatinga JWindowt 247
JWindow Properties ... 248
Handling JWindow Eventscooiii ... 248
Extending JWindowo 248
JDIAlog Class ..o oot e e e 248
CreatingaJDialogovvvniii i i 248
JDialog Properties. ... 250
Handling JDialog Events, 250
ExtendingJDialog. ..o 252
JAPPIEL Classo e 252
Working witha Desktop ... e 252
JinternalFrame Class ... 253
JDesktopPane Class. ..o 262
QUMM .ttt i i e it i i 266
Pop-Ups and Choosers 267
JOptionPane Classc.vvreiir it 267
Creating a JOptionPanecoiiiiii i, 268
Displaying a JOptionPanecoiiiiiiin.t, 271
Automatically Creating a JOptionPane in a Pop-Up Window. 274
JOptionPane Properties 280

Customizing a JOptionPane Look and Feel 287

ix

CONTENTS

CHAPTER 10

ProgressMonitor Classooveviiiiii it 291
Creating a ProgressMonitor. i, 292
Using a ProgressMonitor, 293
ProgressMonitor Properties...............ccooiiii ... 296
Customizing a ProgressMonitor Look and Feel................ 297

ProgressMonitorinputStream Classcccovvieins.. 297
Creating a ProgressMonitorlnputStream 297
Using a ProgressMonitorinputStream. 298
ProgressMonitorinputStream Properties 299

JColorChooser Classoovve v 300
Creating @ JCOIOrChOOSEr\vvvvt i i i ieanens 301
Using JCOIOrChoOSErovvv e aans 302
JColorChooser Propertiesovvvievvevieeinennnnnns. 307
Customizing a JColorChooser Look and Feel 320

JFileChooser Classc.ooeiiiiii i i 322
Creating a JFileChooser.oovv vt iieeaeens 323
Using JFileChooser.ooeiii e 323
JFileChooser Properties..........ccoovieiii it 326
Working with File Filters, 328
Customizing a JFileChooser Look and Feel................... 336

SUMMANY ..t i i e et i i i 341

Layout Managers ..., 343

Layout Manager Responsibilitieso L 343

LayoutManager Interfaceccoviiiiii i, 344
Exploring the LayoutManager Interface 344
Exploring the LayoutManager2 Interface..................... 345

FlowLayout Classoveiiriiiiii ittt 345

BorderLayout Classcoiiiiiii i 347

GridLayout Classovvvre ittt i 349

GridBagLayout Classc.vvriiieii it iie i 350
GridBagLayout Rows and Columns. 353
GridBagConstraints Classoviiiii i 353

CardLayout Classovevreei it 357

BoxLayout Classc.ooviiiiiii it 357
CreatingaBoxLayout...........ccvviiiivi i 358
Laying Out Components.ovveiini it iie i 359

OverlayLayout Classcoovviiiiii i 365

SizeRequirements Classovevi i i 370

CHAPTER 11

CHAPTER 12

CONTENTS

ScrollPaneLayout Classcoovviiiiiiini i, 370
ViewportLayout Classcooriiiiii i 37
SpringLayout Classooeiiiii e i e 371
SUMMANY ..t e e e 375
Advanced Swing Containers 377
BOX Class . ..ot e 377
Creating @aBoX.......ccoieiii i e e 378
Box Properties.c.ovvi e 379
Working with Box.Filler i, 380
Creating Areas That Growccoiiii it 380
Creating Rigid Areas.ovvvit it i iennans 382
JSpIitPane Class ... e 383
Creatinga JSplitPane. ...t 384
JSplitPane Properties. ... 385
Listening for JSplitPane Property Changes 390
Customizing a JSplitPane Look and Feel..................... 393
JTabbedPane Classccovieiiiiiiiiii e 394
Creatinga JTabbedPaneccoviiiiiiiiiiin.., 395
Adding and Removing Tabs. ... 397
JTabbedPane Propertiesccoiieiiiiiiiat. 398
Listening for Changing Tab Selection........................ 399
Customizing a JTabbedPane Lookand Feel 401
JScrollPane Classcoovveiii e e 403
Creatinga JScrollPane.coo v i 404
Changing the ViewportViewcooiiitt. 406
Scrollable Interface.co i 406
JScrollPane Properties.o.vevii i 407
Customizing a JScrollPane Look and Feel.................... 410
JVIBWPOrt Class . ..o v 412
Creatinga JViewportooviiii i 412
JViewport Properties ... 412
Customizing a JViewport Lookand Feel 417
QUMM ottt i i e i e i i e 417
Bounded Range Components 419
BoundedRangeModel Interfacecciiiiiiiat. 419

DefaultBoundedRangeModel Classccoevivvnnn.. 420

Xi

Xii

CONTENTS

CHAPTER 13

JScrollBar Classcoovviiii e 421
Creating JScrollBar Componentsoevvvivneenn.. 422
Handling Scrolling Eventst 423
JScrollBar Propertiesoov v 426
Customizing a JScrollBar Look and Feel 427

JSlder Class ..o e e 428
Creating JSlider Componentsccovvievinninnnnnnn 428
Handling JSlider Events.c.ccoi it 430
JSlider Propertiesc.ov i 431
Customizing a JSlider Lookand Feel 435
JSlider Client Properties.oovvri i 438

JProgressBar Classc.oveviie i e 439
Creating JProgressBar Components......................... 439
JProgressBar Properties ... 440
Handling JProgressBar Events ...t 445
Customizing a JProgressBar Look and Feel 446

JTextField Class and BoundedRangeModel Interface 447

SUMMANY ..t i i e et i i i 449

List Model Controls, 451

ListModel Interfaceccoiiiiiii e 451
AbstractListModel Class.covviiiiiiienninnn.. 452
DefaultListModel Class. ..ot 453
Listening for ListModel Events with a ListDatalListener 454
ComboBoxModel Interface. ...t 460
MutableComboBoxModel Interface.......................... 460
DefaultComboBoxModel Classc.oovvvnnn... 460

JLIStCIass ..o e 463
Creating JList Components...............ccoiiiiiiin.. 463
JListProperties. ..o 464
Scrolling JList Components.........c.vveiiiiiii et 466
Rendering JListElementsol 468
Selecting JListElements ..o 473
Displaying Multiple Columns.covii it 479
Customizing a JList Look and Feel.......................... 480
Creatinga Dual ListBOX........c.cvviiii i 481

Adding Element-Level Tooltips to List ltems 488

CHAPTER 14

CHAPTER 15

CONTENTS

JCOmboBOX Classcoovveii e 490
Creating JComboBox Components.............c.covvvivvnn... 491
JComboBox Properties.cooviiii i 491
Rendering JComboBox Elements 493
Selecting JComboBox Elements............covvviiiinnn. 493
Editing JComboBox Elementscooiiiall. 497
Customizing a JComboBox Look and Feel.................... 503

Sharing the Data Model for a JComboBox and JList 506

SUMMANY ..t i i e et i i i 508

Spinner Model Controls 509

JSPINNEr Class ..o e 509
Creating JSpinner Componentscccovviiiiinn.. 510
JSpinner Properties ... 510
Listening for JSpinner Events with a ChangeListener 511
Customizing a JSpinner Lookand Feel 512

SpinnerModel Interface ... 513

AbstractSpinnerModel Classccviviiiiii i, 513
SpinnerDateModel Classovv v i 514
SpinnerListModel Classcccoiiiiiiii i, 515
SpinnerNumberModel Classc.covvvievinnvnnnn.. 516
CustomModels.c.oriii i e 517

JSpinnerEditors ... 518
JSpinner.DefaultEditor Class...........coovvvieviiiinnns.. 518
JSpinner.DateEditor Class..........ocove it 519
JSpinner.ListEditor Class. ...t 519
JSpinner.NumberEditorClasscoviiiininn.. 520

QUMM ottt i i e e i i e 520

Basic Text Components 521

Overview of the Swing Text Components 521

JTextComponent Classooviiii i 523
JTextComponent Propertiescovviiiiviniinnnnn.. 523
JTextComponent Operations................cooviviiean.. 526

JTextField Classoovriiii i i 526
Creatinga JTextField ...t 527
Using JLabel Mnemonics.coovevii i 527

JTextField Propertiescooviiiii et 529

xiii

Xiv CONTENTS

JTextComponent Operations with a JTextField................ 530
DocumentInterfacec.cooeiiii it 537
DocumentListener and DocumentEvent Interfaces............. 546
Caret and Highlighter Interfaces.....................oovl st 547
CaretListener Interface and CaretEvent Class................. 550
NavigationFilter Class.c.coviiiiiii ... 552
Keymap Interface ... 554
JTextComponent.KeyBinding Classccovutt. 556
Handling JTextFieldEventst 556
Customizing a JTextField Look and Feel 562
JPasswordField Class ... 563
Creating a JPasswordFieldccoiiiiiin.. 563
JPasswordField Propertiescoiiiiiiii . 564
Customizing a JPasswordField Look and Feel 565
JFormattedTextField Classccciiiiiiiiiiiiin.., 566
Creating a JFormattedTextFieldcoontt 566
JFormattedTextField Propertiescoott. 567
Customizing a JFormattedTextField Look and Feel 569
JTextArea Classooviiiiii i 570
Creatinga JTextArea ...t 570
JTextArea Properties ... 571
Handling JTextAreaEventso iitt. 572
Customizing a JTextArea Look and Feel 572
JEditorPane Classccoviii i 574
Creating a JEditorPane.ccoviiiiiii it 575
JEditorPane Properties. ... 575
Handling JEditorPane Events.ot 576
Customizing a JEditorPane Look and Feel.................... 579
JTextPane Class ... i 580
CreatingaJTextPane...............ccoiiiiii i, 580
JTextPane Propertiesco oo 580
Customizing a JTextPane Look and Feel 581
Loading a JTextPane with Content.......................... 582
QUMM .ttt i i et i et i i i i 584
CHAPTER 16 Advanced Text Capabilities 585
Using Actions with Text Componentsccovvvvinnns. 585
Listing Actions. 586
USINGg ACHIONS.ot e e e 589

Finding Actions 591

CHAPTER 17

CONTENTS

Creating Styled Text ... e 595
StyledDocument Interface and DefaultStyledDocument Class . .. 595
AttributeSet Interfacecoo i 597
MutableAttributeSet Interfacel 597
SimpleAttributeSet Classccoo v 597
StyleConstants Class ...t 601
TabStop and TabSet Classes.ccovviviivenn..t. 603
StyleInterface........ooviiiii 606
StyleContext Classcovievii i i 606

The EItor KitS . ..o ovv v e e e 607
Loading HTML Documents.cciiiiiiiieennn... 607
[terating Through HTML Documents. 608

JFormattedTextField Formatsccoiiiiiiinnn., 612
Datesand Numbers ... 612
INpUEMaASKS. e 618
DefaultFormatterFactory Classccoviviinin.. 620

SUMMAIY ..t i e i et it i 621

TrS .. 623

INtroducing TrEBS ..\ vviet i e e i i 623

JTree Class ..o e 624
Creating aJTree vve i e e i 624
SCrolling TreesS .o i it e e i e 627
JTree Properties 628
Customizing a JTree Lookand Feelovtt 630

TreeCellRenderer Interfaceccoiiiiii ... 634
DefaultTreeCellRenderer Classccovvvvievnnnn... 635
DefaultTreeCellRenderer PropertieS..........ovvvvvveenn... 635
Creating a Custom Renderer..............cooiiiiiiinn... 637
Working with Tree Tooltips ...t 641

Editing Tree Nodes ... 643
CellEditor Interface. ..o 644
TreeCellEditor Interface ...t 644
DefaultCellEditor Class.c.coovviviiiii .. 645
DefaultTreeCellEditor Class............coeviiiiniiann... 647
Creating a Proper ComboBox Editor foraTree................ 648
Creating an Editor Just for Leaf Nodes....................... 648
CellEditorListener Interface and ChangeEvent Class 650

Creating a Better Check Box Node Editor 650

Xv

Xvi CONTENTS

Working with the Nodes ofthe Treeccoviviiiinantt. 659
TreeNode Interface. ..., 659
MutableTreeNode Interface. ...t 660
DefaultMutableTreeNode Class.covvvvinenn... 661
Traversing TreeS. ..o v v e e 664
JTree.DynamicUtilTreeNode Classcccovinna... 666

TreeModel Interfacecoviiviiii i 667
DefaultTreeModel Class.oovviii i 667
TreeModelListener Interface and TreeModelEvent Class. 668

TreeSelectionModel Interface ..., 668
DefaultTreeSelectionModel Classoovvvvviiiennn... 670
TreeSelectionListener Interface and TreeSelectionEvent Class. . . 671
TreePath Classc.ovvvvie i i 671

Additional Expansion Events i, 672
TreeExpansionListener Interface and

TreeExpansionEvent Class.o.cvve v i i, 672
TreeWillExpandListener Interface and

ExpandVetoException Class.coviviinnn.... 673

QUMM .ttt i i e it i i 674

CHAPTER 18 Tables ...t 675

Introducing Tables ...t 675

JTable Class ... e 677
CreatingaJTable ...t i 677
Scrolling JTable Componentsccoviiiiviniinnnnn.. 678
Manually Positioning the JTable View 679
Removing Column Headers.o.vveeviiiininnennnns 680
JTable Properties ...t 680
Rendering Table Cells ...t 686
Handling JTableEventst 689
Customizing a JTable Lookand Feel 689

TableModel Interfaceccc i 690
AbstractTableModel Class............covviiiiiiiiennnn.s. 691
DefaultTableModel Classc.ovvi i ennns 696
Sorting JTable Elements ...t 700

TableColumnModel Interface ..., 707
DefaultTableColumnModel Classcovvvveinn... 708

Listening to JTable Events with a TableColumnModelListener. .. 709
TableColumn Class.covvieei e 712

CHAPTER 19

CHAPTER 20

CONTENTS

JTableHeader Classc.coveiiiiiiiiiii i 715
Creatinga JTableHeader..............c.covvviiiiiiiinin... 716
JTableHeader Propertiesc.ooiiin i 716
Using Tooltipsin Table Headers 716
Customizing a JTableHeader Look and Feel 717

EditingTable Cellscooviii e 718
TableCellEditor Interface and DefaultCellEditor Class 718
Creating a Simple Cell Editor.coviiiiiin., 718
Creating a Complex Cell Editorcooiiiiin.t. 722

Printing Tableso e 724

QUMM .ttt i i e i e i e 728

Drag-and-Drop Support 729

Built-in Drag-and-Drop Support ... 729

TransferHandler Classc.oieiiiiiiiiiii i, 731

Drag-and-Drop Supportforimagesccvvvivivnnnn.. 733

QUMM ..t i e i et it i i 740

The Pluggable Look and Feel Architecture 74

LoOKANdFeel Classcovvirrii it eee M
Listing the Installed Look and Feel Classes................... 742
Changing the Current Lookand Feel 743
Customizing the Current Look and Feel...................... 747

Creatinga New Look and Feelcccviiiiiivininnns. 767
Using the WindowsLookAndFeel on a Non-Windows Machine . . . 767
Adding Ul Delegates. ..o m

Working with Metal Themes ..., 772
MetalTheme Classt 772
DefaultMetalTheme and OceanTheme Classes................ 774

Using an Auxiliary Lookand Feelt 776

SynthLookAndFeel Classc.ooviiiiiiii i 777
Configuring Synth. i 777
Default Synth Properties ...t 780
Working with Synth Images. ...t 780

SUMMANY ..ot i i i et i e 781

Xvii

xviii

CONTENTS

CHAPTER 21

CHAPTER 22

APPENDIX

The Undo Framework 783
Working with the Undo Framework 783
Using the Undo Framework with Swing Text Components 784
The Command Design Patternccoiiiiiiinant.. 788
Undo Framework Componentsccoveviiiiiniinennnnns. 789
UndoableEdit Interface. ...t 789
AbstractUndoableEdit Class.c.cooviviiin .. 791
CompoundEdit Classoovvriiiiii i i 791
UndoManager Classc.oovviiiiiii i 792
UndoableEditListener Interface and UndoableEditEvent Class ... 794
UndoableEditSupport Classovevini i 794
A Complete Undoable Program Example 795
Using an Outside Object to Manage Undo States 800
StateEditable Interface.............ccoei i 800
StateEdit Classc.ccovviiii i 801
A Complete StateEditable/StateEdit Example 801
QUMM oottt i i e e i i 804
Accessibility ... 805
Accessibility Classesccoviiiiiii i 805
Accessible Interface...............oo i 806
AccessibleContext Classcccovviiiiienenn... 806
Creating Accessible Componentsccooiiiiiiin... 807
Working with the Java Access Bridgeccoiiiitt. 808
QUMM .ttt i e i e i i i 811
Ul Manager Properties 813

About the Author

JOHN ZUKOWSKI has been involved with the Java platform since it was just
called Java, pushing ten years now. He currently writes a monthly column for
Sun’s Core Java Technologies Tech Tips (http://java.sun.com/developer/
IDCTechTips/) and IBM’s developerWorks (http://www-136.1ibm.com/
developerworks/java/). He has contributed content to numerous other
sites, including jGuru (http://www. jguru.com), DevX (http://www.devx.com/,
Intel (http://www.intel.com/), and JavaWorld (http://www.javaworld.com/).
He is the author of many other popular titles on Java, including Java AWT Reference (O’Reilly and
Associates), Mastering Java 2 (Sybex), Borland’s JBuilder: No Experience Required (Sybex),
Learn Java with JBuilder 6 (Apress), Java Collections (Apress), and Definitive Guide to Swing for
Java 2 (Apress).

Xix

About the Technical
Reviewers

This book was technically reviewed by Daren Klamer, David Vittor, Hido Hasimbegovic,
Charlie Castaneda, and Robert Castaneda, who are all part of the CustomWare Asia Pacific
team working on numerous Java and integration-based projects in Australia and the Asia
Pacific region. Their web site is http://www.customware.net.

XXi

Acknowledgments

This book has been a long time coming, with various starts and stops, and getting sidetracked
a few times along the way. Now that it is all done, I need to thank those who helped.

For starters, I want to thank everyone at Apress who hung in there and had patience when
dealing with me throughout the project, especially project manager Beth Christmas, who I'm
sure I drove nuts at times, and editor Steve Anglin, who kept nudging me along. On the production
side, I'd like to thank Marilyn Smith for all the input and updates, Ellie Fountain for her hard
work at ensuring little changes got done right, and, of course, my technical reviewer Rob Castaneda
and the team at CustomWare for all the input on my rough work. Congrats on that marriage thing.

Some of the images used in the sample programs were made by Deb Felts, who ran a web
site called the Image Addict’s Attic. The site doesn’t seem to be online any more, but the images
are used with permission and she does retain copyright on them. Sun also maintains the Java
Look and Feel Graphics Repository at http://java. sun.com/developer/techDocs/hi/repository/,
with its own set of images to be used for Java applications.

For all the readers out there, thanks for asking me to do the update. Without your continued
support, you wouldn’t be holding this book in your hands.

For their continued encouragement along the way, I'd like to personally thank the following:
Joe Sam Shirah, thanks for doing that long drive to visit while I was in Florida for the conference; my
Aunt Mary Hamfeldt, congrats on your first grandchild; our Realtor Nancy Moore, thanks for
putting up with us for so long; Miguel Muniz, thanks for all the bug reports at SavaJe; Matthew
B. Doar, thanks for JDiff (http://www. jdiff.org/), a great little Java doclet for reporting API
differences. Happy tenth birthday, Duke and Java.

Iam forever grateful to my wife, Lisa, for her support, and our dog, Jaeger, for his playfulness.
Thanks to Dad, too. Good luck at the casinos.

xXxiii

Introduction

Welcome to Learn Java 5.0 Swing in a Nutshell for Dummies in 21 Days. Since the beginning
ofJava time (1995), the component libraries have been actively evolving. What began as a small
set of nine AWT components, plus menus and containers, has grown to a more complete and
complex set of around 50 Swing components—all just to create graphical user interfaces (GUISs)
for your Java client-side programs. That’s where this book comes in. Its purpose is to make your
life easier in creating those GUIs.

Earlier editions of this book took the approach that if the class wasn’t found in the javax.swing
package, it wasn’t covered in the book. This third edition takes a more complete view of creating
GUIs. For instance, instead of just describing the Swing layout managers, there is also material
on the AWT layout managers, since you're likely to be using them.

The first edition of this book was written for a mix of the Java 1.1 and 1.2 developer. The
second edition hit the 1.3 platform. This edition is wholly for the 5.0 developer. Almost all the
programs will not work on a 1.4 platform, though with a little tweaking, they can be made to do so.

In this book, you’ll find a tutorial-like approach to learning about the Swing libraries and
related capabilities. It is not an API reference book, nor is it a primer that describes how to
install the Java Development Kit (JDK), compile your programs, or run them. If you need help
in those areas, consider using an integrated development environment (IDE)—such as IntelliJ
IDEA, Eclipse, or Borland’s JBuilder—or get one of Apress’s other books, such as Beginning Java
Objects, by Jacquie Barker.

Is this book for you? If you are new to the Java platform, you might want to start with a more
introductory text first, before jumping on the Swing bandwagon. On the other hand, if you've
been working with Java for a while and have decided it’s time to start using the Swing component
set, you'll find this book extremely useful. With this book, you won’t have to drudge through the
countless Swing classes for a way to accomplish that impossible task. You'll become much more
productive more quickly, and you'll be able to make the most of the many reusable components
and techniques available with Swing.

Book Structure

This book can be read from cover to cover, but it doesn’t have to be done that way. It’s true that
later sections of the book assume you've absorbed knowledge from the earlier sections. However,
if you want to find something on a topic covered in a later chapter, you don’t need to read all
the chapters that precede it first. If you come across something that’s unfamiliar to you, you can
always go back to the earlier chapter or search the index to locate the information you need.

XXV

XXvi

INTRODUCTION

The contents of this book are grouped into three logical sections:

Chapters 1 through 4 provide general knowledge that will prove to be useful as you read
through the remainder of the book. In Chapter 1, you'll find an overview of the Swing
component set. Chapter 2 details event handling with the Swing component set. It describes
the delegation-based event model and focus management policies used by Swing. In
Chapter 3, you'll learn about the Model-View-Controller (MVC) architecture. You can
avoid using MVC if you wish, but to take full advantage of everything that Swing has to
offer, it helps to have a good grasp of MVC concepts. In Chapter 4, you'll find the beginning
coverage of the specific Swing components. All Swing components share many of the same
attributes, and in Chapter 4, you'll learn the foundation for those common behaviors.

In Chapters 5 through 15, you'll discover the many aspects of the reusable Swing components.
You'll find out about menus, toolbars, borders, high-level containers, pop-up dialogs, layout
managers, advanced Swing containers, bounded range components, toggle components,
list model components, spinners, and text components. Most of what you'll want to accom-
plish with the Swing libraries is discussed in these chapters.

In Chapters 16 through 22, some of the more advanced Swing topics are covered. These
tend to be the areas that even the experienced developers find the most confusing. Chapter 16
goes beyond the basics of text component handling found in Chapter 15. Chapters 17 and
18 deal with the Swing tree and table components. These components allow you to display
hierarchical or tabular data. In Chapter 19, you'll learn about drag-and-drop support in
Swing. Chapter 20 explores how to customize the appearance of your application. Because
the Swing libraries are completely Java-based, if you don’t like the way something is done
or how itappears, you can change it. In Chapter 21, you'll learn about the undo framework,
which offers undo and redo support for your applications. Finally, in Chapter 22, you finish
off with a look into the accessibility framework offered by Swing, such as support for screen
readers and magnifying glasses to help those needing assistive technologies.

The Appendix contains a list of about 1,000 settable properties the user interface manager

employs to configure the appearance of the Swing components for the current look and feel.
The Swing components manage various defaults, such as colors and fonts applied to components,
so you don’t need to subclass a component in order to customize its appearance. Appendix A
gathers all of the property settings listed throughout the chapters into one comprehensive list
for easy reference.

Support

You can head to many places online to get technical support for Swing and answers to general
Java questions. Here’s a list of some of the more useful places around:

e TheJavaRanch athttp://www.javaranch.com/ offers forums for just about everything in
the Big Moose Saloon.

* Java Forums at http://forums.java.sun.com/ are Sun’s online forums for Java develop-
ment issues.

INTRODUCTION

* developerWorks at http://www.ibm.com/developerworks/java/ is the IBM’s developer
community for Java with forums and tutorials.

* jGuruathttp://www.jguru.com offers a series of FAQs and forums for finding answers.

* Marcus Green'’s Java Certification Exam Discussion Forum at http://www.jchq.net/
discus/ provides support for those going the certification route.

While Iwould love to be able to answer all reader questions, I get swamped with e-mail and
real-life responsibilities. Please consider using these resources to get help.

About Java

Java is one of 13,000 islands that makes up Indonesia, whose capital is Jakarta. It is home to
about 120 million people with an area about 50,000 square miles (132,000 square kilometers).
While on the island, you can hear traditional music such as gamelan or angklung and enjoy
Java’s main export, a coffee that is considered spicy and full-bodied, with a strong, slightly
acidic flavor. The island also has a dangerous volcano named Merapi, which makes up part
of the Pacific “Ring of Fire.” In 1891, on the island, Eugene Dubois discovered fossils from
Pithecanthropus erectus, better known as Java man (homo javanensis).

For more information, see http://encyclopedia.lockergnome.com/s/b/Java_(island).

XXvii

CHAPTER 1

Swing Overview

According to Encyclopedia Britannica, Swing was a popular music in the United States, circa
1930-1945. Okay, maybe not in the Java sense. Instead, on May 23, 1995, John Gage, then director
of the Science Office for Sun, introduced Java to the world. With its birth came something called
the Abstract Window Toolkit, or AWT. In turn, with AWT came native widgets, and with this
early native widget set came . . . trouble.

The original component set that came with the Java platform, AWT, was dependent on too
many idiosyncrasies of the underlying platform. Instead of providing a mature-looking compo-
nent set, Java offered the lowest common denominator version. If a feature wasn’t available on
all Java platforms, it wasn’t available on any Java platform. And then you had to deal with all the
browser/platform differences. Each Java runtime environment relied on how the component
set was connected with the underlying platform-specific native widget set. If there were issues
with the connection, first, they were specific to the platform (and/or browser) and second, you
had to code around these problems so your programs could be write-once, run anywhere
(WORA), the Java mantra of the time.

AsJava technologies became more popular, users realized AWT was extremely slow and
unreliable, and you couldn’t really do much with the provided components. Very few of them
were available, and you couldn’t use them in a visual programming environment. So, new
technologies were introduced, such as just-in-time (JIT) compilers to improve performance
and, with Borland’s help, JavaBeans for a component-based development.

With these new technologies came more and more widget sets, for the AWT component
set itself was very basic. So, applet download times grew and grew, because these new widget
sets weren't part of the core Java platform, and Java archive (JAR) files were introduced to
improve delivery time. Eventually, each of the major browser vendors added its favorite
component library to its virtual machine—AFC, IFC, and WFC, to name just a few. Yet all the
libraries used different design models, and there were no true cross-browser standards.

Eventually, Sun Microsystems teamed up with Netscape Communication and other partners
to create yet another library called the Java Foundation Classes, or JEC. Part of JFC is something
called the Swing component set. This Swing component set is what this book is all about.

CHAPTER 1 SWING OVERVIEW

Note Later technologies were introduced to help people use the Swing components within a browser and
with web-based application delivery. These include the Java Plug-in (http://java.sun.com/products/
plugin/) and Java Web Start (http://java.sun.com/products/javawebstart/). Alternatives to
Swing, like the SWT component set with Eclipse (http://www.eclipse.org/swt/), have also been
created. These are not discussed here.

This chapter will familiarize you with the various Swing pieces. For starters, there is the
component set. Without these, there is no Swing. Next, you’ll peek at the world of event handling
and layout management common to both AWT and Swing components. After that, you'll take
a quick look at the undo/redo framework available within the Swing architecture. Then you’ll
explore the SwingSet2 demonstration provided with the Java 2 Platform Standard Edition 5.0
Development Kit (JDK 5.0) so that you can see some of the capabilities. Lastly, I'll point out
where in the book all these capabilities are discussed in detail.

Getting to Know the Swing Components

The book will serve as a guide to development using the Swing component set. Over the course
of its pages, you'll look at every package in the javax.swing package hierarchy, as shown in
Figure 1-1.

£ Gwing Package Hierarchy =10]x]
¢ [javax.swing
D horder
D colorchooser
D event
D filechoonser
D plaf
[} table
7 e
@ 3 [htmnl]
[parser
[y
D tree
D undo

Figure 1-1. The Swing package hierarchy

Note The javax.swing.plaf package contains several subpackages and related packages, some of
which are located outside the javax. swing package hierarchy. Plaf stands for pluggable look and feel—
a Swing concept that will be described more fully in Chapter 20.

CHAPTER 1 SWING OVERVIEW

The Swing component set is one big group of components. While the JDK 5.0 release
didn’t add any new Swing components to the mix, logically, you can think of them as those
with duplicate components within AWT and those without.

AWT Component Replacements

The Swing component set was originally created because the basic AWT components that came
with the original version of the Java libraries were insufficient for real-world, forms-based
applications. All the basic components were there, but the existing set was too small and far
too restrictive. For instance, you couldn’t even put an image on a button. To alleviate this situ-
ation, the Swing component set offers replacements for each of the AWT components. The
Swing components support all the capabilities of the original set and offer a whole lot more
besides. As such, you should never need to deal with any of the basic AWT components.

Note Although the Swing components replace the AWT components, you'll still need to understand
several basic AWT concepts, such as layout managers, event handling, and drawing support. In addition,
you'll need to grasp the concept that all of Swing is built on top of the core AWT libraries.

The basic distinction between the Swing and equivalent AWT components is, in most cases,
the Swing component class names begin with a f and the AWT ones don’t. Swing’s JButtonis a
replacement for the AWT Button component. One exception is the JComboBox, which replaces
the AWT Choice component.

At the application programming interface (API) level, the Swing components are almost
always a superset of the features the AWT components support. While they support additional
capabilities, the basic AWT capabilities are there for everything but the JList component,
whose API is completely unlike that of the AWT List component. Table 1-1 maps the original
AWT components to their replacement Swing components.

Table 1-1. AWT to Swing Component Mapping

AWT Component Nearest Swing Replacement
Button JButton

Canvas JPanel

Checkbox JCheckBox

Checkbox in CheckboxGroup JRadioButton in ButtonGroup
Choice JComboBox

Component JComponent

Container JPanel

Label JLabel

List Jlist

CHAPTER 1 SWING OVERVIEW

Table 1-1. AWT to Swing Component Mapping (Continued)

AWT Component Nearest Swing Replacement
Menu JMenu

MenuBar JMenuBar

MenuItem JMenuItem

Panel JPanel

PopupMenu JPopupMenu

Scrollbar JScrollBar

ScrollPane JScrollPane

TextArea JTextArea

TextField JTextField

Note For most people, the fact that the Swing components replace AWT components is irrelevant.
Just treat the Swing components as an independent component set, and you’ll be perfectly okay.

To help you understand how to use the Swing components, you'll examine each of the
components in this book. For instance, Chapter 4 looks at how the JButton component works,
with just a single line of text as its label, like an AWT Button, but adds capabilities, such as using
image icons on buttons and working with multiple lines of text. To find out where each compo-
nent is discussed in this book, see the “Swing Component to Chapter Mapping” section later in
this chapter.

In addition to replacing each of the basic components, the Swing component set has a
replacement for the higher-level window objects. Although the only change in most of the
components’ names is the beginning J, you'll discover in Chapter 8 how the high-level container
objects are much different in the Swing world. Swing’s replacement for the old FileDialog object
differs even more and is discussed in Chapter 9. Table 1-2 maps the high-level window objects
from the AWT component world to the Swing universe.

Table 1-2. AWT to Swing Window Mapping

AWT Window Nearest Swing Replacement
Applet JApplet

Dialog Jbialog

FileDialog JFileChooser

Frame JFrame

Window JWindow

CHAPTER 1 SWING OVERVIEW

Whereas the AWT components rely on the user’s operating system to provide the actual
component to a Java program, Swing components are all controlled from within the Java
runtime. The AWT approach is called either the heavyweight or the peered approach; most
Swing components are lightweight or peerless. You'll explore the basics of this approach in
Chapter 4 with the JComponent. Additional features for customizing the look and feel of compo-
nents are discussed in Chapter 20.

Non-AWT Upgraded Components

In addition to offering replacements for all the basic AWT components, the Swing component
set includes twice as many new components.

Note If you're new to Java, just think of all of these components—both the AWT component replacements
and those that were not in the AWT—as one big set of components, versus two distinct sets.

Here’s a look at those components that didn’t originate in the AWT world:

* JPasswordField: This specialized text field is for password entry, as shown in Figure 1-2.
You cannot use cut or copy operations within the component, but you can paste text

into it.

£ IpasswordField Sample 10l =|
Username|Regular Text Field |
Password|“*"“‘“* |

Figure 1-2. The Swing JPasswordField

* JEditorPane and JTextPane: These two components provide support for displaying and
editing multiple-attributed content, such as an HTML and RTF viewer. Figure 1-3 shows
a JEditorPane component.

=iix
Help

a’
» One
* Two
Three

Figure 1-3. The Swing JEditorPane

CHAPTER 1 SWING OVERVIEW

JSpinner: This component, shown in Figure 1-4, provides selection from an ordered set
of predefined values, offering arrows to scroll through the next and previous choices.
The predefined values can be an array of strings, a sequential set of numbers, or a date.

=T
bengresi H
[1/3005 8:21 PM H

Figure 1-4. The Swing JSpinner

JToggleButton: This component offers a button that stays depressed when selected. In
the example shown in Figure 1-5, the North, East, and South buttons are depressed.

-~loix|
North
West Center East
South

Figure 1-5. The Swing JToggleButton

JSlider: This component is like the Scrollbar component of AWT (or JScrollBar in the
Swing component set). However, its purpose in Swing is for user input. It offers various
clues to help the user choose a value. Figure 1-6 shows an example of a JS1ider component.

= stder smpie S ITE]

0 10 20 30 40 50 &0 70 80 90 100

Figure 1-6. The Swing JSlider

JProgressBar: This component allows the user to visually see the progress of an activity.
Some options available include showing static text or percentage done, as shown in
Figure 1-7.

£ IProgressBar Sample E 10l =|

Reading...

26%

Figure 1-7. The Swing JProgressBar

CHAPTER 1 SWING OVERVIEW

* JFormattedTextField: This component provides for the input of formatted text, like
numeric values, phone numbers, dates, or social security numbers. Figure 1-8 shows
two examples of this component.

£ IFormattedTextField Sample | 10l =|
SSN; - - |

Telephone #:[() - |

Figure 1-8. The Swing JFormattedTextField

e JTable: This component provides for the display of two-dimensional row and column
information, such as stock quotes, as in the example shown in Figure 1-9.

=10l x|
Symbal Mame Frice

AhZN Amazon 38.94 =

DCLK DoubleClick 770

EBAY eBay 112,65

GOOG Google 181.05

Rt kT Marketifatch 18.08 B

SAP SAP AG 4535

SLIMWY Sun Microsyst.. |5.51

T Time Warner [17.82

oD Wodafone Group|27.359 =

I ahnnl 017 o

Figure 1-9. The Swing JTable

* JTree: This component supports the display of hierarchical data. Figure 1-10 shows an
example of a JTree component.

i JTree Sample | ;Iglll
=

¢ calars
D hlue
D vinlet
D red 19
D vellow

¢ sparts
[baskethall
[soccer bl

Figure 1-10. The Swing JTree

e JToolTip: Through this component, all Swing components support pop-up text for
offering useful tips. Figure 1-11 shows an example of a JToolTip component added to
aJSlider.

CHAPTER 1 SWING OVERVIEW

_Iof]
N
0 10 20 30 40 SiThevalueis 50| 90 100

Figure 1-11. The Swing JToolTip

* JToolBar: This container offers a draggable toolbar to be included within any program
window, as shown in Figure 1-12.

~i0ix

Figure 1-12. The Swing JToolBar

¢ JRadioButtonMenuItem: This component is an addition to the set of menu components.
With it, you can have radio buttons on a menu for mutually exclusive choices, as shown
in the example in Figure 1-13. There’s also a JCheckBoxMenuItem component, for when
you don’t need mutually exclusive choices.

loix|
Options |
O North
O East
® West
O South
O Center

Figure 1-13. The Swing JRadioButtonMenultem

e JSeparator: The menu’s separator bar is now its own component and can be used
outside of menus, too, as shown in Figure 1-14.

£ ISeparator Sample =10l x|

Above Separator

Below Separator

Figure 1-14. The Swing JSeparator

¢ JDesktopPane and JInternalFrame: This pair of components allows you to develop appli-
cations using the familiar Windows Multiple Document Interface (MDI). Figure 1-15
shows an example.

CHAPTER 1 SWING OVERVIEW

i IpesktopPane Sample ! =101 x|

Open 2

Iconified |

Figure 1-15. The Swing JDesktopPane and JInternalFrame

* JOptionPane: This component allows you to easily create pop-up windows with varied
content, as shown in Figure 1-16.

JoptionPane Sample |
Where do you want to go tomorrow?
[T I's Wax M | . |

Figure 1-16. The Swing JOptionPane

* JColorChooser: This component is for choosing a color, with different views available to
select the color, as shown in Figure 1-17.

£ JColorChooser Sample i ll

[Swatches | HSB | RGB |

l—% -
Red 208
D 85 170 255 |
Sy i
Green 4D|Z|
] 85 170 255|
Blue 284 IZI
& 0 85 170 55 |

Preview
a - B 5Sample Text Sample Text
E=l []

Sample Text Sample Text

[ok || Cancel || Reset |

Figure 1-17. The Swing JColorChooser

10 CHAPTER 1 SWING OVERVIEW

¢ JSplitPane: This container allows you to place multiple components in a window. It also
allows the user control over how much of each component is visible. Figure 1-18 shows
an example of a JSplitPane.

=10l x|

& J5plitPane Sample

left button right button

Figure 1-18. The Swing JSplitPane

* JTabbedPane: This component is like a container whose layout manager is CardLayout
(discussed in Chapter 10), with labeled tabs automatically provided to allow the user
to swap cards. This provides you with the familiar property-sheet motif, as shown in

Figure 1-19.
£ ITabbedPane Sample 10l =|
Tab Three | Tab Four |[TabFive |
Tah One I Tab Two |

rrme

Figure 1-19. The Swing JTabbedPane

You'll learn about all of these components throughout this book. Refer to the “Swing
Component to Chapter Mapping” section later in this chapter to see where each component
is covered.

Event Handling and Layout Management

To use the Swing components successfully, you must understand the underlying parts of the
original AWT component set. For instance, the Swing components all support the delegation-
based event model, which was introduced with JDK 1.1 and is supported by the AWT 1.1
component set. In addition, layout managers control screen layout.

CHAPTER 1 SWING OVERVIEW

Note The Swing components don’t support the original JDK 1.0 event model. They no longer use the
public boolean handleEvent(Event) method and all its helper methods. If you need to convert an
AWT program that uses the JDK 1.0 event model to one that uses the Swing components, you’ll need to
convert the program to use the delegation-based event model, in addition to changing the component set.

Although directly porting old Java AWT programs (or programmers!) to Swing programs is
done most easily by continuing to use the delegation-based event model, this solution is rarely
the best one. Besides supporting the delegation-based event model, the Swing components
provide other, more efficient ways of dealing with events for components. In Chapter 2, you'll
explore the delegation-based event model and look at the other ways of managing event handling.

In addition to the delegation-based event-handling support, the Swing components use
the Model-View-Controller (MVC) design to separate their user interfaces from their underlying
data models. Using the MVC architecture provides yet another way of event handling with a
Swing component. While MVC might be new to most developers, the basic constructs use the
delegation-based event model. MVC provides the optimal way of working with the Swing
components. You'll find an overview of the MVC architecture in Chapter 3.

Besides all the support for extended event handling with the Swing classes, these classes
share the need to use a layout manager for positioning components on the screen. In addition
to using the layout managers that come with AWT, you can use other layout managers that
come with the Swing classes. In Chapter 10, you'll learn about both the AWT and Swing layout
managers.

Undo Framework

Situated within the javax.swing class hierarchy are the javax.swing.undo classes. These classes
offer a framework for supporting undo and redo capabilities within Java programs. Instead of
creating the basic framework yourself, the framework is provided as part of the Swing classes.
Although the undo classes don’t use anything directly outside their package, the Swing text
components use the undo functionality. Chapter 21 provides a detailed explanation of undo.

SwingSet Demonstration

As part of the demo/jfc directory with the Java 2 platform, you have available a Swing demon-
stration program called SwingSet2. This program provides a quick preview of the majority of
the Swing capabilities. All the source code is included, so if you see something you like and are
interested in learning how it was done, just dig through the code to find the appropriate lines.

With the Java 2 platform, you start up this demonstration from the SwingSet2 directory
with the java -jar SwingSet2.jar command. After starting the SwingSet2 demonstration, you
see the opening screen, as shown in Figure 1-20.

1

12 CHAPTER 1 SWING OVERVIEW

(€ swingset =10l x|

File Look&Feel Themes Options

L . Resizable Closahle
4
= — Icanifiable Maximizahle
Frame title: |Frame
Frame 0

Fress Shifi-F10 to activate popup menu

Figure 1-20. SwingSet2 startup screen

Choose the different buttons and tabs to see many of the features supported by the Swing
components.

Swing Component to Chapter Mapping

The Swing packages contain many classes and components. To help you find where all the
different components are discussed, Table 1-3 provides a handy reference (with the components
listed alphabetically).

CHAPTER 1

Table 1-3. Mapping of Swing Components to Chapters in This Book

SWING OVERVIEW

Swing Component Chapter
Box 11
JApplet 8
JButton 4
JCheckBox 5
JCheckBoxMenuItem 6
JColorChooser 9
JComboBox 13
JComponent 4
JDesktopPane 8
Jbialog 8
JEditorPane 15
JFileChooser 9
JFormattedTextField 15
JFrame 8
JInternalFrame 8
JLabel 4
JLayeredPane 8
Jlist 13
JMenu 6
JMenuBar 6
JMenuItem 6
JOptionPane 9
JPanel 4
JPasswordField 15
JPopupMenu 6
JProgressBar 12
JRadioButton 5
JRadioButtonMenuItem 6

13

CHAPTER 1 SWING OVERVIEW

Table 1-3. Mapping of Swing Components to Chapters in This Book (Continued)

Swing Component Chapter
JRootPane 8
JScrollBar 12
JScrollPane 11
JSeparator 6
JSlider 12
JSpinner 14
JSplitPane 11
JTabbedPane 11
JTable 18
JTextArea 15
JTextField 15
JTextPane 15
JToggleButton 5
JToolBar 6
JToolTip 4
JTree 17
JViewport 11
IWindow 8

In addition to information about using the different components, the following chapters
feature a table for each component that lists the JavaBeans properties defined by that compo-
nent. Each table notes whether a property has a setter (setPropertyName (newValue)), a getter
(getPropertyName()), or an isPropertyName () method defined by the class, and whether a
property is bound (you can listen for a PropertyChangeEvent). In these property tables, inherited
properties aren’t listed, so even though a property for a component is listed as write-only, the
parent class might still provide a getter method. As an example, Table 1-4 shows the property
table for the JScrollBar component.

Table 1-4. JScrollBar Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
adjustmentlisteners AdjustmentListener[] Read-only
blockIncrement int Read-write bound

enabled boolean Write-only

Table 1-4. /ScrollBar Properties (Continued)

CHAPTER 1 SWING OVERVIEW

Property Name Data Type Access

maximum int Read-write
maximumSize Dimension Read-only
minimum int Read-write
minimumSize Dimension Read-only

model BoundedRangeModel Read-write bound
orientation int Read-write bound
uI ScrollBarUI Read-write bound
UIClassID String Read-only
unitIncrement int Read-write bound
value int Read-write bound
valueIsAdjusting boolean Read-write bound
visibleAmount int Read-write

Besides the property tables, you'll find information about important aspects of each
component and the techniques for using them.

Note This book is not intended to be an API reference, nor does it cover everything about each component.
For the lesser-used aspects of a component, see the online javadoc documentation.

Summary

This chapter provided a brief overview of what will be covered in this book, such as the many
essential parts of the Swing component set you need to understand in order to use Swing
components. The combined set of javax.swing packages is larger than the entire first JDK, if
not the first two.

In Chapter 2, you'll explore how to deal with the many aspects of event handling using the
Swing components. In addition to reviewing the delegation-based event model, you'll look at
different ways you can deal with events when using Swing components and get a grasp of the
focus traversal policies involved with Swing.

15

CHAPTER 2

Event Handling with the Swing
Component Set

Chapter 1 provided a brief overview of the Swing component set. In this chapter, you will
start to look at the details of one aspect of using Swing components: event handling. When
working with the Swing component set, the delegation-based event-handling mechanism is
available, but you can also take advantage of several additional ways to respond to user-initiated
actions (as well as to programmatic events). In this chapter, you'll explore all these event-handling
response mechanisms. You'll also learn how Swing manages input focus and some techniques
for controlling how focus is handled.

As you explore event-handling capabilities, you will start to look at some actual Swing
components. In this chapter, you will be using the components in the simplest manner possible.
Feel free to first read up on the components covered in later chapters of this book, and then
come back to this chapter for a general discussion of event handling. The later chapters of this
book also contain specific details on event handling for each component.

Delegation-Based Event Handling

Sun Microsystems introduced the delegation-based event-handling mechanism into the Java
libraries with the release of JDK 1.1 and JavaBeans. Although the Java 1.0 libraries included the
Observer—Observable pair of objects that followed the Observer behavioral design pattern, this
wasn’t an adequate long-term solution for user-interface programming. (The Java 1.0 contain-
ment event-handling mechanism was even worse.)

Event Delegation Model

The delegation-based event-handling mechanism is a specialized form of the Observer design
pattern. The Observer pattern is used when an Observer wants to know when a watched
object’s state changes and what that state change is. In the case of the delegation-based event-
handling mechanism, instead of the Observer listening for a state change, the Observer listens
for events to happen.

17

18

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Figure 2-1 shows the structure of the modified Observer pattern as it relates to the specific
classes within the Java libraries for event handling. The generic Subject participant in the
pattern manages a list (or lists) of generic Observer objects for each event that the subject can
generate. The Observer objects in the list must provide a specific interface through which the
Subject participant can notify them. When an event that the Observer objects are interested in
happens within the Subject participant, all the registered Observer objects are notified. In
the Java world, the specific interface for the Observer objects to implement must extend the
java.util.EventListener interface. The specific event the Subject participant must create
needs to extend the java.util.EventObject class.

<<Interface>> .
EventObject EventListener Subject
A +addAnEventListener()
#source:Object +removeAnEventListener()
+getSource():0bject +fireEventHappened()
AnEvent event=new AnEvent(...);
for each listener (listener):
listener.eventHappened(event)
0..n
AnEvent <<Interface>> Observer

eventState:datatype AnEventListener <
+getEventState():.datatype +eventHappened() +eventHappened()

Figure 2-1. The modified Observer pattern

To make this a little clearer, let’s take a second look at the delegation-based event-handling
mechanism without all the design pattern terms. GUI components (and JavaBeans) manage
lists of listeners with a pair of methods for each listener type: addXXXListener() and
removeXXXListener (). When an event happens within the subject component, the component
notifies all registered listeners of the event. Any observer class interested in such an event
needs to register with the component an implementer of the appropriate interface. Then each
implementation is notified when the event happens. Figure 2-2 illustrates this sequence.

Note Some users like to call the event delegation model a publish-subscribe model, in which components
publish a set of available listeners for subscription, and others can subscribe to them.

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET 19

Observer(s) Subject
Registers with i
~
Creates T—I;
EventObject Created
Notifies

Figure 2-2. Event delegation sequence diagram

Event Listeners As Observers
Using event listeners to handle an event is a three-step process:
1. Define a class that implements the appropriate listener interface (this includes
providing implementations for all the methods of the interface).
2. Create an instance of this listener.

3. Register this listener to the component whose events you're interested in.

Let’s take a look at the three specific steps for creating a simple button that responds to
selection by printing a message.

Defining the Listener

To set up event handling for a selectable button, you need to create an ActionListener, because
the JButton generates ActionEvent objects when selected.

class AnActionListener implements ActionListener {
public void actionPerformed(ActionEvent actionEvent) {
System.out.println("I was selected.");
}
}

20

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Note Part of the problem of creating responsive user interfaces is figuring out which event listener to
associate with a component to get the appropriate response for the event you’re interested in. For the most
part, this process becomes more natural with practice. Until then, you can examine the different component
APIs for a pair of add/remove listener methods, or reference the appropriate component material in this book.

Creating an Instance of the Listener

Next, you simply create an instance of the listener you just defined.
ActionListener actionListener = new AnActionListener();
If you use anonymous inner classes for event listeners, you can combine steps 1 and 2:

Actionlistener actionlListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
System.out.printIn("I was selected.");
}
b

Registering the Listener with a Component

Once you've created the listener, you can associate it with the appropriate component. Assuming
the JButton has already been created with a reference stored in the variable button, this would
merely entail calling the button’s addActionListener () method:

button.addActionlListener(actionListener);

If the class that you're currently defining is the class that implements the event listener
interface, you don’t need to create a separate instance of the listener. You just need to associate
your class as the listener for the component. The following source demonstrates this:

public class YourClass implements ActionlListener {

. // Other code for your class

public void actionPerformed(ActionEvent actionEvent) {
System.out.println("I was selected.");

}

// Code within some method

JButton button = new JButton(...);
button.addActionListener(this);

// More code within some method

Using event handlers such as creating a listener and associating it to a component is the
basic way to respond to events with the Swing components. The specifics of which listener
works with which component are covered in later chapters, when each component is described.
In the following sections, you'll learn about some additional ways to respond to events.

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Tip Personally, | don’t like the approach of just associating a class as the event listener, because it doesn’t
scale well when the situation gets more complicated. For instance, as soon as you add another button onto
the screen and want the same event listener to handle its selection, the actionPerformed() method must
figure out which button triggered the event before it can respond. Although creating a separate event listener
for each component adds another class to the set of deliverables, creating separate listeners is more main-
tainable than sharing a listener across multiple components. In addition, most integrated development
environment (IDE) tools, such as Borland’s JBuilder, can automatically create the listener objects as separate
classes.

Multithreaded Swing Event Handling

To increase their efficiency and decrease the complexity, all Swing components were designed
to notbe thread-safe. Although this might sound scary, it simply means that all access to Swing
components needs to be done from a single thread—the event-dispatch thread. If you are
unsure that you're in a particular thread, you can ask the EventQueue class with its public static
boolean isDispatchThread() method orthe SwingUtilities classwithitspublic static boolean
isEventDispatchThread() method. The latter just acts as a proxy to the former.

Note Earlier versions of this book showed one particular way of creating Swing programs. They were
wrong. It was thought that accessing invisible (unrealized) components from outside the event-dispatch
thread was okay. However, that’s not true. Doing something with a Swing component can trigger a reaction
within the component, and that other action would be done on the event-dispatch thread, violating the single-
threaded access.

With the help of the EventQueue class, you create Runnable objects to execute on the event-
dispatch thread to properly access components. If you need to execute a task on the event-dispatch
thread, but you don’t need any results and don’t care exactly when the task finishes, you can
use the public static void invokelLater(Runnable runnable) method of EventQueue. If, on the
other hand, you can’t continue with what you're doing until the task completes and returns
avalue, you can use the public static void invokeAndWait(Runnable runnable) method of
EventQueue. The code to get the value is left up to you and is not the return value to the
invokeAndwait() method.

Caution The invokeAndWait (Runnable) method can throw an InterruptedException or an
InvocationTargetException.

21

22

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

To demonstrate the proper way to create a Swing-based program, Listing 2-1 shows the
source for a selectable button.

Listing 2-1. Swing Application Framework

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class ButtonSample {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Button Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
JButton button = new JButton("Select Me");

// Define Actionlistener
ActionListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
System.out.println("I was selected.");
}
};

// Attach listeners
button.addActionlListener(actionlListener);

frame.add(button, BorderLayout.SOUTH);
frame.setSize(300, 100);
frame.setVisible(true);

}
};
EventQueue.invokelLater(runner);

}
}

This code produces the button shown in Figure 2-3.

£ Button Sample 10l =|

Select Me |

Figure 2-3. Button sample

First, let’s look at the invokelater () method. It requires a Runnable object as its argument.
You just create a Runnable object and pass it along to the invokelLater() method. Some time
after the current event dispatching is done, this Runnable object will execute.

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Runnable runnable = new Runnable() {
public void run() {
// Do work to be done
}
}

EventQueue.invokelater(runnable);

If you want your Swing GUI creation to be thread-safe, you should follow this pattern with
all of your Swing code. If you need to access the command-line arguments, just add the final
keyword to the argument declaration: public static void main(final String args[]). This
may seem like overkill for a simple example like this, but it does ensure the thread safety of your
program, making sure that all Swing component access is done from the event-dispatch thread.
(However, calls to repaint(), revalidate(), and invalidate() don’t need to be done from the
event-dispatch thread.)

Note In addition to the invokeLater () and invokeAndWait() methods of the EventQueue class, there
are wrapper methods of the same name in the SwingUtilities class. Since the SwingUtilities calls just
redirect the calls on to the EventQueue class, you should avoid the extra layer of indirection and access
EventQueue directly. These wrapper methods were created for an early Swing version, prior to the existence
of the EventQueue class.

One additional line from Listing 2-1 requires some extra explanation:
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

By default, if you click the little X in the title bar of the window shown in Figure 2-3, the
application does not close; instead, the frame is made invisible. Setting the default close oper-
ation to JFrame.EXIT ON_CLOSE, as in Listing 2-1, causes the application to exit if the user clicks
the X. You'll learn more about this behavior in Chapter 8, which explores the JFrame class.

Using SwingUtilities for Mouse Button Identification

The Swing component set includes a utility class called SwingUtilities that provides a collection
of generic helper methods. You will look at this class periodically throughout this book when a
particular set of methods for this class seems useful. For the button example in Listing 2-1, the
methods of interest are related to determining which mouse button has been selected.

The MouseInputlistener interface consists of seven methods: mouseClicked(MouseEvent),
mouseEntered(MouseEvent), mouseExited(MouseEvent), mousePressed(MouseEvent), and
mouseReleased(MouseEvent) from Mouselistener; and mouseDragged(MouseEvent) and
mouseMoved(MouseEvent) from MouseMotionListener. If you need to determine which buttons
on the mouse were selected (or released) when the event happened, check the modifiers prop-
erty of MouseEvent and compare it to various mask-setting constants of the InputEvent class.

For instance, to check if a middle mouse button is pressed for a mouse press event, you
could use the following code in your mouse listener’s mousePressed() method:

23

24

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

public void mousePressed(MouseEvent mouseEvent) {
int modifiers = mouseEvent.getModifiers();
if ((modifiers & InputEvent.BUTTON2 MASK) == InputEvent.BUTTON2 MASK) {
System.out.println("Middle button pressed.");
}
}

Although this works fine and dandy, the SwingUtilities class has three methods to make
this process much simpler:

SwingUtilities.isLeftMouseButton(MouseEvent mouseEvent)
SwingUtilities.isMiddleMouseButton(MouseEvent mouseEvent)
SwingUtilities.isRightMouseButton(MouseEvent mouseEvent)

Now, instead of needing to manually get the modifiers and compare them against the
mask, you can simply ask the SwingUtilities, as follows:

if (SwingUtilities.isMiddleMouseButton(mouseEvent)) {
System.out.println("Middle button released.");

}

This makes your code much more readable and easier to maintain.
Listing 2-2 contains an updated ButtonSample that adds another listener to detect which
mouse button was pressed.

Listing 2-2. Button Sample with Mouse Button Detection

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class ButtonSample {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Button Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
JButton button = new JButton("Select Me");

// Define Actionlistener
ActionListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
System.out.println("I was selected.");
}
};

}

}

};

}

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

// Define Mouselistener
Mouselistener mouselListener = new MouseAdapter() {

public void mousePressed(MouseEvent mouseEvent) {
int modifiers = mouseEvent.getModifiers();
if ((modifiers & InputEvent.BUTTON1 MASK) ==
InputEvent.BUTTON1 MASK) {
System.out.println("Left button pressed.");
}
if ((modifiers & InputEvent.BUTTON2 MASK)
InputEvent.BUTTON2 MASK) {
System.out.println("Middle button pressed.");
}
if ((modifiers & InputEvent.BUTTON3 MASK) ==
InputEvent.BUTTON3 MASK) {
System.out.println("Right button pressed.");

}
}

public void mouseReleased(MouseEvent mouseEvent) {
if (SwingUtilities.islLeftMouseButton(mouseEvent)) {
System.out.println("Left button released.");
}
if (SwingUtilities.isMiddleMouseButton(mouseEvent)) {
System.out.println("Middle button released.");
}
if (SwingUtilities.isRightMouseButton(mouseEvent)) {
System.out.println("Right button released.");
}
System.out.println();
}
b

// Attach listeners
button.addActionListener(actionlListener);
button.addMouselistener(mouselListener);

frame.add(button, BorderLayout.SOUTH);
frame.setSize(300, 100);
frame.setVisible(true);

EventQueue.invokelater(runner);

25

26

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Using Property Change Listeners As Observers

Besides the basic event-delegation mechanism, the JavaBeans framework introduced yet
another incarnation of the Observer design pattern, this time through the property change
listener. The PropertyChangelistener implementation is a truer representation of the Observer
pattern. Each Observer watches for changes to an attribute of the Subject. The Observer is then
notified of the new state when changed in the Subject. Figure 2-4 shows the structure of this
Observer pattern as it relates to the specific classes within the JavaBeans libraries for property
change handling. In this particular case, the observable Subject has a set of add/remove prop-
erty change listener methods and a property (or properties) whose state is being watched.

<<Interface>>

EventObject EventListener Subject
— JaN -state:datatype
ﬁsgzl:g%%?clgg%bject -propertyChangeSupport:propertyChangeSupport
- +addPropertyChangeListener()
+removePropertyChangeListener
PropertyChangeEvent event=
new PropertyChangeEvent(...);
for each listener (PropertyChangeSupport list):
listener.propertyChange(event)
0.n
<<Interface>> Observer
PropertyChangeEvent PropertyChangeListener <<--- et t;/l
-state:datatype
+propertyChange() rone rtyChzn 20
-eventState:datatype prop! g
+getNewValue():0bject
+getOldValue():Object
+getPropagationName():String

Figure 2-4. The property change listener Observer pattern

With a PropertyChangelistener, the registered set of listeners is managed within the
PropertyChangeSupport class. When the watched property value changes, this support class
notifies any registered listeners of the new and old property state values.

Note Although PropertyChangelistener observers are registered at the class level, not all properties
of the class might be bound. A property is bound when a change to the property causes the registered
listeners to be notified. In addition, although the JavaBeans framework introduced the concept of property
change listeners in JDK 1.1, none of the properties of the AWT components were bound, although this changed
for the Component class in the 1.2 release. The Swing components have many of their properties bound. To
find out which ones are bound, see the property tables for each Swing component that appear in later chap-
ters of this book.

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

By registering PropertyChangelListener objects with the various components that support
this type of listener, you can reduce the amount of source code you must generate after the
initial listening setup. For instance, the background color of a Swing component is bound,
meaning someone can register a PropertyChangelistener to a component to be notified when
the background setting changes. When the value of the background property for that component
changes, anyone listening is notified, allowing an Observer to change its background color to
the new setting. Therefore, if you want all the components of your program to have the same
background color, you can register them all with one component. Then, when that single
component changes its background color, all the other components will be notified of the
change and will modify their backgrounds to the new setting.

Note Although you can use a PropertyChangelListener to “share” a common property setting among
components, you can also map the property of a subject to a different property of the Observer.

The program in Listing 2-3 demonstrates using a PropertyChangelistener. It creates two
buttons. When either button is selected, the background of the selected button is changed to
some random color. The second button is listening for property changes within the first button.
When the background color changes for the first button, the background color of the second
button is changed to that new value. The first button isn’t listening for property changes for the
second button. Therefore, when the second button is selected, changing its background color,
this change doesn’t propagate back to the first button.

Listing 2-3. Property Change Listener Sample

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.beans.*;
import java.util.Random;

public class BoundSample {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Button Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
final JButton buttonl = new JButton("Select Me");
final JButton button2 = new JButton("No Select Me");
final Random random = new Random();

27

28 CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

// Define Actionlistener
ActionListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
JButton button = (JButton)actionEvent.getSource();
int red = random.nextInt(255);
int green = random.nextInt(255);
int blue = random.nextInt(255);
button.setBackground(new Color(red, green, blue));
}
};

// Define PropertyChangelistener
PropertyChangelistener propertyChangelListener =
new PropertyChangelistener() {
public void propertyChange(PropertyChangeEvent propertyChangeEvent) {
String property = propertyChangeEvent.getPropertyName();
if ("background".equals(property)) {
button2.setBackground((Color)propertyChangeEvent.getNewValue());
}
}
};

// Attach listeners
buttoni.addActionlListener(actionlListener);
button1.addPropertyChangelistener(propertyChangelistener);
button2.addActionlListener(actionlListener);

frame.add(button1, BorderlLayout.NORTH);
frame.add(button2, BorderlLayout.SOUTH);
frame.setSize(300, 100);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Although this example causes only a color change from button selection, imagine if the
background color of the first button could be changed from a couple of hundred different places
other than the one action listener! Without a property change listener, each of those places
would be required to also change the background color of the second button. With the property
change listener, it’s only necessary to modify the background color of the primary object—the
first button, in this case. The change would then automatically propagate to the other components.

The Swing library also uses the ChangeEvent/Changelistener pair to signify state changes.
Although similar to the PropertyChangeEvent/PropertyChangelistener pair, the ChangeEvent
doesn’t carry with it the new and old data value settings. You can think of it as a lighter-weight
version of a property change listener. The ChangeEvent is useful when more than one property
value changes, because ChangeEvent doesn’t need to package the changes.

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Tip The Swing components use the SwingPropertyChangeSupport class, instead of the
PropertyChangeSupport class, to manage and notify their PropertyChangelistener list. The Swing
version, SwingPropertyChangeSupport, isn’t thread-safe, but it is faster and takes up less memory.
Assuming it is accessed from only the event-dispatch thread, the lack of thread safety is irrelevant.

Managing Listener Lists

If you're creating your own components and want those components to fire off events, you
need to maintain a list of listeners to be notified. If the listener list is for AWT events (found in
java.awt.event), you can use the AWTEventMulticaster class for help with list management.
Prior to the Swinglibraries, if the event wasn’t a predefined AWT event type, you had to manage this
list of listeners yourself. With the help of the EventListenerList class in the javax.swing.event
package, you no longer need to manually manage the listener list and worry about thread
safety. And, if you ever need to get the list of listeners, you can ask a Component with public
EventListener[] getlListeners(Class listenerType), or one of the type-specific methods like
the getActionListeners() method of JButton. This allows you to remove listeners from an inter-
nally managed list, which helps with garbage collection.

AWTEventMulticaster Class

Whether you realize it or not, the AWTEventMulticaster class is used by each and every AWT
component to manage event listener lists. The class implements all the AWT event listeners
(ActionlListener, AdjustmentListener, ComponentListener, ContainerListener, FocusListener,
HierarchyBoundsListener,Hierarchylistener, InputMethodListener, ItemListener, KeyListener,
MouseListener, MouseMotionlListener, MouselWheellistener, TextListener, WindowFocusListener,
WindowListener, and WindowStatelistener). Whenever you call a component’s method to add
or remove a listener, the AWTEventMulticaster is used for support.

If you want to create your own component and manage a list of listeners for one of these
AWT event/listener pairs, you can use the AWTEventMulticaster. As an example, let’s look at
how to create a generic component that generates an ActionEvent object whenever a key is
pressed within the component. The component uses the public static String getKeyText
(int keyCode) method of KeyEvent to convert the key code to its appropriate text string and
passes this string back as the action command for the ActionEvent. Because the component
is meant to serve as the source for ActionListener observers, it needs a pair of add/remove
methods to handle the registration of listeners. This is where the AWTEventMulticaster comes
in, because it will manage the adding and removing of listeners from your listener list variable:

private ActionlListener actionlListenerlList = null;
public void addActionListener(ActionlListener actionListener) {
actionListenerlList = AWTEventMulticaster.add(
actionlListenerlList, actionlListener);
}
public void removeActionListener(ActionListener actionListener) {
actionlListenerlList = AWTEventMulticaster.remove(
actionlListenerlList, actionlListener);

29

30 CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

The remainder of the class definition describes how to handle the internal events. An
internal KeyListener needs to be registered in order to send keystrokes to an ActionListener.
In addition, the component must be able to get the input focus; otherwise, all keystrokes will
go to other components. The complete class definition is shown in Listing 2-4. The line of
source code for notification of the listener list is in boldface. That one line notifies all the regis-
tered listeners.

Listing 2-4. Managing Listener Lists with AWTEventMulticaster

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class KeyTextComponent extends JComponent {
private ActionlListener actionlListenerlList = null;

public KeyTextComponent() {
setBackground(Color.CYAN);
KeyListener internalKeylListener = new KeyAdapter() {
public void keyPressed(KeyEvent keyEvent) {
if (actionlistenerList != null) {
int keyCode = keyEvent.getKeyCode();
String keyText = KeyEvent.getKeyText(keyCode);
ActionEvent actionEvent = new ActionEvent(
this,
ActionEvent.ACTION PERFORMED,
keyText);
actionListenerList.actionPerformed(actionEvent);
}
}
};

Mouselistener internalMouselistener = new MouseAdapter() {
public void mousePressed(MouseEvent mouseEvent) {
requestFocusInWindow();
}
};

addKeyListener(internalKeylListener);
addMouselistener(internalMouselistener);

}

public void addActionListener(ActionListener actionlistener) {
actionListenerlList = AWTEventMulticaster.add(
actionlListenerlList, actionlListener);

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

public void removeActionListener(ActionListener actionlistener) {
actionlListenerlList = AWTEventMulticaster.remove(
actionlListenerlList, actionlListener);

}

public boolean isFocusable() {
return true;

}
}

Figure 2-5 shows the component in use. The top portion of the figure is the component,
and the bottom is a text field. An ActionListener is registered with the KeyTextComponent that
updates the text field in order to display the text string for the key pressed.

& Key Text sample - |EI|1|

|Num Lock |

Figure 2-5. Demonstrating the KeyTextComponent
The source code for the example shown in Figure 2-5 follows in Listing 2-5.

Listing 2-5. Sample Program with an AWTEventMulticaster Component

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class KeyTextTester {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {

JFrame frame = new JFrame("Key Text Sample");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
KeyTextComponent keyTextComponent = new KeyTextComponent();
final JTextField textField = new JTextField();

ActionListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
String keyText = actionEvent.getActionCommand();
textField.setText(keyText);
}
b

31

32

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

keyTextComponent.addActionListener(actionlistener);

frame.add(keyTextComponent, BorderlLayout.CENTER);
frame.add(textField, BorderlLayout.SOUTH);
frame.setSize(300, 200);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

EventListenerList Class

Although the AWTEventMulticaster class is easy to use, it doesn’t work for managing lists of
custom event listeners or any of the Swing event listeners found in javax.swing.event. You
could create a custom extension of the class for each type of event listener list you need to
manage (not practical), or you could just store the list in a data structure such as a Vector or
LinkedList. Although using a Vector or LinkedList works satisfactorily, when you use this method,
you need to worry about synchronization issues. If you don’t program the list management
properly, the listener notification may happen with the wrong set of listeners.

To help simplify this situation, the Swing component library includes a special event-listener
support class, EventListenerList. One instance of the class can manage all the different types
of event listeners for a component. To demonstrate the class usage, let’s see how the previous
example can be rewritten to use EventListenerList instead of AWTEventMulticaster. Note that
in this particular example, using the AWTEventMulticaster class is actually the simpler solution.
However, imagine a similar situation in which the event listener isn’t one of the predefined
AWT event listeners or if you need to maintain multiple listener lists.

The adding and removing of listeners is similar to the technique used with the
AWTEventMulticaster in the previous example. You need to create a variable of the appropriate
type—this time EventlListenerList—as well as define add and remove listener methods. One
key difference between the two approaches is that the initial EventListenerList is non-null,
whereas the other starts off being null. A reference to an empty EventListenerList must be
created to start. This removes the need for several checks for a null list variable later. The adding
and removing of listeners is also slightly different. Because an EventlListenerList can manage
alist of listeners of any type, when you add or remove the listener, you must provide the class
type for the listener being acted on.

EventlListenerlList actionlListenerlList = new EventlListenerlList();

public void addActionListener(ActionlListener actionlistener) {
actionlListenerlList.add(ActionlListener.class, actionlListener);

}

public void removeActionlListener(ActionListener actionListener) {
actionlListenerlList.remove(ActionlListener.class, actionlListener);

}

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET 33

This leaves only the notification of the listeners to be handled. No generic method exists in
the class to notify all the listeners of a particular type that an event has happened, so you must
create the code yourself. A call to the following code (fireActionPerformed(actionEvent)) will
replace the one line of boldfaced source code:

(actionListenerList.actionPerformed(actionEvent)

from the previous example. The code gets a copy of all the listeners of a particular type from the
list as an array (in a thread-safe manner). You then need to loop through the list and notify the
appropriate listeners.

protected void fireActionPerformed(ActionEvent actionEvent) {
EventListener listenerList[] =
actionlistenerlList.getlListeners(Actionlistener.class);
for (int i=0, n=listenerList.length; i<n; i++) {
((ActionListener)listenerList[i]).actionPerformed(actionEvent);
}
}

The complete source for the new and improved class follows in Listing 2-6. When using the
EventlListenerlList class, don’t forget that the class is in the javax. swing.event package. Other
than the component class name, the testing program doesn’t change.

Listing 2-6. Managing Listener Lists with EventListenerList

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;

import javax.swing.event.*;
import java.util.Eventlistener;

public class KeyTextComponent2 extends JComponent {
private EventlistenerList actionlListenerList = new EventlListenerList();

public KeyTextComponent2() {
setBackground(Color.CYAN);
KeyListener internalKeylistener = new KeyAdapter() {
public void keyPressed(KeyEvent keyEvent) {
if (actionlistenerList != null) {
int keyCode = keyEvent.getKeyCode();
String keyText = KeyEvent.getKeyText(keyCode);
ActionEvent actionEvent = new ActionEvent(
this,
ActionEvent.ACTION PERFORMED,
keyText);
fireActionPerformed(actionkvent);
}
}
b

34 CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Mouselistener internalMouselistener = new MouseAdapter() {
public void mousePressed(MouseEvent mouseEvent) {
requestFocusInWindow();
}
};

addKeylListener(internalKeylListener);
addMouselistener(internalMouselistener);

public void addActionListener(ActionListener actionlistener) {
actionlListenerlist.add(ActionListener.class, actionlListener);

}

public void removeActionlListener(ActionListener actionListener) {
actionlListenerList.remove(ActionlListener.class, actionlListener);

}

protected void fireActionPerformed(ActionEvent actionEvent) {
EventListener listenerlList[] =
actionlistenerlList.getlisteners(ActionlListener.class);
for (int i=0, n=listenerList.length; i<n; i++) {
((ActionListener)listenerList[i]).actionPerformed(actionEvent);
}
}

public boolean isFocusable() {
return true;
}
}

Timer Class

In addition to the invokeAndwait() and invokelater () methods of EventQueue, you can use the
Timer class to create actions to be executed on the event-dispatch thread. A Timer provides a
way of notifying an ActionlListener after a predefined number of milliseconds. The timer can
repeatedly notify the listeners, or just call them once.

Creating Timer Objects

Following is the single constructor for creating a Timer that specifies the millisecond delay time
between calls to the ActionListener:

public Timer(int delay, ActionlListener actionlListener);
// 1 second interval
Timer timer = new Timer(1000, anActionlistener);

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET 35

Using Timer Objects

After a Timer object has been created, you need to start() it. Once the Timer is started, the
ActionListener will be notified after the given number of milliseconds. If the system is busy,
the delay could be longer, but it won’t be shorter.

If there comes a time when you want to stop a Timer, call its stop() method. The Timer also
has a restart() method, which calls stop() and start(), restarting the delay period.

To demonstrate, Listing 2-7 defines an ActionListener that simply prints a message. You
then create a Timer to call this listener every half second. After creating the timer, you need to
start it.

Listing 2-7. Swing Timer Sample

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class TimerSample {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
ActionListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
System.out.println("Hello World Timer");
}
b
Timer timer = new Timer(500, actionlistener);
timer.start();
}
I
EventQueue.invokelater(runner);
}
}

Note A Timer doesn’t start up the AWT event-dispatch thread on its own.

Timer Properties

Table 2-1 lists the six properties of Timer. Four allow you to customize the behavior of the timer.
running tells you if a timer has been started but not stopped, and actionlListeners gets you the
list of action listeners.

36

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Table 2-1. Timer Properties

Property Name Data Type Access

actionListeners ActionListener[] Read-only
coalesce boolean Read-write
delay int Read-write
initialDelay int Read-write
repeats boolean Read-write
running boolean Read-only

The delay property is the same as the constructor argument. If you change the delay of a
running timer, the new delay won’t be used until the existing delay runs out.

The initialDelay property allows you to have another startup delay besides the periodic
delay after the first execution. For instance, if you don’t want to initially do a task for an hour,
but then want to do it every 15 minutes thereafter, you need to change the initialDelay setting
before you start the timer. By default, the initialDelay and delay properties are set to the same
setting in the constructor.

The repeats property is true by default, which results in a repeating timer. When false,
the timer notifies action listeners only once. You then need to restart () the timer to trigger the
listener again. Nonrepeating timers are good for onetime notifications that need to happen
after a triggering event.

The coalesce property allows for a busy system to throw away notifications that haven’t
happened yet when a new event needs to be fired to the registered ActionListener objects. By
default, the coalesce value is true. This means if a timer runs every 500 milliseconds, but its
system is bogged down and doesn’t respond for a whole 2 seconds, the timer needs to send
only one message, rather than also sending the missing ones. If the setting were false, four
messages would still need to be sent.

In addition to the properties just listed, you can turn on log messages with the following
line of code:

Timer.setlogTimers(true);

Log messages are good for actions that lack a visual element, allowing you to see when
something happens.

Tip The java.util.Timer class works in a fashion similar to the javax. swing. Timer class, except that
it doesn’t run the scheduled task in the event-dispatch thread. In addition, it supports executing tasks at a
fixed rate, versus after a fixed delay. The latter scheme permits the repeat rate to drift between executions if
the event-dispatch thread is busy.

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Swing-Specific Event Handling

Keeping in mind that the Swing components are built on top of the AWT libraries, the Swing
component library has several improved capabilities to make event handling much easier. The
capabilities improve on several of AWT’s core event-handling features, from basic action listening
to focus management.

To simplify event handling, the Swing library extends the original ActionListener interface
with the Action interface to store visual attributes with the event handler. This allows the creation
of event handlers independent of visual components. Then, when the Action is later associated
with a component, the component automatically gets information (such as a button label)
directly from the event handler. This includes notification of updates for the label when the
Action is modified. The AbstractAction and TextAction classes are implementations of this
concept.

The Swing library also adds a KeyStroke class that allows you to more easily respond to key
events. Instead of watching all key events for a specific key, you can tell a component that when
a specific keystroke sequence is pressed, it must respond with a particular action. These
keystroke-to-action mappings are stored in a combination of InputMap and ActionMap objects.
The InputMap is specifically a ComponentInputMap when the component’s window has the focus. The
Swing text components can use these more readily to store the mapping of keystrokes to actions
with the help of the Keymap interface. The mappings for the TextAction support are described
in more detail in Chapter 16, along with the remainder of the text event-handling capabilities.

The KeyboardFocusManager and DefaultKeyboardFocusManager, along with the help of the
FocusTraversalPolicy and its implementations, manage the focus subsystem. The InputVerifier
helps, too, for validation of user input. These are discussed in the “Swing Focus Management”
section later in this chapter.

Action Interface

The Action interface is an extension to the ActionListener interface that’s very flexible for
defining shared event handlers independent of the components that act as the triggering agents.
The interface implements ActionListener and defines a lookup table data structure whose
keys act as bound properties. Then, when an Action is associated with a component, these
display properties are automatically carried over to it. The following is the interface definition:

public interface Action implements ActionListener {
// Constants
public final static String ACCELERATOR_KEY;
public final static String ACTION_COMMAND_KEY;
public final static String DEFAULT;
public final static String LONG_DESCRIPTION;
public final static String MNEMONIC_KEY;
public final static String NAME;
public final static String SHORT_DESCRIPTION;
public final static String SMALL_ICON;

37

38 CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

// Listeners

public void addPropertyChangelistener(PropertyChangelistener listener);
public void removePropertyChangelistener(PropertyChangelistener listener);
// Properties

public boolean isEnabled();

public void setEnabled(boolean newValue);

// Other methods

public Object getValue(String key);

public void putValue(String key, Object value);

Because Action is merely an interface, the Swing libraries offer a class to implement the
interface. That class is AbstractAction.

AbstractAction Class

The AbstractAction class provides a default implementation of the Action interface. This is
where the bound property behavior is implemented.

Using Actions

Once you define an AbstractAction by subclassing and providing a public void actionPerformed
(ActionEvent actionEvent) method, you can then pass it along to some special Swing compo-
nents. JButton, JCheckBox, JRadioButton, JToggleButton, JMenuItem, JCheckBoxMenuItem, and
JRadioButtonMenuItem provide constructors for creating the components from actions, whereas
the Swing text components have their own built-in support for Action objects through their
Keymap, InputMap, and ActionMap

When the component with the associated Action is added to the respective Swing container,
selection triggers the calling of the actionPerformed(ActionEvent actionEvent) method of the
Action. The display of the component is defined by the property elements added to the internal
data structure. To demonstrate, Listing 2-8 presents an Action with a “Print” label and an
image icon. When this is activated, a “Hello, World” message is printed.

Listing 2-8. Action Usage Example

import java.awt.event.*;
import javax.swing.*;

public class PrintHelloAction extends AbstractAction {

private static final Icon printIcon = new ImageIcon("Print.gif");

PrintHelloAction() {
super("Print", printIcon);
putValue(Action.SHORT DESCRIPTION, "Hello, World");

}

public void actionPerformed(ActionEvent actionEvent) {
System.out.println("Hello, World");

}

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Once the Action has been defined, you can create the Action and associate it with as many
other components as you want.

Action printAction = new PrintHelloAction();
menu.add(new IMenuItem(printAction));
toolbar.add(new JButton(printAction));

After the Action has been associated with the various objects, if you find that you need to
modify the properties of the Action, you need to change the setting in only one place. Because
the properties are all bound, they propagate to any component that uses the Action. For instance,
disabling the Action (printAction.setEnabled(false)) will disable the JMenuItem and JButton
created on the JMenu and JToolBar, respectively. In contrast, changing the name of the Action
with printAction.putValue(Action.NAME, "Hello, World") changes the text label of the asso-
ciated components.

Figure 2-6 shows what the PrintHelloAction might look like on a JToolBar and a JMenu.
Selectable buttons are provided to enable or disable the Action, as well as to change its name.

£ Action Sample 10l =|
File
G print | Disable | | Relabel |

Figure 2-6. The PrintHelloAction in use

The complete source code for this example follows in Listing 2-9. Don’t worry just yet

about the specifics of creating toolbars and menu bars. They’ll be discussed in more detail
in Chapter 6.

Listing 2-9. PrintHelloAction Example

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ActionTester {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Action Sample");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
final Action printAction = new PrintHelloAction();

IMenuBar menuBar = new IMenuBar();

39

40 CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

JMenu menu = new JMenu("File");
menuBar.add(menu);
menu.add(new JIMenuItem(printAction));

JToolBar toolbar = new JToolBar();
toolbar.add(new JButton(printAction));

JButton enableButton = new JButton("Enable");
ActionListener enableActionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
printAction.setEnabled(true);
}
};

enableButton.addActionListener(enableActionlListener);

JButton disableButton = new JButton("Disable");
ActionlListener disableActionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
printAction.setEnabled(false);
}
};

disableButton.addActionListener(disableActionlListener);

JButton relabelButton = new JButton("Relabel");
ActionListener relabelActionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
printAction.putValue(Action.NAME, "Hello, World");
}
};

relabelButton.addActionListener(relabelActionListener);

JPanel buttonPanel = new JPanel();
buttonPanel.add(enableButton);
buttonPanel.add(disableButton);
buttonPanel.add(relabelButton);

frame.setIMenuBar(menuBar);

frame.add(toolbar, BorderlLayout.SOUTH);
frame.add(buttonPanel, BorderlLayout.NORTH);
frame.setSize(300, 200);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

AbstractAction Properties

As Table 2-2 shows, the AbstractAction class has three available properties.

Table 2-2. AbstractAction Properties

Property Name Data Type Access

enabled boolean Read-write bound
keys Object [] Read-only
propertyChangelListeners PropertyChangelistener[] Read-only

The remainder of the bound properties are placed in the lookup table with putValue
(String key, Object value). Getting the current keys property setting allows you to find out
which ones can be set en masse, instead of asking for each one individually. Table 2-3 describes
the predefined set of Action constants that can be used as the key. You can also add your own
constants, to look up later when the action happens.

Table 2-3. AbstractAction Lookup Property Keys

Constant Description

NAME Action name, used as button label

SMALL_ICON Icon for the Action, used as button label

SHORT_DESCRIPTION Short description of the Action; could be used as tooltip text, but
not by default

LONG_DESCRIPTION Long description of the Action; could be used for accessibility
(see Chapter 22)

ACCELERATOR KeyStroke string; can be used as the accelerator for the Action

ACTION_COMMAND KEY InputMap key; maps to the Action in the ActionMap of the associ-
ated JComponent

MNEMONIC_KEY Key code; can be used as mnemonic for action

DEFAULT Unused constant that could be used for your own property

Once a property has been placed in the lookup table, you can get it with public Object
getValue(String key). It works similarly to the java.util.Hashtable class or java.util.Map
interface, with one distinction: if you try to put a key/value pair into the table with a null value,
the table removes the key, if it’s present.

KeyStroke Class

The KeyStroke class and the inputMap and actionMap properties of a specific JComponent provide
a simple replacement for registering KeyListener objects to components and watching for

4

42

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

specific keys to be pressed. The KeyStroke class allows you to define a single combination of
keystrokes, such as Shift-Ctrl-P or F4. You can then activate the keystroke by registering it with
a component and telling the keystroke what to do when the component recognizes it, causing
the ActionlListener to be notified.

Before finding out how to create keystrokes, let’s look at the different conditions that can
be activated and thus added to different input maps. Three conditions can activate a registered
keystroke, and there are four constants in JComponent to help. The fourth is for an undefined
state. The four available constants are listed in Table 2-4.

Table 2-4. Keystroke Registration Conditions

Constant Description

WHEN_FOCUSED Activates the keystroke when the actual component
has the input focus

WHEN_IN_FOCUSED WINDOW Activates the keystroke when the window that the
component is in has the input focus

WHEN_ANCESTOR_OF FOCUSED_COMPONENT Activates the keystroke when pressed in the component
or a container of the component

UNDEFINED CONDITION For when no condition is defined

Note In the special instance in which the keystrokes are supposed to be active only when the component
is in the focused window, the InputMap is actually a ComponentInputMap.

Creating a KeyStroke

The KeyStroke class is a subclass of AWTKeyStroke and has no public constructor. You create a
keystroke by using one of the following methods:

public static KeyStroke getKeyStroke

public static KeyStroke getKeyStroke

public static KeyStroke getKeyStroke

public static KeyStroke getKeyStroke
boolean onKeyRelease)

public static KeyStroke getKeyStrokeForEvent(KeyEvent keyEvent)

char keyChar)

String representation)

int keyCode, int modifiers)
int keyCode, int modifiers,

—~ o~~~

The first version in this list, public static KeyStroke getKeyStroke(char keyChar), allows
you to create a keystroke from a char variable, such as Z.

KeyStroke space = KeyStroke.getKeyStroke('Z");

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Note | prefer to avoid using a char variable to create a keystroke, because you don’t know whether to
specify an uppercase or lowercase letter. There is also an outdated, or deprecated, version of this method that
adds a boolean onKeyRelease argument. This, too, should be avoided.

The public static KeyStroke getKeyStroke(String representation) version is the most
interesting of the lot. It allows you to specify a keystroke as a text string, such as "control F4".
The set of modifiers to the string are shift, control, meta, alt, button1, button2, and button3,
and multiple modifiers can be specified. The remainder of the string comes from one of the
many VK_* constants of the KeyEvent class. For example, the following defines a keystroke for
Ctrl-Alt-7:

KeyStroke controlAlt7 = KeyStroke.getKeyStroke("control alt 7");

The public static KeyStroke getKeyStroke(int keyCode, int modifiers) and public
static KeyStroke getKeyStroke(int keyCode, int modifiers, boolean onKeyRelease)
methods are the most straightforward. They allow you to directly specify the VK_* key constant
and the InputEvent masks for the modifiers (or zero for no modifiers). When not specified,
onKeyRelease is false.

KeyStroke enter = KeyStroke.getKeyStroke(KeyEvent.VK ENTER, 0, true);
KeyStroke shiftF4 = KeyStroke.getKeyStroke(KeyEvent.VK F4, InputEvent.SHIFT MASK);

The last version listed, public static KeyStroke getKeyStrokeForEvent(KeyEvent keyEvent),
maps a specific KeyEvent directly to a KeyStroke. This is useful when you want to allow a user to
supply the keystroke to activate an event. You ask the user to press a key for the event, and then
register the KeyEvent so that the next time it happens, the event is activated.

KeyStroke fromKeyEvent = KeyStroke.getKeyStrokeForEvent(keyEvent);

Registering a KeyStroke

After you've created the keystroke, you need to register it with a component. When you register
a keystroke with a component, you provide an Action to call when pressed (or released). Regis-
tration involves providing a mapping from keystroke to Action. First, you get the appropriate
InputMap for the component based on the focus activation condition (from Table 2-4) with
getInputMap(condition).If no condition is provided, WHEN_FOCUSED is assumed. You then add a
mapping from keystroke to text string in the InputMap:

component.getInputMap().put(keystroke, string)

If you know the action string for an existing action, you can use that; otherwise, you define
the string. You then work with the ActionMap to map that string to an Action:

component.getActionMap.put(string, action)

43

44

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

You can share actions between components by sharing ActionMap instances. The example
in Listing 2-10 creates four buttons, each with a different keystroke registered to it and possibly
a different focus-activation condition, as listed in Table 2-4. The button label signifies the
keystroke-activation conditions. The Action simply prints out a message and the activating
button label.

Listing 2-10. KeyStroke Listening

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class KeyStrokeSample {
private static final String ACTION_KEY
public static void main(String args[])
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("KeyStroke Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

"theAction";

{

JButton buttonA =

new JButton("<html><center>FOCUSED
control alt 7");
JButton buttonB =

new JButton("<html><center>FOCUS/RELEASE
VK _ENTER");
JButton buttonC =

new JButton("<html><center>ANCESTOR
VK F4+SHIFT MASK");
JButton buttonD =

new JButton("<html><center>WINDOW
" '");

// Define Actionlistener
Action actionListener = new AbstractAction() {
public void actionPerformed(ActionEvent actionEvent) {
JButton source = (JButton)actionEvent.getSource();
System.out.println("Activated: " + source.getText());
}
};

KeyStroke controlAlt7 = KeyStroke.getKeyStroke("control alt 7");
InputMap inputMap = buttonA.getInputMap();
inputMap.put(controlAlt7, ACTION KEY);

ActionMap actionMap = buttonA.getActionMap();

actionMap.put (ACTION KEY, actionListener);

KeyStroke enter = KeyStroke.getKeyStroke(KeyEvent.VK _ENTER, 0, true);
inputMap = buttonB.getInputMap();
inputMap.put(enter, ACTION KEY);
buttonB.setActionMap(actionMap);

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET 45

KeyStroke shiftF4 =
KeyStroke.getKeyStroke(KeyEvent.VK_F4, InputEvent.SHIFT MASK);
inputMap =
buttonC.getInputMap(JComponent.WHEN ANCESTOR OF FOCUSED COMPONENT);
inputMap.put(shiftF4, ACTION KEY);
buttonC.setActionMap(actionMap);

KeyStroke space = KeyStroke.getKeyStroke(' ');

inputMap = buttonD.getInputMap(JComponent.WHEN IN FOCUSED WINDOW);
inputMap.put(space, ACTION KEY);

buttonD.setActionMap(actionMap);

frame.setlayout(new GridlLayout(2,2));
frame.add(buttonA);
frame.add(buttonB);
frame.add(buttonC);
frame.add(buttonD);

frame.setSize(400, 200);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Tip For text components, you can get the Keymap and bind an Action to a KeyStroke in one step with
addActionForKeyStroke(KeyStroke, Action).

Figure 2-7 shows what the running program looks like.

Lol x]
FOCUSED FOCUSRELEASE
control alt 7 VK_ENTER
ANCESTOR WINDOW
VK_F4+SHIFT_MASK o~

Figure 2-7. KeyStroke listening example

46

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Using Mnemonics and Accelerators

The Swing libraries also use KeyStroke objects for several internal functions. Two such functions
are component mnemonics and accelerators, which work as follows:

¢ In a component mnemonic, one character in a label appears underlined. When that
character is pressed along with a platform-specific hotkey combination, the component
is activated. For instance, pressing Alt-A in the window shown in Figure 2-8 would select
the About button on a Windows XP platform.

* A menu accelerator activates a menu item when it is not visible. For instance, pressing
Ctrl-P would select the Print menu item in the window shown in Figure 2-8 when the File
menu isn’t visible.

£ Mnemonic/Accele - 5 101 =l
File

Print_Ctil-F

/ oot
Accelerator ~ \

Mnemonic

Figure 2-8. Mnemonics and menu shortcuts

You'll learn more about mnemonics and accelerators in Chapter 6.

Swing Focus Management

The term focus refers to when a component acquires the input focus. When a component has
the input focus, it serves as the source for all key events, such as text input. In addition, certain
components have some visual markings to indicate that they have the input focus, as shown in
Figure 2-9. When certain components have the input focus, you can trigger selection with a
keyboard key (usually the spacebar or Enter key), in addition to selection with a mouse. For
instance, with a button, pressing the spacebar activates it.

1o/
- Focused Not Focused
Focus Highlight — |

Figure 2-9. A JButton showing it has input focus

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Note The focus subsystem had a major overhaul with the 1.4 release of J2SE. All the older guts are still
present, but should be avoided. The older stuff didn’t work well and was very buggy. Sun’s fix was to essen-
tially throw everything away and start over, but old APIs are still present. In your quest to work with the focus
subsystem, learn to use only the updated APIs, not the older ones. Classes like javax.swing.FocusManager
and javax.swing.DefaultFocusManager are completely obsolete now.

An important concept in focus management is the focus cycle, which maps the focus traversal
order for the closed set of components within a specific Container. The following classes are
also major players in focus management:

* FocusTraversalPolicy: A java.awt class that defines the algorithm used to determine the
next and previous focusable components.

* KeyboardFocusManager: A java.awt class that acts as the controller for keyboard navigation
and focus changes. To request a focus change, you tell the manager to change focusable
components; you don’t request focus on a particular component.

You can find out when the Swing component gets the input focus by registering a
FocusListener. The listener allows you to find out when a component gains or loses focus,
which component lost focus when another component gained it, and which component got
focus when another component lost focus. Additionally, a temporary focus change can happen
for something like a pop-up menu. The component that lost focus will receive it again when
the menu goes down.

The installed focus traversal policy describes how to move between the focusable compo-
nents of a window. By default, the next component is defined by the order in which components
are added to a container, as shown in Figure 2-10. For Swing applications, this focus traversal
starts at the top left of the figure and goes across each row and down to the bottom right. This is the
default policy, LayoutFocusTraversalPolicy. When all the components are in the same container,
this traversal order is called a focus cycle and can be limited to remain within that container.

Note A user can press Tab or Shift-Tab to move forward or backward through the components in a
container, thus transferring the input focus.

47

48 CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

w w
w
w

Figure 2-10. Default focus ordering

Moving the Focus

As an example of some basic capabilities, let’s look at how to create two listeners to handle
input focus: a MouselListener that moves the input focus to a component when the mouse
enters its space, and an ActionListener that transfers the input focus to the next component.

The MouseListener merely needs to call requestFocusInWindow() when the mouse enters
the component.

import java.awt.*;
import java.awt.event.*;
public class MouseEnterFocusMover extends MouseAdapter {
public void mouseEntered(MouseEvent mouseEvent) {
Component component = mouseEvent.getComponent();
if (!component.hasFocus()) {
component.requestFocusInWindow();
}
}
}

For the ActionListener, you need to call the focusNextComponent () method for the
KeyboardFocusManager.

import java.awt.*;
import java.awt.event.*;

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

public class ActionFocusMover implements ActionListener {
public void actionPerformed(ActionEvent actionEvent) {
KeyboardFocusManager manager =
KeyboardFocusManager . getCurrentKeyboardFocusManager();
manager . focusNextComponent();
¥
}

The ActionFocusMover and MouseEnterFocusMover show two different ways of programmati-
cally moving focus around. The ActionFocusMover uses the KeyboardFocusManager for traversal.
In MouseEnterFocusMover, the call to requestFocusInWindow() says that you would like for the
suggested component to get focus for the window of the application. However, getting focus
can be turned off. If the component isn’t focusable, either because the default setting of the
focusable property is false or you called component.setFocusable(false), then the component
will be skipped over and the next component after it gets focus; the component is removed
from the tab focus cycle. (Think of a scrollbar that isn’t in the focus cycle, but is draggable to
change a setting.)

The program in Listing 2-11 uses the two event handlers for moving focus around. It creates a
3x3 grid of buttons, in which each button has an attached mouse listener and a focus listener.
The even buttons are selectable but aren’t focusable.

Listing 2-11. Focus Traversal Sample

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class FocusSample {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Focus Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

ActionListener actionListener = new ActionFocusMover();
Mouselistener mouselistener = new MouseEnterFocusMover();

frame.setlayout(new GridlLayout(3,3));
for (int i=1; i<10; i++) {
JButton button = new JButton(Integer.toString(i));
button.addActionlListener(actionlListener);
button.addMouselistener(mouselListener);
if ((i%2) !'=0) { // odd - enabled by default
button.setFocusable(false);

}
frame.add(button);

49

50

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

frame.setSize(300, 200);
frame.setVisible(true);

}
};
EventQueue.invokelater(runner);

}
}

Figure 2-11 shows the main window of the program.

£ Focus Sample] 10l =|

Figure 2-11. Focus management example

Examining Focus Cycles

One customization option available at the Swing container level is the focus cycle. Remember
that the focus cycle for a container is a map of the focus traversal order for the closed set of
components. You can limit the focus cycle to stay within the bounds of a container by setting
the focusCycleRoot property to be true, thus restricting the focus traversal from going beyond
an inner container. Then, when the Tab key is pressed within the last component of the container,
the focus cycle will wrap back to the first component in the container, instead of moving the
input focus to the first component outside the container. When Shift-Tab is pressed in the first
component, it wraps to the last component of the container, instead of to the prior component
in the outer container.

Figure 2-12 illustrates how the focus ordering would look if you placed the middle three
buttons from Figure 2-10 within a container restricted in this way. In this cycle, you cannot get
to the first component on the third row by pressing the Tab key to move forward. To be able to
tab into the second row container, you need to set the focusTraversalPolicyProvider property
to true. Otherwise, while the panel will keep the traversal policy within the second row, tabbing will
never get you into the third row.

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

w
w
w

The program in Listing 2-12 demonstrates the behavior illustrated in Figure 2-12. The
on-screen program will look just like Figure 2-11; it just behaves differently.

r

JPanel

{

Figure 2-12. Restrictive focus cycle

Listing 2-12. Restricting the Focus Cycle

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class FocusCycleSample {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Focus Cycle Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

frame.setlayout(new GridBaglayout());

GridBagConstraints constraints = new GridBagConstraints();
constraints.weightx = 1.0;

constraints.weighty = 1.0;

constraints.gridwidth 1;

constraints.gridheight = 1;

constraints.fill GridBagConstraints.BOTH;

51

52

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

// Row One

constraints.gridy=0;

for (int i=0; i<3; i++) {
JButton button = new JButton("" + i);
constraints.gridx=i;
frame.add(button, constraints);

}

// Row Two
JPanel panel = new JPanel();
panel.setFocusCycleRoot(true);
panel.setFocusTraversalPolicyProvider(true);
panel.setlLayout(new GridlLayout(1,3));
for (int i=0; i<3; i++) {
JButton button = new JButton("" + (i+3));
panel.add(button);
}
constraints.gridx=0;
constraints.gridy=1;
constraints.gridwidth=3;
frame.add(panel, constraints);

// Row Three
constraints.gridy=2;
constraints.gridwidth=1;
for (int i=0; i<3; i++) {
JButton button = new JButton("" + (i+6));
constraints.gridx=i;
frame.add(button, constraints);

}

frame.setSize(300, 200);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

FocusTraversalPolicy Class

The FocusTraversalPolicy is responsible for determining the focus traversal order. It allows
you to specify the next and previous components in the order. This class offers six methods for
controlling traversal order:

CHAPTER 2

EVENT HANDLING WITH THE SWING COMPONENT SET

» getComponentAfter(Container aContainer, Component aComponent)

 getComponentBefore(Container aContainer, Component aComponent)

 getDefaultComponent(Container aContainer)

» getFirstComponent(Container aContainer)

» getInitialComponent(Window window)

e getlastComponent(Container aContainer)

Swing provides five predefined traversal policies, as listed in Table 2-5. By picking the right
traversal policy for your application, or rolling your own, you can determine how users will

navigate around the screens.

Table 2-5. Predefined Traversal Policies

Policy

Description

ContainerOrderFocusTraversalPolicy

DefaultFocusTraversalPolicy

InternalFrameFocusTraversalPolicy

SortingFocusTraversalPolicy

LayoutFocusTraversalPolicy

The components are traversed in the order they are
added to their container. The component must be
visible, displayable, enabled, and focusable to be
part of the focus cycle.

The default policy for AWT programs, this extends
ContainerOrderFocusTraversalPolicy to check
with the component peer (the operating system) if
the component hasn’t explicitly set focusability.
The focusability of a peer depends on the Java
runtime implementation.

Special policy for JInternalFrame, with behavior to
determine initial focusable component based on
the default component of the frame.

Here, you provide a Comparator to the policy
constructor to define the focus cycle order.

The default policy for Swing programs, this takes
into account geometric settings of components
(height, width, position), and then goes top down,
left to right to determine navigation order. The top-
down, left-right order is determined by the current
ComponentOrientation setting for your locale. For
instance, Hebrew would be in right-left order instead.

To demonstrate, the program in Listing 2-13 reverses the functionality of Tab and Shift-
Tab. When you run the program, it looks the same as the screen shown earlier in Figure 2-11,
with the 3x3 set of buttons. However, with this version, the initial focus starts on the 9 button,
and pressing Tab takes you to 8, then 7, and so on. Shift-Tab goes in the other, more normal,

order.

53

54

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Listing 2-13. Reversing Focus Traversal

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;
import java.util.Comparator;
import java.util.Arrays;
import java.util.list;

public class NextComponentSample {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Reverse Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

frame.setlayout(new GridlLayout(3,3));

// for (int i=1; i<10; i++) {

for (int i=9; i»0; i--) {
JButton button = new JButton(Integer.toString(i));
frame.add(button, 0);

}

final Container contentPane = frame.getContentPane();
Comparator<Component> comp = new Comparator<Component>() {
public int compare(Component c1, Component c2) {
Component comps[] = contentPane.getComponents();
List list = Arrays.asList(comps);
int first = list.index0f(c1);
int second = list.index0f(c2);
return second - first;
}
};

FocusTraversalPolicy policy = new SortingFocusTraversalPolicy(comp);
frame.setFocusTraversalPolicy(policy);

frame.setSize(300, 200);
frame.setVisible(true);
}
};
EventQueue.invokelLater(runner);
}
}

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

KeyboardFocusManager Class

The abstract KeyboardFocusManager class in the AWT library serves as the control mechanism
framework for the input focus behavior of Swing components. The DefaultKeyboardFocusManager
is the concrete implementation. The focus manager allows you to both programmatically
discover who currently has the input focus and to change it.

The component with the current input focus is called the focus owner. This is accessible
via the focusOwner property of KeyboardFocusManager. You can also discover the focusedWindow
and activeWindow properties. The focused window is the window containing the focus owner, and
the active window is either the focused window or the frame or dialog containing the focus owner.

The simple concept of moving to the previous or next component is supported in many
different ways. First, you can use the shortcut API methods of Component and Container:

e Component.transferFocus()

¢ Component.transferFocusBackward()
e Component.transferFocusUpCycle()

 Container.transferFocusDownCycle()

The first two methods request focus to move to the next or previous component, respec-
tively. The up and down cycle methods request that you move up out of the current focus cycle
or down into the next cycle.

The following methods map directly to methods of the KeyboardFocusManager:

 focusNextComponent ()

» focusPreviousComponent()
 upFocusCycle()

« downFocusCycle()

A second set of the same four methods accepts a second parameter of a Component. If the
component isn’t specified, these methods change the focused component based on the current
focus owner. If a component is provided, the change is based on that component.

Tab and Shift-Tab are used for keyboard focus traversal because they are defined as the
default focus traversal keys for most, if not all, components. To define your own traversal keys,
you can replace or append to a key set via the setFocusTraversalKeys() method of Component.
Different sets are available for forward, backward, and up-cycle, as specified by the FORWARD _
TRAVERSAL_KEYS, BACKWARD TRAVERSAL_KEYS, and UP_CYCLE_TRAVERSAL KEYS constants of
KeyboardFocusManager. You can set and get key sets for each. For instance, to add the F3 key
as an up-cycle key for a component, use the following code:

Set<AWTKeyStroke> set = component.getFocusTraversalKeys(
KeyboardFocusManager.UP_CYCLE TRAVERSAL KEYS);

KeyStroke stroke = KeyStroket.getKeyStroke("F3");

set.add(stroke);

component. setFocusTraversalKeys(KeyboardFocusManager.UP_CYCLE TRAVERSAL KEYS, set);

55

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

Verifying Input During Focus Traversal

Swing offers the abstract InputVerifier class for component-level verification during focus
traversal with any JComponent. Just subclass InputVerifier and provide your own public
boolean verify(JComponent) method to verify the contents of the component.

Listing 2-14 provides a simple numeric text field verification example, showing three text
fields, of which only two have verification. Unless fields one and three are valid, you can’t tab
out of them.

Listing 2-14. Numeric Input Verifier

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class VerifierSample {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {

JFrame frame = new JFrame("Verifier Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
JTextField textFieldl = new JTextField();

JTextField textField2 = new JTextField();

JTextField textField3 = new JTextField();

InputVerifier verifier = new InputVerifier() {
public boolean verify(JComponent comp) {
boolean returnValue;
JTextField textField = (JTextField)comp;
try {
Integer.parselnt(textField.getText());
returnValue = true;
} catch (NumberFormatException e) {
returnValue = false;
}
return returnValue;
}
};

textField1.setInputVerifier(verifier);
textField3.setInputVerifier(verifier);

frame.add(textField1l, BorderLayout.NORTH);
frame.add(textField2, BorderLayout.CENTER);
frame.add(textField3, BorderlLayout.SOUTH);
frame.setSize(300, 100);
frame.setVisible(true);

CHAPTER 2 EVENT HANDLING WITH THE SWING COMPONENT SET

b
EventQueue.invokelater(runner);
}
}

Tip To make sure that cancel-type buttons get the input focus no matter what when using InputVerifier,
use the setVerifyInputiWhenFocusTarget(false) method with the component.

Summary

In this chapter, you looked at the many ways of dealing with event handling when using Swing
components. Because Swing components are built on top of AWT components, you can use the
delegation-based event-handling mechanism common with those components. You then learned
about the multithreading limitations of the Swing components and how to get around them
with the invokeAndWait() and invokelater () methods of EventQueue. You also explored how
the Swing components use the JavaBeans PropertyChangelListener approach for notification of
bound property changes.

Besides exploring the similarities between the Swing components and AWT components,
you also looked at several of the new features that the Swing library offers. You explored the
Action interface and how it can simplify complex user-interface development by completely
separating the event-handling task from the visual component. You looked at the technique for
registering KeyStroke objects to components to simplify listening for key events. Finally, you
explored Swing’s focus management capabilities and how to customize the focus cycle and use
the FocusTraversalPolicy and KeyboardFocusManager, as well as validating input with the
InputVerifier.

In Chapter 3, you'll meet the Model-View-Controller (MVC) architecture of the Swing
component set. You'll learn how MVC can make your user interface development efforts
much easier.

57

CHAPTER 3

The Model-View-Controller
Architecture

Chapter 2 explored how to deal with event producers and consumers with regard to Swing
components. We looked at how event handling with Swing components goes beyond the
event-handling capabilities of the original AWT components. In this chapter, we will take the
Swing component design one step further to examine what is called the Model-View-Controller
(MVCQ) architecture.

Understanding the Flow of MVC

First introduced in Smalltalk in the late 1980s, the MVC architecture is a special form of the
Observer pattern described in Chapter 2. The model part of the MVC holds the state of a
component and serves as the Subject. The view part of the MVC serves as the Observer of the
Subject to display the model’s state. The view creates the controller, which defines how the
user interface reacts to user input.

MVC Communication

Figure 3-1 shows how the MVC elements communicate—in this case, with Swing’s multiline
text component, the JTextArea. In MVC terms, the JTextArea serves as the view part within the
MVC architecture. Displayed within the component is a Document, which is the model for the
JTextArea. The Document stores the state information for the JTextArea, such as the text contents.
Within the JTextArea is the controller, in the form of an InputMap. It maps keyboard input to
commands in an ActionMap, and those commands are mapped to TextAction objects, which
can modify the Document. When the modification happens, the Document creates a
DocumentEvent and sends it back to the JTextArea.

59

60 CHAPTER 3 THE MODEL-VIEW-CONTROLLER ARCHITECTURE

View Model Controller
JTextArea Document InputMap
Registers with <~ |
Receives user input ~—
Creates Translates to
model-level event
DocumentEvent
Created
| Sends state change |

Figure 3-1. MVC communication mechanism

UI Delegates for Swing Components

This example demonstrates an important aspect of the MVC architecture within the Swing
world. Complex interactions need to happen between the view and the controller. The Swing
design combines these two elements into a delegate object to simplify the overall design. This
results in each Swing component having a UI delegate that is in charge of rendering the current
state of the component and dealing with user input events.

Sometimes, the user events result in changes to the view that don’t affect the model. For
instance, the cursor position is an attribute of the view. The model doesn’t care about the posi-
tion of the cursor, only the text contents. User input that affects the cursor position isn’t passed
along to the model. At other times, user input that affects the contents of the Document (for
example, pressing the Backspace key) is passed along. Pressing the Backspace key results in a
character being removed from the model. Because of this tight coupling, each Swing component
has a Ul delegate.

To demonstrate, Figure 3-2 shows the makeup of the JTextArea, with respect to the model
and Ul delegate. The Ul delegate for the JTextArea starts with the TextUI interface, with
its basic implementation in the BasicTextUI class. In turn, this is specialized with the
BasicTextAreaUI for the JTextArea. The BasicTextAreaUI creates a view that is either a
PlainView or a WrappedPlainView. On the model side, things are much simpler. The Document
interface is implemented by the AbstractDocument class, which is further specialized by the
PlainDocument.

The text components will be explained more fully in Chapters 15 and 16. As the diagram in
Figure 3-2 demonstrates, much is involved in working with the text components. In most cases,
you don’t need to deal with the specifics to the degree shown in this figure. However, all of
these classes are working behind the scenes. The UI-delegate part of the MVC architecture will
be discussed further in Chapter 20, when we explore how to customize delegates.

Model

<<Interface>>
Document

WbstractDocument|

PlainDocument

Figure 3-2. The JTextArea MVC architecture

CHAPTER 3 THE MODEL-VIEW-CONTROLLER ARCHITECTURE
Delegate
ComponentUI
JComponent TextUI
JTextComponent BasicTextUI
View s<Creates>> JTextArea <<uses», BasicTextAreaUI
PlainView CompositeView
Box\f/iew
WIapped:lainView

Sharing Data Models

Because data models store only the state information, you can share a model across multiple

components. Then each component view can be used to modify the model.

In the case of Figure 3-3, three different JTextArea components are used to modify one
Document model. If a user modifies the contents of one JTextArea, the model is changed,
causing the other text areas to automatically reflect the updated document state. It isn’t necessary

for any Document view to manually notify others sharing the model.

61

62 CHAPTER 3 THE MODEL-VIEW-CONTROLLER ARCHITECTURE
Controller Controller Controller
Keymap Keymap Keymap
View View View
JTextAreal JTextArea2 JTextArea3
Model
Document

Figure 3-3. Sharing MVC data models

Sharing of a data model can be done in either one of two ways:

* You can create the data model apart from any component and tell each component to
use the data model.

* You can create one component first, get the model from the first component, and then
share it with the other components.

Listing 3-1 demonstrates how to share a data model using the latter technique.

Listing 3-1. Sharing an MVC Model

import java.awt.*;
import javax.swing.*;
import javax.swing.text.*;

public class ShareModel {
public static void main (String args[]) {
Runnable runner = new Runnable() {
public void run() {

JFrame frame = new JFrame("Sharing Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
Container content = frame.getContentPane();
JTextArea textareal = new JTextArea();
Document document = textareal.getDocument();
JTextArea textarea2 = new JTextArea(document);
JTextArea textarea3 = new JTextArea(document);
content.setlayout(new BoxLayout(content, BoxLayout.Y AXIS));
content.add(new JScrollPane(textareal));

CHAPTER 3 THE MODEL-VIEW-CONTROLLER ARCHITECTURE

content.add(new JScrollPane(textarea2));
content.add(new JScrollPane(textarea3));
frame.setSize (300, 400);
frame.setVisible (true);
}
};
EventQueue.invokelater(runner);
}
}

Figure 3-4 shows how this program might look after editing the shared document. Notice
that the three text areas are capable of viewing (or modifying) different areas of the document.
They aren’t limited to adding text only at the end, for instance. This is because each text area
manages the position and cursor separately. The position and cursor are attributes of the view,
not the model.

& Sharing Sample
impoart java.awt®,

impoart javax. swing.*;
impoart javax swing.text*,

o
M

public class Sharedaodel {

public static void main (String arg=0) {
=]} hla runnar — nawe B hlat §
| i | [»

unnable runner = new Runnabled {
public vaid rund {]
JFrame frame = new JFrame("Sharing Sample")| =|
frame.zetDefaultClozeCperation{JFrame EXIT_O
Container content = frame.getCantentPaned;
JTexthrea textareal = new JTextAread;

[4]

4 I D

¥
h
EventQueue.invokelaterirunner);

1
+

[«Tn]

] i I D

Figure 3-4. Sharing a document between JTextArea components

Understanding the Predefined Data Models

When working with Swing components, it’s helpful to understand the data models behind
each of the components because the data models store their state. Understanding the data
model for each component helps you to separate the parts of the component that are visual
(and thus part of the view) from those that are logical (and thus part of the data model). For
example, by understanding this separation, you can see why the cursor position within a
JTextArea isn’t part of the data model, but rather is part of the view.

Table 3-1 provides a complete listing of the Swing components, the interface that describes
the data model for each component, as well as the specific implementations. If a component
isn’t listed, that component inherits its data model from its parent class, most likely

63

64

CHAPTER 3 THE MODEL-VIEW-CONTROLLER ARCHITECTURE

AbstractButton. In addition, in some cases, multiple interfaces are used to describe a compo-
nent, because the data is stored in one model and the selection of the data is in a second model.
In the case of the JComboBox, the MutableComboBoxModel interface extends from ComboBoxModel.
No predefined class implements the ComboBoxModel interface without also implementing the
MutableComboBoxModel interface.

Table 3-1. Swing Component Models

Component Data Model Interface Implementations
AbstractButton ButtonModel DefaultButtonModel
JColorChooser ColorSelectionModel DefaultColorSelectionModel
JComboBox ComboBoxModel N/A
MutableComboBoxModel DefaultComboBoxModel
JFileChooser ListModel BasicDirectoryModel
Jlist ListModel AbstractListModel
DefaultlListModel
ListSelectionModel DefaultlListSelectionModel
IMenuBar SingleSelectionModel DefaultSingleSelectionModel
JPopupMenu SingleSelectionModel DefaultSingleSelectionModel
JProgressBar BoundedRangeModel DefaultBoundedRangeModel
JScrollBar BoundedRangeModel DefaultBoundedRangeModel
JSlider BoundedRangeModel DefaultBoundedRangeModel
JSpinner SpinnerModel AbstractSpinnerModel
SpinnerDateModel
SpinnerlListModel
SpinnerNumberModel
JTabbedPane SingleSelectionModel DefaultSingleSelectionModel
JTable TableModel AbstractTableModel
DefaultTableModel
TableColumnModel DefaultTableColumnModel
ListSelectionModel DefaultListSelectionModel
JTextComponent Document AbstractDocument
PlainDocument
StyledDocument
DefaultStyleDocument

HTMLDocument

CHAPTER 3 THE MODEL-VIEW-CONTROLLER ARCHITECTURE

Table 3-1. Swing Component Models (Continued)

Gomponent Data Model Interface Implementations
JToggleButton ButtonModel JToggleButton
ToggleButtonModel
JTree TreeModel DefaultTreeModel
TreeSelectionModel DefaultTreeSelectionModel

JTree.EmptySelectionModel

When directly accessing the model of a Swing component, if you change the model, all
registered views are automatically notified. This, in turn, causes the views to revalidate them-
selves to ensure that the components display their proper current states. This automatic
propagation of state changes is one reason why MVC has become so popular. In addition,
using the MVC architecture helps programs become more maintainable as they change over
time and their complexity grows. No longer will you need to worry about losing state informa-
tion if you change visual component libraries!

Summary

This chapter provided a quick look at how the Swing components use a modified MVC archi-
tecture. You explored what makes up this modified architecture and how one particular
component, the JTextArea, maps into this architecture. In addition, the chapter discussed the
sharing of data models between components and listed all the data models for the different
Swing components.

In Chapter 4, you'll start to look at the individual components that make up the Swing
component library. In addition, you'll explore the Swing component class hierarchy as you
examine the base JComponent component from the Swing library.

65

CHAPTER 4

Core Swing Components

In Chapter 3, you received a quick introduction to the Model-View-Controller (MVC) pattern
used by the components of the JFC/Swing project. In this chapter, you'll begin to explore how
to use the key parts of the many available components.

All Swing components start with the JComponent class. Although some parts of the Swing
libraries aren’t rooted with the JComponent class, all the components share JComponent as the
common parent class at some level of their ancestry. It’s with this JComponent class that
common behavior and properties are defined. In this chapter, you'll look at common function-
ality such as component painting, customization, tooltips, and sizing.

As far as specific JComponent descendent classes are concerned, you'll specifically look at
the JLabel, JButton, and JPanel, three of the more commonly used Swing component classes.
They require an understanding of the Icon interface for displaying images within components,
as well as of the ImageIcon class for when using predefined images and the GrayFilter class for
support. In addition, you'll look at the AbstractButton class, which serves as the parent class to
the JButton. The data model shared by all AbstractButton subclasses is the ButtonModel inter-
face; you'll explore that and the specific implementation class, the DefaultButtonModel.

JComponent Class

The JComponent class serves as the abstract root class from which all Swing components
descend. The JComponent class has 42 descendent subclasses, each of which inherits much of
the JComponent functionality. Figure 4-1 shows this hierarchy.

Although the JComponent class serves as the common root class for all Swing components,
many classes in the libraries for the Swing project descend from classes other than JComponent.
Those include all the high-level container objects such as JFrame, JApplet, and JInternalFrame;
all the MVC-related classes; event-handling-related interfaces and classes; and much more.
All of these will be discussed in later chapters.

Although all Swing components extend JComponent, the JComponent class extends the AWT
Container class, which, in turn, extends from the AWT Component class. This means that many
aspects of the JComponent are shared with both the AWT Component and Container classes.

67

68 CHAPTER 4 CORE SWING COMPONENTS

¢ [MCompanent]
9 [T [Mbstract Button]

[JButton

9 £ [Menutter]
D JCheckBoxMenultern
D JMenu
D JRadioButtonMenuttern

¢ £ HToggleButton]
[JcheckBox
[JRadioButton

D Box

D JColor Chooser

D JCormboBox

D JFileChooser

D JIrternal Frame

[JLabel

9 £ WLayeredPane]
D JDesktopPane

[st

D JMeruBar

D J0ptionPane

D JPanel

D JPopupMenu

D JProgressBar

D JRoctPane

D JSeroll Bar

D JSeroll Fane

D JSeparator

[sstider

D JEpinner

[} JsplitPane

[JTabbedpane

[y arabie

9 [HTextCompanert]

9 [[EditorPane]
D JTextPane

[y Jmestires

- [HTextField]
[JFormattedText Field

[JpasswordField

D JTacl Bar
D JTree

[siewrart

Figure 4-1. JComponent class hierarchy diagram

Note JComponent extends from the Container class, but most of the JComponent subclasses aren’t
themselves containers of other components. To see if a particular Swing component is truly a container,
check the BeanInfo for the class to see if the isContainer property is set to true. To get the BeanInfo
for a class, ask the Introspector.

CHAPTER 4 CORE SWING COMPONENTS 69

Component Pieces

The JComponent class defines many aspects of AWT components that go above and beyond the
capabilities of the original AWT component set. This includes customized painting behavior
and several different ways to customize display settings, such as colors, fonts, and any other
client-side settings.

Painting JComponent Objects

Because the Swing JComponent class extends from the Container class, the basic AWT painting
model is followed: All painting is done through the paint() method, and the repaint() method
is used to trigger updates. However, many tasks are done differently. The JComponent class opti-
mizes many aspects of painting for improved performance and extensibility. In addition, the
RepaintManager class is available to customize painting behavior even further.

Note The public void update(Graphics g) method, inherited from Component, is never invoked
on Swing components.

To improve painting performance and extensibility, the JComponent splits the painting
operation into three tasks. The public void paint(Graphics g) method is subdivided into three
separate protected method calls. In the order called, they are paintComponent(g), paintBorder(g),
and paintChildren(g), with the Graphics argument passed through from the original paint()
call. The component itself is first painted through paintComponent(g). If you want to customize
the painting of a Swing component, you override paintComponent() instead of paint(). Unless
you want to completely replace all the painting, you would call super.paintComponent() first,
as shown here, to get the default paintComponent () behavior.

public class MyComponent extends JPanel {
protected void paintComponent(Graphics g) {
super.paintComponent(g);
// Customize after calling super.paintComponent(g)

}

Note When running a program that uses Swing components in Java 5.0, the Graphics argument passed
to the paint () method and on to paintComponent () is technically a Graphics2D argument. Therefore,
after casting the Graphics argument to a Graphics2D object, you could use the Java 2D capabilities of the
platform, as you would when defining a drawing Stroke, Shape, or AffineTransform.

70

CHAPTER 4 CORE SWING COMPONENTS

The paintBorder() and paintChildren() methods tend not to be overridden. The
paintBorder () method draws a border around the component, a concept described more
fully in Chapter 7. The paintChildren() method draws the components within the Swing
container object, if any are present.

To optimize painting, the JComponent class provides three additional painting properties:
opaque, optimizedDrawingEnabled, and doubleBuffered. These work as follows:

* Opacity: The opaque property for a JComponent defines whether a component is trans-
parent. When transparent, the container of the JComponent must paint the background
behind the component. To improve performance, you can leave the JComponent opaque
and let the JComponent draw its own background, instead of relying on the container to
draw the covered background.

* Optimization: The optimizedDrawingEnabled property determines whether immediate
children can overlap. If children cannot overlap, the repaint time is reduced consider-
ably. By default, optimized drawing is enabled for most Swing components, except for
JDesktopPane, JLayeredPane, and JViewport.

* Double buffering: By default, all Swing components double buffer their drawing operations
into a buffer shared by the complete container hierarchy; that is, all the components
within a window (or subclass). This greatly improves painting performance, because
when double buffering is enabled (with the doubleBuffered property), there is only a
single screen update drawn.

Note For synchronous painting, you can call one of the public void paintImmediately() methods.
(Arguments are either a Rectangle or its parts—position and dimensions.) However, you'll rarely need to
call this directly unless your program has real-time painting requirements.

The public void revalidate() method of JComponent also offers painting support. When
this method is called, the high-level container of the component validates itself. This is unlike
the AWT approach requiring a direct call to the revalidate() method of that high-level
component.

The last aspect of the Swing component painting enhancements is the RepaintManager
class.

RepaintManager Class

The RepaintManager class is responsible for ensuring the efficiency of repaint requests on the
currently displayed Swing components, making sure the smallest “dirty” region of the screen is
updated when a region becomes invalid.

Although rarely customized, RepaintManager is public and provides a static installation
routine to use a custom manager: public static void setCurrentManager(RepaintManager
manager). To get the current manager, just ask with public static void currentManager
(JComponent). The argument is usually null, unless you've customized the manager to provide
component-level support. Once you have the manager, one thing you can do is get the off-
screen buffer for a component as an Image. Because the buffer is what is eventually shown on

CHAPTER 4 CORE SWING COMPONENTS I

the screen, this effectively allows you to do a screen dump of the inside of a window (or any
JComponent).

Component comp = ...

RepaintManager manager = RepaintManager.currentManager(null);

Image htmlImage = manager.getOffscreenBuffer(comp, comp.getWidth(),
comp.getHeight());

// or

Image volatileImage = manager.getVolatileOffscreenBuffer(comp, comp.getWidth(),
comp.getHeight());

Table 4-1 shows the two properties of RepaintManager. They allow you to disable double
buffering for all drawing operations of a component (hierarchy) and to set the maximum
double buffer size, which defaults to the end user’s screen size.

Table 4-1. RepaintManager Properties

Property Name Data Type Access
doubleBufferingEnabled boolean Read-write
doubleBufferMaximumSize Dimension Read-write

Tip To globally disable double-buffered drawing, call RepaintManager . currentManager (aComponent).
setDoubleBufferingEnabled(false).

Although it’s rarely done, providing your own RepaintManager subclass does allow you to
customize the mechanism of painting dirty regions of the screen, or at least track when the
painting is finished. Overriding any of the following four methods allows you to customize the
mechanisms:

public synchronized void addDirtyRegion(JComponent component, int x, int vy,
int width, int height)

public Rectangle getDirtyRegion(JComponent component)

public void markCompletelyClean(JComponent component)

public void markCompletelyDirty(JComponent component)

UlDefaults Class

The UIDefaults class represents a lookup table containing the display settings installed for the
current look and feel, such as which font to use within a JList, as well as what color or icon
should be displayed within a JTree node. The use of UIDefaults will be detailed in Chapter 20
with the coverage of Java’s pluggable look and feel architecture. Here, you will get a brief intro-
duction to the UIDefaults table.

72

CHAPTER 4 CORE SWING COMPONENTS

Whenever you create a component, the component automatically asks the UIManager to
look in the UIDefaults table for the current settings for that component. Most color- and font-
related component settings, as well as some others not related to colors and fonts, are configurable.
Ifyou don’tlike a particular setting, you can simply change it by updating the appropriate entry
in the UIDefaults lookup table.

Note Al predefined resource settings in the UIDefaults table implement the UIResource interface,
which allows the components to monitor which settings have been customized just by looking for those
settings that don’t implement the interface.

First, you need to know the name of the UIDefaults setting you want to change. You can
find the setting names in Appendix A of this book, which contains a complete alphabetical
listing of all known settings for the predefined look and feel types in J2SE 5.0. (These differ a
little from release to release.) In addition, included with the description of each component is
atable containing the UIResource-related property elements. (To find the specific component
section in the book, consult the table of contents or the index.)

Once you know the name of a setting, you can store a new setting with the public static
void put(Object key, Object value) method of UIManager, where key is the key string. For
instance, the following code will change the default background color of newly created buttons
to black and the foreground color to red:

UIManager.put("Button.background", Color.BLACK);
UIManager.put("Button.foreground"”, Color.RED);

Fetching UIResource Properties

If you're creating your own components, or just need to find out the current value setting, you
can ask the UIManager. Although the public static Object get(Object key) method is the
most generic, it requires you to cast the return value to the appropriate class type. Alternatively, you
could use one of the more specific getXXX() methods, which does the casting for you, to return
the appropriate type:

public static boolean getBoolean(Object key)
public static Border getBorder(Object key)

public static Color getColor(Object key)

public static Dimension getDimension(Object key)
public static Font getFont(Object key)

public static Icon getIcon(Object key)

public static Insets getInsets(Object key)

public static int getInt(Object key)

public static String getString(Object key)

public static ComponentUI getUI(JComponent target)

There is a second set of overloaded methods that accept a second argument for the Locale.

CHAPTER 4 CORE SWING COMPONENTS

Note You can also work with the UIDefaults directly, by calling the public static UIDefaults
getDefaults() method of UIManager.

Client Properties

In addition to the UIManager maintaining a table of key/value pair settings, each instance of
every component can manage its own set of key/value pairs. This is useful for maintaining
aspects of a component that may be specific to a particular look and feel, or for maintaining
data associated with a component without requiring the definition of new classes or methods
to store such data.

public final void putClientProperty(Object key, Object value)
public final Object getClientProperty(Object key)

Note Calling putClientProperty () with a value of null causes the key to be removed from the client
property table.

For instance, the JTree class has a property with the Metal look and feel for configuring the
line style for connecting or displaying nodes within a JTree. Because the setting is specific to
one look and feel, it doesn’t make sense to add something to the tree API. Instead, you set the
property by calling the following on a particular tree instance:

tree.putClientProperty("JTree.lineStyle", "None")

Then, when the look and feel is the default Metal, lines will connect the nodes of the tree.
If another look and feel is installed, the client property will be ignored. Figure 4-2 shows a tree
with and without lines.

—ioix]
3 JTree |~ |23 JTree =
¢ calars ¢ Jcalors
D hlue D hlue
D vinlet 1 D vinlet 1
D red I D red I
D yellow D yellow
¢ [sports ? [sports
[y basketban | | [y basketban | |
[soccer [soccer
[foothan [foothan
[hockey | =) [hackey __|~]

Figure 4-2. A JTree, with and without angled lines

73

74 CHAPTER 4 CORE SWING COMPONENTS

Note The list of client properties is probably one of the least documented aspects of Swing. Chapter 20
lists the available properties | was able to determine. Also, while Metal is the default look and feel, what you
see is called Ocean. Ocean is a theme of the Metal look and feel and makes Metal look a bit flashier.

JComponent Properties

You've seen some of the pieces shared by the different JComponent subclasses. Now it’s time to
look at the JavaBeans properties. Table 4-2 shows the complete list of properties defined by
JComponent, including those inherited through the AWT Container and Component classes.

Table 4-2. JComponent Properties

Property Name Data Type Component Container JComponent
Access Access Access
accessibleContext AccessibleContext Read-only N/A Read-only
actionMap ActionMap N/A N/A Read-write
alignmentX float Read-only Read-only Read-write
alignmenty float Read-only Read-only Read-write
ancestorlListeners AncestorListener[] N/A N/A Read-only
autoscrolls boolean N/A N/A Read-write
background Color Read-write N/A Write-only
bound
backgroundSet boolean Read-only N/A N/A
border Border N/A N/A Read-write
bound
bounds Rectangle Read-write N/A N/A
colorModel ColorModel Read-only N/A N/A
componentCount int N/A Read-only N/A
componentListeners ComponentListener[] Read-only N/A N/A
componentOrientation ComponentOrientation Read-write N/A N/A
bound
componentPopupMenu JPopupMenu N/A N/A Read-write
components Component[] N/A Read-only N/A
containerlListeners ContainerListener[] N/A Read-only N/A
cursor Cursor Read-write N/A N/A
cursorSet boolean Read-only N/A N/A
debugGraphicsOptions int N/A N/A Read-write
displayable boolean Read-only N/A N/A

CHAPTER 4 CORE SWING COMPONENTS 75
Table 4-2. JComponent Properties (Continued)
Property Name Data Type Component Container JComponent
Access Access Access
doubleBuffered boolean Read-only N/A Read-write
dropTarget DropTarget Read-write N/A N/A
enabled boolean Read-write N/A Write-only
bound
focusable boolean Read-write N/A N/A
bound
focusCycleRoot boolean N/A Read-write N/A
bound
focusCycleRootAncestor Container Read-only N/A N/A
focuslListeners FocusListener[] Read-only N/A N/A
focusOwner boolean Read-only N/A N/A
focusTraversalKeysEnabled boolean Read-write N/A N/A
bound
focusTraversalPolicy FocusTraversalPolicy N/A Read-write N/A
bound
focusTraversalPolicyProvider boolean N/A Read-write N/A
bound
focusTraversalPolicySet boolean N/A Read-only N/A
font Font Read-write Write-only Write-only
bound
fontSet boolean Read-only N/A N/A
foreground Color Read-write N/A Write-only
bound
foregroundSet boolean Read-only N/A N/A
graphics Graphics Read-only N/A Read-only
graphicsConfiguration GraphicsConfiguration Read-only N/A N/A
height int Read-only N/A Read-only
hierarchyBoundsListeners HierarchyBoundsListener[] Read-only N/A N/A
hierarchylListeners Hierarchylistener[] Read-only N/A N/A
ignoreRepaint boolean Read-write N/A N/A
inheritsPopupMenu boolean N/A N/A Read-write
inputContext InputContext Read-only N/A N/A
inputMap InputMap N/A N/A Read-only
inputMethodlListeners InputMethodListener[] Read-only N/A N/A
inputMethodRequests InputMethodRequests Read-only N/A N/A

76 CHAPTER 4 CORE SWING COMPONENTS

Table 4-2. JComponent Properties (Continued)

Property Name Data Type Gomponent Container JComponent
Access Access Access
inputVerifier InputVerifier N/A N/A Read-write
bound
insets Insets N/A Read-only Read-only
keyListeners KeyListener[] Read-only N/A N/A
layout LayoutManager N/A Read-write N/A
lightweight boolean Read-only N/A N/A
locale Locale Read-write N/A N/A
bound
location Point Read-write N/A N/A
locationOnScreen Point Read-only N/A N/A
maximumSize Dimension Read-write Read-only Read-write
bound
maximumSizeSet boolean Read-only N/A N/A
minimumSize Dimension Read-write Read-only Read-write
bound
minimumSizeSet boolean Read-only N/A N/A
mouselListeners Mouselistener[] Read-only N/A N/A
mouseMotionListeners MouseMotionListener[| Read-only N/A N/A
mousePosition Point Read-only N/A N/A
mouselWheellListeners MouseWheellistener Read-only N/A N/A
name String Read-write N/A N/A
bound
opaque boolean Read-only N/A Read-write
bound
optimizedDrawingEnabled boolean N/A N/A Read-only
paintingTile boolean N/A N/A Read-only
parent Container Read-only N/A N/A
preferredSize Dimension Read-write Read-only Read-write
bound
preferredSizeSet boolean Read-only N/A N/A
propertyChangelisteners PropertyChangelListener[] Read-only N/A N/A
registeredKeyStrokes KeyStroke[] N/A N/A Read-only
requestFocusEnabled boolean N/A N/A Read-write

rootPane JRootPane N/A N/A Read-only

CHAPTER 4

Table 4-2. JComponent Properties (Continued)

CORE SWING COMPONENTS

Property Name Data Type Component Container JComponent
Access Access Access
showing boolean Read-only N/A N/A
size Dimension Read-write N/A N/A
toolkit Toolkit Read-only N/A N/A
tooltipText String N/A N/A Read-write
topLevelAncestor Container N/A N/A Read-only
transferHandler TransferHandler N/A N/A Read-write
bound
treelock Object Read-only N/A N/A
uiClassID String N/A N/A Read-only
valid boolean Read-only N/A N/A
validateRoot boolean N/A N/A Read-only
verifyInputWhenFocusTarget boolean N/A N/A Read-write
bound
vetoableChangelisteners VetoableChangelistener|] N/A N/A Read-only
visible boolean Read-write N/A Write-only
visibleRect Rectangle N/A N/A Read-only
width int Read-only N/A Read-only
X int Read-only N/A Read-only
y int Read-only N/A Read-only

Note Additionally, there’s a read-only class property defined at the Object level, the parent of the

Component class.

Including the properties from the parent hierarchy, approximately 92 properties of
JComponent exist. As that number indicates, the JComponent class is extremely well suited for

visual development. There are roughly ten categories of JComponent properties, as described in
the following sections.

Position-Oriented Properties

The x and y properties define the location of the component relative to its parent. The
locationOnScreen is just another location for the component, this time relative to the screen’s
origin (the upper-left corner). Thewidth and height properties define the size of the component.
The visibleRect property describes the part of the component visible within the topLevelAncestor,
whereas the bounds property defines the component’s area, whether visible or not.

78

CHAPTER 4 CORE SWING COMPONENTS

Component-Set-Oriented Properties

The components and componentCount properties enable you to find out what the children
components are of the particular JComponent. For each component in the components property
array, the current component would be its parent. In addition to determining a component’s
parent, you can find out its rootPane or topLevelAncestor.

Focus-Oriented Properties

The focusable, focusCycleRoot, focusCycleRootAncestor, focusOwner, focusTraversalKeysEnabled,
focusTraversalPolicy, focusTraversalPolicyProvider, focusTraversablePolicySet,
requestFocusEnabled, verifyInputhWhenFocusTarget, and inputVerifier properties define the
set of focus-oriented properties. These properties control the focus behavior of JComponent and
were discussed in Chapter 2.

Layout-Oriented Properties

The alignmentX, alignmentY, componentOrientation, layout, maximumSize, minimumSize,
preferredSize, maximumSizeSet, minimumSizeSet, and preferredSizeSet properties are
used to help with layout management.

Painting Support Properties

The background and foreground properties describe the current drawing colors. The font property
describes the text style to draw. The backgroundSet, foregroundSet, and fontSet properties
describe if the properties are explicitly set. The insets and border properties are intermixed
to describe the drawing of a border around a component. The graphics property permits real-
time drawing, although the paintImmediately() method might now suffice.

To improve performance, there are the opaque (false is transparent), doubleBuffered,
ignoreRepaint, and optimizedDrawingEnabled properties. The colorModel and paintingTile
properties store intermediate drawing information. The graphicsConfiguration property adds
support for virtual devices.

debugGraphicsOption allows you to slow down the drawing of your component if you can’t
figure out why it’s not painted properly. The debugGraphicsOption property is set to one or
more of the settings shown in Table 4-3.

Table 4-3. DebugGraphics Settings

DebugGraphics Settings Description

DebugGraphics.BUFFERED_OPTION Causes a window to pop up, displaying the drawing of
the double-buffered image

DebugGraphics.FLASH_OPTION Causes the drawing to be done more slowly, flashing
between steps

DebugGraphics.LOG_OPTION Causes a message to be printed to the screen as each
step is done

DebugGraphics.NONE_OPTION Disables all options

CHAPTER 4 CORE SWING COMPONENTS

You can combine multiple DebugGraphics settings with the bitwise OR (|) operator, as in
this example:

JComponent component = new ...();
component . setDebugGraphicsOptions(DebugGraphics.BUFFERED OPTION |
DebugGraphics.FLASH OPTION | DebugGraphics.LOG OPTION);

Internationalization Support Properties

The inputContext, inputMethodRequests, and locale properties help when creating multilingual
operations.

State Support Properties

To get state information about a component, all you have to do is ask; there’s much you can
discover. The autoscrolls property lets you place a component within a JViewport and it auto-
matically scrolls when dragged. The validateRoot property is used when revalidate() has
been called and returns true when the current component is at the point it should stop. The
remaining seven properties are self-explanatory: displayable, dropTarget, enabled, lightweight,
showing, valid, and visible.

Event Support Properties

The registeredKeyStrokes, inputMap, and actionMap properties allow you to register keystroke
responses with a window. All the getXXXListeners() methods allow you to get the current set
of listeners for a particular listener type.

Pop-Up Support Properties

There are two types of pop-ups associated with a component: tooltips and pop-up menus.
The toolTipText property is set to display pop-up support text over a component. The
componentPopupMenu and inheritsPopupMenu properties are related to automatically showing
pop-up menus associated with the component. The mousePosition property helps to position
these.

Other Properties

The remaining properties don’t seem to have any kind of logical grouping. The accessibleContext
property is for support with the javax.accessibility package. The cursor property lets you
change the cursor to one of the available cursors, where cursorSet is used to recognize when
the property is explicitly set. The toolkit property encapsulates platform-specific behaviors
for accessing system resources. The transferHandler property is there for drag-and-drop
support. The name property gives you the means to recognize a particular instance of a class.
The treelock property is the component tree-synchronization locking resource. The uiClassID
property is new; it allows subclasses to return the appropriate class ID for their specific instance.

79

80

CHAPTER 4 CORE SWING COMPONENTS

Handling JComponent Events

There are many different types of events that all JComponent subclasses share. Most of these
come from parent classes, like Component and Container. First, you’ll explore the use of
PropertyChangelistener, which is inherited from Container. Then you’ll look at the use of two
event-handling capabilities shared by all JComponent subclasses: VetoableChangelistener and
AncestorlListener. Finally, you'll see the complete set of listeners inherited from Component.

Listening to Component Events with a PropertyChangeListener

The JComponent class has several component bound properties, directly and indirectly. By
binding a PropertyChangelistener to the component, you can listen for particular JComponent
property changes, and then respond accordingly.

public interface PropertyChangelistener extends Eventlistener {
public void propertyChange(PropertyChangeEvent propertyChangeEvent);
}

To demonstrate, the PropertyChangelistener in Listing 4-1 demonstrates the behavior you
might need when listening for changes to an Action type property within a JButton component.
The property that changes determines which if block is executed.

Listing 4-1. Watching for Changes to a JButton

import java.beans.*;
import javax.swing.*;

public class ActionChangedListener implements PropertyChangelistener {
private JButton button;

public ActionChangedListener(JButton button) {
this.button = button;

}

public void propertyChange(PropertyChangeEvent e) {

String propertyName = e.getPropertyName();

if (e.getPropertyName().equals(Action.NAME)) {
String text = (String)e.getNewValue();
button.setText(text);
button.repaint();

} else if (propertyName.equals("enabled")) {
Boolean enabledState = (Boolean)e.getNewValue();
button.setEnabled(enabledState.booleanValue());
button.repaint();

CHAPTER 4 CORE SWING COMPONENTS

} else if (e.getPropertyName().equals(Action.SMALL ICON)) {
Icon icon = (Icon)e.getNewValue();
button.setIcon(icon);
button.invalidate();
button.repaint();

}

}
}

Note You can bind a PropertyChangelistener to a specific property by adding the listener with
addPropertyChangelListener(String propertyName, PropertyChangelListener listener).
This allows your listener to avoid having to check for the specific property that changed.

Listening to JComponent Events with a VetoableChangeListener

The VetoableChangelListener is another JavaBeans listener that Swing components use.
It works with constrained properties, whereas the PropertyChangelistener works with
only bound properties. A key difference between the two is that the public void
vetoableChange(PropertyChangeEvent propertyChangeEvent) method can throw a
PropertyVetoException if the listener doesn’t like the requested change.

public interface VetoableChangelistener extends Eventlistener {
public void vetoableChange(PropertyChangeEvent propertyChangeEvent)
throws PropertyVetoException;

Note Only one Swing class, JInternalFrame, has constrained properties. The listener is meant primarily for
programmers to use with their own newly created components.

Listening to JComponent Events with an AncestorListener

You can use an AncestorlListener to find out when a component moves, is made visible, or is
made invisible. It’s useful if you permit your users to customize their screens by moving
components around and possibly removing components from the screens.

public interface AncestorlListener extends EventlListener {
public void ancestorAdded(AncestorEvent ancestorEvent);
public void ancestorMoved(AncestorEvent ancestorEvent);
public void ancestorRemoved(AncestorEvent ancestorEvent);

}

81

82

CHAPTER 4 CORE SWING COMPONENTS

To demonstrate, Listing 4-2 associates an AncestorlListener with the root pane of a JFrame.
You'll see the messages Removed, Added, and Moved when the program first starts up. In addition,
you'll see Moved messages when you drag the frame around.

Listing 4-2. Listening for Ancestor Events

import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;

public class AncestorSampler {
public static void main (String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Ancestor Sampler");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

AncestorlListener ancestorListener = new AncestorListener() {
public void ancestorAdded(AncestorEvent ancestorEvent) {
System.out.println ("Added");
}
public void ancestorMoved(AncestorEvent ancestorEvent) {
System.out.println ("Moved");
}
public void ancestorRemoved(AncestorEvent ancestorEvent) {
System.out.println ("Removed");
}
b
frame.getRootPane().addAncestorListener(ancestorListener);
frame.setSize(300, 200);
frame.setVisible(true);
frame.getRootPane().setVisible(false);
frame.getRootPane().setVisible(true);
}
b
EventQueue.invokelLater(runner);
}
}

Listening to Inherited Events of a JComponent

In addition to the ability to listen for an instance of an AncestorEvent or PropertyChangeEvent
with a JComponent, the JComponent inherits the ability to listen to many other events from its
Container and Component superclasses.

CHAPTER 4 CORE SWING COMPONENTS 83

Table 4-4 lists ten event listeners. You may find yourself using the JComponent listener
interfaces quite a bit, but the older ones work, too. Use the ones most appropriate for the task
athand.

Table 4-4. JComponent Inherited Event Listeners

Class Event Listener Event Object

Component ComponentListener componentHidden(ComponentEvent)
componentMoved (ComponentEvent)
componentResized(ComponentEvent)
componentShown(ComponentEvent)

Component FocusListener focusGained(FocusEvent)
focusLost(FocusEvent)

Component HierarchyBoundsListener ancestorMoved(HierarchyEvent)

ancestorResized(HierarchyEvent)

Component HierarchylListener hierarchyChanged(HierarchyEvent)
Component InputMethodlListener caretPositionChanged
(InputMethodEvent)

inputMethodTextChanged
(InputMethodEvent)

Component KeyListener keyPressed(KeyEvent)
keyReleased(KeyEvent)
keyTyped(KeyEvent)

Component Mouselistener mouseClicked(MouseEvent)
mouseEntered(MouseEvent)
mouseExited(MouseEvent)
mousePressed(MouseEvent)
mouseReleased(MouseEvent)

Component MouseMotionListener mouseDragged (MouseEvent)
mouseMoved(MouseEvent)

Component MouseWheellistener mouseWheelMoved (MouseWheelEvent)

Container ContainerListener componentAdded(ContainerEvent)

componentRemoved(ContainerEvent)

84

CHAPTER 4 CORE SWING COMPONENTS

JToolTip Class

The Swing components support the ability to display brief pop-up messages when the cursor
rests over them. The class used to display pop-up messages is JToolTip.

Creating a JToolTip

Calling the public void setToolTipText(String text) method of JComponent automatically
causes the creation of a JToolTip instance when the mouse rests over a component with the
installed pop-up message. You don’t normally call the JToolTip constructor directly. There’s
only one constructor, and it’s of the no-argument variety.

Tooltip text is normally one line long. However, if the text string begins with <html> (in any
case), then the contents can be any HTML 3.2 formatted text. For instance, the following line
causes the pop-up message shown in Figure 4-3:

component.setToolTipText("<html>Tooltip
Message");

i Tooltip Sample] =10l

oaltip
hessage

Figure 4-3. HTML-based tooltip text

Creating Customized JToolTip Objects

You can easily customize the display characteristics for all pop-up messages by setting UIResource
elements for JToolTip, as shown in the “Customizing a JToolTip Look and Feel” section later in
this chapter.

The JComponent class defines an easy way for you to customize the display characteristics
of the tooltip when it’s placed over a specific component. Simply subclass the component you
want to customize and override its inherited public JToolTip createToolTip() method. The
createToolTip() method is called when the ToolTipManager has determined that it’s time to
display the pop-up message.

To customize the pop-up tooltip appearance, just override the method and customize the
JToolTipreturned from the inherited method. For instance, the following source demonstrates
the setting of a custom coloration for the tooltip for a JButton, as shown in Figure 4-4.

JButton b = new JButton("Hello, World") {
public JToolTip createToolTip() {
JToolTip tip = super.createToolTip();
tip.setBackground(Color.YELLOW);
tip.setForeground(Color.RED);
return tip;
}
1

CHAPTER 4 CORE SWING COMPONENTS

& Tooltip Sample - | Ellll
Hello, World N
Hella, Ywarld

Figure 4-4. Tooltip text displayed with custom colors

After the JToolTip has been created, you can configure the inherited JComponent properties
or any of the properties specific to JToolTip, as shown in Table 4-5.

Table 4-5. /ToolTip Properties

Property Name Data Type Access

accessibleContext AccessibleContext Read-only
component JComponent Read-write
tipText String Read-write
uI ToolTipUI Read-only
UIClassID String Read-only

Displaying Positional Tooltip Text

Swing components can even support the display of different tooltip text, depending on where
the mouse pointer is located. This requires overriding the public boolean contains(int x, int y)
method, which originates from the Component class.

For instance, after enhancing the customized JButton created in the previous section
(Figure 4-4), the tooltip text will differ, depending on whether or not the mouse pointer is
within 50 pixels from the left edge of the component.

JButton button = new JButton("Hello, World") {
public JToolTip createToolTip() {
JToolTip tip = super.createToolTip();
tip.setBackground(Color.YELLOW);
tip.setForeground(Color.RED);
return tip;
}
public boolean contains(int x, int y) {
if (x < 50) {
setToolTipText("Got Green Eggs?");
} else {
setToolTipText("Got Ham?");
}
return super.contains(x, y);
}
b

85

86

=

. Hello, Wiorld | ‘
{ Pt

CHAPTER 4 CORE SWING COMPONENTS

Customizing a JToolTip Look and Feel

Each installable Swing look and feel provides a different JToolTip appearance and a set of
default UIResource value settings. Figure 4-5 shows the appearance of the JToolTip component
for the preinstalled set of look and feel types: Motif, Windows, and Ocean.

x| BT o

I Hello, World

i I, Hello, \wedld

S
i

Got Green Eqos? I

Motif Windows Ocean

Figure 4-5. JToolTip under different look and feel types

The available set of UIResource-related properties for a JToolTip is shown in Table 4-6.
For the JToolTip component, there are nine different properties.

Table 4-6. /ToolTip UlResource Elements

Property String Object Type
ToolTip.background Color
ToolTip.backgroundInactive Color
ToolTip.border Border
ToolTip.borderInactive Color
ToolTip.font Font
ToolTip.foreground Color
ToolTip.foregroundInactive Color
ToolTip.hideAccelerator Boolean
ToolTipUI String

As noted earlier in this chapter, the JToolTip class supports the display of arbitrary HTML
content. This permits the display of multiple-column and multiple-row input.

ToolTipManager Class

Although the JToolTip is something of a passive object, in the sense that the JComponent creates
and shows the JToolTip on its own, there are many more configurable aspects of its usage.
However, these configurable aspects are the responsibility of the class that manages tooltips,
not the JToolTip itself. The class that manages tooltip usage is aptly named ToolTipManager.
With the Singleton design pattern, no constructor for ToolTipManager exists. Instead, you have
access to the current manager through the static sharedInstance() method of ToolTipManager.

CHAPTER 4 CORE SWING COMPONENTS

ToolTipManager Properties

Once you have accessed the shared instance of ToolTipManager, you can customize when and
if tooltip text appears. As Table 4-7 shows, there are five configurable properties.

Table 4-7. ToolTipManager Properties

Property Name Data Type Access

dismissDelay int Read-write
enabled boolean Read-write
initialDelay int Read-write
lightWeightPopupEnabled boolean Read-write
reshowDelay int Read-only

Initially, tooltips are enabled, but you can disable them with ToolTipManager.
sharedInstance().setEnabled(false). This allows you to always associate tooltips with
components, while letting the end user enable and disable them when desired.

There are three timing-oriented properties: initialDelay, dismissDelay, and reshowDelay.
They all measure time in milliseconds. The initialDelay property is the number of milliseconds
the user must rest the mouse inside the component before the appropriate tooltip text appears.
The dismissDelay specifies the length of time the text appears while the mouse remains
motionless; if the user moves the mouse, it also causes the text to disappear. The reshowDelay
determines how long a user must remain outside a component before reentry would cause the
pop-up text to reappear.

The lightWeightPopupEnabled property is used to determine the pop-up window type to
hold the tooltip text. If the property is true and the pop-up text fits entirely within the bounds
of the top-level window, the text appears within a Swing JPanel. If this property is false and the
pop-up text fits entirely within the bounds of the top-level window, the text appears within an
AWT Panel. If part of the text wouldn’t appear within the top-level window no matter what the
property setting is, the pop-up text would appear within a Window.

Although not properties of ToolTipManager, two other methods of ToolTipManager are
worth mentioning:

public void registerComponent(JComponent component)
public void unregisterComponent(JComponent component)

When you call the setToolTipText () method of JComponent, this causes the component to
register itself with the ToolTipManager. There are times, however, when you need to register
a component directly. This is necessary when the display of part of a component is left to
another renderer. With JTree, for instance, a TreeCellRenderer displays each node of the tree.
When the renderer displays the tooltip text, you “register” the JTree and tell the renderer what
text to display.

CHAPTER 4 CORE SWING COMPONENTS

JTree tree = new JTree(...);
ToolTipManager.sharedInstance().registerComponent(tree);
TreeCellRenderer renderer = new ATreeCellRenderer(...);
tree.setCellRenderer(renderer);

public class ATreeCellRenderer implements TreeCellRenderer {

public Component getTreeCellRendererComponent(JTree tree, Object value,
boolean selected, boolean expanded, boolean leaf, int row, boolean hasFocus) {

renderer.setToolTipText("Some Tip");
return renderer;
}
}

Note If this sounds confusing, don’t worry. We’ll revisit the JTree in Chapter 17.

JLabel Class

The first real Swing component to examine closely is the simplest, the JLabel. The JLabel
serves as the replacement component for the AWT Label but it can do much more. Whereas the
AWT Label is limited to a single line of text, the Swing JLabel can have text, images, or both. The
text can be a single line of text or HTML. In addition JLabel can support different enabled and
disabled images. Figure 4-6 shows some sample JLabel components.

[tobelsomple S TE]

Text Label A
HTML
A Warning Lane!
Multi-line

Figure 4-6. Sample JLabel components

Note A JLabel subclass is used as the default renderer for each of the JList, JComboBox, JTable,
and JTree components.

Creating a JLabel

There are six constructors for JLabel:

public JLabel()

JLabel label = new JlLabel();

public JLabel(Icon image)

Icon icon = new ImageIcon("dog.jpg");
JLabel label = new JlLabel(icon);

public JLabel(Icon image, int horizontalAlignment)

Icon icon = new ImageIcon("dog.jpg");

JLabel label = new JlLabel(icon, JlLabel.RIGHT);

public JLabel(String text)

JLabel label = new JLabel("Dog");

CHAPTER 4 CORE SWING COMPONENTS

public JLabel(String text, int horizontalAlignment)

JLabel label = new JLabel("Dog", JLabel.RICHT);

public JLabel(String text, Icon icon, int horizontalAlignment)
Icon icon = new ImageIcon("dog.jpg");
JLabel label = new JLabel("Dog", icon, JlLabel.RIGHT);

With the constructors for JLabel, you can customize any of three properties of the
JLabel: text, icon, or horizontalAlignment. By default, the text and icon properties are empty,
whereas the initial horizontalAlignment property setting depends on the constructor arguments.
These settings can be any of JLabel.LEFT, JLabel.CENTER, or JLabel.RIGHT. In most cases, not
specifying the horizontalAlignment setting results in a left-aligned label. However, if only the
initial icon is specified, then the default alignment is centered.

JLabel Properties

Table 4-8 shows the 14 properties of JLabel. They allow you to customize the content, position,

and (in a limited sense) the behavior of the JLabel.

Table 4-8. /Label Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
disabledIcon Icon Read-write bound
displayedMnemonic char Read-write bound
displayedMnemonicIndex int Read-write bound
horizontalAlignment int Read-write bound

horizontalTextPosition

int

Read-write bound

89

90

CHAPTER 4 CORE SWING COMPONENTS

Table 4-8. /Label Properties (Continued)

Property Name Data Type Access

icon Icon Read-write bound
iconTextGap int Read-write bound
labelFor Component Read-write bound
text String Read-write bound
U1 LabelUI Read-write
UIClassID String Read-only
verticalAlignment int Read-write bound
verticalTextPosition int Read-write bound

The content of the JLabel is the text and its associated image. Displaying an image within
aJlabel will be discussed in the “Interface Icon” section later in this chapter. However, you can
display different icons, depending on whether the JLabel is enabled or disabled. By default, the
icon is a grayscaled version of the enabled icon, if the enabled icon comes from an Image object
(ImageIcon, as described later in the chapter). If the enabled icon doesn’t come from an Image,
there’s no icon when JLabel is disabled, unless manually specified.

The position of the contents of the JLabel is described by four different properties:
horizontalAlignment, horizontalTextPosition, verticalAlignment, and verticalTextPosition.
The horizontalAlignment and verticalAlignment properties describe the position of the contents
of the JLabel within the container in which it’s placed.

Note Alignments have an effect only if there’s extra space for the layout manager to position the compo-
nent. If you're using a layout manager such as FlowLayout, which sizes components to their preferred size,
these settings will effectively be ignored.

The horizontal position can be any of the JLabel constants LEFT, RIGHT, or CENTER. The
vertical position can be TOP, BOTTOM, or CENTER. Figure 4-7 shows various alignment settings,
with the label reflecting the alignments.

The text position properties reflect where the text is positioned relative to the icon when
both are present. The properties can be set to the same constants as the alignment constants.
Figure 4-8 shows various text position settings, with each label reflecting the setting.

Note The constants for the different positions come from the SwingConstants interface that the
JLabel class implements.

0|
Top-Right
Bottom
Left
Top
RIGHT|
Bottom
Center

Figure 4-7. Various JLabel alignments

Left-Bottom A

< Lobeltentpor ———RTeIp

é Right-TOP

Cem&mer

A

Center-Bottom

Figure 4-8. Various JLabel text positions

JLabel Event Handling

CORE SWING COMPONENTS

No event-handling capabilities are specific to the JLabel. Besides the event-handling capabilities
inherited through JComponent, the closest thing there is for event handling with the JLabel is the
combined usage of the displayedMnemonic, displayedMnemonicIndex, and labelFor properties.
When the displayedMnemonic and labelFor properties are set, pressing the keystroke specified
by the mnemonic, along with the platform-specific hotkey (usually Alt), causes the input focus
to shift to the component associated with the labelFor property. This can be helpful when a
component doesn’t have its own manner of displaying a mnemonic setting, such as with all the
text input components. Here is an example, which results in the display shown in Figure 4-9:

JLabel label = new JlLabel("Username");
JTextField textField = new JTextField();
label.setDisplayedMnemonic(KeyEvent.VK_U);

label.setlLabelFor(textField);

£ LabelFor Sample

Username |

=10l x|

Submit

Figure 4-9. Using a JLabel to display the mnemonic for another component

91

92

CHAPTER 4 CORE SWING COMPONENTS

The displayedMnemonicIndex property adds the ability for the mnemonic highlighted to
not be the first instance of mnemonic in the label’s text. The index you specify represents the
position in the text, not the instance of the mnemonic. To highlight the second ein Username,
you would specify an index of 7: 1abel. setDisplayedMnemonicIndex(7).

Note The component setting of the 1abelFor property is stored as a client property of the JLabel with
the LABELED BY_ PROPERTY key constant. The setting is used for accessibility purposes.

Customizing a JLabel Look and Feel

Each installable Swing look and feel provides a different JLabel appearance and set of default
UIResource value settings. Although appearances differ based on the current look and feel, the
differences are minimal within the preinstalled set of look and feel types. Table 4-9 shows the
available set of UIResource-related properties for a JLabel. There are eight different properties
for the JLabel component.

Table 4-9. /Label UlResource Elements

Property String Object Type
Label.actionMap ActionMap
Label.background Color
Label.border Border
Label.disabledForeground Color
Label.disabledShadow Color
Label.font Font
Label. foreground Color
LabelUI String

Interface Icon

The Icon interface is used to associate glyphs with various components. A glyph (like a symbol
on a highway sign that conveys information nonverbally, such as “winding road ahead!”) can
be a simple drawing or a GIF image loaded from disk with the ImageIcon class. The interface
contains two properties describing the size and a method to paint the glyph.

public interface Icon {
// Properties
public int getIconHeight();
public int getIconWidth();
// Other methods
public void paintIcon(Component c, Graphics g, int x, int y);

CHAPTER 4 CORE SWING COMPONENTS

Creating an Icon

Creating an Icon is as simple as implementing the interface. All you need to do is specify the
size of the icon and what to draw. Listing 4-3 shows one such Icon implementation. The icon is
a diamond-shaped glyph in which the size, color, and filled-status are all configurable.

Tip Inimplementing the paintIcon() method of the Icon interface, translate the drawing coordinates
of the graphics context based on the x and y position passed in, and then translate them back when the
drawing is done. This greatly simplifies the different drawing operations.

Listing 4-3. Reusable Diamond Icon Definition

import javax.swing.*;
import java.awt.*;
public class DiamondIcon implements Icon {
private Color color;
private boolean selected;
private int width;
private int height;
private Polygon poly;
private static final int DEFAULT WIDTH = 10;
private static final int DEFAULT HEIGHT = 10;

public DiamondIcon(Color color) {
this(color, true, DEFAULT WIDTH, DEFAULT HEIGHT);

}

public DiamondIcon(Color color, boolean selected) {
this(color, selected, DEFAULT WIDTH, DEFAULT HEICHT);

}

public DiamondIcon(Color color, boolean selected, int width, int height) {
this.color = color;
this.selected = selected;
this.width = width;
this.height = height;
initPolygon();
}

private void initPolygon() {
poly = new Polygon();
int halfWidth = width/2;
int halfHeight = height/2;
poly.addPoint(0, halfHeight);
poly.addPoint(halfWidth, 0);

93

94

CHAPTER 4 CORE SWING COMPONENTS

poly.addPoint(width, halfHeight);
poly.addPoint(halfWidth, height);

}

public int getIconHeight() {
return height;

}

public int getIconWidth() {
return width;

}

public void paintIcon(Component c, Graphics g, int x, int y) {
g.setColor(color);
g.translate(x, y);
if (selected) {
g.fillPolygon(poly);

} else {
g.drawPolygon(poly);
}
g.translate(-x, -y);
}
}
Using an Icon

Once you have your Icon implementation, using the Icon is as simple as finding a component
with an appropriate property. For example, here’s the icon with a JLabel:

Icon icon = new DiamondIcon(Color.RED, true, 25, 25);
Jlabel label = new JlLabel(icon);

Figure 4-10 shows what such a label might look like.

£ Label Icon 10l =|

\ 4

Figure 4-10. Using an Icon in a JLabel

Imagelcon Class

The ImageIcon class presents an implementation of the Icon interface for creating glyphs from
AWT Image objects, whether from memory (a byte[1), off a disk (a file name), or over the

network (a URL). Unlike with regular Image objects, the loading of an ImageIcon is immediately
started when the ImageIcon is created, though it might not be fullyloaded when used. In addition,

CHAPTER 4 CORE SWING COMPONENTS 95

unlike Image objects, ImageIcon objects are serializable so that they can be easily used by
JavaBean components.

Creating an Imagelcon

There are nine constructors for an ImageIcon:

public ImageIcon()
Icon icon = new ImageIcon();
icon.setImage(anImage);

public ImageIcon(Image image)
Icon icon = new ImageIcon(anImage);

public ImageIcon(String filename)
Icon icon = new ImageIcon(filename);

public ImageIcon(URL location)
Icon icon = new ImageIcon(url);

public ImageIcon(byte imageData[])
Icon icon = new ImageIcon(aByteArray);

public ImageIcon(Image image, String description)
Icon icon = new ImageIcon(anImage, "Duke");

public ImageIcon(String filename, String description)
Icon icon = new ImageIcon(filename, filename);

public ImageIcon(URL location, String description)
Icon icon = new ImageIcon(url, location.getFile());

public ImageIcon(byte imageData[], String description)
Icon icon = new ImageIcon(aByteArray, "Duke");

The no-argument version creates an uninitialized version (empty). The remaining eight
offer the ability to create an ImageIcon from an Image, byte array, file name String, or URL, with
or without a description.

Using an Imagelcon

Using an ImageIcon is as simple as using an Icon: just create the ImageIcon and associate it with
a component.

Icon icon = new ImageIcon("Warn.gif");
JLabel label3 = new JLabel("Warning", icon, JLabel.CENTER)

96

CHAPTER 4 CORE SWING COMPONENTS

Imagelcon Properties

Table 4-10 shows the six properties of ImageIcon. The height and width of the ImageIcon are the
height and width of the actual Image object. The imagelLoadStatus property represents the results of
the loading of the ImageIcon from the hidden MediaTracker, either MediaTracker.ABORTED,
MediaTracker.ERRORED, or MediaTracker.COMPLETE.

Table 4-10. Imagelcon Properties

Property Name Data Type Access

description String Read-write
iconHeight int Read-only
iconWidth int Read-only
image Image Read-write
imageloadStatus int Read-only
imageObserver ImageObserver Read-write

Sometimes, it’s useful to use an ImageIcon to load an Image, and then just ask for the Image
object from the Icon.

ImageIcon imageIcon = new ImageIcon(...);
Image image = imageIcon.getImage();

There is one major problem with using ImageIcon objects: They don’t work when the
image and class file using the icon are both loaded in aJAR (Java archive) file, unless you explicitly
specify the full URL for the file within the JAR (jar:http://www.example.com/directory/
foo.jar!/com/example/image.gif). You can’t just specify the file name as a String and let the
ImageIcon find the file. You must manually get the image data first, and then pass the data
along to the ImageIcon constructor.

To help with loading images outside JAR files, Listing 4-4 shows an Imageloader class that
provides a public static Image getImage(Class relativeClass, String filename) method.
You specify both the base class where the image file relative is found and the file name for the
image file. Then you just need to pass the Image object returned to the constructor of ImageIcon.

Listing 4-4. Image Loading Support Class

import java.awt.*;
import java.io.*;

public final class Imageloader {

private Imageloader() {
}

CHAPTER 4 CORE SWING COMPONENTS

public static Image getImage(Class relativeClass, String filename) {
Image returnValue = null;
InputStream is = relativeClass.getResourceAsStream(filename);
if (is != null) {
BufferedInputStream bis = new BufferedInputStream(is);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
try {
int ch;
while ((ch = bis.read()) != -1) {
baos.write(ch);
}
returnValue = Toolkit.getDefaultToolkit().createImage(baos.toByteArray());
} catch (IOException exception) {
System.err.println("Error loading:
}
}

return returnValue;

}

n

+ filename);

}

Here’s how you use the helper class:

Image warnImage = Imageloader.getImage(LabellarSample.class, "Warn.gif");
Icon warnIcon = new ImageIcon(warnImage);
JLabel label2 = new JlLabel(warnIcon);

Tip Keep in mind that the Java platform supports GIF89A animated images.

GrayFilter Class

One additional class worth mentioning here is GrayFilter. Many of the Swing component
classes rely on this class to create a disabled version of an Image to be used as an Icon. The
components use the class automatically, but there might be times when you need an AWT
ImageFilter that does grayscales. You can convert an Image from normal to grayed out with
a call to the one useful method of the class: public static Image createDisabledImage
(Image image).

Image normallmage = ...
Image grayImage = GrayFilter.createDisabledImage(normalImage)

You can now use the grayed-out image as the Icon on a component:

Icon warningIcon = new ImageIcon(grayImage);
JLabel warninglabel = new JLabel(warningIcon);

97

98

CHAPTER 4 CORE SWING COMPONENTS

AbstractButton Class

The AbstractButton class is an important Swing class that works behind the scenes as the
parent class of all the Swing button components, as shown at the top of Figure 4-1. The
JButton, described in the “JButton Class” section later in this chapter, is the simplest of the
subclasses. The remaining subclasses are described in later chapters.

Each of the AbstractButton subclasses uses the ButtonModel interface to store their
data model. The DefaultButtonModel class is the default implementation used. In addition,
you can group any set of AbstractButton objects into a ButtonGroup. Although this grouping
is most natural with the JRadioButton and JRadioButtonMenuItem components, any of the
AbstractButton subclasses will work.

AbstractButton Properties

Table 4-11 lists the 32 properties (with mnemonic listed twice) of AbstractButton shared by all its
subclasses. They allow you to customize the appearance of all the buttons.

Table 4-11. AbstractButton Properties

Property Name Data Type Access

action Action Read-write bound
actionCommand String Read-write
actionlisteners ActionListener[] Read-only
borderPainted boolean Read-write bound
changelisteners Changelistener[] Read-only
contentAreaFilled boolean Read-write bound
disabledIcon Icon Read-write bound
disabledSelectedIcon Icon Read-write bound
displayedMnemonicIndex int Read-write bound
enabled boolean Write-only
focusPainted boolean Read-write bound
horizontalAlignment int Read-write bound
horizontalTextPosition int Read-write bound
icon Icon Read-write bound
iconTextGap int Read-write bound
itemListeners TtemListener[] Read-only

layout LayoutManager Write-only

margin Insets Read-write bound

mnemonic char Read-write bound

CHAPTER 4 CORE SWING COMPONENTS 99

Table 4-11. AbstractButton Properties (Continued)

Property Name Data Type Access

mnemonic int Write-only

model ButtonModel Read-write bound
multiClickThreshhold long Read-write
pressedIcon Icon Read-write bound
rolloverEnabled boolean Read-write bound
rolloverIcon Icon Read-write bound
rolloverSelectedIcon Icon Read-write bound
selected boolean Read-write
selectedIcon Icon Read-write bound
selectedObjects Object[] Read-only

text String Read-write bound
uI ButtonUI Read-write
verticalAlignment int Read-write bound
verticalTextPosition int Read-write bound

Note AbstractButton has a deprecated label property. You should use the equivalent text
property instead.

One property worth mentioningismultiClickThreshhold. This property represents a time,
in milliseconds. If a button is selected with a mouse multiple times within this time period,
additional action events won’t be generated. By default, the value is zero, meaning each press
generates an event. To avoid accidental duplicate submissions from happening in important
dialogs, set this value to some reasonable level above zero.

Tip Keep in mind that all AbstractButton children can use HTML with its text property to display
HTML content within the label. Just prefix the property setting with the string <html1>.

ButtonModel/Class DefaultButtonModel Interface

The ButtonModel interface is used to describe the current state of the AbstractButton component.
In addition, it describes the set of event listeners objects that are supported by all the different
AbstractButton children. Its definition follows:

100 CHAPTER 4 CORE SWING COMPONENTS

public interface ButtonModel extends ItemSelectable {
// Properties
public String getActionCommand();
public void setActionCommand(String newValue);
public boolean isArmed();
public void setArmed(boolean newValue);
public boolean isEnabled();
public void setEnabled(boolean newValue);
public void setGroup(ButtonGroup newValue);
public int getMnemonic();
public void setMnemonic(int newValue);
public boolean isPressed();
public void setPressed(boolean newValue);
public boolean isRollover();
public void setRollover(boolean newValue);
public boolean isSelected();
public void setSelected(boolean newValue);
// Listeners
public void addActionListener(ActionlListener listener);
public void removeActionlListener(ActionListener listener);
public void addChangelistener(Changelistener listener);
public void removeChangelListener(ChangelListener listener);
public void addItemlListener(ItemListener listener);
public void removeItemListener(ItemListener listener);

The specific implementation of ButtonModel you'll use, unless you create your own, is the
DefaultButtonModel class. The DefaultButtonModel class defines all the event registration
methods for the different event listeners and manages the button state and grouping within
a ButtonGroup. Its set of nine properties is shown in Table 4-12. They all come from the
ButtonGroup interface, except selectedObjects, which is new to the DefaultButtonModel class,
but more useful to the JToggleButton.ToggleButtonModel, which is discussed in Chapter 5.

Table 4-12. DefaultButtonModel Properties

Property Name Data Type Access

actionCommand String Read-write
armed boolean Read-write
enabled boolean Read-write
group ButtonGroup Read-write
mnemonic int Read-write
pressed boolean Read-write
rollover boolean Read-write
selected boolean Read-write

selectedObjects Object[] Read-only

CHAPTER 4 CORE SWING COMPONENTS

Most of the time, you don’t access the ButtonModel directly. Instead, the components that
use the ButtonModel wrap their property calls to update the model’s properties.

Note The DefaultButtonModel also lets you get the listeners for a specific type with public
EventlListener[] getlListeners(Class listenerType).

Understanding AbstractButton Mnemonics

A mnemonic is a special keyboard accelerator that when pressed causes a particular action to
happen. In the case of the JLabel discussed earlier in the “JLabel Class” section, pressing the
displayed mnemonic causes the associated component to get the input focus. In the case of an
AbstractButton, pressing the mnemonic for a button causes its selection.

The actual pressing of the mnemonic requires the pressing of a look-and-feel-specific
hotkey (the key tends to be the Alt key). So, if the mnemonic for a button were the B key, you
would need to press Alt-B to activate the button with the B-key mnemonic. When the button is
activated, registered listeners will be notified of appropriate state changes. For instance, with
the JButton, all ActionListener objects would be notified.

If the mnemonic key is part of the text label for the button, you'll see the character under-
lined. This does depend on the current look and feel and could be displayed differently. In
addition, if the mnemonic isn’t part of the text label, there will not be a visual indicator for
selecting the particular mnemonic key, unless the look and feel shows it in the tooltip text.

Figure 4-11 shows two buttons: one with a W-key mnemonic, and the other with an H-key
mnemonic. The left button has alabel with Win its contents, so it shows the first Wunderlined.
The second component doesn’t benefit from this behavior on the button, butin the Ocean look
and feel, identifies it only if the tooltip text is set and shown.

£ Mnemonics] 10l =|

Warning Warning

Hello aitH

Figure 4-11. AbstractButton mnemonics

To assign a mnemonic to an abstract button, you can use either one of the setMnemonic()
methods. One accepts a char argument and the other an int. Personally, I prefer the int variety,
in which the value is one of the many VK_* constants from the KeyEvent class. You can also
specify the mnemonic by position via the displayedMnemonicIndex property.

AbstractButton button1l = new JButton("Warning");
buttoni1.setMnemonic(KeyEvent.VK_W);
content.add(button1);

101

102

CHAPTER 4 CORE SWING COMPONENTS

Understanding AbstractButton Icons

AbstractButton has seven specific icon properties. The natural or default icon is the icon prop-
erty. It is used for all cases unless a different icon is specified or there is a default behavior
provided by the component. The selectedIcon property is the icon used when the button is
selected. The pressedIcon is used when the button is pressed. Which of these two icons is used
depends on the component, because a JButton is pressed but not selected, whereas a
JCheckBox is selected but not pressed.

The disabledIcon and disabledSelectedIcon properties are used when the button has
been disabled with setEnabled(false). By default, if the icon is an ImageIcon, a grayscaled
version of the icon will be used.

The remaining two icon properties, rolloverIcon and rolloverSelectedIcon, allow you to
display different icons when the mouse moves over the button (and rolloverEnabled is true).

Understanding Internal AbstractButton Positioning

The horizontalAlignment, horizontalTextPosition, verticalAlignment, and
verticalTextPosition properties share the same settings and behavior as the JLabel class.
They’re listed in Table 4-13.

Table 4-13. AbstractButton Position Constants

Position Property Available Settings

horizontalAlignment LEFT, CENTER, RIGHT
horizontalTextPosition LEFT, CENTER, RIGHT
verticalAlignment TOP, CENTER, BOTTOM
verticalTextPosition TOP, CENTER, BOTTOM

Handling AbstractButton Events

Although you do not create AbstractButton instances directly, you do create subclasses.
All of them share a common set of event-handling capabilities. You can register
PropertyChangelistener, ActionListener, ItemListener, and Changelistener objects with
abstract buttons. The PropertyChangelListener object will be discussed here, and the
remaining objects listed will be discussed in later chapters, with the appropriate components.
Like the JComponent class, the AbstractButton component supports the registering of
PropertyChangelistener objects to detect when bound properties of an instance of the class
change. Unlike the JComponent class, the AbstractButton component provides the following set
of class constants to signify the different property changes:

o BORDER_PAINTED_ CHANGED PROPERTY

o CONTENT_AREA FILLED CHANGED_ PROPERTY

DISABLED_ICON_CHANGED PROPERTY

DISABLED SELECTED_ICON_CHANGED PROPERTY

FOCUS_PAINTED CHANGED_PROPERTY

CHAPTER 4 CORE SWING COMPONENTS

e HORIZONTAL_ ALIGNMENT CHANGED PROPERTY

e HORIZONTAL_TEXT POSITION_ CHANGED PROPERTY

e ICON_CHANGED PROPERTY

e MARGIN_CHANGED PROPERTY

e MNEMONIC CHANGED PROPERTY

e MODEL_CHANGED_ PROPERTY

e PRESSED ICON_CHANGED PROPERTY

e ROLLOVER_ENABLED CHANGED PROPERTY

e ROLLOVER _ICON_CHANGED PROPERTY

e ROLLOVER SELECTED ICON CHANGED PROPERTY

e SELECTED ICON_CHANGED PROPERTY

e TEXT_CHANGED PROPERTY

e VERTICAL_ ALIGNMENT CHANGED PROPERTY

e VERTICAL TEXT POSITION CHANGED PROPERTY

Therefore, instead of hard-coding specific text strings, you can create a
PropertyChangelistener that uses these constants, as shown in Listing 4-5.
Listing 4-5. Base PropertyChangeListener for AbstractButton
import javax.swing.*;

import java.beans.*;

public class AbstractButtonPropertyChangelistener
implements PropertyChangelistener {

public void propertyChange(PropertyChangeEvent e) {
String propertyName = e.getPropertyName();
if (e.getPropertyName().equals(AbstractButton.TEXT CHANGED PROPERTY)) {
String newText = (String) e.getNewValue();
String oldText = (String) e.getOldValue();
System.out.println(oldText + " changed to " + newText);
} else if (e.getPropertyName().equals(AbstractButton.ICON CHANGED PROPERTY)) {
Icon icon = (Icon) e.getNewValue();
if (icon instanceof ImageIcon) {
System.out.printIn("New icon is an image");
}
}
}
}

103

104 CHAPTER 4 CORE SWING COMPONENTS

JButton Class

The JButton component is the basic AbstractButton component that can be selected. It supports
text, images, and HTML-based labels, as shown in Figure 4-12.

[~ uton somple ————SITE]

Text Button A
HTML
A Warning Sution
Multi-line

Figure 4-12. Sample JButton components

Creating a JButton

The JButton class has five constructors:

public JButton()
JButton button = new JButton();

public JButton(Icon image)
Icon icon = new ImageIcon("dog.jpg");
JButton button = new JButton(icon);

public JButton(String text)
JButton button = new JButton("Dog");

public JButton(String text, Icon icon)
Icon icon = new ImageIcon("dog.jpg");
JButton button = new JButton("Dog", icon);

public JButton(Action action)
Action action = ...;
JButton button = new JButton(action);

You can create a button with or without a text label or icon. The icon represents the default
or selected icon property from AbstractButton.

Note Creating a JButton from an Action initializes the text label, icon, enabled status, and tooltip text.
In addition, the ActionListener of the Action will be notified upon button selection.

CHAPTER 4 CORE SWING COMPONENTS

JButton Properties

The JButton component doesn’t add much to the AbstractButton. As Table 4-14 shows, of the
four properties of JButton, the only new behavior added is enabling the button to be the default.

Table 4-14. /Button Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
defaultButton boolean Read-only
defaultCapable boolean Read-write bound
UIClassID String Read-only

The default button tends to be drawn with a different and darker border than the remaining
buttons. When a button is the default, pressing the Enter key while in the top-level window
causes the button to be selected. This works only as long as the component with the input
focus, such as a text component or another button, doesn’t consume the Enter key. Because
the defaultButton property is read-only, how (you might be asking) do you set a button as the
default? All top-level Swing windows contain a JRootPane, to be described in Chapter 8. You tell
this JRootPane which button is the default by setting its defaultButton property. Only buttons
whose defaultCapable property is true can be configured to be the default. Figure 4-13 shows
the top-right button set as the default.

£ DefaultButton 10l =|

Text Button A

HTML
A Warning Eurfforn
Multi-line

Figure 4-13. Setting a default button

Listing 4-6 demonstrates setting the default button component, as well as using a basic
JButton. If the default button appearance doesn’t seem that obvious in Figure 4-13, wait until
the JOptionPane is described in Chapter 9, where the difference in appearance will be more
obvious. Figure 4-13 uses a 2-by-2 GridLayout for the screen. The extra two arguments to the
constructor represent gaps to help make the default button’s appearance more obvious.

105

106 CHAPTER 4 CORE SWING COMPONENTS

Listing 4-6. Configuring a Default Button

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class DefaultButton {

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("DefaultButton");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

frame.setlayout(new GridlLayout(2, 2, 10, 10));

JButton button1l = new JButton("Text Button");
buttoni.setMnemonic(KeyEvent.VK B);
frame.add(button1);

Icon warnIcon = new ImageIcon("Warn.gif");
JButton button2 = new JButton(warnIcon);
frame.add(button2);

JButton button3 = new JButton("Warning", warnIcon);
frame.add(button3);

String htmlButton = "<html>^{HTML} _{Button}
" +
"<u>Multi-line</u>";

JButton button4 = new JButton(htmlButton);

frame.add(buttons4);

JRootPane rootPane = frame.getRootPane();
rootPane.setDefaultButton(button2);

frame.setSize(300, 200);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Handling JButton Events

The JButton component itself has no specific event-handling capabilities. They’re all inherited
from AbstractButton. Although you can listen for change events, item events, and property
change events, the most helpful listener with the JButton is the ActionListener.

CHAPTER 4 CORE SWING COMPONENTS

When the JButton component is selected, all registered ActionListener objects are notified.
When the button is selected, an ActionEvent is passed to each listener. This event passes along
the actionCommand property of the button to help identify which button was selected when
a shared listener is used across multiple components. If the actionCommand property hasn’t
been explicitly set, the current text property is passed along instead. The explicit use of the
actionCommand property is helpful with localization. Because the text property of the JButtonis
what the user sees, you as the handler of the button selection event listener cannot rely on a
localized text label for determining which button was selected. So, while the text property can
be localized so that a Yes button in English can say Si in a Spanish version, if you explicitly set
the actionCommand to be the "Yes" string, then no matter which language the user is running in,
the actionCommand will remain "Yes" and not take on the localized text property setting.

Listing 4-7 adds the event-handling capabilities to the default button example in Listing 4-6
(see Figure 4-13). Notice that the default button behavior works properly: press Enter from any
component, and button 2 (the default) will be activated.

Listing 4-7. Watching Button Selection Events

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class ActionButtonSample {

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("DefaultButton");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

ActionListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
String command = actionEvent.getActionCommand();
System.out.println("Selected: " + command);

}
};

frame.setlayout(new GridlLayout(2, 2, 10, 10));

JButton buttoni = new JButton("Text Button");
buttoni.setMnemonic(KeyEvent.VK B);
buttoni.setActionCommand("First");
buttoni.addActionListener(actionListener);
frame.add(button1);

107

108

CHAPTER 4 CORE SWING COMPONENTS

Icon warnIcon = new ImageIcon("Warn.gif");
JButton button2 = new JButton(warnIcon);
button2.setActionCommand("Second");
button2.addActionListener(actionListener);
frame.add(button2);

JButton button3 = new JButton("Warning", warnIcon);
button3.setActionCommand("Third");
button3.addActionListener(actionListener);
frame.add(button3);

String htmlButton = "<html>^{HTML} _{Button}
" +
"<u>Multi-line</u>";

JButton button4 = new JButton(htmlButton);

button4.setActionCommand("Fourth");

button4.addActionListener(actionListener);

frame.add(button4);

JRootPane rootPane = frame.getRootPane();
rootPane.setDefaultButton(button2);

frame.setSize(300, 200);
frame.setVisible(true);
}
};
EventQueue. invokelater(runner);
}
}

Customizing a JButton Look and Feel

Each installable Swing look and feel provides a different JButton appearance and set of default
UIResource value settings. Figure 4-14 shows the appearance of the JButton component for the
preinstalled set of look and feel types: Motif, Windows, and Ocean.

Text on &
HTML
& Warning Bution
HMulti-line
Motif Windows Ocean

Figure 4-14. JButton under different look and feel types

CHAPTER 4 CORE SWING COMPONENTS 109

The available set of UIResource-related properties for a JButton is shown in Table 4-15. For
the JButton component, there are 34 different properties.

Table 4-15. JButton UlResource Elements

Property String Object Type
Button.actionMap ActionMap
Button.background Color
Button.border Border
Button.contentAreaFilled Boolean
Button.darkShadow Color
Button.dashedRectGapHeight Integer
Button.dashedRectGapWidth Integer
Button.dashedRectGapX Integer
Button.dashedRectGapY Integer
Button.defaultButtonFollowsFocus Boolean
Button.disabledForeground Color
Button.disabledGrayRange Integer[]
Button.disabledShadow Color
Button.disabledText Color
Button.disabledToolBarBorderBackground Color
Button.focus Color
Button.focusInputMap InputMap
Button.font Font
Button.foreground Color
Button.gradient List
Button.highlight Color
Button.icon Icon
Button.iconTextGap Integer
Button.light Color
Button.margin Insets
Button.rollover Boolean
Button.rolloverIconType String
Button.select Color
Button.shadow Color
Button.showMnemonics Boolean

110

CHAPTER 4 CORE SWING COMPONENTS

Table 4-15. JButton UlResource Elements (Continued)

Property String Object Type
Button.textIconGap Integer
Button.textShiftOffset Integer
Button.toolBarBorderBackground Color
ButtonUI String

JPanel Class

The last of the basic Swing components is the JPanel component. The JPanel component
serves as both a general-purpose container object, replacing the AWT Panel container, and a
replacement for the Canvas component, for those times when you need a drawable Swing
component area.

Creating a JPanel

There are four constructors for JPanel:

public JPanel()
JPanel panel = new JPanel();

public JPanel(boolean isDoubleBuffered)
JPanel panel = new JPanel(false);

public JPanel(LayoutManager manager)
JPanel panel = new JPanel(new GridlLayout(2,2));

public JPanel(LayoutManager manager, boolean isDoubleBuffered)
JPanel panel = new JPanel(new GridLayout(2,2), false);

With the constructors, you can either change the default layout manager from FlowLayout
or change the default double buffering that is performed from true to false.

Using a JPanel

You can use JPanel as your general-purpose container or as a base class for a new component.
For the general-purpose container, the procedure is simple: Just create the panel, set its layout
manager if necessary, and add components using the add() method.

JPanel panel = new JPanel();

JButton okButton = new JButton("OK");
panel.add(okButton);

JButton cancelButton = new JButton("Cancel");
panel.add(cancelButton);

CHAPTER 4 CORE SWING COMPONENTS

When you want to create a new component, subclass JPanel and override the public void
paintComponent(Graphics g) method. Although you can subclass JComponent directly, it seems
more appropriate to subclass JPanel. Listing 4-8 demonstrates a simple component that draws
an oval to fit the size of the component; it also includes a test driver.

Listing 4-8. Oval Panel Component

import java.awt.*;
import javax.swing.*;

public class OvalPanel extends JPanel {
Color color;

public OvalPanel() {
this(Color.black);

}

public OvalPanel(Color color) {
this.color = color;

}

public void paintComponent(Graphics g) {
int width = getWidth();
int height = getHeight();
g.setColor(color);
g.drawOval(o, 0, width, height);

}

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Oval Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

frame.setlayout(new GridlLayout(2, 2));

Color colors[] = {Color.RED, Color.BLUE, Color.GREEN, Color.YELLOW};
for (int i=0; i<4; i++) {

OvalPanel panel = new OvalPanel(colors[i]);

frame.add(panel);

}

frame.setSize(300, 200);
frame.setVisible(true);
}
};

EventQueue.invokelater(runner);

m

112 CHAPTER 4 CORE SWING COMPONENTS

Figure 4-15 shows the test driver program results.

£ Dval Sample 10l =|

_

Figure 4-15. The new OvalPanel component

Note By default, JPanel components are opaque. This differs from JComponent, whose opacity
property setting by default is false. A false setting for opacity means the component is transparent.

Customizing a JPanel Look and Feel

The available set of UIResource-related properties for a JPanel is shown in Table 4-16. For the
JPanel component, there are five different properties. These settings may have an effect on the
components within the panel.

Table 4-16. JPanel UIResource Elements

Property String Object Type
Panel.background Color
Panel.border Border
Panel.font Font
Panel.foreground Color
PanelUI String
Summary

In this chapter, you explored the root of all Swing components: the JComponent class. From
there, you looked at some of the common elements of all components, such as tooltips, as well
as specific components such as JLabel. You also learned how to put glyphs (nonverbal images)
on components with the help of the Icon interface and the ImageIcon class, and the GrayFilter
image filter for disabled icons.

CHAPTER 4 CORE SWING COMPONENTS 113

You also learned about the AbstractButton component, which serves as the root compo-
nent for all Swing button objects. You looked at its data model interface, ButtonModel, and the
default implementation of this interface, DefaultButtonModel. Next, you looked at the JButton
class, which is the simplest of the AbstractButton implementations. And lastly, you looked at
the JPanel as the basic Swing container object.

In Chapter 5, you'll start to dig into some of the more complex AbstractButton implemen-
tations: the toggle buttons.

CHAPTER 5

Toggle Buttons

Now that you've seen the capabilities of the relatively simple Swing components JLabel and
JButton, it’s time to take alook at more active components, specifically those that can be toggled.
These so-called toggleable components—JToggleButton, JCheckBox, and JRadioButton—provide
the means for your users to select from among a set of options. These options are either on or
off, or enabled or disabled. When presented in a ButtonGroup, only one of the options in the
group can be selected at a time. To deal with this selection state, the components share acommon
data model with ToggleButtonModel. Let’s take a look at the data model, the components’
grouping mechanism with ButtonGroup, and the individual components.

ToggleButtonModel Class

The JToggleButton.ToggleButtonModel class is a public inner class of JToggleButton. The class
customizes the behavior of the DefaultButtonModel class, which, in turn, is an implementation
of the ButtonModel interface.

The customization affects the data models of all AbstractButton components in the
same ButtonGroup—a class explored next. In short, a ButtonGroup is a logical grouping of
AbstractButton components. At any one time, only one of the AbstractButton components
in the ButtonGroup can have the selected property of its data model set to true. The remaining
ones must be false. This does not mean that only one selected component in the group can
exist at a time. If multiple components in a ButtonGroup share a ButtonModel, multiple selected
components in the group can exist. If no components share a model, at most, the user can
select one component in the group. Once the user has selected that one component, the user
cannot interactively deselect the selection. However, programmatically, you can deselect all
group elements.

The definition of JToggleButton.ToggleButtonModel follows.

public class ToggleButtonModel extends DefaultButtonModel {
// Constructors
public ToggleButtonModel();
// Properties
public boolean isSelected();
public void setPressed(boolean newValue);
public void setSelected(boolean newvalue);

115

116

CHAPTER 5 TOGGLE BUTTONS

The ToggleButtonModel class defines the default data model for both the JToggleButton
and its subclasses JCheckBox and JRadioButton, described in this chapter, as well as the
JCheckBoxMenuItem and JRadioButtonMenuItem classes described in Chapter 6.

Note Internally, Swing’s HTML viewer component uses the ToggleButtonModel for its check box and
radio button input form elements.

ButtonGroup Class

Before describing the ButtonGroup class, let’s demonstrate its usage. The program shown in
Listing 5-1 creates objects that use the ToggleButtonModel and places them into a single group.
As the program demonstrates, in addition to adding the components into the screen’s container,
you must add each component to the same ButtonGroup. This results in a pair of add() method
calls for each component. Furthermore, the container for the button group tends to place
components in a single column and to label the grouping for the user with a titled border,
though neither of these treatments are required. Figure 5-1 shows the output of the program.

Listing 5-1. Odd Collection of Button Components

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;

public class AButtonGroup {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Button Group");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JPanel panel = new JPanel(new GridLayout(0, 1));
Border border =
BorderFactory.createTitledBorder("Examples");
panel.setBorder (border);
ButtonGroup group = new ButtonGroup();
AbstractButton abstract1 =
new JToggleButton("Toggle Button");
panel.add(abstract1);
group.add(abstract1);
AbstractButton abstract2 =
new JRadioButton("Radio Button");
panel.add(abstract2);
group.add(abstract2);

CHAPTER 5

AbstractButton abstract3 =
new JCheckBox("Check Box");

panel.add(abstract3);
group.add(abstract3);
AbstractButton abstract4 =
new JRadioButtonMenuItem("Radio Button Menu Item");
panel.add(abstract4);
group.add(abstract4);
AbstractButton abstracts =
new JCheckBoxMenuItem("Check Box Menu Item");
panel.add(abstracts);
group.add(abstracts);
frame.add(panel, BorderLayout.CENTER);
frame.setSize(300, 200);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}
-ioix
Examples
| Toggle Button
_ Radio Button
[] Check Box
O Radio Button Menu ttem
¥ Check Box Menu ttem

Figure 5-1. ButtonGroup/ToggleButtonModel example

TOGGLE BUTTONS

As previously stated, the ButtonGroup class represents a logical grouping of AbstractButton
components. The ButtonGroup is not a visual component; therefore, there’s nothing visual on
screen when a ButtonGroup is used. Any AbstractButton component can be added to the grouping
with public void add(AbstractButton abstractButton). Although any AbstractButton
component can belong to a ButtonGroup, only when the data model for the component is
ToggleButtonModel will the grouping have any effect. The result of having a component with a
data model of ToggleButtonModel in a ButtonGroup is that after the component is selected, the
ButtonGroup deselects any currently selected component in the group.

Note Technically speaking, the model doesn’t need to be ToggleButtonModel as long as the custom
model exhibits the same behavior of limiting the number of selected component models to one.

117

CHAPTER 5 TOGGLE BUTTONS

Although the add() method is typically the only ButtonGroup method you’ll ever need, the
following class definition shows that it’s not the only method of ButtonGroup in existence:

public class ButtonGroup implements Serializable {
// Constructor
public ButtonGroup();
// Properties
public int getButtonCount();
public Enumeration getElements();
public ButtonModel getSelection();
// Other methods
public void add(AbstractButton aButton);
public boolean isSelected(ButtonModel theModel) ;
public void remove(AbstractButton aButton);
public void setSelected(ButtonModel theModel, boolean newValue);

One interesting thing the class definition shows is that given a ButtonGroup, you cannot
directly find out the selected AbstractButton. You can directly ask only which ButtonModel is
selected. However, getElements () returns an Enumeration of all the AbstractButton elements in
the group. You can then loop through all the buttons to find the selected one (or ones) by using
code similar to the following:

Enumeration elements = group.getElements();
while (elements.hasMoreElements()) {
AbstractButton button = (AbstractButton)elements.nextElement();
if (button.isSelected()) {
System.out.printIn("The winner is: " + button.getText());
break; // Don't break if sharing models -- could show multiple buttons selected
}
}

The other interesting method of ButtonGroup is setSelected(). The two arguments of the
method are a ButtonModel and a boolean. If the boolean value is false, the selection request is
ignored. If the ButtonModel isn’t the model for a button in the ButtonGroup, then the ButtonGroup
deselects the currently selected model, causing no buttons in the group to be selected. The
proper usage of the method is to call the method with a model of a component in the group and
anew state of true. For example, if aButton is an AbstractButton and aGroup is the ButtonGroup,
then the method call would look like aGroup.setSelected(aButton.getModel(), true).

Note If you add a selected button to a ButtonGroup that already has a previously selected button, the
previous button retains its state and the newly added button loses its selection.

Now, let’s look at the various components whose data model is the ToggleButtonModel.

CHAPTER 5 TOGGLE BUTTONS

JToggleButton Class

The JToggleButton is the first of the toggleable components. It’s discussed first because it’s
the parent class of the two other components that are not menu-oriented: JCheckBox and
JRadioButton. The JToggleButton is like a JButton that stays depressed when selected, instead
of bouncing back to an unselected state. To deselect the selected component, you must reselect it.
JToggleButton isn’t a commonly used component, but you might find it useful on a toolbar,
such as in Microsoft Word (for paragraph alignment, among other instances) or in a file dialog
box, as shown in the upper-right corner of Figure 5-2.

JToggleButton

l x

LookIn: |—7jok1.5.0 v | || |E =] |BR e

|=3 bin 3 sample [sre.zip

] demo [src D THIRDH

|= docs [} copyriGHT

T include [} LicensE

ire [} LICENSE.rtf

(= iib [} README.html

AT : S

File Name: | |

Files of Type: |All Files B

Open Cancel

Figure 5-2. Sample JToggleButton components from file chooser

Defining the JToggleButton structure are two objects that customize the AbstractButton
parent class: ToggleButtonModel and ToggleButtonUI. The ToggleButtonModel class represents

a customized ButtonModel data model for the component, whereas ToggleButtonUI is the user
interface delegate.

Now that you know about the different pieces of a JToggleButton, let’s find out how to
use them.

Creating JToggleButton Components
Eight constructors are available for JToggleButton:
public JToggleButton()

JToggleButton aToggleButton = new JToggleButton();

public JToggleButton(Icon icon)
JToggleButton aToggleButton = new JToggleButton(new DiamondIcon(Color.PINK))

119

120

CHAPTER 5 TOGGLE BUTTONS

public JToggleButton(Icon icon, boolean selected)
JToggleButton aToggleButton = new JToggleButton(new DiamondIcon(Color.PINK), true);

public JToggleButton(String text)
JToggleButton aToggleButton = new JToggleButton("Sicilian");

public JToggleButton(String text, boolean selected)
JToggleButton aToggleButton = new JToggleButton("Thin Crust", true);

public JToggleButton(String text, Icon icon)
JToggleButton aToggleButton = new JToggleButton("Thick Crust",
new DiamondIcon(Color.PINK));

public JToggleButton(String text, Icon icon, boolean selected)
JToggleButton aToggleButton = new JToggleButton("Stuffed Crust",
new DiamondIcon(Color.PINK), true);

public JToggleButton(Action action)
Action action = ...;
JToggleButton aToggleButton = new JToggleButton(action);

Each allows you to customize one or more of the label, icon, or initial selection state.
Unless specified otherwise, the label is empty with no text or icon, and the button initially is
not selected.

Note Surprisingly, Swing lacks a constructor that accepts only an initial state of a boolean setting.
Lacking this constructor, you need to create a JToggleButton with the no-argument constructor variety,
and then call setSelected(boolean newValue) directly or work with an Action.

JToggleButton Properties

After creating a JToggleButton, you can modify each of its many properties. Although there are
about 100 inherited properties, Table 5-1 shows only the two introduced with JToggleButton.
The remaining properties come from AbstractButton, JComponent, Container, and Component.

Table 5-1. JToggleButton Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
UIClassID String Read-only

You can change one or more of the text, icon, or selected properties set in the constructor,
as well as any of the other AbstractButton properties described in Chapter 4. You configure

CHAPTER 5 TOGGLE BUTTONS 121

the primary three properties with the appropriate getter and setter methods: get/setText(),
get/setIcon(), and is/setSelected(), or setAction(action). The other properties have corre-
sponding getter and setter methods.

The more visual configurable options of JToggleButton (and its subclasses) include the
various icons for the different states of the button. Besides the standard icon, you can display
a different icon when the button is selected, among other state changes. However, if you're
changing icons based on the currently selected state, then JToggleButton probably isn’t the
most appropriate component to use. You should use one of its subclasses, JCheckBox or
JRadioButton, explored later in this chapter.

Note Keep in mind that the JButton component ignores the selectedIcon property.

Handling JToggleButton Selection Events

After configuring a JToggleButton, you can handle selection events in one of three ways: with
an Actionlistener, an ItemListener, or a Changelistener. This is in addition to providing an
Action to the constructor, which would be notified like an ActionlListener.

Listening to JToggleButton Events with an ActionListener

If you're interested only in what happens when a user selects or deselects the JToggleButton,
you can attach an ActionlListener to the component. After the user selects the button, the
component notifies any registered ActionListener objects. Unfortunately, this isn’t the desired
behavior, because you must then actively determine the state of the button so that you can
respond appropriately for selecting or deselecting. To find out the selected state, you must get
the model for the event source, and then ask for its selection state, as the following sample
Actionlistener source shows:

Actionlistener actionlListener = new Actionlistener() {
public void actionPerformed(ActionEvent actionEvent) {
AbstractButton abstractButton = (AbstractButton)actionEvent.getSource();
boolean selected = abstractButton.getModel().isSelected();
System.out.println("Action - selected=" + selected + "\ n");
}
};

Listening to JToggleButton Events with an ltemListener

The better listener to attach to a JToggleButton is the ItemListener. The ItemEvent passed to
the itemStateChanged() method of ItemListener includes the current selection state of the
button. This allows you to respond appropriately, without needing to search for the current
button state.

To demonstrate, the following ItemListener reports the state of a selected ItemEvent-
generating component:

122

CHAPTER 5 TOGGLE BUTTONS

TtemListener itemListener = new ItemlListener() {
public void itemStateChanged(ItemEvent itemEvent) {
int state = itemEvent.getStateChange();
if (state == ItemEvent.SELECTED) {
System.out.println("Selected");
} else {
System.out.println("Deselected");
}
}
};

Listening to JToggleButton Events with a ChangeListener

Attaching a ChangelListener to a JToggleButton provides even more flexibility. Any attached
listener will be notified of the data model changes for the button, corresponding to changes in
its armed, pressed, and selected properties. Listening for notification from the three listeners—
Actionlistener, ItemListener, and Changelistener—allows you to react seven different times.
Figure 5-3 shows the sequencing of the ButtonModel property changes, and when the model
notifies each of the listeners.

JToggleButton ButtonModel Changelistener ItemListener ActionListener

| Mouse Pressed < | armed=true < |

\l [pressed=trué _| |

Mouse Released selected=true
@selected ®
pressed=false il
activated ®
armed=false ®
| |

Figure 5-3. JToggleButton notification sequencing diagram

To demonstrate the ChangelListener notifications, the following code fragment defines a
Changelistener that reports the state changes to the three properties of the button model:

Changelistener changelistener = new Changelistener() {
public void stateChanged(ChangeEvent changeEvent) {
AbstractButton abstractButton = (AbstractButton)changeEvent.getSource();
ButtonModel buttonModel = abstractButton.getModel();
boolean armed = buttonModel.isArmed();
boolean pressed = buttonModel.isPressed();
boolean selected = buttonModel.isSelected();
System.out.println("Changed: " + armed + "/" + pressed + "/" + selected);

};

CHAPTER 5 TOGGLE BUTTONS

After you attach the ChangelListener to a JToggleButton and select the component by
pressing and releasing the mouse over the component, the following output results:

Changed: true/false/false
Changed: true/true/false
Changed: true/true/true

Changed: true/false/true
Changed: false/false/true

With all three listeners attached to the same button, notification of registered ItemListener
objects would happen after the selected property changes—in other words, between lines 3
and 4. Listing 5-2 demonstrates all three listeners attached to the same JToggleButton. With
regard to the registered ActionListener objects, notification happens after releasing the button,
but before the armed state changes to false, falling between lines 4 and 5.

Listing 5-2. Listening for Toggle Selection

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;

import java.awt.event.*;

public class SelectingToggle {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Selecting Toggle");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
JToggleButton toggleButton = new JToggleButton("Toggle Button");
// Define ActionlListener
ActionListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
AbstractButton abstractButton = (AbstractButton)actionEvent.getSource();
boolean selected = abstractButton.getModel().isSelected();
System.out.println("Action - selected=" + selected + "\n");
}
};
// Define Changelistener
Changelistener changelistener = new Changelistener() {
public void stateChanged(ChangeEvent changeEvent) {
AbstractButton abstractButton = (AbstractButton)changeEvent.getSource();
ButtonModel buttonModel = abstractButton.getModel();
boolean armed = buttonModel.isArmed();
boolean pressed = buttonModel.isPressed();
boolean selected = buttonModel.isSelected();
System.out.println("Changed: " + armed + "/" + pressed + "/" +
selected);

};

123

124

CHAPTER 5 TOGGLE BUTTONS

// Define ItemListener
TtemListener itemListener = new ItemListener() {
public void itemStateChanged(ItemEvent itemEvent) {
int state = itemEvent.getStateChange();
if (state == ItemEvent.SELECTED) {
System.out.println("Selected");
} else {
System.out.println("Deselected");
}
}
};
// Attach Listeners
toggleButton.addActionListener(actionListener);
toggleButton.addChangelistener(changelistener);
toggleButton.addItemListener(itemListener);
frame.add(toggleButton, BorderlLayout.NORTH);
frame.setSize(300, 125);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Customizing a JToggleButton Look and Feel

Each installable Swing look and feel provides a different JToggleButton appearance and set of
default UIResource values. Figure 5-4 shows the appearance of the JToggleButton component
for the preinstalled set of look and feel types: Motif, Windows, and Ocean. As the button labels
might indicate, the first button is selected, the second has the input focus (and isn’t selected),
and the third button isn’t selected.

£ Motif LnF o [=] £ windows LnF B [|

[selectes |
Focused Focused
Mot Selected Mot Selected
Motif Windows
=10l x|
| Selected -_"_._“i
| Focused
i Not Selected |
Ocean

Figure 5-4. JToggleButton under different look and feel types

CHAPTER 5 TOGGLE BUTTONS 125

The available set of UIResource-related properties for a JToggleButton is shown in Table 5-2.
The JToggleButton component has 17 different properties.

Table 5-2. JToggleButton UIResource Elements

Property String Object Type
ToggleButton.background Color
ToggleButton.border Border
ToggleButton.darkShadow Color
ToggleButton.disabledText Color
ToggleButton.focus Color
ToggleButton.focusInputMap Object[]
ToggleButton.font Font
ToggleButton.foreground Color
ToggleButton.gradient List
ToggleButton.highlight Color
ToggleButton.light Color
ToggleButton.margin Insets
ToggleButton.select Color
ToggleButton.shadow Color
ToggleButton.textIconGap Integer
ToggleButton.textShiftOffset Integer
ToggleButtonUI String

JCheckBox Class

The JCheckBox class represents the toggle component that, by default, displays a check box
icon next to the text label for a two-state option. The check box icon uses an optional check
mark to show the current state of the object, instead of keeping the button depressed, as with
the JToggleButton. With the JCheckBox, the icon shows the state of the object, whereas with the
JToggleButton, the icon is part of the label and isn’t usually used to show state information.
With the exception of the Ul-related differences between JCheckBox and JToggleButton, the
two components are identical. Figure 5-5 demonstrates how check box components might
appear in a pizza-ordering application.

126

CHAPTER 5 TOGGLE BUTTONS

£ CheckBox Sample 10l =|
Pizza Toppings

[] Anchovies
Garlic
Onions

[] Pepperoni
Spinach

Submit |

Figure 5-5. Sample JCheckBox components

The JCheckBox is made up of several pieces. Like JToggleButton, the JCheckBox uses a
ToggleButtonModel to represent its data model. The user interface delegate is CheckBoxUI.
Although the ButtonGroup is available to group together check boxes, it isn’t normally appropriate.
When multiple JCheckBox components are within a ButtonGroup, they behave like JRadioButton
components but look like JCheckBox components. Because of this visual irregularity, you
shouldn’t put JCheckBox components into a ButtonGroup.

Now that you've seen the different pieces of a JCheckBox, let’s find out how to use them.

Creating JCheckBox Components

Eight constructors exist for JCheckBox:

public JCheckBox()
JCheckBox aCheckBox = new JCheckBox();

public JCheckBox(Icon icon)
JCheckBox aCheckBox = new JCheckBox(new DiamondIcon(Color.RED, false));
aCheckBox.setSelectedIcon(new DiamondIcon(Color.PINK, true));

public JCheckBox(Icon icon, boolean selected)
JCheckBox aCheckBox = new JCheckBox(new DiamondIcon(Color.RED, false), true);
aCheckBox.setSelectedIcon(new DiamondIcon(Color.PINK, true));

public JCheckBox(String text)
JCheckBox aCheckBox = new JCheckBox("Spinach");

public JCheckBox(String text, boolean selected)
JCheckBox aCheckBox = new JCheckBox("Onions", true);

public JCheckBox(String text, Icon icon)
JCheckBox aCheckBox = new JCheckBox("Garlic", new DiamondIcon(Color.RED, false));
aCheckBox.setSelectedIcon(new DiamondIcon(Color.PINK, true));

CHAPTER 5 TOGGLE BUTTONS 127

public JCheckBox(String text, Icon icon, boolean selected)

JCheckBox aCheckBox = new JCheckBox("Anchovies", new DiamondIcon(Color.RED,
false), true);

aCheckBox.setSelectedIcon(new DiamondIcon(Color.PINK, true));

public JCheckBox(Action action)
Action action = ...;
JCheckBox aCheckBox = new JCheckBox(action);

Note Configuring a JCheckBox from an Action sets the label, state, and tooltip text, but not the icon.

Each allows you to customize either none or up to three properties for the label, icon, or
initial selection state. Unless specified otherwise, there’s no text in the label and the default
selected/unselected icon for the check box appears unselected.

If you do initialize the icon in the constructor, it’s the icon for the unselected state of the
check box, with the same icon displayed when the check box is selected. You must also either
initialize the selected icon with the setSelectedIcon(Icon newValue) method, described later,
or make sure the icon is state-aware and updates itself. If you don’t configure the selected icon
and don’t use a state-aware icon, the same icon will appear for both the selected and unselected
state. Normally, an icon that doesn’t change its visual appearance between selected and unse-
lected states isn’t desirable for a JCheckBox.

Note A state-aware icon is one that asks the associated component for the value of the selected
property.

JCheckBox Properties

After creating a JCheckBox, you can modify each of its many properties. Two properties specific
to JCheckBox (shown in Table 5-3) override the behavior of its parent JToggleButton. The third
borderPaintedFlat property was introduced in the 1.3 release of the JDK. All the remaining
properties are inherited through parents of JToggleButton.

Table 5-3. /CheckBox Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
borderPaintedFlat boolean Read-write bound

UIClassID String Read-only

128

CHAPTER 5 TOGGLE BUTTONS

The borderPaintedFlat property permits a look and feel to display the border around
the check icon as two-dimensional (flat) instead of three-dimensional. By default, the
borderPaintedFlat property is false, meaning the border will be three-dimensional. Figure 5-6
shows what a flat border looks like, where the first, third, and fifth borders are flat, and the
second and fourth are not. A look and feel may choose to ignore this property. However, it is
useful for renderers for components such tables and trees, where they show only state and are

not selectable. The Windows and Motif look and feel types take advantage of the property;
Metal (and Ocean) does not.

£ Flat CheckBox Sample 10l =|
Fizza Topping:

[] Anchovies
¥ Gailic

[~ Pepperoni
[] Spinach

Submit |

Figure 5-6. Alternating flat JCheckBox borders for the Windows look and feel: Anchovies, Onions,
and Spinach are flat; Garlic and Pepperoni are not.

As the constructor listing demonstrated, if you choose to set an icon with a constructor,
the constructor sets only one icon for the unselected state. If you want the check box icon to
show the correct state visually, you must use a state-aware icon or associate a different icon for
the selected state with setSelectedIcon(). Having two different visual state representations is
what most users expect from a JCheckBox, so unless you have a good reason to do otherwise, it’s
best to follow the design convention for normal user interfaces.

The fourth button at the bottom of the screen shown in Figure 5-7 demonstrates confusing
icon usage within a JCheckBox. The check box always appears selected. The figure displays what
the screen looks like with Pizza selected, Calzone unselected, Anchovies unselected, and Stuffed
Crust unselected (although the last one appears selected).

£ Iconizing CheckBox 10l =|

Pizza

<> Calzone

+ Anchovies

#+ Stuffed Crust

Figure 5-7. Multiple JCheckBox components with various icons

CHAPTER 5 TOGGLE BUTTONS 129

Listing 5-3 demonstrates three valid means of creating JCheckBox components with
different icons, one using a state-aware icon. The last check box shows bad icon usage.

Listing 5-3. Sampling JCheckBox

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class IconCheckBoxSample {
private static class CheckBoxIcon implements Icon {
private ImageIcon checkedIcon = new ImageIcon("Plus.gif");
private ImageIcon uncheckedIcon = new ImageIcon("Minus.gif");

public void paintIcon(Component component, Graphics g, int x, int y) {
AbstractButton abstractButton = (AbstractButton)component;
ButtonModel buttonModel = abstractButton.getModel();
g.translate(x,y);
ImageIcon imageIcon = buttonModel.isSelected() ?

checkedIcon : uncheckedIcon;

Image image = imageIcon.getImage();
g.drawImage(image, 0, 0, component);
g.translate(-x,-y);

}

public int getIconWidth() {
return 20;

}

public int getIconHeight() {
return 20;

}

}
public static void main(String args[]) {

Runnable runner = new Runnable() {
public void run() {

JFrame frame = new JFrame("Iconizing CheckBox");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
Icon checked = new DiamondIcon (Color.BLACK, true);
Icon unchecked = new DiamondIcon (Color.BLACK, false);
JCheckBox aCheckBox1 = new JCheckBox("Pizza", unchecked);
aCheckBox1.setSelectedIcon(checked);
JCheckBox aCheckBox2 = new JCheckBox("Calzone");
aCheckBox2.setIcon(unchecked);
aCheckBox2.setSelectedIcon(checked);

130 CHAPTER 5 TOGGLE BUTTONS

Icon checkBoxIcon = new CheckBoxIcon();
JCheckBox aCheckBox3 = new JCheckBox("Anchovies", checkBoxIcon);
JCheckBox aCheckBox4 = new JCheckBox("Stuffed Crust", checked);
frame.setlayout(new GridlLayout(0,1));
frame.add(aCheckBox1);
frame.add(aCheckBox2);
frame.add(aCheckBox3);
frame.add(aCheckBox4);
frame.setSize(300, 200);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);

}

Handling JCheckBox Selection Events

As with the JToggleButton, you can handle JCheckBox events in any one of three ways: with an
ActionListener, an ItemListener, or a Changelistener. The constructor that accepts an Action
just adds the parameter as an ActionListener.

Listening to JCheckBox Events with an ActionListener

Subscribing to ActionEvent generation with an ActionListener allows you to find out when the
user toggles the state of the JCheckBox. As with JToggleButton, the subscribed listener is told of
the selection, but not the new state. To find out the selected state, you must get the model for the
event source and ask, as the following sample ActionListener source shows. This listener
modifies the check box label to reflect the selection state.

ActionlListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
AbstractButton abstractButton = (AbstractButton)actionEvent.getSource();
boolean selected = abstractButton.getModel().isSelected();
String newlabel = (selected ? SELECTED LABEL : DESELECTED LABEL);
abstractButton.setText(newLabel);
}
};

Listening to JCheckBox Events with an ItemListener

For JCheckBox, as with JToggleButton, the better listener to subscribe to is an ItemListener. The
ItemEvent passed to the itemStateChanged() method of ItemListener includes the current
state of the check box. This allows you to respond appropriately, without need to find out the
current button state.

To demonstrate, the following ItemListener swaps the foreground and background colors
based on the state of a selected component. In this ItemListener, the foreground and back-
ground colors are swapped only when the state is selected.

CHAPTER 5 TOGGLE BUTTONS

ItemListener itemListener = new ItemListener() {
public void itemStateChanged(ItemEvent itemEvent) {
AbstractButton abstractButton = (AbstractButton)itemEvent.getSource();
Color foreground = abstractButton.getForeground();
Color background = abstractButton.getBackground();
int state = itemEvent.getStateChange();
if (state == ItemEvent.SELECTED) {
abstractButton.setForeground(background);
abstractButton.setBackground(foreground);
}
}
1

Listening to JCheckBox Events with a ChangeListener

The Changelistener responds to the JCheckBox just as with the JToggleButton. A subscribed
Changelistener would be notified when the button is armed, pressed, selected, or released.
In addition, the Changelistener is also notified of changes to the ButtonModel, such as for the
keyboard mnemonic (KeyEvent.VK_S) of the check box. Because there are no ChangelListener
differences to demonstrate between a JToggleButton and a JCheckBox, you could just attach the
same listener from JToggleButton to the JCheckBox, and you'll get the same selection responses.

The sample program in Listing 5-4 demonstrates all the listeners subscribed to the events
of a single JCheckBox. To demonstrate that the Changelistener is notified of changes to other
button model properties, a keyboard mnemonic is associated with the component. Given that
the Changelistener is registered before the mnemonic property is changed, the Changelistener
is notified of the property change. Because the foreground and background colors and text
label aren’t button model properties, the ChangelListener isn’t told of these changes made by
the other listeners.

Note If you did want to listen for changes to the foreground or background color properties, you would
need to attach a PropertyChangelListener to the JCheckBox.

Listing 5-4. Listening for JCheckBox Selection

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;

import java.awt.event.*;

public class SelectingCheckBox {
private static String DESELECTED LABEL = "Deselected";
private static String SELECTED LABEL = "Selected";

131

132 CHAPTER 5 TOGGLE BUTTONS

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Selecting CheckBox");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
JCheckBox checkBox = new JCheckBox(DESELECTED LABEL);
// Define Actionlistener
ActionListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
AbstractButton abstractButton =
(AbstractButton)actionEvent.getSource();
boolean selected = abstractButton.getModel().isSelected();
String newlabel = (selected ? SELECTED LABEL : DESELECTED LABEL);
abstractButton.setText(newLabel);
}
};
// Define Changelistener
Changelistener changelistener = new Changelistener() {
public void stateChanged(ChangeEvent changeEvent) {
AbstractButton abstractButton =
(AbstractButton)changeEvent.getSource();
ButtonModel buttonModel = abstractButton.getModel();
boolean armed = buttonModel.isArmed();
boolean pressed = buttonModel.isPressed();
boolean selected = buttonModel.isSelected();
System.out.println("Changed: " + armed + "/" + pressed + "/" +
selected);
}
};
// Define ItemListener
TtemListener itemListener = new ItemListener() {
public void itemStateChanged(ItemEvent itemEvent) {
AbstractButton abstractButton =
(AbstractButton)itemEvent.getSource();
Color foreground = abstractButton.getForeground();
Color background = abstractButton.getBackground();
int state = itemEvent.getStateChange();
if (state == ItemEvent.SELECTED) {
abstractButton.setForeground(background);
abstractButton.setBackground(foreground);
}
}
};
// Attach Listeners
checkBox.addActionListener(actionlListener);
checkBox.addChangelListener(changelistener);
checkBox.addItemListener(itemListener);

CHAPTER 5 TOGGLE BUTTONS

checkBox. setMnemonic(KeyEvent.VK_S);
frame.add(checkBox, BorderlLayout.NORTH);
frame.setSize(300, 100);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

The SelectingCheckBox class produces the screen shown in Figure 5-8, after selecting and
deselecting the JCheckBox.

E Selecting CheckBox] ;Iglll
m

Figure 5-8. SelectingCheckBox program screen

Customizing a JCheckBox Look and Feel

Each installable Swing look and feel provides a different JCheckBox appearance and set of
default UIResource values. Figure 5-9 shows the appearance of the JCheckBox component for
the preinstalled set of look and feel types: Motif, Windows, and Ocean. The first, third, and fifth
check boxes are selected; the third has the input focus.

£ Motif LnF o =] £ windows LnF 1 B [|
-Pizza Toppings i Pizza Toppings
W Anchovies v Anchovies
_ | Garlic [Garlic
| W Onions | v i
—IPepperoni [~ Pepperani
& Spinach _
¥ Spinach
Submit Al
Motif Windows
4 Ocean LnF i 101 =|
Pizza Toppings
[¥] Anchovies
[] Garlic
[¥] Onions:
[] Pepperoni
[v] Spinach
? Submit
Ocean

Figure 5-9. JCheckBox under different look and feel types

133

134 CHAPTER 5 TOGGLE BUTTONS

Table 5-4 shows the set of available UIResource-related properties for a JCheckBox. The
JCheckBox component has 20 different properties.

Table 5-4. JCheckBox UlResource Elements

Property String Object Type
CheckBox.background Color
CheckBox.border Border
CheckBox.darkShadow Color
CheckBox.disabledText Color
CheckBox.focus Color
CheckBox.focusInputMap Object[]
CheckBox. font Font
CheckBox. foreground Color
CheckBox.gradient List
CheckBox.highlight Color
CheckBox.icon Icon
CheckBox.1interiorBackground Color
CheckBox.1light Color
CheckBox.margin Insets
CheckBox.rollover Boolean
Checkbox.select* Color
CheckBox. shadow Color
CheckBox.textIconGap Integer
CheckBox.textShiftOffset Integer
CheckBoxUI String

* Lowercase b is correct.

JRadioButton Class

You use JRadioButton when you want to create a mutually exclusive group of toggleable
components. Although, technically speaking, you could place a group of JCheckBox components
into a ButtonGroup and only one would be selectable at a time, they wouldn’t look quite right.
Atleast with the predefined look and feel types, JRadioButton and JCheckBox components look
different, as Figure 5-10 shows. This difference in appearance tells the end user to expect
specific behavior from the components.

CHAPTER 5 TOGGLE BUTTONS

£ Radio/Combo Example =10l x|
Radio Buttons Check Boxzes
) 4 slices Anchovies
@ g slices Garlic

1 12 slices [] Onions

1 16 slices Spinach

Figure 5-10. Comparing JRadioButton to JCheckBox appearance

The JRadioButton is made up of several pieces. Like JToggleButton and JCheckBox, the
JRadioButton uses a ToggleButtonModel to represent its data model. It uses a ButtonGroup
through AbstractButton to provide the mutually exclusive grouping, and the user interface
delegate is the RadioButtonUI.

Let’s now explore how to use the different pieces of a JRadioButton.

Creating JRadioButton Components

As with JCheckBox and JToggleButton, there are eight constructors for JRadioButton:

public JRadioButton()
JRadioButton aRadioButton = new JRadioButton();

public JRadioButton(Icon icon)
JRadioButton aRadioButton = new JRadioButton(new DiamondIcon(Color.CYAN, false));
aRadioButton.setSelectedIcon(new DiamondIcon(Color.BLUE, true));

public JRadioButton(Icon icon, boolean selected)

JRadioButton aRadioButton = new JRadioButton(new DiamondIcon(Color.CYAN, false),
true);

aRadioButton.setSelectedIcon(new DiamondIcon(Color.BLUE, true));

public JRadioButton(String text)
JRadioButton aRadioButton = new JRadioButton("4 slices");

public JRadioButton(String text, boolean selected)
JRadioButton aRadioButton = new JRadioButton("8 slices", true);

public JRadioButton(String text, Icon icon)
JRadioButton aRadioButton = new JRadioButton("12 slices",

new DiamondIcon(Color.CYAN, false));
aRadioButton.setSelectedIcon(new DiamondIcon(Color.BLUE, true));

public JRadioButton(String text, Icon icon, boolean selected)
JRadioButton aRadioButton = new JRadioButton("16 slices",

new DiamondIcon(Color.CYAN, false), true);
aRadioButton.setSelectedIcon(new DiamondIcon(Color.BLUE, true));

135

136

CHAPTER 5 TOGGLE BUTTONS

public JRadioButton(Action action)
Action action = ...;
JRadioButton aRadioButton = new JRadioButton(action);

Note As with a JCheckBox, configuring @ JRadioButton from an Action sets the label, state, and
tooltip text, but not the icon.

Each allows you to customize one or more of the label, icon, or initial selection state prop-
erties. Unless specified otherwise, there’s no text in the label, and the default selected/unselected
icon for the check box appears unselected. After creating a group of radio button components,
you need to place each into a single ButtonGroup so that they work as expected, with only
one button in the group selectable at a time. If you do initialize the icon in the constructor,
it’s the icon for the unselected state of the check box, with the same icon displayed when
the check box is selected. You must also either initialize the selected icon with the
setSelectedIcon(Icon newValue) method, described with JCheckBox, or make sure the icon
is state-aware and updates itself.

JRadioButton Properties

JRadioButton has two properties that override the behavior of its parent JToggleButton, as
listed in Table 5-5.

Table 5-5. JRadioButton Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
UIClassID String Read-only

Grouping JRadioButton Components in a ButtonGroup

The JRadioButton is the only JToggleButton subclass that should be placed in a ButtonGroup
in order to work properly. Merely creating a bunch of radio buttons and placing them on the
screen isn’t enough to make them behave appropriately. In addition to adding each radio
button to a container, you need to create a ButtonGroup and add each radio button to the same
ButtonGroup. Once all the JRadioButton items are in a group, whenever an unselected radio
button is selected, the ButtonGroup causes the currently selected radio button to be deselected.

Placing a set of JRadioButton components within a ButtonGroup on the screen is basically
a four-step process:

1. Create a container for the group.

JPanel aPanel = new JPanel(new GridlLayout(0, 1));

CHAPTER 5 TOGGLE BUTTONS

Note The Box class described in Chapter 11 serves as a good container for a group of JRadioButton
components.

2. Place a border around the container, to label the grouping. This is an optional step, but
you'll frequently want to add a border to label the group for the user. You can read more
about borders in Chapter 7.

Border border = BorderFactory.createTitledBorder("Slice Count");
aPanel.setBorder(border);

3. Create a ButtonGroup.
ButtonGroup aGroup = new ButtonGroup();

4. For each selectable option, create a JRadioButton, add it to a container, and then add it
to the group.

JRadioButton aRadioButton = new JRadioButton(...);
aPanel.add(aRadioButton);
aGroup.add(aRadioButton);

You might find the whole process, especially the fourth step, a bit tedious after a while,
especially when you add another step for handling selection events. The helper class shown
in Listing 5-5, with its static createRadioButtonGrouping(String elements[], String title)
method, could prove useful. It takes a String array for the radio button labels as well as the
border title, and then it creates a set of JRadioButton objects with a common ButtonGroup in a
JPanel with a titled border.

Listing 5-5. Initial Support Class for Working with JRadioButton

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;

public class RadioButtonUtils {
private RadioButtonUtils() {
// Private constructor so you can't create instances
}
public static Container createRadioButtonGrouping (String elements[],
String title) {
JPanel panel = new JPanel(new GridlLayout(0, 1));
// If title set, create titled border
if (title != null) {
Border border = BorderFactory.createTitledBorder(title);
panel.setBorder(border);

}

137

138 CHAPTER 5 TOGGLE BUTTONS

// Create group
ButtonGroup group = new ButtonGroup();
JRadioButton aRadioButton;
// For each String passed in:
// Create button, add to panel, and add to group
for (int i=0, n=elements.length; i<n; i++) {
aRadioButton = new JRadioButton(elements[i]);
panel.add(aRadioButton);
group.add(aRadioButton);
}
return panel;
}
}

Now, you can create the grouping much more easily, as with the sample program in
Listing 5-6.

Listing 5-6. Sampling JRadioButton

import javax.swing.*;
import java.awt.*;

public class GroupRadio {
private static final String sliceOptions[] =
{"4 slices", "8 slices", "12 slices", "16 slices"};
private static final String crustOptions[] =
{"Sicilian", "Thin Crust", "Thick Crust", "Stuffed Crust"};
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {

JFrame frame = new JFrame("Grouping Example");

frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

Container sliceContainer =
RadioButtonUtils.createRadioButtonGrouping(
sliceOptions, "Slice Count");

Container crustContainer =
RadioButtonUtils.createRadioButtonGrouping(
crustOptions, "Crust Type");

frame.add(sliceContainer, BorderLayout.WEST);

frame.add(crustContainer, BorderLayout.EAST);

frame.setSize(300, 200);

frame.setVisible(true);

}
};
EventQueue.invokelater(runner);
}
}

CHAPTER 5 TOGGLE BUTTONS

When you run this example, you'll see the screen shown in Figure 5-11.

& Grouping Example ;|g|5|
Slice Count Crust Type

) 4 slices i Sicilian

) 8 slices (® Thin Crust

® 12 slices i) Thick Crust

i) 16 slices) Stuffed Crust

Figure 5-11. Grouping JRadioButton components with the RadioButtonUtils helper class

Note If you're familiar with the standard AWT library, the JRadioButton/ButtonGroup combination
works exactly like the Checkbox/CheckboxGroup pair.

Handling JRadioButton Selection Events

Like JToggleButton and JCheckBox, JRadioButton supports the registration of an ActionlListener,
an ItemListener, and a ChangelListener. And again, their usage with JRadioButton is somewhat
different than with the other components.

Listening to JRadioButton Events with an ActionListener

With a JRadioButton, it’'s common to attach the same ActionListener to all the radio buttonsin
a ButtonGroup. That way, when one of the radio buttons is selected, the subscribed ActionListener
will be notified. By overloading the earlier createRadioButtonGrouping() method, the method
can acceptanActionlListener argument and attach the listener object to each of the buttons as
they're created.

public static Container createRadioButtonGrouping (String elements[], String title,

ActionlListener actionlListener) {

JPanel panel = new JPanel(new GridLayout(0, 1));

// If title set, create titled border

if (title != null) {
Border border = BorderFactory.createTitledBorder(title);
panel.setBorder(border);

}

// Create group

ButtonGroup group = new ButtonGroup();

JRadioButton aRadioButton;

// For each String passed in:

// Create button, add to panel, and add to group

139

140

CHAPTER 5 TOGGLE BUTTONS

for (int i=0, n=elements.length; i<n; i++) {
aRadioButton = new JRadioButton (elements[i]);
panel.add(aRadioButton);
group.add(aRadioButton);
if (actionlListener != null) {

aRadioButton.addActionlListener(actionlListener);

}

}

return panel;

}

Now ifa group is created with the following source, the same ActionlListener will be notified
for each of the JRadioButton components created. Here, the listener prints out only the currently
selected value. How you choose to respond may vary.

ActionListener sliceActionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
AbstractButton aButton = (AbstractButton)actionEvent.getSource();
System.out.println("Selected: " + aButton.getText());
}
};
Container sliceContainer =
RadioButtonUtils.createRadioButtonGrouping(sliceOptions, "Slice Count",
sliceActionlistener);

However, note that there are two problems with this approach. First, if a JRadioButton is
already selected and then selected again, any attached ActionListener objects will still be notified
once more. Although you cannot stop the double notification of subscribed ActionListener
objects, with a little work, you can handle it properly. You need to retain a reference to the last
selected item and check for reselection. The following modified ActionListener checks for this:

ActionListener crustActionListener = new ActionListener() {
String lastSelected;
public void actionPerformed(ActionEvent actionEvent) {
AbstractButton aButton = (AbstractButton)actionEvent.getSource();
String label = aButton.getText();
String msgStart;
if (label.equals(lastSelected)) {
msgStart = "Reselected: ";
} else {
msgStart = "Selected: ";
}
lastSelected = label;
System.out.println(msgStart + label);
}
};

The second problem has to do with determining which JRadioButton is selected at any
given time. With the overloaded RadioButtonUtils.createRadioButtonGrouping() helper methods,
neither the ButtonGroup nor the individual JRadioButton components are visible outside the

CHAPTER 5 TOGGLE BUTTONS

method. As a result, there’s no direct route to find out which JRadioButton object (or objects) is
selected within the ButtonGroup of the returned container. This may be necessary, for example,
if there were an Order Pizza button on the screen and you wanted to find out which pizza-order
options were selected after the user clicked that button.

The following helper method, public Enumeration getSelectedElements(Container
container), when added to the previously created RadioButtonUtils class (Listing 5-5), will
provide the necessary answer. The helper method will work only if the container passed into
the method is full of AbstractButton objects. This is true for those containers created with the
previously described createRadioButtonGrouping () methods, although the getSelectedElements()
method can be used separately.

public static Enumeration<String> getSelectedElements(Container container) {
Vector<String> selections = new Vector<String>();
Component components[] = container.getComponents();
for (int i=0, n=components.length; i<n; i++) {
if (components[i] instanceof AbstractButton) {
AbstractButton button = (AbstractButton)components[i];
if (button.isSelected()) {
selections.addElement(button.getText());
}
}
}

return selections.elements();

}

To use the getSelectedElements() method, you just need to pass the container returned
from createRadioButtonGrouping() to the getSelectedElements() method to getan Enumeration of
the selected items as String objects. The following example demonstrates this.

final Container crustContainer =
RadioButtonUtils.createRadioButtonGrouping(crustOptions, "Crust Type");

ActionlListener buttonActionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
Enumeration selected = RadioButtonUtils.getSelectedElements(crustContainer);
while (selected.hasMoreElements()) {
System.out.println ("Selected -> "
}
}
};
JButton button = new JButton ("Order Pizza");
button.addActionListener(buttonActionListener);

+ selected.nextElement());

It may be necessary for getSelectedElements() to return more than one value, because if
the same ButtonModel is shared by multiple buttons in the container, multiple components of the
ButtonGroup will be selected. Sharing a ButtonModel between components isn’t the norm. If
you're sure your button model won’t be shared, then you may want to provide a similar
method that returns only a String.

141

142

CHAPTER 5 TOGGLE BUTTONS

Listening to JRadioButton Events with an ltemListener

Depending on what you're trying to do, using an ItemListener with a JRadioButton is usually
not the desired event-listening approach. When an ItemListener is registered, a new JRadioButton
selection notifies the listener twice: once for deselecting the old value and once for selecting
the new value. For reselections (selecting the same choice again), the listener is notified only once.

To demonstrate, the following listener will detect reselections, as the ActionListener did
earlier, and will report the selected (or deselected) element.

ItemListener itemListener = new ItemListener() {

String lastSelected;

public void itemStateChanged(ItemEvent itemEvent) {
AbstractButton aButton = (AbstractButton)itemEvent.getSource();
int state = itemEvent.getStateChange();
String label = aButton.getText();
String msgStart;
if (state == ItemEvent.SELECTED) {

if (label.equals(lastSelected)) {

n

msgStart = "Reselected -> ";

} else {
msgStart = "Selected -> ";
}
lastSelected = label;
} else {
msgStart = "Deselected -> ";
}
System.out.println(msgStart + label);

}
};

To work properly, some new methods will be needed for RadioButtonUtils to enable you
to attach the ItemListener to each JRadioButton in the ButtonGroup. They're listed in the
following section with the source for the complete example.

Listening to JRadioButton Events with a ChangeListener

The Changelistener responds to the JRadioButton just as it does with the JToggleButton and
JCheckBox. A subscribed listener is notified when the selected radio button is armed, pressed,
selected, or released and for various other properties of the button model. The only difference
with JRadioButton is that the Changelistener is also notified of the state changes of the radio
button being deselected. The ChangelListener from the earlier examples could be attached to
the JRadioButton as well. It will just be notified more frequently.

The sample program shown in Listing 5-7 demonstrates all the listeners registered to the
events of two different JRadioButton objects. In addition, a JButton reports on the selected
elements of one of the radio buttons. Figure 5-12 shows the main window of the program.

CHAPTER 5 TOGGLE BUTTONS

Listing 5-7. Radio Button Group Sample

import javax.swing.*;

import javax.swing.event.*;
import java.awt.*;

import java.awt.event.*;
import java.util.Enumeration;

public class GroupActionRadio {
private static final String sliceOptions[] =
{"4 slices", "8 slices", "12 slices", "16 slices"};
private static final String crustOptions[] =
{"Sicilian", "Thin Crust", "Thick Crust", "Stuffed Crust"};
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Grouping Example");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

// Slice Parts
ActionListener sliceActionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
AbstractButton aButton = (AbstractButton)actionEvent.getSource();
System.out.println("Selected: " + aButton.getText());
}
};
Container sliceContainer =
RadioButtonUtils.createRadioButtonGrouping(sliceOptions,
"Slice Count", sliceActionListener);

// Crust Parts
ActionListener crustActionListener = new ActionListener() {
String lastSelected;
public void actionPerformed(ActionEvent actionEvent) {
AbstractButton aButton = (AbstractButton)actionEvent.getSource();
String label = aButton.getText();
String msgStart;
if (label.equals(lastSelected)) {
msgStart = "Reselected: ";
} else {
msgStart = "Selected: ";
}
lastSelected = label;
System.out.println(msgStart + label);

};

143

144 CHAPTER 5 TOGGLE BUTTONS

TtemListener itemListener = new ItemListener() {

String lastSelected;

public void itemStateChanged(ItemEvent itemEvent) {
AbstractButton aButton = (AbstractButton)itemEvent.getSource();
int state = itemEvent.getStateChange();
String label = aButton.getText();
String msgStart;
if (state == ItemEvent.SELECTED) {

if (label.equals(lastSelected)) {

n

msgStart = "Reselected -> ";

} else {
msgStart = "Selected -> ";
}
lastSelected = label,;
} else {
msgStart = "Deselected -> ";
}
System.out.println(msgStart + label);

}
};
Changelistener changelistener = new Changelistener() {
public void stateChanged(ChangeEvent changEvent) {
AbstractButton aButton = (AbstractButton)changEvent.getSource();
ButtonModel aModel = aButton.getModel();
boolean armed = aModel.isArmed();
boolean pressed = aModel.isPressed();
boolean selected = aModel.isSelected();
System.out.println("Changed: " + armed + "/" + pressed + "/" +
selected);
}
};
final Container crustContainer =
RadioButtonUtils.createRadioButtonGrouping(crustOptions,
"Crust Type", crustActionlistener, itemListener, changelistener);

// Button Parts
ActionListener buttonActionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
Enumeration<String> selected =
RadioButtonUtils.getSelectedElements(crustContainer);
while (selected.hasMoreElements()) {
System.out.println ("Selected -> "
}
}
};

+ selected.nextElement());

CHAPTER 5 TOGGLE BUTTONS

JButton button = new JButton ("Order Pizza");
button.addActionlListener(buttonActionlListener);

frame.add(sliceContainer, BorderlLayout.WEST);
frame.add(crustContainer, BorderlLayout.EAST);
frame.add(button, BorderLayout.SOUTH);
frame.setSize(300, 200);
frame.setVisible(true);

};

EventQueue.invokelater(runner);
& Grouping Example - |EI|1|
Slice Count Crust Type
@ 4 slices i) Sicilian
) 8 slices (® Thin Crust
) 12 slices i) Thick Crust
) 16 slices) Stuffed Crust

Order Pizza |

Figure 5-12. The GroupActionRadio program sample screen

A few more changes were made to the RadioButtonUtils class to deal with registering
ChangeListener objects to all the radio buttons in a ButtonGroup. The complete and final class
definition is shown in Listing 5-8.

Listing 5-8. Complete Support Class for Working with JRadioButton

import
import
import
import
import
import
import

public

javax.swing.*;
javax.swing.event.*;
javax.swing.border.*;
java.awt.*;
java.awt.event.*;
java.util.Enumeration;
java.util.Vector;

class RadioButtonUtils {

private RadioButtonUtils() {
// Private constructor so you can't create instances

}

145

146 CHAPTER 5 TOGGLE BUTTONS

public static Enumeration<String> getSelectedElements(Container container) {
Vector<String> selections = new Vector<String>();
Component components[] = container.getComponents();
for (int i=0, n=components.length; i<n; i++) {
if (components[i] instanceof AbstractButton) {
AbstractButton button = (AbstractButton)components[i];
if (button.isSelected()) {
selections.addElement(button.getText());
}
}
}

return selections.elements();

}

public static Container createRadioButtonGrouping (String elements[]) {
return createRadioButtonGrouping(elements, null, null, null, null);

}

public static Container createRadioButtonGrouping (String elements[],
String title) {
return createRadioButtonGrouping(elements, title, null, null, null);

}

public static Container createRadioButtonGrouping(String elements[],
String title, ItemListener itemListener) {
return createRadioButtonGrouping(elements, title, null, itemListener, null);

}

public static Container createRadioButtonGrouping(String elements[],
String title, ActionlListener actionlListener) {
return createRadioButtonGrouping(elements, title, actionlListener, null,
null);

}

public static Container createRadioButtonGrouping(String elements[],
String title, ActionlListener actionListener, ItemListener itemListener) {
return createRadioButtonGrouping(elements, title, actionlListener,
itemListener, null);

}

public static Container createRadioButtonGrouping(String elements[],
String title, Actionlistener actionlListener, ItemlListener itemlListener,
Changelistener changelistener) {
JPanel panel = new JPanel(new GridlLayout(0, 1));
// If title set, create titled border

CHAPTER 5 TOGGLE BUTTONS 147

if (title != null) {
Border border = BorderFactory.createTitledBorder(title);
panel.setBorder(border);
}
// Create group
ButtonGroup group = new ButtonGroup();
JRadioButton aRadioButton;
// For each String passed in:
// Create button, add to panel, and add to group
for (int i=0, n=elements.length; i<n; i++) {
aRadioButton = new JRadioButton (elements[i]);
panel.add(aRadioButton);
group.add(aRadioButton);
if (actionlListener != null) {
aRadioButton.addActionlListener(actionlListener);
}
if (itemListener != null) {
aRadioButton.addItemListener(itemListener);
}
if (changelistener != null) {
aRadioButton.addChangelistener(changelistener);
}
}
return panel;
}
}

Note One thing not shown here but explained in Chapter 4 in the discussion of ButtonModel and
DefaultButtonModel is how to get the ButtonGroup when given a JRadioButton. If you want to find
the ButtonGroup thata JRadioButtonisin, you need to ask the DefaultButtonModel: ButtonGroup
group = ((DefaultButtonModel)aJRadioButton.getModel()).getButtonGroup().

Customizing a JRadioButton Look and Feel

Each installable Swing look and feel provides a different JRadioButton appearance and set of
default UIResource values. Figure 5-13 shows the appearance of the JRadioButton component
for the preinstalled set of look and feel types: Motif, Windows, and Ocean. All three screens
show 4 slices of Thin Crust pizza as the order. In addition, the Thick Crust option has the input
focus.

148

CHAPTER 5

TOGGLE BUTTONS

£ Motif LnF 1o = £ windows LnF P] 5
Slice Count— Crust Type [Slize Count— Crust Type
(% 4 slices _ISicilian & 4 slices " Sicilian
8 slices (% Thin Crust " Bslices & Thin Crust
12 slices 12 slioes
toslies M 16 slices " Stuffed Crust
Order Pizza | Order Pizza :
Motif Windows
£ Ocean LnF =101 =]
Slice Count Crust Type
@ 4 slices) Sicilian
0 8 slices ® Thin Crust
2 12 slices) Thick Crust
) 16 slices i) Stuffed Crust
i Order Pizza |

Ocean

Figure 5-13. JRadioButton under different look and feel types

Table 5-6 shows the set of available UIResource-related properties for a JRadioButton.
The JRadioButton component has 20 different properties available.

Table 5-6. JRadioButton UIResource Elements

Property String Object Type
RadioButton.background Color
RadioButton.border Border
RadioButton.darkShadow Color
RadioButton.disabledText Color
RadioButton.focus Color
RadioButton.focusInputMap Object[]
RadioButton.font Font
RadioButton.foreground Color
RadioButton.gradient List
RadioButton.highlight Color
RadioButton.icon Icon
RadioButton.interiorBackground Color
RadioButton.light Color
RadioButton.margin Insets

CHAPTER 5 TOGGLE BUTTONS

Table 5-6. JRadioButton UlIResource Elements (Continued)

Property String Object Type
RadioButton.rollover Boolean
RadioButton.select Color
RadioButton.shadow Color
RadioButton.textIconGap Integer
RadioButton.textShiftOffset Integer
RadioButtonUI String

Summary

This chapter described the components that can be toggled: JToggleButton, JCheckBox, and
JRadioButton. You've seen how each component uses the JToggleButton.ToggleButtonModel
class for its data model and how you can group the components into a ButtonGroup. In addition,
you also saw how to handle selection events for each of the components.

Chapter 6 explains how to work with the various menu-oriented Swing components.

149

CHAPTER 6

Swing Menus and Toolbars

M any of the low-level Swing components were covered in the previous two chapters of this
book. This chapter will delve into Swing’s menu-related components. Menus and toolbars help
make your applications more user-friendly by providing visual command options. Users can
avoid the somewhat archaic multiple-key command sequences that are holdovers from programs
such as the early word processor WordStar and the more current emacs programmer’s editor.
Although Swing menus do support multiple-key command sequences, the menus (and toolbars)
are designed primarily for on-screen graphical selection with a mouse, rather than the keyboard.
The menu components discussed in this chapter are used as follows:

» For each cascading menu, you create a JMenu component and add it to the JMenuBar.

» For the selections available from the IJMenu, you create JMenuItem components and add
them to the JMenu.

* To create submenus, you add a new JMenu to a JMenu and place JMenuItem options on the
new menu.

e Then, when a JMenu is selected, the system displays its current set of components within
a JPopupMenu.

In addition to the basic JMenuItemelements, this chapter covers other menu items, such as
JCheckBoxMenuItem and JRadioButtonMenuItem, which you can place within a JMenu. You'll also
explore the JSeparator class, which serves to divide menu items into logical groups. You'll find
out how to use the JPopupMenu class for general support of pop-up menus that appear after a
JIMenu is selected, or in context for any component. As with abstract buttons (the AbstractButton
class was introduced in Chapter 4), each menu element can have a mnemonic associated with
it for keyboard selection. You'll also learn about the support for keyboard accelerators, which
allow users to avoid going through all the menuing levels for selection.

Besides the individual menu-related components, in this chapter you'll look at the JMenuBar
selection model and event-related classes specific to menus. The selection model interface
to examine is the SingleSelectionModel interface, as well as its default implementation
DefaultSingleSelectionModel. You'll explore the menu-specific listeners and events

MenulListener/MenuEvent, MenuKeylListener/MenuKeyEvent, and MenuDragMouselistener/
MenuDragMouseEvent. In addition, you’ll examine creating other pop-up components with
Popup and PopupFactory, as well as using toolbars with the JToolBar class.

151

152

CHAPTER 6 SWING MENUS AND TOOLBARS

Working with Menus

Let’s begin with an example that demonstrates how all the menu components fit together.
To start, create a frame with a menu bar, as shown in Figure 6-1.

Accelerator

— Mnemonic

_|of x|
< JMenuBar

JMenultem Find v]
{14 Options » ® Forward i
L it | &——— JRadioButtonMenultem

| O Backward

A P) <__ JSeparator
= «——— JCheckBoxMenultem

A

JPopupMenu

Figure 6-1. Menu component examples

This simple menuing example has the following features:

On the menu bar are two ubiquitous menus: File and Edit. Under the File menu, the
familiar options of New, Open, Close, and Exit will appear (although they aren’t shown
in Figure 6-1). Under the Edit menu are options for Cut, Copy, Paste, and Find, and a
submenu of Find options. The Options submenu will contain choices for search direction—
forward or backward—and a toggle for case sensitivity.

In various places within the different menus, menu separators divide the options into
logical sets.

Each of the menu options has a mnemonic associated with it to help with keyboard
navigation and selection. The mnemonic allows users to make menu selections via the
keyboard, for instance, by pressing Alt-F on a Windows platform to open the File menu.

In addition to the keyboard mnemonic, a keystroke associated with several options acts
as a keyboard accelerator. Unlike the mnemonic, the accelerator can directly activate a
menu option, even when the menu option isn’t visible.

The Options submenu has an icon associated with it. Although only one icon is shown in
Figure 6-1, all menu components can have an icon, except for the JSeparator and
JPopupMenu components.

CHAPTER 6 SWING MENUS AND TOOLBARS

Note that for this beginning example, none of the menu choices will do anything other
than print which menu choice was selected. For example, selecting the Copy option from the
Edit menu displays Selected: Copy.

Listing 6-1 shows the complete source for the class that generated the example in Figure 6-1.

Listing 6-1. The MenuSample Class Definition

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class MenuSample {
static class MenuActionListener implements ActionListener {
public void actionPerformed (ActionEvent actionEvent) {
System.out.println ("Selected: " + actionEvent.getActionCommand());
}

}
public static void main(final String args[]) {

Runnable runner = new Runnable() {
public void run() {
ActionListener menuListener = new MenuActionListener();
JFrame frame = new JFrame("MenuSample Example");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
JMenuBar menuBar = new JMenuBar();

// File Menu, F - Mnemonic

IMenu fileMenu = new IMenu("File");
fileMenu.setMnemonic(KeyEvent.VK F);
menuBar.add(fileMenu);

// File->New, N - Mnemonic

IMenuItem newMenuItem = new JMenuItem("New", KeyEvent.VK N);
newMenuItem.addActionlListener(menulListener);
fileMenu.add(newMenuItem);

// File->Open, 0 - Mnemonic

JMenuItem openMenultem = new JMenuItem("Open", KeyEvent.VK 0);
openMenuItem.addActionlListener(menuListener);
fileMenu.add(openMenuItem);

// File->Close, C - Mnemonic

IMenuItem closeMenuItem = new JMenuItem("Close", KeyEvent.VK C);
closeMenuItem.addActionlListener(menulListener);
fileMenu.add(closeMenultem);

153

154 CHAPTER 6 SWING MENUS AND TOOLBARS

// Separator
fileMenu.addSeparator();

// File->Save, S - Mnemonic

IMenuItem saveMenuItem = new JMenuItem("Save", KeyEvent.VK S);
saveMenuItem.addActionlistener(menulListener);
fileMenu.add(saveMenuItem);

// Separator
fileMenu.addSeparator();

// File->Exit, X - Mnemonic

IMenuItem exitMenuItem = new JMenuItem("Exit", KeyEvent.VK X);
exitMenuItem.addActionListener(menulistener);
fileMenu.add(exitMenuItem);

// Edit Menu, E - Mnemonic

IMenu editMenu = new JIMenu("Edit");
editMenu.setMnemonic(KeyEvent.VK E);
menuBar.add(editMenu);

// Edit->Cut, T - Mnemonic, CTRL-X - Accelerator

IMenuItem cutMenuItem = new JMenuItem("Cut", KeyEvent.VK T);
cutMenuItem.addActionlListener(menulistener);

KeyStroke ctrlXKeyStroke = KeyStroke.getKeyStroke("control X");
cutMenuItem.setAccelerator (ctrlXKeyStroke);
editMenu.add(cutMenultem);

// Edit->Copy, C - Mnemonic, CTRL-C - Accelerator

IMenuItem copyMenuItem = new JMenuItem("Copy", KeyEvent.VK C);
copyMenuItem.addActionListener(menuListener);

KeyStroke ctrlCKeyStroke = KeyStroke.getKeyStroke("control C");
copyMenuItem.setAccelerator(ctrlCKeyStroke);
editMenu.add(copyMenuItem);

// Edit->Paste, P - Mnemonic, CTRL-V - Accelerator, Disabled
JMenuItem pasteMenuItem = new IMenuItem("Paste", KeyEvent.VK P);
pasteMenuItem.addActionListener(menulistener);

KeyStroke ctrlVKeyStroke = KeyStroke.getKeyStroke("control V");
pasteMenuItem.setAccelerator(ctrlVKeyStroke);
pasteMenuItem.setEnabled(false);

editMenu.add(pasteMenuItem);

// Separator
editMenu.addSeparator();

CHAPTER 6 SWING MENUS AND TOOLBARS

// Edit->Find, F - Mnemonic, F3 - Accelerator

IMenuItem findMenuItem = new JMenuItem("Find", KeyEvent.VK F);
findMenuItem.addActionListener(menulistener);

KeyStroke f3KeyStroke = KeyStroke.getKeyStroke("F3");
findMenuItem.setAccelerator(f3KeyStroke);
editMenu.add(findMenuItem);

// Edit->Options Submenu, O - Mnemonic, at.gif - Icon Image File
JMenu findOptionsMenu = new JMenu("Options");

Icon atIcon = new ImageIcon ("at.gif");
findOptionsMenu.setIcon(atIcon);
findOptionsMenu.setMnemonic(KeyEvent.VK 0);

// ButtonGroup for radio buttons
ButtonGroup directionGroup = new ButtonGroup();

// Edit->Options->Forward, F - Mnemonic, in group
JRadioButtonMenuItem forwardMenuItem =

new JRadioButtonMenuItem("Forward", true);
forwardMenuItem.addActionListener(menulistener);
forwardMenuItem.setMnemonic(KeyEvent.VK F);
findOptionsMenu.add(forwardMenuItem);
directionGroup.add(forwardMenuItem);

// Edit->Options->Backward, B - Mnemonic, in group
JRadioButtonMenuItem backwardMenuItem =

new JRadioButtonMenuItem("Backward");
backwardMenuItem.addActionlListener(menulistener);
backwardMenuItem.setMnemonic(KeyEvent.VK B);
findOptionsMenu.add(backwardMenuItem);
directionGroup.add(backwardMenuItem);

// Separator
findOptionsMenu.addSeparator();

// Edit->Options->Case Sensitive, C - Mnemonic
JCheckBoxMenuItem caseMenultem =

new JCheckBoxMenuItem("Case Sensitive");
caseMenuItem.addActionlListener(menulistener);
caseMenuItem.setMnemonic(KeyEvent.VK C);
findOptionsMenu.add(caseMenultem);
editMenu.add(findOptionsMenu);

155

156 CHAPTER 6 SWING MENUS AND TOOLBARS

frame.setIMenuBar(menuBar);
frame.setSize(350, 250);
frame.setVisible(true);
}
b
EventQueue.invokelater(runner);
}
}

Menu Class Hierarchy

Now that you've seen an example of how to create the cascading menus for an application, you
should have an idea of what'’s involved in using the Swing menu components. To help clarify,
Figure 6-2 illustrates how all the Swing menu components are interrelated.

JComponent
JMenuBar JPopupMenu JSeparator AbstractButton
5 i
..................... <;Z;E:§::;ﬁ;> JMenuItem
JMenu JCheckBoxMenuItem JRadioButtonMenuItem

Figure 6-2. Swing menu class hierarchy

The most important concept illustrated in Figure 6-2 is that all the Swing menu elements,
as subclasses of JComponent, are AWT components in their own right. You can place JMenuItem,
IMenu, and IMenuBar components anywhere that AWT components can go, not just on a frame.
In addition, because JMenuItem inherits from AbstractButton, JMenuItem and its subclasses
inherit support for various icons and for HTML text labels, as described in Chapter 5.

CHAPTER 6 SWING MENUS AND TOOLBARS

Note Although technically possible, placing menus in locations where users wouldn’t expect them to be
is poor user interface design.

In addition to being part of the basic class hierarchy, each of the selectable menu components
implements the MenuElement interface. The interface describes the menu behavior necessary to
support keyboard and mouse navigation. The predefined menu components already imple-
ment this behavior, so you don’t have to. But if you're interested in how this interface works,
see the “MenuElement Interface” section later in this chapter.

Now let’s take a look at the different Swing menu components.

JMenuBar Class

Swing’s menu bar component is the JMenuBar. Its operation requires you to fill the menu bar
with JMenu elements that have JMenuItem elements. Then you add the menu bar to a JFrame or
some other user interface component requiring a menu bar. The menu bar then relies on the
assistance of a SingleSelectionModel to determine which JMenu to display or post after it’s selected.

Creating JMenuBar Components

JMenuBar has a single constructor of the no-argument variety: public JMenuBar(). Once you
create the menu bar, you can add it to a window with the setIJMenuBar () method of JApplet,
JDialog, JFrame, JInternalFrame, or JRootPane. (Yes, even applets can have menu bars.)

JMenuBar menuBar = new JMenuBar();
// Add items to it

JFrame frame = new JFrame("MenuSample Example");
frame.setIMenuBar(menuBar);

With the system-provided look and feel types, the menu bar appears at the top of the
window, below any window title (if present), with setIJMenuBar (). Other look and feel types, like
Aqua for the Macintosh, place the menu bar elsewhere.

You can also use the add() method of a Container to add a JMenuBar to a window. When
added with the add() method, a JMenuBar is arranged by the layout manager of the Container.

After you have a JMenuBar, the remaining menu classes all work together to fill the menu bar.

Adding Menus to and Removing Menus from Menu Bars

You need to add JMenu objects to a IMenuBar. Otherwise, the only thing displayed is the border
with nothing in it. There’s a single method for adding menus to a JMenuBazr:

public IMenu add(JIMenu menu)

157

158

CHAPTER 6 SWING MENUS AND TOOLBARS

By default, consecutively added menus are displayed from left to right. This makes the first
menu added the leftmost menu and the last menu added the rightmost menu. Menus added in
between are displayed in the order in which they’re added. For instance, in the sample program
from Listing 6-1, the menus were added as follows:

IMenu fileMenu = new IMenu("File");
menuBar.add(fileMenu);
IMenu editMenu = new IMenu("Edit");
menuBar.add(editMenu);

Note Placing a JMenuBar in the EAST or WEST area of a BorderLayout does not make the menus
appear vertically, stacked one on top of another. You must customize the menu bar if you want menus to
appear this way. See Figure 6-4, later in this chapter, for one implementation of a top-down menu bar.

In addition to the add() method from JMenuBar, several overloaded varieties of the add()
method inherited from Container offer more control over menu positioning. Of particular
interest is the add (Component component, int index) method, which allows you to specify the
position in which the new JMenu is to appear. Using this second variety of add() allows you to
place the File and Edit JMenu components in a JMenuBar in a different order, but with the
same results:

menuBar.add(editMenu);
menuBar.add(fileMenu, 0);

If you've added a JMenu component to a JMenuBar, you can remove it with either the
remove (Component component) or remove(int index) method inherited from Container:

bar.remove(edit);
bar.remove(0);

Tip Adding or removing menus from a menu bar is likely to confuse users. However, sometimes it’s necessary
to do so—especially if you want to have an expert mode that enables a certain functionality that a nonexpert
mode hides. A better approach is to disable/enable individual menu items or entire menus. If you do add or
remove menus, you must then revalidate() the menu bar to display the changes.

JMenuBar Properties

Table 6-1 shows the 11 properties of JMenuBar. Half the properties are read-only, allowing you
only to query the current state of the menu bar. The remaining properties allow you to alter the
appearance of the menu bar by deciding whether the border of the menu bar is painted and
selecting the size of the margin between menu elements. The selected property and selection
model control which menu on the menu bar, if any, is currently selected. When the selected

CHAPTER 6 SWING MENUS AND TOOLBARS

component is set to a menu on the menu bar, the menu components appear in a pop-up menu
within a window.

Caution The helpMenu property, although available with a set-and-get method, is unsupported in the
Swing releases through 5.0. Calling either accessor method will throw an error. With some future release of
Swing, the helpMenu property will likely make a specific JMenu the designated help menu. Exactly what
happens when a menu is flagged as the help menu is specific to the installed look and feel. What tends to
happen is that the menu becomes the last, or rightmost, menu.

Table 6-1. JMenuBar Properties

Property Name Data Type Access

accessibleContext AccessibleContext Read-only
borderPainted boolean Read-write
component Component Read-only
helpMenu IMenu Read-write
margin Insets Read-write
menuCount int Read-only
selected boolean/Component Read-write
selectionModel SingleSelectionModel Read-write
subElements MenuElement[] Read-only
uI MenuBarUI Read-write
UIClassID String Read-only

Note The selected property of JMenuBar is nonstandard. The getter method returns a boolean to
indicate if a menu component is selected on the menu bar. The setter method accepts a Component argument
to select a component on the menu bar.

Customizing a JMenuBar Look and Feel

Each predefined Swing look and feel provides a different appearance and set of default UIResource
values for the JMenuBar and each of the menu components. Figure 6-3 shows the appearance
of all these menu components for the preinstalled set of look and feel types: Motif, Windows,
and Ocean.

159

160 CHAPTER 6 SWING MENUS AND TOOLBARS

£ Motif LnF y I] B & windows LnF ol =
File ’E E’ET
L Cut Chrl+
Cut CArl+3 Copy Chrl+C
Copy Cirl+C Baste Chrl+y
EHEE gt Eind F3
Eind—F3 # Forward
. i Backward
| Options [& Eonward v Case Sensitive
_IBackward

& Case Sensitive

Motif Windows
é Ocean LnF = — i
=1oi x|
File |Edit
Cut il
Copy ChlC
Find
4w/ Options » ® Forward

O Backward

¥ Case Sensitive

Ocean
Figure 6-3. Menu components under different look and feel types

In regard to the specific appearance of the JMenuBar, the available set of UIResource-related
properties is shown in Table 6-2. There are 12 properties available for the JMenuBar component.

Table 6-2. /MenuBar UIResource Elements

Property String Object Type
MenuBar.actionMap ActionMap
MenuBar.background Color
MenuBar.border Border
MenuBar.borderColor Color
MenuBar.darkShadow Color
MenuBar.font Font
MenuBar . foreground Color
MenuBar.gradient List
MenuBar.highlight Color
MenuBar. shadow Color
MenuBar.windowBindings Object[]

MenuBarUI String

CHAPTER 6 SWING MENUS AND TOOLBARS 161

If you want a vertical menu bar, instead of a horizontal one, simply change the LayoutManager
of the menu bar component. A setup such as a 0 row by 1 column GridlLayout does the job, as
shown in the following example, because the number of rows will grow infinitely for each JMenu
added:

import java.awt.*;
import javax.swing.*;
public class VerticalMenuBar extends IMenuBar {
private static final LayoutManager grid = new GridlLayout(0,1);
public VerticalMenuBar() {
setlayout(grid);
}
}

Moving the menu bar shown in Figure 6-1 to the east side of a BorderLayout and making it
aVerticalMenuBar instead of a JMenuBar produces the setup shown in Figure 6-4. Although the
vertical menu bar may look a little unconventional here, it's more desirable to have menu items
appearing stacked vertically, rather than horizontally, on the right (or left) side of a window. You
may, however, want to change the MenuBar.border property to a more appropriate border.

£ Yertical Menu Bar : =31 x|

File

Figure 6-4. Using the VerticalMenuBar

Note Changing the layout manager of the JMenuBar has one negative side effect: Because top-level menus
are pull-down menus, open menus on a vertical bar will obscure the menu bar. If you want to correct this pop-
up placement behavior, you must extend the JMenu class and override its protected getPopupMenuOrigin()
method in order to make the pop-up menu span out, rather than drop down.

SingleSelectionModel Interface

The SingleSelectionModel interface describes an index into an integer-indexed data structure
where an element can be selected. The data structure behind the interface facade is most likely
an array or vector in which repeatedly accessing the same position is guaranteed to return the
same object. The SingleSelectionModel interface is the selection model for a JMenuBar as well
as a JPopupMenu. In the case of a JMenuBar, the interface describes the currently selected JMenu
that needs to be painted. In the case of a JPopupMenu, the interface describes the currently
selected JMenuItem.

162 CHAPTER 6 SWING MENUS AND TOOLBARS

Note SingleSelectionModel also serves as the selection model for JTabbedPane, a class described
in Chapter 11.

The interface definition for SingleSelectionModel follows:

public interface SingleSelectionModel {
// Listeners
public void addChangelistener(Changelistener listener);
public void removeChangelListener(Changelistener listener);
// Properties
public int getSelectedIndex();
public void setSelectedIndex(int index);
public boolean isSelected();
// Other Methods
public void clearSelection();

As you can see, in addition to the selection index, the interface requires maintenance of a
Changelistener list to be notified when the selection index changes.

The default Swing-provided implementation of SingleSelectionModel is the
DefaultSingleSelectionModel class. For both JMenuBar and JPopupMenu, it’s very unlikely that
you will change their selection model from this default implementation.

The DefaultSingleSelectionModel implementation manages the list of ChangelListener
objects. In addition, the model uses a value of -1 to signify that nothing is currently selected.
When the selected indexis -1, isSelected() returns false; otherwise, the method returns true.
When the selected index changes, any registered ChangelListener objects will be notified.

JMenultem Class

The JMenuItem component is the predefined component that a user selects on a menu bar. As a
subclass of AbstractButton, JMenuItem acts as a specialized button component that behaves
similarly to a JButton. Besides being a subclass of AbstractButton, the JMenuItem class shares
the data model of JButton (ButtonModel interface and DefaultButtonModel implementation).

Creating JMenultem Components

Six constructors for JIMenuItemfollow. They allow you to initialize the menu item’s string or icon
label and the mnemonic of the menu item. There’s no explicit constructor permitting you to
set all three options at creation time, unless you make them part of an Action.

CHAPTER 6 SWING MENUS AND TOOLBARS

public IMenuItem()
IMenuItem jMenuItem = new IMenuItem();

public IMenuItem(Icon icon)
Icon atIcon = new ImageIcon("at.gif");
IMenuItem jMenuItem = new IMenuItem(atIcon);

public JMenuItem(String text)
IMenuItem jMenuItem = new IMenuItem("Cut");

public IMenuItem(String text, Icon icon)
Icon atIcon = new ImageIcon("at.gif");
IMenuItem jMenuItem = new IMenuItem("Options", atIcon);

public IMenuItem(String text, int mnemonic)
IMenuItem jMenuItem = new IMenuItem("Cut", KeyEvent.VK T);

public IMenuItem(Action action)
Action action = ...;
IMenuItem jMenuItem = new IMenuItem(action);

The mnemonic allows you to select the menu through keyboard navigation. For instance,
you can simply press Alt-T on a Windows platform to select the Cut menu item if the item
appears on an Edit menu that is already open. The mnemonic for a menu item usually appears
underlined within the text label for the menu. However, if the letter doesn’t appear within the
text label or if there is no text label, the user will have no visual clue as to its setting. Letters are
specified by the different key constants within the java.awt.event.KeyEvent class.

Other platforms might offer other meta-keys for selecting mnemonics. On UNIX, the
meta-key is also an Alt key; on a Macintosh, it’s the Command key.

Note Adding a IMenuItem with a label of “-” doesn’t create a menu separator as it did with AWT’s
MenuItem.

JMenultem Properties

The IMenuItem class has many properties. Roughly 100 properties are inherited through its
various superclasses. The 10 properties specific to JMenuItem are shown in Table 6-3.

163

164 CHAPTER 6 SWING MENUS AND TOOLBARS

Table 6-3. /Menultem Properties

Property Name Data Type Access
accelerator KeyStroke Read-write bound
accessibleContext AccessibleContext Read-only

armed boolean Read-write
component Component Read-only
enabled boolean Write-only bound
menuDragMouselListeners MenuDragMouselistener[] Read-only
menuKeyListeners MenuKeyListener[] Read-only
subElements MenuElement[] Read-only

Ul MenuElementUI Write-only bound
UIClassID String Read-only

One truly interesting property is accelerator. As explained in Chapter 2, KeyStroke is a
factory class that lets you create instances based on key and modifier combinations. For instance,
the following statements, from the example in Listing 6-1 earlier in this chapter, associate Ctrl-X as
the accelerator for one particular menu item:

KeyStroke ctrlXKeyStroke=KeyStroke.getKeyStroke("control X");
cutMenuItem.setAccelerator(ctrlXKeyStroke);

The read-only component and subElements properties are part of the MenuElement interface,
which JMenuItem implements. The component property is the menu item renderer (the JMenuItem
itself). The subElements property is empty (that is, an empty array, not null), because a JMenuItem
has no children.

Note Swing menus don’t use AWT’s MenuShortcut class.

Handling JMenultem Events

You can handle events within a JMenuItemin at least five different ways. The component inherits
the ability to allow you to listen for the firing of ChangeEvent and ActionEvent through the
ChangelListener and ActionListener registration methods of AbstractButton. In addition, the
JMenuItem component supports registering MenuKeylListener and MenuDragMouselistener
objects when MenuKeyEvent and MenuDragMouseEvent events happen. These techniques are
discussed in the following sections. A fifth way is to pass an Action to the JMenuItem constructor,
which is like a specialized way of listening with an ActionListener. For more on using Action,
see the discussion of using Action objects with menus, in the “JMenu Class” section a little later
in this chapter.

CHAPTER 6

Listening to JMenultem Events with a ChangeListener

SWING MENUS AND TOOLBARS

Normally, you wouldn’t register a ChangeListener with a JMenuItem. However, demonstrating
one hypothetical case helps to clarify the data model changes of the JMenuItem with respect to
its ButtonModel. The changes with regard to arming, pressing, and selecting are the same as
with a JButton. However, their naming might be a little confusing because the selected property of
the model is never set.
A JMenuItemis armed when the mouse passes over the menu choice and it becomes selected.
A JMenuItemis pressed when the user releases the mouse button over it. Immediately after being

pressed, the menu item becomes unpressed and unarmed. Between the menu item being

pressed and unpressed, the AbstractButton is notified of the model changes, causing any regis-
tered ActionListener objects of the menu item to be notified. The button model for a plain
JMenuItem never reports being selected. If you move the mouse to another menu item without
selecting, the first menu item automatically becomes unarmed. To help you better visualize
the different changes, Figure 6-5 shows a sequence diagram.

165

JMenultem

ActionListener
List of
JMenultem

ChangeListener
List of
JMenultem

ActionListener
List of
ButtonModel

ButtonModel

Registers with

Mouse Enters/Menu Selection Changed

Registers with

Mouse Released

Armed

Pressed

Pressed

Notifies

Notifies

INEm

No Longer: Pressed

No Longer. Armed

Figure 6-5. /Menultem selection sequence diagram

Note Subclasses of JMenuItem can have their button model selected property set, like a radio button—
but the predefined JMenuItem cannot.

166

CHAPTER 6 SWING MENUS AND TOOLBARS

Listening to JMenultem Events with an ActionListener

The better listener to attach to a JMenuItemis the ActionListener, or passing an Action to the
constructor. It allows you to find out when a menu item is selected. Any registered ActionListener
objects would be notified when a user releases the mouse button over a JMenuItem that is part
of an open menu. Registered listeners are also notified if the user employs the keyboard
(whether with arrow keys or mnemonics) or presses the menu item’s keyboard accelerator to
make a selection.

Youmust add an ActionListener to every JMenuItem for which you want an action to happen
when selected. There’s no automatic shortcut allowing you to register an ActionlListener with
a JMenu or JMenuBar and have all their contained JMenuItem objects notify a single ActionlListener.

The sample program shown in Listing 6-1 associates the same ActionListener with every
JMenuItem:

class MenuActionlListener implements ActionlListener {
public void actionPerformed(ActionEvent e) {
System.out.println("Selected: " + e.getActionCommand());
}
}

However, more frequently, you would associate a different action with each item, so that
each menu item can respond differently.

Tip Instead of creating a custom ActionListener for the component, and adding it as a listener, you
can also create a custom Action and call setAction() on the component.

Listening to JMenultem Events with a MenuKeyListener

The MenuKeyEvent is a special kind of KeyEvent used internally by the user interface classes for
a JMenu and JMenuItem, allowing the components to listen for when their keyboard mnemonic
is pressed. To listen for this keyboard input, each menu component registers a MenuKeyListener
to pay attention to the appropriate input. If the keyboard mnemonic is pressed, the event is
consumed and not passed to any registered listeners. If the keyboard mnemonic is not pressed,
any registered key listeners (instead of menu key listeners) are notified.

The MenuKeyListener interface definition follows:

public interface MenuKeylListener extends Eventlistener {
public void menuKeyPressed(MenuKeyEvent e);
public void menuKeyReleased(MenuKeyEvent e);
public void menuKeyTyped(MenuKeyEvent e);

}

Normally, you wouldn'’t register objects as this type of listener yourself, although you could
if you wanted to. If you do, and if a MenuKeyEvent happens (that is, a key is pressed/released),
every JMenu on the JMenuBar will be notified, as will every JMenuItem (or subclass) on an open
menu with a registered MenuKeyListener. That includes disabled menu items so that they can
consume a pressed mnemonic. The definition of the MenuKeyEvent class follows:

CHAPTER 6 SWING MENUS AND TOOLBARS

public class MenuKeyEvent extends KeyEvent {
public MenuKeyEvent(Component source, int id, long when, int modifiers,
int keyCode, char keyChar, MenuElement path[], MenuSelectionManager mgr);
public MenuSelectionManager getMenuSelectionManager();
public MenuElement[] getPath();

}

It’s the job of the MenuSelectionManager to determine the current selection path. The
selection path is the set of menu elements from the top-level JMenu on the JMenuBar to the
selected components. For the most part, the manager works behind the scenes, and you never
need to worry about it.

Listening to JMenultem Events with a MenuDragMouseListener

Like MenuKeyEvent, the MenuDragMouseEvent is a special kind of event used internally by the user
interface classes for JMenu and JMenuItem. As its name implies, the MenuDragMouseEvent is a
special kind of MouseEvent. By monitoring when a mouse is moved within an open menu, the
user interface classes use the listener to maintain the selection path, thus determining the
currently selected menu item. Its definition follows:

public interface MenuDragMouselistener extends Eventlistener {
public void menuDragMouseDragged(MenuDragMouseEvent e);
public void menuDragMouseEntered(MenuDragMouseEvent e);
public void menuDragMouseExited(MenuDragMouseEvent e);
public void menuDragMouseReleased(MenuDragMouseEvent e);

}

As with the MenuKeyListener, normally you don’t listen for this event yourself. If you're
interested in when a menu or submenu is about to be displayed, the better listener to register
is the MenuListener, which can be registered with the JMenu, but not with an individual JMenuItem.
You'll look at this in the next section, which describes JMenu.

The definition of the MenuDragMouseEvent class, the argument to each of the
MenuDragMouselistener methods, is as follows:

public class MenuDragMouseEvent extends MouseEvent {
public MenuDragMouseEvent(Component source, int id, long when, int modifiers,
int x, int y, int clickCount, boolean popupTrigger, MenuElement path[],
MenuSelectionManager mgr);
public MenuSelectionManager getMenuSelectionManager();
public MenuElement[] getPath();

}

Customizing a JMenultem Look and Feel

As with the JMenuBar, the predefined look and feel types each provide a different JMenuItem
appearance and set of default UIResource values. Figure 6-3 showed the appearance of the
IMenuItem component for the preinstalled set: Motif, Windows, and Ocean.

The available set of UIResource-related properties for a JMenuItem are shown in Table 6-4.
The JMenuItem component offers 20 different properties.

167

168 CHAPTER 6 SWING MENUS AND TOOLBARS

Table 6-4. /Menultem UlResource Elements

Property String Object Type
MenuItem.acceleratorDelimiter String
MenuItem.acceleratorFont Font
MenuItem.acceleratorForeground Color
MenuItem.acceleratorSelectionForeground Color
MenuItem.actionMap ActionMap
MenuItem.arrowIcon Icon
MenuItem.background Color
MenuItem.border Border
MenuItem.borderPainted Boolean
MenuItem.checkIcon Icon
MenuItem.commandSound String
MenuItem.disabledForeground Color
MenuItem.font Font
MenuItem.foreground Color
MenuItem.margin Insets
MenuItem.opaque Boolean
MenuItem.selectionBackground Color
MenuItem.selectionForeground Color
MenuItem.textIconGap Integer
MenuItemUI String
JMenu Class

The JMenu component is the basic menu item container that is placed on a JMenuBar. When a
JMenu is selected, the menu displays the contained menu items within a JPopupMenu. As with
JMenuItem, the data model for the JMenu is an implementation of ButtonModel, or more specifically,
DefaultButtonModel.

Creating JMenu Components

Four constructors for JMenu allow you to initialize the string label of the menu if desired:

CHAPTER 6 SWING MENUS AND TOOLBARS

public IMenu()
IMenu jMenu = new IMenu();

public JMenu(String label)
IMenu jMenu = new IMenu("File");

public JMenu(String label, boolean useTearOffs)

public IMenu(Action action)
Action action = ...;
IMenu jMenu = new IMenu(action);

One constructor is for using a tear-off menu. However, tear-off menus aren’t currently
supported; therefore, the argument is ignored. The fourth constructor pulls the properties of
the menu from an Action.

Note Tear-off menus are menus that appear in a window and remain open after selection, instead of
automatically closing.

Adding Menu Items to a JMenu

Once you have a JMenu, you need to add JMenuItem objects to it; otherwise, the menu will not
display any choices. There are five methods for adding menu items defined within JMenu and
one for adding a separator:

public JMenuItem add
public JMenuItem add
public Component add(Component component);

public Component add(Component component, int index);
public IMenuItem add(Action action);

public void addSeparator();

IMenuItem menultem);
String label);

~ ~ —~ —~

In Listing 6-1 earlier in this chapter, all the JMenuItem components were added to JMenu
components with the first add() method. As a shortcut, you can pass the text label for a JMenuItem
to the add() method of JMenu. This will create the menu item, set its label, and pass back the
new menu item component. You can then bind a menu item event handler to this newly
obtained menu item. The third add() method shows that you can place any Component on a
JIMenu, not solely a JMenuItem. The fourth add() lets you position the component. The last add()
variety, with the Action argument, will be discussed in the next section of this chapter.

You can add separator bars with the addSeparator () method of JMenu. For instance, in
Listing 6-1, the File menu was created with code similar to the following:

169

170

CHAPTER 6 SWING MENUS AND TOOLBARS

IMenu fileMenu = new IMenu("File");

IMenuItem newMenuItem = new IMenuItem("New");
fileMenu.add(newMenuItem);

JMenuItem openMenuIltem = new JMenuItem("Open");
fileMenu.add(openMenuItem);

IMenuItem closeMenuItem = new JMenuItem("Close");
fileMenu.add(closeMenuItem);
fileMenu.addSeparator();

IMenuItem saveMenuItem = new JMenuItem("Save");
fileMenu.add(saveMenuItem);
fileMenu.addSeparator();

IMenuItem exitMenuItem = new JMenuItem("Exit");
fileMenu.add(exitMenuItem);

Notice the addSeparator () calls wrapped around the call to add the Save menu item.
In addition to adding menu items at the end of a menu, you can insert them at specific
positions or insert a separator at a specific position, as follows:

public IMenuItem insert(IMenuItem menuItem, int pos);
public IMenuItem insert(Action a, int pos);
public void insertSeparator(int pos);

When a menu item is added to a JMenu, it’s added to an internal JPopupMenu.

Using Action Objects with Menus

The Action interface and its associated classes are described in Chapter 2. An Action is an
extension of the ActionlListener interface and contains some special properties for customizing
components associated with its implementations.

With the help of the AbstractAction implementation, you can easily define text labels,
icons, mnemonics, tooltip text, enabled status, and an ActionlListener apart from a component.
Then you can create a component with an associated Action and not need to give the component
a text label, icon, mnemonics, tooltip text, enabled status, or ActionListener, because those
attributes would come from the Action. For a more complete description, refer to Chapter 2.

To demonstrate, Listing 6-2 creates a specific implementation of AbstractAction and adds
it to a JMenu multiple times. Once the Action is added to a JMenu, selecting the JMenuItem will
display a pop-up dialog box with the help of the JOptionPane class, a topic covered in Chapter 9.

Listing 6-2. About Action Definition

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class ShowAction extends AbstractAction {
Component parentComponent;
public ShowAction(Component parentComponent) {
super ("About");
putValue(Action.MNEMONIC KEY, new Integer(KeyEvent.VK A));
this.parentComponent = parentComponent;

}

CHAPTER 6 SWING MENUS AND TOOLBARS

public void actionPerformed(ActionEvent actionEvent) {
Runnable runnable = new Runnable() {
public void run() {
JOptionPane.showMessageDialog(
parentComponent, "About Swing",
"About Box V2.0", JOptionPane.INFORMATION MESSAGE);
}
};
EventQueue.invokelater(runnable);
}
}

The next source creates a ShowAction and a JMenuItem for the File and Edit menus in the
sample program (Listing 6-1). Without explicitly setting the menu item properties, it will then
have an “About” text label and an A mnemonic, and will perform the defined actionPerformed()
method as its ActionListener. In fact, you can create the Action once, and then associate it
with as many places as necessary (or other components that support adding Action objects).

Action showAction = new ShowAction(aComponent);
IMenuItem fileAbout = new JMenuItem(showAction);
fileMenu.add(fileAbout);
IMenuItem editAbout = new JMenuItem(showAction);
editMenu.add(editAbout);

One complexity-busting side effect when using AbstractAction is that it lets you disable

the Action with setEnabled(false), which, in turn, will disable all components created from it.

JMenu Properties

Besides the 100-plus inherited properties of JMenu, 16 properties are available from JMenu-specific
methods, as shown in Table 6-5. Several of the properties override the behavior of the inherited
properties. For instance, the setter method for the accelerator property throws an error if you
try to assign such a property. In other words, accelerators aren’t supported within JMenu objects.
The remaining properties describe the current state of the JMenu object and its contained menu
components.

Table 6-5. /Menu Properties

Property Name Data Type Access

accelerator KeyStroke Write-only
accessibleContext AccessibleContext Read-only
component Component Read-only
delay int Read-write
itemCount int Read-only
menuComponentCount int Read-only

menuComponents Component[] Read-only

17

172

CHAPTER 6 SWING MENUS AND TOOLBARS

Table 6-5. /Menu Properties (Continued)

Property Name Data Type Access
menuListeners Menulistener[] Read-only

model ButtonModel Write-only bound
popupMenu JPopupMenu Read-only
popupMenuVisible boolean Read-write
selected boolean Read-write
subElements MenuElement[] Read-only
tearOff boolean Read-only
topLevelMenu boolean Read-only
UIClassID String Read-only

Tip Keep in mind that many property methods are inherited and that the parent class might offer a getter
method where the current class defines only a new setter method, or vice versa.

The delay property represents the value for the time that elapses between selection
of a JMenu and posting of the JPopupMenu. By default, this value is zero, meaning that the
submenu will appear immediately. Trying to set the value to a negative setting will throw
an IllegalArgumentException.

Caution Since there is no support for tear-off menus, if you try to access the tearOff property, an error
will be thrown.

Selecting Menu Components

Normally, you don’t need to listen for the selection of JMenu components. You listen for only
selection of individual JMenuItem components. Nevertheless, you may be interested in the
different ways that ChangeEvent works with a JMenu as compared with a JMenuItem. In addition,
aMenuEvent can notify you whenever a menu is posted or canceled.

CHAPTER 6 SWING MENUS AND TOOLBARS

Listening to JMenu Events with a ChangeListener

Aswith a JMenuItem, you can register a ChangelListener with a JMenu if you're interested in making
changes to the underlying ButtonModel. Surprisingly, the only possible state change to the
ButtonModel with a JMenu is with the selected property. When selected, the JMenu displays its
menu items. When not selected, the pop-up goes away.

Listening to JMenu Events with a MenuListener

The better way to listen for when a pop-up is displayed or hidden is by registering MenuListener
objects with your JMenu objects. Its definition follows:

public interface MenulListener extends EventlListener {
public void menuCanceled(MenuEvent e);
public void menuDeselected(MenuEvent e);
public void menuSelected(MenuEvent e);

}

With aregistered MenuListener, you're notified when a JMenu is selected before the pop-up
menu is opened with the menu’s choices. This allows you to customize its menu choices on the
fly at runtime, with some potential interaction performance penalties. Besides being told when
the associated pop-up menu is to be posted, you're also notified when the menu has been
deselected and when the menu has been canceled. As the following MenuEvent class definition
shows, the only piece of information that comes with the event is the source (the menu):

public class MenuEvent extends EventObject {
public MenuEvent(Object source);

}

Tip If you choose to customize the items on a JMenu dynamically, be sure to call revalidate(),
because the component waits until you are done before updating the display.

Customizing a JMenu Look and Feel

As with the JMenuBar and JMenuItem, the predefined look and feel classes provide a different
JMenu appearance and set of default UIResource values. Figure 6-3 shows the appearance of the
JMenu object for the preinstalled set of look and feel types.

The available set of UIResource-related properties for a IMenu is shown in Table 6-6. For the
JMenu component, there are 30 different properties.

173

174 CHAPTER 6 SWING MENUS AND TOOLBARS

Table 6-6. /Menu UlResource Elements

Property String Object Type
menu Color
Menu.acceleratorDelimiter String
Menu.acceleratorFont Font
Menu.acceleratorForeground Color
Menu.acceleratorSelectionForeground Color
Menu.ActionMap ActionMap
Menu.arrowIcon Icon
Menu.background Color
Menu.border Border
Menu.borderPainted Boolean
Menu.checkIcon Icon
Menu.delay Integer
Menu.disabledForeground Color
Menu.font Font
Menu. foreground Color
Menu.margin Insets
Menu.menuPopupOffsetX Integer
Menu.menuPopupOffsety Integer
Menu.opaque Boolean
Menu.selectionBackground Color
Menu.selectionForeground Color
Menu.shortcutKeys int[]
Menu. submenuPopupOffsetX Integer
Menu. submenuPopupOffsetY Integer
Menu. textIconGap Integer
Menu.useMenuBarBackgroundForTopLevel Boolean
menuPressedItemB Color
menuPressedItemF Color
menuText Color

MenuUI String

CHAPTER 6 SWING MENUS AND TOOLBARS

JSeparator Class

The JSeparator class is a special component that acts as a separator on a JMenu. The JPopupMenu
and JToolBar classes also support separators, but each uses its own subclass of JSeparator. In
addition to being placed on a menu, the JSeparator can be used anywhere you want to use a
horizontal or vertical line to separate different areas of a screen.

The JSeparator is strictly a visual component; therefore, it has no data model.

Creating JSeparator Components

To create a separator for a JMenu, you don’t directly create a JSeparator, although you can.
Instead, you call the addSeparator () method of JMenu, and the menu will create the separator
and add the separator as its next item. The fact that it’s a JSeparator (which isn’t a JMenuItem
subclass) is hidden. There’s also an insertSeparator(int index) method of JMenu that allows
you to add a separator at a specific position on the menu, that isn’t necessarily the next slot.

If you plan to use a JSeparator away from a menu (for example, to visually separate two
panels in a layout), you should use one of the two constructors for JSeparator:

public JSeparator()
JSeparator jSeparator = new JSeparator();

public JSeparator(int orientation)
JSeparator jSeparator = new JSeparator(JSeparator.VERTICAL);

These constructors allow you to create a horizontal or vertical separator. If an orientation
isn’t specified, the orientation is horizontal. If you want to explicitly specify an orientation, you
use either of the JSeparator constants of HORIZONTAL and VERTICAL.

JSeparator Properties

After you have a JSeparator, you add it to the screen like any other component. The initial
dimensions of the component are empty (zero width and height), so if the layout manager of
the screen asks the component what size it would like to be, the separator will reply that it
needs no space. On the other hand, if the layout manager offers a certain amount of space, the
separator will use the space if the orientation is appropriate. For instance, adding a horizontal
JSeparator to the north side of a BorderLayout panel draws a separator line across the screen.
However, adding a horizontal JSeparator to the east side of the same panel would result in
nothing being drawn. For a vertical JSeparator, the behavior is reversed: The north side would
be empty and a vertical line would appear on the east side.

The four properties of JSeparator are listed in Table 6-7.

Table 6-7. /Separator Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
orientation int Read-write bound
uI SeparatorUI Read-write bound

UIClassID String Read-only

175

176

CHAPTER 6 SWING MENUS AND TOOLBARS

Gaution If the orientation property isn’t set to a value equivalent to either JSeparator.HORIZONTAL or
JSeparator.VERTICAL, an I1legalArgumentException is thrown.

Customizing a JSeparator Look and Feel

The appearance of the JSeparator under the preinstalled set of look and feel types is shown
with the other menu components in Figure 6-3.

The available set of UIResource-related properties for a JSeparator is shown in Table 6-8.
For the JSeparator component, five different properties are available.

Table 6-8. /Separator UlResource Elements

Property String Object Type
Separator.background Color
Separator. foreground Color
Separator.insets Insets
Separator.thickness Integer
SeparatorUI String

Caution Two additional properties, highlight and shadow, are present but deprecated and should not
be used.

JPopupMenu Class

The JPopupMenu component is the container for pop-up menu components, displayable anywhere
and used for support by JMenu. When a programmer-defined triggering event happens, you
display the JPopupMenu, and the menu displays the contained menu components. Like JMenuBar,
JPopupMenu uses the SingleSelectionModel to manage the currently selected element.

Creating JPopupMenu Components

There are two constructors for JPopupMenu:
public JPopupMenu()

JPopupMenu jPopupMenu = new JPopupMenu();

public JPopupMenu(String title)
JPopupMenu jPopupMenu = new JPopupMenu("Welcome");

CHAPTER 6 SWING MENUS AND TOOLBARS

Only one allows you to initialize the title for the menu, if desired. What happens with the
title depends on the installed look and feel. The currently installed look and feel may ignore
the title.

Adding Menu Items to a JPopupMenu

As with a JMenu, once you have a JPopupMenu, you need to add menu item objects to it; other-
wise, the menu will be empty. There are three JPopupMenu methods for adding menu items and
one for adding a separator:

public IMenuItem add(IMenuItem menuIltem);
public IMenuItem add(String label);
public IMenuItem add(Action action);
public void addSeparator();

In addition, an add() method is inherited from Container for adding regular AWT
components:

public Component add(Component component);

Note It generally isn’t wise to mix lightweight Swing components with heavyweight AWT components.
However, because pop-up menus are more apt to be on top, it’s less of an issue in this case.

The natural way of adding menu items is with the first add () method. You create the menu
item independently of the pop-up menu, including defining its behavior, and then you attach it
to the menu. With the second variety of add (), you must attach an event handler to the menu
item returned from the method; otherwise, the menu choice won’t respond when selected. The
following source demonstrates the two approaches. Which you use depends entirely on your
preference. A visual programming environment like JBuilder will use the first. Because the
first approach is inherently less complex, most, if not all, programmers should also use
the first approach.

JPopupMenu popupenu = new JPopupMenu();
Actionlistener anActionlListener = ...;

// The first way

IMenuItem firstItem = new JIMenuItem("Hello");
firstItem.addActionlListener(anActionListener);
popupMenu.add(firstItem);

// The second way

IMenuItem secondItem = popupMenu.add("World");
secondItem.addActionlListener(anActionListener);

Using an Action to create a menu item works the same with JPopupMenu as it does with
JMenu. However, according to the Javadoc for the JPopupMenu class, using the Action variety of
the add() method is discouraged. Instead, pass the Action to the constructor for JMenuItem, or

177

178

CHAPTER 6 SWING MENUS AND TOOLBARS

configure it with setAction(), and then add that to the JPopupMenu. Why the method isn’t just
deprecated isn’t clear.

Lastly, you can add a menu separator with the addSeparator () method.

Aswell as adding menu items at the end of a menu, you can insert them at specific positions or
insert a separator at a specific position:

public IMenuItem insert(Component component, int position);
public IMenuItem insert(Action action, int position);

There’s no insertSeparator() method as there is with JMenu. But you can use the
add(Component component, int position) method inherited from Container. If you want to
remove components, use the remove(Component component) method specific to JPopupMenu.

Note Accelerators on attached JMenuItem objects are ignored. Mnemonics might also be ignored
depending on the currently installed look and feel.

Displaying the JPopupMenu

Unlike the JMenu, simply populating the pop-up menu isn’t sufficient to use it. You need to
associate the pop-up menu with an appropriate component. Prior to the 5.0 release of Swing,
you needed to add event-handling code to trigger the display of the pop-up menu. Now, all you
need to do is call the setComponentPopupMenu() method for the Swing component you wish to
associate the pop-up menu with. When the platform-specific triggering event happens, the
pop-up menu is automatically displayed.

Note Why change the way pop-up menu display is triggered? The old code was very tightly tied to mouse
events. It didn’t connect well with the accessibility framework. And the same code was being added every-
where to just show the pop-up menu at the x, y coordinates of the invoker.

You simply need to create an instance of JPopupMenu and attach it to any component you
want to have display the pop-up menu, as follows:

JPopupMenu popupMenu = ...;
aComponent . setComponentPopupMenu(popupMenu);

The methods of JComponent that are important to pop-up menus are
getComponentPopupMenu(), setComponentPopupMenu(), getInheritsPopupMenu(),
setInheritsPopupMenu(), and getPopuplLocation(). The setInheritsPopupMenu() method
accepts a boolean argument. When true, and no component pop-up menu has been directly
set for the component, the parent container will be explored for a pop-up.

JPopupMenu Properties

CHAPTER 6

SWING MENUS AND TOOLBARS

The 16 properties of JPopupMenu are listed in Table 6-9. Many more properties are also inherited
through JComponent, Container, and Component.

Table 6-9. JPopupMenu Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
borderPainted boolean Read-write
component Component Read-only
invoker Component Read-only

label String Read-write bound
lightWeightPopupEnabled boolean Read-write
margin Insets Read-only
menuKeyListeners MenuKeyListener[] Read-only
popupMenulListeners PopupMenuListener[] Read-only
popupSize Dimension Write-only
selected Component Write-only
selectionModel SingleSelectionModel Read-write
subElements MenuElement[] Read-only

uI PopupMenuUI Read-write bound
UIClassID String Read-only
visible boolean Read-write

The most interesting property of JPopupMenu is 1ightWeightPopupEnabled. Normally, the

JPopupMenu tries to avoid creating new heavyweight components for displaying its menu items.
Instead, the pop-up menu uses a JPanel when the JPopupMenu can be displayed completely
within the outermost window boundaries. Otherwise, if the menu items don't fit, the JPopupMenu
uses a JWindow. If, however, you're mixing lightweight and heavyweight components on different
window layers, displaying the pop-up within a JPanel might not work, because a heavyweight
component displayed in the layer of the menu will appear in front of the JPanel. To correct this
behavior, the pop-up menu can use a Panel for displaying the menu choices. By default, the
JPopupMenu never uses a Panel.

179

180

CHAPTER 6 SWING MENUS AND TOOLBARS

Note When the JPopupMenu is displayed in either a JPanel or a Panel, the outermost window relies on
the layering effect of the JRootPane to ensure that the pop-up panel is displayed at the appropriate position
in front of the other components. Chapter 8 describes the JRootPane class in more detail.

If you need to enable the display of a Panel, you can configure it at the individual JPopupMenu
level or for your entire applet or application. At the individual pop-up level, just set the
lightWeightPopupEnabled property to false. At the system level, this is done as follows:

// From now on, all JPopupMenus will be heavyweight
JPopupMenu.setDefaultLightWeightPopupEnabled(false);

The method must be called before creating the pop-up menu. JPopupMenu objects created
before the change will have the original value (the default is true).

Watching for Pop-Up Menu Visibility

Like the JMenu, the JPopupMenu has a special event/listener combination to watch for when the
pop-up menu is about to become visible, invisible, or canceled. The event is PopupMenuEvent,
and the listener is PopupMenuListener. The event class simply references the source pop-up
menu of the event.

public class PopupMenuEvent extends EventObject {
public PopupMenuEvent(Object source);

}

When a JPopupMenu fires the event, any registered PopupMenuListener objects are notified
through one of its three interface methods. This lets you customize the current menu items
based on the system state or who/what the pop-up menu invoker happens to be. The
PopupMenuListener interface definition follows:

public interface PopupMenuListener extends EventListener {
public void popupMenuCanceled(PopupMenuEvent e);
public void popupMenuWillBecomeInvisible(PopupMenuEvent e);
public void popupMenuWillBecomeVisible(PopupMenuEvent e);

}

Customizing a JPopupMenu Look and Feel

Each installable Swing look and feel provides a different JPopupMenu appearance and set of
default UIResouzrce values. Figure 6-6 shows the appearance of the JPopupMenu component for
the preinstalled set of look and feel types: Motif, Windows, and Ocean. Notice that of the
predefined look and feel classes, only Motif uses the title property of the JPopupMenu.

CHAPT

ER 6

SWING MENUS AND TOOLBARS

£ Motif LnF o [=] | £ windows LnF N [=] |
Title
= Copy
Copy Paste
iz Find
Find
Motif Windows
10l =l
Cut
Copy
Find
Ocean

Figure 6-6. JPopupMenu under different look and feel types

The available set of UIResource-related properties for a JPopupMenu is shown in Table 6-10.

For the JPopupMenu component, there are five different properties.

Table 6-10. JPopupMenu UlResource Elements

Property String Object Type
PopupMenu.actionMap ActionMap
PopupMenu.background Color
PopupMenu.border Border
PopupMenu. consumeEventOnClose Boolean
PopupMenu. font Font
PopupMenu. foreground Color
PopupMenu. popupSound String
PopupMenu. selectedWindowInputMapBindings Object[]
PopupMenu. selectedWindowInputMapBindings.RightToleft Object[]
PopupMenuSeparatorUI String
PopupMenuUI String

181

182

CHAPTER 6 SWING MENUS AND TOOLBARS

JPopupMenu.Separator Class

The JPopupMenu class maintains its own separator to permit a custom look and feel for the separator
when it’s on a JPopupMenu. This custom separator is an inner class to the JPopupMenu.

When you call the addSeparator () of JPopupMenu, an instance of this class is automatically
created and added to the pop-up menu. In addition, you can create this separator by calling its
no-argument constructor:

JSeparator popupSeparator = new JPopupMenu.Separator();

Both methods create a horizontal separator.

Note If you want to change the orientation of the separator, you must call the setOrientation()
method inherited from JSeparator with an argument of JPopupMenu. Separator.VERTICAL. However,
having a vertical separator on a pop-up menu is inappropriate.

A Complete Pop-Up Menu Usage Example

The program in Listing 6-3 puts together all the pieces of using a JPopupMenu, including listening
for selection of all the items on the menu, as well as listening for when it’s displayed. The output for
the program is shown in Figure 6-7, with the pop-up visible.

£ popupSample Example =10l

Cut

Copy
Paste

Find

Figure 6-7. JPopupMenu usage example output

Listing 6-3. PopupSample Class Definition

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class PopupSample {

CHAPTER 6 SWING MENUS AND TOOLBARS

// Define Actionlistener
static class PopupActionListener implements ActionlListener {
public void actionPerformed(ActionEvent actionEvent) {
System.out.println("Selected: " + actionEvent.getActionCommand());

}
¥

// Define PopupMenulistener
static class MyPopupMenulistener implements PopupMenulistener {
public void popupMenuCanceled(PopupMenuEvent popupMenuEvent) {
System.out.println("Canceled");
}
public void popupMenuWillBecomeInvisible(PopupMenuEvent popupMenuEvent) {
System.out.println("Becoming Invisible");
}
public void popupMenuWillBecomeVisible(PopupMenuEvent popupMenuEvent) {
System.out.println("Becoming Visible");
}
}

public static void main(final String args[]) {
Runnable runner = new Runnable() {
public void run() {
// Create frame
JFrame frame = new JFrame("PopupSample Example");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

ActionlListener actionListener = new PopupActionListener();
PopupMenulListener popupMenulListener = new MyPopupMenulListener();

// Create popup menu, attach popup menu listener
JPopupMenu popupMenu = new JPopupMenu("Title");
popupMenu.addPopupMenuListener (popupMenuListener);

// Cut
IMenuItem cutMenuItem = new IMenuItem("Cut");
cutMenuItem.addActionlistener(actionlListener);
popupMenu.add(cutMenuItem);

// Copy

IMenuItem copyMenuItem = new JMenuItem("Copy");
copyMenuItem.addActionListener(actionlistener);
popupMenu.add(copyMenuItem);

183

184 CHAPTER 6 SWING MENUS AND TOOLBARS

// Paste

JMenuItem pasteMenuItem = new IMenuItem("Paste");
pasteMenuItem.addActionListener(actionListener);
pasteMenuItem.setEnabled(false);
popupMenu.add(pasteMenuItem);

// Separator
popupMenu.addSeparator();

// Find

IMenuItem findMenuItem = new JMenuItem("Find");
findMenuItem.addActionlListener(actionlistener);
popupMenu.add(findMenuItem);

JButton label = new JButton();
frame.add(label);

label. setComponentPopupMenu(popupMenu);

frame.setSize(350, 250);
frame.setVisible(true);
}
};
EventQueue.invokelLater(runner);
}
}

JCheckBoxMenultem Class

Swing’s JCheckBoxMenuItem component behaves as if you have a JCheckBox on a menu as a
IMenuItem. The data model for the menu item is the ToggleButtonModel, described in Chapter 5.

It allows the menu item to have a selected or unselected state, while showing an appropriate
icon for the state. Because the data model is the ToggleButtonModel, when JCheckBoxMenuItem
is placed in a ButtonGroup, only one component in the group is ever selected. However, this
isn’t the natural way to use a JCheckBoxMenuItem and is likely to confuse users. If you need this
behavior, use JRadioButtonMenuItem, as described later in this chapter.

Creating JCheckBoxMenultem Components

There are seven constructors for JCheckBoxMenuItem. They allow you to initialize the text label,
icon, and initial state.

public JCheckBoxMenuItem()
JCheckBoxMenuItem jCheckBoxMenuItem = new JCheckBoxMenuItem();

public JCheckBoxMenuItem(String text)
JCheckBoxMenuItem jCheckBoxMenuItem = new JCheckBoxMenuItem("Boy");

CHAPTER 6 SWING MENUS AND TOOLBARS

public JCheckBoxMenuItem(Icon icon)
Icon boyIcon = new ImageIcon("boy-r.jpg");
JCheckBoxMenuItem jCheckBoxMenuItem = new JCheckBoxMenuItem(boyIcon);

public JCheckBoxMenuItem(String text, Icon icon)
JCheckBoxMenuItem jCheckBoxMenuItem = new JCheckBoxMenuItem("Boy", boyIcon);

public JCheckBoxMenuItem(String text, boolean state)
JCheckBoxMenuItem jCheckBoxMenuItem = new JCheckBoxMenuItem("Girl", true);

public JCheckBoxMenuItem(String text, Icon icon, boolean state)
Icon girlIcon = new ImageIcon("girl-r.jpg");
JCheckBoxMenuItem jCheckBoxMenuItem = new JCheckBoxMenuItem("Girl", girlIcon, true);

public JCheckBoxMenuItem(Action action)
Action action = ...;
JCheckBoxMenuItem jCheckBoxMenuItem = new JCheckBoxMenuItem(action);

Unlike the JCheckBox, the icon is part of the label and not a separate device to indicate
whether something is checked. If either the text label or the icon isn’t passed to the constructor,
that part of the item label will be set to its default value of empty. By default, a JCheckBoxMenuItemis
unselected.

Note Creating a JCheckBoxMenuItem with an icon has no effect on the appearance of the check box
next to the menu item. It’s strictly part of the label for the JCheckBoxMenuItem.

JCheckBoxMenultem Properties

Most of the JCheckBoxMenuItem properties are inherited from the many superclasses of
JCheckBoxMenuItem. Table 6-11 lists the four properties defined by JCheckBoxMenuItem.

Table 6-11. JCheckBoxMenultem Properties

Property Name Data Type Access

accessibleContext AccessibleContext Read-only
selectedObjects Object[] Read-only
state boolean Read-write

UIClassID String Read-only

185

186 CHAPTER 6 SWING MENUS AND TOOLBARS

Handling JCheckBoxMenultem Selection Events

With a JCheckBoxMenuItem, you can attach many different listeners for a great variety of events:

* MenuDragMouselistener and MenuKeylListener from JMenuItem

e ActionListener, Changelistener, and ItemListener from AbstractButton
* AncestorlListener and VetoableChangelistener from JComponent

e Containerlistener and PropertyChangelistener from Container

e ComponentlListener, FocusListener, HierarchyBoundsListener, Hierarchylistener,
InputMethodListener, KeyListener, MouseListener, MouseMotionListener, and
MouseWheellistener from Component

Although you can listen for 18 different types of events, the most interesting are

ActionEvent and ItemEvent, described next.

Listening to JCheckBoxMenultem Events with an ActionListener

Attaching an ActionlListener to a JCheckBoxMenuItem allows you to find out when the menu
item is selected. The listener is told of the selection, but not of the new state. To find out the
selected state, you must get the model for the event source and query the selection state, as the
following sample ActionListener source shows. This listener modifies both the check box text
and the icon label, based on the current selection state.

ActionListener alistener = new ActionListener() {
public void actionPerformed(ActionEvent event) {

};

}

Icon girlIcon = new ImageIcon("girl-r.jpg");
Icon boyIcon = new ImageIcon("boy-r.jpg");
AbstractButton aButton = (AbstractButton)event.getSource();
boolean selected = aButton.getModel().isSelected();
String newlabel;
Icon newIcon;
if (selected) {

newlLabel = "Girl";

newIcon = girlIcon;
} else {

newlLabel = "Boy";

newIcon = boyIcon;
}
aButton.setText(newLabel);
aButton.setIcon(newIcon);

Note Keep in mind that you can also associate an Action from the constructor that can do the

same thing.

CHAPTER 6 SWING MENUS AND TOOLBARS

Listening to JCheckBoxMenultem with an ItemListener

If you listen for JCheckBoxMenuitem selection with an ItemListener, you don’t need to query the
event source for the selection state—the event already carries that information. Based on this
state, you respond accordingly. Re-creating the ActionListener behavior with an ItemListener
requires just a few minor changes to the previously listed source, as follows:

ItemListener ilistener = new ItemListener() {
public void itemStateChanged(ItemEvent event) {
Icon girlIcon = new ImageIcon("girl-r.jpg");
Icon boyIcon = new ImageIcon("boy-r.jpg");
AbstractButton aButton = (AbstractButton)event.getSource();
int state = event.getStateChange();
String newlabel;
Icon newIcon;
if (state == ItemEvent.SELECTED) {
newlLabel = "Girl";
newIcon = girlIcon;
} else {
newLabel = "Boy";
newIcon = boyIcon;
}
aButton.setText(newlLabel);
aButton.setIcon(newIcon);
}
};

Customizing a JCheckBoxMenultem Look and Feel

The appearance of the JCheckBoxMenuItem under the preinstalled set of look and feel types is
shown with the other menu components in Figure 6-3.

The available set of UIResource-related properties for a JCheckBoxMenuItemis shown in
Table 6-12. The JCheckBoxMenuItem component has 19 different properties.

Table 6-12. JCheckBoxMenultem UlResource Elements

Property String Object Type
CheckBoxMenuItem.acceleratorFont Font
CheckBoxMenuItem.acceleratorForeground Color
CheckBoxMenuItem.acceleratorSelectionForeground Color
CheckBoxMenuItem.actionMap ActionMap
CheckBoxMenuItem.arrowIcon Icon
CheckBoxMenuItem.background Color
CheckBoxMenuItem.border Border

CheckBoxMenuItem.borderPainted Boolean

187

188

CHAPTER 6 SWING MENUS AND TOOLBARS

Table 6-12. JCheckBoxMenultem UlResource Elements (Continued)

Property String Object Type
CheckBoxMenuItem.checkIcon Icon
CheckBoxMenuItem.commandSound String
CheckBoxMenuItem.disabledForeground Color
CheckBoxMenuItem.font Font
CheckBoxMenuItem.foreground Color
CheckBoxMenuItem.gradient List
CheckBoxMenuItem.margin Insets
CheckBoxMenuItem.opaque Boolean
CheckBoxMenuItem.selectionBackground Color
CheckBoxMenuItem.selectionForeground Color
CheckBoxMenuItemUI String

The Icon associated with the CheckBoxMenuItem.checkIcon propertykeyis the one displayed on
the JCheckBoxMenuItem. If you don'’t like the defaulticon, you can change it with the followingline
of source, assuming the new icon has already been defined and created:

UIManager.put("CheckBoxMenuItem.checkIcon", someIcon);

For this new icon to display an appropriate selected image, the Icon implementation
must check the state of the associated menu component within its paintIcon() method. The
DiamondIcon created in Chapter 4 wouldn’t work for this icon because it doesn’t ask the compo-
nent for its state. Instead, the state is fixed at constructor time. Listing 6-4 shows a class that

represents one icon that could be used.

Listing 6-4. State-Aware Icon Definition

import java.awt.*;
import javax.swing.*;

public class DiamondAbstractButtonStateIcon implements Icon {

private final int width = 10;
private final int height = 10;

private Color color;
private Polygon polygon;

public DiamondAbstractButtonStateIcon(Color color) {

this.color = color;
initPolygon();
}

CHAPTER 6 SWING MENUS AND TOOLBARS 189

private void initPolygon() {
polygon = new Polygon();
int halfWidth = width/2;
int halfHeight = height/2;
polygon.addPoint (0, halfHeight);
polygon.addPoint (halfWidth, 0);
polygon.addPoint (width, halfHeight);
polygon.addPoint (halfWidth, height);
}
public int getIconHeight() {
return width;
}
public int getIconWidth() {
return height;
}
public void paintIcon(Component component, Graphics g, int x, int y) {
boolean selected = false;
g.setColor (color);
g.translate (x, y);
if (component instanceof AbstractButton) {
AbstractButton abstractButton = (AbstractButton)component;
selected = abstractButton.isSelected();
}
if (selected) {
g.fillPolygon (polygon);
} else {
g.drawPolygon (polygon);

g.translate (-x, -y);

Note If the DiamondAbstractButtonStateIcon icon were used with a component that isn’t an
AbstractButton type, the icon would always be deselected, because the selection state is a property
of AbstractButton.

JRadioButtonMenultem Class

The JRadioButtonMenuItem component has the longest name of all the Swing components. It
works like a JRadioButton, but resides on a menu. When placed with other JRadioButtonMenuItem
components within a ButtonGroup, only one component will be selected at a time. As with
the JRadioButton, the button model for the JRadioButtonMenuItemis the JToggleButton.
ToggleButtonModel.

190

CHAPTER 6 SWING MENUS AND TOOLBARS

Creating JRadioButtonMenultem Components

The JRadioButtonMenuItem has seven constructors. They allow you to initialize the text label,
icon, and initial state.

public JCheckBoxMenuItem()
JCheckBoxMenuItem jCheckBoxMenuItem = new JCheckBoxMenuItem();

public JCheckBoxMenuItem(String text)
JCheckBoxMenuItem jCheckBoxMenuItem = new JCheckBoxMenuItem("Boy");

public JCheckBoxMenuItem(Icon icon)
Icon boyIcon = new ImageIcon("boy-r.jpg");
JCheckBoxMenuItem jCheckBoxMenuItem = new JCheckBoxMenuItem(boyIcon);

public JCheckBoxMenuItem(String text, Icon icon)
JCheckBoxMenuItem jCheckBoxMenuItem = new JCheckBoxMenuItem("Boy", boyIcon);

public JCheckBoxMenuItem(String text, boolean state)
JCheckBoxMenuItem jCheckBoxMenuItem = new JCheckBoxMenuItem("Girl", true);

public JCheckBoxMenuItem(String text, Icon icon, boolean state)
Icon girlIcon = new ImageIcon("girl-r.jpg");
JCheckBoxMenuItem jCheckBoxMenuItem = new JCheckBoxMenuItem("Girl", girlIcon, true);

public JCheckBoxMenuItem(Action action)
Action action = ...;
JCheckBoxMenuItem jCheckBoxMenuItem = new JCheckBoxMenuItem(action);

Similar to the JCheckBoxMenuItem component, the icon for the JRadioButtonMenuItem is
part of the label. This is unlike the JRadioButton, in which the icon indicates whether the radio
button is selected. If either the text label or icon isn’t part of the constructor, that part of the
item label will be empty. By default, a JRadioButtonMenuItem is unselected. If you create a
JRadioButtonMenuItem that is selected and then add it to a ButtonGroup, the button group will
deselect the menu item if the group already has a selected item in the group.

Note After creating JRadioButtonMenuItem instances, remember to add them to a ButtonGroup,
so they will work as a mutually exclusive group.

Handling JRadioButtonMenultem Selection Events

The JRadioButtonMenuItem shares the same 18 different event/listener pairs with
JCheckBoxMenuItem. To listen for selection, attaching an ActionListener is the normal
approach. In addition, you might want to attach the same listener to all the JRadioButtonMenuItem
objects in a ButtonGroup—after all, they’re in a group for a reason. If you use the same listener,
that listener can employ the current selection to perform some common operation. In other
cases, such as that in Figure 6-1, selection of any JRadioButtonMenuItem option does nothing.

CHAPTER 6 SWING MENUS AND TOOLBARS

Only when someone selects the Find menu element would the current selection of the ButtonGroup
for the set of JRadioButtonMenuItem components have any meaning.

Configuring JRadioButtonMenultem Properties

As with JCheckBoxMenuItem, most of the JRadioButtonMenuItem properties are inherited. The
two shown in Table 6-13 merely override the behavior from the superclass.

Table 6-13. JRadioButtonMenultem Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
UIClassID String Read-only

Customizing a JRadioButtonMenultem Look and Feel

The appearance of the JRadioButtonMenuItem under the preinstalled set of look and feel types
is shown with the other menu components in Figure 6-3.

The available set of UIResource-related properties for a JRadioButtonMenuItemis shown in
Table 6-14. For the JRadioButtonMenuItem component, there are 19 different properties.

Table 6-14. JRadioButtonMenultem UlIResource Elements

Property String Object Type
RadioButtonMenuItem.acceleratorFont Font
RadioButtonMenuItem.acceleratorForeground Color
RadioButtonMenuItem.acceleratorSelectionForeground Color
RadioButtonMenuItem.actionMap ActionMap
RadioButtonMenuItem.arrowIcon Icon
RadioButtonMenuItem.background Color
RadioButtonMenuItem.border Border
RadioButtonMenuItem.borderPainted Boolean
RadioButtonMenuItem.checkIcon Icon
RadioButtonMenuItem.commandSound String
RadioButtonMenuItem.disabledForeground Color
RadioButtonMenuItem.font Font
RadioButtonMenuItem.foreground Color
RadioButtonMenuItem.gradient List
RadioButtonMenuItem.margin Insets
RadioButtonMenuItem.opaque Boolean

191

192

CHAPTER 6 SWING MENUS AND TOOLBARS

Table 6-14. JRadioButtonMenultem UlResource Elements (Continued)

Property String Object Type
RadioButtonMenuItem.selectionBackground Color
RadioButtonMenuItem.selectionForeground Color
RadioButtonMenuItemUI String

A Complete JRadioButtonMenultem Usage Example

To help you understand the JRadioButtonMenuItem usage, the program shown in Listing 6-5
demonstrates how to put everything together, including listening for selection of all the items
on the menu, from either an ActionListener or an ItemListener. The output for the program is
shown in Figure 6-8.

£ Radio Menu Example 10l =|

[S)
O Partridge
® Turtle Doves

Q ‘:‘& French Hens

o “46 Calling Birds

oigy

Figure 6-8. JRadioButtonMenultem usage example output
Listing 6-5. The RadioButtonSample Class Definition

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class RadioButtonSample {
static Icon threeIcon = new ImageIcon("3.gif");
static Icon fourIcon = new ImageIcon("4.gif");
static Icon fiveIcon = new ImageIcon("5.gif");
static Icon sixIcon = new ImageIcon("6.gif");

public static class ButtonActionListener implements ActionListener {
public void actionPerformed (ActionEvent actionEvent) {
AbstractButton aButton = (AbstractButton)actionEvent.getSource();
boolean selected = aButton.getModel().isSelected();
System.out.println (actionEvent.getActionCommand() +
" - selected? " + selected);

CHAPTER 6 SWING MENUS AND TOOLBARS

public static class ButtonItemListener implements ItemlListener {

}

public void itemStateChanged(ItemEvent itemEvent) {

AbstractButton aButton = (AbstractButton)itemEvent.getSource();
int state = itemEvent.getStateChange();
String selected =
((state == ItemEvent.SELECTED) ? "selected" : "not selected");
System.out.println (aButton.getText() + " - selected? " + selected);

public static void main(String args[]) {

Runnable runner = new Runnable() {
public void run() {

final ActionlListener actionlListener = new ButtionActionListener();
final ItemListener itemListener = new ButtonItemListener();

JFrame frame = new JFrame(“"Radio Menu Example");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

JMenuBar menuBar = new JMenuBar();

IMenu menu = new IMenu("Menu");

ButtonGroup buttonGroup = new ButtonGroup();
menu. setMnemonic(KeyEvent.VK M);

JRadioButtonMenuItem emptyMenuItem =

new JRadioButtonMenuItem();
emptyMenuItem.setActionCommand("Empty");
emptyMenuItem.addActionlListener(actionlistener);
buttonGroup.add(emptyMenuItem);
menu.add(emptyMenuItem);

JRadioButtonMenuItem oneMenultem =

new JRadioButtonMenuItem("Partridge");
oneMenuItem.addActionListener(actionListener);
buttonGroup.add(oneMenuItem);
menu.add(oneMenuItem);

JRadioButtonMenuItem twoMenultem =

new JRadioButtonMenuItem("Turtle Doves", true);
twoMenuItem.addActionListener(actionListener);
buttonGroup.add(twoMenuItem);
menu.add(twoMenuItem);

193

194 CHAPTER 6 SWING MENUS AND TOOLBARS

JRadioButtonMenuItem threeMenultem =

new JRadioButtonMenuItem("French Hens", threelcon);
threeMenuItem.addItemListener(itemListener);
buttonGroup.add(threeMenuItem);
menu.add(threeMenuItem);

JRadioButtonMenuItem fourMenuIltem =

new JRadioButtonMenuItem("Calling Birds", fourIcon, true);
fourMenuItem.addActionlListener(actionlListener);
buttonGroup.add(fourMenuItem);
menu.add(fourMenuItem);

JRadioButtonMenuItem fiveMenuItem =

new JRadioButtonMenuItem(fiveIcon);
fiveMenuItem.addActionlListener(actionlistener);
fiveMenuItem.setActionCommand("Rings");
buttonGroup.add(fiveMenuItem);
menu.add(fiveMenuItem);

JRadioButtonMenuItem sixMenuItem =

new JRadioButtonMenuItem(sixIcon, true);
sixMenuItem.addActionlListener(actionlListener);
sixMenuItem.setActionCommand("Geese");
buttonGroup.add(sixMenuItem);
menu.add(sixMenultem);

menuBar.add(menu);
frame.setIMenuBar(menuBar);
frame.setSize(350, 250);
frame.setVisible(true);
}
};
EventQueue.invokelLater(runner);
}
}

Note Notice that the actionCommand property is set for those menu items lacking text labels. This allows
registered ActionListener objects to determine the selected object. This is only necessary when listeners
are shared across components.

CHAPTER 6 SWING MENUS AND TOOLBARS

Creating Custom MenuElement Components:
The MenuElement Interface

One thing all the selectable menu components have in common is that they implement the

MenuElement interface. The JSeparator doesn’t implement the interface, but that’s okay because

itisn’t selectable. The purpose of the MenuElement interface is to allow the MenuSelectionManager

to notify the different menu elements as a user moves around a program’s menu structure.
As the following interface definition shows, the MenuElement interface is made up of

five methods:

public interface MenuElement {

public Component getComponent();

public MenuElement[] getSubElements();

public void menuSelectionChanged(boolean isInclude);

public void processKeyEvent(KeyEvent event, MenuElement path[],
MenuSelectionManager mgr);

public void processMouseEvent(MouseEvent event, MenuElement path[],
MenuSelectionManager mgr);

The getComponent () method returns the menu’s rendering component. This is usually the
menu component itself, although that isn’t a requirement. The getSubElements() method
returns an array of any menu elements contained within this element. If this menu element
isn’t the top of a submenu, the method should return a zero-length array of MenuElement
objects, not null.

The menuSelectionChanged() method is called whenever the menu item is placed in or
taken out of the selection path for the menu selection manager.

The two processKeyEvent() and processMouseEvent () methods are for processing a key
event or mouse event that’s generated over a menu. How your menu item processes events
depends on what the component supports. For instance, unless you support accelerators, you
probably want to respond to key events only when your menu item is in the current selection
path.

Note If, for example, your new menu element was something like a JComboBoxMenuItem, where the
MenuElement acted like a JComboBox, the processKeyEvent () might pass along the key character to
the KeySelectionManager. See Chapter 13 for more on the KeySelectionManager.

To demonstrate the MenuElement interface, Listing 6-6 creates a new menu component
called a JToggleButtonMenuItem. This component will look and actlike a JToggleButton, although
it can be on a menu. It’s important to ensure that the menu goes away once the item is selected
and that the component is displayed differently when in the current selection path.

195

196 CHAPTER 6 SWING MENUS AND TOOLBARS

Note Aithough you can add any component to a menu, if the component doesn’t implement the MenuE lement
interface, it won’t act properly when a mouse moves over the component or when the component is selected.

Listing 6-6. Toggle Button As Menu Item Class Definition

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class JToggleButtonMenuItem extends JToggleButton implements MenuElement {
Color savedForeground = null;
private static MenuElement NO_SUB ELEMENTS[] = new MenuElement[0];
public JToggleButtonMenuItem() {
init();
}
public JToggleButtonMenuItem(String label) {
super(label);
init();
}
public JToggleButtonMenuItem(String label, Icon icon) {
super(label, icon);
init();
}
public JToggleButtonMenuItem(Action action) {
super(action);
init();
}
private void init() {
updateUI();
setRequestFocusEnabled(false);
// Borrows heavily from BasicMenuUI
MouseInputlListener mouseInputlListener = new MouseInputlListener() {
// If mouse released over this menu item, activate it
public void mouseReleased(MouseEvent mouseEvent) {
MenuSelectionManager menuSelectionManager =
MenuSelectionManager.defaultManager();
Point point = mouseEvent.getPoint();
if ((point.x >= 0) &&
(point.x < getWidth()) &8&
(point.y >= 0) 8&
(point.y < getHeight())) {
menuSelectionManager.clearSelectedPath();
// Component automatically handles "selection" at this point
// doClick(0); // not necessary

}

CHAPTER 6 SWING MENUS AND TOOLBARS

} else {
menuSelectionManager.processMouseEvent (mouseEvent);
}
}

// If mouse moves over menu item, add to selection path, so it becomes armed
public void mouseEntered(MouseEvent mouseEvent) {
MenuSelectionManager menuSelectionManager =
MenuSelectionManager.defaultManager();
menuSelectionManager.setSelectedPath(getPath());
}
// When mouse moves away from menu item, disarm it and select something else
public void mouseExited(MouseEvent mouseEvent) {
MenuSelectionManager menuSelectionManager =
MenuSelectionManager.defaultManager();
MenuElement path[] = menuSelectionManager.getSelectedPath();
if (path.length > 1) {
MenuElement newPath[] = new MenuElement[path.length-1];
for(int i=0, c=path.length-1; i<c; i++) {
newPath[i] = path[i];
}
menuSelectionManager.setSelectedPath(newPath);
}
}

// Pass along drag events
public void mouseDragged(MouseEvent mouseEvent) {
MenuSelectionManager.defaultManager().processMouseEvent(mouseEvent);

}

public void mouseClicked(MouseEvent mouseEvent) {

}

public void mousePressed(MouseEvent mouseEvent) {

}

public void mouseMoved(MouseEvent mouseEvent) {

}

addMouselistener(mouseInputlistener);
addMouseMotionListener(mouseInputlListener);

// MenuElement methods
public Component getComponent() {

}

return this;

public MenuElement[] getSubElements() {

}

// No subelements
return NO_SUB_ELEMENTS;

197

198 CHAPTER 6 SWING MENUS AND TOOLBARS

public void menuSelectionChanged(boolean isIncluded) {
ButtonModel model = getModel();
// Only change armed state if different
if(model.isArmed() != isIncluded) {
model.setArmed(isIncluded);

}

if (isIncluded) {
savedForeground = getForeground();
if (!savedForeground.equals(Color.BLUE)) {
setForeground(Color.BLUE);
} else {
// In case foreground blue, use something different
setForeground(Color.RED);
}
} else {
setForeground(savedForeground);
// If null, get foreground from installed look and feel
if (savedForeground == null) {
updateUI();
}
}
}

public void processKeyEvent(KeyEvent keyEvent,
MenuElement path[],
MenuSelectionManager manager) {
// If user presses space while menu item armed, select it
if (getModel().isArmed()) {
int keyChar = keyEvent.getKeyChar();
if (keyChar == KeyEvent.VK SPACE) {
manager.clearSelectedPath();
System.out.println("Selected: JToggleButtonMenuItem, by KeyEvent");
doClick(0); // inherited from AbstractButton
}
}
}
public void processMouseEvent(MouseEvent mouseEvent, MenuElement path[],
MenuSelectionManager manager) {
// For when mouse dragged over menu and button released
if (mouseEvent.getID() == MouseEvent.MOUSE RELEASED) {
manager.clearSelectedPath();
System.out.println("Selected: JToggleButtonMenuItem, by MouseEvent");
doClick(0); // inherited from AbstractButton
}
}

CHAPTER 6 SWING MENUS AND TOOLBARS

// Borrows heavily from BasicMenuItemUI.getPath()
private MenuElement[] getPath() {
MenuSelectionManager menuSelectionManager =
MenuSelectionManager.defaultManager();
MenuElement oldPath[] = menuSelectionManager.getSelectedPath();
MenuElement newPath[];
int oldPathlLength = oldPath.length;
if (oldPathLength == 0)
return new MenuElement[0];
Component parent = getParent();
if (oldPath[oldPathLength-1].getComponent() == parent) {
// Going deeper under the parent menu
newPath = new MenuElement[oldPathLength+1];
System.arraycopy(oldPath, 0, newPath, 0, oldPathLength);
newPath[oldPathLength] = this;
} else {
// Sibling/child menu item currently selected
int newPathPosition;
for (newPathPosition = oldPath.length-1; newPathPosition >= 0;
newPathPosition--) {
if (oldPath[newPathPosition].getComponent() == parent) {
break;
}
}

newPath = new MenuElement[newPathPosition+2];
System.arraycopy(oldPath, 0, newPath, 0, newPathPosition+1);
newPath[newPathPosition+1] = this;

}

return newPath;

}

Note The MouseInputListener defined in the init() method and the getPath() method borrow
heavily from the system BasicMenuUI class. Normally, the user interface delegate deals with what happens
when the mouse moves over a menu component. Because the JToggleButton isn’t a predefined menu
component, its Ul class doesn’t deal with it. For better modularity, these two methods should be moved into
an extended ToggleButtonUI.

Once you've created this JToggleButtonMenuItem class, you can use it like any other
menu item:

JToggleButtonMenuItem toggleItem = new JToggleButtonMenuItem("Balloon Help");
editMenu.add(toggleItem);

199

200

CHAPTER 6 SWING MENUS AND TOOLBARS

Working with Pop-Ups: The Popup Class

Not everything you want to pop up needs to be a menu. Through the Popup and PopupFactory
classes, you can pop up any component over another. This is different from tooltips, which are
in a read-only, unselectable label. You can pop up selectable buttons, trees, or tables.

Creating Pop-Up Components

Popup is a simple class with two methods—hide() and show()—with two protected construc-
tors. Instead of creating Popup objects directly, you acquire them from the PopupFactory class.

PopupFactory factory = PopupFactory.getSharedInstance();
Popup popup = factory.getPopup(owner, contents, x, y);

The Popup with the contents component created by PopupFactory will thus be “above”
other components within the owner component.

A Complete Popup/PopupFactory Usage Example

Listing 6-7 demonstrates the usage of Popup and PopupFactory to show a JButton above another
JButton. Selecting the initial JButton will cause the second one to be created above the first, at
some random location. When the second button is visible, each is selectable. Selecting the initially
visible button multiple times will cause even more pop-up buttons to appear, as shown in
Figure 6-9. Each pop-up button will disappear after three seconds. In this example, selecting
the pop-up button just displays a message to the console.

= Hello, World

m Hello, World

Hello, World
Hello, World
or Popup

Hello, World

Figure 6-9. Popup/PopupFactory example

Listing 6-7. The ButtonPopupSample Class Definition

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.Random;

public class ButtonPopupSample {

CHAPTER 6 SWING MENUS AND TOOLBARS

static final Random random = new Random();

// Define Actionlistener
static class ButtonActionlListener implements ActionListener {
public void actionPerformed(ActionEvent actionEvent) {
System.out.println("Selected: " + actionEvent.getActionCommand());
}
}

// Define Show Popup Actionlistener
static class ShowPopupActionlistener implements Actionlistener {
private Component component;
ShowPopupActionListener(Component component) {
this.component = component;
}
public synchronized void actionPerformed(ActionEvent actionEvent) {
JButton button = new JButton("Hello, World");
ActionListener listener = new ButtonActionListener();
button.addActionlListener(listener);
PopupFactory factory = PopupFactory.getSharedInstance();
int x = random.nextInt(200);
int y = random.nextInt(200);
final Popup popup = factory.getPopup(component, button, x, y);
popup. show();
ActionListener hider = new ActionListener() {
public void actionPerformed(ActionEvent e) {
popup.hide();
}
};
// Hide popup in 3 seconds
Timer timer = new Timer (3000, hider);
timer.start();
}
}

public static void main(final String args[]) {
Runnable runner = new Runnable() {
public void run() {
// Create frame
JFrame frame = new JFrame("Button Popup Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

ActionlListener actionListener = new ShowPopupActionlistener(frame);
JButton start = new JButton("Pick Me for Popup");

start.addActionlListener(actionlListener);
frame.add(start);

201

202

CHAPTER 6 SWING MENUS AND TOOLBARS

frame.setSize(350, 250);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Working with Toolbars: The JToolBar Class

Toolbars are an integral part of the main application windows in a modern user interface.
Toolbars provide users with easy access to the more commonly used commands, which are
usually buried within a hierarchical menuing structure. The Swing component that supports
this capability is the JToolBar.

The JToolBar is a specialized Swing container for holding components. This container can
then be used as a toolbar within your Java applet or application, with the potential for it to
be floating or draggable, outside the main window of the program. JToolBar is a very simple
component to use and understand.

Creating JToolBar Components

There are four constructors for creating JToolBar components:

public JToolBar()
JToolBar jToolBar = new JToolBar();

public JToolBar(int orientation)
JToolBar jToolBar = new JToolBar(JToolBar.VERTICAL);

public JToolBar(String name)
JToolBar jToolBar = new JToolBar("Window Title");

public JToolBar(String name,int orientation)
JToolBar jToolBar = new JToolBar("Window Title", ToolBar.VERTICAL);

By default, a toolbar is created in a horizontal direction. However, you can explicitly set the
orientation by using either of the JToolBar constants of HORIZONTAL and VERTICAL.

Also by default, toolbars are floatable. Therefore, if you create the toolbar with one orien-
tation, the user could change its orientation while dragging the toolbar around outside the
window. When floating, the title will be visible on the toolbar’s frame.

Adding Components to a JToolBar

Once you have a JToolBar, you need to add components to it. Any Component can be added to
the toolbar. When dealing with horizontal toolbars, for aesthetic reasons, it’s best if the toolbar
components are all roughly the same height. For a vertical toolbar, it’s best if they’re roughly
the same width. There’s only one method defined by the JToolBar class for adding toolbar

CHAPTER 6 SWING MENUS AND TOOLBARS

items; the remaining methods, such as add(Component), are inherited from Container. In addition,
you can add a separator to a toolbar.

public JButton add(Action action);
public void addSeparator();
public void addSeparator(Dimension size);

When using the add (Action) method of JToolBar, the added Action is encapsulated within
a JButton object. This is different from adding actions to JMenu or JPopupMenu components, in
which JMenuItem objects are added instead. As with JMenu and JPopupMenu, adding an Action in
this fashion is discouraged in the Javadoc for the class. For separators, if you don’t specify the
size, the installed look and feel forces a default size setting.

Note For more information about dealing with the Action interface, see Chapter 2 or the section “Using
Action Objects with Menus” earlier in this chapter.

To remove components from a toolbar, use the following method:

public void remove(Component component)

JToolBar Properties

The JToolBar class defines nine properties, which are listed in Table 6-15.

Table 6-15. /ToolBar Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
borderPainted boolean Read-write bound
floatable boolean Read-write bound
layout LayoutManager Write-only

margin Insets Read-write bound
orientation int Read-write bound
rollover boolean Read-write bound
Ut ToolBarUI Read-write
UIClassID String Read-only

By default, the border of a JToolBar is painted. If you don’t want the border painted, you
can set the borderPainted property to false. Without using the borderPainted property,
you would need to change the setting of the border property (inherited from the superclass
JComponent).

203

204

CHAPTER 6 SWING MENUS AND TOOLBARS

The orientation property can be set to only one of the HORIZONTAL or VERTICAL constants
of JToolBar. If another nonequivalent value is used, an I1legalArgumentException is thrown.
Changing the orientation changes the layout manager of the toolbar. If you directly change the
layout manager with setLayout(), changing the orientation will undo your layout change.
Consequently, it’s best not to manually change the layout manager of a JToolBar.

As previously mentioned, a toolbar is floatable by default. This means that a user can drag
the toolbar from where you place it and move it elsewhere. To drag a toolbar, the user selects
an empty part of it. The toolbar can than be left outside the original program window, floating
above the main window in its own window, or dropped onto another area of the original
program window. If the layout manager of the original window is BorderLayout, the droppable
areas are the edges of the layout manager without any components. (You can’t drop the toolbar
in the center of the window.) Otherwise, the toolbar would be dropped into the last spot of the
container. Figure 6-10 shows the different phases of the dragging and docking process.

Dragging Hot Spot

Floating

JToolBar Example = |E||1| ToolBar Example = |EI|1|
About < & About

import java.awt™ Ll impprt java.awt.® Ll
import java.awt.event.” i ava.awtevent™,
import javax swing. ™, = i avEK. Swing. =
puhlic class ToolBarSample { 1 lass ToalBarSample | 1
private static final int COLOR_POSITION =0, static final int COLOR_POSITION = 0;
private static final int STRING_POSITION =1, static final int STRING_FOSITION =1,
static Object buttonColors = § Dbject buttonColars = §{

{Color.RED, "RED"}, r.RED, "RED"},

{Color BLUE, "ELUE"}, r.BLUE, "ELLIE"},

{Color.GREEM, "GREEM"}, r.GREEM, "GREEMN"},

{Color BLACK, "BLACK"), rBLACK, "BLACK'},

null, i separator separator

{ColorCYAR, "CYAN"Y FCYAR, "CYAN"Y
h - F |
4] i [] 4] i []

JToolBar Example i] | ToolBar Examp =10 =|

mport java.awt.”
’ impoart java.awt event.”
impoart javax. swing.*;

[»

impoart java.awt®,
impoart java.awt event.”,
impoart javax. swing.*;

[»

*

public class ToolBarSample { puhlic class ToolBarSample {

oo N x
private stati =l
static Objer | || @p < About
{Color REL

private static final int COLOR_POSITION = 0;

’ private static final int STRING_POSITION = 1;
static Ohject buttonColors =1

{Color.RED, "RED"},

{Color.BLUE, "BLUE"},
{Color.GREEM, "GREEN"},
Aboud || {ColorBLACK, "BLACK"),
null, ! separator

{Color CYAN, "CYAN"}

h

sl il medicun D 1 in et

public static class TheActionListener implement:—

+

{Color.BLUE, "BLUE"},
{Color.GREEM, "GREEN"],
{ColorBLACK, "BLACK'},
null, ! separataor

{Color CYAN, "CYAN"}

h

public static class TheActignListener implements ActionLii—

sl o 1 i eticn Cunnt.

-

4] i |

1
[

. et
q] Il |

LY
[¥

Docked in a Different Area

Figure 6-10. JToolBar phases

Undocked Floating Toolbar

CHAPTER 6 SWING MENUS AND TOOLBARS 205

The rollover property defines a behavior specific to the look and feel for when the user
moves the mouse over the different components within the toolbar. This behavior could
involve coloration or border differences.

Handling JToolBar Events

There are no events specific to the JToolBar. You need to attach listeners to each item on the
JToolBar that you want to respond to user interaction. Of course, JToolBar is a Container, so
you could listen to its events.

Customizing a JToolBar Look and Feel

Each installable Swing look and feel provides its own JToolBar appearance and set of default
UIResource values. Most of this appearance is controlled by the components actually within
the toolbar. Figure 6-11 shows the appearance of the JToolBar component for the preinstalled
set of look and feel types: Motif, Windows, and Ocean. Each toolbar has five JButton compo-
nents, with a separator between the fourth and fifth.

=10 =] £ wWindows LnF i =lol x|
| o6 o
Motif Windows
g Ocean LnF i ;Iglll
* & [
Ocean

Figure 6-11. JToolBar under different look and feel types

The available set of UIResource-related properties for a JToolBar is shown in Table 6-16.
For the JToolBar component, there are 22 different properties.

Table 6-16. JToolBar UlIResource Elements

Property String Object Type
ToolBar.actionMap ActionMap
ToolBar.ancestorInputMap InputMap

ToolBar.background Color

206

CHAPTER 6

SWING MENUS AND TOOLBARS

Table 6-16. JToolBar UlIResource Elements (Continued)

Property String Object Type
ToolBar.border Border
ToolBar.borderColor Color
ToolBar.darkShadow Color
ToolBar.dockingBackground Color
ToolBar.dockingForeground Color
ToolBar.floatingBackground Color
ToolBar.floatingForeground Color
ToolBar.font Font
ToolBar.foreground Color
ToolBar.handleIcon Icon
ToolBar.highlight Color
ToolBar.isRollover Boolean
ToolBar.light Color
ToolBar.nonrolloverBorder Border
ToolBar.rolloverBorder Border
ToolBar.separatorSize Dimension
ToolBar.shadow Color
ToolBarSeparatorUI String
ToolBarUI String

A Complete JToolBar Usage Example

The program in Listing 6-8 demonstrates a complete JToolBar example that results in a toolbar
with a series of diamonds on the buttons. The program also reuses the ShowAction defined for
the menuing example, presented in Listing 6-2 earlier in this chapter.

The rollover property is enabled to demonstrate the difference for the current look and
feel. See Figure 6-12 for the output as you move your mouse over the different buttons.

=10l x|

ToolBar Example

RN

Figure 6-12. JToolBar example with isRollover enabled

CHAPTER 6 SWING MENUS AND TOOLBARS 207

Listing 6-8. The ToolBarSample Class Definition

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ToolBarSample {

private static final int COLOR_POSITION = 0;
private static final int STRING POSITION = 1;
static Object buttonColors[][] = {

{Color.RED, "RED"},

{Color.BLUE, "BLUE"},

{Color.CREEN, "GREEN"},

{Color.BLACK, "BLACK"},

null, // separator

{Color.CYAN, "CYAN"}

};

public static class TheActionlListener implements ActionlListener {
public void actionPerformed (ActionEvent actionEvent) {
System.out.println(actionEvent.getActionCommand());
}
};

public static void main(final String args[]) {

Runnable runner = new Runnable() {
public void run() {

JFrame frame = new JFrame("JToolBar Example");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
ActionListener actionListener = new TheActionListener();

JToolBar toolbar = new JToolBar();
toolbar.setRollover(true);

for (Object[] color: buttonColors) {

if (color == null) {
toolbar.addSeparator();

} else {
Icon icon = new DiamondIcon((Color)color[COLOR POSITION], true, 20, 20);
JButton button = new JButton(icon);
button.setActionCommand((String)color[STRING POSITION]);
button.addActionlListener(actionlListener);
toolbar.add(button);

208 CHAPTER 6 SWING MENUS AND TOOLBARS

Action action = new ShowAction(frame);
JButton button = new JButton(action);
toolbar.add(button);

Container contentPane = frame.getContentPane();
contentPane.add(toolbar, BorderlLayout.NORTH);
JTextArea textArea = new JTextArea();
JScrollPane pane = new JScrollPane(textArea);
contentPane.add(pane, BorderlLayout.CENTER);
frame.setSize(350, 150);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

JToolBar.Separator Class

The JToolBar class maintains its own separator to permit a custom look and feel for the
separator when on a JToolBar.

This separator is automatically created when you call the addSeparator() method of
JToolBar. In addition, there are two constructors for creating a JToolBar. Separator if you
want to manually create the component.

public JToolBar.Separator()
JSeparator toolBarSeparator = new JToolBar.Separator();

public JToolBar.Separator(Dimension size)
Dimension dimension = new Dimension(10, 10);
JSeparator toolBarSeparator = new JToolBar.Separator(dimension);

Both constructors create a horizontal separator. You can configure the size. If you don’t
specify this, the look and feel decides what size to make the separator.

As with JPopupMenu. Separator, if you want to change the orientation of the separator, you
must call the setOrientation() method inherited from JSeparatoz, this time with an argument
of JToolBar.Separator.VERTICAL.

Summary

This chapter introduced the many Swing menu-related classes and their interrelationships,
and Swing’s toolbar class. First, you learned about the JMenuBar and its selection model, and
learned how menu bars can be used within applets as well as applications.

Next, you explored the JMenuItem, which is the menu element the user selects, along with two
new event/listener pairs the system uses for dealing with events, MenuKeyEvent/MenuKeylListener
and MenuDragMouseEvent/MenuDragMouselistener. Then, you moved on to the JMenu compo-
nent, upon which JMenuItem instances are placed, along with its new event/listener pair,
MenuEvent/Menulistener, which is used to determine when a menu is about to be posted.

CHAPTER 6 SWING MENUS AND TOOLBARS

Next, you learned about the JSeparator component and how you can use it as a menu
separator or as a visual display separator outside of menus.

You then explored the JPopupMenu, which JMenu uses to display its set of JMenuItem compo-
nents. For the JPopupMenu, you learned about the pop-up menu’s own event/listener pair,
PopupMenuEvent/PopupMenulListener.

Then the selectable menu elements in JCheckBoxMenuItem and JRadioButtonMenuItem were
explored with their MenuElement interface, and you saw how to create a custom menu component.

Menus aren’t the only things that might pop up, so you explored Popup and PopupFactory.
Finally, the chapter covered the JToolBar class, a close cousin of Swing’s menu classes.

In Chapter 7, you'll look at the different classes Swing provides for customizing the border
around a Swing component.

209

CHAPTER 7

Borders

SWing components offer the option of customizing the border area surrounding that component.
With great ease, you can use any one of the eight predefined borders (including one compound
border that is a combination of any of the other seven), or you can create your own individual-
ized borders. In this chapter, you’ll learn how to best use each of the existing borders and how
to fashion your own.

Some Basics on Working with Borders

A border is a JComponent property with the standard setBorder () and getBorder() property
methods. Therefore, every Swing component that is a subclass of JComponent can have a border.
By default, a component doesn’t have a custom border associated with it. (The getBorder()
method of JComponent returns null.) Instead, the default border displayed for a component is
the border appropriate for its state, based on the current look and feel. For instance, with a
JButton, the border could appear pressed, unpressed, or disabled, with specific different borders
for each look and feel (Metal, Windows, and so on).

Although the initial border property setting for every component is null, you can change
the border of a component by calling the setBorder(Border newValue) method of JComponent.
Once set, the changed value overrides the border for the current look and feel, and it draws the
new border in the area of the component’s insets. If at a later time, you want to reset the border
back to a border that’s appropriate for the state as well as the look and feel, change the border
property to null, using setBorder (null), and call updateUI() for the component. The updateUI()
call notifies the look and feel to reset the border. If you don’t call updateUI(), the component
will have no border.

Note Those Swing components that aren’t subclasses of JComponent, such as JApplet and JFrame,
lack a setBorder () method to change their border. If you want them to have a border, you must add a
JPanel or other Swing component to the container, and then change the border of that component.

21

212

CHAPTER 7 BORDERS

Examine Figure 7-1 to see a sampling of the various border configurations around a JLabel,
with a text label designating the border type. How to create the different borders will be discussed
in later sections of this chapter.

£ sample Borders : 10l =|
Bevel Empty Etched Line
b4 1
e T
* b4
Titled >4 *
S mate Ji| SoftBevel $c 14
gl o 4
vanraaanll Hello Riiiiiiad

Figure 7-1. Border examples, using a 4-by-2 GridLayout with 5-pixel horizontal and vertical gaps

Exploring the Border Interface

The Border interface can be found in the javax.swing.border package. This interface forms the
basis of all the border classes. The interface is directly implemented by the AbstractBorder
class, which is the parent class of all the predefined Swing border classes: BevelBorder,
CompoundBorder, EmptyBorder, EtchedBorder, LineBorder, MatteBorder, SoftBevelBorder, and
TitledBorder. Of additional interest is the BorderFactory class, found in the javax.swing
package. This class uses the Factory design pattern to create borders, hiding the details of the
concrete implementations and caching various operations to optimize shared usages.

The Border interface shown here consists of three methods: paintBorder(),
getBorderInsets(), and isBorderOpaque(). These methods are described in the following
sections.

paintBorder()
The paintBorder() method is the key method of the interface. It has the following definition:

public void paintBorder(Component c, Graphics g, int x, int y, int
width, int height)

The actual drawing of the border is done in this method. Frequently, the Border imple-
mentation will ask for the Insets dimensions first, and then draw the border in the four
rectangular outer regions, as shown in Figure 7-2. If a border is opaque, the paintBorder()
implementation must fill the entire insets area. If a border is opaque and doesn’t fill the area,
then it’s a bug and needs to be corrected.

CHAPTER 7 BORDERS
Top
o—— Left —o Component ¢—— Right —e

Figure 7-2. Areas of border insets

Listing 7-1 shows a simple paintBorder() implementation that fills in the left and right

sides with a brighter color than the top and bottom.

Listing 7-1. Filled-in Border Inset Areas

public void paintBorder(Component c, Graphics g, int x, int y, int width,
int height) {
Insets insets = getBorderInsets(c);
Color color = c.getForeground();
Color brighterColor = color.brighter();

// Translate coordinate space
g.translate(x, y);

// Top
g.setColor(color);
g.fillRect(0, 0, width, insets.top);

// Left
g.setColor(brighterColor);
g.fillRect(0, insets.top, insets.left, height-insets.top-insets.bottom);

// Bottom
g.setColor(color);
g.fillRect(0, height-insets.bottom, width, insets.bottom);

213

214

CHAPTER 7 BORDERS

// Right
g.setColor(brighterColor);
g.fillRect(width-insets.right, insets.top, insets.right,
height-insets.top-insets.bottom);

// Translate coordinate space back
g.translate(-x, -y);

When creating your own borders, you'll frequently find yourself filling in the same nonover-
lapping rectangular regions. The use of the translate() method of Graphics simplifies the
specification of the drawing coordinates. Without translating the coordinates, you would need
to offset the drawing by the origin (x, y).

Caution You cannot take a shortcut by inserting g. fillRect(x, y, width, height), because this
would fill in the entire component area, not just the border area.

getBorderinsets()
The getBorderInsets() method returns the space necessary to draw a border around the given
component ¢ as an Insets object. It has the following definition:

public Insets getBorderInsets(Component c)

These inset areas, shown in Figure 7-2, define the only legal area in which a border can be
drawn. The Component argument allows you to use some of its properties to determine the size
of the insets area.

Gaution You can ask the component argument for font-sizing information to determine the insets’ size,
but if you ask about the size of the component, a StackOverflowError occurs because the size of the
component is dependent on the size of the border insets.

isBorderOpaque()

Borders can be opaque or transparent. The isBorderOpaque() method returns true or false, to
indicate which form the border is. It has the following definition:

public boolean isBorderOpaque()

CHAPTER 7 BORDERS

When this method returns true, the border needs to be opaque, filling its entire insets
area. When it returns false, any area not drawn will retain the background of the component
in which the border is installed.

Introducing BorderFactory

Now that you have a basic understanding of how the Border interface works, let’s take a quick
look at the BorderFactory class as a means to create borders swiftly and easily. Found in the
javax.swing package, the BorderFactory class offers a series of static methods for creating
predefined borders. Instead of laboriously calling the specific constructors for different borders,
you can create almost all the borders through this factory class. The factory class also caches
the creation of some borders to avoid re-creating commonly used borders multiple times. The
class definition follows.

public class BorderFactory {
public static Border createBevelBorder(int type);
public static Border createBevelBorder(int type, Color highlight,
Color shadow);
public static Border createBevelBorder(int type, Color highlightOuter,
Color highlightInner, Color shadowOuter, Color shadowInner);

public static CompoundBorder createCompoundBorder();
public static CompoundBorder createCompoundBorder(Border outside,
Border inside);

public static Border createEmptyBorder();
public static Border createEmptyBorder(int top, int left, int bottom,
int right);

public static Border createEtchedBorder();

public static Border createEtchedBorder(Color highlight, Color shadow);

public static Border createEtchedBorder(int type);

public static Border createEtchedBorder(int type, Color highlight,
Color shadow);

public static Border createlineBorder(Color color);
public static Border createlineBorder(Color color, int thickness);

public static Border createlLoweredBevelBorder();

public static MatteBorder createMatteBorder(int top, int left, int bottom,
int right, Color color);

public static MatteBorder createMatteBorder(int top, int left, int bottom,
int right, Icon icon);

215

216 CHAPTER 7 BORDERS

public static Border createRaisedBevelBorder();

public static TitledBorder createTitledBorder(Border border);

public static TitledBorder createTitledBorder(Border border, String title);

public static TitledBorder createTitledBorder(Border border, String title,
int justification, int position);

public static TitledBorder createTitledBorder(Border border, String title,
int justification, int position, Font font);

public static TitledBorder createTitledBorder(Border border, String title,
int justification, int position, Font font, Color color);

public static TitledBorder createTitledBorder(String title);

}

I'll describe the different methods of this class during the process of describing the specific
border types they create. For instance, to create a border with a red line, you can use the following
statement, and then attach the border to a component.

Border lineBorder = BorderFactory.createlineBorder(Color.RED);

Note Interestingly enough, no factory method exists for creating a SoftBevelBorder.

Starting with AbstractBorder

Before looking at the individual borders available within the javax.swing.border package,
one system border deserves special attention: AbstractBorder. As previously mentioned, the
AbstractBorder class is the parent border of all the other predefined borders.

Tip When creating your own borders, you should create a subclass of AbstractBorder and just override
the necessary methods, instead of implementing the Border interface directly yourself. There are some
internal optimizations in place for subclasses.

Creating Abstract Borders

There is one constructor for AbstractBorder:
public AbstractBorder()

Because AbstractBorder is the parent class of all the other standard borders, this constructor is
eventually called automatically for all of them.

CHAPTER 7 BORDERS

Note Borders are not meant to be used as JavaBean components. Some border classes even lack a
no-argument (“no-arg” for short) constructor. Nevertheless, those border classes still call this constructor.

Examining AbstractBorder Methods

The AbstractBorder class provides implementations for the three methods of the Border
interface.

public Insets getBorderInsets(Component c)

The insets of an AbstractBorder are zero all around. Each of the predefined subclasses
overrides the getBorderInsets() method.

public boolean isBorderOpaque()

The default opaque property setting of an abstract border is false. This means that if you
were to draw something like dashed lines, the component background would show through.
Many predefined subclasses override the isBorderOpaque() method.

public void paintBorder(Component c, Graphics g, int x, int y,
int width, int height)

The painted border for an AbstractBorder is empty. All subclasses should override this
behavior to actually draw a border, except perhaps EmptyBorder.

In addition to providing default implementations of the Border methods, AbstractBorder
adds two other capabilities that you can take advantage of, or just let the system use. First,
there’s an additional version of getBorderInsets() available that takes two arguments:
Component and Insets:

public Insets getBorderInsets(Component c, Insets insets)

In this version of the method, instead of creating and returning a new Insets object, the
Insets object passed in is first modified and then returned. Use of this method avoids the creation
and later destruction of an additional Insets object each time the border insets is queried.

The second new method available is getInteriorRectangle(), which has both a static and
a nonstatic version. Given the Component, Border, and four integer parameters (for x, y, width,
and height), the method will return the inner Rectangle such that a component can paint itself
only in the area within the border insets. (See the piece labeled “Component” in Figure 7-2,
shown earlier in the chapter.)

Note Currently, getBorderInsets() is used only once in Sun’s Swing source. That place is the
MotifButtonUI class found in the com.sun.java.swing.plaf.motif package.

217

218

CHAPTER 7 BORDERS

Examining the Predefined Borders

Now that the basics have been described, let’s look at the specifics of each of the predefined
border classes, somewhat in order of complexity.

EmptyBorder Class

The empty border, logically enough, is a border with nothing drawn in it. You can use
EmptyBorder where you might have otherwise overridden insets() or getInsets() with a
regular AWT container. It allows you to reserve extra space around a component to spread your
screen components out a little or to alter centering or justification somewhat. Figure 7-3 shows
both an empty border and one that is not empty.

£ Empty Borders i 10l =|

With Empty
Without Empty |

Figure 7-3. EmptyBorder sample, with insets of 20 for top and left, 0 for right and bottom

EmptyBorder has two constructors and two factory methods of BorderFactory:

public static Border createEmptyBorder()
Border emptyBorder = BorderFactory.createEmptyBorder();

public static Border createEmptyBorder(int top, int left, int bottom, int right)
Border emptyBorder = BorderFactory.createEmptyBorder(5, 10, 5, 10);

public EmptyBorder(Insets insets)
Insets insets = new Insets(5, 10, 5, 10);
Border EmptyBorder = new EmptyBorder(insets);

public EmptyBorder(int top, int left, int bottom, int right)
Border EmptyBorder = new EmptyBorder(5, 10, 5, 10);

Each allows you to customize the border insets in its own manner. The no-argument
version creates a truly empty border with zero insets all around; otherwise, you can specify the
insets as either an AWT Insets instance or as the inset pieces. The EmptyBorder is transparent
by default.

CHAPTER 7 BORDERS

Note When creating an empty border, with zeros all around, you should use the factory method to create
the border, avoiding the direct constructors. This allows the factory to create one truly empty border to be
shared by all. If all you want to do is hide the border, and the component is an AbstractButton subclass,
just call setBorderPainted(false).

LineBorder Class

The line border is a single-color line of a user-defined thickness that surrounds a component.
It can have squared-off or rounded corners. If you want to alter the thickness on different sides,
you’ll need to use MatteBorder, which is described in the section “Matte Border Class” later in
this chapter. Figure 7-4 shows a sampling of using LineBorder, with 1- and 12-pixel line thick-
nesses, with and without rounded corners.

£ Line Borders 10l =|
1 Pixzel
12 Pizel

Rounded 12 Pizel

Figure 7-4. LineBorder sample

Creating Line Borders

The LineBorder class has three constructors, two factory methods within it, and two factory
methods of BorderFactory:

public LineBorder(Color color)
Border lineBorder = new LineBorder (Color.RED);

public LineBorder(Color color, int thickness)
Border lineBorder = new LineBorder (Color.RED, 5);

public LineBorder (Color color, int thickness, boolean roundedCorners)
Border lineBorder = new LineBorder (Color.RED, 5, true);

public static Border createBlackLineBorder()
Border blacklLine = LineBorder.createBlackLineBorder();

219

220

CHAPTER 7 BORDERS

public static Border createGrayLineBorder()
Border graylLine = LineBorder.createGraylineBorder();

public static Border createlLineBorder(Color color)
Border lineBorder = BorderFactory.createlineBorder(Color.RED);

public static Border createlLineBorder(Color color, int thickness)
Border lineBorder = BorderFactory.createlineBorder(Color.RED, 5);

Note The LineBorder factory methods work as follows: If you create the same border twice, the same
LineBorder object will be returned. However, as with all object comparisons, you should always use the
equals() method for checking object equality.

Each allows you to customize the border color and line thickness. If a thickness isn’t spec-
ified, a default value of 1 is used. The two factory methods of LineBorder are for the commonly
used colors of black and gray. Because the border fills in the entire insets area, the LineBorder
is opaque, unless there are rounded corners. So, the opacity of the border is the opposite of the
rounded-corner setting.

Configuring Line Border Properties

Table 7-1 lists the inherited borderOpaque property from AbstractBorder and the immutable
properties of LineBorder.

Table 7-1. LineBorder Properties

Property Name Data Type Access
borderOpaque boolean Read-only
lineColor Color Read-only
roundedCorners boolean Read-only
thickness int Read-only
BevelBorder Class

A bevel border draws a border with a three-dimensional appearance, which can appear to be
raised or lowered. When the border is raised, a shadow effect appears along the bottom and
right side of the border. When lowered, the position of the shading is reversed. Figure 7-5
shows raised and lowered bevel borders with default and custom colors.

CHAPTER 7 BORDERS

[~ oevelvorders S TaTE]

Raised | | Lowered
My Raised | My Lowered

Figure 7-5. Raised and lowered BevelBorder sample

Drawing two different pairs of 1-pixel-wide lines around the component produces a simu-
lated three-dimensional appearance. The border sides that aren’t shaded are drawn with what
is called a highlight color, and the other two sides are drawn with a shadow color. The highlight
color and shadow color are each drawn in two different shades for the outer and inner edges of
the bevel. As such, a drawn bevel border uses four different colors in all. Figure 7-6 shows how
these four colors fit together.

Light
Source

[IOuter Highlight Cf)\lll:[% <E‘uter Shadow Colorlj

Raised Component
I\

[]Inner Highlight Coloij::> Inner Shadow Color[]

[

Figure 7-6. Bevel color analysis

There are three constructors and one factory method of BevelBorder, as well as five factory
methods by which BorderFactory creates BevelBorder objects:

public BevelBorder(int bevelType)
Border bevelBorder = new BevelBorder(BevelBorder.RAISED);

public static Border createBevelBorder(int bevelType)
Border bevelBorder = BorderFactory.createBevelBorder (BevelBorder.RAISED);

public static Border createloweredBevelBorder()
Border bevelBorder = BorderFactory.createloweredBevelBorder();

221

222

CHAPTER 7 BORDERS

public static Border createRaisedBevelBorder()
Border bevelBorder = BorderFactory.createRaisedBevelBorder();

public BevelBorder(int bevelType, Color highlight, Color shadow)
Border bevelBorder = new BevelBorder(BevelBorder.RAISED, Color.PINK, Color.RED);

public static Border createBevelBorder(int bevelType, Color highlight, Color shadow)
Border bevelBorder = BorderFactory.createBevelBorder(BevelBorder.RAISED,
Color.PINK, Color.RED);

public BevelBorder(int bevelType, Color highlightOuter, Color highlightInner,
Color shadowOuter, Color shadowInner)

Border bevelBorder = new BevelBorder(BevelBorder.RAISED, Color.PINK,
Color.PINK.brighter(), Color.RED, Color.RED.darker());

public static Border createBevelBorder(int bevelType, Color highlightOuter,
Color highlightInner, Color shadowOuter, Color shadowInner)

Border bevelBorder = BorderFactory.createBevelBorder(BevelBorder.RAISED,
Color.PINK, Color.PINK.brighter(), Color.RED, Color.RED.darker());

Each allows you to customize both the bevel type and the coloration of the highlighting
and shadowing within the border. The bevel type is specified by one of two values:
BevelBorder.RAISED or BevelBorder. LOWERED. If highlight and shadow colors aren’t specified,
the appropriate colors are generated by examining the background of the component for the
border. If you do specify them, remember that the highlight color should be brighter, possibly
done by calling theColor.brighter(). A BevelBorder is opaque, by default.

SoftBevelBorder Class

The soft bevel border is a close cousin of the bevel border. It rounds out the corners so that
their edges aren’t as sharp, and it draws only one line, using the appropriate outer color for the
bottom and right sides. As Figure 7-7 shows, the basic appearance of the raised and lowered
SoftBevelBorder is roughly the same as that of the BevelBorder.

i Soft Bevel Borders | =10l =]

Raised Lowered

Figure 7-7. Raised and lowered SoftBevelBorder sample

CHAPTER 7 BORDERS

SoftBevelBorder has three constructors:

public SoftBevelBorder(int bevelType)
Border softBevelBorder = new SoftBevelBorder(SoftBevelBorder.RAISED);

public SoftBevelBorder(int bevelType, Color highlight, Color shadow)
Border softBevelBorder = new SoftBevelBorder(SoftBevelBorder.RAISED, Color.RED,
Color.PINK);

public SoftBevelBorder(int bevelType, Color highlightOuter, Color highlightInner,
Color shadowOuter, Color shadowInner)

Border softBevelBorder = new SoftBevelBorder(SoftBevelBorder.RAISED, Color.RED,
Color.RED.darker(), Color.PINK, Color.PINK.brighter());

Each allows you to customize both the bevel type and the coloration of the highlighting
and shadowing within the border. The bevel type is specified by one of two values:
SoftBevelBorder.RAISED or SoftBevelBorder. LOWERED. As with BevelBorder, the default colora-
tion is derived from the background color. A soft bevel border doesn’t completely fill in the
given insets area, so a SoftBevelBorder is created to be transparent (not opaque).

There are no static BorderFactory methods to create these borders.

EtchedBorder Class

An EtchedBorder is a special case of a BevelBorder, but it’s not a subclass. When the outer high-
light color of a BevelBorder is the same color as the inner shadow color and the outer shadow
color is the same color as the inner highlight color, you have an EtchedBorder. (See Figure 7-6
earlier in this chapter for a depiction of bevel colors.) Figure 7-8 shows what a raised and
lowered etched border might look like.

£ Etched Borders] 10l =|

Raised Lowered

Figure 7-8. EtchedBorder samples

There are four constructors for EtchedBorder, as well as four factory methods of
BorderFactory for creating EtchedBorder objects:

223

224

CHAPTER 7 BORDERS

public EtchedBorder()
Border etchedBorder = new EtchedBorder();

public EtchedBorder(int etchType)
Border etchedBorder = new EtchedBorder(EtchedBorder.RAISED);

public EtchedBorder(Color highlight, Color shadow)
Border etchedBorder = new EtchedBorder(Color.RED, Color.PINK);

public EtchedBorder(int etchType, Color highlight, Color shadow)
Border etchedBorder = new EtchedBorder(EtchedBorder.RAISED, Color.RED,
Color.PINK);

public static Border createEtchedBorder()
Border etchedBorder = BorderFactory.createEtchedBorder();

public static Border createEtchedBorder(Color highlight, Color shadow)
Border etchedBorder = BorderFactory.createEtchedBorder(Color.RED, Color.PINK);

public static Border createEtchedBorder(EtchedBorder.RAISED)
Border etchedBorder = BorderFactory.createEtchedBorder(Color.RED, Color.PINK);

public static Border createEtchedBorder(int type, Color highlight, Color shadow)
Border etchedBorder = BorderFactory.createEtchedBorder(EtchedBorder.RAISED,
Color.RED, Color.PINK);

Each allows you to customize both the etching type and the coloration of the highlighting
and shadowing within the border. If no etching type is specified, the border is lowered. As with
BevelBorder and SoftBevelBorder, you can specify the etching type through one of two constants:
EtchedBorder.RAISED or EtchedBorder. LOWERED. Again, if no colors are specified, they're derived
from the background color of the component passed into paintBorder (). By default, all
EtchedBorder objects are created to be opaque.

MatteBorder Class

MatteBorder is one of the more versatile borders available. It comes in two varieties. The first is
demonstrated in Figure 7-9 and shows a MatteBorder used like a LineBorder to fill the border
with a specific color, but with a different thickness on each side (something a plain LineBorder
cannot handle).

CHAPTER 7 BORDERS

= Coor attedBorder TP

10=5x2x20

Figure 7-9. MatteBorder color sample

The second variety uses an Icon tiled throughout the border area. This Icon could be an
ImageIcon, if created from an Image object, or it could be one you create yourself by imple-
menting the Icon interface. Figure 7-10 demonstrates both implementations.

£ Icon Matted Borders 10l =|
20000000000 0000000000000000¢ 3
+ i
+ = -
+ diamonds p-
+ -
+ <
diamonds2

Figure 7-10. MatteBorder icon samples

Tip When tiling an icon, the right and bottom areas may not look very attractive if the border size,
component size, and icon size fail to mesh well.

There are seven constructors and two factory methods of BorderFactory for creating
MatteBorder objects:

public MatteBorder(int top, int left, int bottom, int right, Color color)
Border matteBorder = new MatteBorder(5, 10, 5, 10, Color.GREEN);

public MatteBorder(int top, int left, int bottom, int right, Icon icon)
Icon diamondIcon = new DiamondIcon(Color.RED);
Border matteBorder = new MatteBorder(5, 10, 5, 10, diamondIcon);

public MatteBorder(Icon icon)
Icon diamondIcon = new DiamondIcon(Color.RED);
Border matteBorder = new MatteBorder(diamondIcon);

225

226

CHAPTER 7 BORDERS

public MatteBorder(Insets insets, Color color)
Insets insets = new Insets(5, 10, 5, 10);
Border matteBorder = new MatteBorder(insets, Color.RED);

public MatteBorder(Insets insets, Icon icon)

Insets insets = new Insets(5, 10, 5, 10);

Icon diamondIcon = new DiamondIcon(Color.RED);

Border matteBorder = new MatteBorder(insets, diamondIcon);

public static MatteBorder createMatteBorder(int top, int left, int bottom,
int right, Color color)
Border matteBorder = BorderFactory.createMatteBorder(5, 10, 5, 10, Color.GREEN);

public static MatteBorder createMatteBorder(int top, int left, int bottom,
int right, Icon icon)
Icon diamondIcon = new DiamondIcon(Color.RED);
Border matteBorder = BorderFactory.createMatteBorder(5, 10, 5, 10, diamondIcon);

Each allows you to customize what will be matted within the border area. When tiling an
Icon, if you don’t specify the border insets size, the actual icon dimensions will be used.

CompoundBorder Class

After EmptyBorder, the compound border is probably one of the simplest predefined borders to
use. It takes two existing borders and combines them, using the Composite design pattern, into
asingle border. A Swing component can have only one border associated with it, therefore, the
CompoundBorder allows you to combine borders before associating them with a component.

Figure 7-11 shows two examples of CompoundBorder in action. The border on the left is a beveled,
line border. The one on the right is a six-line border, with several borders combined together.

i Compound Borders

Rainbow

Bevel Line

Figure 7-11. CompoundBorder samples

Creating Compound Borders

There are two constructors for CompoundBorder and two factory methods that BorderFactory
offers for creating CompoundBorder objects (the no-argument constructor and factory methods
are completely useless here, because there are no setter methods to later change the compounded
borders, so no source examples are shown for them):

CHAPTER 7 BORDERS

public CompoundBorder()

public static CompoundBorder createCompoundBorder()

public CompoundBorder(Border outside, Border inside)
Border compoundBorder = new CompoundBorder(lineBorder, matteBorder);

public static CompoundBorder createCompoundBorder(Border outside, Border inside)
Border compoundBorder = BorderFactory.createCompoundBorder(lineBorder,
matteBorder);

Tip Keep in mind that CompoundBorder is itself a Border, so you can combine multiple borders into one
border many levels deep.

The opacity of a compound border depends on the opacity of the contained borders.
If both contained borders are opaque, so is the compound border. Otherwise, a compound
border is considered transparent.

Configuring Properties

In addition to the borderOpaque property inherited from AbstractBorder, Table 7-2 lists the two
read-only properties CompoundBorder adds.

Table 7-2. CompoundBorder Properties

Property Name Data Type Access
borderOpaque boolean Read-only
insideBorder Border Read-only
outsideBorder Border Read-only
TitledBorder Class

Probably the most interesting border, TitledBorder can also be the most complicated to use. The
titled border allows you to place a text string around a component. In addition to surrounding a
single component, you can place a titled border around a group of components, like JRadioButton
objects, as long as they’re placed within a container such as a JPanel. The TitledBorder can be
difficult to use, but there are several ways to simplify its usage. Figure 7-12 shows both a simple
titled border and one that’s a little more complex.

227

228 CHAPTER 7 BORDERS

i Titled Borders f =10l

Harder

Harder

Easy

Harder

Figure 7-12. TitledBorder samples

Creating Titled Borders

Six constructors and six BorderFactory factory methods exist for creating TitledBorder objects.
Each allows you to customize the text, position, and appearance of a title within a specified
border. When unspecified, the current look and feel controls the border, title color, and title
font. The default location for the title is the upper-left corner, while the default title is the
empty string. A titled border is always at least partially transparent because the area beneath
the title text shows through. Therefore, isBorderOpaque() reports false.

If you look at each of the following methods, shown in pairs, this will be easier to understand.
First shown is the constructor method; next shown is the equivalent BorderFactory method.

public TitledBorder(Border border)
Border titledBorder = new TitledBorder(lineBorder);

public static TitledBorder createTitledBorder(Border border)
Border titledBorder = BorderFactory.createTitledBorder(lineBorder);

public TitledBorder(String title)
Border titledBorder = new TitledBorder("Hello");

public static TitledBorder createTitledBorder(String title)
Border titledBorder = BorderFactory.createTitledBorder("Hello");

public TitledBorder(Border border, String title)
Border titledBorder = new TitledBorder(lineBorder, "Hello");

public static TitledBorder createTitledBorder(Border border, String title)
Border titledBorder = BorderFactory.createTitledBorder(lineBorder, "Hello");

public TitledBorder(Border border, String title, int justification, int position)
Border titledBorder = new TitledBorder(lineBorder, "Hello", TitledBorder.LEFT,
TitledBorder.BELOW_BOTTOM);

CHAPTER 7 BORDERS 229

public static TitledBorder createTitledBorder(Border border, String title,
int justification, int position)

Border titledBorder = BorderFactory.createTitledBorder(lineBorder, "Hello",
TitledBorder.LEFT, TitledBorder.BELOW BOTTOM);

public TitledBorder(Border border, String title, int justification, int position,
Font font)

Font font = new Font("Serif", Font.ITALIC, 12);

Border titledBorder = new TitledBorder(lineBorder, "Hello", TitledBorder.LEFT,
TitledBorder.BELOW BOTTOM, font);

public static TitledBorder createTitledBorder(Border border, String title,
int justification, int position, Font font)

Font font = new Font("Serif", Font.ITALIC, 12);

Border titledBorder = BorderFactory.createTitledBorder(lineBorder, "Hello",
TitledBorder.LEFT, TitledBorder.BELOW BOTTOM, font);

public TitledBorder(Border border, String title, int justification, int position,
Font font, Color color)

Font font = new Font("Serif", Font.ITALIC, 12);

Border titledBorder = new TitledBorder(lineBorder, "Hello", TitledBorder.LEFT,
TitledBorder.BELOW BOTTOM, font, Color.RED);

public static TitledBorder createTitledBorder(Border border, String title,
int justification, int position, Font font, Color color)

Font font = new Font("Serif", Font.ITALIC, 12);

Border titledBorder = BorderFactory.createTitledBorder(lineBorder, "Hello",
TitledBorder.LEFT, TitledBorder.BELOW BOTTOM, font, Color.RED);

Configuring Properties

Unlike all the other predefined borders, titled borders have six setter methods to modify their
attributes after border creation. As shown in Table 7-3, you can modify a titled border’s under-
lying border, title, drawing color, font, text justification, and text position.

Table 7-3. TitledBorder Properties

Property Name Data Type Access

border Border Read-write
borderOpaque boolean Read-only
title String Read-write
titleColor Color Read-write
titleFont Font Read-write
titleJustification int Read-write

titlePosition int Read-write

230

CHAPTER 7 BORDERS

Tip To reduce screen redrawing, it's better to modify the properties of a titled border prior to placing the
border around a component.

Text justification of the title string within a TitledBorder is specified by one of four class
constants:

o CENTER: Place the title in the center.

e DEFAULT JUSTIFICATION: Use the defaultsetting to position the text. The value is equivalent

to LEFT.

e LEFT: Place the title on the left edge.

e RIGHT: Place the title on the right edge.

Figure 7-13 shows the same TitledBorder with three different justifications.

£ Justified Titled Borders 10l =|

Right

Center

Figure 7-13. Title justifications

You can position title strings in any one of six different locations, as specified by one of
seven class constants:

ABOVE_BOTTOM: Place the title above the bottom line.

ABOVE_TOP: Place the title above the top line.

BELOW_BOTTOM: Place the title below the bottom line.

BELOW_TOP: Place the title below the top line.

BOTTOM: Place the title on the bottom line.

DEFAULT_POSITION: Use the default setting to place the text. This value is equivalent to TOP.

TOP: Place the title on the top line.

Figure 7-14 shows the six different positions available for the title on a TitledBorder.

CHAPTER 7 BORDERS

£ positioned Titled Borders 10l =|

AboveTop

AboveBottom
Top

Bottom

BelowTop

BelowBottom

Figure 7-14. Title positioning

Because a TitledBorder contains another Border, you can combine more than one border
to place multiple titles along a single border. For example, Figure 7-15 shows a title along the
top and bottom of the border.

=loix
Top
Bottom

Figure 7-15. Showing multiple titles on a TitledBorder
The program used to generate Figure 7-15 is shown in Listing 7-2.

Listing 7-2. Multiple Titles on a TitledBorder

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;

public class DoubleTitle {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Double Title");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
TitledBorder topBorder = BorderFactory.createTitledBorder("Top");
topBorder.setTitlePosition(TitledBorder.TOP);
TitledBorder doubleBorder = new TitledBorder(topBorder, "Bottom",
TitledBorder.RIGHT, TitledBorder.BOTTOM);
JButton doubleButton = new JButton();
doubleButton.setBorder (doubleBorder);
frame.add(doubleButton, Borderlayout.CENTER);

231

232

CHAPTER 7 BORDERS

frame.setSize(300, 100);
frame.setVisible(true);

}
};
EventQueue.invokelater(runner);

}
}

Customizing TitledBorder Look and Feel

The available set of UIResource-related properties for a TitledBorder is shown in Table 7-4.
It has three different properties.

Table 7-4. TitledBorder UlIResource Elements

Property String Object Type
TitledBorder.font Font
TitledBorder.titleColor Color
TitledBorder.border Border

Creating Your Own Borders

When you want to create your own distinctive border, you can either create a new class that
implements the Border interface directly or you can extend the AbstractBorder class. As previ-
ously mentioned, extending the AbstractBorder class is the better way to go, because optimizations
are built in to certain Swing classes to take advantage of some of the AbstractBorder-specific
methods. For instance, if a border is an AbstractBorder, JComponent will reuse an Insets object
when getting the Insets of a border. Thus, one fewer object will need to be created and destroyed
each time the insets are fetched.

In addition to thinking about subclassing AbstractBorder versus implementing the Border
interface yourself, you need to consider whether or not you want a static border. If you attach
a border to a button, you want that button to be able to signal selection. You must examine the
component passed into the paintBorder () method and react accordingly. In addition, you
should also draw a disabled border to indicate when the component isn’t selectable. Although
setEnabled(false) disables the selection of the component, if the component has a border
associated with it, the border still must be drawn, even when disabled. Figure 7-16 shows one
border in action that looks at all these options for the component passed into the border’s
paintBorder () method.

£ My Border o =] 3
| Hello |

Brave New

| World |

Figure 7-16. Active custom border examples

CHAPTER 7 BORDERS 233

The source for the custom border and the sample program is shown in Listing 7-3.

Listing 7-3. Custom Colorized Border

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;

public class RedGreenBorder extends AbstractBorder {
public boolean isBorderOpaque() {
return true;
}
public Insets getBorderInsets(Component c) {
return new Insets(3, 3, 3, 3);
}
public void paintBorder(Component c, Graphics g, int x, int y, int width,
int height) {
Insets insets = getBorderInsets(c);
Color horizontalColor;
Color verticalColor;
if (c.iskEnabled()) {
boolean pressed = false;
if (c instanceof AbstractButton) {
ButtonModel model = ((AbstractButton)c).getModel();
pressed = model.isPressed();
}
if (pressed) {
horizontalColor = Color.RED;
verticalColor = Color.GREEN;
} else {
horizontalColor = Color.GREEN;
verticalColor = Color.RED;
}
} else {
horizontalColor = Color.LIGHT GRAY;
verticalColor = Color.LIGHT GRAY;
}

g.setColor(horizontalColor);
g.translate(x, y);

// Top
g.fillRect(0, 0, width, insets.top);
// Bottom
g.fillRect(0, height-insets.bottom, width, insets.bottom);

234 CHAPTER 7 BORDERS

g.setColor(verticalColor);
// Left
g.fillRect(0, insets.top, insets.left, height-insets.top-insets.bottom);
// Right
g.fillRect(width-insets.right, insets.top, insets.right,
height-insets.top-insets.bottom);
g.translate(-x, -y);
}
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("My Border");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
Border border = new RedGreenBorder();
JButton helloButton = new JButton("Hello");
helloButton.setBorder(border);
JButton braveButton = new JButton("Brave New");
braveButton.setBorder(border);
braveButton.setEnabled(false);
JButton worldButton = new JButton("World");
worldButton.setBorder(border);
frame.add(helloButton, BorderlLayout.NORTH);
frame.add(braveButton, Borderlayout.CENTER);
frame.add(worldButton, BorderlLayout.SOUTH);
frame.setSize(300, 100);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Note Another interesting custom border is one that displays an active component instead of a text title in
aTitledBorder.Imagine a border that has a JCheckBox or JRadioButton instead of a text string for the
title. You can also use a JLabel and pass in HTML for the text.

Summary

In this chapter, you learned about the use of the Border interface and its many predefined
implementations. You also learned how to create predefined borders using the Factory design
pattern provided by the BorderFactory class. Lastly, you saw how to define your own borders
and why subclassing AbstractBorder is beneficial.

In Chapter 8, you’ll move beyond low-level components and examine the window-like
container objects available in Swing.

CHAPTER 8

Root Pane Containers

In Chapter 7, you looked at working with borders around Swing components. In this chapter,
you'll explore the high-level Swing containers and discover how they differ from their AWT
counterparts.

Working with top-level containers in Swing is a bit different from working with top-level
AWT containers. With the AWT containers of Frame, Window, Dialog, and Applet, you added
components directly to the container, and there was only one place you could add them. In
the Swing world, the top-level containers of JFrame, JWindow, JDialog, and JApplet, plus the
JInternalFrame container, rely on something called a JRootPane. Instead of adding components
directly to the container, you add them to a part of the root pane. The root pane then manages
them all internally.

Why was this indirect layer added? Believe it or not, it was done to simplify things. The root
pane manages its components in layers so that elements such as tooltip text will always appear
above components, and you don’t need to worry about dragging some components around
behind others.

The one container without an AWT counterpart, JInternalFrame, also provides some addi-
tional capabilities when placed within a desktop (within a JDesktopPane to be specific). The
JInternalFrame class can be used as the basis for creating a Multiple Document Interface (MDI)
application architecture within a Swing program. You can manage a series of internal frames
within your program, and they’ll never go beyond the bounds of your main program window.

Let’s begin by exploring the new JRootPane class, which manages the internals of all the
top-level containers.

JRootPane Class

The JRootPane class acts as a container delegate for the top-level Swing containers. Because
the container holds only a JRootPane when you add or remove components from a top-level
container, instead of directly altering the components in the container, you indirectly add or
remove components from its JRootPane instance. In effect, the top-level containers are acting
as proxies, with the JRootPane doing all the work.

The JRootPane container relies on its inner class RootLayout for layout management and
takes up all the space of the top-level container that holds it. There are only two components
within a JRootPane: a JLayeredPane and a glass pane (Component). The glass pane is in front, can
be any component, and tends to be invisible. The glass pane ensures that elements such as

235

236

CHAPTER 8 ROOT PANE CONTAINERS

tooltip text appear in front of any other Swing components. In the back is the JLayeredPane,
which contains an optional JMenuBar on top and a content pane (Container) below itin another
layer. It is within the content pane that you would normally place components in the
JRootPane. Figure 8-1 should help you visualize how the RootLayout lays out the components.

JMenuBar

Content Pane (Container)

Glass Pane (Component)

JLayeredPane

Figure 8-1. JRootPane containment diagram

Note A3 LayeredPane is just another Swing container (it's described later in this chapter). It can contain
any components and has a special layering characteristic. The default JLayeredPane used within the
JRootPane pane contains only a JMenuBar and a Container as its content pane. The content pane has
its own layout manager, which is BorderLayout by default.

Creating a JRootPane

Although the JRootPane has a public no-argument constructor, a JRootPane isn’t something
you would normally create yourself. Instead, a class that implements the RootPaneContainer
interface creates the JRootPane. Then, you can get the root pane from that component, through
the RootPaneContainer interface, described shortly.

JRootPane Properties

As Table 8-1 shows, there are 11 properties of JRootPane. In most cases, when you get or set one
of these properties for a top-level container, like JFrame, the container simply passes along the
request to its JRootPane.

The glass pane for a JRootPane must not be opaque. Because the glass pane takes up the
entire area in front of the JLayeredPane, an opaque glass pane would render the menu bar and
content pane invisible. And, because the glass pane and content pane share the same bounds,
the optimizedDrawingEnabled property returns the visibility of the glass pane as its setting.

Table 8-1. JRootPane Properties

CHAPTER 8 ROOT PANE CONTAINERS

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
contentPane Container Read-write
defaultButton JButton Read-write bound
glassPane Component Read-write
jMenuBar IMenuBar Read-write
layeredPane JLayeredPane Read-write
optimizedDrawingEnabled boolean Read-only

uI RootPaneUI Read-write
UIClassID String Read-only
validateRoot boolean Read-only
windowDecorationStyle int Read-write bound

The windowDecorationStyle property is meant to describe the window adornments
(border, title, buttons for closing window) for the window containing the JRootPane. It can
be set to one of the following JRootPane class constants:

e COLOR_CHOOSER DIALOG

¢ ERROR_DIALOG

e FILE_CHOOSER DIALOG

¢ FRAME

e INFORMATION DIALOG

¢ NONE
¢ PLAIN DIALOG
¢ QUESTION DIALOG

¢ WARNING DIALOG

What exactly happens with the windowDecorationStyle setting depends on the current
look and feel. It is just a hint. By default, this setting is NONE. If this setting is not NONE, the
setUndecorated() method of JDialog or JFrame has been called with a value of true, and the
getSupportsiWindowDecorations() method of the current look and feel reports true, then the
look and feel, rather than the window manager, will provide the window adornments. This
allows you to have programs with top-level windows that look like they do not come from the
platform the user is working on but from your own environment, though still providing iconify,
maximize, minimize, and close buttons.

237

238

CHAPTER 8 ROOT PANE CONTAINERS

For the Metal look and feel (and Ocean theme), getSupportsWindowDecorations() reports
true. The other system-provided look and feel types report false. Figure 8-2 demonstrates
what a frame looks like with the window adornments provided by the Metal look and feel.

Adornment Example o e’ B

Figure 8-2. Metal window adornments for a JFrame
The source to produce Figure 8-2 is shown in Listing 8-1.

Listing 8-1. Setting the Window Decoration Style

import java.awt.*;
import javax.swing.*;

public class AdornSample {

public static void main(final String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Adornment Example");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setUndecorated(true);
frame.getRootPane().setWindowDecorationStyle(JRootPane.FRAME);
frame.setSize(300, 100);
frame.setVisible(true);
}
b
EventQueue.invokelLater(runner);
}
}

Customizing a JRootPane Look and Feel

Table 8-2 shows the 12 UIResource-related properties for a JRootPane. Most of these settings have
to do with the default border to use when configuring the window decoration style.

Table 8-2. JRootPane UlResource Elements

Property String Object Type
RootPane.actionMap ActionMap
RootPane.ancestorInputMap InputMap

RootPane.colorChooserDialogBorder Border

CHAPTER 8 ROOT PANE CONTAINERS 239

Table 8-2. JRootPane UlResource Elements (Continued)

Property String Object Type
RootPane.defaultButtonWindowKeyBindings Object[]
RootPane.errorDialogBorder Border
RootPane.fileChooserDialogBorder Border
RootPane.frameBorder Border
RootPane.informationDialogBorder Border
RootPane.plainDialogBorder Border
RootPane.questionDialogBorder Border
RootPane.warningDialogBorder Border
RootPaneUI String

RootPaneContainer Interface

The RootPaneContainer interface defines the setter/getter methods for accessing the different
panes within the JRootPane, as well as accessing the JRootPane itself.

public interface RootPaneContainer {
// Properties
public Container getContentPane();
public void setContentPane(Container contentPane);
public Component getGlassPane();
public void setGlassPane(Component glassPane);
public JlLayeredPane getlayeredPane();
public void setlayeredPane(JLayeredPane layeredPane);
public JRootPane getRootPane();

Among the predefined Swing components, the JFrame, JWindow, JDialog, JApplet, and
JInternalFrame classes implement the RootPaneContainer interface. For the most part, these
implementations simply pass along the request to a JRootPane implementation for the high-
level container. The following source code is one such implementation for the glass pane of a
RootPaneContainer implementer:

public Component getGlassPane() {
return getRootPane().getGlassPane();

}

public void setGlassPane(Component glassPane) {
getRootPane().setGlassPane(glassPane);

}
JLayeredPane Class

The JLayeredPane serves as the main component container of a JRootPane. The JLayeredPane
manages the z-order, or layering, of components within itself. This ensures that the correct

240

CHAPTER 8 ROOT PANE CONTAINERS

component is drawn on top of other components for tasks such as creating tooltip text, pop-up
menus, and dragging for drag-and-drop. You can use the system-defined layers, or you can
create your own layers.

Although initially a JLayeredPane container has no layout manager, there’s nothing to stop
you from setting the layout property of the container, defeating the layering aspect of the
container.

Creating a JLayeredPane

As with the JRootPane, you’ll almost never create an instance of the JLayeredPane class yourself.
When the default JRootPane is created for one of the predefined classes that implement
RootPaneContainer, the JRootPane creates a JLayeredPane for its main component area, adding
an initial content pane.

Adding Components in Layers

A layer setting for each added component manages the z-order of components within a
JLayeredPane. The higher the layer setting, the closer to the top the component will be drawn.
You can set the layer with the layout manager constraints when you add a component to a
JLayeredPane:

Integer layer = new Integer(20);
alayeredPane.add(aComponent, layer);

You can also call the public void setlLayer(Component comp, int layer) or public void
setLayer(Component comp, int layer, int position) method before adding the component
to the JLayeredPane.

alayeredPane.setlayer (aComponent, 10);
alayeredPane.add(aComponent);

The JLayeredPane class predefines six constants for special values. In addition, you can
find out the topmost current layer with public int c and the bottom layer with public int
lowestLayer(). Table 8-3 lists the six predefined layer constants.

Table 8-3. /LayeredPane Layer Constants

Constant Description

FRAME_CONTENT_LAYER Level -30,000 for holding the menu bar and content pane;
not normally used by developers

DEFAULT LAYER Level 0 for the normal component level

PALETTE_LAYER Level 100 for holding floating toolbars and the like

MODAL_LAYER Level 200 for holding pop-up dialog boxes that appear on top

of components on the default layer, on top of palettes, and
below pop-ups

POPUP_LAYER Level 300 for holding pop-up menus and tooltips

DRAG_LAYER Level 400 for ensuring that dragged objects remain on top

CHAPTER 8 ROOT PANE CONTAINERS 241

Although you can use your own constants for layers, use them with care—because the
system will use the predefined constants for its needs. If your constants don’t fit in properly,
the components may not work as you intended.

To visualize how the different layers fit in, see Figure 8-3.

FRAME_CONTENT_LAYER/-30000

DEFAULT_LAYER/0

PALETTE_LAYER/100

MODAL_LAYER/200

POPUP_LAYER/300

DRAG_LAYER/400

Figure 8-3. JLayeredPane layers

Working with Component Layers and Positions

Components in a JLayeredPane have both a layer and a position. When a single component is
on a layer, it’s at position 0. When multiple components are on the same layer, components
added later have higher position numbers. The lower the position setting, the closer to the top
the component will appear. (This is the reverse of the layering behavior.) Figure 8-4 shows the
positions for four components on the same layer.

To rearrange components on a single layer, you can use either the public void
moveToBack (Component component) or public void moveToFront(Component component)
method. When you move a component to the front, it goes to position 0 for the layer. When
you move a component to the back, it goes to the highest position number for the layer. You
can also manually set the position with public void setPosition(Component component, int
position). A position of -1 is automatically the bottom layer with the highest position (see
Figure 8-4).

242

CHAPTER 8 ROOT PANE CONTAINERS

POSITION=3 (OR-1)

POSITION=2

POSITION=1

POSITION=0

Figure 8-4. /LayeredPane positions

JLayeredPane Properties

Table 8-4 shows the two properties of JLayeredPane. The optimizedDrawingEnabled property
determines whether components within the JLayeredPane can overlap. By default, this setting
is true because in the standard usage with JRootPane the JMenuBar and content pane can’t
overlap. However, the JLayeredPane automatically validates the property setting to reflect the
current state of the contents of the pane.

Table 8-4. /LayeredPane Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
optimizedDrawingEnabled boolean Read-only

JFrame Class

The JFrame class is the Swing high-level container that uses a JRootPane and implements the
RootPaneContainer interface. In addition, it uses the WindowConstants interface to help manage
closing operations.

CHAPTER 8 ROOT PANE CONTAINERS

Creating a JFrame

The JFrame class provides two primary constructors: one for creating a frame without a title
and one for creating a frame with a title. There are two additional constructors for creating
frames with a specialized GraphicsConfiguration.

public JFrame()
JFrame frame = new JFrame();

public JFrame(String title)
JFrame frame = new JFrame("Title Bar");

public JFrame(GraphicsConfiguration config)

GraphicsEnvironment ge = GraphicsEnvironment.getlocalGraphicsEnvironment();
GraphicsDevice gsd[] = ge.getScreenDevices();

GraphicsConfiguration gc[] = gsd[0].getConfigurations();

JFrame frame = new JFrame(gc[0]);

public JFrame(String title, GraphicsConfiguration config)

GraphicsConfiguration gc = ...;
JFrame frame = new JFrame("Title Bar", gc);

JFrame Properties

Table 8-5 shows the nine properties of the JFrame.

Table 8-5. JFrame Properties

Property Name Data Type Access

accessibleContext AccessibleContext Read-only
contentPane Container Read-write
defaultCloseOperation int Read-write
glassPane Component Read-write
iconImage Image Write-only
jMenuBar JMenuBar Read-write
layeredPane JLayeredPane Read-write
layout LayoutManager Write-only

rootPane JRootPane Read-only

243

244

CHAPTER 8 ROOT PANE CONTAINERS

Although most properties are the result of implementing the RootPaneContainer interface,
two properties are special: defaultCloseOperation and layout. (You first looked at the
defaultCloseOperation property in Chapter 2.) By default, a JFrame hides itself when the user
closes the window. To change the setting, you can use one of the constants listed in Table 8-6
as arguments when setting the default close operation. The first comes from JFrame directly;
the others are part of the WindowConstants interface.

aFrame.setDefaultCloseOperation(JFrame.DISPOSE ON CLOSE);

Table 8-6. Close Operation Constants

Constant Description

EXIT ON_CLOSE Call System.exit(0).

DISPOSE_ON_CLOSE Call dispose() on the frame.

DO _NOTHING ON_CLOSE Ignore the request.

HIDE_ON_CLOSE Call setVisible(false) on the frame; this is the default.

The layout property is odd. By default, setting the layout manager of the JFrame passes the
call along to the content pane. You can’t change the default layout manager of the JFrame.

Tip You can use the state property (inherited from Frame) to say whether the JFrame is currently icon-
ified. When using the property, be sure to use one of the additional Frame constants of NORMAL or ICONIFIED to
set its state.

There is an additional static property of JFrame: defaultLookAndFeelDecorated. This works
with the windowDecorationStyle property of JRootPane. When set to true, newly created frames
will be adorned with decorations from the look and feel instead of the window manager. Of
course, this happens only if the current look and feel supports window decorations. Listing 8-2
shows an alternate way to generate the same screen (with the window adornments provided by
the Metal look and feel) as the one shown earlier in Figure 8-2.

Listing 8-2. Alternative Way of Setting the Window Decoration Style

import java.awt.*;
import javax.swing.*;

public class AdornSample2 {

CHAPTER 8 ROOT PANE CONTAINERS

public static void main(final String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame.setDefaultlLookAndFeelDecorated(true);
JFrame frame = new JFrame("Adornment Example");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
frame.setSize(300, 100);
frame.setVisible(true);

}
};
EventQueue.invokelater(runner);

}
}

Adding Components to a JFrame

Because JFrame implements the RootPaneContainer interface and uses a JRootPane, you don’t
add components directly to the JFrame. Instead, you add them to the JRootPane contained
within the JFrame. Prior to J2SE 5.0, you needed to add components like this:

JRootPane rootPane = aJFrame.getRootPane();
Container contentPane = rootPane.getContentPane();
contentPane.add(...);

This can be shortened to the following form:
aJFrame.getContentPane().add(...);

If you tried to add components directly to the JFrame, it resulted in a runtime error being
thrown.

Due to many suggestions (complaints?), Sun finally decided to change the add() method
into a proxy:

// J2SE 5.0
alFrame.add(...);

With J2SE 5.0, when you add components to the JFrame, they actually are added to the
content pane of the RootPaneContainer.

Handling JFrame Events

The JFrame class supports the registration of eleven different listeners:
* ComponentlListener: To find out when the frame moves or is resized.

e (ContainerlListener: Normally notadded to a JFrame because you add components to the
content pane of its JRootPane.

* Focuslistener: To find out when the frame gets or loses input focus.

245

246

CHAPTER 8 ROOT PANE CONTAINERS

* HierarchyBoundsListener: To find out when the frame moves or is resized. This works
similarly to ComponentListener, since the frame is the top-level container of component.

e Hierarchylistener: To find out when the frame is shown or hidden.
¢ InputMethodListener: To work with input methods for internationalization.

¢ KeylListener: Normally not added to a JFrame. Instead, you register a keyboard action for
its content pane, like this:

JPanel content = (JPanel)frame.getContentPane();

KeyStroke stroke = KeyStroke.getKeyStroke(KeyEvent.VK ESCAPE, 0);

content.registerkKeyboardAction(actionlListener, stroke,
JComponent.WHEN IN FOCUSED WINDOW);

* Mouselistener and MouseMotionlListener: To listen for mouse and mouse motion events.
* PropertyChangelListener: To listen for changes to bound properties.

¢ WindowListener: To find out when a window is iconified or deiconified or a user is trying
to open or close the window.

With the help of the defaultCloseOperation property, you typically don’t need to add a
WindowListener to help with closing the frame or stopping the application.

Extending JFrame

If you need to extend JFrame, this class has two important protected methods:

protected void frameInit()
protected JRootPane createRootPane()

By overriding either of these methods in a subclass, you can customize the initial appear-
ance and behavior of the frame or that of its JRootPane. For example, in the ExitableJFrame
class shown in Listing 8-3, the default close operation is initialized to the EXIT_ON_CLOSE state.
Instead of calling setDefaultCloseOperation() for every frame created, you can use this class
instead. Because JFrame was subclassed, you don’t need to add a call to the frameInit()
method in either of the constructors. The parent class automatically calls the method.

Listing 8-3. Closing Frames by Default

import javax.swing.JFrame;
public class ExitableJFrame extends JFrame {
public ExitableJFrame () {
}
public ExitableJFrame (String title) {
super (title);
}

CHAPTER 8 ROOT PANE CONTAINERS

protected void frameInit() {
super.frameInit();
setDefaultCloseOperation(EXIT _ON CLOSE);
}
}

Caution Ifyou do override the frameInit () method of JFrame, remember to call super . frameInit()
first, to initialize the default behaviors. If you forget and don’t reimplement all the default behaviors yourself,
your new frame will look and act differently.

JWindow Class

The JWindow class is similar to the JFrame class. It uses a JRootPane for component management
and implements the RootPaneContainer interface. Basically, it is a top-level window with no
adornments.

Creating a JWindow

The JWindow class has five constructors:

public JWindow()
JWindow window = new JWindow();

public JWindow(Frame owner)
JWindow window = new JWindow(aFrame);

public JWindow(GraphicsConfiguration config)
GraphicsConfiguration gc = ...;
JWindow window = new JWindow(gc);

public JWindow(Window owner)
JWindow window = new JWindow(anotherWindow);

public JWindow(Window owner, GraphicsConfiguration config)
GraphicsConfiguration gc = ...;
JWindow window = new JWindow(anotherWindow, gc);

You can create a window without specifying a parent or by specifying the parent as a Frame
or Window. If no parent is specified, an invisible one is used.

247

248

CHAPTER 8 ROOT PANE CONTAINERS

JWindow Properties

Table 8-7 lists the six properties of JWindow. These are similar in nature to the JFrame properties,
except that JWindow has no property for a default close operation or a menu bar.

Table 8-7. JWindow Properties

Property Name Data Type Access

accessibleContext AccessibleContext Read-only
contentPane Container Read-write
glassPane Component Read-write
layeredPane JLayeredPane Read-write
layout LayoutManager Write-only
rootPane JRootPane Read-only

Handling JWindow Events

The JWindow class adds no additional event-handling capabilities beyond those of the JFrame
and Window classes. See the “Handling JFrame Events” section earlier in this chapter for a list of
listeners you can attach to a JWindow.

Extending JWindow

If you need to extend JWindow, the class has two protected methods of importance:

protected void windowInit()
protected JRootPane createRootPane()

JDialog Class

The JDialog class represents the standard pop-up window for displaying information related
to a Frame. It acts like a JFrame, whereby its JRootPane contains a content pane and an optional
JMenuBar, and it implements the RootPaneContainer and WindowConstants interfaces.

Creating a JDialog

There are 11 constructors for creating JDialog windows:
public JDialog()

JDialog dialog = new JDialog();

public JDialog(Dialog owner)
JDialog dialog = new JDialog(anotherDialog);

CHAPTER 8 ROOT PANE CONTAINERS 249

public JDialog(Dialog owner, boolean modal)
JDialog dialog = new JDialog(anotherDialog, true);

public JDialog(Dialog owner, String title)
JDialog dialog = new JDialog(anotherDialog, "Hello");

public JDialog(Dialog owner, String title, boolean modal)
JDialog dialog = new JDialog(anotherDialog, "Hello", true);

public JDialog(Dialog owner, String title, boolean modal, GraphicsConfiguration gc)
GraphicsConfiguration gc = ...;
JDialog dialog = new JDialog(anotherDialog, "Hello", true, gc);

public JDialog(Frame owner)
JDialog dialog = new JDialog(aFrame);

public JDialog(Frame owner, String windowTitle)
JDialog dialog = new JDialog(aFrame, "Hello");

public JDialog(Frame owner, boolean modal)
JDialog dialog = new JDialog(aFrame, false);

public JDialog(Frame owner, String title, boolean modal)
JDialog dialog = new JDialog(aFrame, "Hello", true);

public JDialog(Frame owner, String title, boolean modal, GraphicsConfiguration gc)
GraphicsConfiguration gc = ...;
JDialog dialog = new JDialog(aFrame, "Hello", true, gc);

Note Instead of manually creating a JDialog and populating it, you may find yourself having JOptionPane
automatically create and fill the JDialog for you. You’ll explore the JOptionPane component in Chapter 9.

Each constructor allows you to customize the dialog owner, the window title, and the
modality of the pop-up. When a JDialog is modal, it blocks input to the owner and the rest of
the application. When a JDialog is nonmodal, it allows a user to interact with the JDialog as
well as the rest of your application.

Caution For modality to work properly among the different Java versions, avoid mixing heavyweight AWT
components with lightweight Swing components in a JDialog.

250

CHAPTER 8 ROOT PANE CONTAINERS

JDialog Properties

Other than the settable icon image, the JDialog class has the same properties as JFrame. These
eight properties are listed in Table 8-8.

Table 8-8. /Dialog Properties

Property Name Data Type Access

accessibleContext AccessibleContext Read-only
contentPane Container Read-write
defaultCloseOperation int Read-write
glassPane Component Read-write
jMenuBar JMenuBar Read-write
layeredPane JLayeredPane Read-write
layout LayoutManager Write-only
rootPane JRootPane Read-only

The constants to use for specifying the default close operation are the WindowConstants shown
earlier in Table 8-6 (basically all but EXIT_ON_CLOSE). By default, the defaultCloseOperation
property is set to HIDE_ON_CLOSE, which is the desirable default behavior for a dialog pop-up.

Like JFrame, JDialog also has a static defaultLookAndFeelDecorated property. This controls
whether or not dialogs are decorated by the look and feel, by default.

Handling JDialog Events

There are no special JDialog events for you to deal with; it has the same events as those for the
JFrame class.

One thing that you may want to do with a JDialog is specify that pressing the Escape key
cancels the dialog. The easiest way to do this is to register an Escape keystroke to a keyboard
action within the JRootPane of the dialog, causing the JDialog to become hidden when Escape
is pressed. Listing 8-4 demonstrates this behavior. Most of the source duplicates the constructors
of JDialog. The createRootPane() method maps the Escape key to the custom Action.

Listing 8-4. A JDialog That Closes When Escape Is Pressed

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class EscapeDialog extends JDialog {
public EscapeDialog() {
this((Frame)null, false);
}

public EscapeDialog(Frame owner) {
this(owner, false);

}

CHAPTER 8 ROOT PANE CONTAINERS

public EscapeDialog(Frame owner, boolean modal) {

this(owner, null, modal);

}

public EscapeDialog(Frame owner, String title) {

this(owner, title, false);

}

public EscapeDialog(Frame owner, String title, boolean modal) {

super(owner, title, modal);

}

public EscapeDialog(Frame owner, String title, boolean modal,

GraphicsConfiguration gc) {

super (owner, title, modal, gc);

}

public EscapeDialog(Dialog owner)
this(owner, false);

}

public EscapeDialog(Dialog owner,
this(owner, null, modal);

}

public EscapeDialog(Dialog owner,
this(owner, title, false);

}

public EscapeDialog(Dialog owner,
super(owner, title, modal);

}

public EscapeDialog(Dialog owner,

GraphicsConfiguration gc) {

super (owner, title, modal, gc);

}

protected JRootPane createRootPane
JRootPane rootPane = new JRootPa
KeyStroke stroke = KeyStroke.get
Action actionlListener = new Abst

{

boolean modal) {

String title) {

String title, boolean modal) {

String title, boolean modal,

01

ne();
KeyStroke("ESCAPE");

ractAction() {

public void actionPerformed(ActionEvent actionEvent) {

setVisible(false);
}
b
InputMap inputMap = rootPane.get
inputMap.put(stroke, "ESCAPE");

InputMap(JComponent.WHEN IN FOCUSED WINDOW);

rootPane.getActionMap().put("ESCAPE", actionListener);

return rootPane;

251

252

CHAPTER 8 ROOT PANE CONTAINERS

Note If you use the static creation methods of JOptionPane, the JDialog windows it creates automat-
ically have the Escape key registered to close the dialog.

Extending JDialog

If you need to extend JDialog, the class has two protected methods of importance:

protected void dialogInit()
protected JRootPane createRootPane()

The latter method is demonstrated in the previous example in Listing 8-4.

JApplet Class

The JApplet class is an extension to the AWT Applet class. For event handling to work properly
within applets that use Swing components, your applets must subclass JApplet instead of
Applet.

The JApplet works the same as the other high-level containers by implementing the
RootPaneContainer interface. One important difference between JApplet and Applet is the default
layout manager. Because you add components to the content pane of a JApplet, its default
layout manager is BorderLayout. This is unlike the default layout manager of Applet, which is
FlowLayout. In addition, Swing applets can also have a menu bar, or more specifically a JMenuBar,
which is just another attribute of the JRootPane of the applet.

If you plan to deploy an applet that uses the Swing components, it is best to use the Java
Plug-in from Sun Microsystems, because that will install the Swing libraries with the runtime.

Tip To make sure you are running the Java Plug-in under Internet Explorer, select Internet Options from
the Tools menu, and then choose the Advanced tab. Scroll down to the Java section immediately above
Microsoft VM and make sure Use JRE [VERSION] for <applet> (requires restart) is selected. If [VERSION] isn’t
recent enough, you'll need to get a newer version from Sun at http://www. java.com.

If you need to extend the JApplet class, it has only one protected method of importance:

protected JRootPane createRootPane()

Working with a Desktop

Swing provides for the management of a set of frames within a common window or desktop. As
discussed in Chapter 1, this management is commonly called MDI. The frames can be layered
on top of one another or dragged around, and their appearance is specific to the current
look and feel. The frames are instances of the JInternalFrame class, whereas the desktop is a
specialized JLayeredPane called JDesktopPane. The management of the frames within a desktop
is the responsibility of a DesktopManager, in which the default implementation that’s provided
is DefaultDesktopManager. The iconified form of a JInternalFrame on the desktop is represented

CHAPTER 8 ROOT PANE CONTAINERS 253

by the JDesktopIcon inner class of JInternalFrame. There are also an InternalFramelistener,
InternalFrameAdapter, and InternalFrameEvent for event handling.

First, let’s look at the parts that make up the desktop, and then you'll see a complete example
that uses all the parts.

Note The Swing libraries provide only those tools necessary to build an application using MDI. You use
these tools in whatever manner you see fit.

JInternalFrame Class

The JInternalFrame class is similar to the JFrame class. It acts as a high-level container, using
the RootPaneContainer interface, but it isn’t a top-level window. You must place internal frames
within another top-level window. When dragged around, internal frames stay within the bounds
of their container, which is usually a JDesktopPane. In addition, internal frames are lightweight
and therefore offer a UI-delegate to make internal frames appear as the currently configured
look and feel.

Note As with the creation of a JFrame, the JInternalFrame is hidden when first created.

Creating a JInternalFrame

There are six constructors for JInternalFrame:

public JInternalFrame()
JInternalFrame frame = new JInternalFrame();

public JInternalFrame(String title)
JInternalFrame frame = new JInternalFrame("The Title");

public JInternalFrame(String title, boolean resizable)
JInternalFrame frame = new JInternalFrame("The Title", true);

public JInternalFrame(String title, boolean resizable, boolean closable)
JInternalFrame frame = new JInternalFrame("The Title", false, true);

public JInternalFrame(String title, boolean resizable, boolean
closable, boolean maximizable)
JInternalFrame frame = new JInternalFrame("The Title", true, false, true);

public JInternalFrame(String title, boolean resizable, boolean
closable, boolean maximizable, boolean iconifiable)
JInternalFrame frame = new JInternalFrame("The Title", false, true, false, true);

254

CHAPTER 8

ROOT PANE CONTAINERS

These constructors cascade in such a way that each adds a parameter to another constructor.
With no arguments, the created JInternalFrame has no title and can’t be resized, closed,
maximized, or iconified. Internal frames can always be dragged, however.

Note In addition to your creating a JInternalFrame directly, you can rely on the JOptionPane to
create an internal frame for common pop-up dialog boxes hosted by a JInternalFrame instead of being

hosted by the standard JDialog.

JinternalFrame Properties

The 30 different properties for the JInternalFrame class are listed in Table 8-9. The layer property
is listed twice as it has two setter methods, one for an int and another for an Integer.

Table 8-9. /InternalFrame Properties

Property Name Data Type Access

accessibleContext AccessibleContext Read-only

closable boolean Read-write bound

closed boolean Read-write bound constrained
contentPane Container Read-write bound
defaultCloseOperation int Read-write

desktopIcon
desktopPane
focusCycleRoot
focusCycleRootAncester
focusOwner

frameIcon

glassPane

icon

iconifiable
internalFramelisteners
jMenuBar

layer

layer

layeredPane

JInternalFrame.JDesktopIcon
JDesktopPane

boolean

Container

Component

Icon

Component

boolean

boolean
InternalFramelListener[]
JMenuBar

int

Integer

JLayeredPane

Read-write bound
Read-only
Read-write
Read-only
Read-only
Read-write bound
Read-write bound
Read-write bound constrained
Read-write
Read-only
Read-write bound
Read-write
Write-only

Read-write bound

CHAPTER 8 ROOT PANE CONTAINERS

Table 8-9. /InternalFrame Properties (Continued)

Property Name Data Type Access

layout LayoutManager Write-only

maximizable boolean Read-write bound

maximum boolean Read-write bound constrained
mostRecentFocusOwner Component Read-only

normalBounds Rectangle Read-write

resizable boolean Read-write bound

rootPane JRootPane Read-only bound

selected boolean Read-write bound constrained
title String Read-write bound

U1 InternalFrameUI Read-write

UIClassID String Read-only

warningString String Read-only

The initial defaultCloseOperation property setting for a JInternalFrame is DISPOSE_ON_CLOSE
for Java 1.3 releases and later. Earlier releases had a default setting of HIDE ON_CLOSE. You can
set this property to any of the WindowConstants settings shown earlier in Table 8-6.

The normalBounds property describes where an iconified internal frame would appear
when deiconified. The focusOwner property provides the actual Component with the input focus
when the specific JInternalFrame is active.

The JInternalFrame contains the only four constrained properties within the Swing classes:
closed, icon, maximum, and selected. They're directly related to the four boolean constructor
parameters. Each allows you to check on the current state of the property as well as change its
setting. However, because the properties are constrained, whenever you try to set one, the
attempt must be in a try-catch block, catching PropertyVetoException:

try {
// Try to iconify internal frame
internalFrame.setIcon(false);

} catch (PropertyVetoException propertyVetoException) {
System.out.println("Rejected");

}

To help you work with some of the bound properties, the JInternalFrame class defines
11 constants, as listed in Table 8-10. They represent the string that should be returned by
getPropertyName() for a PropertyChangeEvent within a PropertyChangelistener.

255

256 CHAPTER 8 ROOT PANE CONTAINERS

Table 8-10. /InternalFrame Property Constants

Property Name Constant Associated Property
CONTENT_PANE_PROPERTY contentPane
FRAME_ICON PROPERTY frameIcon
GLASS_PANE_PROPERTY glassPane
IS CLOSED_PROPERTY closed

IS ICON_PROPERTY icon

IS MAXIMUM PROPERTY maximum

IS SELECTED_PROPERTY selected
LAYERED PANE_PROPERTY layeredPane
MENU_BAR_PROPERTY jMenuBar
ROOT_PANE_PROPERTY rootPane
TITLE_PROPERTY title

The following class example demonstrates the use of the constants within a
PropertyChangelistener

import java.beans.*;
import javax.swing.*;

public class InternalFramePropertyChangeHandler implements PropertyChangelistener {
public void propertyChange(PropertyChangeEvent propertyChangeEvent) {
String propertyName = propertyChangeEvent.getPropertyName();
if (propertyName.equals(JInternalFrame.IS ICON PROPERTY)) {
System.out.println("Icon property changed. React.");
}
}
}

Handling JinternalFrame Events

To help you use a JInternalFrame as you would use a JFrame, there’s an additional event listener
for responding to internal frame opening- and closing-related events. The interface is
called InternalFramelistener, and its definition follows. It works similarly to the AWT
WindowListener interface, but with a JInternalFrame instead of an AWT Window class.

public interface InternalFramelistener extends Eventlistener {

public void internalFrameActivated(InternalFrameEvent internalFrameEvent);
public void internalFrameClosed(InternalFrameEvent internalFrameEvent);
public void internalFrameClosing(InternalFrameEvent internalFrameEvent);
public void internalFrameDeactivated(InternalFrameEvent internalFrameEvent);
public void internalFrameDeiconified(InternalFrameEvent internalFrameEvent);
public void internalFrameIconified(InternalFrameEvent internalFrameEvent);
public void internalFrameOpened(InternalFrameEvent internalFrameEvent);

CHAPTER 8 ROOT PANE CONTAINERS 257

In addition, like the WindowAdapter class that has all the WindowListener methods stubbed
out, there is an InternalFrameAdapter class with all the InternalFramelistener methods stubbed
out. If you're not interested in all the event happenings of a JInternalFrame, you can subclass
InternalFrameAdapter and override only those methods you're interested in. For instance, the
listener shown in Listing 8-5 is interested in only the iconification methods. Instead of providing
stubs for the other five methods of InternalFramelistener, you would need to subclass only
InternalFrameAdapter and override the two relevant methods.

Listing 8-5. Custom InternalFrameListener

import javax.swing.*;
import javax.swing.event.*;

public class InternalFrameIconifylistener extends InternalFrameAdapter {
public void internalFrameIconified(InternalFrameEvent internalFrameEvent) {
JInternalFrame source = (JInternalFrame)internalFrameEvent.getSource();
System.out.println ("Iconified: " + source.getTitle());
}
public void internalFrameDeiconified(InternalFrameEvent internalFrameEvent) {
JInternalFrame source = (JInternalFrame)internalFrameEvent.getSource();
System.out.println ("Deiconified: " + source.getTitle());
}
}

The InternalFrameEvent class is a subclass of AWTEvent. To define the values returned by
the public int getID() method of AWTEvent, the InternalFrameEvent class defines a constant
for each of the specific event subtypes that can be used. In addition, two other constants desig-
nate the range of valid values. Table 8-11 lists the nine constants. You can also get the actual
JInternalFrame from the event with getInternalFrame().

Table 8-11. InternalFrameEvent Event Subtypes

Event Subtype ID Associated Interface Method
INTERNAL_FRAME_ACTIVATED internalFrameActivated
INTERNAL_FRAME_CLOSED internalFrameClosed
INTERNAL_FRAME_CLOSING internalFrameClosing
INTERNAL_FRAME _DEACTIVATED internalFrameDeactivated
INTERNAL_FRAME DEICONIFIED internalFrameDeiconified
INTERNAL_FRAME_FIRST N/A
INTERNAL_FRAME_ICONIFIED internalFrameIconified
INTERNAL_FRAME_LAST N/A
INTERNAL_FRAME_OPENED internalFrameOpened

Customizing a JinternalFrame Look and Feel

Because the JInternalFrame is a lightweight component, it has an installable look and feel.
Each installable Swing look and feel provides a different JInternalFrame appearance and set of

258

CHAPTER 8 " ROOT PANE CONTAINERS

default UIResource values. Figure 8-5 shows the appearance of the JWindow container for the
preinstalled set of look and feel types.

Not Iconifiable

Motif

£ Windows LnF = ;JE]EI
4 canDoAll o 1| [= Not Resizable =

Can Dol Mot Resizable

oix

Mot |zonifiable:

Windows

] canpo & [Not Closable

Can Do &all Not Closahle

] Not Iconifiable

Not Iconifiable

‘| ENM Maximiza... |

Mot Resizable ||

Ocean

Figure 8-5. JInternalFrame under different look and feel types

CHAPTER 8 ROOT PANE CONTAINERS 259

The available set of UIResource-related properties for a JInternalFrame is shown in
Table 8-12. For the JInternalFrame component, there are 60 different properties, including
those for the internal frame’s title pane.

Table 8-12. jInternalFrame UlResource Elements

Property String Object Type
InternalFrame.actionMap ActionMap
InternalFrame.activeBorderColor Color
InternalFrame.activeTitleBackground Color
InternalFrame.activeTitleForeground Color
InternalFrame.activeTitleGradient List
InternalFrame.border Border
InternalFrame.borderColor Color
InternalFrame.borderDarkShadow Color
InternalFrame.borderHighlight Color
InternalFrame.borderLight Color
InternalFrame.borderShadow Color
InternalFrame.borderWidth Integer
InternalFrame.closeButtonToolTip String
InternalFrame.closeIcon Icon
InternalFrame.closeSound String
InternalFrame.icon Icon
InternalFrame.iconButtonToolTip String
InternalFrame.iconifyIcon Icon
InternalFrame.inactiveBorderColor Color
InternalFrame.inactiveTitleBackground Color
InternalFrame.inactiveTitleForeground Color
InternalFrame.inactiveTitleGradient List
InternalFrame.layoutTitlePaneAtOrigin Boolean
InternalFrame.maxButtonToolTip String
InternalFrame.maximizeIcon Icon
InternalFrame.maximizeSound String
InternalFrame.minimizeIcon Icon
InternalFrame.minimizeIconBackground Color
InternalFrame.minimizeSound String

260 CHAPTER 8 ROOT PANE CONTAINERS

Table 8-12. JInternalFrame UlResource Elements (Continued)

Property String Object Type
InternalFrame.optionDialogBorder Border
InternalFrame.paletteBorder Border
InternalFrame.paletteCloseIcon Icon
InternalFrame.paletteTitleHeight Integer
InternalFrame.resizeIconHighlight Color
InternalFrame.resizeIconShadow Color
InternalFrame.restoreButtonToolTip String
InternalFrame.restoreDownSound String
InternalFrame.restoreUpSound String
InternalFrame.titleButtonHeight Integer
InternalFrame.titleButtonWidth Integer
InternalFrame.titleFont Font
InternalFrame.titlePaneHeight Integer
InternalFrame.useTaskBar Boolean
InternalFrame.windowBindings Object[]
InternalFrameTitlePane.closeButtonAccessibleName String
InternalFrameTitlePane.closeButtonText String
InternalFrameTitlePane.closeIcon Icon
InternalFrameTitlePane.iconifyButtonAccessibleName String
InternalFrameTitlePane.iconifyIcon Icon
InternalFrameTitlePane.maximizeButtonAccessibleName String
InternalFrameTitlePane.maximizeButtonText String
InternalFrameTitlePane.maximizeIcon Icon
InternalFrameTitlePane.minimizeButtonText String
InternalFrameTitlePane.minimizeIcon Icon
InternalFrameTitlePane.moveButtonText String
InternalFrameTitlePane.restoreButtonText String
InternalFrameTitlePane.sizeButtonText String
InternalFrameTitlePane.titlePanelayout LayoutManager
InternalFrameTitlePaneUI String

InternalFrameUI

String

CHAPTER 8 ROOT PANE CONTAINERS

In addition to the many configurable properties in Table 8-12, with the Metal look and
feel, you can designate an internal frame to be a “palette” by using a special client property,
JInternalFrame.isPalette. When set to Boolean.TRUE, this internal frame will have a slightly
different appearance from the others and a shorter title bar, as shown in Figure 8-6.

4 Desktop Sample . B | EIIL'

[Not Resizable o & l

[B w0t crosanie #5550 |

| [Mot Maximizable i o B4 |
] Mot iconifiable g [

Not Iconifiable

— Palette

Figure 8-6. A JInternalFrame palette with other frames

Ifyou also add an internal frame to the PALETTE_LAYER of the desktop, the frame will always
appear on top of all the other frames (as noted in Figure 8-6):

JInternalFrame palette = new JInternalFrame("Palette", true, false, true, false);
palette.setBounds(150, 0, 100, 100);
palette.putClientProperty("JInternalFrame.isPalette", Boolean.TRUE);
desktop.add(palette, JDesktopPane.PALETTE LAYER);

The complete source for creating the program in Figure 8-6 appears in Listing 8-6 later in
this chapter.

Note If the current look and feel is something other than Metal, the palette layer will still be honored, but
its appearance won’t be quite as distinctive.

Changing the JDesktoplcon

The JInternalFrame relies on an inner class, JDesktopIcon, to provide a Ul delegate for the
iconified view of the JInternalFrame. The class is merely a specialized JComponent for providing
this capability, not a specialized Icon implementation, as the name might imply. In fact, the
JDesktopIcon class comments say that the class is temporary, so you shouldn’t try to customize
it directly. (Of course, the class has been around for some time now.)

If you do want to customize the JDesktopIcon, you can change some of the UIResource-
related properties. Table 8-13 lists the eight UIResource-related properties for the JDesktopIcon
component.

262

CHAPTER 8 ROOT PANE CONTAINERS

Table 8-13. JInternalFrame.Desktoplcon UlResource Elements

Property String Object Type
DesktopIcon.background Color
DesktopIcon.border Border
DesktopIcon.font Font
DesktopIcon.foreground Color
DesktopIcon.icon Icon
DesktopIcon.width Integer
DesktopIcon.windowBindings Object[]
DesktopIconUI String
JDesktopPane Class

Another class for working with groups of internal frames is the JDesktopPane class. The sole
purpose of the desktop pane is to contain a set of internal frames. When internal frames are
contained within a desktop pane, they delegate most of their behavior to the desktop manager
of the desktop pane. You'll also learn about the DesktopManager interface in greater detail later
in this chapter.

Creating a JDesktopPane

The JDesktopPane has a single no-argument constructor. Once it’s created, you'd typically
place the desktop in the center of a container managed by a BorderLayout. This ensures that
the desktop takes up all the room in the container.

Adding Internal Frames to a JDesktopPane

The JDesktopPane doesn’timplement RootPaneContainer. Instead of adding components to the
different panes within a JRootPane, you add them directly to the JDesktopPane:

desktop.add(anInternalFrame);

JDesktopPane Properties

As Table 8-14 shows, there are eight properties of JDesktopPane. The JInternalFrame atindex 0
of the allFrames property array is the internal frame in front of the desktop (JInternalFrame f
= desktop.getAllFrames()[0]). Besides getting all the frames within the JDesktopPane, you can
get only those within a specific layer: public JInternalFrame[] getAllFramesInLayer(int layer).
(Remember JLayeredPane, covered earlier in this chapter in the “Working with Component Layers
and Positions” section, the parent class of JDesktopPane?)

Valid dragMode property settings are the LIVE_DRAG_MODE and OUTLINE_DRAG_MODE constants
of the class.

CHAPTER 8 ROOT PANE CONTAINERS 263

Table 8-14. /DesktopPane Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
allFrames JInternalFrame[] Read-only
desktopManager DesktopManager Read-write
dragMode int Read-write bound
opaque boolean Read-only
selectedFrame JInternalFrame Read-write

uI DesktopPaneUI Read-write
UIClassID String Read-only

Note There is also a special client property (JDesktopPane. dragMode) for configuring the drawing
mode when dragging an internal frame around. The client property has been replaced by the speedier
versions available with the standard property.

Customizing a JDesktopPane Look and Feel

Back in Figure 8-5 you can see JInternalFrame objects within a JDesktopPane. The basic appear-
ance of JDesktopPane is the same in each look and feel. As Table 8-15 shows, there aren’t many
UIResource-related properties for a JDesktopPane to configure.

Table 8-15. /DesktopPane UlResource Elements

Property String Object Type
desktop Color
Desktop.ancestorInputMap InputMap
Desktop.background Color
Desktop.windowBindings Object[]
DesktopPane.actionMap ActionMap
DesktopPaneUI String

Complete Desktop Example

Now that you have the major desktop-related classes under your belt, let’s look at a complete
desktop example. The basic process involves creating a group of JInternalFrame objects and

putting them in a single JDesktopPane. Event handling can be done for individual components
on each of the internal frames, if desired, or for individual frames. In this example, simply use

264 CHAPTER 8 ROOT PANE CONTAINERS

the InternalFrameIconifylListener class, presented earlier in Listing 8-5, to listen for internal
frames being iconified and deiconified.

Figure 8-6 shows how the program looks when it first starts. One particular internal frame
has been designated a palette, and the outline drag mode is enabled.

The complete source for the example is shown in Listing 8-6.

Listing 8-6. Mixing JInternalFrames and the JDesktopPane

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;

import java.awt.event.*;

public class DesktopSample {

public static void main(final String[] args) {
Runnable runner = new Runnable() {
public void run() {
String title = (args.length==0 ? "Desktop Sample" : args[0]);
JFrame frame = new JFrame(title);
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

JDesktopPane desktop = new JDesktopPane();

JInternalFrame internalFrames[] = {
new JInternalFrame("Can Do All", true, true, true, true),
new JInternalFrame("Not Resizable", false, true, true, true),
new JInternalFrame("Not Closable", true, false, true, true),
new JInternalFrame("Not Maximizable", true, true, false, true),
new JInternalFrame("Not Iconifiable", true, true, true, false)

};

InternalFramelListener internalFramelistener =
new InternalFrameIconifylListener();

int pos = 0;

for(JInternalFrame internalFrame: internalFrames) {
// Add to desktop
desktop.add(internalFrame);

// Position and size
internalFrame.setBounds(pos*25, pos*25, 200, 100);
pOS+t;

// Add listener for iconification events
internalFrame.addInternalFramelListener(internalFramelListener);

JLabel label = new JLabel(internalFrame.getTitle(), JLabel.CENTER);
internalFrame.add(label, BorderLayout.CENTER);

CHAPTER 8 ROOT PANE CONTAINERS 265

// Make visible
internalFrame.setVisible(true);

}

JInternalFrame palette =

new JInternalFrame("Palette", true, false, true, false);
palette.setBounds(350, 150, 100, 100);
palette.putClientProperty("JInternalFrame.isPalette", Boolean.TRUE);
desktop.add(palette, JDesktopPane.PALETTE LAYER);
palette.setVisible(true);

desktop.setDragMode (JIDesktopPane.OUTLINE_DRAG MODE);

frame.add(desktop, BorderlLayout.CENTER);
frame.setSize(500, 300);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

DesktopManager Interface

One remaining piece of the puzzle for working on a desktop is the desktop manager, which is
an implementation of the DesktopManager interface, shown here:

public interface DesktopManager {

public void activateFrame(JInternalFrame frame);

public void beginDraggingFrame(JComponent frame);

public void beginResizingFrame(JComponent frame, int direction);

public void closeFrame(JInternalFrame frame);

public void deactivateFrame(JInternalFrame frame);

public void deiconifyFrame(JInternalFrame frame);

public void dragFrame(JComponent frame, int newX, int newY);

public void endDraggingFrame(JComponent frame);

public void endResizingFrame(JComponent frame);

public void iconifyFrame(JInternalFrame frame);

public void maximizeFrame(JInternalFrame frame);

public void minimizeFrame(JInternalFrame frame);

public void openFrame(JInternalFrame frame);

public void resizeFrame(JComponent frame, int newX, int newY, int newWidth,
int newHeight);

public void setBoundsForFrame(JComponent frame, int newX, int newY, int newWidth,
int newHeight);

266

CHAPTER 8 ROOT PANE CONTAINERS

Note For the DesktopManager methods that accept a JComponent argument, the arguments are
usually a JInternalFrame or another lightweight Swing component.

When JInternalFrame objects are in a JDesktopPane, they shouldn’t attempt operations
such as iconifying or maximizing themselves. Instead, they should ask the desktop manager of
the desktop pane in which they’re installed to perform the operation:

getDesktopPane().getDesktopManager().iconifyFrame(anInternalFrame);

The DefaultDesktopManager class provides one such implementation of a DesktopManager.
If the default isn’t sufficient, a look and feel might provide its own DesktopManager implemen-
tation class, as the Windows look and feel does with the WindowsDesktopManager. You can also
define your own manager, but this usually isn’t necessary.

Summary

In this chapter, you explored the JRootPane class and how implementers of the RootPaneContainer
interface rely on a JRootPane for internal component management. You also learned how in Swing
you work with the JRootPane of a JFrame, JDialog, JWindow, JApplet, or JInternalFrame class.
The root pane can then layer components with the help of a JLayeredPane in such a way that
tooltip text and pop-up menus will always appear above their associated components.

The JInternalFrame can also reside within a desktop environment, in which a JDesktopPane
and DesktopManager manage how and where the internal frames act and appear. You can also
respond to internal frame events by associating InternalFrameListener implementations with
a JInternalFrame.

In Chapter 9, you'll examine the specialized pop-up components within the Swing libraries:
JColorChooser, JFileChooser, JOptionPane, and ProgressMonitor.

CHAPTER 9

Pop-Ups and Choosers

In Chapter 8, you looked at the top-level containers such as JFrame and JApplet. In addition,
you explored the JDialog class used to create pop-up windows to display messages or get user
input. Although the JDialog class works perfectly well, the Swing component set also offers
several simpler approaches to get user input from pop-up windows, which you will explore in
this chapter.

The JOptionPane class is useful for displaying messages, obtaining textual user input, or
getting the answer to a question. The ProgressMonitor and ProgressMonitorInputStream
classes enable you to monitor the progress of lengthy tasks. In addition, the JColorChooser and
JFileChooser classes come equipped with feature-filled pop-up windows for getting a color
choice from a user or getting a file or directory name. By using these additional classes, your
user interface development tasks can be accomplished much more quickly and easily.

JOptionPane Class

JOptionPane is a special class for creating a panel to be placed in a pop-up window. The purpose
of the panel is to display a message to a user and get a response from that user. To accomplish
its task, the panel presents content in four areas (see Figure 9-1):

e Icon: The icon area is for the display of an Icon to indicate the type of message being
displayed to the user. It’s the responsibility of the installed look and feel to provide
default icons for certain types of messages, but you can provide your own if you need
to display another icon type.

* Message: The primary purpose of this area is to display a text message. In addition, the
area can contain any optional set of objects to make the message more informational.

e Input: The input area allows a user to provide a response to a message. The response can
be free form, in a text field, or from a pick list in a combo box or list control. For yes or no
type questions, the button area should be used instead.

* Button: The button area is also for getting user input. Selection of a button in this area
signals the end of the usage of the JOptionPane. Default sets of button labels are available,
or you can display any number of buttons, including none, with any labels you desire.

267

268

CHAPTER 9 POP-UPS AND CHOOSERS

Icon

Select a Destination

x|
Where would you like to go to luncﬁﬂ: Message
-

graco Bell ‘ Input Area

| OK H Cancel |<_— Button Area

Figure 9-1. JOptionPane parts

All the areas are optional (although having a panel without at least a message and a button
makes the option pane virtually useless).

Besides being a panel with four sections within a pop-up window, the JOptionPane is
capable of automatically placing itself in a pop-up window and managing the acquisition of
the user’sresponse. It can place itself in either a JDialog or a JInternalFrame, depending on the
type of GUI you're providing to the user. With the help of an Icon and set of JButton components,
the JOptionPane can easily be configured to show a variety of messages and input dialogs.

Note Because the JOptionPane can automatically place itself in a JDialog, you might never need to
create a JDialog directly.

Creating a JOptionPane

You can either manually create a JOptionPane through one of its 7 constructors or go through
one of the 25 factory methods discussed later in the chapter, in the “Automatically Creating a
JOptionPane in a Pop-Up Window” section. You have the most control when manually creating the
JOptionPane. However, you then must place it in a pop-up window, show the window, and
finally manage getting the response.

Because of the ease of use provided by the methods that do everything automatically, you
might think you would only use the factory methods when working with JOptionPane. However,
throughout this chapter, you'll discover several other reasons why you might want to do things
manually. In addition, when you use a visual-programming environment, the environment
treats the JOptionPane as a JavaBean component and will ignore the factory methods.

For the seven constructors, you can have different permutations of six different arguments.
The arguments allow you to configure something in one of the four different areas shown in
Figure 9-1. The six arguments are the message, the message type, an option type, an icon, an
array of options, and an initial option setting. The use of these arguments is shared with the
factory methods.

Let’s first look at the seven constructors, and then explore the different arguments. Notice
that the constructor arguments are cascading and only add additional arguments to the
previous constructor.

CHAPTER 9 POP-UPS AND CHOOSERS 269

public JOptionPane()
JOptionPane optionPane = new JOptionPane();

public JOptionPane(Object message)
JOptionPane optionPane = new JOptionPane("Printing complete");

public JOptionPane(Object message, int messageType)
JOptionPane optionPane = new JOptionPane("Printer out of paper"”,
JOptionPane.WARNING MESSAGE);

public JOptionPane(Object message, int messageType, int optionType)
JOptionPane optionPane = new JOptionPane("Continue printing?",
JOptionPane.QUESTION MESSAGE, JOptionPane.YES NO OPTION);

public JOptionPane(Object message, int messageType, int optionType,
Icon icon)

Icon printerIcon = new ImageIcon("printer.jpg");

JOptionPane optionPane = new JOptionPane("Continue printing?",
JOptionPane.QUESTION MESSAGE, JOptionPane.YES NO OPTION, printerIcon);

public JOptionPane(Object message, int messageType, int optionType, Icon icon,
Object options[])

Icon greenIcon = new DiamondIcon(Color.GREEN);

Icon redIcon = new DiamondIcon(Color.RED);

Object optionArray[] = new Object[] { greenIcon, redIcon} ;

JOptionPane optionPane = new JOptionPane("Continue printing?",
JOptionPane.QUESTION MESSAGE, JOptionPane.YES NO OPTION, printerIcon,
optionArray);

public JOptionPane(Object message, int messageType, int optionType, Icon icon,
Object options[], Object initialValue)

JOptionPane optionPane = new JOptionPane("Continue printing?",
JOptionPane.QUESTION MESSAGE, JOptionPane.YES NO OPTION, printerIcon,
optionArray, redIcon);

The JOptionPane Message Argument

The message argument is an Object, not a String. While you normally pass only a quoted string
as this argument, with an Object argument, you can basically display anything you want in the
message area. In the “Understanding the Message Property,” section later in this chapter, you'll
look at the more advanced uses of this argument. Briefly, though, there are four basic rules to
interpret the meaning of an Object-typed message argument. For elements within the Object,
recursively follow these rules:

270

CHAPTER 9 POP-UPS AND CHOOSERS

« If the message is an array of objects (Object[]), make the JOptionPane place each entry
onto a separate row.

¢ If the message is a Component, place the component in the message area.

¢ If the message is an Icon, place the Icon within a JLabel and display the label in the
message area.

« If the message is an Object, convert it to a String with toString(), place the Stringin a
JLabel, and display the label in the message area.

The JOptionPane Message Type and Icon Arguments

The messageType constructor argument is used to represent the type of message being displayed
within the JOptionPane. If you don’t provide a custom icon for the JOptionPane, the installed
look and feel will use the messageType argument setting to determine which icon to display
within the icon area. Five different message types are available as JOptionPane constants:

e ERROR_MESSAGE for displaying an error message

e INFORMATION MESSAGE for displaying an informational message
* QUESTION MESSAGE for displaying a query message

e WARNING_MESSAGE for displaying a warning message

e PLAIN_MESSAGE for displaying any other type of message

If you're using a constructor with both messageType and icon arguments and want the
JOptionPane to use the default icon for the messageType, just specify null as the value for the
icon argument. If the icon argument is non-null, the specified icon will be used, no matter
what the message type is.

If the messageType constructor argument isn’t specified, the default message type is
PLAIN_MESSAGE.

The JOptionPane Option Type Argument

The optionType constructor argument is used to determine the configuration for the set of
buttons in the button area. If one of the options argument described next is provided, then the
optionType argument is ignored and configuration for the set of buttons is acquired from the
options argument. Four different option types are available as JOptionPane constants:

e DEFAULT OPTION for a single OK button

e OK_CANCEL_OPTION for OK and Cancel buttons

* YES NO_CANCEL_OPTION for Yes, No, and Cancel buttons
* YES _NO_OPTION for Yes and No buttons

If the optionType constructor argument isn’t specified, the default option type is
DEFAULT_OPTION.

CHAPTER 9 POP-UPS AND CHOOSERS

The JOptionPane Options and Initial Value Arguments

The options argument is an Object array used to construct a set of JButton objects for the
button area of the JOptionPane. If this argumentis null (or a constructor without this argument
isused), the button labels will be determined by the optionType argument. Otherwise, the array
works similarly to the message argument, but without supporting recursive arrays:

» Ifanoptions array element is a Component, place the component in the button area.

e Ifanoptions array element is an Icon, place the Icon within a JButton and place the
button in the button area.

e Ifanoptions array elementis an Object, convert it to a String with toString(), place the
String in a JButton, and place the button in the button area.

Normally, the options argument will be an array of String objects. You may want to have
an Icon on the JButton, although the resulting button won’t have a label. If you want to have
both an icon and a text label on the button, you can manually create a JButton and place it in
the array. Alternatively, you can directly include any other Component within the array. There’s
one minor problem with these latter two approaches, however. It’s your responsibility to
handle responding to component selection and tell the JOptionPane when the user selects this
component. The “Adding Components to the Button Area” section later in this chapter shows
how to properly handle this behavior.

When the options argument is non-null, the initialValue argument specifies which of
the buttons will be the default button when the pane is initially displayed. If it’s null, the first
component in the button area will be the default button. In either case, the first button will
have the input focus, unless there is an input component in the message area, in which case,
the input component will have the initial input focus.

Tip To have no buttons on the option pane, pass an empty array as the options setting: new Object[] { }.

Displaying a JOptionPane

After you've created the JOptionPane with one of the constructors, what you have is a panel
filled with components. In other words, the obtained JOptionPane is not yet in a pop-up window.
You need to create a JDialog, a JInternalFrame, or another pop-up window, and then place the
JOptionPane within that. In addition, if you pick this manual style of JOptionPane construction,
youneed to handle the closing of the pop-up window. You mustlisten for selection of a component
in the button area, and then hide the pop-up window after selection.

Because there is so much to do here, the JOptionPane includes two helper methods to
place a JOptionPane within either a modal JDialog or a JInternalFrame and take care of all the
previously described behavior:

2N

272

CHAPTER 9 POP-UPS AND CHOOSERS

public JDialog createDialog(Component parentComponent, String title)

public JInternalFrame createInternalFrame(Component parentComponent, String title)

Note When using the createDialog() and createInternalFrame() methods to create a pop-up
window, selection of an automatically created button results in the closing of the created pop-up. You would
then need to ask the JOptionPane which option the user selected with getValue() and, if appropriate, get
the input value with getInputValue().

The first argument to the methods is a component over which the pop-up window will be
centered. The second argument is the title for the pop-up window. Once you create the pop-up
window, whether it’s a JDialog or JInternalFrame, you show it. The pop-up is then closed after
one of the components in the button area is selected, at which point, your program continues.
The following lines of source code show the creation of one such JOptionPane shown within a
JDialog. The resulting pop-up window is shown in Figure 9-2.

JOptionPane optionPane = new JOptionPane("Continue printing?",
JOptionPane.QUESTION MESSAGE, JOptionPane.YES NO OPTION);

JDialog dialog = optionPane.createDialog(source, "Manual Creation");

dialog.setVisible(true);

x|
Iz‘ Continue printing?

Figure 9-2. Sample JOptionPane in a JDialog

After you create the JOptionPane, place it in a pop-up window, and show it, and the user
has responded, you need to find out what the user selected. The selection is provided via the
public Object getValue() method of JOptionPane. The value returned by getValue() is
determined by whether an options array was provided to the JOptionPane constructor. If you
provide the array, the argument selected will be returned. If you don’t provide the array, an
Integer object is returned, and its value represents the position of the button selected within
the button area. In another case, getValue() could return null if nothing was selected, such as
when the JDialog is closed by selecting the appropriate window decoration from the title bar
of the pop-up window.

CHAPTER 9 POP-UPS AND CHOOSERS 273

To make this multifaceted response easier to grasp, Listing 9-1 shows an OptionPaneUtils class
that defines the method public static int getSelection(JOptionPane optionPane).Given an
option pane, this method returns the position of the selected value as an int, whether or not an
options array was provided. To indicate that nothing was selected, JOptionPane.CLOSED OPTION (-1)
is returned.

Listing 9-1. JOptionPane Utility Class

import javax.swing.*;
public final class OptionPaneUtils {

private OptionPaneUtils() {
}

public static int getSelection(JOptionPane optionPane) {
// Default return value, signals nothing selected
int returnValue = JOptionPane.CLOSED OPTION;

// Get selected value
Object selectedValue = optionPane.getValue();
// If none, then nothing selected
if (selectedvalue != null) {
Object options[] = optionPane.getOptions();
if (options == null) {
// Default buttons, no array specified
if(selectedValue instanceof Integer) {
returnValue = ((Integer)selectedValue).intValue();
}
} else {
// Array of option buttons specified
for (int i=0, n = options.length; i < n; i++) {
if(options[i].equals(selectedValue)) {
returnValue = i;
break; // out of for loop
}
}
}
}

return returnValue;

}

274

CHAPTER 9 POP-UPS AND CHOOSERS

With the help of this new OptionPaneUtils.getSelection(JOptionPane) helper method,
you can now find out the option pane selection with one line of code, and then act accordingly
based on the response.

int selection = OptionPaneUtils.getSelection(optionPane);
switch (selection) {

break;
default: ...

If you create a JOptionPane with a null options array, you can use the constants within the
JOptionPane class to indicate the position of the default button labels and their return values
from the OptionPaneUtils.getSelection(JOptionPane) method. These constants are listed in
Table 9-1. Using these constants enables you to avoid hard-coding constants such as 0, 1, 2, or-1.

Table 9-1. JOptionPane Option Position Constants

Position Description

CANCEL_OPTION Used when the Cancel button is pressed

CLOSED_OPTION Used when the pop-up window closed without the user pressing a button
NO_OPTION Used when the No button is pressed

OK_OPTION Used when the OK button is pressed

YES_OPTION Used when the Yes button is pressed

Automatically Creating a JOptionPane in a Pop-Up Window

You can manually create a JOptionPane, place it in a JDialog or JInternalFrame (or any other
container), and fetch the response. Alternatively, you could use the JOptionPane factory methods
for creating JOptionPane components directly within either a JDialog or a JInternalFrame. Using
the many factory methods, you can create the option pane, place it in a pop-up window, and
get the response with a single line of source code.

There are 25 methods, which are first broken down into two sets: those that create the
JOptionPane and show it within a JDialog and those that show the pane within a JInternalFrame.
Methods that show the JOptionPane within a JInternalFrame are named showInternalXXXDialog(),
and methods that create the pane within a JDialog are named showXXXDialog().

The second grouping of factory methods for JOptionPane is what fills in the XXX part of the
method names. This represents the various message types of option panes that you can create
and display. In addition, the message type defines what is returned after the user selects some-
thing in the option pane. The four different message types are as follows:

CHAPTER 9 POP-UPS AND CHOOSERS 275

* Message: With a message pop-up, there’s no return value. Therefore, the method is defined
void show[Internal]MessageDialog(...).

e Input: With an input pop-up, the return value is either what the user typed in a text field
(a String) or what the user picked from a list of options (an Object). Therefore, the
show[Internal]InputDialog(...) methods return either a String or Object, depending
on which version you use.

* Confirm: With the confirm pop-up, the return value signifies which, if any, button the
user picked within the option pane. After a button is picked, the pop-up window is
dismissed, and the returned value is one of the integer constants shown in Table 9-1.
Therefore, the method here is defined as int show[Internal]ConfirmDialog(...).

* Option: With the option pop-up, the return value is an int, the same type as the confirm
pop-up, so the methods are defined int show[Internal]OptionDialog(...).If the
button labels are manually specified with a non-null argument, the integer represents
the selected button position.

The information in Table 9-2 should help you understand the 25 methods and their argu-
ments. The method names (and return types) are found on the left side of the table, and their
argument lists (and data types) are on the right. The numbers that repeat across the columns
for each method name indicate a specific set of arguments for that method. For instance, the
showInputDialog row shows a 3 in the Parent Component column, Message column, Title
column, and Message Type column. Therefore, the showInputDialog method has one version
defined like this:

public static String showInputDialog(Component parentComponent, Object message,
String title, int messageType)

Note With the exception of two of the showInputDialog() methods, the parent component argument
is required for all method varieties. The message argument is the only one required for all without exception.
What good is a pop-up dialog without a message?

With the way the different showXXXDialog() methods are defined, you don’t need to bother
with discovering the selected button yourself, or even the user input. The return value for the
various methods is one of the following: nothing (void return type), an int from Table 9-1, a
String, or an Object, depending on the type of dialog box shown.

Caution There is a significant difference between the JOptionPane constructors and the factory
methods: The option type and message type arguments are reversed.

276

CHAPTER 9 POP-UPS AND CHOOSERS

Table 9-2. JOptionPane Static create and show Methods

Method Name/Return Type Parent Message Title Option Message
Component Object String Typeint Typeint
Component

showMessageDialog 123 123 23 23

Return type: void[123]

showInternalMessageDialog 123 123 23 23

Return type: void[123]

showConfirmDialog 1234 1234 234 234 34

Return type: int[1234]

showInternalConfirmDialog 1234 1234 234 234 34

Return type: int

showInputDialog 2345 123456 34 34

Return type: String[12356]/0bject[4]

showInternalInputDialog 123 123 23 23

Return type: String[12]/0bject(3]

showOptionDialog 1 1 1 1 1

Return type: int[1]

showInternalOptionDialog 1 1 1 1 1

Return type: int[1]

JOptionPane Arguments for Factory Methods

Almost all the arguments for the factory methods match the JOptionPane constructor arguments.
Two lists in the “Creating a JOptionPane” section earlier in this chapter describe the acceptable
values for the message type and option type arguments. In addition, the usage of the message,
options, and initial value arguments are also described. The parent component and title
argument are passed along to one of the createDialog() or createInternalFrame() methods,
depending on the type of pop-up in which the JOptionPane is embedded.

You next need to consider the selection values argument and the initial selection value
argument of the showInputDialog() method. With an input dialog box, you can ask the user for
text input and allow the user to type in anything, or you can present the user with a list of
predefined choices. The selection values argument to showInputDialog() determines how you
provide that set of choices. The initial selection value represents the specific option to be chosen
when the JOptionPane first appears. The look and feel will determine the appropriate Swing
component to be used based on the number of choices presented. For small lists, a JComboBox
is used. For larger lists, starting at 20 with the Motif, Metal/Ocean, and Windows look and feel
types, a JList is used.

CHAPTER 9 POP-UPS AND CHOOSERS

Table 9-2. JOptionPane Static create and show Methods (Continued)

Icon Icon Options Initial Value Selection Values Initial Selection
Object[] Object Object[] Object

3

3

4

4

4 4 456

3 3 3

1 1 1

1 1 1

Note When the parent component argument is null, a hidden frame is used and the pop-up is centered
on the screen. See the getSharedOwnerFrame() method of SwingUtilities for more details on the
hidden frame. There are other focus-related usability issues that you might run into when specifying null as
a parent component, if the hidden frame and dialog box are swapped to the background.

Message Pop-Ups

The showMessageDialog() and showInternalMessageDialog() methods create an
INFORMATION_MESSAGE pop-up with the pop-up title “Message,” unless different argument
settings are specified for the message type and window title. Because the sole purpose of the
message dialog box is to display a message, these dialog boxes provide only an OK button and
return no value. Figure 9-3 shows sample message pop-ups created from the following lines
of source:

JOptionPane.showMessageDialog(parent, "Printing complete");
JOptionPane.showInternalMessageDialog(desktop, "Printing complete");

277

278

CHAPTER 9 POP-UPS AND CHOOSERS

x| [Fvesas
Far o
'd) Printing complete 'd) Printing complete
Dialog Internal Frame

Figure 9-3. Sample JOptionPane message pop-ups

Confirm Pop-Ups

The showConfirmDialog() and showInternalConfirmDialog() methods, by default, create a
pop-up with a QUESTION_MESSAGE type and the pop-up title “Select an Option.” Because confirm
dialog boxes ask a question, their default option typeis YES_NO_CANCEL_OPTION, giving them Yes,
No, and Cancel buttons. The return value from a call to any of these methods is one of the
JOptionPane class constants YES_OPTION, NO_OPTION, or CANCEL_OPTION. No prizes for guessing
which constant maps to which option pane button! Figure 9-4 shows sample confirm pop-ups
created from the following lines of source:

JOptionPane.showConfirmDialog(parent, "Continue printing?");
JOptionPane.showInternalConfirmDialog(desktop, "Continue printing?");

x| Select an Optio
IE‘ Continue printing? IE‘ Continue printing?
| Yes | | Ho | | Cancel | | Yes | | Ho | | Cancel |
Dialog Internal Frame

Figure 9-4. Sample JOptionPane confirm pop-ups

Input Pop-Ups

By default, the showInputDialog() and showInternalInputDialog() methods create a
QUESTION MESSAGE pop-up with an “Input” pop-up title. The option type for input dialogs is
OK_CANCEL_OPTION, giving them an OK and a Cancel button, and the option type isn’t changeable.
The return data type for these methods is either a String or an Object. If you don’t specify
selection values, the pop-up prompts the user with a text field and returns the input as a
String. If you do specify selection values, you get back an Object from the selection values
array. Figure 9-5 shows some input pop-ups created from the following lines of source:

JOptionPane.showInputDialog(parent, "Enter printer name:");

// Moons of Neptune

String smalllist[] = {
"Naiad", "Thalassa", "Despina", "Galatea", "Larissa", "Proteus",
"Triton", "Nereid"} ;

CHAPTER 9 POP-UPS AND CHOOSERS 279

JOptionPane.showInternalInputDialog(desktop, "Pick a printer", "Input",
JOptionPane.QUESTION MESSAGE, null, smalllist, "Triton");

// Twenty of the moons of Saturn

String biglist[] = {"Pan", "Atlas", "Prometheus", "Pandora", "Epimetheus",
"Janus", "Mimas", "Enceladus", "Telesto", "Tethys", "Calypso", "Dione",
"Helene", "Rhea", "Titan", "Hyperion", "Iapetus", "Phoebe", "Skadi",
"Mundilfari"};

JOptionPane.showInputDialog(parent, "Pick a printer", "Input",
JOptionPane.QUESTION MESSAGE, null, biglList, "Titan");

JText Field —— JComboBox

X Input :

Pick a printg
nion Y &

=

| ok H Cancel ‘

| OK H Cancel ‘

i
‘zl Pick a printer
—

!Mimas
[Enceladus
!Tethys < JList
iTeIes(o
gCaiypsn
[Dione =
|Helene
ERhea
[Titan
|Hyperion -

| OK H Cancel ‘

Figure 9-5. Sample JOptionPane input pop-ups

Note It is the responsibility of the look and feel to determine the type of input component. A look and feel
can use something other than a JTextField, JComboBox, or JList. It's just that all the system-provided
look and feel types (from Sun) use these three components.

280

CHAPTER 9 POP-UPS AND CHOOSERS

Option Pop-Ups

The showOptionDialog() and showInternalOptionDialog() methods provide the most flexibility
because they allow you to configure all the arguments. There are no default arguments, and the
return valueis an int. Ifan options argument is not specified, the return value will be one of the
constants listed in Table 9-1. Otherwise, the value returned represents the component position
of the selected option from the options argument. Figure 9-6 shows a couple of input pop-ups
created from the following lines of source, in which icons (instead of text) are provided on the
buttons:

Icon greenIcon = new DiamondIcon(Color.GREEN);
Icon redIcon = new DiamondIcon(Color.RED);

Object iconArray[] = { greenIcon, redIcon} ;
JOptionPane.showOptionDialog(source, "Continue printing?", "Select an Option",
JOptionPane.YES_NO _OPTION, JOptionPane.QUESTION MESSAGE, null, iconArray,

iconArray[1]);

Icon blueIcon = new DiamondIcon(Color.BLUE);
Object stringArray[] = { "Do It", "No Way"} ;
JOptionPane.showInternalOptionDialog(desktop, "Continue printing?"”,

"Select an Option", JOptionPane.YES NO OPTION, JOptionPane.QUESTION_ MESSAGE,
blueIcon, stringArray, stringArray[o0]);

x| [SelectanOption =~
2 & - o
L= Continue printing? Continue printing?
=] [oon] [owey |
Dialog Internal Frame

Figure 9-6. Sample JOptionPane option pop-ups

Caution When using a factory method to show a JOptionPane within a JDialog, the dialog box is
automatically modal, preventing another window from getting the input focus. When showing the JOptionPane
within a JInternalFrame, the internal frame might be modal, but other windows might not be. Therefore,
a user could do something within one of the other windows of the application, including an action on the
JDesktopPane.

JOptionPane Properties

Table 9-3 shows the 15 properties of JOptionPane. These properties are accessible only if you
don’t use one of the factory methods of JOptionPane. For most of the arguments, their meaning
maps directly to one of the constructor arguments.

Table 9-3. JOptionPane Properties

CHAPTER 9

POP-UPS AND CHOOSERS

Property Name Data Type Access
accessibleContext AccessibleContext Read-only

icon Icon Read-write bound
initialSelectionValue Object Read-write bound
initialValue Object Read-write bound
inputValue Object Read-write bound
maxCharactersPerLineCount int Read-only
message Object Read-write bound
messageType int Read-write bound
options Object[] Read-write bound
optionType int Read-write bound
selectionValues Object[] Read-write bound
uI OptionPaneUI Read-write bound
UIClassID String Read-only

value Object Read-write bound
wantsInput boolean Read-write bound

The wantsInput property is automatically set to true for the input dialog boxes or when the
selectionValues property is non-null. The inputValue property is the item picked from an
input dialog box. The value property indicates the option selected from the button area.

Displaying Multiline Messages

ThemaxCharactersPerLineCount propertyis set to an extremely large value, Integer .MAX_VALUE,
by default. For some strange reason, the Swing developers chose not to provide a setter method
for this property. If you want to change the setting, you must subclass JOptionPane and override the
public int getMaxCharactersPerLineCount() method. This causes a long text message to be
broken up into multiple lines within an option pane. In addition, you cannot use any of the
factory methods because they don’t know about your subclass.

To help you create narrow JOptionPane components, you can add the source shown in
Listing 9-2 to the OptionPaneUtils class definition shown earlier in Listing 9-1. The new method
provides a way of specifying the desired option pane character width.

282

CHAPTER 9 POP-UPS AND CHOOSERS

Listing 9-2. Helper Method to Create a Narrow JOptionPane

public static JOptionPane getNarrowOptionPane(int maxCharactersPerlLineCount) {
// Our inner class definition
class NarrowOptionPane extends JOptionPane {
int maxCharactersPerLineCount;
NarrowOptionPane(int maxCharactersPerLineCount) {
this.maxCharactersPerLineCount = maxCharactersPerlLineCount;
}
public int getMaxCharactersPerLineCount() {
return maxCharactersPerlLineCount;
}
}

return new NarrowOptionPane(maxCharactersPerLineCount);

}

Once the method and new class are defined, you can create an option pane of a specified
character width, manually configure all the properties, place it in a pop-up window, show it,
and then determine the user’s response. The following source demonstrates using these new
capabilities, with the long message trimmed a bit.

String msg = "this is a really long message ... this is a really long message";
JOptionPane optionPane = OptionPaneUtils.getNarrowOptionPane(72);
optionPane.setMessage(msg);
optionPane.setMessageType(JOptionPane.INFORMATION MESSAGE);

JDialog dialog = optionPane.createDialog(source, "Width 72");
dialog.setVisible(true);

Figure 9-7 demonstrates what would happen if you didn’t change the
maxCharactersPerLineCount property. Figure 9-7 also shows the new narrow JOptionPane.

e i
i) msis h i h his b5 thisis
|
Default
manzz x|

(i) thisis a really long message this is a really long message this is a
"= reallylong message this is a really long message this is a really long
message this is a really long message this is a really long message

Narrow

Figure 9-7. Default JOptionPane and a narrow JOptionPane

Although this seems like a lot of work, it’s the best way to create multiline option panes,
unless you want to manually parse the message into separate lines.

CHAPTER 9 POP-UPS AND CHOOSERS 283

Note Including the characters \ n in the message text will force the message to be displayed on multiple
lines. Then it’s your responsibility to count the number of characters in each message line. The message text
in a JOptionPane can be formatted with HTML tags, as it can in other Swing components.

Understanding the Message Property

In all the previous examples in this chapter of using the message argument to the JOptionPane
constructors and using the factory methods, the message was a single string. As described
earlier in the “The JOptionPane Message Argument” section, this argument doesn’t need to be
a single string. For instance, if the argument were an array of strings, each string would beon a
separate line. This eliminates the need to use the narrow JOptionPane, but requires you to
count the characters yourself. However, because you're splitting apart the message, you can
use one of the 25 factory methods. For instance, the following source creates the pop-up
window shown in Figure 9-8.

String multilineMsg[] = { "Hello,", "World"} ;
JOptionPane.showMessageDialog(source, multilineMsg);

x|
@ Hello,
World

Figure 9-8. Using JOptionPane with a string array

Caution If you manually count the characters within a long message to split it into a multiline message,
the output may not be the best. For instance, when using a proportional font in which character widths vary,
a line of 20 w characters would be much wider than a line of 20 j or / characters.

The message argument not only supports displaying an array of strings, but it also can
support an array of any type of object. If an element in the array is a Component, it’s placed
directly into the message area. If the element is an Icon, the icon is placed within a JLabel, and
the JLabel is placed into the message area. All other objects are converted to a String, placed
into a JLabel, and displayed in the message area, unless the object is itself an array; in that case,
these rules are applied recursively.

To demonstrate the possibilities, Figure 9-9 shows off the true capabilities of the JOptionPane.
The actual content isn’t meant to show anything in particular—just that you can display a lot
of different stuff. The message argument is made up of the following array:

Object complexMsg[] = {
"Above Message", new DiamondIcon(Color.RED), new JButton("Hello"),
new JSlider(), new DiamondIcon(Color.BLUE), "Below Message"} ;

284

CHAPTER 9 POP-UPS AND CHOOSERS

mput x|
Iz‘ Above Message
*

| Hello, |

—
L i

*
Below Message

|

Figure 9-9. Using JOptionPane with a complex message property

Adding Components to the Message Area

If you were to display the pop-up in Figure 9-9, you would notice a slight problem. The option
pane doesn’t know about the embedded JS1ider setting, unlike the way it automatically knows
about input to the automatic JTextField, JComboBox, or JList components. If you want the
JOptionPane (or for that matter, any input component) to get the JS1ider value, you need to
have your input component change the inputValue property of the JOptionPane. When this
value is changed, the option pane tells the pop-up window to close because the JOptionPane
has acquired its input value.

Attaching a Changelistener to the JS1ider component enables you to find out when its
value has changed. Adding yet another method to the OptionPaneUtils class shown earlier in
Listing 9-1 allows you to reuse this specialized JS1ider with multiple JOptionPane objects more
easily. The important method call is shown in boldface in Listing 9-3. A similar line would need
to be added for any input component that you wanted to place within a JOptionPane. The line
notifies the option pane when the user has changed the value of the input component.

Listing 9-3. Helper Method for Creating a JSlider for Use in a JOptionPane

public static JSlider getSlider(final JOptionPane optionPane) {
JSlider slider = new JSlider();
slider.setMajorTickSpacing (10);
slider.setPaintTicks(true);
slider.setPaintlLabels(true);
Changelistener changelListener = new Changelistener() {
public void stateChanged(ChangeEvent changeEvent) {
JSlider theSlider = (JSlider)changeEvent.getSource();
if (!theSlider.getValueIsAdjusting()) {
optionPane.setInputValue(new Integer(theSlider.getValue()));
}
}
};
slider.addChangelistener(changelistener);
return slider;

Now that the specialized JSlider is created, you need to place it on a JOptionPane. This
requires the manual creation of a JOptionPane component and, surprisingly, doesn’t require

CHAPTER 9 POP-UPS AND CHOOSERS

the setting of the wantsInput property. The wantsInput property is set to true only when you
want the JOptionPane to provide its own input component. Because you're providing one, this
isn’t necessary. The resulting pop-up window is shown in Figure 9-10. (The JS1ider component
will be more fully described in Chapter 12.)

JOptionPane optionPane = new JOptionPane();

JSlider slider = OptionPaneUtils.getSlider(optionPane);
optionPane.setMessage(new Object[] { "Select a value: " , slider});
optionPane.setMessageType(JOptionPane.QUESTION MESSAGE);
optionPane.setOptionType(JOptionPane.OK CANCEL OPTION);

JDialog dialog = optionPane.createDialog(source, "My Slider");
dialog.setVisible(true);
System.out.println ("Input:

+ optionPane.getInputValue());

My shider X

Select a value:
I {}

0 10 20 30 40 50 60 70 80 90100

Figure 9-10. Using JOptionPane with a JSlider

Note If the user doesn’t move the slider, JOptionPane.getInputValue() correctly returns
JOptionPane.UNINITIALIZED VALUE.

Adding Components to the Button Area

In “The JOptionPane Options and Initial Value Arguments” section eatlier in this chapter, you
saw that if you have a Component in the array of options for the JOptionPane, you must configure
the component yourself to handle selection. The same holds true for any components you add
via the options property. When a component is configured to handle selection, the pop-up
window that a JOptionPane is embedded in will disappear when the component is selected.
The default set of buttons works this way. When installing your own components, you must
notify the option pane when one of the components has been selected by setting the value
property of the option pane.

To demonstrate this mechanism, create a JButton with both an icon and a text label that
can be placed in an option pane. Without defining this component yourself, the option pane
supports only the display of a label or an icon on the button. When the button is selected, the
button tells the option pane it was selected by setting the option pane’s value property to the
current text label of the button. Adding yet another method to OptionPaneUtils shown earlier
in Listing 9-1 allows you to create such a button. The boldfaced line in the source shown in
Listing 9-4 is the important method call to add to any other such component that you want to
combine with the component array for the options property of a JOptionPane. The line would
be called after selection of such a component.

285

286

CHAPTER 9 POP-UPS AND CHOOSERS

Listing 9-4. A JButton for Use on a JOptionPane

public static JButton getButton(
final JOptionPane optionPane, String text, Icon icon) {
final JButton button = new JButton (text, icon);
ActionlListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
// Return current text label, instead of argument to method
optionPane.setValue(button.getText());
}
};
button.addActionListener(actionlListener);
return button;

}

After the specialized JButton is created, you need to place it in a JOptionPane. Unfortunately,
this, too, requires the long form of the JOptionPane usage. The resulting pop-up window is
shown in Figure 9-11.

JOptionPane optionPane = new JOptionPane();

optionPane.setMessage("I got an icon and a text label");
optionPane.setMessageType(JOptionPane.INFORMATION MESSAGE);

Icon icon = new DiamondIcon (Color.BLUE);

JButton jButton = OptionPaneUtils.getButton(optionPane, "OK", icon);
optionPane.setOptions(new Object[] {jButton});

JDialog dialog = optionPane.createDialog(source, "Icon/Text Button");
dialog.setVisible(true);

Icon/Text Button | |

@ I got an icon and a text label

Figure 9-11. Using JOptionPane with a JButton containing a text label and an icon

Tip Setting the value of the JOptionPane with setValue() will hide the option pane when a user selects the
button. If you want to prevent users from closing the window without selecting a button, you can set the default
close operation of the dialog containing the JOptionPane to JDialog.DO _NOTHING ON CLOSE. Then
users won't be able to select the close icon from the window adornments. Well, they can select it; it just won’t
do anything.

Listening for Property Changes

The JOptionPane class defines the following 11 constants to assist with listening for bound
property changes:

ICON_PROPERTY

INITIAL SELECTION_VALUE_PROPERTY
INITIAL VALUE PROPERTY

INPUT _VALUE_PROPERTY
MESSAGE_PROPERTY
MESSAGE_TYPE_PROPERTY
OPTION_TYPE PROPERTY

OPTIONS PROPERTY
SELECTION_VALUES_ PROPERTY
VALUE_PROPERTY

WANTS_INPUT PROPERTY

CHAPTER 9 POP-UPS AND CHOOSERS

If you don’t use the factory methods of JOptionPane, you can instead use a
PropertyChangelistener to listen for changes to the bound properties. This would allow
you to passively listen for changes to bound properties, instead of actively getting them
after the change.

Customizing a JOptionPane Look and Feel

Each installable Swing look and feel provides a different JOptionPane appearance and set of
default UIResource values. Figure 9-12 shows the appearance of the JOptionPane container for
the preinstalled set of look and feel types: Motif, Windows, and Ocean.

x|
§ [kl x
|McDonaIds L.« | [-’q where would you like to go to lunch?
McDonalds
QK Cancel Cancel |
Motif Windows
]
Where would you like to go to lunch?
Mcponalds [+]
Ocean

Figure 9-12. JOptionPane under different look and feel types

287

288 CHAPTER 9 POP-UPS AND CHOOSERS

The message type of the JOptionPane helps determine the default icon to display in the
icon area of the option pane. For plain messages, there are no icons. The remaining four default
icons—for informational, question, warning, and error messages—are shown in Table 9-4 for
the different look and feel types.

Table 9-4. JOptionPane Icons for the Different Look and Feel Types

Look and Feel Informational Question Warning Error
Motif i ¢ ©
Windows @ @

Metal yjig

Ocean

0 2]

The available set of UIResource-related properties for a JOptionPane is shown in Table 9-5.
For the JOptionPane component, there are 56 different properties.

Table 9-5. JOptionPane UlResource Elements

Property String Object Type
OptionPane.actionMap ActionMap
OptionPane.background Color
OptionPane.border Border
OptionPane.buttonAreaBorder Border
OptionPane.buttonClickThreshhold Integer
OptionPane.buttonFont Font
OptionPane.buttonOrientation Integer
OptionPane.buttonPadding Integer
OptionPane.cancelButtonMnemonic String
OptionPane.cancelButtonText String
OptionPane.cancelIcon Icon
OptionPane.errorDialog.border.background Color
OptionPane.errorDialog.titlePane.background Color
OptionPane.errorDialog.titlePane.foreground Color
OptionPane.errorDialog.titlePane.shadow Color

CHAPTER 9

Table 9-5. JOptionPane UlResource Elements (Continued)

POP-UPS AND CHOOSERS

Property String Object Type
OptionPane.errorIcon Icon
OptionPane.errorSound String
OptionPane.font Font
OptionPane.foreground Color
OptionPane.informationIcon Icon
OptionPane.informationSound String
OptionPane.inputDialogTitle String
OptionPane.isYesLast Boolean
OptionPane.messageAnchor Integer
OptionPane.messageAreaBorder Border
OptionPane.messageFont Font
OptionPane.messageForeground Color
OptionPane.messageDialogTitle String
OptionPane.minimumSize Dimension
OptionPane.noButtonMnemonic String
OptionPane.noButtonText String
OptionPane.noIcon Icon
OptionPane.okButtonMnemonic String
OptionPane.okButtonText String
OptionPane.okIcon Icon
OptionPane.questionDialog.border.background Color
OptionPane.questionDialog.titlePane.background Color
OptionPane.questionDialog.titlePane.foreground Color
OptionPane.questionDialog.titlePane.shadow Color
OptionPane.questionIcon Icon
OptionPane.questionSound String
OptionPane.sameSizeButtons Boolean
OptionPane.separatorPadding Integer
OptionPane.setButtonMargin Boolean
OptionPane.titleText String
OptionPane.warningDialog.border.background Color
OptionPane.warningDialog.titlePane.background Color

289

290

CHAPTER 9 POP-UPS AND CHOOSERS

Table 9-5. JOptionPane UIResource Elements (Continued)

Property String Object Type
OptionPane.warningDialog.titlePane. foreground Color
OptionPane.warningDialog.titlePane.shadow Color
OptionPane.warningIcon Icon
OptionPane.warningSound String
OptionPane.windowBindings Object[]
OptionPane.yesButtonMnemonic String
OptionPane.yesButtonText String
OptionPane.yesIcon Icon
OptionPaneUI String

One good use of the resources in Table 9-5 is for customizing default button labels to
match the locale or language of the user. For instance, to change the four labels for the Cancel,
No, OK, and Yes buttons into French, add the following code to your program. (You may be
able to get the translated text from a java.util.ResourceBundle.)

// Set JOptionPane button labels to French
UIManager.put("OptionPane.cancelButtonText", "Annuler");
UIManager.put("OptionPane.noButtonText", "Non");
UIManager.put("OptionPane.okButtonText", "D'accord");
UIManager.put("OptionPane.yesButtonText", "Oui");

Now when you display the option pane, the buttons will have localized button labels. Of
course, this would require translating the messages for the option pane, too. Figure 9-13 shows
how a pop-up would look for the following line of source that asks if the user is 18 or older.
Because the pop-up window title isn’t a property, you must pass the title to every created
dialog box.

int result = JOptionPane.showConfirmDialog(
aFrame, "Est-ce que vous avez 18 ans ou plus?", "Choisisez une option",
JOptionPane.YES NO CANCEL OPTION);

Choisisez une option |

Iz‘ Est-ce gue vous avez 18 ans ou plus?

| Oui || Mon ||nnnuler|

Figure 9-13. A JOptionPane in French

CHAPTER 9 POP-UPS AND CHOOSERS

The JOptionPane component supports localized JOptionPane button labels. Out of the box,
the JOptionPane displays Chinese or Japanese button labels for the standard Yes, No, Cancel,
and OK buttons for the appropriate locale. For instance, the left side of Figure 9-14 shows buttons
with Japanese labels for Yes, No, and Cancel, and the right side of Figure 9-14 shows buttons with
Japanese labels for OK and Cancel. Obviously, you would need to change the message in the
option pane, but the buttons are set for you (assuming you have the fonts to support it).

Iz‘ Enter printer name:
Iz‘ Continue printing? |
[13ue) |[vwizen || mae |

Figure 9-14. A JOptionPane with Japanese-language buttons

Thankfully, the 5.0 release of the JDK includes translations for the standard JOptionPane
(as well as the JFileChooser and JColorChooser) labels. These are available for German (de),
Spanish (es), French (fr), Italian (it), Japanese (ja), Korean (ko), English, Swedish (sv), and
Chinese (Simplified/zh_CN and Traditional/zh_TW).

Tip To start the Java runtime with a different language, just set the user . language property, as in
java -Duser.language=FR ClassName. Then, whenever you create a JOptionPane, you would get the
French labels for Yes, No, OK, and Cancel. The button labels would be like those shown in Figure 9-14, but
without you needing to manually do the UIManager . put () calls. (Instead of D'accord, Sun chose to leave
OKas OK.)

ProgressMonitor Class

The ProgressMonitor class is used to report on the status of a time-consuming task. The class is
a special Swing class that’s not a GUI component, an option pane, or a JavaBean component.
Instead, you tell the ProgressMonitor when each part of the task is done. If the task is taking an
extended length of time to complete, the ProgressMonitor displays a pop-up window like the
one shown in Figure 9-15.

- Progress... ﬂ

@ Loading Progress

Loaded 95 files

I
Cancel

Figure 9-15. ProgressMonitor sample

291

292

CHAPTER 9 POP-UPS AND CHOOSERS

After the ProgressMonitor displays the pop-up window, the user can do one of two things.
The user can watch the ProgressMonitor display to see how much of the task has been completed;
when the task is done, the ProgressMonitor’s display automatically disappears. Or, if the user
selects the Cancel button, this tells the ProgressMonitor that the task needs to be canceled. To
detect the cancellation, the task needs to check the ProgressMonitor periodically to see if the
user canceled the task’s operation. Otherwise, the task will continue.

The pop-up window that the ProgressMonitor class displays is a JOptionPane with a
maxCharactersPerLineCount property setting of 60, allowing the option pane to automatically
word wrap any displayed messages. The option pane is embedded within a nonmodal JDialog
whose title is “Progress . ..”. Because the JDialog isn’t modal, a user can still interact with the
main program. The JOptionPane for a ProgressMonitor will always get an informational icon
within its icon area.

In addition, the message area of the option pane consists of three objects:

¢ At the top of the message area is a fixed message that stays the same throughout the life
of the JOptionPane. The message can be a text string or an array of objects just like the
message property of JOptionPane.

¢ In the middle of the message area is a note or variable message that can change as the
task progresses.

» Atthe bottom of the message area is a progress bar (JProgressBar component) that fills
as an increasing percentage of the task is completed.

The button area of the option pane shows a Cancel button.

Creating a ProgressMonitor

When you create a ProgressMonitor, there are five arguments to the single constructor:

public ProgressMonitor(Component parentComponent, Object message, String note,
int minimum, int maximum)

The first argument represents the parent component for the JOptionPane for when the
ProgressMonitor needs to appear. The parent component is the component over which the
pop-up window appears, and acts like the parentComponent argument for the createDialog()
method of JOptionPane. You then provide the static and variable message parts for the message
area of the JOptionPane. Either of these message parts could be null, although null means that
this part of the message area will never appear. Lastly, you provide minimum and maximum values
as the range for the progress bar. The difference between these two values represents the expected
number of operations to be performed, such as the number of files to load or the size of a file to
read. Normally, the minimum setting is zero, but that isn’t required. The number of completed
operations determines how far the progress bar moves.

Initially, the pop-up windowisn’t displayed. By default, the progress monitor checks every
half second (500 milliseconds) to see if the task at hand will complete in two seconds. If the task
has shown some progress and it still won’t complete in two seconds, then the pop-up window
appears. The time to completion is configurable by changing the millisToDecideToPopup and
millisToPopup properties of the ProgressMonitor.

The following line of source demonstrates the creation of a ProgressMonitor with 200 steps
in the operation. A reference to the ProgressMonitor would need to be saved so that it can be
notified as the task progresses.

CHAPTER 9 POP-UPS AND CHOOSERS

ProgressMonitor monitor = new ProgressMonitor(
parent, "Loading Progress", "Getting Started...", 0, 200);

Using a ProgressMonitor

Once you've created the ProgressMonitor, you need to begin the task whose progress is being
monitored. As the task completes one or many steps, the ProgressMonitor needs to be notified of
the task’s progress. Notification is done with a call to the public void setProgress(int newValue)
method, where the argument represents the progress completed thus far and the newValue
needs to be in the minimum. . .maximum range initially specified. This progress value needs to be
maintained outside the ProgressMonitor, because you can’t ask the monitor how much progress
has been made (no public int getProgress() method of ProgressMonitor exists). If the progress
value were maintained in a variable named progress, the following two lines would update the
progress value and notify the ProgressMonitor.

progress += 5;
monitor.setProgress(progress);

Note It's possible that multiple calls to setProgress () may not advance the progress bar in the option
pane. The changes to the progress setting must be enough to make the progress bar advance at least one
pixel in length. For instance, if the minimum and maximum settings were zero and 2 billion, increasing the
progress setting 1,000 times by 5 would have no visible effect on the progress bar, because the fractional
amount would be negligible.

The progress setting could represent the number of files loaded thus far, or the number of
bytes read in from a file. In addition to updating the count, you should update the note to
reflect the progress. If the difference between the minimum and maximum arguments used in the
ProgressMonitor constructor were 100, then the current progress could be viewed as a percentage
of the task. Otherwise, the progress property merely represents the progress completed so far.

monitor.setNote("Loaded " + progress + " files");

It’s the responsibility of the executing task to check whether the user pressed the Cancel
button in the ProgressMonitor dialog box. If the task is canceled, the ProgressMonitor automat-
ically closes the dialog box, but the task must actively check for the change by adding a simple
check at the appropriate place or places in the source:

if (monitor.isCanceled()) {
// Task canceled - cleanup

} else {
// Continue doing task

}...

293

294

CHAPTER 9 POP-UPS AND CHOOSERS

Most tasks requiring a ProgressMonitor will be implemented using separate threads to
avoid blocking the responsiveness of the main program.

Listing 9-5 shows a program that creates a ProgressMonitor and allows you to either manually
or automatically increase its progress property (see the following section for a description of
this property). These tasks are handled by on-screen buttons (see Figure 9-16). Selecting the
Start button creates the ProgressMonitor. Selecting the Manual Increase button causes the
progress to increase by 5. Selecting the Automatic Increase button causes the progress to
increase by 3 every 250 milliseconds (1/4 second). Pressing the Cancel button in the pop-up
window during the automatic increase demonstrates what should happen when the operation
is canceled; the timer stops sending updates.

£ progressMonitor Sample 10l =|

Start

Manual Increase

Automatic Increase

Figure 9-16. Main ProgressMonitor sample frame

Note The pop-up window won’t appear until some progress is shown.

The ProgressMonitorHandler inner class at the start of Listing 9-5 is necessary to ensure
that the ProgressMonitor is accessed only from the event thread. Otherwise, the access wouldn’t
be thread-safe in some random thread.

Listing 9-5. Sample ProgressMonitor Usage

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class SampleProgress {
static ProgressMonitor monitor;
static int progress;
static Timer timer;

static class ProgressMonitorHandler implements ActionListener {
// Called by Timer
public void actionPerformed(ActionEvent actionEvent) {
if (monitor == null)
return;

CHAPTER 9 POP-UPS AND CHOOSERS 295

if (monitor.isCanceled()) {
System.out.println("Monitor canceled");
timer.stop();

} else {
progress += 3;
monitor.setProgress(progress);
monitor.setNote("Loaded " + progress + " files");

}

}
}

public static void main(String args[]) {

Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("ProgressMonitor Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
frame.setlayout(new GridlLayout (0, 1));

// Define Start Button
JButton startButton = new JButton ("Start");
ActionListener startActionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
Component parent = (Component)actionEvent.getSource();
monitor = new ProgressMonitor(parent, "Loading Progress",
"Getting Started...", 0, 200);
progress = 0;
}
};
startButton.addActionListener(startActionListener);
frame.add(startButton);

// Define Manual Increase Button
// Pressing this button increases progress by 5
JButton increaseButton = new JButton ("Manual Increase");
ActionListener increaseActionlListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
if (monitor == null)
return;
if (monitor.isCanceled()) {
System.out.println("Monitor canceled");
} else {
progress += 5;
monitor.setProgress(progress);
monitor.setNote("Loaded " + progress + " files");
}
}
};

296 CHAPTER 9 POP-UPS AND CHOOSERS

increaseButton.addActionlistener(increaseActionlistener);
frame.add(increaseButton);

// Define Automatic Increase Button
// Start Timer to increase progress by 3 every 250 ms
JButton autoIncreaseButton = new JButton ("Automatic Increase");
ActionListener autoIncreaseActionlListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
if (monitor != null) {
if (timer == null) {
timer = new Timer(250, new ProgressMonitorHandler());
}
timer.start();
}
}
};
autoIncreaseButton.addActionlListener(autoIncreaseActionlistener);
frame.add(autoIncreaseButton);

frame.setSize(300, 200);
frame.setVisible(true);

}
};
EventQueue.invokelater(runner);

}
}

ProgressMonitor Properties

Table 9-6 shows the eight properties of ProgressMonitor.

Table 9-6. ProgressMonitor Properties

Property Name Data Type Access

accessibleContext AccessibleContext Read-only
canceled boolean Read-only
maximum int Read-write
millisToDecideToPopup int Read-write
millisToPopup int Read-write
minimum int Read-write
note String Read-write

progress int Write-only

CHAPTER 9 POP-UPS AND CHOOSERS 297

The millisToDecideToPopup property represents the number of milliseconds that the
monitor waits before deciding if it needs to display the pop-up window. If the progress property
hasn’t changed yet, the monitor waits for another increment of this time period before checking
again. When the ProgressMonitor checks and the progress property has changed, it estimates
whether the task will be completed in the number of milliseconds in the mil11isToPopup property.
If the ProgressMonitor thinks the monitored task will complete on time, the pop-up window is
never displayed. Otherwise, the pop-up will display aftermillisToPopup milliseconds have
passed from the time the task started.

Caution Although technically possible, it isn’t a good practice to move the minimum and maximum properties
after the pop-up has appeared. This could result in the progress bar increasing and decreasing in an erratic
manner. The same behavior happens if you move the progress setting in a nonlinear fashion.

Customizing a ProgressMonitor Look and Feel

Changing the look and feel of ProgressMonitor requires changing the appearance of both the
JProgressBar and the JLabel, as well as the JOptionPane the ProgressMonitor uses.
The ProgressMonitor has one UIResource-related property:

* ProgressMonitor.progressText of type String

ProgressMonitorinputStream Class

The ProgressMonitorInputStream class represents an input stream filter that uses a
ProgressMonitor to check the progress of the reading of an input stream. If the reading is
taking too long to complete, a ProgressMonitor appears, and the user can select the Cancel
button in the pop-up window, causing the reading to be interrupted and the input stream to
throw an InterruptedIOException.

Creating a ProgressMonitorInputStream

Like other filtering streams, the ProgressMonitorInputStreamis created with a reference

to the stream it needs to filter. Besides a reference to this filter, the single constructor for
ProgressMonitorInputStreamrequires two arguments for its ProgressMonitor: a parent compo-
nent and a message. As seen here, the constructor takes the ProgressMonitor arguments first:

public ProgressMonitorInputStream(
Component parentComponent, Object message, InputStream inputStream)

As with the JOptionPane and ProgressMonitor, the message argument is an Object, nota
String, so you can display an array of components or strings on multiple lines. The following
code creates one ProgressMonitorInputStream.

298

CHAPTER 9 POP-UPS AND CHOOSERS

FileInputStream fis = new FileInputStream(filename);
ProgressMonitorInputStream pmis =
new ProgressMonitorInputStream(parent, "Reading " + filename, fis);

Note Theminimum. ..maximum range for the ProgressMonitorInputStream ProgressMonitor is
[0...size of stream).

Using a ProgressMonitorInputStream

Aswith all input streams, once you've created a ProgressMonitorInputStream, youneed to read
from it. If the input stream isn’t read quickly enough, the underlying ProgressMonitor causes
the progress pop-up window to appear. Once that window appears, a user can monitor the
progress or cancel the reading by selecting the Cancel button. If the Cancel button is selected,
an InterruptedIOException is thrown, and the bytesTransferred field of the exception is set to
the number of bytes successfully read.

Figure 9-17 shows what one ProgressMonitorInputStream pop-up mightlook like. For a
little variety, the pop-up uses two JLabel components in the message, instead of just one.

- Progress... | ﬂ

@ Reading:
Component.java
I

|

Figure 9-17. ProgressMonitorInputStream pop-up

Listing 9-6 shows a complete source example. The boldfaced lines are the keys to using the
ProgressMonitorInputStream. They set up the dialog box’s message and create the input stream.
The program uses a file name specified from the command line, reads the file, and copies the
file to standard output (the console). If the file is large enough, the progress monitor will appear.
If you press the Cancel button, the reading stops and Canceled is printed to standard error.

Listing 9-6. ProgressMonitorInputStream Demonstration

import java.io.*;
import java.awt.*;
import javax.swing.*;

public class ProgressInputSample {
public static final int NORMAL 0;
public static final int BAD FILE = 1;
public static final int CANCELED = NORMAL;
public static final int PROBLEM = 2;

CHAPTER 9

public static void main(String args[]) {

int returnValue = NORMAL;
if (args.length != 1) {

System.err.println("Usage:");

System.err.println("java ProgressInputSample filename");
} else {

try {

FileInputStream fis = new FileInputStream(args[0]);

JLabel filenamelabel = new JlLabel(args[0], JLabel.RICHT);

Object message[] = { "Reading:", filenamelabel} ;
ProgressMonitorInputStream pmis =
new ProgressMonitorInputStream(null, message, fis);
InputStreamReader isr = new InputStreamReader(pmis);
BufferedReader br = new BufferedReader(isr);
String line;
while ((1line = br.readlLine()) != null) {
System.out.println(line);
}
br.close();

} catch (FileNotFoundException exception) {
System.err.println("Bad File " + exception);
returnValue = BAD FILE;

} catch (InterruptedIOException exception) {
System.err.println("Canceled");
returnValue = CANCELED;

} catch (IOException exception) {
System.err.println("I/0 Exception
returnValue = PROBLEM;

}

}
// AWT Thread created - must exit

System.exit(returnValue);

}

+ exception);

}

POP-UPS AND CHOOSERS

Note Having a null argument for the parent component to the ProgressMonitorInputStream

constructor causes the pop-up window to appear centered on the screen.

ProgressMonitorInputStream Properties

Table 9-7 shows the single property of ProgressMonitorInputStream. The ProgressMonitor is
created when the input stream is created. You shouldn’t need to modify the ProgressMonitor.

299

300

CHAPTER 9 POP-UPS AND CHOOSERS

However, you might want to provide a longer or shorter delay (the millisToDecideToPopup
property of ProgressMonitor) before the pop-up window is displayed.

Table 9-7. ProgressMonitorInputStream Property

Property Name Data Type Access

progressMonitor ProgressMonitor Read-only

JGolorChooser Class

You can think of a JColorChooser as an input-only JOptionPane whose input field asks you to
choose a color. Like a JOptionPane, the JColorChooser is just a bunch of components in a
container, not a ready-to-use pop-up window. Figure 9-18 shows how a JColorChooser might
appear in your own application window. At the top are three selectable color chooser panels;
at the bottom is a preview panel. The “I Love Swing” bit is not part of the chooser, but of the
application that contains the chooser.

Color Chooser Panel

<€ JColorChooser

I TSNS EE] il Recem:
] I e o e -
1 diaassaa07 e
i CRREEEREEEE s EE
i
Priview
0= <—— Preview Panel

Figure 9-18. JColorChooser sample

In addition to appearing within your application windows, the JColorChooser class also
provides support methods for automatically placing the group of components in a JDialog.
Figure 9-19 shows one such automatically created pop-up.

CHAPTER 9 POP-UPS AND CHOOSERS

£ Change Button Background _ x|

[Swatches | HSB | RGB |

Preview

a - E 5Sample Text Sample Text

. . . Sample Text Sample Text -

[ok || Cancel || Reset |

Figure 9-19. JColorChooser pop-up sample

In support of this behavior, the JColorChooser class requires the help of several support
classes found in the javax. swing.colorchooser package. The data model for the JColorChooser
is an implementation of the ColorSelectionModel interface. The javax.swing.colorchooser
package provides the DefaultColorSelectionModel class as an implementation of the
ColorSelectionModel interface. For the user interface, the JColorChooser class relies on the
ColorChooserComponentFactory to create the default panels from which to choose a color.
These panels are specific subclasses of the AbstractColorChooserPanel class, and if you don’t
like the default set, you can create your own.

By default, when multiple chooser panels are in a JColorChooser, each panel is shown on
atab of a JTabbedPane. However, the ColorChooserUI can deal with multiple panels in any way
it desires.

Creating a JColorChooser

If you want to create a JColorChooser and place it in your own window, you use one of the
following three constructors for the JColorChooser class:

public JColorChooser()
JColorChooser colorChooser = new JColorChooser();

public JColorChooser(Color initialColor)
JColorChooser colorChooser =
new JColorChooser(aComponent.getBackground());

public JColorChooser(ColorSelectionModel model)
JColorChooser colorChooser = new JColorChooser(aColorSelectionModel);

By default, the initial color for the chooser is white. If you don’t want white as the default,
you can provide the initial color as a Color object or ColorSelectionModel.

301

302 CHAPTER 9 POP-UPS AND CHOOSERS

Using JColorChooser

Once you've created a JColorChooser from a constructor, you can place it in any Container, just
like any other Component. For instance, the source shown in Listing 9-7 created the GUI shown
earlier in Figure 9-18.

Listing 9-7. Using a JColorChooser in Your JFrame

import java.awt.*;

import javax.swing.*;

import javax.swing.event.*;
import javax.swing.colorchooser.*;

public class ColorSample {

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("JColorChooser Popup");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

final JLabel label = new JLabel("I Love Swing", JlLabel.CENTER);
label.setFont(new Font("Serif", Font.BOLD | Font.ITALIC, 48));
frame.add(label, BorderlLayout.SOUTH);

final JColorChooser colorChooser =
new JColorChooser(label.getBackground());
colorChooser.setBorder(
BorderFactory.createTitledBorder("Pick Foreground Color"));

// More source to come
frame.add(colorChooser, BorderlLayout.CENTER);

frame.pack();
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Although this source code creates the GUI, selecting a different color within the
JColorChooser doesn’t do anything yet. Let’s now look at the code that causes color changes.

CHAPTER 9 POP-UPS AND CHOOSERS

Listening for Color Selection Changes

The JColorChooser uses a ColorSelectionModel as its data model. As the following interface
definition shows, the data model includes a single property, selectedColor, for managing the
state of the color chooser.

public interface ColorSelectionModel {
// Listeners
public void addChangelListener(ChangelListener listener);
public void removeChangelListener(ChangeListener listener);
// Properties
public Color getSelectedColor();
public void setSelectedColor(Color newValue);

When a user changes the color within the JColorChooser, the selectedColor property changes,
and the JColorChooser generates a ChangeEvent to notify any registered ChangeListener objects.

Therefore, to complete the earlier ColorSample example in the previous section, and have
the foreground color of the label change when the user changes the color selection within the
JColorChooser, you need to register a Changelistener with the color chooser. This involves
creating a Changelistener and adding it to the ColorSelectionModel. Placing the source code
shown in Listing 9-8 where the //More source to come comment appears in the Listing 9-7 is
necessary for this example to work properly.

Listing 9-8. Activating the JColorChooser Example

ColorSelectionModel model = colorChooser.getSelectionModel();
Changelistener changelistener = new Changelistener() {
public void stateChanged(ChangeEvent changeEvent) {
Color newForegroundColor = colorChooser.getColor();
label.setForeground(newForegroundColor);
}
};

model.addChangelistener(changelistener);

Once this source is added, the example is complete. Running the program brings up
Figure 9-18, and selecting a new color alters the foreground of the label.

Creating and Showing a JColorChooser Pop-Up Window

Although the previous example is sufficient if you want to include a JColorChooser within your
own window, more often than not, you want the JColorChooser to appear in a separate pop-up
window. This window might appear as the result of selecting a button on the screen, or possibly
even selecting a menu item. To support this behavior, the JColorChooser includes the following
factory method:

public static Color showDialog(Component parentComponent,
String title, Color initialColor)

303

304

CHAPTER 9 POP-UPS AND CHOOSERS

When called, showDialog() creates a modal dialog box with the given parent component
and title. Within the dialog box is a JColorChooser whose initial color is the one provided. As
you can see in Figure 9-18 (shown earlier in the chapter), along the bottom are three buttons:
OK, Cancel, and Reset. When OK is pressed, the pop-up window disappears and the showDialog()
method returns the currently selected color. When Cancel is pressed, null is returned instead
of the selected color or the initial color. Selection of the Reset button causes the JColorChooser
to change its selected color to the initial color provided at startup.

What normally happens with the showDialog() method is that the initial color argument is
some color property of an object. The returned value of the method call then becomes the new
setting for the same color property. This usage pattern is shown in the following lines of code,
where the changing color property is the background for a button. As with JOptionPane, the
null parent-component argument causes the pop-up window to be centered on the screen
instead of over any particular component.

Color initialBackground = button.getBackground();
Color background = JColorChooser.showDialog(
null, "Change Button Background", initialBackground);
if (background != null) {
button.setBackground(background);
}

To place this code in the context of a complete example, Listing 9-9 shows source code
that offers a button that, when selected, displays a JColorChooser. The color selected within the
chooser becomes the background color of the button after the OK button is selected.

Listing 9-9. Using showDialog with the JColorChooser

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ColorSamplePopup {

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("JColorChooser Sample Popup");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

final JButton button = new JButton("Pick to Change Background");

ActionListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
Color initialBackground = button.getBackground();

Color background = JColorChooser.showDialog(
null, "Change Button Background", initialBackground);

CHAPTER 9 POP-UPS AND CHOOSERS

if (background != null) {
button.setBackground(background);
}
}
};
button.addActionlListener(actionlListener);
frame.add(button, BorderLayout.CENTER);

frame.setSize(300, 100);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Providing Your Own OK/Cancel Event Listeners

If the showDialog() method provides too much automatic behavior, you may prefer another
JColorChooser method that allows you to customize the chooser before displaying it and define
what happens when the OK and Cancel buttons are selected:

public static JDialog createDialog(Component parentComponent, String title,
boolean modal, JColorChooser chooserPane, ActionlListener okListener,
ActionListener cancellistener)

In createDialog(), the parent component and title arguments are the same as showDialog().
The modal argument allows the pop-up window to be nonmodal, unlike showDialog() in
which the pop-up is always modal. When the pop-up is not modal, the user can still interact
with the rest of the application. The OK and Cancel buttons in the pop-up window automati-
cally have one associated ActionlListener that hides the pop-up window after selection. It’s
your responsibility to add your own listeners if you need any additional response from selection.

To demonstrate proper usage of createDialog(), the program shown in Listing 9-10 dupli-
cates the functionality of the program shown in Listing 9-9. However, instead of automatically
accepting the new color, the color change is rejected if the new background is the same color
as the foreground. In addition, if the user selects the Cancel button, the button background
color is set to red.

Listing 9-10. Custom Action Listeners on JColorChooser Buttons

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;
import javax.swing.colorchooser.*;

public class CreateColorSamplePopup {

305

306 CHAPTER 9 POP-UPS AND CHOOSERS

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("JColorChooser Create Popup Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

final JButton button = new JButton("Pick to Change Background");

ActionListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
Color initialBackground = button.getBackground();

final JColorChooser colorChooser =
new JColorChooser(initialBackground);

// For okay selection, change button background to selected color
ActionListener okActionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
Color newColor = colorChooser.getColor();
if (newColor.equals(button.getForeground())) {
System.out.println("Color change rejected");
} else {
button.setBackground(colorChooser.getColor());
}
}
};

// For cancel selection, change button background to red
ActionListener cancelActionlListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
button.setBackground(Color.RED);
}
};

final JDialog dialog = JColorChooser.createDialog(null,
"Change Button Background", true, colorChooser,
okActionListener, cancelActionlistener);

// Wait for current event dispatching to complete before showing
Runnable showDialog = new Runnable() {
public void run() {
dialog.setVisible(true);
}
};

CHAPTER 9 POP-UPS AND CHOOSERS

EventQueue.invokelater(showDialog);
}
};
button.addActionlListener(actionlListener);
frame.add(button, BorderLayout.CENTER);

frame.setSize(300, 100);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Note Notice that the actionPerformed() method that shows the color chooser uses the
EventQueue. invokelater() method to show the chooser. The current event handler needs to finish
before showing the chooser. Otherwise, the previous action event processing won't complete before the
chooser is shown.

JColorChooser Properties

Table 9-8 lists information on the eight properties of the JColorChooser, including the three
data types of the single property color.

Table 9-8. /ColorChooser Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
chooserPanels AbstractColorChooserPanel]] Read-write bound
color Color Read-write

color int rgb Write-only

color int red, int green, int blue Write-only
dragEnabled boolean Read-write
previewPanel JComponent Read-write bound
selectionModel ColorSelectionModel Read-write bound
uI ColorChooserUI Read-write bound

UIClassID String Read-only

307

308

CHAPTER 9 POP-UPS AND CHOOSERS

The color property is special in that it has three ways of setting itself:
¢ Directly from a Color

¢ From one integer representing its red-green-blue values combined into one int variable
using the nibble allocation 0OXAARRGGBB, where A is for alpha value (and is ignored,
using 255 instead)

¢ From three integers, separating the red, green, and blue color components into three
separate int variables

If you don’t use showDialog(), you can customize the JColorChooser before displaying it.
Besides customizing the color property, which is settable in the JColorChooser constructor,
you can customize the component to be displayed in the preview area and the color chooser
panels.

Changing the Preview Panel

It’s the responsibility of the ColorChooserComponentFactory class to provide the default
component for the preview area of the JColorChooser. For the standard look and feel types,
the preview panel is in the bottom portion of the color chooser.

If you don’t want a preview panel in the color chooser, you must change the previewPanel
property to a component value that isn’t null. When the property is set to null, the default
preview panel for the look and feel is shown. Setting the property to an empty JPanel serves the
purpose of not showing the preview panel.

colorChooser.setPreviewPanel(new JPanel());

Figure 9-20 shows what one such color chooser might look like without the preview panel.
Because the JPanel has no size when nothing is in it, this effectively removes the panel.

& Change Button Background 3 ﬂ
[Swatches | HSB | RGB |

[ok || Cancel || Reset |

Figure 9-20. JColorChooser without a preview panel

If you want the preview panel present, but just don’t like the default appearance, you can
add your own JComponent to the area. Configuration entails placing your new preview panel in

CHAPTER 9 POP-UPS AND CHOOSERS 309

a title-bordered container, and having the foreground of the preview panel change when the
user selects a new color.

Caution A bug in the ColorChooserUI implementation class (BasicColorChooserUI) requires an
extra step to properly install the preview panel. Besides calling setPreviewPanel (newPanel), you must
set the panel’s size and border to enable the user interface to properly configure the new preview panel.
The exact steps seem to vary with which JDK release you are using. See http://bugs.sun.com/

bugdatabase/view _bug.do?bug 1d=5029286 for more details. There are some other related bugs
(search the Bug Parade for setPreviewPanel).

The following source demonstrates the use of a JLabel as the custom preview panel with
the necessary work-around. Figure 9-21 demonstrates what the JColorChooser that uses this
preview panel would look like.

final JlLabel previewlLabel = new JlLabel("I Love Swing", JLabel.CENTER);
previewlLabel.setFont(new Font("Serif", Font.BOLD | Font.ITALIC, 48));
previewlLabel.setSize(previewlabel.getPreferredSize());
previewlLabel.setBorder(BorderFactory.createEmptyBorder(0,0,1,0));
colorChooser.setPreviewPanel(previewlLabel);

E Change Button Background] ll

[Swatches | HSB | RGB |

Preview

I Love Swing

[ok || Cancel || Reset |

Figure 9-21. JColorChooser with custom preview panel

Note Because the initial setting for the foreground of the preview panel is its background color, the panel
will appear to be empty. This is one reason why the default preview panel shows text with contrasting back-
ground colors.

310 CHAPTER 9

POP-UPS AND CHOOSERS

Changing the Color Chooser Panels

The various tabs in the upper part of the JColorChooser represent the AbstractColorChooserPanel
implementations. Each allows the user to pick a color in a different manner. By default, the
ColorChooserComponentFactory provides the JColorChooser with three panels (see Figure 9-22):

at a paint store.

color model.

£ Change Button Background

S|

Recent:

R

| [
Illll!!ll:
R
]|

The HSB panel allows a user to pick a color using the Hue-Saturation-Brightness

The RGB panel is for picking colors using the Red-Green-Blue color model.

£ Change Button Background §
| (S8 | RGB |

The Swatches panel lets a user pick a color from a set of predefined color swatches, as if

D. e)H'_uE
os[o
8

R 238

Preview

n Sample Texd Sample Texd

(o] o | e]

Preview

G 238
B 238
.

n Sample Texd Sample Texd

(o][cmen [et |

Swatches

£ Change Button Background
| [Hs8 [RGB |

——}
Red 238
0 85 170 255

Green 2381
0 85 170 255

Blue [z3sHH
o235/

Preview

n Sample Texd Sample Texd

(o][cmen [et |

RGB

Figure 9-22. The default JColorChooser panels

HSB

CHAPTER 9 POP-UPS AND CHOOSERS 311

If you don’t like the default chooser panels, or you just want to add other color chooser panels
that work differently, you can create your own by subclassing the AbstractColorChooserPanel
class. To add a new panel to the existing set, call the following method:

public void addChooserPanel(AbstractColorChooserPanel panel)
If you later decide that you no longer want the new panel, you can remove it with this method:
public AbstractColorChooserPanel removeChooserPanel(AbstractColorChooserPanel panel)
To replace the existing set of panels, call this method:
setChooserPanels(AbstractColorChooserPanel panels[1)

Creating a new panel entails subclassing AbstractColorChooserPanel and filling in the
details of choosing a color for the new panel. The class definition, shown in the following code
lines, includes five abstract methods. These five methods are what must be overridden.

public abstract class AbstractColorChooserPanel extends JPanel {
public AbstractColorChooserPanel();
protected abstract void buildChooser();
protected Color getColorFromModel();
public ColorSelectionModel getColorSelectionModel();
public int getDisplayMnemonicIndex();
public abstract String getDisplayName();
public abstract Icon getlLargeDisplayIcon();
public int getMnemonic();
public abstract Icon getSmallDisplayIcon();
public void installChooserPanel(JColorChooser);
public void paint(Graphics);
public void uninstallChooserPanel(JColorChooser);
public abstract void updateChooser();

To demonstrate how to work with color chooser panels, let’s look at how to create a new
one that displays a list of colors from the Color and SystemColor class. From this list, the user
must pick one. The panel will use a JComboBox to represent the list of colors. (The details of
using a JComboBox are explained in Chapter 13.) Figure 9-23 shows the finished panel. The panel
is created and added with the following source:

SystemColorChooserPanel newChooser = new SystemColorChooserPanel();
AbstractColorChooserPanel chooserPanels[] = {newChooser};
colorChooser.setChooserPanels(chooserPanels);

312

CHAPTER 9 POP-UPS AND CHOOSERS

i Change Button Background ll

PINK |~]

Preview
L]

D Sample Text Sample Text

[ok || Cancel || Reset

Figure 9-23. Replacing all panels with the new SystemColor chooser panel

The first method to define is public String getDisplayName().This method returns a text
label to display on the tab when multiple chooser panels are available. If there’s only one chooser
panel, this name isn’t shown.

public String getDisplayName() {
return "SystemColor";

}

The return values for the two Icon methods do nothing with the system look and feel types.
You can return null from them or return an Icon to check that nothing has been done with
them. A custom ColorChooserUI could use the two Icon methods somewhere, possibly for the
icon on a chooser panel tab.

public Icon getSmallDisplayIcon() {
return new DiamondIcon(Color.BLUE);

}

public Icon getlargeDisplayIcon() {
return new DiamondIcon(Color.GREEN);

}

The protected void buildChooser () method is called by the installChooserPanel () method
of AbstractColorChooserPanel when the panel is added to the chooser. You use this method to
add the necessary components to the container. In the sample SystemColorChooserPanel
chooser, this involves creating the JComboBox and adding it to the panel. Because
AbstractColorChooserPanel is a JPanel subclass, you can just add() the combo box. The combo
box must be filled with options and an event handler installed for when the user selects the
component. The specifics of the event handling are described after the following block of
source code.

protected void buildChooser() {
comboBox = new JComboBox(labels);
comboBox.addItemListener(this);
add(comboBox);

}

CHAPTER 9 POP-UPS AND CHOOSERS

Note In addition, if you choose to override uninstallChooserPanel (JColorChooser
enclosingChooser), you need to call super.uninstallChooserPanel (JColorChooser
enclosingChooser) last, instead of first.

When a user changes the color value in an AbstractColorChooserPanel, the panel must
notify the ColorSelectionModel of the change in color. In the SystemColorChooserPanel panel,
this equates to the user selecting a new choice in the JComboBox. Therefore, when the combo
box value changes, find the Color that equates to the choice and tell the model about the change.

public void itemStateChanged(ItemEvent itemEvent) {
int state = itemEvent.getStateChange();
if (state == ItemEvent.SELECTED) {
int position = findColorLabel(itemEvent.getItem());
// Last position is bad (not selectable)
if ((position != NOT_FOUND) && (position != labels.length-1)) {
ColorSelectionModel selectionModel = getColorSelectionModel();
selectionModel.setSelectedColor(colors[position]);
}
}
}

The final AbstractColorChooserPanel method to implementis public void updateChooser().
It, too, is called by installChooserPanel() at setup time. In addition, it’s also called whenever
the ColorSelectionModel of the JColorChooser changes. When updateChooser() is called, the
chooser panel should update its display to show that the current color of the model is selected.
Not all panels show which color is currently selected, so a call may do nothing. (The system-
provided Swatches panel is one that doesn’t display the current color.) In addition, it’s possible that
the current color isn’t displayable on the panel. For instance, on the SystemColorChooserPanel, if
the current selection isn’t a SystemColor or Color constant, you can either do nothing or display
something to signify a custom color. Therefore, in the updateChooser () implementation, you
need to get the current color from the ColorSelectionModel and change the color for the panel.
The actual setting is done in a helper method called setColor(Color newValue).

public void updateChooser() {
Color color = getColorFromModel();
setColor(color);

}

The setColor(Color newColor) method simply looks up the color in a lookup table using
the position returned from findColorPosition(Color newColor).

// Change combo box to match color, if possible
private void setColor(Color newColor) {
int position = findColorPosition(newColor);
comboBox. setSelectedIndex(position);

}

313

314

CHAPTER 9 POP-UPS AND CHOOSERS

The specifics of the findColorLabel (Object label) and findColorPosition(Color newColor)
methods are shown in the complete source in Listing 9-11, coming up shortly.

If you don’t use the showDialog() means of showing the chooser pop-up window, once the
chooser panel has been defined, and you've created a chooser panel, it can be placed within a
JColorChooser with addChooserPanel ().

AbstractColorChooserPanel newChooser = new SystemColorChooserPanel();
colorChooser.addChooserPanel (newChooser);

After showing the JColorChooser and picking the appropriate tab, your new chooser will
be available for use, as shown in Figure 9-24.

) Change Button Background 3 1'

[Swatches | HSB | RGB [SystemColor

activeCaptionBorder |

activeCaptionBorder
activeCaptionText
control
controlDkShadow
controlHighlight
controlL tHighlight
controlShadow

D controlText z

D Sample Text Sample Text

| »

Preview

[ok || Cancel || Reset |

Figure 9-24. After adding the new SystemColor chooser panel

The complete source for the SystemColorChooserPanel is shown in Listing 9-11. The program
should use the ComboBoxModel to store the labels and colors arrays of the example in one data
model. However, the complexities of using the MVC capabilities of the JComboBox will be saved
for Chapter 13. Feel free to change the example in order to use the appropriate data model for
the JComboBox or some of the other Collections API classes available.

Listing 9-11. Custom AbstractColorChooserPanel

import javax.swing.*;

import javax.swing.colorchooser.*;
import java.awt.*;

import java.awt.event.*;

public class SystemColorChooserPanel
extends AbstractColorChooserPanel
implements ItemListener {

private static int NOT_FOUND = -1;

JComboBox comboBox;
String labels[] = {
"BLACK",
"BLUE",
"CYAN",
"DARK_GRAY",
"GRAY",
"GREEN",
"LICHT GRAY",
"MAGENTA",
"ORANGE",
"PINK",
"RED",
"WHITE",
"YELLOW",
"activeCaption",
"activeCaptionBorder",
"activeCaptionText",
"control",
"controlDkShadow",
"controlHighlight",
"controlltHighlight",
"controlShadow",
"controlText",
"desktop",
"inactiveCaption",

"inactiveCaptionBorder",

"inactiveCaptionText",
"info",

"infoText",

"menu",

"menuText",
"scrollbar"”,

"text",
"textHighlight",
"textHighlightText",
"textInactiveText",
"textText",
"window",
"windowBorder",
"windowText",
"<Custom>"};

CHAPTER 9

POP-UPS AND CHOOSERS

315

316

CHAPTER 9

Color colors[]

Color.
Color.
Color.
Color.
Color.
Color.
Color.
Color.
Color.
Color.
Color.
Color.

BLACK,
BLUE,
CYAN,

GRAY,
GREEN,

PINK,
RED,
WHITE,

LIGHT
MAGENTA,
ORANGE,

POP-UPS AND CHOOSERS

- {

DARK_GRAY,

GRAY,

Color.YELLOW,

SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
SystemColor.
null};

activeCaption,
activeCaptionBorder,
activeCaptionText,
control,
controlDkShadow,
controlHighlight,
controlltHighlight,
controlShadow,
controlText,
desktop,
inactiveCaption,
inactiveCaptionBorder,
inactiveCaptionText,
info,

infoText,

menu,

menuText,

scrollbar,

text,

textHighlight,
textHighlightText,
textInactiveText,
textText,

window,
windowBorder,
windowText,

// Change combo box to match color, if possible
private void setColor(Color newColor) {
int position = findColorPosition(newColor);
comboBox. setSelectedIndex(position);

}

CHAPTER 9 POP-UPS AND CHOOSERS 317

// Given a label, find the position of the label in the list
private int findColorlLabel(Object label) {
String stringlabel = label.toString();
int position = NOT_FOUND;
for (int i=0,n=labels.length; i<n; i++) {
if (stringlabel.equals(labels[i])) {
position=i;
break;
}
}

return position;

}

// Given a color, find the position whose color matches
// This could result in a position different from original if two are equal
// Since actual color is same, this is considered to be okay
private int findColorPosition(Color color) {
int position = colors.length-1;
// Cannot use equals() to compare Color and SystemColor
int colorRGB = color.getRGB();
for (int i=0,n=colors.length; i<n; i++) {
if ((colors[i] != null) &8 (colorRGB == colors[i].getRGB())) {
position=i;
break;
}
}

return position;

}

public void itemStateChanged(ItemEvent itemEvent) {
int state = itemEvent.getStateChange();
if (state == ItemEvent.SELECTED) {
int position = findColorlabel(itemEvent.getItem());
// last position is bad (not selectable)
if ((position != NOT_FOUND) && (position != labels.length-1)) {
ColorSelectionModel selectionModel = getColorSelectionModel();
selectionModel.setSelectedColor(colors[position]);

}
}
}

public String getDisplayName() {
return "SystemColor";

}

318 CHAPTER 9 POP-UPS AND CHOOSERS

public Icon getSmallDisplayIcon() {
return new DiamondIcon(Color.BLUE);

}

public Icon getlargeDisplayIcon() {
return new DiamondIcon(Color.GREEN);

}

protected void buildChooser() {
comboBox = new JComboBox(labels);
comboBox.addItemListener(this);
add(comboBox);

}

public void updateChooser() {
Color color = getColorFromModel();
setColor(color);
}
}

Listing 9-12 demonstrates the use of the new chooser panel. It’s a slightly modified version
of the CreateColorSamplePopup program shown earlier in Listing 9-10. You can uncomment the
setChooserPanels() statement and comment out the addChooserPanel () call to go from adding
one panel (as in Figure 9-23) to replacing all of them (as in Figure 9-24).

Listing 9-12. Having Custom Panels in a JColorChooser

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;
import javax.swing.colorchooser.*;

public class CustomPanelPopup {

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("JColorChooser Custom Panel Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

final JButton button = new JButton("Pick to Change Background");
ActionListener actionListener = new ActionListener() {

public void actionPerformed(ActionEvent actionEvent) {
Color initialBackground = button.getBackground();

CHAPTER 9 POP-UPS AND CHOOSERS

final JColorChooser colorChooser =
new JColorChooser(initialBackground);
SystemColorChooserPanel newChooser =
new SystemColorChooserPanel();
// AbstractColorChooserPanel chooserPanels[] = {newChooser};
!/ colorChooser.setChooserPanels(chooserPanels);
colorChooser.addChooserPanel (newChooser);

// For okay button, change button background to selected color
ActionListener okActionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
Color newColor = colorChooser.getColor();
if (newColor.equals(button.getForeground())) {
System.out.println("Color change rejected");
} else {
button.setBackground(colorChooser.getColor());
}
}
1

// For cancel button, change button background to red
ActionListener cancelActionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
button.setBackground(Color.RED);
}
1

final JDialog dialog =
JColorChooser.createDialog(
null, "Change Button Background", true, colorChooser,
okActionListener, cancelActionlListener);

// Wait for current event dispatching to complete before showing
Runnable showDialog = new Runnable() {
public void run() {
dialog.setVisible(true);
}
};
EventQueue.invokelater(showDialog);
}
15
button.addActionlListener(actionlListener);
frame.add(button, BorderLayout.CENTER);

319

320

CHAPTER 9 POP-UPS AND CHOOSERS

frame.setSize(300, 100);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Using the ColorChooserGomponentFactory Class

One class worthy of some special attention is ColorChooserComponentFactory. Normally, this
class does its work behind the scenes, and you never need to deal with it.

However, if you want to remove one of the default color choosers, you cannot use the
public AbstractColorChooserPanel removeChooserPanel(AbstractColorChooserPanel panel)
method of JColorChooser. Initially, the chooserPanels property of JColorChooser is null. When
this property is null, the default ColorChooserUI asks the ColorChooserComponentFactory for the
default panels with the public static AbstractColorChooserPanel[] getDefaultChooserPanels()
method. So, until you modify the property, no panels will appear. If you want to remove a
default panel, you must get the default array, place the panels you want to keep in a new array,
and then change the chooserPanels property of the chooser to the new array. This is a little
extra work, but it gets the job done.

The other method in the ColorChooserComponentFactory classis public static JComponent
getPreviewPanel(), which gets the default preview panel when the previewPanel property of a
JColorChooser is null. This is the reason that providing a null argument to the setPreviewPanel()
method of JColorChooser doesn’t remove the preview panel. For the panel to be empty, you
must provide a JComponent with no size.

colorChooser.setPreviewPanel(new JPanel());

Customizing a JColorChooser Look and Feel

The JColorChooser appearance is nearly the same for all the preinstalled look and feel types.
The only differences are related to how each look and feel displays the internal components,
such as a JTabbedPane, JLabel, JButton, or JS1lider. Changing the UIResource-related properties
of those components affects the appearance of a newly created JColorChooser. In addition, the
JColorChooser class has its own 39 UIResource-related properties available for customization,
as listed in Table 9-9. Most of these resources are related to text labels appearing on the various
default color chooser panels.

Table 9-9. /ColorChooser UlIResource Elements

Property String Object Type
ColorChooser.background Color
ColorChooser.cancelText String
ColorChooser. font Font

ColorChooser. foreground Color

CHAPTER 9

Table 9-9. JColorChooser UIResource Elements (Continued)

Property String Object Type
ColorChooser.hsbBlueText String
ColorChooser.hsbBrightnessText String
ColorChooser.hsbDisplayedMnemonicIndex Integer
ColorChooser.hsbGreenText String
ColorChooser.hsbHueText String
ColorChooser.hsbMnemonic Integer
ColorChooser.hsbNameText String
ColorChooser.hsbRedText String
ColorChooser.hsbSaturationText String
ColorChooser.okText String
ColorChooser.panels AbstractColorChooserPanel[]
ColorChooser.previewText String
ColorChooser.resetMnemonic Integer
ColorChooser.resetText String
ColorChooser.rgbBlueDisplayedMnemonicIndex Integer
ColorChooser.rgbBlueMnemonic Integer
ColorChooser.rgbBlueText String
ColorChooser.rgbGreenDisplayedMnemonicIndex Integer
ColorChooser.rgbGreenMnemonic Integer
ColorChooser.rgbGreenText String
ColorChooser.rgbMnemonic Integer
ColorChooser.rgbNameText String
ColorChooser.rgbRedDisplayedMnemonicIndex Integer
ColorChooser.rgbRedMnemonic Integer
ColorChooser.rgbRedText String
ColorChooser.sampleText String
ColorChooser.showPreviewPanelText Boolean
ColorChooser.swatchesDefaultRecentColor Color
ColorChooser.swatchesDisplayedMnemonicIndex Integer
ColorChooser. swatchesMnemonic Integer
ColorChooser. swatchesNameText String
ColorChooser.swatchesRecentSwatchSize Dimension

POP-UPS AND CHOOSERS

322

CHAPTER 9 POP-UPS AND CHOOSERS

Table 9-9. JColorChooser UlResource Elements (Continued)

Property String Object Type
ColorChooser.swatchesRecentText String
ColorChooser.swatchesSwatchSize Dimension
ColorChooserUI String

JFileChooser Class

The Swing component set also provides a chooser for the selection of file names and/or direc-
tories: the JFileChooser class. This chooser replaces the need for using the FileDialog from the
original AWT component set. Like the other Swing chooser components, JFileChooser isn’t
automatically placed in a pop-up window, but it can be placed anywhere within the user interface
of your program. Figure 9-25 shows a JFileChooser with the Metal look and feel, Ocean theme,
that has been automatically placed in a modal JDialog.

| FileSystemView
£ Open E x|
LookIn: |Cjdk1.6.0 |+] [=][&][=][88]e=]
.|j hin] sample] src.ziﬁ <-
I demo Isre [THIRDF
I docs [y COPYRIGHT o
: FileView
[include [LICENSE
Cire [LICENSE.rtf
b [README htmi
Kl ; Dl €
File Name: |
Files of Type: |All Files v [€— FileFilter
Open | | Cancel

Figure 9-25. JFileChooser sample

In support of the JFileChooser class are a handful of classes in the javax.swing.filechooser
package. The support classes include a FileFilter class for restricting files and directories to
be listed in the FileView of the JFileChooser. The FileView controls how the directories and
files are listed within the JFileChooser. The FileSystemViewis an abstract class that tries to hide
file system-related operating system specifics from the file chooser. Java 2 platform vendors

will provide operating system-specific versions so that tasks such as listing root partitions can
be done (with 100% Pure Java code).

CHAPTER 9 POP-UPS AND CHOOSERS

Caution Don't confuse the abstract javax. swing.filechooser.FileFilter class with the
java.io.FileFilter interface. Although functionally similar, they're different. The two coexist because
the java.io.FileFilter interface didn’t exist in a Java 1.1 runtime. Because the original Swing
JFileChooser needed to run in both Java 1.1 and Java 2 environments, the chooser needed to define a
replacement. Unless otherwise specified, all FileFilter references in this text are to the class in the
javax.swing.filechooser package.

Creating a JFileChooser

There are six constructors for JFileChooser:

public JFileChooser()
JFileChooser fileChooser = new JFileChooser();

public JFileChooser(File currentDirectory)
File currentDirectory = new File("."); // starting directory of program
JFileChooser fileChooser = new JFileChooser(currentDirectory);

public JFileChooser(File currentDirectory, FileSystemView fileSystemView)
FileSystemView fileSystemView = new SomeFileSystemView(...);
JFileChooser fileChooser = new JFileChooser(currentDirectory, fileSystemView);

public JFileChooser(FileSystemView fileSystemView)
JFileChooser fileChooser = new JFileChooser(fileSystemView);

public JFileChooser(String currentDirectoryPath)
String currentDirectoryPath = "."; // starting directory of program

JFileChooser fileChooser = new JFileChooser(currentDirectoryPath);

public JFileChooser(String currentDirectoryPath, FileSystemView fileSystemView)
JFileChooser fileChooser = new JFileChooser(currentDirectoryPath, fileSystemView);

By default, the starting directory displayed is the user’s home directory (system property
user.home). If you want to start the JFileChooser pointing at another directory, the directory
can be specified as either a String or a File object.

You can also specify a FileSystemView to specify a custom representation to the operating
system’s top-level directory structure. When the FileSystemView argument is not specified, the
JFileChooser uses a FileSystemView appropriate for the user’s operating system.

Using JFileChooser

After creating a JFileChooser from a constructor, you can place it in any Container, because it’s
a JComponent. The JFileChooser object looks a little strange in an object that’s not a pop-up
window, but this may allow you to do a task without needing to constantly bring up a new file
chooser.

323

324

CHAPTER 9 POP-UPS AND CHOOSERS

Listing 9-13 demonstrates a simple window with two labels and a JFileChooser. Notice
that there are no Open or Cancel buttons, but the buttons in the FileSystemView area are selectable.

Listing 9-13. Using a JFileChooser in Your JFrame

import java.io.File;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class FileSamplePanel {

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("JFileChooser Popup");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

final Jlabel directorylabel = new JlLabel(" ");
directorylabel.setFont(new Font("Serif", Font.BOLD | Font.ITALIC, 36));
frame.add(directorylLabel, BorderLayout.NORTH);

final JlLabel filenamelabel = new JLabel(" ");
filenamelabel.setFont(new Font("Serif", Font.BOLD | Font.ITALIC, 36));
frame.add(filenamelLabel, BorderlLayout.SOUTH);

JFileChooser fileChooser = new JFileChooser(".");
fileChooser.setControlButtonsAreShown(false);
frame.add(fileChooser, Borderlayout.CENTER);

frame.pack();
frame.setVisible(true);
}
};
EventQueue.invokelLater(runner);
}
}

Adding an ActionListener to a JFileChooser

The JFileChooser allows you to add ActionListener objects to listen for selection of the approval or
cancel actions. Approval is double-clicking a file; cancel is pressing the Escape key. To detect
which action was triggered, check the action command for the ActionEvent received by your
ActionlListener. Its action command setting will be either JFileChooser.APPROVE_SELECTION
for file selection or JFileChooser.CANCEL_SELECTION for pressing the Escape key.

To complete the previous example in Listing 9-13, adding an ActionlListener allows you to
set the text for the two labels when the user selects a file. On selection, the text becomes the

CHAPTER 9 POP-UPS AND CHOOSERS 325

current directory and file name. On pressing of the Escape key, text is cleared. Listing 9-14
shows the new ActionListener.

Listing 9-14. ActionListener for JFileChooser in Your JFrame

// Create Actionlistener
ActionlListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
JFileChooser theFileChooser = (JFileChooser)actionEvent.getSource();
String command = actionEvent.getActionCommand();
if (command.equals(JFileChooser.APPROVE SELECTION)) {
File selectedFile = theFileChooser.getSelectedFile();
directorylabel.setText(selectedFile.getParent());
filenamelabel.setText(selectedFile.getName());
} else if (command.equals(JFileChooser.CANCEL SELECTION)) {
directorylabel.setText(" ");
filenamelabel.setText(" ");
}
}
};

fileChooser.addActionListener(actionListener);

With the addition of the ActionListener, the program is now complete in the sense that
selection is now active. Figure 9-26 shows what this window would look like after selection of
the COPYRIGHT file within the c:\jdk1.5.0 directory.

£ JFileChooser Popup i ;Iglll

C:\jdk1.5.0
Look In: ||jjdk1.5.l] |V| @E

T bin [y LicensE

T demo [y LICENSE.rtf

—J docs [} README.htmi

T include [sre.zip

ire [} THIRDPARTYLICENSEREADME.txt
b

] sample

Jsrc

[} copyriGHT

File Name: [COPYRIGHT |

Files of Type: [All Files]

COPYRIGHT

Figure 9-26. /FileChooser within a custom window

326

CHAPTER 9 POP-UPS AND CHOOSERS

Showing a JFileChooser within a Pop-Up Window

Instead of placing a JFileChooser panel within your own window, you will more typically place
itin amodal JDialog. There are three ways to do this, depending on the text you want to appear
on the approval button:

¢ public int showDialog(Component parentComponent, String approvalButtonText)
¢ public int showOpenDialog(Component parentComponent)
¢ public int showSaveDialog(Component parentComponent)

Calling one of these methods will place the configured JFileChooser into a modal JDialog
and show the dialog box centered over the parent component. Providing a null parent component
centers the pop-up window on the screen. The call doesn’t return until the user selects the
approval or cancel button. After selection of one of the two buttons, the call returns a status
value, depending on which button was selected. This status would be one of three JFileChooser
constants: APPROVE_OPTION, CANCEL_OPTION, or ERROR_OPTION.

Gaution If the user clicks the approval button without selecting anything, CANCEL_OPTION is returned.

To perform the same task as the previous example, in which an ActionlListener was
attached to the JFileChooser (Listing 9-14), you can just show the dialog box and change the
labels based on the return status, instead of relying on the action command, as follows:

JFileChooser fileChooser = new JFileChooser(".");

int status = fileChooser.showOpenDialog(null);

if (status == JFileChooser.APPROVE OPTION) {
File selectedFile = fileChooser.getSelectedFile();
directorylabel.setText(selectedFile.getParent());
filenamelabel.setText(selectedFile.getName());

} else if (status == JFileChooser.CANCEL OPTION) {
directorylabel.setText(" ");
filenamelabel.setText(" ");

}

With this technique, the file chooser will be shown in another window, instead
of within the window with the two labels. Notice that this version switches from checking
the String return values of the earlier example to checking int return values:

[if (command.equals(JFileChooser.APPROVE SELECTION)) versus if (status ==
JFileChooser.APPROVE _OPTION)].

JFileChooser Properties

Once you understand the basic JFileChooser usage, you can customize the component’s
behavior and appearance by modifying its many properties. Table 9-10 shows the 26 properties
of JFileChooser.

Table 9-10. JFileChooser Properties

CHAPTER 9

POP-UPS AND CHOOSERS

Property Name Data Type Access
acceptAllFileFilter FileFilter Read-only
acceptAllFileFilterUsed boolean Read-write bound
accessibleContext AccessibleContext Read-only
accessory JComponent Read-write bound
actionListeners ActionListener[] Read-only

approveButtonMnemonic
approveButtonText
approveButtonToolTipText
choosableFileFilters
controlButtonsAreShown
currentDirectory
dialogTitle

dialogType
directorySelectionEnabled
dragEnabled

fileFilter
fileHidingEnabled
fileSelectionEnabled
fileSelectionMode
fileSystemView
fileView
multiSelectionEnabled
selectedFile
selectedFiles

Ul

UIClassID

char

String

String
FileFilter[]
boolean

File

String

int

boolean
boolean
FileFilter
boolean
boolean

int
FileSystemView
FileView
boolean

File

File[]
FileChooserUI

String

Read-write bound
Read-write bound
Read-write bound
Read-only

Read-write bound
Read-write bound
Read-write bound
Read-write bound
Read-only

Read-write

Read-write bound
Read-write bound
Read-only

Read-write bound
Read-write bound
Read-write bound
Read-write bound
Read-write bound
Read-write bound
Read-only

Read-only

When the different showDialog() methods are used, the dialogType property is automati-
cally set to one of three JOptionPane constants: OPEN_DIALOG, SAVE_DIALOG, CUSTOM DIALOG. If
you're not using showDialog(), you should set this property according to the type of dialog box you
plan to work with. The controlButtonsAreShown property allows you to hide the Open, Save,

and Cancel buttons.

327

328

CHAPTER 9 POP-UPS AND CHOOSERS

Working with File Filters

The JFileChooser supports three ways of filtering its file and directory list. The first two involve
working with the FileFilter class, and the last involves hidden files. First, let’s look at the
FileFilter class.

FileFilter is an abstract class that works something like FilenameFilter in AWT. However,
instead of working with strings for directory and file names, it works with a File object. For
every File object that is to be displayed (both files and directories), the filter decides whether
the File can appear within the JFileChooser. In addition to providing an acceptance mecha-
nism, the filter also provides a description, or name, for when the description is displayed to a
user. These two capabilities are reflected in the following two methods of the class definition:

public abstract class FileFilter {
public FileFilter();
public abstract String getDescription();
public abstract boolean accept(File file);

}

Note Given the abstract nature of this class, it should be an interface, but it isn't.

To demonstrate a file filter, Listing 9-15 creates one that accepts an array of file extensions.
If the file sent to accept() is a directory, it’s automatically accepted. Otherwise, the file exten-
sion must match one of the extensions in the array provided, and the character preceding the
extension must be a period. For this particular filter, the comparisons are case-insensitive.

Listing 9-15. A Custom FileFilter for Use with a JFileChooser

import javax.swing.filechooser.*;
import java.io.File; // avoid FileFilter name conflict

public class ExtensionFileFilter extends FileFilter {
String description;
String extensions[];

public ExtensionFileFilter(String description, String extension) {
this(description, new String[] { extension});

}

CHAPTER 9 POP-UPS AND CHOOSERS

public ExtensionFileFilter(String description, String extensions[]) {
if (description == null) {

// Since no description,
this.description =

} else {
this.description =

}

use first extension and # of extensions as description
extensions[0]+"{ "+extensions.length+"} " ;

description;

// Convert array to lowercase

// Don't alter original entries
this.extensions = (String[])extensions.clone();
toLower(this.extensions);

}

private void tolower(String array[]) {
for (int i=0, n=array.length; i<n; i++) {
array[i] = array[i].tolowerCase();

}
}

public String getDescription() {

return description;

}

// Ignore case, always

accept directories

// Character before extension must be a period
public boolean accept(File file) {
if (file.isDirectory()) {

return true;
} else {

String path = file.getAbsolutePath().toLowerCase();
for (int i=0, n=extensions.length; i<n; i++) {
String extension = extensions[i];
if ((path.endsWith(extension) &&
(path.charAt(path.length()-extension.length()-1)) == '.")) {

return true;
}
}
}
return false;
}
}

329

330 CHAPTER 9 = POP-UPS AND CHOOSERS

Using the file filter entails creating it and associating it with the JFileChooser. If you just
want to make the filter selectable by the user, but not the default initial selection, call public
void addChoosableFileFilter(FileFilter filter). This will keep the default accept-all-files
filter selected. If, instead, you want the filter to be set when the chooser first appears, call
public void setFileFilter(FileFilter filter), and the file chooser will filter the initial set of
files shown.

For example, the following source will add two filters to a file chooser:

FileFilter jpegFilter =

new ExtensionFileFilter(null, new String[]{ "JIPG", "JPEG"});
fileChooser.addChoosableFileFilter(jpegFilter);
FileFilter gifFilter = new ExtensionFileFilter("gif", new String[]{ "gif"});
fileChooser.addChoosableFileFilter(gifFilter);

When no file filters have been associated with the JFileChooser, the filter from
JFileChooser.getAcceptAllFileFilter() is used to provide a filter that accepts all files
and that is also appropriate for the underlying operating system.

Figure 9-27 shows an open filter selection combo box in a Motif file chooser.

Figure 9-27. Using custom FileFilter with a JFileChooser

CHAPTER 9 POP-UPS AND CHOOSERS

Tip Setting the FileFilter with setFileFilter() before adding filters with add
ChoosableFileFilter() causes the accept-all-file filter to be unavailable. To put it back, call
setAcceptAllFileFilterUsed(true). In addition, you can reset the filter list with a call to
resetChoosableFileFilters().

One built-in filterisn’t a FileFilter. It concerns hidden files, such as those that begin with
aperiod (.) on UNIX file systems. By default, hidden files aren’t shown within the JFileChooser.
To enable the display of hidden files, you must set the fileHidingEnabled property to false:

aFileChooser.setFileHidingEnabled(false);

Tip When creating javax.swing.filechooser.FileFilter subclasses, you may want to have the
new class also implement the java.io.FileFilter interface. To do this, simply add implements
java.io.FileFilter to the class definition. This works because the method signature for the accept()
method in the javax.swing.filechooser class matches the interface definition: public boolean
accept(File file).

Choosing Directories Instead of Files

The JFileChooser supports three selection modes: files only, directories only, and files and
directories. The fileSelectionMode property setting determines the mode of the chooser. The
available settings are specified by the three JFileChooser constants: FILES ONLY,DIRECTORIES ONLY,
and FILES AND DIRECTORIES. Initially, the file chooser is in JFileChooser.FILES ONLY mode.
To change the mode, just call public void setFileSelectionMode(int newMode).

In addition to the fileSelectionMode property, you can use the read-only
fileSelectionEnabled and directorySelectionEnabled properties to determine the type
of input currently supported by the file chooser.

Adding Accessory Panels

The JFileChooser supports the addition of an accessory component. This component can
enhance the functionality of the chooser, including previewing an image or document, or
playing an audio file. To respond to file selection changes, the accessory component should
attach itself as a PropertyChangelistener to the JFileChooser. When the JFileChooser . w
SELECTED_FILE_CHANGED_ PROPERTY property changes, the accessory then changes to reflect the
file selection. Figure 9-28 shows how an image previewer accessory component might appear.
Configuring the accessory for a chooser is just like setting any other property.

fileChooser.setAccessory(new LabelAccessory(fileChooser));

331

332 CHAPTER 9 POP-UPS AND CHOOSERS

[dopen =]
Look In: |ﬁ ch11 |v| E:E:lg
'Sample.java D GlueSample.class
'] D GlueSample.java
HableSplit$1.class D JScrollPaneToTopAction.class
HableSplit$2.class D JScrollPaneToTopAction.java

plit.class D logo-across.jpy
dableSplit.java |D logo-down.jpg
[l | i | D
File Name: |I0g0-d0wn.jpg |
Files of Type: [All Files |~]

| Open || Cancel |

Figure 9-28. A JFileChooser with an accessory panel

Listing 9-16 shows source for an Image component that displays an accessory icon. The
selected image file becomes the icon for a JLabel component. The component does two scaling
operations to make sure the dimensions of the image are sized to fit within the accessory.

Listing 9-16. Custom Accessory for Use with JFileChooser

import javax.swing.*;
import java.beans.*;
import java.awt.*;
import java.io.*;

public class LabelAccessory extends JlLabel implements PropertyChangelistener {
private static final int PREFERRED_WIDTH = 125;
private static final int PREFERRED_HEIGHT = 100;

public LabelAccessory(JFileChooser chooser) {
setVerticalAlignment(JLabel.CENTER);
setHorizontalAlignment(JLabel.CENTER);
chooser.addPropertyChangelistener(this);
setPreferredSize(new Dimension(PREFERRED WIDTH, PREFERRED HEIGHT));
}
public void propertyChange(PropertyChangeEvent changeEvent) {
String changeName = changeEvent.getPropertyName();
if (changeName.equals(JFileChooser.SELECTED FILE_CHANGED_ PROPERTY)) {
File file = (File)changeEvent.getNewValue();
if (file != null) {
ImageIcon icon = new ImageIcon(file.getPath());
if (icon.getIconWidth() > PREFERRED WIDTH) {
icon = new ImageIcon(icon.getImage().getScaledInstance(
PREFERRED WIDTH, -1, Image.SCALE DEFAULT));

CHAPTER 9 POP-UPS AND CHOOSERS

if (icon.getIconHeight() > PREFERRED HEIGHT) {
icon = new ImageIcon(icon.getImage().getScaledInstance(
-1, PREFERRED HEICHT, Image.SCALE DEFAULT));
}
}
setIcon(icon);
}
}
}
}

Using the FileSystemView Class

The FileSystemView class localizes access to platform-specific file system information. Where
the JDK 1.1 version of java. io.File was fairly crippled in this respect, FileSystemViewfills in to
make it easier to design FileChooserUI objects. The Swing FileSystemView class provides three
custom views as package-private subclasses of FileSystemView. They include support for UNIX
and Windows, plus a generic handler.

Although it isn’t necessary to define your own FileSystemView, the class provides some
features that can be useful outside the context of a JFileChooser. To get the view specific to the
user’s runtime environment, call public static FileSystemView getFileSystemView().The
class definition follows.

public abstract class FileSystemView {
// Constructors
public FileSystemView(); // Properties
// Properties
public File getDefaultDirectory();
public File getHomeDirectory();
public File[] getRoots();
// Class Methods
public static FileSystemView getFileSystemView();
// Other Methods
public File createFileObject(File directory, String filename);
public File createFileObject(String path);
protected File createFileSystemRoot(File file);
public abstract File createNewFolder(File containingDir) throws IOException;
public File getChild(File parent, String filename);
public File[] getFiles(File directory, boolean useFileHiding);
public File getParentDirectory(File file);
public String getSystemDisplayName(File file);
public Icon getSystemIcon(File file);
public String getSystemTypeDescription(File file);
public boolean isComputerNode(File file);
public boolean isDrive(File file);
public boolean isFileSystem(File file);
public boolean isFileSystemRoot(File file);
public boolean isFloppyDrive(File file);

333

334

CHAPTER 9 POP-UPS AND CHOOSERS

public boolean isHiddenFile(File file);

public boolean isParent(File folder, File file);
public boolean isRoot(File file);

public Boolean isTraversable(File file);

Note Notice that the isTraversable() method returns a Boolean, not a boolean. (I haven't a clue
why the difference—perhaps somewhere an object is needed, and the primitive boolean wasn’t sufficient.)

FileView Class

The final part of the JFileChooser class to examine is the FileView area where all the file names
are listed. Each of the custom look and feel types has its own FileView area class. In addition,
some of the predefined look and feel types, such as Motif, aren’t changeable. Nevertheless, at
least in the Metal and Windows file choosers, you can customize the icons for different file
types or change the display name for a file.

The five methods of the FileView class allow you to change the name, icon, or description (two
forms) of each File in the view. In addition, the FileView actually controls whether a directory
is traversable, allowing you to program in a weak level of access control. Nontraversable directories
have a different default icon, because those directories cannot be browsed for file selection.

Here’s the definition of the abstract FileView class:

public abstract class FileView {
public FileView();
public String getDescription(File file);
public Icon getIcon(File file);
public String getName(File file);
public String getTypeDescription(File file);
public Boolean isTraversable(File file);

Note Like FileSystemView, the isTraversable() method returns a Boolean value, not a boolean one.

Customizing the FileView requires creating a subclass and overriding the appropriate
methods. By default, all the methods return null, indicating that you don’t want to define
custom behavior for a specific method.

Once you've defined the file view, simply change the fileView property of your JFileChooser:

fileChooser.setFileView(new JavaFileView());

Figure 9-29 shows the changed appearance of a Metal JFileChooser after installing a
custom FileView.

CHAPTER 9

[dopen x|

Look In: |ﬁ Cho9 | - | 0 |E
CreateColorSamplePopup$1.class CustomPanelPopup$13$1.clas
CreateColorSamplePopup.class CustomPanelPopup$1.class

% CreateColorSamplePopup.java : 2822 CustomPanelPopup.class
CustomPanelPopup$1$1$1.class # CustomPanelPopup.java : 267
CustomPanelPopup$1$1$2.class D dummmy.gif
CustomPanelPopup$1$1$3.class # dummy.html

[| D

File Hame: | |

Files of Type: [All Files |~]

| Open | | Cancel |

Figure 9-29. Changing the FileView

POP-UPS AND CHOOSERS

The JavaFileView class in Listing 9-17 provides a FileView implementation that customizes
the appearance of files related to Java development—specifically, . java, .class, .jar, and
.html or .htmfiles. (This is certainly not meant to be a comprehensive list of Java file types.) For
each of these file types, a special icon instead of the default icon is displayed next to the name.
In addition, for Java source files, the length of the file is displayed. (Imagine if every file attribute
were being displayed!) Unfortunately, you can’t modify the font or color from a FileView.

Listing 9-17. Custom FileView for Some Java-Related File Types

import java.io.File;

import java.awt.*;

import javax.swing.*;

import javax.swing.filechooser.*;

public class JavaFileView extends FileView {
Icon javaIcon = new DiamondIcon(Color.BLUE);
Icon classIcon = new DiamondIcon(Color.GREEN);
Icon htmlIcon = new DiamondIcon(Color.RED);
Icon jarIcon = new DiamondIcon(Color.PINK);

public String getName(File file) {
String filename = file.getName();
if (filename.endsWith(".java")) {
String name = filename + " : " + file.length();
return name;

}

return null;

335

336 CHAPTER 9 POP-UPS AND CHOOSERS

public String getTypeDescription(File file) {
String typeDescription = null;
String filename = file.getName().tolLowerCase();

if (filename.endsWith(".java")) {
typeDescription = "Java Source";
} else if (filename.endsWith(".class")){
typeDescription = "Java Class File";
} else if (filename.endsWith(".jar")){
typeDescription = "Java Archive";
} else if (filename.endsWith(".html") || filename.endsWith(".htm")) {
typeDescription = "Applet Loader";
}

return typeDescription;

}

public Icon getIcon(File file) {
if (file.isDirectory()) {
return null;
}
Icon icon = null;
String filename = file.getName().toLowerCase();
if (filename.endsWith(".java")) {
icon = javalcon;
} else if (filename.endsWith(".class")){
icon = classIcon;
} else if (filename.endsWith(".jar")){
icon = jarIcon;
} else if (filename.endsWith(".html") || filename.endsWith(".htm")) {
icon = htmlIcon;

}

return icon;

Customizing a JFileChooser Look and Feel

Each installable Swing look and feel provides a different JFileChooser appearance and set of
default UIResource values. Figure 9-30 shows the appearance of the JFileChooser for the
preinstalled set of look and feel types: Motif, Windows, and Ocean.

CHAPTER 9 I POP-UPS AND CHOOSERS 337

Motif

Windows
[-] =l(=lle)@lE]
o
Hoolames paede_rand gf)
Flos of ype: AR Fles I=l
| Ovem || coce |
Ocean

Figure 9-30. JFileChooser under different look and feel types

338

CHAPTER 9

POP-UPS AND CHOOSERS

The available set of UIResource-related properties for a JFileChooser is shown in Table 9-11.
For the JFileChooser component, there are 83 different properties. Nearly all the properties
relate to the button labels, mnemonics, icons, and tooltip text.

Table 9-11. JFileChooser UlResource Elements

Property String Object Type
FileChooser.acceptAllFileFilterText String
FileChooser.ancestorInputMap InputMap
FileChooser.cancelButtonMnemonic Integer
FileChooser.cancelButtonText String
FileChooser.cancelButtonToolTipText String
FileChooser.deleteFileButtonMnemonic Integer
FileChooser.deleteFileButtonText String
FileChooser.deleteFileButtonToolTipText String
FileChooser.detailsViewButtonAccessibleName String
FileChooser.detailsViewButtonToolTipText String
FileChooser.detailsViewIcon Icon
FileChooser.directoryDescriptionText String
FileChooser.directoryOpenButtonMnemonic Integer
FileChooser.directoryOpenButtonText String
FileChooser.directoryOpenButtonToolTipText String
FileChooser.enterFilenamelLabelMnemonic String
FileChooser.enterFilenamelabelText String
FileChooser.fileDescriptionText String
FileChooser.fileNamelLabelMnemonic Integer
FileChooser.fileNamelLabelText String
FileChooser.fileslLabelMnemonic Integer
FileChooser.fileslLabelText String
FileChooser.filesOfTypelLabelMnemonic Integer
FileChooser.filesOfTypelabelText String
FileChooser.filterLabelMnemonic Integer
FileChooser.filterlLabelText String
FileChooser.foldersLabelMnemonic Integer
FileChooser.folderslLabelText String
FileChooser.helpButtonMnemonic Integer

CHAPTER 9 POP-UPS AND CHOOSERS

Table 9-11. JFileChooser UlResource Elements (Continued)

Property String Object Type
FileChooser.helpButtonText String
FileChooser.helpButtonToolTipText String
FileChooser.homeFolderAccessibleName String
FileChooser.homeFolderIcon Icon
FileChooser.homeFolderToolTipText String
FileChooser.listFont Font
FileChooser.listViewBackground Color
FileChooser.listViewBorder Border
FileChooser.listViewButtonAccessibleName String
FileChooser.listViewButtonToolTipText String
FileChooser.listViewIcon Icon
FileChooser.listViewWindowsStyle Boolean
FileChooser.lookInlLabelMnemonic Integer
FileChooser.lookInlLabelText String
FileChooser.newFolderAccessibleName String
FileChooser.newFolderButtonMnemonic Integer
FileChooser.newFolderButtonText String
FileChooser.newFolderButtonToolTipText String
FileChooser.newFolderDialogText String
FileChooser.newFolderErrorSeparator String
FileChooser.newFolderErrorText String
FileChooser.newFolderIcon Icon
FileChooser.newFolderToolTipText String
FileChooser.openButtonMnemonic Integer
FileChooser.openButtonText String
FileChooser.openButtonToolTipText String
FileChooser.openDialogTitleText String
FileChooser.other.newFolder String
FileChooser.other.newFolder.subsequent String
FileChooser.win32.newFolder String
FileChooser.win32.newFolder.subsequent String
FileChooser.pathLabelMnemonic Integer
FileChooser.pathLabelText String

339

340 CHAPTER 9 POP-UPS AND CHOOSERS

Table 9-11. JFileChooser UlResource Elements (Continued)

Property String Object Type
FileChooser.readOnly Boolean
FileChooser.renameFileButtonMnemonic Integer
FileChooser.renameFileButtonText String
FileChooser.renameFileButtonToolTipText String
FileChooser.renameFileDialogText String
FileChooser.renameFileErrorText String
FileChooser.renameFileErrorTitle String
FileChooser.saveButtonMnemonic Integer
FileChooser.saveButtonText String
FileChooser.saveButtonToolTipText String
FileChooser.saveDialogTitleText String
FileChooser.saveInlLabelText String
FileChooser.updateButtonMnemonic Integer
FileChooser.updateButtonText String
FileChooser.updateButtonToolTipText String
FileChooser.upFolderAccessibleName String
FileChooser.upFolderIcon Icon
FileChooser.upFolderToolTipText String
FileChooser.usesSingleFilePane Boolean
FileChooser.useSystemExtensionHiding Boolean
FileChooserUI String

In addition to the more than 80 resources for JFileChooser, there are 5 additional ones as
part of the FileView, which are shown in Table 9-12.

Table 9-12. FileView UlResource Elements

Property String Object Type
FileView.computerIcon Icon
FileView.directoryIcon Icon
FileView.fileIcon Icon
FileView.floppyDriveIcon Icon

FileView.hardDriveIcon Icon

CHAPTER 9 POP-UPS AND CHOOSERS 3

Summary

In this chapter, you explored the intricacies of Swing’s pop-up and chooser classes. Instead of
manually creating a JDialog and filling it with the necessary pieces, the Swing component set
includes support for many different pop-up and chooser classes. Starting with the JOptionPane,
you learned how to create informational, question, and input pop-ups. In addition, you
explored how to monitor the progress of time-consuming tasks by using the ProgressMonitor
and ProgressMonitorInputStream classes.

After looking at the more general pop-up classes, you explored the specifics of Swing’s
color and file chooser classes: JColorChooser and JFileChooser. From each of these two classes,
you can prompt the user for the requested input and customize the display in more ways than
you can imagine.

Now that you have a feel for the predefined pop-ups, it is time to move on to the
LayoutManager classes in Chapter 10. With the help of the system layout managers, you can
create even better user interfaces.

CHAPTER 10

Layout Managers

In Chapter 9, you learned about the various pop-up and chooser classes available from the
Swing component set. In this chapter, you'll learn about the AWT and Swing layout managers.

While this book focuses on the Swing component set, you can’t use them in a vacuum. You
need to understand both the AWT and Swing layout managers. In fact, you’re more apt to use
four of the five AWT layout managers than three of the five Swing layout managers. The AWT
layout managers are FlowLayout, BorderLayout, GridLayout, CardLayout, and GridBaglLayout.
The Swing layouts are BoxLayout, Overlaylayout, ScrollPanelayout, ViewportlLayout, and
Springlayout. Another manager is JRootPane.RootLayout, which was described in Chapter 8.

In addition to the layout managers, you'll look at several helper classes: GridBaglLayout’s
constraint class GridBagConstraints, the SizeRequirements class used by both the BoxLayout
and OverlaylLayout managers, and the Springlayout manager’s associated Spring and
Springlayout.Constraints classes.

Layout Manager Responsibilities

Every container, such as a JPanel or Container, has a layout manager. That layout manager is
responsible for positioning components, regardless of the platform or screen size.

Layout managers eliminate the need to compute component placement on your own,
which would be a losing proposition, since the size required for any component depends on
the platform on which your program is deployed and the current look and feel. Even for a
simple layout, the code required to discover component sizes and compute absolute positions
could be hundreds of lines, particularly if you concern yourself with what happens when the
user resizes a window. A layout manager takes care of this for you. It asks each component in
the container how much space it requires, and then arranges the components on the screen as
best it can, based on the component sizes on the platform in use, the available space, and the
rules of the layout manager.

To find out how much space a component needs, the layout manager calls the component’s
getMinimumSize(), getPreferredSize(), and getMaximumSize () methods. These methods report
the minimum, preferred, and maximum space that a component requires to be displayed
correctly. Thus, each component must know its space requirements. The layout manager then
uses the component’s space requirements to resize components and arrange them on the
screen. Your Java program never needs to worry about platform-dependent positioning, beyond
layout manager setup.

343

344

CHAPTER 10 LAYOUT MANAGERS

Note that alayout manager is free to ignore some of its components; there is no requirement
that alayout manager display everything. For example, a Container using a BorderLayout might
include 30 or 40 components; however, the BorderLayout will display at most 5 of them (the last
component placed in each of its five named areas). Likewise, a CardLayout may manage many
components but displays exactly one at a time.

Besides ignoring components, a layout manager can do anything it wants with the compo-
nents’ minimum, preferred, and maximum size. It is free to ignore any or all of these. It makes
sense that a layout manager can ignore a preferred size—after all, preferred means, “Give me
this size if it’s available.” However, a layout manager can also ignore a minimum size. At times,
there is no reasonable alternative because the container may not have enough room to display
a component at its minimum size. How to handle this situation is left to the layout manager
designer’s discretion.

LayoutManager Interface

The LayoutManager interface defines the responsibilities of the manager that lays out the
Component objects within a Container. As explained in the previous section, it is the duty of the
layout manager to determine the position and size of each component within the Container.
You will never call the methods of the LayoutManager interface directly; for the most part, layout
managers do their work behind the scenes. Once you have created a LayoutManager object and
told the container to use it (by calling setLayout(manager)), you're finished with it. The system
calls the appropriate methods of the layout manager when necessary. Like any interface,
LayoutManager specifies the methods a layout manager must implement but says nothing
about how the LayoutManager does its job.

The LayoutManager interface itselfis most important if you are writing a new layout manager.
I'll describe this interface first because it’s the foundation on which all layout managers are
based. I'll also describe the LayoutManager2 interface, which is used by some layout managers.

Exploring the LayoutManager Interface

Five methods make up the LayoutManager interface:

public interface LayoutManager {
public void addLayoutComponent(String name, Component comp);
public void layoutContainer(Container parent);
public Dimension minimumLayoutSize(Container parent);
public Dimension preferredLayoutSize(Container parent);
public void removelayoutComponent(Component comp);

CHAPTER 10 LAYOUT MANAGERS 345

If you create your own class that implements LayoutManager, you must define all five.
As you will see, many of the methods do not need to do anything, but you must still include
a stub with the appropriate signature.

The addLayoutComponent () method is called only when you add components by calling the
add(String, Component) or add(Component, Object) method, not just plain add(Component).
For add(Component, Object), the Object must be of type String, or else that isn’t called either.

Exploring the LayoutManager2 Interface

For layout managers that require each component to carry its layout manager constraints, the
LayoutManager2 interface comes into play. The layout managers that use LayoutManager2 include
Borderlayout, CardLayout, and GridBaglLayout, to name a few.

LayoutManager2 has five additional methods:

public interface LayoutManager2 {
public void addLayoutComponent(Component comp, Object constraints);
public float getlayoutAlignmentX(Container target);
public float getlayoutAlignmentY(Container target);
public void invalidatelayout(Container target);
public Dimension maximumlLayoutSize(Container target);

The addLayoutComponent () method is called when you assign constraints to the component
when adding it to the layout. In practice, this means that you added the component to the
container by calling the add(Component component, Object constraints) oradd(String name,
Component component) methods, rather than the add(Component component) method. It is up to
the layout manager to decide what, if anything, to do with the constraints. For example,
GridBaglayout uses constraints to associate a GridBagConstraints object to the component
added, and BorderLayout uses constraints to associate a location (like BorderLayout.CENTER)
with the component.

FlowLayout Class

FlowLayout is the default layout manager for a JPanel. A FlowLayout adds components to the

container in rows, working in the order defined by the getComponentOrientation() method of
Component, typically left to right in the United States and western Europe. When it can’t fit more
components in a row, it starts a new row, similar to a word processor with word wrap enabled.
When the container is resized, the components within it are repositioned based on the container’s
new size. Components within a FlowLayout-managed container are given their preferred size.
If there is insufficient space, you do not see all the components, as illustrated in Figure 10-1.

346 CHAPTER 10 LAYOUT MANAGERS

=10l x|
| Sunday | Mond || Tuesday || Wed lay || Thursday || Friday || Saturday |
5= 17|] - o JS=IE
Sunday		Monday
Tuesday		Wednesday
Thursday		Friday

R

Figure 10-1. The default FlowLayout setup, with seven buttons and three different screen sizes.
As the third example shows, if the screen is too small, the components will not be shrunk to fit all
the components.

There are three constructors for creating the FlowLayout layout manager:

public FlowLayout()
public FlowLayout(int alignment)
public FlowLayout(int alignment, int hgap, int vgap)

If an alignment is not specified, components within a FlowLayout-managed container are
centered. Otherwise, the setting is controlled by one of the following constants:

e CENTER

e LEADING

e LEFT

e RICHT

e TRAILING

For the typical left-to-right orientation, LEADING and LEFT are the same, as are TRAILING and
RIGHT. For a language like Hebrew, these would be reversed. Figure 10-2 shows the effect of
several different alignments.

4. FlowLayouk

|| Tuestay |

=10l x|

| Wednesday || Thursday || Friday |

i Saturday |

CHAPTER 10 LAYOUT MANAGERS

£ FlowLayout b ;I_glll
sy |t |

e
.

| Wednesday || Thursday || Friday |

I Saturday

Left Alignment

Center Alignment

£ FlowLayout =101 x]
| sunday_| || uesday |
| Wednesday || Thursday || Friday |

l Saturday

Right Alignment

Figure 10-2. FlowLayout with three different alignments

You can specify the gaps, in pixels, for the spacing between components, both horizontal
(hgap) and vertical (vgap). Gaps default to five pixels unless specified. It is possible to specify
negative gaps if you want components to be placed on top of one another.

BorderLayout Class

BorderlLayout is the default layout manager for the content pane of a JFrame, JWindow, JDialog,
JInternalFrame, and JApplet. It provides for a more flexible way of positioning components
along the edges of the window. Figure 10-3 shows a typical BorderLayout.

=10lx|
Morth
Waest Center East
South

Figure 10-3. Sample BorderLayout

347

348 CHAPTER 10 LAYOUT MANAGERS

When using BorderlLayout, you add components with constraints to identify in which of
the five locations to place the component. If you don’t specify a constraint, the component is
added to the center area. Adding multiple components to the same area shows only the last
component, although technically speaking, the other components are still within the container;
they are just not shown.

There are two constructors for creating the BorderLayout layout manager:

public BorderLayout()
public BorderLayout(int hgap, int vgap)

Unlike FlowLayout, the default gaps for a BorderLayout are zero pixels, meaning the
components are positioned right next to one another.

The constraints to use when adding a component to a BorderLayout-managed container
are constants of the BorderLayout class:

o AFTER_LAST LINE

o AFTER_LINE_ENDS

o BEFORE_FIRST LINE
o BEFORE_LINE BEGINS
o CENTER

o EAST

o LINE_END

o LINE START

o NORTH

e PAGE_END

o PAGE_START

e SOUTH

o WEST

With only five regions to add a component to, you would expect only five constants. As with
FlowLayout, the additional constants deal with proper positioning when the component
orientation is reversed, either horizontally or vertically. For the typical left-to-right, top-to-
bottom orientation, the common set of values is as follows:

e AFTER_LAST LINE, PAGE_END, SOUTH

e AFTER_LINE_ENDS, LINE_END, EAST

e BEFORE_FIRST LINE, PAGE_START, NORTH
e BEFORE_LINE BEGINS, LINE_START, WEST

e CENTER

CHAPTER 10 LAYOUT MANAGERS

Tip Using the BEFORE and AFTER constants, as opposed to the NORTH, SOUTH, EAST, and WEST
constants, is recommended, though all are supported.

You do not need specify all five areas of the container. The component in the north region
takes up the entire width of the container along its top. South does the same along the bottom.
The heights of north and south will be the preferred heights of the component added. The east
and west areas are given the widths of the component each contains, where the height is whatever
is left in the container after satisfying north’s and south’s height requirements. Any remaining
space is given to the component in the center region.

The way to place multiple components into one of the regions of a BorderLayout-managed
container is to add them to a different container first, and then add them to the BorderlLayout-
managed container. For instance, if you want a label and text field in the north area of
a BorderlLayout-managed container, place them in the west and center areas of another
BorderLayout-managed container first, as shown here:

JPanel outerPanel = new JPanel(new Borderlayout());
JPanel topPanel = new JPanel(new BorderLayout());

JLabel label = new JLabel("Name:");

JTextField text = new JTextField();

topPanel.add(label, Borderlayout.BEFORE LINE BEGINS);
topPanel.add(text, BorderlLayout.CENTER);
outerPanel.add(topPanel, BorderLayout.BEFORE FIRST LINE);

GridLayout Class

The GridLayout manager is ideal for laying out objects in rows and columns, where each cell in
the layout has the same size. Components are added to the layout from left to right, top to
bottom. A call to setLayout(new GridLayout(3, 4)) changes the layout manager of the current
container to a GridLayout with three rows and four columns, as shown in Figure 10-4.

Lol x]
January February March April
May June Juby August
September October Movember December

Figure 10-4. Sample GridLayout

349

350

CHAPTER 10 LAYOUT MANAGERS

There are three constructors for creating the GridLayout layout manager:

public GridLayout()
public GridLayout(int rows, int columns)
public GridLayout(int rows, int columns, int hgap, int vgap)

Typically, you would explicitly specify the overall grid size for your GridLayout-managed
container. However, you can set the number of rows or columns to be zero, and the layout will
grow without bounds in the direction with a zero setting.

Caution If both rows and columns are specified to be zero to the Grid Layout constructor, a runtime
exception of I1legalArgumentException will be thrown.

The actual number of rows and columns drawn is based on the number of components
within the container. The GridlLayout tries to observe the number of rows requested first.
If the requested number of rows is nonzero, the number of columns is determined by
(# of components + rows — 1)/ rows. If your request is for zero rows, the number of rows to use is
determined by a similar formula: (# of components + columns—1)/columns. Table 10-1 demon-
strates this calculation. The last entry in the table is of special interest: if you request a 3x3 grid
but place only four components in the layout, you actually get a 2x2 layout as a result. If you do
not want to be surprised, size the GridLayout based on the actual number of objects you plan
to add to the display.

Table 10-1. GridLayout Row/Column Calculation

Rows Columns # Components Display Rows Display Columns
0 1 10 10 1
0 2 10 5 2
1 0 10 1 10
2 0 10 2 5
2 3 10 2 5
2 3 20 2 10
3 2 10 3 4
3 3 3 3 1
3 3 4 2 2

GridBagLayout Class

GridBaglayout is the most complex and most flexible of the layout managers. Although it sounds
like it should be a subclass of GridLayout, it’s a different beast altogether. With GridLayout,
elements are arranged in a rectangular grid, and each element in the container is sized identically

CHAPTER 10 LAYOUT MANAGERS 351

(where possible). With GridBaglayout, elements can have different sizes and can occupy
multiple rows or columns.
There is only the no-argument constructor for GridBaglLayout:

public GridBaglayout()

The position and behavior of each element is specified by an instance of the
GridBagConstraints class. By properly constraining the elements, you can specify the number
of rows and columns a component occupies, which component grows when additional screen
real estate is available, and various other restrictions. The actual grid size is based on the
number of components within the GridBaglLayout and the GridBagConstraints of those objects.
For example, Figure 10-5 shows a GridBaglLayout with seven components, arranged in a 3x3 grid.

=101
One Two Three
Four
Five
Six Seven

Figure 10-5. GridBagLayout with seven components in a 3x3 grid

Note The maximum capacity of a screen using GridBaglayout is 512 rows by 512 columns. This is
specified by the protected MAXGRIDSIZE constant of the layout manager.

The code used to create Figure 10-5 is shown in Listing 10-1.

Listing 10-1. Seven-Button GridBagLayout

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.text.*;

public class GridBagButtons {
private static final Insets insets = new Insets(0,0,0,0);
public static void main(final String args[]) {
Runnable runner = new Runnable() {
public void run() {

final JFrame frame = new JFrame("GridBaglayout");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
frame.setlayout(new GridBaglayout());
JButton button;

352 CHAPTER 10 LAYOUT MANAGERS

// Row One - Three Buttons

button = new JButton("One");

addComponent(frame, button, 0, 0, 1, 1,
GridBagConstraints.CENTER, GridBagConstraints.BOTH);

button = new JButton("Two");

addComponent(frame, button, 1, 0, 1, 1,
GridBagConstraints.CENTER, GridBagConstraints.BOTH);

button = new JButton("Three");

addComponent(frame, button, 2, 0, 1, 1,
GridBagConstraints.CENTER, GridBagConstraints.BOTH);

// Row Two - Two Buttons

button = new JButton("Four");

addComponent(frame, button, 0, 1, 2, 1,
GridBagConstraints.CENTER, GridBagConstraints.BOTH);

button = new JButton("Five");

addComponent(frame, button, 2, 1, 1, 2,
GridBagConstraints.CENTER, GridBagConstraints.BOTH);

// Row Three - Two Buttons

button = new JButton("Six");

addComponent(frame, button, 0, 2, 1, 1,
GridBagConstraints.CENTER, GridBagConstraints.BOTH);

button = new JButton("Seven");

addComponent(frame, button, 1, 2, 1, 1,
GridBagConstraints.CENTER, GridBagConstraints.BOTH);

frame.setSize(500, 200);

frame.setVisible(true);

}
};
EventQueue.invokelater(runner);

}

private static void addComponent(Container container, Component component,
int gridx, int gridy, int gridwidth, int gridheight, int anchor,
int fill) {
GridBagConstraints gbc = new GridBagConstraints(gridx, gridy,
gridwidth, gridheight, 1.0, 1.0, anchor, fill, insets, 0, 0);
container.add(component, gbc);
}
}

Most of the work in Listing 10-1 is done by the helper method addComponent (), which
creates a set of constraints for the component to be added to the container.

CHAPTER 10 LAYOUT MANAGERS 353

GridBagLayout Rows and Columns

To help you visualize the grid of components in the GridBaglayout, Figure 10-6 indicates how
the layout manager counts cells. The top-left cell in the layout has location (0, 0). There’s nothing
surprising about buttons one, two, three, six, and seven. Each of those occupies a 1x1 area of
the layout’s 3x3 grid. Button four occupies a 2x1 area; it is placed at location (0, 1), and thus
occupies this cell plus the cell at (1, 1). Likewise, button five occupies a 1x2 area and takes up
the cells at (2, 1) and (2, 2). The total size of the layout is determined entirely by the components
that are placed in it and their constraints.

Cowumns
1 0 1 1 1 2 1
1 1 1 1
1 1 1 1
1 1 1 1
& GridBagLayout _|D|1l
0 One Two Three
1
Rows 1 Four
___________ Five — = = = — 4
2 Six Seven

Figure 10-6. How GridBagLayout counts rows and columns

GridBagConstraints Class

The magic of the layout manager is strictly controlled by the different GridBagConstraints
objects passed in for each component added to the container. Each specifies how to display a
specific component. Unlike most other layout managers, which have a built-in idea about
what to do with their display, the GridBaglLayout is a blank slate. The constraints attached to the
components tell the layout manager how to build its display.

Every component added to a GridBaglLayout container should have a GridBagConstraints
object associated with it. When an object is first added to the layout, it is given a default set
of constraints (see Table 10-2). Calling container.add(Component, GridBagConstraints) or
gridBaglayout.setConstraints(GridBagConstraints) applies the new set of constraints to the
component.

GridBagConstraints has two constructors:

public GridBagConstraints()

public GridBagConstraints(int gridx, int gridy, int gridwidth, int gridheight,
double weightx, double weighty, int anchor, int fill, Insets insets, int ipadx,
int ipady)

354

CHAPTER 10 LAYOUT MANAGERS

Using the no-argument constructor for GridBagConstraints starts with all the defaults in
Table 10-2. You can leave the individual settings alone and just set the individual fields. All are
public, without getter methods. While you can just blindly pass in all the constraints to the
GridBagConstraints constructor, it is better to describe the different fields separately.

Table 10-2. GridBagConstraints Defaults

Variable Value Description

anchor CENTER If the component is smaller than the space available, it will be
centered within its region.

fill NONE The component should not resize itself if extra space is avail-
able within its region.

gridx RELATIVE The component associated with this constraint will be
positioned relative to the last item added. If all components
have gridx and gridy RELATIVE, they will be placed in a

single row.
gridy RELATIVE The component associated with this constraint will be
positioned relative to the last item added.
gridwidth 1 The component will occupy a single cell wide within the layout.
gridheight 1 The component will occupy a single cell high within the layout.
insets 0x0x0x0 No extra space is added around the edges of the component.
ipadx 0 There is no internal horizontal padding for the component.
ipady 0 There is no internal vertical padding for the component.
weightx 0 The component will not get any extra horizontal space,
if available.
weighty 0 The component will not get any extra vertical space, if
available.
Component Anchoring

The anchor variable specifies the direction in which the component will drift in the event it is
smaller than the space available for it. CENTER is the default. The absolute values are NORTH, SOUTH,
EAST, WEST, NORTHEAST, NORTHWEST, SOUTHEAST, and SOUTHWEST. The relative values are PAGE_START,
PAGE_END, LINE_START, LINE_END, FIRST LINE START, FIRST LINE END, LAST LINE START, and
LAST_LINE_END.

Component Resizing

The value of fill controls the component’s resize policy. If fill is NONE (the default), the layout
manager tries to give the component its preferred size. If fil1 is VERTICAL, it resizes in height if
additional space is available. If fill is HORIZONTAL, it resizes in width. If fill is BOTH, the layout

CHAPTER 10 LAYOUT MANAGERS 355

manager takes advantage of all available space in both directions. Figure 10-7 demonstrates
VERTICAL, HORIZONTAL, and NONE values (generated by changing the GridBagConstraints.BOTH
settings in Listing 10-1).

£ GridBagLayout

Four

Five
Six Seven
Vertical

£ GridBaglLayout - B | Ellll
| One Two | Three |

| Four |
| Five |

| Six Seven |

Horizontal

£ GridBagLayout _ (=] 5]

Five

Six Seven

None

Figure 10-7. GridBagLayout with different fill values

Grid Positioning

The gridx and gridy variables specify the grid position where this component would be placed.
(0, 0) specifies the cell at the origin of the screen. The gridwidth and gridheight variables
specify the number of rows (gridwidth) and columns (gridheight) a particular component
occupies. Table 10-3 shows the gridx, gridy, gridwidth, and gridheight values for the example
shown earlier in Figure 10-5.

356 CHAPTER 10 LAYOUT MANAGERS

Table 10-3. The gridx, gridy, gridwidth, and gridheight Values for Figure 10-5

Component gridx gridy gridwidth gridheight
One 0 0 1 1
Two 1 0 1 1

Three 2 0 1 1
Four 0 1 2 1
Five 2 1 0 2

Six 0 2 1 1
Seven 1 2 1 3

Itisn’t necessary to set gridx and gridy to a specific location. If you set these fields to
RELATIVE (the default), the system calculates the location for you. According to the Javadoc
comments, if gridx is RELATIVE, the component appears to the right of the last component
added to the layout. If gridy is RELATIVE, the component appears below the last component
added to the layout. However, this is misleadingly simple. RELATIVE placement works best if
you are adding components along a row or column. In this case, there are four possibilities for
placement:

* With gridx and gridy RELATIVE, components are placed in one row.

» With gridx RELATIVE and gridy constant, components are placed in one row, each to the
right of the previous component.

* With gridx constant and gridy RELATIVE, components are placed in one column, each
below the previous component.

* Varying gridx or gridy while setting the other field RELATIVE appears to start a new row,
placing the component as the first element of the new row.

If gridwidth or gridheight is set to REMAINDER, the component will be the last element of
the row or column occupying any space that’s remaining. For the components in the rightmost
column of Table 10-3, for example, the gridwidth values could have been REMAINDER. Similarly,
gridheight could be set to REMAINDER for the components in the bottom row.

gridwidth and gridheight may also have the value RELATIVE, which forces the component
to be the next-to-last component in the row or column. Looking back to Figure 10-5, if button
six had a gridwidth of RELATIVE, button seven wouldn’t appear because button five is the last
item in the row, and six is already next to last. If button five had a gridheight of RELATIVE, the
layout manager would reserve space below it so the button could be the next-to-last item in
the column.

Padding

The insets value specifies the external padding in pixels around the component (the space
between the component and the edge of the cell or cells allotted to it). An Insets object can
specify different padding for the top, bottom, left, or right side of the component.

CHAPTER 10 LAYOUT MANAGERS

ipadx and ipady specify the internal padding within the component. ipadx specifies the extra
space to the right and left of the component (so the minimum width increases by 2xipadx pixels).
ipady specifies the extra space above and below the component (so the minimum height increases
by 2xipady pixels). The difference between insets (external padding) and ipadx/ipady (internal
padding) can be confusing. The insets don’t add space to the component itself; they are
external to the component. ipadx and ipady change the component’s minimum size, so they
do add space to the component itself.

Weight

weightx and weighty describe how to distribute any additional space within the container.
They allow you to control how components grow (or shrink) when the user resizes the
container, or the container is just bigger to start.

Ifweightx is 0.0, the component won'’t get any additional space available in its row. If one
or more components in a row have a positive weightx, any extra space is distributed propor-
tionally between them. For example, if one component has a weightx value of 1.0 and the
others are all 0.0, the one component will get all the additional space. If four components in a
row each has aweightx value of 1.0, and the other components have weightx values of 0.0, the
four components each get one quarter of the additional space. weighty behaves similarly to
weightx, butin the other direction. Because weightx and weighty control the distribution of
extra space in any row or column, setting either for one component may affect the position of
the other components.

CardLayout Class

The CardLayout layout manager is significantly different from the other layout managers.
Whereas the other layout managers attempt to display all the components within the container
atonce, a CardLayout displays only one component at a time. That component can be a component
or container, where the latter lets you see multiple components laid out based on the layout
manager of the embedded container.

Now that the JTabbedPane component (described in the next chapter) is available, CardLayout
is rarely used.

BoxLayout Class

Swing’s BoxLayout manager allows you to position components in either a horizontal row or a
vertical column within your own container. In addition to using BoxLayout within your own
container, the Box class (described in the next chapter) offers a container that uses BoxLayout as
its default layout manager.

The benefit of using BoxLayout over something like FlowLayout or GridLayout is that BoxLayout
works to honor each component’s x and y alignment properties as well as its maximum size.
And BoxLayout is much easier to use than GridBaglayout. Figure 10-8 demonstrates BoxLayout
in action. Previously, you would have needed to figure out the necessary layout constraints to
get GridBaglayout to behave like this.

357

358 CHAPTER 10 LAYOUT MANAGERS

10l =l
One | Two | Three
Four |)
ol | Five
One Two Three
Four

Five s n |

Six Seven | Six | Seven Il
Before After

Figure 10-8. BoxLayout example, before and after resizing

Creating a BoxLayout
BoxLayout has a single constructor:
public BoxLayout(Container target, int axis)

The constructor takes two arguments. The first argument is the container with which this
instance of the layout manager is to be associated, and the second is the layout direction. Valid
directions are BoxLayout.X_AXIS for a left-to-right layout and BoxLayout.Y_ AXIS for a top-to-
bottom layout.

CGaution Trying to set the axis to something other than the equivalent value of the two constructor
constants will throw an AWTExroz. If the layout manager is associated with a container that isn’t the
container passed in to the constructor, an AWTError will be thrown when the layout manager tries to lay
out the other (that is, wrong) container.

Once you create a BoxLayout instance, you can associate the layout manager with a
container as you would with any other layout manager.

JPanel panel = new JPanel();
LayoutManager layout = new BoxlLayout (panel, BoxLayout.X_AXIS);
panel.setlLayout(layout);

Unlike all the other system-provided layout managers, aBoxLayout and container are bound
together in two directions, from manager to container as well as from container to manager.

Tip The Box class, described in Chapter 11, lets you create a container and set its layout manager to
BoxLayout all in one step.

CHAPTER 10 LAYOUT MANAGERS

Laying Out Components

Once you've set the layout manager of a container to BoxLayout, that’s really all you do directly
with the layout manager. Adding components to the container is done with either the
add(Component component) or add(Component component, int index) method. Although
BoxLayout implements the LayoutManager2 interface, implying the use of constraints, it currently
uses none. Therefore, it isn’t necessary to use add (Component component, Object constraints).

When it comes time to lay out the container, BoxLayout does its work. The BoxLayout manager
tries to satisfy the minimum and maximum sizes of the components within the container, as
well as their x-axis and y-axis alignments. Alignment values range from 0.0f to 1.0f. (Alignment
settings are floating-point constants, not doubles, hence the need for the f.)

By default, all Component subclasses have an x-axis alignment of Component.CENTER_ALIGNMENT
and a y-axis alignment of Component.CENTER_ALIGNMENT. However, all AbstractButton subclasses
and JLabel have a default x-axis alignment of Component.LEFT_ALIGNMENT. Table 10-4 shows
the constants available from Component for these component properties, settable with either
setAlignmentX(float newValue) or setAlignmentY(float newValue). The different alignments
work identically, except in different directions. In the case of horizontal alignments, this is
similar to left-, center-, or right-justifying a paragraph.

Table 10-4. Component Alignments

Setting Value
Vertical Alignment
Component.TOP_ALIGNMENT 0.0f
Component.CENTER_ALIGNMENT 0.5f
Component.BOTTOM_ALIGNMENT 1.0f
Horizontal Alignment
Component.LEFT_ALIGNMENT 0.0f
Component.CENTER_ALIGNMENT 0.5f
Component .RIGHT ALIGNMENT 1.0f

Laying Out Components with the Same Alignments

The BoxLayout manager acts differently depending on the alignment of the components within
the container being managed. If all the alignments are the same, those components whose
maximum size is smaller than the container will be aligned based on the alignment setting. For
instance, if you have a wide area with a vertical BoxLayout and small buttons within it, the
horizontal alignment will serve to left-, center-, or right-justify the buttons. Figure 10-9 shows
how this looks.

359

360

CHAPTER 10 LAYOUT MANAGERS

& Alignment Example

Figure 10-9. Three y-axis BoxLayout containers, each with components having the same
horizontal alignments

The key point demonstrated here is that if all the components share the same alignment
setting, the actual alignment of all the components within the managed container is the
components’ alignment setting.

The source used to generate Figure 10-9 is shown in Listing 10-2.

Listing 10-2. Y-Axis Alignment

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class YAxisAlignX {
private static Container makeIt(String title, float alignment) {
String labels[] = {"--", "----", "-------- ty M- "};

JPanel container = new JPanel();
container.setBorder(BorderFactory.createTitledBorder(title));
BoxLayout layout = new BoxLayout(container, BoxlLayout.Y AXIS);
container.setlayout(layout);

for (int i=0,n=labels.length; i<n; i++) {
JButton button = new JButton(labels[i]);
button.setAlignmentX(alignment);
container.add(button);

}

return container;

}

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Alignment Example");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

Container paneli
Container panel2
Container panel3

makeIt("Left", Component.LEFT ALIGNMENT);
makeIt("Center", Component.CENTER _ALIGNMENT);
makeIt("Right", Component.RIGHT ALIGNMENT);

CHAPTER 10 LAYOUT MANAGERS

frame.setlayout(new FlowLayout());
frame.add(panell);
frame.add(panel2);
frame.add(panel3);

frame.pack();
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

An x-axis BoxLayout works similarly when all the components have the same vertical align-
ments. Instead of being left-, center-, and right-justified, the components would appear at the
top, center, and bottom of the container. Figure 10-10 demonstrates this appearance.

& Alignment Example | - | Ellll
Top Center Bottom

O

RS
R -

Figure 10-10. Three x-axis BoxLayout containers that each have components with the same
vertical alignments

The source for the example shown in Figure 10-10 requires just a few changes from
Listing 10-2. The complete source is provided in Listing 10-3.

Listing 10-3. X-Axis Alignment

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class XAxisAlignY {
private static Container makeIt(String title, float alignment) {
String 1abe15[] - {II_II’ II_II) II_II};

JPanel container = new JPanel();
container.setBorder(BorderFactory.createTitledBorder(title));
BoxLayout layout = new BoxLayout(container, BoxLayout.X_AXIS);
container.setlayout(layout);

361

362 CHAPTER 10 LAYOUT MANAGERS

for (int i=0,n=labels.length; i<n; i++) {
JButton button = new JButton(labels[i]);
button.setAlignmentY(alignment);
container.add(button);

}

return container;

}

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Alignment Example");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

Container paneli = makeIt("Top", Component.TOP_ALIGNMENT);
Container panel2 = makeIt("Center", Component.CENTER_ALIGNMENT);
Container panel3 = makeIt("Bottom", Component.BOTTOM ALIGNMENT);

frame.setLayout(new GridLayout(1, 3));
frame.add(panell);
frame.add(panel2);
frame.add(panel3);

frame.setSize(423, 171);
frame.setVisible(true);
}
};
EventQueue.invokelLater(runner);

}

Laying Out Components with Different Alignments

Working with small components that have the same alignment is relatively simple. However,
if the components in a container managed by a BoxLayout have different alignments, things
become more complex. In addition, the components won’t necessarily be displayed the way
you might expect. For a vertical box, the components appear as follows:

¢ Ifacomponent has its x alignment set to Component.LEFT_ALIGNMENT, the left edge of the
component will be aligned with the center of the container.

¢ Ifa component has its x alignment set to Component .RIGHT ALIGNMENT, the right edge of
the component will be aligned with the center of the container.

¢ Ifa component has its x alignment set to Component.CENTER_ALIGNMENT, the component
will be centered within the container.

¢ Other alignment values cause components to be placed in varying positions (depending
on the value) relative to the center of the container.

CHAPTER 10 LAYOUT MANAGERS 363

To help you visualize this mixed alignment behavior, Figure 10-11 shows two BoxLayout
containers. The left container has two components, one with a left alignment (the button
labeled 0.0) and another with a right alignment (the button labeled 1.0). Here, you can see that
the left edge of the right component is aligned to the right edge of the left component, with the
common edge being the centerline of the container. The right container shows additional
components placed between the 0.0 and 1.0 alignment settings. The label of each button repre-
sents its alignment setting.

& Alignment Example

Centerline

Figure 10-11. Two y-axis BoxLayout containers with mixed horizontal alignments

For a horizontal box, the y alignment works the same relative to the top and bottom of the
components on an x-axis, as illustrated in Figure 10-12.

4. Alignment Example =10 ﬂ
Mixzed Mixzed

1o | — 5 | s | 10 |
/ | 00 | [=
Genterline

Figure 10-12. Two x-axis BoxLayout containers with mixed vertical alignments

Laying Out Larger Components

In the examples so far, the size of the components is always smaller than the space available.
Those examples demonstrate a subtle difference between Swing and the original AWT compo-
nents. The default maximum size of Swing components is the preferred size of the component.
With AWT components, the default maximum size is a dimension with a width and height of
Short.MAX_VALUE. If the previous examples had used AWT Button components instead of Swing
JButton components, you would see surprisingly different results. You would also see different
results if you manually set the maximum size property of the components to some value wider
or higher than the screen for the appropriate BoxLayout. Using AWT Button components makes
things a little easier to demonstrate.

Figure 10-9 showed three y-axis BoxLayout containers in which the components inside the
container share the same horizontal alignment setting and the maximum size of each button is
constrained. If the component’s maximum size is unconstrained, or just larger than the container,
you see something like Figure 10-13, in which the y-axis BoxLayout container has four Button

364

CHAPTER 10 LAYOUT MANAGERS

components with the same horizontal alignment. Notice that instead of aligning to the left,
center, or right, the components grow to fill all available space.

& Alignment Example - |EI|1|
AWT Button

Figure 10-13. Y-axis BoxLayout containers with the same vertical alignments and
unconstrained size

If the components had different alignments and an unconstrained maximum size, you
would get yet another behavior. Any component with an alignment not at the minimum (0.0f) or
maximum (1.0f) setting will grow to fill the entire space. If components with both the minimum
and maximum alignment settings are present, the middle edges of those two components will
align in the middle, as Figure 10-14 demonstrates.

& Alignment Example - |EI|1|
AWT Button

Figure 10-14. Y-axis BoxLayout containers with different vertical alignments, unconstrained size,
and both minimum/maximum alignment present

If, however, only one component has an edge case (0.0 or 1.0) and is in a container with
components having other alignments, that edge-case component will grow toward somewhere
other than the middle of the container. This behavior is shown in Figure 10-15. The x-axis
BoxLayout containers work similarly with different horizontal alignments.

CHAPTER 10 LAYOUT MANAGERS

& Alignment Example - |EI|1|
AWT Button

0o

24

A0

T4

Figure 10-15. Y-axis BoxLayout containers with different vertical alignments, unconstrained size,
and only one alignment at minimum/maximum

OverlayLayout Class

As its name implies, the Overlaylayout class is for layout management of components that lie
on top of one another. When using add(Component component), the order in which you add
components to a container with an OverlaylLayout manager determines the component layering. If
you use add(Component component, int index) instead, you can add components in any order.
Although OverlaylLayout implements the LayoutManager2 interface, like BoxLayout it currently
doesn’t use any constraints.

Determining the two-dimensional position of the components requires the layout manager
to examine the x and y alignment properties of the contained components. Each component
will be positioned such that its x and y alignment properties define a point shared by all the
components, called the axis point of the layout manager. If you multiply the alignment value
by the component’s size in each appropriate direction, you'll get each part of the axis point for
that component.

After the axis point is determined for each component, the OverlaylLayout manager calcu-
lates the position of this shared point within the container. To calculate this position, the layout
manager averages the different alignment properties of the components, and then multiplies
each setting by the width or height of the container. This position is where the layout manager
places the axis point, and the components are then positioned over this shared point.

For example, suppose you have three buttons: a 25x25 white button on top of a 50x50 gray
button on top of a 100x100 black button. If the x and y alignment of each button is 0.0f, the
shared axis point for the three components is their upper-left corner, and the components are
all in the upper-left corner of the container. Figure 10-16 shows how this might appear.

If the x and y alignment of each button is 1.0f, the axis point for the three components is
their bottom-right corner, and the components are in the bottom-right corner of the container.
Figure 10-17 shows this appearance.

365

366 CHAPTER 10 LAYOUT MANAGERS

= overloy cample S I=TEY

Change Alignment

Minimum || Mazimum || Central || Mized |

Figure 10-16. Sample OverlayLayout with 0.0 x and y alignments

= overloy mple S I=TE

Change Alignment

| Minimum || Mazimum || Central || Mized |

Figure 10-17. Sample OverlayLayout with 1.0 x and y alignments
If the x and y alignment of each button is 0.5f, the axis point for the three components is

their center, and the components are in the center of the container. Figure 10-18 shows this
appearance.

[+ overloy mple ——————I=TEY

Change Alignment

| Minimum || Mazimum || Central || Mized |

Figure 10-18. Sample OverlayLayout with 0.5 x and y alignments

CHAPTER 10 LAYOUT MANAGERS 367

Having all components with the same alignment is relatively easy to visualize, but what
would happen if the components had different alignments? For instance, if the small button
had x and y alignments of 0.0f, the medium button had alignments of 0.5f, and the large button
had alignments of 1.0f, where would everything appear? Well, the first thing the layout manager
calculates is the axis point. Based on the specific alignment of each button, the axis point would
be the upper-left corner of the small button, the middle of the medium button, and the bottom-
right corner of the large button. The position of the axis point within the container would then
be the average of the alignment values multiplied by the dimensions of the container. The
average of 0, 0.5, and 1 for both directions places the axis point at the center of the container.
The components are then placed and layered from this position, as Figure 10-19 shows.

4 pyerlay Example .

Change Alignment

Minimum Mazimum Central Mized

=10f x|

L

_— Axis Point

Figure 10-19. Three buttons managed by an OverlayLayout with 0.0, 0.5, and 1.0 x and y
alignments

When you set up overlaid components, make sure that the optimizedDrawingEnabled
property of the container of the components is set to false. This ensures proper repainting and
event propagation.

To try out the OverlaylLayout manager, use the source that follows in Listing 10-4. It
provides selectable buttons to demonstrate interactively the effect of varying the alignment
values. Initially, the program has everything centered.

Listing 10-4. OverLayout Example

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class OverlaySample {

public
public
public
public

static final String SET_MINIMUM
static final String SET_MAXIMUM
static final String SET_CENTRAL
static final String SET MIXED

"Minimum";
"Maximum";
"Central";
"Mixed";

368 CHAPTER 10 LAYOUT MANAGERS

static JButton smallButton = new JButton();
static JButton mediumButton = new JButton();
static JButton largeButton = new JButton();

public static void setupButtons(String command) {
if (SET_MINIMUM.equals(command)) {
smallButton.setAlignmentX(0.0f);
smallButton.setAlignmentY(0.0f);
mediumButton.setAlignmentX(0.0f);
mediumButton.setAlignmentY(0.0f);
largeButton.setAlignmentX(0.0f);
largeButton.setAlignmentY(0.0f);

} else if (SET_MAXIMUM.equals(command)) {
smallButton.setAlignmentX(1.0f);
smallButton.setAlignmentY(1.0f);
mediumButton.setAlignmentX(1.0f);
mediumButton.setAlignmentY(1.0f);
largeButton.setAlignmentX(1.0f);
largeButton.setAlignmentY(1.0f);

} else if (SET _CENTRAL.equals(command)) {
smallButton.setAlignmentX(0.5f);
smallButton.setAlignmentY(0.5f);
mediumButton.setAlignmentX(0.5F);
mediumButton.setAlignmentY(0.5F);
largeButton.setAlignmentX(0.5F);
largeButton.setAlignmentY(0.5F);

} else if (SET _MIXED.equals(command)) {
smallButton.setAlignmentX(0.0f);
smallButton.setAlignmentY(0.0f);
mediumButton.setAlignmentX(0.5F);
mediumButton.setAlignmentY(0.5F);
largeButton.setAlignmentX(1.0f);
largeButton.setAlignmentY(1.0f);

} else {
throw new IllegalArgumentException("Illegal Command:

}

// Redraw panel

((3IPanel)largeButton.getParent()).revalidate();

}

+ command);

public static void main(String args[]) {

CHAPTER 10 LAYOUT MANAGERS 369

final Actionlistener generalActionlListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
JComponent comp = (JComponent)actionEvent.getSource();
System.out.println (
actionEvent.getActionCommand() +

n,on

+ comp.getBounds());
}
b

final Actionlistener sizingActionlListener = new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
setupButtons(actionEvent.getActionCommand());
}
};

Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Overlay Example");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

JPanel panel = new JPanel() {
public boolean isOptimizedDrawingEnabled() {
return false;
}
b
LayoutManager overlay = new Overlaylayout(panel);
panel.setlayout(overlay);

Object settings[][] = {
{"Small", new Dimension(25, 25), Color.white},
{"Medium", new Dimension(50, 50), Color.gray},
{"Large", new Dimension(100, 100), Color.black}
};
JButton buttons[] = {smallButton, mediumButton, largeButton};

for (int i=0, n=settings.length; i<n; i++) {
JButton button = buttons[i];
button.addActionListener(generalActionListener);
button.setActionCommand((String)settings[i][0]);
button.setMaximumSize((Dimension)settings[i][1]);
button.setBackground((Color)settings[i][2]);
panel.add(button);

370

CHAPTER 10 LAYOUT MANAGERS

setupButtons (SET CENTRAL);

JPanel actionPanel = new JPanel();
actionPanel.setBorder(BorderFactory.createTitledBorder("Change Alignment"));
String actionSettings[] = {SET_MINIMUM, SET MAXIMUM, SET CENTRAL,
SET _MIXED};
for (int i=0, n=actionSettings.length; i<n; i++) {
JButton button = new JButton(actionSettings[i]);
button.addActionListener(sizingActionlistener);
actionPanel.add(button);

}

frame.add(panel, BorderlLayout.CENTER);
frame.add(actionPanel, Borderlayout.SOUTH);

frame.setSize(400, 300);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

SizeRequirements Class

The BoxLayout and OverlaylLayout managers rely on the SizeRequirements class to determine
the exact positions of the contained components. The SizeRequirements class contains various
static methods to assist in the calculations necessary to position components in either an
aligned or a tiled manner. The layout managers use this class to calculate their components’ x
coordinates and width and y coordinates and height. Each pair is calculated separately. If the
associated layout manager needs both sets of attributes for positioning, the layout manager
asks the SizeRequirements class separately for each.

ScrollPaneLayout Class

The JScrollPane class, a container class that will be described in Chapter 11, uses the
ScrollPanelayout manager. Trying to use the layout manager outside a JScrollPane isn’t
possible because the layout manager checks to see if the container object associated with
the layout manager is an instance of JScrollPane. See Chapter 11 for a complete description
of this layout manager (and its associated ScrollPaneConstants interface) in the context of
the JScrollPane.

CHAPTER 10 LAYOUT MANAGERS 3n

ViewportLayout Class

The ViewportlLayout manager is used by the JViewport class, a container class (to be described
in Chapter 11). The JViewport is also used within the ScrollPanelayout/JScrollPane combination.
Like ScrollPanelayout, the ViewportLayout manager is closely tied to its component, JViewport
in this case, and isn’t usable outside the component, except in a subclass. In addition, the
JViewport classis rarely used outside a JScrollPane. The ViewportLayout manager will be discussed
in the context of its container, JViewport, in Chapter 11.

SpringLayout Class

The newest addition to the Java layout manager front is the SpringlLayout manager, added with
the J2SE 1.4 release. This allows you to attach “springs” to components so that they are laid out
relative to other components. For instance, with Springlayout, you can say that a button
appears attached to the right border, no matter what size a user makes the screen.

The Springlayout manager relies on Springlayout.Constraints for the component
constraints. This works similarly to the GridBagConstraints class that complements the
GridBaglayout manager. Each component added to the container can have an attached
Springlayout.Constraints. Therein lies the end to the similarities between these two types
of constraints.

You usually don’t need to add the component with the constraints. Instead, you can add
the component, and then typically attach the constraints separately. There is nothing stopping
you from adding the constraints with the component, but SpringlLayout.Constraints is nota
simple class. It is a collection of Spring objects, each a different constraint on the component.
You need to add each Spring constraint separately to SpringlLayout.Constraints. You do this
by setting specific constraints on an edge of the component. Using the four SpringlLayout
constants of EAST, WEST, NORTH, and SOUTH, you call the setContraints(String edge, Spring
spring) method of Springlayout.Constraints, where the String is one of the constants.

For instance, if you want to add a component in the top left of a container, you can set up
two springs of a constant size, combine them together, and add the component to the
container with the combined set, as shown here:

Component left = ...;

Springlayout layout = new Springlayout();

JPanel panel = new JPanel(layout);

Spring xPad = Spring.constant(5);

Spring yPad = Spring.constant(25);

Springlayout.Constraints constraint = new Springlayout.Constraints();
constraint.setConstraint(Springlayout.WEST, xPad);
constraint.setConstraint(Springlayout.NORTH, yPad);

frame.add(left, constraint);

372

CHAPTER 10 LAYOUT MANAGERS

That doesn’tlook too complicated, but it gets more difficult when you need to add the next
component, either to the right of the first or below it. You can’t just say to add the component
n pixels over. You must actually add the padding to the edge of the earlier component. To find
the edge of the earlier component, you ask the layout manager with getConstraint(), passing
in the edge you want and the component, as in layout.getConstraint(Springlayout.EAST, left),
to get the location of the right edge of the first component. From that location, you can add in
the necessary padding and attach it to the edge of the other component, as shown here:

Component right = ...;

Spring rightSideOflLeft = layout.getConstraint(Springlayout.EAST, left);
Spring pad = Spring.constant(20);

Spring leftEdgeOfRight = Spring.sum(rightSideOfLeft, pad);

constraint = new Springlayout.Constraints();
constraint.setConstraint(Springlayout.WEST, leftEdgeOfRight);
constraint.setConstraint(Springlayout.NORTH, yPad);

frame.add(right, constraint);

This works perfectly well, but it gets tedious as the number of components increases. To
eliminate the in-between steps, you can add the components without the constraints, and
then add each separately, connecting the components via the putConstraint() method of
Springlayout.

public void putConstraint(String e1, Component c1, int pad, String e2,
Component c2)

public void putConstraint(String e1, Component ci1, Spring s, String e2,
Component c2)

Here, instead of asking for the edge and adding in the padding yourself, the putConstraint ()
call combines the tasks for you. To demonstrate, the following snippet adds the same component
constraints to the right component as the previous one, but using putConstraint() instead of
using Springlayout.Constraints directly:

Component left = ...;

Component right = ...;

Springlayout layout = new Springlayout();

JPanel panel = new JPanel(layout);

panel.add(left);

panel.add(right);

layout.putConstraint(Springlayout.WEST, left, 5, SpringlLayout.WEST, panel);
layout.putConstraint(Springlayout.NORTH, left, 25, SpringlLayout.NORTH, panal);
layout.putConstraint(Springlayout.NORTH, right, 25, Springlayout.NORTH, panel);
layout.putConstraint(Springlayout.WEST, right, 20, Springlayout.EAST, left);

To help you visualize the use of SpringlLayout, Sun has a tool available from https://
bean-builder.dev.java.net/ called The Bean Builder. The tool is primarily intended to be used
when working with JavaBean components, but it works well to see Springlayout in action.
Figure 10-20 shows what the tool looks like on startup through Java WebStart.

CHAPTER 10 LAYOUT MANAGERS 373

The Bean Builder - Design Mode [tutorial.zmil]
File View Help

l’Swing rl" tainers rMenu |
[=]
o] || - || || || aber ||| || | || @ || || == | | 2| |[*] | | =] |[T || | = P || mem
I=|
rControl Panel
Event Management | v | Instantiate ﬁean| | [¥] Design Mode
Property Inspector - javax.swing.JFrame ;lglll

Bean Builder Tutorial i
;

B ,Adl;:! o TeufField |

= javax swing.JFrame
¢ B javayx swing.JRootFane
O javax swing.JPanel
¢ B javax swing.LayeredPane
o O javax.swing JPanel
? EE javax.awing.JScrallPane
¢ B javayx swing.Jviewport
o BB javax swing.JList
D javax.swing.CellRendererPane
¢ EE javax.swing.JScrollPanefScrollBar
[javax.swing.plafmetal MetalScrollButton
[javax.swing.plafmetal MetalScrollButton
e |
Froperty Value
alwaysOnTop [Iralse
hackgraund 238,238,238 [~]@
hounds M:[a65 |Y:[259 |Width: [315 |Height: [325
campanentOrientation java.awt ComponentOrientation
cursar java.awt. CursorfDefault Cursor]
defaultClozeCperation HIDE_ON_CLOSE -
dropTarget
enahbled [¥] true
extendedState o
focusCycleRoat [¥] true
focusTraversalkeysEna... | [¥] true
focusTraversalPaolicy |'avax_Swinq.LavoutFocusTraversaIPoIicv
focusTraversalPalicyPro...| [false
focusahle [¥] true
focusableWindowState [¥] true
[pialog [v[h2 [F]JAAA
font
Dialog, Plain, 12
foreground |D,D,D |-]
1 [1

Properties for: javax.swing.JFrame

g Removeal R

Figure 10-20. The Bean Builder startup

Around the edges of each component lies a set of four boxes, one each for north, south,
east, and west. You can drag an arrow out of a box and connect it to any other box. Had the tool
been a little more sophisticated, it would permit you to specify gap sizes for springs, too, but,
asitis, the screen will look something like Figure 10-21 during screen design. Each arrow created is
mapped to a specific call to the putConstraint() method.

374 CHAPTER 10 LAYOUT MANAGERS

I&. Texftiel

=

Figure 10-21. Bean Builder and SpringLayout

Listing 10-5 offers source similar to what would be used to generate a screen like Figure 10-21.
Notice that you must use the content pane of the JFrame directly, as putConstraint() wants
that container, not the frame itself.

Listing 10-5. SpringLayout Example

import java.awt.*;
import javax.swing.*;

public class SpringSample {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Springlayout");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
Container contentPane = frame.getContentPane();

Springlayout layout = new Springlayout();
contentPane.setlLayout(layout);

Component left = new JLabel("Left");
Component right = new JTextField(15);

contentPane.add(left);
contentPane.add(right);

CHAPTER 10 LAYOUT MANAGERS

layout.putConstraint(Springlayout.WEST, left, 10, SpringlLayout.WEST,

contentPane);

layout.putConstraint(Springlayout.NORTH, left, 25, Springlayout.NORTH,
contentPane);

layout.putConstraint(Springlayout.NORTH, right, 25, Springlayout.NORTH,
contentPane);

layout.putConstraint(Springlayout.WEST, right, 20, Springlayout.EAST, left);

frame.setSize(300, 100);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Summary

This chapter introduced AWT’s predefined layout managers FlowLayout, BorderLayout,
GridlLayout, GridBaglayout, and CardLayout, as well as Swing’s predefined layout managers
BoxLayout, Overlaylayout, ScrollPanelayout, ViewportLayout, and Springlayout. You saw how
the various alignment settings affect the components within a container whenever you use a
layout manager such as BoxLayout or Overlaylayout. In addition, you were introduced to the
SizeRequirements class, which is used internally by BoxLayout and Overlaylayout.

In Chapter 11, you’'ll look at the JScrollPane and JViewport containers, which use the
ScrollPanelayout and ViewportlLayout managers, plus several other sophisticated Swing
container classes.

375

CHAPTER 11

Advanced Swing Containers

Chapter 10 explored the layout managers available within AWT and Swing. In this chapter,
you’'ll look at some of the containers that rely on these layout managers, as well as some others
that work without a layout manager.

Starting with the Box class, you'll discover the best way to use the BoxLayout manager to
create a single row or column of components. Next, you'll learn about the JSplitPane container,
which is a bit like a specialized Box with just two components inside. The JSplitPane provides
a splitter bar that acts as a divider users can drag to resize the components to suit their needs.

Then you'll explore the JTabbedPane container, which works something like a container
whose layout manager is a CardLayout, except with tabs built into the container that allow you
to move from card to card. You'll be able to create multiple-screen, property-sheet dialog
boxes for user input with JTabbedPane.

The last two advanced Swing containers covered are the JScrollPane and JViewport. Both
of these components offer the ability to display a section of a large component within a limited
amount of screen real estate. The JScrol1lPane adds scrollbars to a display area so that you can
move around a large component that sits within a small area. In fact, the JScrollPane uses the
JViewport to “clip away” the part of the larger component that shouldn’t be seen.

So, let’s get started and look at the first container, the Box class.

Box Class

As a subclass of JComponent, the Box class is a special Java Container for creating a single row or
column of components with the help of the BoxLayout manager. The Box container works like a
JPanel (or Panel), but has a different default layout manager, BoxLayout. Using BoxLayout can
be a little cumbersome without a Box, which simplifies working with BoxLayout. You can associate
the BoxLayout manager with a container in just three steps: manually creating the container,
creating the layout manager, and associating the manager with the container. When you create
an instance of Box, you perform these three steps at once. In addition, you can use an inner
class of Box called Box.Filler to better position components within the container.

377

378

CHAPTER 11 ADVANCED SWING CONTAINERS

Creating a Box

You have three ways to create a Box, offered by one constructor and two static factory methods:

public Box(int direction)
Box horizontalBox = new Box(BoxLayout.X AXIS);
Box verticalBox = new Box(BoxLayout.Y AXIS);

public static Box createHorizontalBox()
Box horizontalBox = Box.createHorizontalBox();

public static Box createVerticalBox()
Box verticalBox = Box.createVerticalBox();

Note The Box class is not designed to be used as a JavaBean component. Use of this container within an
IDE can be awkward.

The less frequently used constructor requires a direction for the main axis of the layout
manager. The direction is specified by either of two BoxLayout constants, X_AXIS or Y_AXIS, to
create a horizontal or vertical box, respectively. Instead of manually specifying the direction,
simply create a Box with the desired orientation by using one of the provided factory methods:
createHorizontalBox() or createVerticalBox().

Filling a horizontal and vertical Box with a JLabel, a JTextField, and a JButton demonstrates
the flexibility of BoxLayout, as shown in Figure 11-1.

=1ol x| - 1ol x|
Top

Lefihiccle | Right | Middle
| Bottom |

Figure 11-1. A horizontal and a vertical box

For the horizontal container, the label and button are at their preferred widths because
their maximum size is the same as their preferred size. The text field uses up the remaining
space.

In the vertical container, the label and button sizes are their preferred size, too, because
their maximum size is still the same as their preferred size. The text field’s height fills the height
that the label and button don’t use, and its width is as wide as the container.

The source code for creating the screens shown in Figure 11-1 follows in Listing 11-1.

CHAPTER 11 ADVANCED SWING CONTAINERS

Listing 11-1. Working with the Box

import javax.swing.*;
import java.awt.*;

public class BoxSample {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame verticalFrame = new JFrame("Vertical");
verticalFrame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
Box verticalBox = Box.createVerticalBox();
verticalBox.add(new JLabel("Top"));
verticalBox.add(new JTextField("Middle"));
verticalBox.add(new JButton("Bottom"));
verticalFrame.add(verticalBox, BorderlLayout.CENTER);
verticalFrame.setSize(150, 150);
verticalFrame.setVisible(true);

JFrame horizontalFrame = new JFrame("Horizontal");
horizontalFrame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
Box horizontalBox = Box.createHorizontalBox();
horizontalBox.add(new JLabel("Left"));
horizontalBox.add(new JTextField("Middle"));
horizontalBox.add(new JButton("Right"));
horizontalFrame.add(horizontalBox, BorderLayout.CENTER);
horizontalFrame.setSize(150, 150);
horizontalFrame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Box Properties

As Table 11-1 shows, there are only two Box properties. Although the layout property inherits a
setLayout(LayoutManager) method from its parent Container class, if called on a Box object, the
class throws an AWTError. Once the BoxLayout manager is set during its construction, it can’t be
changed, nor can its direction.

Table 11-1. Box Properties

Property Name Data Type Access

accessibleContext AccessibleContext Read-only

layout LayoutManager Write-only

379

380

CHAPTER 11 ADVANCED SWING CONTAINERS

Working with Box.Filler

The Box class has an inner class Box.Filler to help you create invisible components for better
component positioning within a container whose layout manager is BoxLayout. By directly
manipulating the minimum, maximum, and preferred size of the created component, you can
create components that grow to fill unused space or remain a fixed size, making screens more
aesthetically pleasing to your users.

Note Technically speaking, the use of Box. Filler is not limited to containers whose layout manager is
BoxLayout. You can use them anywhere you can use any other Component. The components are just invisible.

Instead of directly using the Box.Filler class, several static methods of the Box class can
help you create the appropriate filler components. The factory methods allow you to categorize
these components by type, instead of by minimum, maximum, or preferred size. You'll look at
these methods in the next two sections.

If you're interested in the class definition, it's shown next. Like the Box class, Box.Filler
isn’t meant to be used as a JavaBean component.

public class Box.Filler extends Component implements Accessible {
// Constructors
public Filler(Dimension minSize, Dimension prefSize, Dimension maxSize);
// Properties
public AccessibleContext getAccessibleContext();
public Dimension getMaximumSize();
public Dimension getMinimumSize();
public Dimension getPreferredSize();
// Others
protected AccessibleContext accessibleContext;
public void changeShape(Dimension minSize, Dimension prefSize, Dimension maxSize);

Creating Areas That Grow

If a component has a dimensionless minimum and preferred size, and a maximum size bigger
than the screen, the component will grow to take up unused space between components in the
container along one or both axes. In the case of a Box, or more precisely, a container whose
layout manager is BoxLayout, the growth occurs along the layout manager’s initially chosen
direction (either BoxLayout.X AXIS or BoxLayout.Y AXIS). For a horizontal box, the growth affects
the component’s width. For a vertical box, the growth is reflected in the component’s height.

The name commonly given to this type of growing component is glue. The two flavors of
glue are direction-independent glue and direction-dependent glue. The following factory
methods of Box are used to create the glue components:

CHAPTER 11 ADVANCED SWING CONTAINERS

public static Component createGlue()
// Direction independent

Component glue = Box.createGlue();
aBox.add(glue);

public static Component createHorizontalGlue();

// Direction dependent: horizontal

Component horizontalGlue = Box.createHorizontalGlue();
aBox.add(horizontalGlue);

public static Component createVerticalGlue()

// Direction dependent: vertical

Component verticalGlue = Box.createVerticalGlue();
aBox.add(verticalGlue);

Once you create glue, you add it to a container in the same way as any other component,
by using Container.add(Component) or one of the other add() varieties. Glue allows you to align
components within a container, as Figure 11-2 shows.

-l0ix

Beginning Glue

| Left | Middle | Right |

2 Middle Glues

| Left | | Middle | | Right |

Beginning/End Glues

| Left | Middle | Right |

End Glue

| Left | Middle | Right |

Figure 11-2. Using glue in a Box

You can add glue components to any container whose layout manager honors minimum,
maximum, and preferred size properties of a component, such as BoxLayout. For instance,
Figure 11-3 demonstrates what happens when you add a glue component to a JMenuBar just
before adding the last JMenu. Because the layout manager for a JMenuBar is BoxLayout (actually
the subclass javax.swing.plaf.basic.DefaultMenulayout), this action pushes the last menu to
the right edge of the menu bar, similar to the Motif/ CDE style of help menus.

Caution [recommend that you avoid using the glue capability described here to set up help menus on
menu bars. Eventually, the public void setHelpMenu(JMenu menu) of JMenuBar will be implemented
and won’t throw an Exror. Of course, many of us are still waiting for this to happen.

381

382

CHAPTER 11 ADVANCED SWING CONTAINERS

=10l x|

ile Edit Help

£ Menu Glue Example

-

Figure 11-3. Using glue in a JMenuBar

Creating Rigid Areas

Because a glue component grows to fill the available space, if you want to have a fixed distance
between components, you need to create a rigid component, or strut. When doing so, you
specify the strut’s size. Struts can be two-dimensional, requiring you to specify the width and
height of the component; or, they can be one-dimensional, requiring you to specify either the
width or height.

public static Component createRigidArea(Dimension dimension)

// Two-dimensional

Component rigidArea = Box. createRigidArea(new Dimension(10, 10));
aBox.add(rigidArea);

public static Component createHorizontalStrut(int width)
// One-dimensional: horizontal

Component horizontalStrut = Box. createHorizontalStrut(10);
aBox.add(horizontalStrut);

public static Component createVerticalStrut(int height)
// One-dimensional: vertical

Component verticalStrut = Box. createVerticalStrut(10);
aBox.add(verticalStrut);

Caution Although direction-independent glue created with createGlue() shows no side effects if
you change container direction, creating a rigid area may cause layout problems if the axis is later changed.
(Imagine dragging a menu bar and dropping it along the right side from the top.) That’s because the compo-
nent has a dimensionless minimum size. Using createRigidArea() isn’t recommended, unless you truly
want a two-dimensional empty component.

CHAPTER 11

ADVANCED SWING CONTAINERS

Figure 11-4 demonstrates several struts in action. Notice that you can have varying strut
distances between different components, and struts at the end of a container may have no
effect. After a user resizes a screen, the strut distance between components remains fixed, as

you can see in Figure 11-4.

< Horizontal Stru 10l =l

Beginning Strut

| Left | Middle | Right |

2 Middle Struts

| Left || Middle | | Right |

Beginning/End Struts

| Left | Middle | Right |

End Strut

| Left | Middle | Right |

Before Resizing

4. Horizontal Strut =18 x|
Beginning Strut

[Leftf | Middle | Right |
2 Middle Struts
[Left | [Miadle | [Right |
Beginning/End Struts

[Left | Middle | Right |

End Strut
[Left | Middle | Right |

After Resizing

Figure 11-4. Using struts in a Box

JSplitPane Class

Similar to the Box container, the JSplitPane container allows you to display components in a
single row or column. Whereas a Box can contain any number of components, a JSplitPane is
meant to display two—and only two—components. The components are of variable size and
separated by a movable divider. The divider is specially constructed in that the end user can grab
it and drag the divider to adjust the size of the contained components. Figure 11-5 demonstrates
both vertical and horizontal split panes, shown before and after moving the divider.

383

384 CHAPTER 11 ADVANCED SWING CONTAINERS

left button
right button
Vertical
Divider
left button right button
Horizontal
left button || rignt button

After Moving

Figure 11-5. Examples of JSplitPane containers

Creating a JSplitPane

There are five constructors for JSplitPane. With them, you can initialize the orientation of the
contained component pair, set the continuouslLayout property, or initialize the pair of components
for the container.

public JSplitPane()
JSplitPane splitPane = new JSplitPane();

public JSplitPane(int newOrientation)
JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL SPLIT);

public JSplitPane(int newOrientation, boolean newContinuouslLayout)
JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL SPLIT, true);

public JSplitPane(int newOrientation, Component newLeftComponent,
Component newRightComponent)

JComponent topComponent = new JButton("Top Button");

JComponent bottomComponent = new JButton("Bottom Button");

JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL SPLIT,
topComponent, bottomComponent);

CHAPTER 11 ADVANCED SWING CONTAINERS

public JSplitPane(int newOrientation, boolean newContinuouslLayout,
Component newLeftComponent, Component newRightComponent)

JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL SPLIT, true,
topComponent, bottomComponent);

Unless otherwise specified, the orientation is horizontal. Orientation can be specified by
either of the JSplitPane constants VERTICAL_SPLIT or HORIZONTAL SPLIT. The continuouslayout
property setting determines how the split pane reacts when the user drags the divider. When
the setting is false (the default), only the divider is redrawn when dragged. When the setting is
true, the JSplitPane resizes and redraws the components on each side of the divider as the
user drags the divider.

Note If the orientation is JSplitPane.VERTICAL SPLIT, you can think of the top component as the left
component and the bottom component as the right component.

If you're using the no-argument constructor, the initial set of components within the split
pane is made up of buttons (two JButton components). Two other constructors explicitly set
the initial two components. Surprisingly, the remaining two constructors provide no components
within the container by default. To add or change the components within the JSplitPane, see
the “Changing JSplitPane Components” section that’s coming up shortly.

JSplitPane Properties
Table 11-2 shows the 17 properties of JSplitPane.

Table 11-2. JSplitPane Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
bottomComponent Component Read-write
continuousLayout boolean Read-write bound
dividerlocation double Write-only
dividerlocation int Read-write bound
dividerSize int Read-write bound
lastDividerLocation int Read-write bound
leftComponent Component Read-write
maximumDividerLocation int Read-only

minimumDividerLocation int Read-only

385

386

CHAPTER 11 ADVANCED SWING CONTAINERS

Table 11-2. /SplitPane Properties (Continued)

Property Name Data Type Access
oneTouchExpandable boolean Read-write bound
orientation int Read-write bound
resizeleight double Read-write bound
rightComponent Component Read-write
topComponent Component Read-write
validateRoot boolean Read-only

uI SplitPaneUI Read-write bound
UIClassID String Read-only
Setting Orientation

Besides initializing the orientation within the constructor, you can change the JSplitPane
orientation by changing the orientation property setting to either JSplitPane.VERTICAL SPLIT
or JSplitPane.HORIZONTAL SPLIT. If you try to change the property to a nonequivalent setting,
an I1legalArgumentException is thrown.

Dynamically changing the orientation at runtime is not recommended because it can
confuse a user. However, if you're using a visual development tool, you can explicitly set the
orientation for this property after creating the JSplitPane. When not programming visually,
you would normally initialize the orientation when you create the JSplitPane.

Changing JSplitPane Components

There are four read-write properties for the different positions of a component within a
JSplitPane: bottomComponent, leftComponent, rightComponent, and topComponent. In reality,
these four properties represent two components internally: The left and top components are
one; the right and bottom components represent the other.

You should use the properties that are appropriate for the orientation of your JSplitPane.
Using the inappropriate property methods can make life difficult for the maintenance
programmer. Imagine, after creating a user interface, seeing something like the following code
six months later:

JComponent leftButton = new JButton("Left");

JComponent rightButton = new JButton("Right");

JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL SPLIT);
splitPane.setLeftComponent(leftButton);
splitPane.setRightComponent(rightButton);

If you glance at the source, you might think that the screen will contain a button to the left
and one to the right based on the variable names and the setXXXComponent () methods used.
But because the instantiated JSplitPane has a vertical orientation, the interface that’s created
looks like Figure 11-6. The variable names are used because of the button labels, not their position.

CHAPTER 11 ADVANCED SWING CONTAINERS

loix
Left

e e
Right

Figure 11-6. Adding left/right buttons to a vertical JSplitPane

The code is more understandable if the setTopComponent () and setBottomComponent()
methods are used with better variable names:

JComponent topButton = new JButton("Left");

JComponent bottomButton = new JButton("Right");

JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL SPLIT);
splitPane.setTopComponent (topButton);
splitPane.setBottomComponent (bottomButton);

Moving the JSplitPane Divider

Initially, the divider is shown below or to the right of the preferred size of the top or left
component. At any time, you can reset the divider position to that position by calling the
resetToPreferredSizes() method of JSplitPane. If you want to programmatically position the
divider, you can change the dividerLocation property with setDividerLocation(newLocation).
This property can be changed to an int position, representing an absolute distance from the
top or left side, or it can be set to a double value between 0.0 and 1.0, representing a percentage
of the JSplitPane container width.

Caution Changing the property setting to a double value outside the range of 0.0 and 1.0 results in an
I1legalArgumentException being thrown.

If you want to set the divider location, you must wait for the component to be realized.
Essentially, that means it must be visible. While there are roundabout ways of doing this, the
most direct way is to attach a HierarchylListener to the JSplitPane and watch for when the
HierarchyEvent is of type SHOWING CHANGED. This is demonstrated in the following code fragment,
changing the divider location to 75%.

Hierarchylistener hierarchylistener = new Hierarchylistener() {
public void hierarchyChanged(HierarchyEvent e) {
long flags = e.getChangeFlags();
if ((flags & HierarchyEvent.SHOWING CHANGED) ==
HierarchyEvent.SHOWING CHANGED) {
splitPane.setDividerLocation(.75);
}
}
1

splitPane.addHierarchylistener(hierarchylistener);

387

388

CHAPTER 11 ADVANCED SWING CONTAINERS

Although you can set the dividerLocation property with a double value, you can get only
an int, indicating its absolute position.

Tip With the system-provided look and feel classes, pressing the F8 key allows you to move the divider
with the keyboard keys such as Home, End, or the arrows. F8 isn’t a modifier like Shift or Alt. Instead, pressing
F8 moves the focus to the divider so that it can be moved with keystrokes.

Resizing Components and Working with a One-Touch Expandable Divider

Limitations exist on the resizing of components within the JSplitPane. The JSplitPane honors
the minimum size of each contained component. If grabbing and moving the divider line will
cause a component to shrink to less than its minimum size, the scroll pane won’t let the user
drag the divider past that minimum size.

Note You can always programmatically position the divider to be anywhere, even if it makes a component
smaller than its minimum size. However, this isn’t a good idea because the component has a minimum size
for a good reason.

If the minimum dimensions of a component are too large for a JSplitPane, you need to
change the component’s minimum size so that the divider can use some of that component’s
space. For AWT components, changing the minimum size of a standard component requires
subclassing. With Swing components, you can simply call the setMinimumSize() method of
JComponent with a new Dimension. Nevertheless, minimum sizes are set for a reason. The compo-
nent probably won’t look right if you explicitly shrink its minimum size.

A better approach is available for allowing one component to take up more space than
another: Set the oneTouchExpandable property of the JSplitPane to true. When this property is
true, an icon is added to the divider, allowing a user to completely collapse one of the two
components to give the other component the entire area. In the example in Figure 11-7, the
icon is a combination up-and-down arrow.

Figure 11-7 shows how this icon might appear (as rendered by the Ocean look and feel)
and illustrates what happens after selecting the up arrow on the divider to expand the lower
component to its fullest size. Clicking again on the icon on the divider returns the components
to their previous positions. Clicking on the divider somewhere other than on the icon will position
the divider in such a way that the collapsed component is at its preferred size.

CHAPTER 11 ADVANCED SWING CONTAINERS

_ ol x|
Top |
Bottom
One-Touch
Expandable Icon
Default

& Expandabl= Split

Expanded

Figure 11-7. Setting and using the oneTouchExpandable property

Note There’s no easy way to alter the one-touch expandable icon or change how the divider is rendered.
Both are defined by the BasicSplitPaneDivider subclass and created in the createDefaultDivider()
method of the BasicSplitPaneUI subclass for the specific look and feel. One thing you can easily change
is the border around the divider, which is a custom border.

The lastDividerLocation property allows you or the system to inquire about the previous
divider location. The JSplitPane uses this property when the user selects the maximizer icon to
undo the minimization of one of the components in the JSplitPane.

Caution Beware of components that base their minimum size on the container size or their initial size!
Placing them in a JSplitPane may require you to manually set the minimum and/or preferred size of the
components. The components that most frequently cause problems when used within a JSplitPane are
JTextArea and JScrollPane.

Resizing the JSplitPane

If additional space is available within the JSplitPane that is not required by the preferred size
of the components it contains, this space is allocated based on the resizeWeight property
setting. The initial setting of this property is 0.0, meaning the right or bottom component gets
any additional space. Changing the setting to 1.0 would give all the space to the left or top
component. A value of 0.5 would split the space evenly between the two components. Figure 11-8
shows the effect of these changes.

389

390

CHAPTER 11 ADVANCED SWING CONTAINERS

i Resize Split

Bottom

Default Resize Weight (0.0)

< Resize Split] 10l =l

Top

Bottom

Resize Weight 1.0

=10l x|

i Resize Split

Resize Weight 0.5

Figure 11-8. Changing the resize weight

Listening for JSplitPane Property Changes

The JSplitPane class defines the following constants to help with listening for bound property
changes:

e CONTINUOUS_LAYOUT PROPERTY

e DIVIDER_LOCATION_PROPERTY

e DIVIDER_SIZE PROPERTY

e LAST DIVIDER_LOCATION_PROPERTY
e ONE_TOUCH_EXPANDABLE_PROPERTY
* ORIENTATION_PROPERTY

e RESIZE_WEIGHT PROPERTY

One way of listening for when the user moves the divider is to watch for changes to the
lastDividerLocation property. The example in Listing 11-2 attaches a PropertyChangelListener
to a JSplitPane displaying the current divider location, the current lastlocation, and the previous
last location. The component above and below the divider is the OvalPanel class (discussed in

CHAPTER 11 ADVANCED SWING CONTAINERS

Chapter 4), drawn to fill the dimensions of the component. This component helps to demon-
strate the effect of having the continuouslLayout property set to true.

Listing 11-2. Listening for JSplitPane Property Changes

import javax.swing.*;
import java.awt.*;
import java.beans.*;

public class PropertySplit {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Property Split");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

// Create/configure split pane

JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL SPLIT);
splitPane.setContinuouslayout(true);
splitPane.setOneTouchExpandable(true);

// Create top component
JComponent topComponent = new OvalPanel();
splitPane.setTopComponent (topComponent);

// Create bottom component
JComponent bottomComponent = new OvalPanel();
splitPane.setBottomComponent (bottomComponent);

// Create PropertyChangelistener
PropertyChangelListener propertyChangelistener =
new PropertyChangelistener() {
public void propertyChange (PropertyChangeEvent changeEvent) {
JSplitPane sourceSplitPane = (JSplitPane)changeEvent.getSource();
String propertyName = changeEvent.getPropertyName();
if (propertyName.equals(
JSplitPane.LAST DIVIDER LOCATION PROPERTY)) {
int current = sourceSplitPane.getDividerLocation();
System.out.println ("Current: " + current);
Integer last = (Integer)changeEvent.getNewValue();
System.out.println ("Last: " + last);
Integer priorLast = (Integer)changeEvent.getOldvalue();
System.out.println ("Prior last: " + priorlast);

};

391

392 CHAPTER 11 ADVANCED SWING CONTAINERS

// Attach listener
splitPane.addPropertyChangelistener(propertyChangelistener);

frame.add(splitPane, BorderLayout.CENTER);
frame.setSize(300, 150);
frame.setVisible(true);
}
b
EventQueue.invokelater(runner);
}
}

As the following sample output demonstrates, when you run the previous program, you'll
notice that the lastDividerLocation property changes to reflect the divider’s being dragged.
When the user stops dragging the divider, the last setting is set to the prior setting for the
dividerlLocation property, notto the initial last value (prior current value) when the drag started. As
the divider is being dragged, the current value travels first to the last value and then to the prior
last value. When the dragging stops, the final last setting (29 in this case) is set to the initial last
setting to reflect the current value when the dragging started. The last three sets of output reflect
the changes after pressing the one-touch expandable button.

Current: 11
Last: -1

Prior last: o
Current: 12
Last: 11

Prior last: -1
Current: 12
Last: 12

Prior last: 11
Current: 12
Last: 11

Prior last: 12
Current: 15
Last: 12

Prior last: 11
Current: 15
Last: 15

Prior last: 12
Current: 15
Last: 12

Prior last: 15
Current: 112
Last: 15

Prior last: 12
Current: 112
Last: 112

CHAPTER 11 ADVANCED SWING CONTAINERS

Prior last: 15
Current: 112
Last: 15

Prior last: 112

Note The BOTTOM, DIVIDER, LEFT, RIGHT, and TOP constants of the JSplitPane class aren’t for
PropertyChangelistener support. Instead, they’re internal constraints used by the add (Component
component, Object constraints) method.

Customizing a JSplitPane Look and Feel

Each installable Swing look and feel provides a different JSplitPane appearance and set of
default UIResource values for this component. Figure 11-9 shows the appearance of the JSplitPane
container for the preinstalled set of look and feel types: Motif, Windows, and Ocean.

£ Motif LnF i _ O] x|
S

Eottom

Motif
(ol x|

Battam

Windows

4. Dcean LoF

Bottom

Ocean

Figure 11-9. JSplitPane under the different look and feel types

The available set of UIResource-related properties for a JSplitPane is shown in Table 11-3.
For the JSplitPane component, there are 25 different properties, including 3 specific to the divider.

393

394

CHAPTER 11

Table 11-3. JSplitPane UlResource Elements

ADVANCED SWING CONTAINERS

Property String Object Type
SplitPane.actionMap ActionMap
SplitPane.activeThumb Color
SplitPane.ancestorInputMap InputMap
SplitPane.background Color
SplitPane.border Border
SplitPane.centerOneTouchButtons Boolean
SplitPane.darkShadow Color
SplitPane.dividerFocusColor Color
SplitPane.dividerSize Integer
SplitPane. foreground Color
SplitPane.highlight Color
SplitPane.leftButtonText String
SplitPane.oneTouchButtonOffset Integer
SplitPane.oneTouchButtonSize Integer
SplitPane.oneTouchButtonsOpaque Boolean
SplitPane.oneTouchExpandable Boolean
SplitPane.oneTouchOffset Integer
SplitPane.rightButtonText String
SplitPane.shadow Color
SplitPane.size Integer
SplitPane.supportsOneTouchButtons Boolean
SplitPaneDivider.border Border
SplitPaneDivider.draggingColor Color
SplitPaneDivider.oneTouchButtonSize Integer
SplitPaneUI String

JTabbedPane Class

The JTabbedPane class represents the ever-popular property sheet to support input or output
from multiple panels within a single window in which only one panel is shown at a time. Using
JTabbedPane is like using the CardLayout manager, except with added support for changing
cards built in. While CardLayout is a LayoutManager, JTabbedPane is a full-fledged Container. In
case you're not familiar with property sheets, tabbed dialog boxes, or tabbed panes (all alternate
names for the same thing), Figure 11-10 shows a set of tabs from the original SwingSet demo

CHAPTER 11 " ADVANCED SWING CONTAINERS

that comes with the JDK 1.2 version of the Swing classes. (This version is more appropriate
than the current one for demonstrating the features of JTabbedPane described in this section.)

File Options The Swing Team Choosers Dialogs

SplitPane rTahIe\ﬁew rPIain Text r Text rBorderedPane r‘wmolﬁps rTree\ﬁew |

DebugGraphics r Internal Frame rListBox r Menus & ToolBars r ProgressBar r ﬁScroIIPane rSIider

Swing! rBurtons r RadioButtons r ToggleButtons r Checkboxes Labels rBorders r ComboBox

Figure 11-10. Sample JTabbedPane screen

To help the JTabbedPane manage which Component (tab) is selected, the model for the
container is an implementation of the SingleSelectionModel interface or, more precisely, a
DefaultSingleSelectionModel instance. (SingleSelectionModel and DefaultSingleSelectionModel
were described with the menuing classes in Chapter 6.)

Creating a JTabbedPane

There are only three constructors for the JTabbedPane:

public JTabbedPane()
JTabbedPane tabbedPane = new JTabbedPane();

public JTabbedPane(int tabPlacement)
JTabbedPane tabbedPane = new JTabbedPane(JTabbedPane.RIGHT);

public JTabbedPane(int tabPlacement, int tabLayoutPolicy)
JTabbedPane tabbedPane =
new JTabbedPane(JTabbedPane.RIGHT, JTabbedPane.SCROLL_TAB_LAYOUT);

395

396

CHAPTER 11 ©/ ADVANCED SWING CONTAINERS

The configurable options are the placement of the tabs used to change which component
to display and the tab layout policy for when there are too many tabs to span one virtual row
(which could be a column). By default, tabs are at the top of the container and will wrap to
multiple rows when too many exist for the container width. However, you can explicitly specify
alocation with one of the following constants of JTabbedPane: TOP, BOTTOM, LEFT, or RIGHT or
configure the layout policy with one of SCROLL_TAB_LAYOUT or WRAP_TAP_LAYOUT. Figure 11-11
shows the screen from Figure 11-10 with the other three tab placements. Figure 11-12 shows
the screen with the scroll tab layout.

| Swing] | Meewm fabdumes Tephmes Owides | G | e | el
| vt Bay | opais | Btodtee | e
| o | T Pt o Besatta | W s | T

Bottom

Right

Figure 11-11. JTabbedPane tab placement options

["Caution Setting the tab placement to something other than the equivalent values for the JTabbedPane
constants of TOP, BOTTOM, LEFT, or RIGHT, or the layout policy to something other than the equivalent of
SCROLL_TAB_LAYOUT or WRAP_TAP_LAYOUT, will cause an I1legalArgumentException to be thrown.

CHAPTER 11 " ADVANCED SWING CONTAINERS

File Options The Swing Team Choosers Dialogs

Swing! rBurtons rRadioBultons rToggleBultons r Checkhoxes rLaheIs rBorders rComhoBox [' DehugGraphit:; A

Figure 11-12. JTabbedPane with the scroll tab layout

Adding and Removing Tabs

Once you've created the basic JTabbedPane container, you need to add panels that make up the
sheets or pages of the JTabbedPane. You can add panels in either one of two basic ways.

If you're visually creating your interface with a tool like JBuilder or Eclipse, the user inter-
face builder will use the familiar add() methods of Container to add a Component as a panel. The
panel added uses component . getName() as the default title. However, you shouldn’t use the various
add() methods if you're programming by hand.

The more appropriate way to add components or panels to create tabs is with any of the
addTab() or insertTab() methods listed next. Any or all of the arguments other than the
component and the position index of insertTab() can be null. (Passing null as the Component
argument causes a NullPointerException to be thrown at runtime.) The displayed icon and
tooltip settings have no default values.

e public void addTab(String title, Component component)
e public void addTab(String title, Icon icon, Component component)
e public void addTab(String title, Icon icon, Component component, String tip)

e public void insertTab(String title, Icon icon, Component component, String tip,
int index)

397

398

CHAPTER 11 ADVANCED SWING CONTAINERS

When using addTab(), the tab is added to the end, which is the farthest right position for a
set of top or bottom tabs, or at the very bottom for tabs positioned on the left or right side,
potentially reversing sides, depending on component orientation.

After creating a panel, you can change its title, icon, mnemonic, tooltip, or component on
a particular tab with one of the setXXXAt() methods:

e public void setTitleAt(int index, String title)

e public void setIconAt(int index, Icon icon)

e public void setMnemonicAt(int index, int mnemonic)

e public void setDisplayedMnemonicIndexAt(int index, int mnemonicIndex)
e public void setToolTipTextAt(int index, String text)

e public void setComponentAt(int index, Component component)

Tip The displayed mnemonic index refers to which time a particular character in the title should be high-
lighted. For instance, if you wanted the second tin title to be the highlighted mnemonic, you would set the
mnemonic character to KeyEvent.VK_T, with setMnemonicAt (), and the mnemonic index to be 2, with
setDisplayedMnemonicIndexAt().

In addition, you can change the background or foreground of a specific tab, enable or
disable a specific tab, or have a different disabled icon with additional setXXXAt () methods:

e public void setBackgroundAt(int index, Color background)

e public void setForegroundAt(int index, Color foreground)

e public void setEnabledAt(int index, boolean enabled)

e public void setDisabledIconAt(int index, Icon disabledIcon)

To remove a tab, you can remove a specific tab with removeTabAt(int index),
remove(int index), or remove(Component component). In addition, you can remove all tabs
with removeAll().

JTabbedPane Properties

Table 11-4 shows the 11 properties of JTabbedPane. Because many of the setter/getter methods of
JTabbedPane specify an index parameter, they aren’t true properties in the literal sense.

CHAPTER 11 ADVANCED SWING CONTAINERS 399

Table 11-4. J/TabbedPane Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
changelisteners ChangeListener[] Read-only

model SingleSelectionModel Read-write bound
selectedComponent Component Read-write
selectedIndex int Read-write
tabCount int Read-only
tabLayoutPolicy int Read-write-bound
tabPlacement int Read-write bound
tabRunCount int Read-only

uI TabbedPaneUI Read-write bound
UIClassID String Read-only

You can programmatically change the displayed tab by setting either the selectedComponent or
the selectedIndex property.

The tabRunCount property represents the number of rows (for top or bottom tab placement)
or columns (for right or left placement) necessary to display all the tabs.

Caution Changing the LayoutManager for the JTabbedPane will throw an exception when it comes
time to displaying the container. In other words, don’t do it.

Listening for Changing Tab Selection

Ifyou're interested in finding out when the selected tab changes, you need to listen for changes
to the selection model. This is done by your attaching a ChangeListener to the JTabbedPane (or
directly to the SingleSelectionModel). The registered Changelistener reports when the selection
model changes, as the model changes when the selected panel changes.

The program shown in Listing 11-3 demonstrates listening for changes to the selected tab
and displays the title of the newly selected tab.

400 CHAPTER 11 ADVANCED SWING CONTAINERS

Listing 11-3. Listening for Selected Tab Changes

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;

import java.awt.event.*;

public class TabSample {

static Color colors[] = {Color.RED, Color.ORANGE, Color.YELLOW,
Color.GREEN, Color.BLUE, Color.MAGENTA};

static void add(JTabbedPane tabbedPane, String label, int mnemonic) {
int count = tabbedPane.getTabCount();
JButton button = new JButton(label);
button.setBackground(colors[count]);
tabbedPane.addTab(label, new DiamondIcon(colors[count]), button, label);
tabbedPane.setMnemonicAt(count, mnemonic);

}

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Tabbed Pane Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

JTabbedPane tabbedPane = new JTabbedPane();

tabbedPane.setTablLayoutPolicy(JTabbedPane.SCROLL TAB LAYOUT);

String titles[] = {"General", "Security", "Content", "Connection",
"Programs", "Advanced"};

int mnemonic[] = {KeyEvent.VK G, KeyEvent.VK S, KeyEvent.VK C,
KeyEvent.VK 0, KeyEvent.VK P, KeyEvent.VK A};

for (int i=0, n=titles.length; i<n; i++) {
add(tabbedPane, titles[i], mnemonic[i]);

}

Changelistener changelistener = new Changelistener() {
public void stateChanged(ChangeEvent changeEvent) {
JTabbedPane sourceTabbedPane = (JTabbedPane)changeEvent.getSource();
int index = sourceTabbedPane.getSelectedIndex();

System.out.println ("Tab changed to: " +
sourceTabbedPane.getTitleAt(index));
}
};

tabbedPane.addChangelistener(changelistener);

CHAPTER 11 ADVANCED SWING CONTAINERS

frame.add(tabbedPane, BorderLayout.CENTER);
frame.setSize(400, 150);
frame.setVisible(true);
}
b
EventQueue.invokelater(runner);
}
}

Customizing a JTabbedPane Look and Feel

Each installable Swing look and feel provides a different JTabbedPane appearance and set of
default UIResource values for the JTabbedPane component. Figure 11-13 shows the appearance
of the JTabbedPane container for the preinstalled set of look and feel types: Motif, Windows, and
Ocean. Several items are specific to the look and feel: how the JTabbedPane appears when the
set of available tabs is too wide for the display, how it responds when a user selects a tab in a
back row, how it displays the tooltip, and how it displays the scroll tab layout.

=il S
omen ' onaa| gy Gorte]|_camecton @ i ..
-

Connection e,

Connection
Motif
-lofx| ~i5ix]
General | ecuity ¢ General| Secuity| Content | Ciifiest it @ Programs| & (4| »
i 1 # Programs & Advanced

Windows
£ occontr - B o x|
Cqmgctim # Programs | + fitvanced | # General | Security] Content] nection | € | »
. % Connection mt—o! S ity | T |

_ Connection
Connection

Ocean

Figure 11-13. JTabbedPane under the different look and feel types

401

402 CHAPTER 11 ADVANCED SWING CONTAINERS

The available set of UIResource-related properties for a JTabbedPane is shown in Table 11-5. For
the JTabbedPane component, there are 34 different properties.

Table 11-5. JTabbedPane UlResource Elements

Property String Object Type
TabbedPane.actionMap ActionMap
TabbedPane.ancestorInputMap InputMap
TabbedPane.background Color
TabbedPane.borderHightlightColor Color
TabbedPane.contentAreaColor Color
TabbedPane.contentBorderInsets Insets
TabbedPane.contentOpaque Boolean
TabbedPane.darkShadow Color
TabbedPane. focus Color
TabbedPane. focusInputMap InputMap
TabbedPane. font Font
TabbedPane. foreground Color
TabbedPane.highlight Color
TabbedPane.light Color
TabbedPane.opaque Boolean
TabbedPane.selected Color
TabbedPane.selectedForeground Color
TabbedPane.selectedTabPadInsets Insets
TabbedPane.selectHighlight Color
TabbedPane.selectionFollowsFocus Boolean
TabbedPane.shadow Color
TabbedPane.tabAreaBackground Color
TabbedPane.tabAreaInsets Insets
TabbedPane.tabInsets Insets
TabbedPane.tabRunOverlay Integer
TabbedPane.tabsOpaque Boolean
TabbedPane.tabsOverlapBorder Boolean
TabbedPane.textIconGap Integer

TabbedPane.unselectedBackground Color

CHAPTER 11 ADVANCED SWING CONTAINERS

Table 11-5. JTabbedPane UlResource Elements (Continued)

Property String Object Type
TabbedPane.unselectedTabBackground Color
TabbedPane.unselectedTabForeground Color
TabbedPane.unselectedTabHighlight Color
TabbedPane.unselectedTabShadow Color
TabbedPaneUI String

JScrollPane Class

Swing’s JScrollPane container provides for the display of a large component within a smaller
display area, with scrolling support (if necessary) to get to the parts currently invisible. Figure 11-14
shows one such implementation, in which the large component is a JLabel with an ImageIcon
onit.

£ 15crollPane Sample .

4] Il [*] |

Figure 11-14. JScrollPane example

Identifying the component to be scrolled can be done in one of two ways. Instead of adding
the component to be scrolled directly to the JScrollPane container, you add the component to
another component, a JViewport, already contained within the scroll pane. Alternatively, you
can identify the component at construction time, by passing it into the constructor.

Icon icon = new ImageIcon("dog.jpg");

JLabel label = new JLabel(icon);

JScrollPane jScrollPane = new JScrollPane();
jScrollPane.setViewportView(label);

// or

JScrollPane jScrollPane2 = new JScrollPane(label);

Once you've added the component into the JScrollPane, users can use the scrollbars to
see the parts of the large component that aren’t visible within the inner area of the JScrol1Pane.

In addition to giving you the means to set the scrollable component for the JScrollPane, a
display policy determines if and when scrollbars are shown around the JScrollPane. Swing’s
JScrollPane maintains separate display policies for the horizontal and vertical scrollbars.

403

404

CHAPTER 11 ADVANCED SWING CONTAINERS

Besides enabling you to add the JViewport and two JScrollBar components for scrolling,
the JScrollPane allows you to provide two more JViewport objects for row and column headers
and four Component objects to display in the scroll pane corners. The placement of all these
components is managed by the ScrollPanelLayout manager, introduced in Chapter 10 and
described more fully here. The actual JScrol1lBar components used by JScrollPane are a
subclass of JScrollBar called JScrollPane.ScrollBar. They are used instead of the regular
JScrollBar to properly handle scrolling the component inside the inner JViewport, when that
component implements the Scrollable interface.

To help you see how all the components fit within the JScrollPane, Figure 11-15 demon-
strates how the ScrollPanelayout positions the various pieces.

UPPER_ UPPER_
LEFT_ COLUMN_HEADER RIGHT
CORNER CORNER

~

Y

q

i

5

o @

s3] O

<Qt: 9]

5 VIEWPORT 4

& 2

% =

@ S

N

a4

3

o
LOWER_ LOWER_
LEFT_ VERTICAL_SCROLLBAR RIGHT
CORNER CORNER

Figure 11-15. ScrollPaneLayout regions

Caution The JScrollPane component supports scrolling only lightweight components. You should not
add regular, heavyweight AWT components to the container.

Creating a JScrollPane

There are four JScrollPane constructors:

CHAPTER 11 ADVANCED SWING CONTAINERS

public JScrollPane()
JScrollPane scrollPane = new JScrollPane();

public JScrollPane(Component view)

Icon icon = new ImageIcon("largeImage.jpg");

JLabel imagelabel = new JlLabel(icon);

JScrollPane scrollPane = new JScrollPane(imagelabel);

public JScrollPane(int verticalScrollBarPolicy, int horizontalScrollBarPolicy)
JScrollPane scrollPane = new
JScrollPane(JScrollPane.VERTICAL SCROLLBAR ALWAYS,
JScrollPane.HORIZONTAL SCROLLBAR ALWAYS);

public JScrollPane(Component view, int verticalScrollBarPolicy,
int horizontalScrollBarPolicy)

JScrollPane scrollPane = new JScrollPane(imagelabel,
JScrollPane.VERTICAL SCROLLBAR ALWAYS,
JScrollPane.HORIZONTAL SCROLLBAR ALWAYS);

These offer the options of preinstalling a component to scroll and configuring the scrolling
policies of the individual scrollbars. By default, the scrollbars are shown only when needed.
Table 11-6 shows the JScrollPane constants used to explicitly set the policies for each scrollbar.
Using any other nonequivalent setting results in an I1legalArgumentException being thrown.

Table 11-6. /ScrollPane Scrollbar Policies

Policy Type Description

VERTICAL_ SCROLLBAR_AS NEEDED Displays designated scrollbar if viewport is too small
to display its entire contents

HORIZONTAL_SCROLLBAR_AS NEEDED Displays designated scrollbar if viewport is too small
to display its entire contents

VERTICAL_SCROLLBAR_ALWAYS Always displays designated scrollbar

HORIZONTAL SCROLLBAR_ALWAYS Always displays designated scrollbar

VERTICAL_SCROLLBAR_NEVER Never displays designated scrollbar

HORIZONTAL SCROLLBAR_NEVER Never displays designated scrollbar

The next section explains how to add or change the component after creating a JScrollPane.

405

406

CHAPTER 11 ADVANCED SWING CONTAINERS

Changing the Viewport View

If you've created a JScrollPane with an associated component to scroll, you just need to add
the JScrollPane to the display, and it’s ready to go. If, however, you didn’t associate a compo-
nent at creation time, or just want to change it later, there are two ways to associate a new
component to scroll. First, you can directly change the component to scroll by setting the
viewportView property:

scrollPane.setViewportView(doglabel);

The other way of changing the component to scroll involves centering the JViewport
within the JScrollPane and changing its view property:

scrollPane.getViewport().setView(doglabel);

You'll learn more about JViewport components in the “JViewport Class” section later in
this chapter.

Scrollable Interface

Unlike the AWT components such as List, which automatically provide a scrollable area when the
choices are too numerous to display at once, Swing components JList, JTable, JTextComponent,
and JTree don’t automatically provide scrolling support. You must create the component, add
it to a JScrollPane, and then add the scroll pane to the screen.

JList list = new JList(...);
JScrollPane scrollPane = new JScrollPane(list);
aFrame.add(scrollPane, Borderlayout.CENTER);

The reason that adding a component to a JScrol1Pane works is that each of the Swing
components that might be too large for the screen (and require scrolling support) implements
the Scrollable interface. With this interface implemented, when you move the scrollbars
associated with the JScrollPane, the JScrollPane asks the Scrollable component within the
container for its sizing information to properly position the component based on the current
scrollbar positions.

The only time you need to worry about the Scrollable interface is when you're creating
anew custom component that requires scrolling support. The following is the Scrollable
interface definition.

public interface Scrollable {

public Dimension getPreferredScrollableViewportSize();

public boolean getScrollableTracksViewportHeight();

public boolean getScrollableTracksViewportWidth();

public int getScrollableBlockIncrement(Rectangle visibleRect, int orientation,
int direction);

public int getScrollableUnitIncrement(Rectangle visibleRect, int orientation,
int direction);

If you create a custom Scrollable component and then place that component in a
JScrollPane, it will respond appropriately when the scrollbars for the JScrollPane or the

mouse wheel are moved.

JScrollPane Properties

CHAPTER 11

Table 11-7 shows the 19 properties of JScrollPane.

Table 11-7. JScrollPane Properties

ADVANCED SWING CONTAINERS

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
columnHeader* JViewport Read-write bound
columnHeaderView Component Write-only
componentOrientation ComponentOrientation Write-only bound
horizontalScrollBar* JScrollBar Read-write bound
horizontalScrollBarPolicy* int Read-write bound
layout LayoutManager Write-only
rowHeader* JViewport Read-write bound
rowHeaderView Component Write-only

uI ScrollPaneUI Read-write bound
UIClassID String Read-only
validateRoot boolean Read-only
verticalScrollBar* JScrollBar Read-write bound
verticalScrollBarPolicy* int Read-write bound
viewport* JViewport Read-write bound
viewportBorder Border Read-write bound
viewportBorderBounds Rectangle Read-only
viewportView Component Write-only
wheelScrollingEnabled boolean Read-write bound

* These properties directly map to properties of the ScrollPanelayout manager used by the JScrollPane.
Changing one of these properties for a JScrollPane causes its layout manager to change accordingly.

Caution An attempt to change the layout property of JScrollPane to something other than a
ScrollPanelayout instance or null will throw a ClassCastException at runtime, because the

layout manager used by a JScrollPane must be a ScrollPanelayout.

407

408

CHAPTER 11 ADVANCED SWING CONTAINERS

Working with ScrollPaneLayout

The JScrollPane relies on the ScrollPanelayout manager for the positioning of components
within the container. Whereas most layout managers are designed to lay out any type of compo-
nent, all but four regions of ScrollPanelayout accept a component of a specific type. Table 11-8
shows the type of component that can go into each of the regions shown in Figure 11-15.

Table 11-8. ScrollPaneLayout Locations

Location Data Type Description

COLUMN_HEADER JViewport Usually empty. If main content is a table, serves as column
headers that won'’t scroll as vertical scrollbar is moved.

HORIZONTAL_SCROLLBAR JScrollBar A scrollbar for the main content region placed below that
region.

LOWER_LEFT_CORNER Component Usually empty. For a graphic in the lower-left corner.

LOWER_RIGHT CORNER Component Usually empty. For a graphic in the lower-right corner.

ROW_HEADER JViewport Usually empty. If main content is a table, serves as row
labels that won't scroll when horizontal scrollbar is
moved.

UPPER_LEFT_CORNER Component Usually empty. For a graphic in the upper-left corner.

UPPER_RIGHT_CORNER Component Usually empty. For a graphic in the upper-right corner.

VERTICAL SCROLLBAR JScrollBar A scrollbar for the main content region, placed to the right
of the content area.

VIEWPORT JViewport The main content area.

Note The corners have two sets of constants. For internationalization support, you can use
LOWER_LEADING CORNER, LOWER TRAILING CORNER,UPPER_LEADING_CORNER, and
UPPER_TRAILING_CORNER, which deal with component orientation for you. For left-to-right
component orientation (United States locale), leading is left, and trailing is right.

As designed, the layout manager describes the screen layout necessary to support a main
content area (VIEWPORT) that’s too large for the available space. Scrollbars for navigating
through the area can be placed to the right of the content area (VERTICAL_SCROLLBAR) or below
it (HORIZONTAL SCROLLBAR). Fixed headers that don’t scroll can be placed above the content area
(COLUMN_HEADER) or to its left (ROW_HEADER). The four corners (*_CORNER) are configurable to
display any type of component, which are typically labels with images on them; however, any
component can be placed there.

CHAPTER 11 ADVANCED SWING CONTAINERS

Note Some developers think of Scrol1Panelayout as a GridBagLayout with customized constraints
(and restricted contents). Under normal circumstances, most developers won’t use ScrollPanelayout
outside a JScrollPane.

Working with JScrollPane Headers and Corners

As Figure 11-15 and Table 11-8 demonstrate, many different regions exist within the JScrollPane.
Normally, you work with only the central view, and let the two scrollbars do their thing. In addition,
when working with the JTable component (described in Chapter 18), the table automatically
places the column labels within the column header region when placed within a JScrollPane.

You can also manually add or change the column header or row header for a JScrollPane.
Although you can completely replace the JViewport in these areas, it’s easier to just set the
columnHeaderView or rowHeaderView property to the Component for the area. This action will
place the component within a JViewport for you.

To place a component in one of the corners of the JScrol1Pane, you need to call the
setCorner(String key, Component corner) method, where key is one of the following
constants from JScrollPane: LOWER LEFT CORNER, LOWER RIGHT CORNER, UPPER LEFT CORNER,
or UPPER_RIGHT CORNER.

Working with corners can be tricky. A corner component is displayed only if the two
components at a right angle from the corner are currently shown. For instance, suppose you
place a company logo within a label in the lower-right corner, and the scrollbar policy for both
scrollbars is to show only when necessary. In that case, if one scrollbar were not needed, the
logo in the corner wouldn’t be shown. As another example, if a JScrol1Pane had a column
header showing but didn’t have a row header, any component in the upper-left corner would
not be shown.

Therefore, just because you've set a corner to a component (as with scrol1Pane.setCorner
(3ScrollPane.UPPER_LEFT CORNER, logolLabel)), don’t expect it to be always or automatically
shown. Moreover, as Figure 11-16 shows, the neighboring areas control the size of the corner.
Don’t assume a corner component can be as large as necessary. That’s because its minimum,
preferred, and maximum sizes are completely ignored. In Figure 11-16, the actual image used
to create the corner component is larger than the space used.

Learn Java
with JBuilder ¢

Figure 11-16. A JScrollPane with a corner component and row and column headers

Note Changing a corner of a JScrol1Pane acts like a bound property where the property name is one of
the corner keys shown in Table 11-8.

409

410

CHAPTER 11 ADVANCED SWING CONTAINERS

Resetting the Viewport Position

At times, you may want to move the contents of the inner view to the upper-left corner of the
JScrollPane. This change may be needed because the view changed, or because some event
happened that requires the viewport component to return to the origin of the JScrollPane.
The simplest way of moving the view is to adjust the position of the scrollbar thumbs of the
JScrollPane. Setting each scrollbar to its minimum value effectively moves the view of the
component to the component’s upper-left corner. The ActionListener shown in Listing 11-4
can be associated with a button on the screen or in the corner of the JScrollPane, causing the
contents of the JScrollPane to return to their origin.

Listing 11-4. Action to Move JScrollPane to Top

import java.awt.event.*;
import javax.swing.*;

public class JScrollPaneToTopAction implements ActionListener {
JScrollPane scrollPane;
public JScrollPaneToTopAction(JScrollPane scrollPane) {
if (scrollPane == null) {
throw new IllegalArgumentException(
"JScrollPaneToTopAction: null JScrollPane");

}
this.scrollPane = scrollPane;
}
public void actionPerformed(ActionEvent actionEvent) {
JScrollBar verticalScrollBar = scrollPane.getVerticalScrollBar();

JScrollBar horizontalScrollBar = scrollPane.getHorizontalScrollBar();
verticalScrollBar.setValue(verticalScrollBar.getMinimum());
horizontalScrollBar.setValue(horizontalScrollBar.getMinimum());

}
}

Customizing a JScrollPane Look and Feel

Each installable Swing look and feel provides a different JScrol1Pane appearance and set
of default UIResource values for the component. Figure 11-17 shows the appearance of the
JScrollPane component for the preinstalled set of look and feel types. With a JScrollPane, the
primary differences between the look and feel types are related to the scrollbar’s appearance
and border around the viewport.

The available set of UIResource-related properties for a JScrollPane is shown in Table 11-9.
For the JScrollPane component, there are ten different properties. Changing the properties
related to the JScrollBar will also affect appearance when a scrollbar in a JScrollPane is visible.

CHAPTER 11

Motif

Windows

< I M|

Ocean

Figure 11-17. JScrollPane under the different look and feel types

Table 11-9. JScrollPane UlResource Elements

Property String Object Type
ScrollPane.actionMap ActionMap
ScrollPane.ancestorInputMap InputMap

ScrollPane.ancestorInputMap.RightTolLeft InputMap

ScrollPane.background Color
ScrollPane.border Border
ScrollPane.font Font
ScrollPane. foreground Color
ScrollPane.viewportBorder Border
ScrollPane.viewportBorderInsets Insets

ScrollPaneUI String

ADVANCED SWING CONTAINERS

11

412

CHAPTER 11

JViewport Class

ADVANCED SWING CONTAINERS

The JViewport component is rarely used on its own outside a JScrollPane. It normally lives
within the center of a JScrollPane and uses the ViewportlLayout manager to respond to posi-
tioning requests to display a part of a large Component within a smaller space. In addition to
residing in the center of a JScrollPane, JViewport is also used for the row and column headers

of a JScrollPane.

Creating a JViewport

There’s only one constructor for creating a JViewport: the no-argument version: public
JViewport(). Once you've created the JViewport, you place a component within it by using

setView(Component).

JViewport Properties

Table 11-10 shows the 13 properties of JViewport. Setting the layout manager to something
other than ViewportlLayout is possible but not recommended because the layout manager
makes the JViewport do its work properly.

Table 11-10. JViewport Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
border Border Write-only
changelisteners ChangelListener[] Read-only
extentSize Dimension Read-write
insets Insets Read-only
optimizedDrawingEnabled boolean Read-only
scrollMode int Read-write
Ul ViewportUI Read-write bound
UIClassID String Read-only
view Component Read-write
viewPosition Point Read-write
viewRect Rectangle Read-only
viewSize Dimension Read-write

Because of scrolling complexity and for performance reasons, the JViewport doesn’t support
aborder. Trying to change the border to a non-null value with setBorder (Border) throws an

CHAPTER 11 ADVANCED SWING CONTAINERS 413

I1legalArgumentException. Because there can’t be a border, the insets property setting is always
(0,0, 0, 0). Instead of displaying a border around the JViewport, you can display a border around
the component within the view. Simply place a border around the component, or place the
component inside a JPanel with a border before adding it to the JViewport. If you do place a
border around the component, the border would be seen only if that part of the component is
visible. If you don’t want the border to scroll, you must place the JViewport within a component
such as a JScrollPane that has its own border.

Tip To set the background color of what appears in the JScrol1Pane, you need to set the background
color of the viewport: aScrollPane.getViewport().setBackground(newColor).

The size of the view (viewSize property) is based on the size of the component (view property)
within the JViewport. The view position (viewPosition property) is the upper-left corner of the
view rectangle (viewRect property), where the rectangle’s size is the extent size (extentSize
property) of the viewport. If that’s confusing, Figure 11-18 should help you see where all these
properties lie within the JViewport.

<~—————— viewSize property ———

(width)

viewPosition

viewSize property
(height)

JViewPort . extentSize property
N (width) g

extentSize property
(height)

viewRect

Figure 11-18. Visualizing JViewport properties

414

CHAPTER 11 ADVANCED SWING CONTAINERS

The scrollMode property can be set to one of the class constants shown in Table 11-11.
In most cases, you can rely on the fastest and default BLIT SCROLL_MODE mode.

Table 11-11. JViewport Scroll Modes

Scroll Mode Description

BACKINGSTORE_SCROLL_MODE A deprecated but supported mode that relies on a buffer
for scrolling

BLIT_ SCROLL_MODE The default mode, which relies on Graphics.copyArea()

SIMPLE_SCROLL_MODE Redraws entire area

To move the visible part of the view around, just change the viewPosition property. This
moves the viewRect, allowing you to see a different part of the view. To demonstrate this, the
program shown in Listing 11-5 attaches keyboard accelerators to the JViewport so that you
can use the arrow keys to move around the view. (Normally, the JScrol1Pane would get these
keyboard actions.) The majority of the code is necessary to set up the appropriate input/action
maps. The boldfaced line of code is the one necessary to move the view.

Listing 11-5. Keyboard Movement Control in a JViewport

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class MoveViewSample {

public static final int INCREASE = 0; // direction
public static final int DECREASE = 1; // direction
public static final int X AXIS = 0; // axis
public static final int Y AXIS = 1; // axis
public static final int UNIT = 0; // type
public static final int BLOCK = 1; // type

static class MoveAction extends AbstractAction {
JViewport viewport;
int direction;
int axis;
int type;
public MoveAction(JViewport viewport, int direction, int axis, int type) {
if (viewport == null) {
throw new IllegalArgumentException ("null viewport not permitted");

}

CHAPTER 11 ADVANCED SWING CONTAINERS 415

this.viewport = viewport;
this.direction = direction;
this.axis = axis;
this.type = type;
}
public void actionPerformed(ActionEvent actionEvent) {
Dimension extentSize = viewport.getExtentSize();
int horizontalMoveSize = 0;
int verticalMoveSize = 0;
if (axis == X_AXIS) {
if (type == UNIT) {
horizontalMoveSize = 1;
} else { // type == BLOCK
horizontalMoveSize = extentSize.width;
}
} else { // axis == Y_AXIS
if (type == UNIT) {
verticalMoveSize = 1;
} else { // type == BLOCK
verticalMoveSize = extentSize.height;
}
}
if (direction == DECREASE) {
horizontalMoveSize = -horizontalMoveSize;
verticalMoveSize = -verticalMoveSize;
}
// Translate origin by some amount
Point origin = viewport.getViewPosition();
origin.x += horizontalMoveSize;
origin.y += verticalMoveSize;
// Set new viewing origin
viewport.setViewPosition(origin);
}
}

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {

JFrame frame = new JFrame("JViewport Sample");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
Icon icon = new ImageIcon("dog.jpg");
JLabel doglabel = new JLabel(icon);
JViewport viewport = new JViewport();
viewport.setView(doglabel);

416 CHAPTER 11 ADVANCED SWING CONTAINERS

InputMap inputMap = viewport.getInputMap(JComponent.WHEN IN FOCUSED WINDOW);
ActionMap actionMap = viewport.getActionMap();

// Up key moves view up unit
Action upKeyAction =

new MoveAction(viewport, DECREASE, Y AXIS, UNIT);
KeyStroke upKey = KeyStroke.getKeyStroke("UP");
inputMap.put(upKey, "up");
actionMap.put("up", upKeyAction);

// Down key moves view down unit
Action downKeyAction =

new MoveAction(viewport, INCREASE, Y AXIS, UNIT);
KeyStroke downKey = KeyStroke.getKeyStroke("DOWN");
inputMap.put(downKey, "down");
actionMap.put("down", downKeyAction);

// Left key moves view left unit
Action leftKeyAction =

new MoveAction(viewport, DECREASE, X AXIS, UNIT);
KeyStroke leftKey = KeyStroke.getKeyStroke("LEFT");
inputMap.put(leftKey, "left");
actionMap.put("left", leftKeyAction);

// Right key moves view right unit
Action rightKeyAction =

new MoveAction(viewport, INCREASE, X AXIS, UNIT);
KeyStroke rightKey = KeyStroke.getKeyStroke("RIGHT");
inputMap.put(rightKey, "right");
actionMap.put("right", rightKeyAction);

// PgUp key moves view up block
Action pgUpKeyAction =

new MoveAction(viewport, DECREASE, Y AXIS, BLOCK);
KeyStroke pgUpKey = KeyStroke.getKeyStroke("PAGE UP");
inputMap.put(pgUpKey, "pglp");
actionMap.put("pgUp", pgUpKeyAction);

// Pghn key moves view down block
Action pgDnKeyAction =

new MoveAction(viewport, INCREASE, Y AXIS, BLOCK);
KeyStroke pgDnKey = KeyStroke.getKeyStroke("PAGE DOWN");
inputMap.put(pgDnKey, "pgbn");
actionMap.put("pgDn", pgDnKeyAction);

CHAPTER 11 ADVANCED SWING CONTAINERS a7

// Shift-PgUp key moves view left block
Action shiftPgUpKeyAction =

new MoveAction(viewport, DECREASE, X AXIS, BLOCK);
KeyStroke shiftPgUpKey = KeyStroke.getKeyStroke("shift PAGE UP");
inputMap.put(shiftPgUpKey, "shiftPgUp");
actionMap.put("shiftPgUp", shiftPgUpKeyAction);

// Shift-PgDn key moves view right block
Action shiftPgDnKeyAction =
new MoveAction(viewport, INCREASE, X AXIS, BLOCK);
KeyStroke shiftPgDnKey = KeyStroke.getKeyStroke("shift PAGE DOWN");
inputMap.put(shiftPgDnKey, "shiftPgbn");
actionMap.put("shiftPgbn", shiftPgDnKeyAction);

frame.add(viewport, BorderLayout.CENTER);
frame.setSize(300, 200);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Customizing a JViewport Look and Feel

Each installable Swing look and feel shares the same JViewport appearance with the
BasicViewportUI. There are no actual appearance differences. However, there still exists
a set of UIResource-related properties for the JViewport, as shown in Table 11-12. For the
JViewport component, there are four such properties.

Table 11-12. JViewport UIResource Elements

Property String Object Type
Viewport.background Color
Viewport.font Font
Viewport.foreground Color
ViewportUI String

Summary

In this chapter, you explored several high-level Swing containers. With the Box class, you can
more easily utilize the BoxLayout manager to create a single row or column of components,
honoring the minimum, preferred, and maximum size of the components the best way possible.

418

CHAPTER 11 ADVANCED SWING CONTAINERS

With the JSplitPane component, you can create a row or column consisting of two
components with a divider in between them to allow an end user to alter the components’
sizes manually by moving the divider.

The JTabbedPane container displays only one component from a set of contained compo-
nents at a time. The displayed component is picked by the user selecting a tab, which can
contain a title with or without mnemonic, an icon, and a tooltip. This is the popular property
sheet metaphor commonly seen within applications.

The JScrollPane and JViewport containers allow you to display a large component within
a small area. The JScrollPane adds scrollbars to enable an end user to move the visible part
around, whereas the JViewport doesn’t add these scrollbars.

In Chapter 12, we’ll once again examine the individual components within the Swing
library, including the JProgressBar, JScrollBar, and JSlider that share the BoundedRangeModel
as their data model.

CHAPTER 12

Bounded Range Components

In the previous chapter, you saw how JScrollPane provides a scrollable region for those situations
when there isn’t sufficient space to display an entire component on screen. Swing also offers
several components that support some type of scrolling or the display of abounded range of values.
The available components are JScrollBar, JSlider, JProgressBar, and, in a more limited sense,
JTextField. These components share a BoundedRangeModel as their data model. The default imple-
mentation of this data model provided with the Swing classes is the Defaul tBoundedRangeModel
class.

In this chapter, you’ll look at the similarities and differences between these Swing
components. Let’s start with their shared data model, the BoundedRangeModel.

BoundedRangeModel Interface

The BoundedRangeModel interface is the Model-View-Controller (MVC) data model shared by
the components described in this chapter. The interface contains four interrelated properties
that are necessary to describe a range of values: minimum, maximum, value, and extent.

The minimum and maximum properties define the limits of the value of the model. The value
property defines what you might think of as the current setting of the model, where the maximum
setting of the value property is not necessarily the value of the maximum property of the model.
Instead, the maximum setting that the value property can take is the maximum property less the
extent property. To help you visualize these properties, Figure 12-1 shows these settings in relation
to a JScrollBar. Any other purpose of the extent property depends on the component acting
as the model’s view.

- Minimum Value Maximum
Maximum
Value
Y ;
[« |77 [»]
A A
Extent

Figure 12-1. BoundedRange properties on a JScrollBar

419

420

CHAPTER 12 BOUNDED RANGE COMPONENTS

The settings for the four properties must abide by the following ordering:
minimum <= value <= valuet+extent <= maximum

When one of the settings changes, the change may trigger changes to other settings to keep
the ordering valid. For instance, changing the minimum to a setting between the current value
plus extent setting and the maximum will decrease the extent and increase the value to keep the
ordering valid. In addition, the original property change may result in a change to a new setting
other than the requested setting. For instance, attempting to set the value below the minimum or
maximum will set the value to the nearest limit of the range.

The BoundedRangeModel interface definition follows:

public interface BoundedRangeModel {
// Properties
public int getExtent();
public void setExtent(int newValue);
public int getMaximum();
public void setMaximum(int newValue);
public int getMinimum();
public void setMinimum(int newValue);
public int getValue();
public void setValue(int newValue);
public boolean getValueIsAdjusting();
public void setValueIsAdjusting(boolean newValue);
// Listeners
public void addChangelistener(Changelistener listener);
public void removeChangelistener(ChangelListener listener);
// Other Methods
public void setRangeProperties(int value, int extent, int minimum,
int maximum, boolean adjusting);

Although the different settings available for the model are JavaBean properties, when a
property setting changes, the interface uses Swing’s Changelistener approach instead of a
java.beans.PropertyChangelistener.

The model’s valueIsAdjusting property comes into play when the user is performing a
series of rapid changes to the model, probably as a result of dragging the slider on the screen.
For someone interested in knowing only when the final value is set for a model, a listener
would ignore any changes until getValueIsAdjusting() returns false.

DefaultBoundedRangeModel Class

The Swing class actually implementing the BoundedRangeModel interface is DefaultBounded=s
RangeModel. This class takes care of the adjustments necessary to ensure the appropriate
ordering of the different property values. It also manages a ChangelListener list to notify
listeners when a model change happens.

CHAPTER 12 BOUNDED RANGE COMPONENTS 41

DefaultBoundedRangeModel has two constructors:

public DefaultBoundedRangeModel()

public DefaultBoundedRangeModel(int value, int extent, int minimum, int maximum)

The no-argument version sets up the minimum, value, and extent properties of the model
to have a setting of 0. The remaining maximum property gets a setting of 100.

The second constructor version takes four integer parameters, explicitly setting four proper-
ties. For both constructors, the initial value of the valuelsAdjusting property is false because
the value of the model isn’t yet changing beyond the initial value.

Note Unless you're sharing a model across multiple components, it generally isn’t necessary to create a
BoundedRangeModel. Even if you're sharing a model across multiple components, you can create just the
first component and get its BoundedRangeModel model to share.

As with practically all of the classes that manage their own listener lists, you can ask
DefaultBoundedRangeModel for the listeners assigned to it. Here, you ask the model for its
Changelistener list with getListeners(ChangelListener.class). This returns an array of
EventListener objects.

JScrollBar Class

The simplest of the bounded range components is the JScrollBar. The JScrollBar component
is used within the JScrollPane container, described in Chapter 11, to control the scrollable
region. You can also use this component within your own containers, although with the flexibility
of JScrollPane this typically isn’t necessary. The one point to remember about JScrollBar,
however, is that it isn’t used for the entry of a value, but solely for the scrolling of a region of
screen real estate. For the entry of a value, you use the JSlider component discussed in the
next section.

Note The JScrollBar within a JScrollPane is actually a specialized subclass of JScrollBar that
properly deals with scrollable components that implement the Scrollable interface. Although you can
change the scrollbars of a JScrollPane, it's usually unnecessary—and more work than you might think.

As Figure 12-2 shows, the horizontal JScrollBar is composed of several parts. Starting
from the middle and working outward, you find the scrollbar’s thumb—also called a knob or
slider. The width of the thumb is the extent property from the BoundedRangeModel. The current
value of the scrollbar is at the left edge of the thumb. To the immediate left and right of the
thumb are the block paging areas. Clicking to the left of the thumb will decrement the scrollbar’s
value, while clicking to the right increments it. The increased or decreased amount of the
scrollbar’s value is the scrollbar’s blockIncrement property.

422

CHAPTER 12 BOUNDED RANGE COMPONENTS

- Minimum Value - Thumb Unit Increment
Maximum Value
Block Increment
A 4) 4 v l
[[z [»]
T A A T
Block
Decrement
Unit Extent J
Decrement

Figure 12-2. Horizontal JScrollBar anatomy

On the left and right edges of the scrollbar are arrow buttons. When the left arrow is pressed,
the scrollbar decrements down a unit. The scrollbar’s unitIncrement property specifies this
unit. Typically, this value is one, though it doesn’t have to be. To the immediate right of the left
arrow is the minimum value of the scrollbar and the model. In addition to decreasing the value
with the left arrow, clicking the right arrow causes the scrollbar to increment a unit. To the
immediate left of the right arrow is the scrollbar’s maximum range. The maximum value is
actually a little farther to the left, where this “little farther” is specified by the model’s extent
property. When the thumb is next to the right arrow, this places the scrollbar value of the
scrollbar at the left edge of the thumb, which is the case with all other positions, no matter
where the thumb is.

A vertical JScrollBar is composed of the same parts as a horizontal JScrollBar, with the
minimum and decrement parts at the top, and the value designated by the top edge of the
scrollbar’s thumb. The maximum and increment parts are at the bottom.

As previously mentioned, the model for the JScrollBar is the BoundedRangeModel. The
delegate for the user interface is the Scrol1BarUI.

Now that you've seen the different pieces of a JScrol1Bar, let’s see how to use them.

Creating JScrollBar Components

There are three constructors for JScrollBar:

public JScrollBar()
JScrollBar aJScrollBar = new JScrollBar();

public JScrollBar(int orientation)

// Vertical

JScrollBar aJScrollBar = new JScrollBar(JScrollBar.VERTICAL);
// Horizontal

JScrollBar bJScrollBar = new JScrollBar(JScrollBar.HORIZONTAL);

public JScrollBar(int orientation, int value, int extent, int minimum, int maximum)
// Horizontal, initial value 500, range 0-1000, and extent of 25
JScrollBar aJScrollBar = new JScrollBar(JScrollBar.HORIZONTAL, 500, 25, 0, 1025);

Creating a JScrollBar with no arguments creates a vertical scrollbar with a default data
model. The model has an initial value of 0, a minimum of 0, a maximum of 100, and an extent

CHAPTER 12 BOUNDED RANGE COMPONENTS

of 10. This default model offers a range of only 0 through 90. You can also explicitly set the
orientation to JScrol1Bar.HORIZONTAL or JScrollBar.VERTICAL. If you don’t like the initial
model settings provided by the other two constructors, you need to explicitly set everything
yourself. If the data elements aren’t properly constrained, as described in the previous section
about BoundedRangeModel, an I1legalArgumentException will be thrown, causing the JScrollBar
construction to be aborted.

Surprisingly missing from the list of constructors is one that accepts a BoundedRangeModel
argument. If you have a model instance, you can either call setModel (BoundedRangeModel
newModel) after creating the scrollbar or get the individual properties from the model when
creating the scrollbar, as follows:

JScrollBar aJScrollBar =
new JScrollBar (JScrollBar.HORIZONTAL, aModel.getValue(), aModel.getExtent(),
aModel.getMinimum(), aModel.getMaximum())

Tip Starting with the 1.3 release of the J2SE platform, scrollbars do not participate in focus traversal.

Handling Scrolling Events

Once you've created your JScrollBar, it’s necessary to listen for changes if you're interested in
when the value changes. There are two ways of listening: the AWT 1.1 event model way and the
Swing MVC way. The AWT way involves attaching an AdjustmentListener to the JScrollBar.
The MVC way involves attaching a ChangelListener to the data model. Each works equally well,
and both are notified if the model changes programmatically or by the user dragging the
scrollbar thumb. The latter offers more flexibility and is a good choice, unless you're sharing a
data model across components and need to know which component altered the model.

Listening to Scrolling Events with an AdjustmentListener

Attaching an AdjustmentListener to a JScrollBar allows you to listen for the user to change the
setting of the scrollbar. The following code fragments, used for the example shown later in
Figure 12-3, show how to attach an AdjustmentListener to a JScrollBar to listen for the user
adjusting the value of the JScrollBar.

First, define the appropriate AdjustmentListener that simply prints out the current value
of the scrollbar:

AdjustmentListener adjustmentListener = new AdjustmentListener() {
public void adjustmentValueChanged (AdjustmentEvent adjustmentEvent) {
System.out.println ("Adjusted: " + adjustmentEvent.getValue());

}
};

After you've created the listener, you can create the component and attach the listener:

JScrollBar onelScrollBar = new JScrollBar (JScrollBar.HORIZONTAL);
oneJScrollBar.addAdjustmentListener(adjustmentListener);

423

424

CHAPTER 12 BOUNDED RANGE COMPONENTS

This manner of listening for adjustment events works perfectly well. However, you may
prefer to attach a ChangelListener to the data model, as described next.

Listening to Scrolling Events with a ChangeListener

Attaching a Changelistener to a JScrollBar data model provides more flexibility in your program
designs. With an AWT AdjustmentListener, listeners are notified only when the value of the
scrollbar changes. On the other hand, an attached Changelistener is notified when there’s any
change in the minimum value, maximum value, current value, or extent. In addition, because the
model has a valueIsAdjusting property, you can choose to ignore intermediate change events—
something you can also do with an AdjustmentListener, via the property of the same name in
the AdjustmentEvent.

To demonstrate, define a ChangelListener that prints out the current value of the scrollbar
when the model has finished adjusting, as shown in Listing 12-1. You'll enhance this
BoundedChangeListener class throughout the chapter.

Listing 12-1. ChangeListener for BoundedRangeModel

import javax.swing.*;
import javax.swing.event.*;

public class BoundedChangeListener implements Changelistener {
public void stateChanged(ChangeEvent changeEvent) {
Object source = changeEvent.getSource();
if (source instanceof BoundedRangeModel) {
BoundedRangeModel aModel = (BoundedRangeModel)source;
if (!aModel.getValueIsAdjusting()) {
System.out.println ("Changed: " + aModel.getValue());
}
} else {
System.out.println ("Something changed: " + source);
}
}
}

Once you create the listener, you can create the component and attach the listener. In this
particular case, you need to attach the listener to the data model of the component, instead of
directly to the component.

ChangeListener changelistener = new BoundedChangelListener();
JScrollBar anotherJScrollBar = new JScrollBar (JScrollBar.HORIZONTAL);
BoundedRangeModel model = anotherJScrollBar.getModel();
model.addChangelistener(changelistener);

The source for the testing program is shown in Listing 12-2.

CHAPTER 12 BOUNDED RANGE COMPONENTS

Listing 12-2. /ScrollBar Usage Sample

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;

import java.awt.event.*;

public class ScrollBarSample {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {

AdjustmentListener adjustmentlListener = new AdjustmentlListener() {

public void adjustmentValueChanged(AdjustmentEvent adjustmentEvent) {
System.out.println("Adjusted: " + adjustmentEvent.getValue());

}

1

JScrollBar oneJScrollBar = new JScrollBar(JScrollBar.HORIZONTAL);

oneJScrollBar.addAdjustmentListener(adjustmentListener);

Changelistener changelistener = new BoundedChangelistener();
JScrollBar anotherJ]ScrollBar = new JScrollBar(JScrollBar.HORIZONTAL);
BoundedRangeModel model = anotherJScrollBar.getModel();
model.addChangelListener(changelistener);

JFrame frame = new JFrame("ScrollBars R Us");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
frame.add(oneJScrollBar, BorderLayout.NORTH);
frame.add(anotherJScrollBar, BorderLayout.SOUTH);
frame.setSize(300, 200);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

When you run this program, it shows the two horizontal scrollbars seen in Figure 12-3.
The output of moving the scrollbars is sent to the console window.

£ ScrollBars R Us] 10l =|

[v]

[«]] Tv]

Figure 12-3. Dual JScrollBar listening

425

426

CHAPTER 12 BOUNDED RANGE COMPONENTS

JScrollBar Properties

After you've created a JScrollBar, it may become necessary to modify its underlying data
model. You can get the model with the public BoundedRangeModel getModel() method, and
then modify the model directly. More likely, you would just call the appropriate methods of the
component:

e setValue(int newValue), setExtent(int newValue), setMinimum(int newValue)
e setMaximum(int newValue)

These methods act as proxies and redirect any calls to the equivalent model method.

Gaution Although supported, it’s not recommended that you modify a JScrol1lBaxr’s orientation after
displaying the component. This could seriously diminish the user’s satisfaction and encourage the user to find
a solution from another vendor!

In addition to the data model properties, Table 12-1 shows the 16 properties of JScrollBar.

Table 12-1. JScrollBar Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
adjustmentlisteners AdjustmentListener[] Read-only
blockIncrement int Read-write bound
enabled boolean Write-only
maximum int Read-write
maximumSize Dimension Read-only
minimum int Read-write
minimumSize Dimension Read-only

model BoundedRangeModel Read-write bound
orientation int Read-write bound
uI ScrollBarUI Read-write bound
UIClassID String Read-only
unitIncrement int Read-write bound
value int Read-write bound
valueIsAdjusting boolean Read-write bound

visibleAmount int Read-write

CHAPTER 12 BOUNDED RANGE COMPONENTS

Customizing a JScrollBar Look and Feel

Each installable Swing look and feel provides a different JScrol1Bar appearance and set of
default UIResource values. Figure 12-4 shows the appearance of the JScrol1Bar component for
the preinstalled set of look and feel types: Motif, Windows, and Ocean.

=10l x|

£ Ocean LnF

EI_1 [T I | [+]

B [=[EI| W < windows LnF [5]

4 Motif LnF

Motif Windows Ocean

Figure 12-4. JScrollBar under different look and feel types

The available set of UIResource-related properties for a JScrollBar is shown in Table 12-2.
There are 28 different properties.

Table 12-2. JScrollBar UIResource Elements

Property String Object Type
scrollbar Color
ScrollBar.actionMap ActionMap
ScrollBar.allowsAbsolutePositioning Boolean
ScrollBar.ancestorInputMap InputMap
ScrollBar.ancestorInputMap.RightToleft InputMap
ScrollBar.background Color
ScrollBar.border Border
ScrollBar.darkShadow Color
ScrollBar.focusInputMap Object[]
ScrollBar.focusInputMap.RightTolLeft InputMap
ScrollBar. foreground Color
ScrollBar.gradient List
ScrollBar.highlight Color
ScrollBar.maximumThumbSize Dimension
ScrollBar.minimumThumbSize Dimension
ScrollBar.shadow Color
ScrollBar.squareButtons Boolean
ScrollBar.thumb Color
ScrollBar.thumbDarkShadow Color
ScrollBar.thumbHeight Integer
ScrollBar.thumbHighlight Color

427

428

CHAPTER 12 BOUNDED RANGE COMPONENTS

Table 12-2. JScrollBar UlResource Elements (Continued)

Property String Object Type
ScrollBar.thumbShadow Color
ScrollBar.track Color
ScrollBar.trackForeground Color
ScrollBar.trackHighlight Color
ScrollBar.trackHighlightForeground Color
ScrollBar.width Integer
ScrollBarUI String

JSlider Class

Although the JScrollBar component is useful for scrolling regions of the screen, it’s not a good
component for getting user input for a range of values. For that purpose, Swing offers the

JSlider component. In addition to a draggable thumb like the one provided by the JScrol1lBar
component, the JS1ider component offers visible tick marks and labels to assist in showing the
current setting and selecting a new one. Figure 12-5 shows several sample JSlider components.

£ sample Slider 10l =|

I {)]
100 *
90 E

[>-g0 Eighty-Two

70 Seventy
60
40 Fifty-Two
gl Thirty-Four
=0 wenty-Five
10 Ten
1] *

I)

Figure 12-5. Sample JSlider components

The JSlider is made up of several pieces. The familiar BoundedRangeModel stores the data
model for the component, and a Dictionary stores any labels for the tick marks. The user interface
delegate is the S1iderUI.

Now that you’ve seen the different pieces of a JS1lider, let’s find out how to use them.

Creating JSlider Components

There are six different constructors for JSlider:

CHAPTER 12 BOUNDED RANGE COMPONENTS 429

public JSlider()
JSlider aJSlider = new JSlider();

public JSlider(int orientation)

// Vertical

JSlider aJSlider = new JSlider(JSlider.VERTICAL);
// Horizontal
JSlider bJSlider

new JSlider(JSlider.HORIZONTAL);

public JSlider(int minimum, int maximum)
// Initial value midpoint / 0
JSlider aJSlider = new JSlider(-100, 100);

public JSlider(int minimum, int maximum, int value)
JSlider aJSlider = new JSlider(-100, 100, 0);

public JSlider(int orientation, int minimum, int maximum, int value)
// Vertical, initial value 6, range 1-12 (months of year)
JSlider aJSlider = new JSlider(JSlider.VERTICAL, 6, 1, 12);

public JSlider(BoundedRangeModel model)

// Data model, initial value 3, range 1-31, and extent of O

// JSlider direction changed to vertical prior to display on screen
DefaultBoundedRangeModel model = new DefaultBoundedRangeModel(3, 0, 1, 31);
JSlider aJSlider = new JSlider(model);
alSlider.setOrientation(JSlider.VERTICAL);

Creating a JS1ider with no arguments creates a horizontal slider with a default data model.
The model has an initial value of 50, a minimum of 0, a maximum of 100, and an extent of 0.
You can also explicitly set the orientation with JS1ider.HORIZONTAL or JS1ider.VERTICAL, and
any of the specific model properties, with the various constructors. In addition, you can explicitly
set the data model for the component.

If you're using a preconfigured BoundedRangeModel, remember to set the extent to 0 when
creating the model. If the extent property is greater than 0, then the maximum setting of the
value property is decreased by that amount, and the value setting will never reach the setting
of the maximum property.

Caution Initializing the orientation to something not equivalent to VERTICAL or HORIZONTAL throws
an I1legalArgumentException. All constructors that initialize the data model could throw an
I1legalArgumentException if the range and initial value fail to abide by the rules of the
BoundedRangeModel described earlier in the section “BoundedRangeModel Interface.”

430

CHAPTER 12 BOUNDED RANGE COMPONENTS

Handling JSlider Events

You track changes to a JSlider with a Changelistener. There’s no AdjustmentListener, as
there is with JScrollBar (and Scrollbar). The same BoundedChangelListener from the earlier
JScrollBar example could be added to a data model of the JSlider, and you'll then be notified
when the model changes.

Changelistener aChangelistener = new BoundedChangelistener();
JSlider aJSlider = new JSlider ();

BoundedRangeModel model = aJSlider.getModel();
model.addChangelistener(changelistener);

In addition to attaching a ChangelListener to the model, you can associate the ChangelListener
directly with the JS1ider itself. This allows you to share the data model between views and
listen independently for changes. This requires you to modify the preceding listener a bit,
because the change event source will now be a JSlider instead of a BoundedRangeModel. The
updated BoundedChangeListener, shown in Listing 12-3, will work for both associations, however.
The changes are boldfaced in the following listing.

Listing 12-3. ChangeListener for BoundedRangeModel and JSlider

import javax.swing.*;
import javax.swing.event.*;

public class BoundedChangelistener implements Changelistener {
public void stateChanged(ChangeEvent changeEvent) {
Object source = changeEvent.getSource();
if (source instanceof BoundedRangeModel) {
BoundedRangeModel aModel = (BoundedRangeModel)source;
if (!aModel.getValueIsAdjusting()) {
System.out.println ("Changed: " + aModel.getValue());
}
} else if (source instanceof JSlider) {
JSlider thelSlider = (JSlider)source;
if (!thelSlider.getValueIsAdjusting()) {
System.out.println ("Slider changed: " + thelSlider.getValue());
}
} else {
System.out.println ("Something changed: " + source);
}
}
}

The association with the slider can now be direct, instead of indirect through the model.

aJSlider.addChangelistener(changelistener);

CHAPTER 12 BOUNDED RANGE COMPONENTS 431

JSlider Properties

After you've created a JSlider, you may want to modify its underlying data model. As is the
case with JScrollBar, you can get the model with the public BoundedRangeModel getModel()
method, and then modify the model directly. You can also directly call the methods of the
component:

e setValue(int newValue), setExtent(int newValue), setMinimum(int newValue)
e setMaximum(int newValue)

As with JScrollBar, these methods act as proxies and redirect any calls to the equivalent
model method.
Table 12-3 shows the 19 properties of JS1lider.

Table 12-3. JSlider Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
changelisteners Changelistener[] Read-only

extent int Read-write
inverted boolean Read-write bound
labelTable Dictionary Read-write bound
majorTickSpacing int Read-write bound
maximum int Read-write bound
minimum int Read-write bound
minorTickSpacing int Read-write bound
model BoundedRangeModel Read-write bound
orientation int Read-write bound
paintlLabels boolean Read-write bound
paintTicks boolean Read-write bound
paintTrack boolean Read-write bound
snapToTicks boolean Read-write bound
uI SliderUI Read-write bound
UIClassID String Read-only

value int Read-write
valueIsAdjusting boolean Read-write bound

432

CHAPTER 12 BOUNDED RANGE COMPONENTS

Displaying Tick Marks Within a JSlider

The JSlider component allows you to add tick marks either below a horizontal slider or to the
right of a vertical slider. These tick marks allow a user to get a rough estimate of the slider’s
value and scale. There can be both major and minor tick marks; the major ones are simply
drawn to be a little longer. Either or both can be displayed, as well as neither of them, which is
the default.

Note Technically, a custom look and feel could place the tick marks anywhere. However, the system-
provided look and feel types place the ticks below or to the right.

To display the tick marks, you need to enable their painting with the public void
setPaintTicks(boolean newValue) method. When called with a setting of true, this method enables
the painting of minor and major tick marks. By default, the tick spacing for both types of tick
marks is set to zero. When either is set to zero, that particular tick type isn’t displayed. Because both
are initially zero, you must change the value of either tick spacing to see any ticks. The public
void setMajorTickSpacing(int newValue) and public void setMinorTickSpacing(int newValue)
methods both support this change.

To demonstrate, Figure 12-6 shows four sliders: one with no ticks, one with aesthetically
pleasing tick spacing, and two with unconventional tick spacing. It helps if the major tick
spacing is a multiple of the minor tick spacing (just as a ruler shows inches, halfinches, quarter
inches, and so on with different tick lengths). In addition, the tick spacing shouldn’t be so
narrow that the ticks look like a solid block.

4 Tick slider i B][5

Figure 12-6. Four JSlider controls demonstrating tick marks

The source for the example in Figure 12-6 is shown in Listing 12-4. The top slider has no
ticks. The bottom slider has the aesthetically pleasing major/minor spacing, with minor ticks
at 5 units and major ones at 25 units. The left slider displays poor spacing with minor ticks at 6
and major ticks at 25. The right slider has minor ticks at each individual unit, resulting in
spacing that’s much too tight.

CHAPTER 12

Listing 12-4. JSlider with Tick Marks

import javax.swing.*;
import java.awt.*;

public class TickSliders {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Tick Slider");

BOUNDED RANGE COMPONENTS

frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

// No Ticks

JSlider jSliderOne = new JSlider();
// Major Tick 25 - Minor 5

JSlider jSliderTwo = new JSlider();
jSliderTwo.setMinorTickSpacing(5);
jSliderTwo.setMajorTickSpacing(25);
jSliderTwo.setPaintTicks(true);
jSliderTwo.setSnapToTicks(true);

// Major Tick 25 - Minor 6

JSlider jSliderThree = new JSlider(JSlider.VERTICAL);

jSliderThree.setMinorTickSpacing(6);
jSliderThree.setMajorTickSpacing(25);
jSliderThree.setPaintTicks(true);

JSlider jSliderFour = new JSlider(JSlider.VERTICAL);

// Major Tick 25 - Minor 1
jSliderFour.setMinorTickSpacing(1);
jSliderFour.setMajorTickSpacing(25);
jSliderFour.setPaintTicks(true);

frame.add(jSliderOne, BorderLayout.NORTH);
frame.add(jSliderTwo, BorderLayout.SOUTH);
frame.add(jSliderThree, Borderlayout.WEST);
frame.add(jSliderFour, BorderLayout.EAST);
frame.setSize(300, 200);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

433

434

CHAPTER 12 BOUNDED RANGE COMPONENTS

Snapping the JSlider Thumb into Position

One additional property of JSlider is related to tick marks: the snapToTicks property, set with
public void setSnapToTicks(boolean newValue). When this property is true and tick marks are
displayed, after you move the slider’s thumb, the thumb will rest only on a tick. For instance, if
aslider has a range of 0-100 with tick marks at every tenth unit, and you drop the thumb at the
33 mark, the thumb will snap to the position of the tick at 30. If tick marks aren’t displayed, the
property setting has no effect, including when labels are displayed without tick marks.

Labeling JSlider Positions

As Figure 12-5 (shown earlier in the chapter) demonstrates, you can label any position within
the JS1ider with a Component. When a position is labeled, the component will be displayed next
to it. The labels are stored within a lookup table that subclasses the Dictionary class, where the
key is the Integer position and the value is the Component. Any AWT Component can be the label;
however, the JLabel is best suited to the role. Figure 12-7 shows how the dictionary for the right
slider of Figure 12-5 might look.

new new JLabel(new
Integer(0) DiamondIcon(Color.RED))

new new JLabel("Ten")
Integer(10)

new " -

new JLabel("Twenty-Five

Integer(25) (y)

new new JLabel("Thirty-Four")
Integer(34)

new new JLabel("Fifty-Two")
Integer(52)

new new JLabel("Seventy")
Integer(70)

new new JLabel("Eighty-Two")
Integer(82)

new new JLabel(new
Integer(100) DiamondIcon(Color.BLACK))

Figure 12-7. A JSlider dictionary

CHAPTER 12 BOUNDED RANGE COMPONENTS

Normally, the Dictionary used to store the labels is a Hashtable. However, any class that
extends the Dictionary class and that can use Integer keys will do. After you've created
your dictionary of labels, you associate the dictionary with the slider with the public void
setlLabelTable(Dictionary newValue) method. The following source creates the label lookup
table associated with Figure 12-7.

Hashtable<Integer, JlLabel> table = new Hashtable<Integer, JlLabel>();
table.put (0, new JLabel(new DiamondIcon(Color.RED)));

table.put (10, new JLabel("Ten"));

table.put (25, new JlLabel("Twenty-Five"));

table.put (34, new JlLabel("Thirty-Four"));

table.put (52, new JLabel("Fifty-Two"));

table.put (70, new JLabel("Seventy"));

table.put (82, new JLabel("Eighty-Two"));

table.put (100, new JLabel(new DiamondIcon(Color.BLACK)));
alSlider.setlabelTable (table);

Note Keep in mind that with J2SE 5.0, the compiler will auto-box an int parameter into an Integer.

Simply associating the label table with the slider won’t display the labels. To enable their
painting, you need to call the public void setPaintlLabels(boolean newValue) method with a
parameter of true. If you haven’t manually created a table of labels, the system will create one
with an interval of values reflecting the major tick spacing. For example, the left slider of Figure
12-5 has a slider range of 0-100 and major tick spacing of 10. When setPaintLabels(true) is
called on that slider, labels are created for 0, 10, 20, and so on, all the way up to 100. The minor
tick spacing is irrelevant as far as automatic generation of labels goes. And the ticks don’t need
to be painted for the labels to appear; the getPaintTicks() method can return false.

The automatic creation of labels is done through the public Hashtable createStandardws
Labels(int increment) method, where the increment is the major tick spacing. You don’t need
to call this method directly. If you want to create the labels from other than the minimum
value, you can call the overloaded public Hashtable createStandardlLabels
(int increment, int start) variety, and associate the hash table with the slider yourself.

Customizing a JSlider Look and Feel

Each installable Swing look and feel provides a different JS1ider appearance and set of default
UIResource values. Figure 12-8 shows the appearance of the JS1ider component for the prein-
stalled set of look and feel types.

435

436

CHAPTER 12 BOUNDED RANGE COMPONENTS

4 Motif LnF

1 .
0 Eighty-Twa
=70 Seventy

_,:Z%ﬁ ifty-Two
4 ¥hirty-F?:ur
B wehty-Five
;&U T’en

1
| | K | |
Windows

i %
80 Eighty-Two
70 Seventy
60 o

> gg ifty-Two
30 Thirty-Four
50 Twenty-Frve
10 Ten
1] *

I)
Ocean

Figure 12-8. JSlider under different look and feel types

Two look-and-feel-related properties are part of the JS1lider class definition. By default,
the minimum slider value for a horizontal slider is at the left; for a vertical slider, it’s at the
bottom. To change the direction of a slider, call the public void setInverted(boolean newValue)
method with an argument of true. In addition, the track that the slider moves along is displayed
by default. You can turn it off with the public void setPaintTrack(boolean newValue) method.
A value of false turns off the track display. Figure 12-9 identifies the JS1ider track and points
out the minimum and maximum positions of regular and inverted sliders.

4 Inverted Sliders ;l_l‘:lﬁl
1
I {)]

0 1[¢ 20 30 40 50 60 70 80 90 100 Track
0

100 S5 Y 0

100 90 80 70 60 50|40 30 20 10 O

A A

Inverted

Figure 12-9. Identifying JSlider positions and tracks

CHAPTER 12 BOUNDED RANGE COMPONENTS

Table 12-4 shows the 30 available UIResource-related properties for a JS1ider.

Table 12-4. JSlider UlResource Elements

Property String Object Type
Slider.actionMap ActionMap
Slider.altTrackColor Color
Slider.background Color
Slider.border Border
Slider.darkShadow Color
Slider.focus Color
Slider.focusGradient List
Slider.focusInputMap Object[]
Slider.focusInputMap.RightTolLeft InputMap
Slider.focusInsets Insets
Slider.foreground Color
Slider.gradient List
Slider.highlight Color
Slider.horizontalSize Dimension
Slider.horizontalThumbIcon Icon
Slider.majorTickLength Integer
Slider.minimumHorizontalSize Dimension
Slider.minimumVerticalSize Dimension
Slider.paintThumbArrowShape Boolean
Slider.paintValue Boolean
Slider.shadow Color
Slider.thumb Color
Slider.thumbHeight Integer
Slider.thumbWidth Integer
Slider.tickColor Color
Slider.trackBorder Border
Slider.trackWidth Integer
Slider.verticalSize Dimension
Slider.verticalThumbIcon Icon

SliderUI

String

437

438

CHAPTER 12 BOUNDED RANGE COMPONENTS

The JSlider resources allow customization of elements that aren’t accessible through
JSlider or SliderUI methods. For instance, to customize the JSlider appearance of your
application, you may want to alter the icon used for the draggable thumb. With just a few lines
of code, you can take any icon and make it the slider’s icon for every slider in your application.

Icon icon = new ImageIcon("logo.jpg");
UIDefaults defaults = UIManager.getDefaults();
defaults.put("Slider.horizontalThumbIcon", icon);

Figure 12-10 shows the results. As with all UIResource properties, this change will affect all
JSlider components created after setting the property.

RT=IE
!
L | & 1

Figure 12-10. A JSlider with a custom icon

Note The height and width of the icon are limited to the dimensions of the slider. Changing the icon property
doesn’t affect the slider size.

JSlider Client Properties

By default, with the Metal look and feel, when the track is visible, the track on which the slider
moves does not change as the slider is moved over it. Nevertheless, you can enable a client
property that will signal the slider to fill this track up to the point of the current value that the
thumb has crossed. The name of this property is JSlider.isFilled, and a Boolean object repre-
sents the current setting. By default, this setting is Boolean.FALSE. Figure 12-11 demonstrates
both a Boolean.TRUE and a Boolean.FALSE setting; the code fragment follows:

JSlider onelSlider = new JSlider();
onelSlider.putClientProperty("JSlider.isFilled", Boolean.TRUE);
JSlider anotherJSlider = new JSlider();

// Set to default setting
anotherJSlider.putClientProperty("JSlider.isFilled", Boolean.FALSE);

4 Filled Slider o =]

2

Figure 12-11. Filled and unfilled JSlider

This setting works only in the Metal look and feel. The Ocean theme of the Metal look and
feel ignores this setting, always drawing the track filled. To get this behavior, you need to set the
system property swing.metalTheme to steel, asin java -Dswing.metalTheme=steel ClassName.

CHAPTER 12 BOUNDED RANGE COMPONENTS

JProgressBar Class

Swing’s JProgressBar is different from the other BoundedRangeModel components. Its main
purpose is not to get input from the user, but rather to present output. This output is in the
form of a process completion percentage. As the percentage increases, a bar progresses across
the component until the job is completed and the bar is filled. The movement of the bar is
usually part of some multithreaded task, to avoid affecting the rest of the application.

Figure 12-12 shows several sample JProgressBar components. The top bar uses all the
display defaults. The bottom bar adds a border around the component and displays the
completion percentage. The right bar removes the border, and the left bar has a fixed string
present instead of a completion percentage.

£ ProgressBars R Us 10l =|

Reading File

25%

Figure 12-12. Sample JProgressBar components

From an object-oriented perspective, there are two primary parts to a JProgressBar:
The familiar BoundedRangeModel stores the data model for the component, and the ProgressUI
is the user interface delegate.

Note To display a progress bar in a dialog box, use the ProgressMonitor class discussed in Chapter 9.

Creating JProgressBar Components

There are five different constructors for JProgressBar:

public JProgressBar()
JProgressBar aJProgressBar = new JProgressBar();

public JProgressBar(int orientation)
// Vertical

JProgressBar aJProgressBar
// Horizontal

JProgressBar bJProgressBar = new JProgressBar(JProgressBar.HORIZONTAL);

new JProgressBar(JProgressBar.VERTICAL);

public JProgressBar(int minimum, int maximum)
JProgressBar aJProgressBar = new JProgressBar(0, 500);

439

440

CHAPTER 12 BOUNDED RANGE COMPONENTS

public JProgressBar(int orientation, int minimum, int maximum)
JProgressBar aJProgressBar = new JProgressBar(JProgressBar.VERTICAL, 0, 1000);

public JProgressBar(BoundedRangeModel model)

// Data model, initial value 0, range 0-250, and extent of 0
DefaultBoundedRangeModel model = new DefaultBoundedRangeModel(0, 0, 0, 250);
JProgressBar aJProgressBar = new JProgressBar(model);

Creating a JProgressBar with no arguments results in a horizontal progress bar with a
default data model. The model has an initial value of 0, a minimum value of 0, a maximum
value of 100, and an extent of 0. The progress bar has an extent, but it doesn’t use it, even
though it’s part of the data model.

You can explicitly set the orientation with JProgressBar .HORIZONTAL or
JProgressBar.VERTICAL, as well as any of the specific model properties, with the different
constructors. In addition, you can explicitly set the data model for the component.

Caution Initializing the orientation to a value not equivalent to VERTICAL or HORIZONTAL throws an
I1legalArgumentException.

Creating a JProgressBar from a BoundedRangeModel is a little awkward in the sense that the
progress bar virtually ignores one setting and the initial value is normally initialized to the
minimum. Assuming you want the JProgressBar to start as a user might expect it to, you need
to remember to set the extent to 0 and the value to the minimum when creating the model. If
you increase the extent property, the maximum setting of the value property is decreased by
that amount, and the value setting will never reach the setting of the maximum property.

JProgressBar Properties

After you've created a JProgressBar, you may want to modify it. Table 12-5 shows the 14 properties
of JProgressBar.

Table 12-5. /ProgressBar Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
borderPainted boolean Read-write bound
changelisteners ChangeListener[] Read-only
indeterminate boolean Read-write bound
maximum int Read-write
minimum int Read-write

model BoundedRangeModel Read-write
orientation int Read-write bound

CHAPTER 12 BOUNDED RANGE COMPONENTS

Table 12-5. JProgressBar Properties (Continued)

Property Name Data Type Access
percentComplete double Read-only

string String Read-write bound
stringPainted boolean Read-write bound
uI ProgressBarUI Read-write
UIClassID String Read-only

value int Read-write

Painting JProgressBar Borders

All JComponent subclasses feature a border property by default, and the JProgressBar has a
special borderPainted property to easily enable or disable the painting of the border. Calling
the public void setBorderPainted(boolean newValue) method with a parameter of false turns
off the painting of the progress bar’s border. The right-hand progress bar in Figure 12-12
(shown earlier) has its border turned off. The source for its initialization follows:

JProgressBar cJProgressBar = new JProgressBar(JProgressBar.VERTICAL);
cJProgressBar.setBorderPainted(false);

Labeling a JProgressBar

The JProgressBar supports the display of text within the center of the component. There are
three forms of this labeling:

e By default, no label exists.

* Todisplay the percentage completed [100 x (value-minimum)/(maximum-minimum)],
call the public void setStringPainted(boolean newValue) method with a parameter of
true. This will result in a range from 0% to 100% displayed.

* To change the label to a fixed string, call the public void setString(String newValue)
method and setStringPainted(true). On a vertical progress bar, the string is drawn
rotated, so a longer string will fit better.

The left and bottom progress bars in Figure 12-12 demonstrate the fixed label and
percentage label, respectively. The source code to create both progress bars follows:

JProgressBar bJProgressBar = new JProgressBar();
bJProgressBar.setStringPainted(true);

Border border = BorderFactory.createTitledBorder("Reading File");
bJProgressBar.setBorder(border);

JProgressBar dJProgressBar = new JProgressBar(JProgressBar.VERTICAL);
dJProgressBar.setString("Ack");
dJProgressBar.setStringPainted(true);

L

442

CHAPTER 12 BOUNDED RANGE COMPONENTS

Using an Indeterminate JProgressBar

Some tasks don’t have a fixed number of steps, or they do have a fixed number of steps, but you
don’t know what that number is until after all the steps are done. For this type of operation, the
JProgressBar offers an indeterminate mode where the bar within the JProgressBar bounces
back and forth from side to side, or top to bottom, depending on the direction of the progress
bar. To enable this mode, just call the public void setIndeterminate(boolean newValue)
method with a value of true. Figure 12-13 shows what an indeterminate progress bar looks like
at different times. The length of the sliding box is one-sixth the available space and seems to
not be settable.

£ Indeterminate [5] £ Indeterminate 10l =|
e R et et (| Saee n R o |

Figure 12-13. Sample indeterminate JProgressBar

Stepping Along a JProgressBar

The main usage of the JProgressBar is to show progress as you step through a series of operations.
Normally, you set the minimum value of the progress bar to zero and the maximum value to
the number of steps to perform. Starting with a value property of zero, you increase the value
to the maximum as you perform each step. All these operations imply multithreading, which is,
in fact, absolutely necessary. In addition, when updating the progress bar’s value, you need
to remember to update it only from within the event dispatching thread (with the help of
EventQueue.invokeAndWait(), if appropriate, as described in Chapter 2).

The process of having a progress bar step through its range is as follows:

1. Initialize it. This is the basic process of creating a JProgressBar with the desired orien-
tation and range. In addition, perform any bordering and labeling here.

JProgressBar aJProgressBar = new JProgressBar(0, 50);
aJProgressBar.setStringPainted(true);

2. Startup the thread to perform the desired steps. Probably as the result of performing
some action on the screen, you'll need to start the thread to do the work the progress
bar is reporting. You need to start a new thread so that the user interface remains
responsive.

Thread stepper = new BarThread (aJProgressBar);
stepper.start();

3. Perform the steps. Ignore updating the progress bar, and instead write the appropriate
code to perform each step.

static class BarThread extends Thread {
private static int DELAY = 500;
JProgressBar progressBar;

CHAPTER 12 BOUNDED RANGE COMPONENTS

public BarThread (JProgressBar bar) {
progressBar = bar;

}

public void run() {
int minimum = progressBar.getMinimum();
int maximum = progressBar.getMaximum();
for (int i=minimum; i<maximum; i++) {
try {
// Our job for each step is to just sleep
Thread.sleep(DELAY);
} catch (InterruptedException ignoredException) {
} catch (InvocationTargetException ignoredException) {
// The EventQueue.invokeAndwWait() call
// we'll add will throw this
}
}
}
}

4. For each step, have the thread update the progress bar in the event thread. Create the

Runnable class just once outside the for loop. It isn’'t necessary to create one for each step.

Runnable runner = new Runnable() {
public void run() {
int value = progressBar.getValue();
progressBar.setValue(value+l);
}
b

Within the loop, tell the runner to update the progress bar. This update must be done in
the event thread using the special EventQueue method invokelater() or invokeAndWait(),
because you're updating a property of the JProgressBar.

EventQueue.invokeAndWait (runner);

The complete working example is shown in Listing 12-5.

Listing 12-5. JProgressBar Sample

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.lang.reflect.InvocationTargetException;

public class ProgressBarStep {

static class BarThread extends Thread {
private static int DELAY = 500;
JProgressBar progressBar;

443

444 CHAPTER 12 BOUNDED RANGE COMPONENTS

public BarThread(JProgressBar bar) {
progressBar = bar;

}

public void run() {
int minimum = progressBar.getMinimum();
int maximum = progressBar.getMaximum();
Runnable runner = new Runnable() {
public void run() {
int value = progressBar.getValue();
progressBar.setValue(value+1);
}
1
for (int i=minimum; i<maximum; i++) {
try {
EventQueue.invokeAndWait(runner);
// Our job for each step is to just sleep
Thread.sleep(DELAY);
} catch (InterruptedException ignoredException) {
} catch (InvocationTargetException ignoredException) {
}
}
}

}
public static void main(String args[]) {

Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Stepping Progress");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
final JProgressBar aJProgressBar = new JProgressBar(0, 50);
aJProgressBar.setStringPainted(true);

final JButton aJButton = new JButton("Start");

ActionListener actionListener = new ActionListener() {
public void actionPerformed(ActionEvent e) {
alButton.setEnabled(false);
Thread stepper = new BarThread(alProgressBar);
stepper.start();
}
};

CHAPTER 12 BOUNDED RANGE COMPONENTS

aJButton.addActionlListener(actionlListener);
frame.add(aJProgressBar, BorderlLayout.NORTH);
frame.add(aJButton, BorderlLayout.SOUTH);
frame.setSize(300, 200);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Figure 12-14 shows the demonstration program after selecting the button and at 22%
completion.

JRI=TEY
L T
Start

Figure 12-14. JProgressBar in action

By simply changing the sleep action in Listing 12-5 to the desired operation, this example
should provide a suitable framework for reuse.

Note To have the progress bar fill in the opposite direction, have the value start at the maximum and
decrease it with each step. You probably don’t want to display the percentage-completed string, as it will start
at 100% and decrease to 0%.

Handling JProgressBar Events

Technically, the JProgressBar class supports notification of data model changes through a
Changelistener. In addition, you can attach a ChangelListener to its data model. Because the
progress bar is meant more for visualization of output than for providing input, you typically
won'’t use a Changelistener with it. However, there may be times when this is appropriate.

To reuse the BoundedChangelListener from Listing 12-3 earlier in this chapter, make one final
change (as shown in boldface in Listing 12-6), because the source of these change events is the
JProgressBar.

445

446

CHAPTER 12 BOUNDED RANGE COMPONENTS

Listing 12-6. ChangeListener for BoundedRangeModel, JSlider, and JProgressBar

import javax.swing.*;
import javax.swing.event.*;

public class BoundedChangelListener implements Changelistener {
public void stateChanged(ChangeEvent changeEvent) {

Object source = changeEvent.getSource();

if (source instanceof BoundedRangeModel) {
BoundedRangeModel aModel = (BoundedRangeModel)source;
if (!aModel.getValueIsAdjusting()) {

System.out.println ("Changed: " + aModel.getValue());

}

} else if (source instanceof JSlider) {
JSlider theJSlider = (JSlider)source;
if (!theJSlider.getValueIsAdjusting()) {

System.out.println ("Slider changed: " + theJSlider.getValue());

}

} else if (source instanceof JProgressBar) {
JProgressBar theJProgressBar = (JProgressBar)source;
System.out.println ("ProgressBar changed: " + theJProgressBar.getValue());

} else {
System.out.println ("Something changed: " + source);

}

}
}

Customizing a JProgressBar Look and Feel

Each installable Swing look and feel provides a different JProgressBar appearance and set of
default UIResource values. Figure 12-15 shows the appearance of the JProgressBar component
for the preinstalled set of look and feel types.

Table 12-6 shows the set of available UIResource-related properties for a JProgressBar.
It has 15 different properties.

Table 12-6. JProgressBar UlResource Elements

Property String Object Type
ProgressBar.background Color
ProgressBar.border Border
ProgressBar.celllength Integer
ProgressBar.cellSpacing Integer
ProgressBar.cycleTime Integer
ProgressBar.font Font

ProgressBar.foreground Color

CHAPTER 12

Table 12-6. /ProgressBar UIResource Elements (Continued)

Property String Object Type
ProgressBar.highlight Color
ProgressBar.horizontalSize Dimension
ProgressBar.repaintInterval Integer
ProgressBar.selectionBackground Color
ProgressBar.selectionForeground Color
ProgressBar.shadow Color
ProgressBar.verticalSize Dimension
ProgressBarUI String

BOUNDED RANGE COMPONENTS

& Motif LnF o [=] | 4 windows LnF B[]

St Start
Motif Windows
4 Dcean LnF = | Ellll
| 16%
Ocean

Figure 12-15. JProgressBar under different look and feel types

JTextField Class and BoundedRangeModel
Interface

The JTextField component is not technically a bounded-range component, but nevertheless,
it uses BoundedRangeModel. Built inside the JTextField is a scrollable area used when the width
of the component’s contents exceeds its visible horizontal space. A BoundedRangeModel controls
this scrolling area. You'll look at JTextField in more depth in Chapter 15. Here, you can see

447

448 CHAPTER 12 BOUNDED RANGE COMPONENTS

how a JScrollBar can track the scrolling area of the JTextField. Figure 12-16 shows the example
in action, and Listing 12-7 shows the source

1ol x|
ofthe Emergency Broadcasting System. Thisis onIyH

[«[T] I

Figure 12-16. Tracking a JTextField width with a JScrollBar

Listing 12-7. JTextField with a JScrollBar for Scrolling

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class TextSlider extends JPanel {
private JTextField textField;
private JScrollBar scrollBar;
public TextSlider() {
setLayout(new BoxLayout(this, BoxlLayout.Y AXIS));
textField = new JTextField();
scrollBar = new JScrollBar(JScrollBar.HORIZONTAL);
BoundedRangeModel brm = textField.getHorizontalVisibility();
scrollBar.setModel(brm);
add(textField);
add(scrollBar);
}
public JTextField getTextField() {
return textField;
}
public String getText() {
return textField.getText();
}
public void addActionListener(ActionListener 1) {
textField.addActionListener(1);
}
public void removeActionListener(ActionListener 1) {
textField.removeActionListener(1);
}
public JScrollBar getScrollBar() {
return scrollBar;

}

CHAPTER 12 BOUNDED RANGE COMPONENTS

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Text Slider");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
final TextSlider ts = new TextSlider();
ts.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.out.println("Text: " + ts.getText());

}

D;
frame.add(ts, BorderLayout.NORTH);

frame.setSize(300, 100);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Normally, the JTextField has no associated scrollbar. In fact, most look and feel types
don’t offer it as an alternative. However, if this component is something you want to incorporate,
you can reuse it in your own applications. Plenty of accessor methods should make reuse
simpler, and you can avoid needing to access the internal pieces directly.

Summary

In this chapter, you've learned how to use Swing’s JScrollBar, JS1lider, and JProgressBar
components. You saw how each uses the BoundedRangeModel interface to control the internal
data necessary to operate the component, and how the DefaultBoundedRangeModel class offers
a default implementation of this data model.

Now that you know how to use the various bounded range components, you can move on
to Chapter 13, which looks at the controls that offer data selection: JList and JComboBox.

449

CHAPTER 13

List Model Controls

Chapter 12 explored the bounded range controls that support scrolling and the input or
display of some bounded range of values. In this chapter, you’ll examine two data-selection
controls that present a list of choices: JList and JComboBox. The primary difference between
these controls is that the JList component supports multiple selections, whereas the JComboBox
does not. Also, the JComboBox lets a user provide a choice that isn’t among the available options.

ListModel Interface

Figure 13-1 shows the two controls you'll be examining in this chapter.

10X
Chardonnay ~ || <€—— JComboBox
Chardonnay = {

Sauvignon
Riesling
Cabernet
Zinfandel JList
Merlot
Pinot Noir

Sauvignon Blanc || 4
<

Figure 13-1. Sample JComboBox and JList controls

The data model shared by the two components is ListModel, which originates with the
ListModel interface. The AbstractListModel class provides an implementation basis by supporting
the management and notification of a set of ListDatalistener objects.

In the case of a JList component, the data model implementation is the DefaultListModel
class. This class adds an actual data repository, which follows the API of a Vector, for the different
elements to be displayed within the JList component.

In the JComboBox component, an extension of the ListModel interface called ComboBoxModel
supports the notion of a selected item within the model. The DefaultComboBoxModel class
implements the ComboBoxModel interface through yet another interface, the MutableComboBoxModel,
which supplies supporting methods for adding and removing elements from the model.

451

452

CHAPTER 13 LIST MODEL CONTROLS

Note The BasicDirectoryModel class is another ListModel implementation. This implementation is
used by the file chooser component, JFileChooser, as described in Chapter 9.

The actual ListModel interface is rather simple. It provides for management of a
ListDatalistener, and it accesses the size of a particular element of the model.

public interface ListModel {
// Properties
public int getSize();
// Listeners
public void addListDatalistener(ListDatalistener 1);
public void removelistDatalistener(ListDatalistener 1);
// Other methods
public Object getElementAt(int index);

AbstractListModel Class

The AbstractListModel class provides a partial implementation of the ListModel interface. You
need to provide only the data structure and the data. The class provides for the list management
of ListDatalistener objects and the framework for notification of those listeners when the
data changes. You can also get the list of listeners by using the public ListDatalistener[]
getListDatalisteners() method. When you modify the data model, you must then call the
appropriate method of AbstractListModel to notify the listening ListDatalistener objects:

e protected void fireIntervalAdded(Object source, int index0, int index1): To be
called after adding a contiguous range of values to the list.

e protected void fireIntervalRemoved(Object source, int index0, int index1):To be
called after removing a contiguous range of values from the list.

e protected void fireContentsChanged(Object source, int index0, int index1):To be
called if the modified range wasn’t contiguous for insertion, removal, or both.

Note The ranges specified by the fireXXX() methods of AbstractListModel are closed intervals. This
simply means that the indices are the endpoints of the range modified. There’s no implied order for the
indices; indexo, for example, doesn’t need to be less than index1. The only requirement is that the methods
be called after the data model has changed.

If you have your data in an existing data structure, you need to convert it into a form that
one of the Swing components understands or implement the ListModel interface yourself. As
you'll see, an array or Vector is directly supported by JList and JComboBox. You can also wrap
your data structure into an AbstractListModel. For instance, if your initial data structure is an

CHAPTER 13 LIST MODEL CONTROLS

Arraylist from the Collections framework, you can convert the data structure to a ListModel
with the following code:

final List arraylist = ...;
ListModel model = new AbstractlListModel() {
public int getSize() {
return arraylist.size();
}
public Object getElementAt(int index) {
return arraylist.get(index);
}
}

The other option is to just pass the List into the Vector constructor, and then pass that
Vector into the JList constructor. Effectively, you've then done the same thing.

DefaultListModel Class

TheDefaultListModel class provides a data structure for you to store the data internally in the form
of a Vector. You just need to add the data, because the class manages the ListDatalistener list
for you.

First, you create the data structure with the no-argument constructor: DefaultListModel
model = new DefaultlListModel(). Then you manipulate it. As shown in Table 13-1, the
DefaultListModel class has only two properties.

Table 13-1. DefaultListModel Properties

Property Name Data Type Access
empty boolean Read-only
size int Read-write

The DefaultlListModel class provides all its operational methods through a series of public
methods. To add elements, use the following methods:

public void add(int index, Object element)
public void addElement(Object element)
public void insertElementAt(Object element, int index)

The addElement () method of DefaultListModel adds the element to the end of the data model.
To change elements, use these methods:

public Object set(int index, Object element)
public void setElementAt(Object element, int index)

And to remove elements, these methods are provided:

453

454

CHAPTER 13 LIST MODEL CONTROLS

public void clear()

public Object remove(int index)

public void removeAllElements()

public boolean removeElement(Object element)

public void removeElementAt(int index)

public void removeRange(int fromIndex, int toIndex)

The removeElement () method returns a status: true if it found the object and removed it,
and false otherwise.

The DefaultListModel class is useful when you don’t have your data in an existing data
structure. For example, the results of a database query come back as a JDBC ResultSet. If you
wish to use those results as the basis for what to display in a JList, you must store them some-
where. That somewhere can be a DefaultListModel, as demonstrated by the following:

ResultSet results = aJDBCStatement.executeQuery(
"SELECT columnName FROM tableName");

DefaultlListModel model = new DefaultListModel();

while (results.next()) {
model.addElement(result.getString(1));

}

Listening for ListModel Events with a ListDataListener

If you're interested in finding out when the contents of the list model change, you can register
a ListDatalistener with the model. Three separate methods of the interface tell you when
contents are added, removed, or altered. Altering the data model means adding and/or removing
contents from one or more regions of the data model or changing the existing contents without
adding or removing anything. The following is the interface definition:

public interface ListDatalistener extends Eventlistener {
public void contentsChanged(ListDatakvent e);
public void intervalAdded(ListDataEvent e);
public void intervalRemoved(ListDataEvent e);

}

Upon notification of the list-altering event, you're passed a ListDataEvent instance, which
contains three properties, as shown in Table 13-2.

Table 13-2. ListDataEvent Properties

Property Name Data Type Access
indexo int Read-only
index1 int Read-only

type int Read-only

CHAPTER 13 LIST MODEL CONTROLS

The indices aren’t necessarily ordered, and neither are the bounds of the altered region. In
the case of the list model contents changing, not everything within the region may have been
altered. The area whose contents did change is the bounded region specified by the indices.
The type property setting is one of three constants, as shown in Table 13-3, that map directly to
the specific interface method called.

Table 13-3. ListDataEvent Type Constants

Type Constant Method
CONTENTS_CHANGED contentsChanged()
INTERVAL_ADDED intervalAdded()
INTERVAL_REMOVED intervalRemoved()

If any ListDatalistener objects are attached to the data model when any one of the oper-
ational methods of the DefaultListModel class are called, each of the listeners will be notified
of the data model change. To demonstrate the use of ListDatalistener and the dynamic
updating of the data model, the ModifyModelSample program shown in Listing 13-1 uses all the
DefaultlListModel class modifying methods, sending the output in the form of the event and
list contents to a JTextArea.

Listing 13-1. Modifying the Data Model

import javax.swing.*;

import javax.swing.event.*;
import java.awt.*;

import java.awt.event.*;
import java.io.*;

import java.util.Enumeration;

public class ModifyModelSample {
static String labels[] = {"Chardonnay", "Sauvignon", "Riesling", "Cabernet",
"Zinfandel", "Merlot", "Pinot Noir", "Sauvignon Blanc", "Syrah",
"Gewlirztraminer"};

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Modifying Model");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

// Fill model

final DefaultlListModel model = new DefaultlListModel();

for (int i=0, n=labels.length; i<n; i++) {
model.addElement(labels[i]);

}

455

456 CHAPTER 13 LIST MODEL CONTROLS

JList jlist = new JList(model);
JScrollPane scrollPanel = new JScrollPane(jlist);
frame.add(scrollPane1, Borderlayout.WEST);

final JTextArea textArea = new JTextArea();
textArea.setEditable(false);

JScrollPane scrollPane2 = new JScrollPane(textArea);
frame.add(scrollPane2, Borderlayout.CENTER);

ListDatalistener listDatalistener = new ListDatalistener() {
public void contentsChanged(ListDataEvent listDataEvent) {
appendEvent(listDataEvent);
}
public void intervalAdded(ListDataEvent listDataEvent) {
appendEvent(listDataEvent);
}
public void intervalRemoved(ListDataEvent listDataEvent) {
appendEvent(listDataEvent);
}
private void appendEvent(ListDataEvent listDataEvent) {
StringWriter sw = new StringWriter();
PrintWriter pw = new PrinthWriter(sw);
switch (listDataEvent.getType()) {
case ListDataEvent.CONTENTS CHANGED:
pw.print("Type: Contents Changed");
break;
case ListDataEvent.INTERVAL ADDED:
pw.print("Type: Interval Added");
break;
case ListDataEvent.INTERVAL REMOVED:
pw.print("Type: Interval Removed");
break;
}
pw.print(", Index0: " + listDataEvent.getIndexo());
pw.print(", Index1: " + listDataEvent.getIndex1());
DefaultlListModel theModel =
(DefaultListModel)listDataEvent.getSource();
pw.println(theModel);
textArea.append(sw.toString());
}
};

model.addListDatalistener(listDatalistener);

CHAPTER 13 LIST MODEL CONTROLS 457

// Set up buttons
JPanel jp = new JPanel(new GridlLayout(2, 1));
JPanel jp1 = new JPanel(new FlowLayout(FlowLayout.CENTER, 1, 1));
JPanel jp2 = new JPanel(new FlowLayout(FlowLayout.CENTER, 1, 1));
jp-add(jp1);
jp-add(jp2);
JButton jb = new JButton("add F");
jp1.add(jb);
jb.addActionlListener(new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
model.add(0, "First");
}
D;
jb = new JButton("addElement L");
jp1.add(jb);
jb.addActionlListener(new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
model.addElement("Last");
}
D;
jb = new JButton("insertElementAt M");
jpt.add(jb);
jb.addActionlListener(new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
int size = model.getSize();
model.insertElementAt("Middle", size/2);
}
D;
jb = new JButton("set F");
jpt.add(jb);
jb.addActionlListener(new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
int size = model.getSize();
if (size != 0)
model.set(0, "New First");
}
D;
jb = new JButton("setElementAt L");
jpt.add(jb);
jb.addActionlListener(new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
int size = model.getSize();
if (size != 0)
model.setElementAt("New Last", size-1);

458 CHAPTER 13 LIST MODEL CONTROLS

jb = new JButton("load 10");
jp1.add(jb);
jb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
for (int i=0, n=labels.length; i<n ;i++) {
model.addElement (labels[i]);
}
}
D;
jb = new JButton("clear");
jp2.add(jb);
jb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
model.clear();
}
D;
jb = new JButton("remove F");
jp2.add(3b);
jb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
int size = model.getSize();
if (size != 0)
model.remove(0);
}
b;
jb = new JButton("removeAllElements");
jp2.add(3b);
jb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
model.removeAllElements();
}
D;
jb = new JButton("removeElement 'Last'");
jp2.add(3b);
jb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
model.removeElement("Last");
}
D;
jb = new JButton("removeElementAt M");
jp2.add(3b);
jb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
int size = model.getSize();
if (size != 0)
model.removeElementAt(size/2);

};

CHAPTER 13 LIST MODEL CONTROLS

jb = new JButton("removeRange FM");
jp2.add(jb);
jb.addActionlListener(new ActionListener() {
public void actionPerformed(ActionEvent actionEvent) {
int size = model.getSize();
if (size != 0)
model.removeRange(0,size/2);
}
IOk
frame.add(jp, BorderlLayout.SOUTH);
frame.setSize(640, 300);
frame.setVisible(true);

b
EventQueue.invokelater(runner);
Figure 13-2 shows the output for one such run, after several buttons were selected.
£ Modifying Model [10l =|
First | [Type: Interval Added, Index0: 0, Index1: O[First, Chardonnay, Sauvignon, Riesling, Cabernet,]|
Sauvignon Mype: Interval Added, Index0: 11, Index1: 11[First, Chardaonnay, Sauvignon, Riesling, Caherng
Riesling Type: Contents Changed, Index0: 0, Indext: O[Mew First, Chardonnay, Sauvignon, Riesling, {
Cabernet 1 Mype: Contents Changed, Index0: 0, Index1: O[Mew First, Chardonnay, Sauvignon, Riesling,
Zinfandel ~|[Type: Contents Changed, Index: 11, Index1: 11[Mew First, Chardonnay, Sauvignon, Riesling_|
'_ ande Mype: Contents Changed, Index0: 0, Index1: O[Mew First, Chardonnay, Sauvignon, Riesling,
Middle Mype: Interval Added, Index0: 6, Index1: 6[New First, Chardonnay, Sauvignon, Riesling, Cahe
Merlot FTvpe: Interval Removed, Indexd: 0, Indesxt; 12]
Pinot Noir Type: Interval Added, Index0: 0, Index1: O[Chardonnay]
Sauvignon Blanc| (Type: Interval Added, Index0: 1, Index1: 1[Chardonnay, Sauvianon]
Syrah Mype: Interval Added, Index: 2, Index1: 2[Chardonnay, Sauvignon, Riesling]
New Last Iype: !n}erva!Adldledl, !ndlexD: 3 !ndlex]:?gcpardlonnay, Sauv?gnon, E?es!?ng, Calbernef]) z
Chardonnay v 4] i | [¥]
add F " addElement L " insertElementit M " set F " setElementAt L " load 10 |
| clear " remowve F " I AlIEI it: " T Element ‘Last" " removeElementat M |

Figure 13-2. A listing for data model changes

Note To help you decode the button labels in Figure 13-2, an Fmeans the method affects the first cell, an
M means it affects the middle cell, and an L means it affects the last cell. The removeElement “Last” button
will remove the first element in the data model whose content is Last.

The retrieving methods of the DefaultListModel class are quite varied in their capabilities.
The class has the basic accessor methods public Object get(int index), public Object
getElementAt(int index), and public Object elementAt(int index), which all do the same
thing. The DefaultlListModel class also has more specific methods. For instance, to work with
all elements, you can obtain an instance of Enumeration using public Enumeration elements().

459

460

CHAPTER 13 LIST MODEL CONTROLS

Or, if you want to work with all elements as an array, use either public Object[] toArray() or
public void copyInto(Object anArray[]).You can also check for the existence of an element
within a model with methods such as public boolean contains(Object element), public int
index0Of(Object element), public int indexOf(Object element, int index), public int
lastIndexOf(Object element), and public int lastIndexOf(Object element, int index).

Tip Once you're finished adding elements to the data model, it's a good idea to trim its length with public void
trimToSize(). This removes any extra preallocated space within the internal data structure. In addition, if you
know the size of the data model in advance, you can call public void ensureCapacity(int minCapacity) to
preallocate space. Both of these methods work only with DefaultListModel.

ComboBoxModel Interface

The ComboBoxModel interface extends the ListModel interface. The key reason for this extension
is that the classes that implement the ComboBoxModel interface need to manage the selected
item internally through a selectedItem property, as shown by the interface definition.

public interface ComboBoxModel extends ListModel {
// Properties
public Object getSelectedItem();
public void setSelectedItem(Object anItem);

}

MutableComboBoxModel Interface

In addition to the ComboBoxModel interface, another data model interface,
MutableComboBoxModel, extends ComboBoxModel to make methods available to modify the
data model.

public interface MutableComboBoxModel extends ComboBoxModel {
// Other methods
public void addElement(Object obj);
public void insertElementAt(Object obj, int index);
public void removeElement(Object obj);
public void removeElementAt(int index);

The JComboBox component uses an implementation of this interface by default.

DefaultComboBoxModel Class

The DefaultComboBoxModel class extends the AbstractListModel class to provide an appropriate
data model for the JComboBox. Because of this extension, it inherits the managing of the
ListDatalistener list.

CHAPTER 13 LIST MODEL CONTROLS 461

Like DefaultListModel, DefaultComboBoxModel adds the necessary data structure for you to
collect elements to show within a component. Also, because the model is modifiable, imple-
menting MutableComboBoxModel causes the data model to call the various fileXXX() methods of
the AbstractListModel class when the data elements within the model change.

Note If you create a DefaultComboBoxModel from an array, the elements of the array are copied into an
internal data structure. If you use a Vector, they’re not copied; instead, the actual Vector is used internally.

To use the data model, you must first create the model with one of the three constructors:

public DefaultComboBoxModel()
DefaultComboBoxModel model = new DefaultComboBoxModel();

public DefaultComboBoxModel(Object listData[])

String labels[] = { "Chardonnay", "Sauvignon", "Riesling", "Cabernet", "Zinfandel",
"Merlot", "Pinot Noir", "Sauvignon Blanc", "Syrah", "Gewlrztraminer"};

DefaultComboBoxModel model = new DefaultComboBoxModel(labels);

public DefaultComboBoxModel(Vector listData)
Vector vector = aBufferedImage.getSources();
DefaultComboBoxModel model = new DefaultComboBoxModel(vector);

Next, you manipulate the model. Two new properties are introduced in the
DefaultComboBoxModel class, as shown in Table 13-4.

Table 13-4. DefaultComboBoxModel Properties

Property Name Data Type Access
selectedItem Object Read-write
size int Read-only

The data model modification methods for the DefaultComboBoxModel are different from
those for DefaultListModel. They all come from the MutableComboBoxModel interface:

public void addElement(Object element)

public void insertElementAt(Object element, int index)
public boolean removeElement(Object element)

public void removeElementAt(int index)

Due to the flexibility (and functionality) of the DefaultComboBoxModel, it’s usually
unnecessary to create your own ComboBoxModel implementation. Just create an instance
of DefaultComboBoxModel, and then simply fill it from the appropriate data source.

462

CHAPTER 13 LIST MODEL CONTROLS

Note One case in which you may wish to provide your own model is when you need to support the presence of
the same item within the model multiple times. With the DefaultComboBoxModel, if you have two items in
the list whose equals () methods will return true, the model won’t work properly.

If you really want to define your own model implementation, perhaps because you already
have the data in your own data structure, it works best to subclass the AbstractListModel and
implement the ComboBoxModel or MutableComboBoxModel interface methods. When subclassing
the AbstractListModel, you merely need to provide the data structure and the access into it.
Because the “selected item” part of the data model is maintained outside the primary data
structure, you need a place to store that, as well. The program source in Listing 13-2 demonstrates
one such implementation using an ArraylList as the data structure. The program includes a
main() method to demonstrate the use of the model within a JComboBox.

Listing 13-2. Using a Custom Data Model

import java.awt.*;

import javax.swing.*;
import java.util.Collection;
import java.util.Arraylist;

public class ArraylListComboBoxModel

extends AbstractListModel implements ComboBoxModel {

private Object selectedItem;

private Arraylist anArraylist;

public ArraylListComboBoxModel(ArraylList arraylList) {
anArraylist = arraylist;

}

public Object getSelectedItem() {
return selectedItenm;

}

public void setSelectedItem(Object newValue) {
selectedItem = newValue;

}

public int getSize() {
return anArraylist.size();

}

public Object getElementAt(int i) {
return anArraylist.get(i);

}

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("ArraylListComboBoxModel");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

CHAPTER 13 LIST MODEL CONTROLS

Collection<Object> col = System.getProperties().values();
Arraylist<Object> arraylist = new ArraylList<Object>(col);
ArraylistComboBoxModel model = new ArraylistComboBoxModel(arraylist);

JComboBox comboBox = new JComboBox (model);

frame.add(comboBox, BorderlLayout.NORTH);
frame.setSize(300, 225);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Figure 13-3 shows the model in action using the current system properties as the source
for the data model elements.

Java(TM) 2 Runtime Ervir t, Standard Editii
C:LIDK1.5.0rethin =
1.5.0-b64

Sun Microsystems Inc.

http:/java.sun.com/

[Java HotSpot(TM) Client Vi
Sun.io

[l

Figure 13-3. Using an ArrayListComboBoxModel

JList Class

The JList component is the basic Swing component for selecting one or more items from a set
of choices. You present the list of choices to the user, and the user can pick one or several,
depending on the selection mode of the component.

Three key elements and their implementations define the JList structure:

* Adatamodel for holding the JList data, as defined by the ListModel interface

* Acell renderer for drawing the elements of the JList, as described by the
ListCellRenderer interface

* Aselection model for selecting elements of the JList, as described by the
ListSelectionModel interface

Creating JList Components

The JList component has four constructors, which allow you to create a JList instance based
on your initial data structure:

463

464

CHAPTER 13 LIST MODEL CONTROLS

public JList()
Jlist jlist = new JList();

public JList(Object listData[])

String labels[] = { "Chardonnay", "Sauvignon", "Riesling", "Cabernet", "Zinfandel",
"Merlot", "Pinot Noir", "Sauvignon Blanc", "Syrah", "Gewlrztraminer"};

Jlist jlist = new JList(labels);

public JList(Vector listData)
Vector vector = aBufferedImage.getSources();
JLlist jlist = new JList(vector);

public JList(ListModel model)
ResultSet results = aJDBCStatement.executeQuery("SELECT colName FROM tableName");
DefaultlListModel model = new DefaultListModel();
while (result.next())
model.addElement(result.getString(1));
Jlist jlist = new JList(model);

If you use the no-argument constructor, you can fill in the data later. However, if you use
the array or Vector constructor, you can’t alter the contents without changing the whole
model.

Note If you want to display something other than the toString() results of each array element, see the
section “Rendering JList Elements” later in this chapter for details on how to do that.

JList Properties

After creating a JList component, you can modify each of its many properties. Table 13-5
shows the 32 properties of JList.

Table 13-5. /List Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only
anchorSelectionIndex int Read-only
cellRenderer ListCellRenderer Read-write bound
dragEnabled boolean Read-write
firstVisibleIndex int Read-only
fixedCellHeight int Read-write bound
fixedCellWidth int Read-write bound

Table 13-5. /List Properties (Continued)

CHAPTER 13

LIST MODEL CONTROLS

Property Name Data Type Access
lastVisibleIndex int Read-only
layoutOrientation int Read-write bound
leadSelectionIndex int Read-only
listData Vector Write-only
listSelectionListeners ListSelectionListener[] Read-only
maxSelectionIndex int Read-only
minSelectionIndex int Read-only

model ListModel Read-write bound
preferredScrollableViewportSize Dimension Read-only
prototypeCellValue Object Read-write bound
scrollableTracksViewportHeight boolean Read-only
scrollableTracksViewportWidth boolean Read-only
selectedIndex int Read-write
selectedIndices int[] Read-write
selectedValue Object Read-only
selectedValues Object[] Read-only
selectionBackground Color Read-write bound
selectionEmpty boolean Read-only
selectionForeground Color Read-write bound
selectionMode int Read-write
selectionModel ListSelectionModel Read-write bound
Ul ListUI Read-write
UIClassID String Read-only
valueIsAdjusting boolean Read-write
visibleRowCount int Read-write bound

Many of the JList properties are related to the process of selection. For instance,
anchorSelectionIndex, leadSelectionIndex, maxSelectionIndex, minSelectionIndex,
selectedIndex, and selectedIndices deal with the indices of the selected rows, while
selectedValue and selectedValues relate to the contents of the selected elements.
The anchorSelectionIndex is the most recent indexo of a ListDataEvent, whereas the
leadSelectionIndex is the most recent index1.

465

466

CHAPTER 13 LIST MODEL CONTROLS

To control the preferred number of visible rows shown, set the visibleRowCount property
of JList. The default setting for this property is 8.

Scrolling JList Components

When you're working with a JList component, you must place the component within a
JScrollPane if you want to allow the user to pick from all available choices. If it's not placed
within a JScrollPane and the default number of rows displayed is smaller than the size of the
datamodel, or if there isn’t sufficient space to display the rows, the other choices aren’t shown.
When placed within a JScrollPane, the JList offers a vertical scrollbar to move through all the
available choices.

Ifyoudon’tplacea JList inaJScrollPane and the number of choices exceeds the available
space, only the top group of choices will be visible, as you can see in Figure 13-4.

2 Example JList i 10l =|
Chardonn _ s
. i Sauvignon =1
Sauvignon _—
_— Riesling
Riesling
Cabernet
Cabernet
) Zinfandel
Zinfandel Merlot 1
Merlot .
. . Pinot Noir
Pinot Noir .
. Sauvignon Blanc
Sauvignon Blanc
Syrah Syrah
Goiir7raminor Gewiirztraminer

Figure 13-4. A ten-element JList, in and out of a JScrollPane

Tip Whenever you see that a class implements the Scrollable interface, it should serve as a reminder
to place that component within a JScrol1Pane before adding it to the application.

The JScrollPane relies on the dimensions provided by the preferredScrollable =
ViewportSize property setting to determine the preferred size of the pane contents. When the
datamodel of a JList is empty, a default size of 16 pixels high by 256 pixels wide per visible row
is used. Otherwise, the width is determined by looping through all the cells to find the widest
one, and the height is determined by the height of the first cell.

To speed the sizing of the viewport for the JScrol1lPane, you can define a prototype cell by
setting the prototypeCellValue property. You must be sure the prototype toString() value is
sufficiently wide and tall to accommodate all the contents of the JList. Then the JScrollPane
bases the sizing of its viewport on the prototype, and it won’t be necessary for the JList to ask
each cell for its size; instead, it will ask only for the prototype.

You can also improve performance by assigning a size to the fixedCellHeight and
fixedCellWidth properties. Setting these properties is another way to avoid having the JList
ask each cell for its rendered size. Setting both properties is the fastest way to have a JList sized
within a viewport. Of course, this is also the least flexible because it ensures that the JList
choices aren’t widened (or shortened) when the contents change. However, if you have a large
number of entries in the data model, this loss of flexibility may be worthwhile to improve
performance. Figure 13-5 helps you to visualize some of the sizing capabilities of a JList.

4 Sizing Samples

=10

Chardonnay
Sauvignon
Riesling
Cabernet

mE

Chardonnay
Sauvignon
Riesling
Cabernet
Zinfandel

MK

4]

Chardonnay
Sauvignon
Riesling
Cabernet
Zinfandel

Merlot

Pinot Noir
Sauvignon Blanc
Syrah
Gewiirztraminer

Figure 13-5. Sizing entries within a JList

CHAPTER 13

LIST MODEL CONTROLS

The source used to generate the output in Figure 13-5 follows in Listing 13-3. The center
list in the figure contains more than 1,000 fixed-size cells. The top list shows that you can set
the number of visible rows with setVisibleRowCount (). Notice that the bottom list in the figure
also uses setVisibleRowCount (). However, because the listisn’tin a JScrollPane, the request to

limit the number of rows is ignored.

Listing 13-3. Sizing the List Cells

import javax.swing.*;
import java.awt.*;

public class SizingSamples {

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {

String labels[] = {"Chardonnay", "Sauvignon", "Riesling", "Cabernet",
"Zinfandel", "Merlot", "Pinot Noir", "Sauvignon Blanc", "Syrah",
"Gewlirztraminer"};

JFrame frame = new JFrame("Sizing Samples");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JList jlista

new JList(labels);
jlisti.setVisibleRowCount(4);

DefaultListModel model = new DefaultListModel();

model.ensureCapacity(1000);
for (int i=0;i<100;i++) {
for (int j=0;3j<10;j++) {
model.addElement(labels[j]);

}
}

467

468

CHAPTER 13 LIST MODEL CONTROLS

JScrollPane scrollPanel = new JScrollPane(jlist1);
frame.add(scrollPane1, BorderlLayout.NORTH);

JLlist jlist2 = new JList(model);
jlist2.setVisibleRowCount(4);
jlist2.setFixedCellHeight(12);
jlist2.setFixedCellWidth(200);

JScrollPane scrollPane2 = new JScrollPane(jlist2);
frame.add(scrollPane2, Borderlayout.CENTER);

JList jlist3 = new JList(labels);
jlist3.setVisibleRowCount(4);
frame.add(jlist3, BorderlLayout.SOUTH);

frame.setSize(300, 350);
frame.setVisible(true);
}
};
EventQueue.invokelLater(runner);
}
}

In addition to placing a JList within a JScrollPane, you can also find out which choices
are visible or request that a specific element be made visible. The firstVisibleIndex and
lastVisibleIndex properties allow you to find out which choices are currently visible within
the JScrollPane. Both methods return -1 if nothing is visible; this usually happens where the
data model is empty. To request that a specific element be made visible, use the public void
ensureIndexIsVisible(int index) method. For instance, to programmatically move the list to
the top, use the following:

jlist.ensureIndexIsVisible(0);

Rendering JList Elements

Every element within the JList is called a cell. Every JList has an installed cell renderer that draws
every cell when the list needs to be drawn. The default renderer, DefaultListCellRenderer,is a
subclass of JLabel, which means you can use either text or an icon as the graphical depiction
for the cell. This tends to suit most users’ needs, but sometimes the cell’s appearance can
benefit from some customization. And, because every JList can have at most one renderer
installed, customization requires that you replace the existing renderer.

ListCellRenderer Interface and DefaultListCellRenderer Class

The JList has an installed renderer. A class that implements the ListCellRenderer interface
provides this renderer.

public interface ListCellRenderer {
public Component getlListCellRendererComponent(JList list, Object value,
int index, boolean isSelected, boolean cellHasFocus);

CHAPTER 13 LIST MODEL CONTROLS

When it’s time to draw each cell, the interface’s sole method is called. The returned
renderer provides the specific rendering for that one cell of the JList. The JList uses the
rendering to draw the element, and then gets the next renderer.

A reference to the enclosing JList is provided to the getListCellRendererComponent()
method so that the renderer can share display characteristics. The value of the selection
contains the object in the list’s data model at position index. The index is zero-based from the
beginning of the data model. The last two parameters allow you to customize the cell’s appear-
ance based on the cell’s state—that is, whether it’s selected or has the input focus.

Listing 13-4 shows a renderer that demonstrates this technique. The sole difference for
this renderer is that the cell with the input focus has a titled border. After the renderer is
created, you install it by setting the cel1Renderer property of the JList.

Tip For performance reasons, it is best not to create the actual renderer in the
getlistCellRendererComponent() method. Either subclass Component and return this or
create a class variable to hold one instance of a Component, which then may be customized and returned.

Listing 13-4. Rendering the List Cells

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;
public class FocusedTitlelListCellRenderer implements ListCellRenderer {
protected static Border noFocusBorder =
new EmptyBorder(15, 1, 1, 1);
protected static TitledBorder focusBorder =
new TitledBorder(LineBorder.createGraylLineBorder(), "Focused");
protected DefaultlListCellRenderer defaultRenderer = new DefaultlistCellRenderer();

public String getTitle() {
return focusBorder.getTitle();

}

public void setTitle(String newValue) {
focusBorder.setTitle(newValue);

}

public Component getListCellRendererComponent(JList list, Object value,
int index, boolean isSelected, boolean cellHasFocus) {
JLabel renderer = (JLabel)defaultRenderer.getlistCellRendererComponent(
list, value, index, isSelected, cellHasFocus);
renderer.setBorder(cellHasFocus ? focusBorder : noFocusBorder);
return renderer;
}
}

469

470 CHAPTER 13 LIST MODEL CONTROLS

Caution A common mistake when creating your own renderer is forgetting to make the renderer compo-
nent opaque. This causes the background coloration of the renderer to be ignored and the list container’s
background to bleed through. With the DefaultListCellRenderer class, the renderer component is
already opaque.

A sample program that uses the new renderer follows in Listing 13-5. It doesn’t do anything
special other than install the custom cell renderer that was just created.

Listing 13-5. Rendering List Cells Sample

import javax.swing.*;
import java.awt.*;
public class CustomBorderSample {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {

String labels[] = {"Chardonnay", "Sauvignon", "Riesling", "Cabernet",
"Zinfandel", "Merlot", "Pinot Noir", "Sauvignon Blanc", "Syrah",
"Gewlirztraminer"};

JFrame frame = new JFrame("Custom Border");

frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

JList jlist = new JList(labels);

ListCellRenderer renderer = new FocusedTitlelListCellRenderer();

jlist.setCellRenderer(renderer);

JScrollPane sp = new JScrollPane(jlist);

frame.add(sp, BorderlLayout.CENTER);

frame.setSize(300, 200);

frame.setVisible(true);

}
15
EventQueue.invokelater(runner);
}
}

Figure 13-6 shows the output of the sample program.

[~ Customporder ————ITE
~

Chardonnay

Sauvignon
Riesling —

Zinfandel

-

Figure 13-6. A JList with a custom focus border cell renderer

CHAPTER 13 LIST MODEL CONTROLS an

Creating a Complex ListCellRenderer

More often than not, custom cell renderers (like the one shown in Figure 13-6) are necessary
when the data model consists of more complex data in each element—something not repre-
sentable by a text string. For instance, Listing 13-6 shows the source for an example where each
element of the data model consists of a font, foreground color, icon, and text string. Ensuring
the proper usage of these elements within the renderer simply involves a little more work in
configuring the renderer component. In this particular example, that data is stored within each
element of an array in the data model. You could just as easily define a new class or use a
hash table.

Listing 13-6. Rendering Complex List Cells

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;
public class ComplexCellRenderer implements ListCellRenderer {
protected DefaultListCellRenderer defaultRenderer = new DefaultlistCellRenderer();

public Component getListCellRendererComponent(JList list, Object value, int index,
boolean isSelected, boolean cellHasFocus) {

Font theFont = null;
Color theForeground = null;
Icon thelcon = null;
String theText = null;

JLabel renderer = (JLabel)defaultRenderer.getlistCellRendererComponent(
list, value, index, isSelected, cellHasFocus);

if (value instanceof Object[]) {
Object values[] = (Object[])value;

theFont = (Font)values[0];
theForeground = (Color)values[1];
theIcon = (Icon)values[2];
theText = (String)values[3];
} else {
theFont = list.getFont();
theForeground = list.getForeground();
theText ="";

}
if (lisSelected) {
renderer.setForeground(theForeground);

}
if (theIcon != null) {
renderer.setIcon(thelcon);

}

472 CHAPTER 13 LIST MODEL CONTROLS

renderer.setText(theText);
renderer.setFont(theFont);
return renderer;
}
}

This renderer merely customizes the renderer component returned by the
DefaultListCellRenderer. The customization is based on the data model value being passed
in as an array to the value argument of the getListCellRendererComponent() method.

Listing 13-7 shows the test class. This demonstration program reuses the DiamondIcon
created in Chapter 4. Most of the code is for initialization of the data model.

Listing 13-7. Rendering Complex List Cells Sample

import javax.swing.*;
import java.awt.*;
public class ComplexRenderingSample {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {

Object elements[][] = {

{new Font("Helvetica", Font.PLAIN, 20), Color.RED,
new DiamondIcon(Color.BLUE), "Help"},

{new Font("TimesRoman", Font.BOLD, 14), Color.BLUE,
new DiamondIcon(Color.GREEN), "Me"},

{new Font("Courier", Font.ITALIC, 18), Color.GREEN,
new DiamondIcon(Color.BLACK), "I'm"},

{new Font("Helvetica", Font.BOLD | Font.ITALIC, 12), Color.GRAY,
new DiamondIcon(Color.MAGENTA), "Trapped"},

{new Font("TimesRoman", Font.PLAIN, 32), Color.PINK,
new DiamondIcon(Color.YELLOW), "Inside"},

{new Font("Courier", Font.BOLD, 16), Color.YELLOW,
new DiamondIcon(Color.RED), "This"},

{new Font("Helvetica", Font.ITALIC, 8), Color.DARK GRAY,
new DiamondIcon(Color.PINK), "Computer"}

};

JFrame frame = new JFrame("Complex Renderer");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

JList jlist = new JList(elements);

ListCellRenderer renderer = new ComplexCellRenderer();
jlist.setCellRenderer(renderer);

JScrollPane scrollPane = new JScrollPane(jlist);
frame.add(scrollPane, BorderlLayout.CENTER);

CHAPTER 13 LIST MODEL CONTROLS

// JComboBox comboBox = new JComboBox(elements);
// comboBox.setRenderer(renderer);
// frame.add(comboBox, Borderlayout.NORTH);

frame.setSize(300, 200);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);

}

}

The output of this example is shown in Figure 13-7.

£ Complex Renderer 10l =|
+Help —

Me
*

& Trapped

Inside

*

-
Cmodar

Figure 13-7. Using a more complex list cell renderer

Tip When you create your own rendering components, you'll find it’s best to start with the default list cell
renderer. This allows you to focus on the specific details you're interested in. Otherwise, you'll need to worry
about everything, such as the default selection foreground and background colors, and whether you've
remembered to make the component opaque. Of course, if you want to configure everything yourself, feel free
to do so.

Selecting JList Elements

By default, every JList component is in multiple-selection mode. This means that you can
select multiple elements within the component. How you select multiple elements depends on
the user interface you're employing. For instance, with the Ocean look and feel interface, Ctrl-
select (Ctrl key and left mouse button on a right-handed mouse) acts as a selection toggle, and
Shift-select acts as a means of range selection.

ListSelectionModel Interface and DefaultListSelectionModel Class

An implementation of the ListSelectionModel interface controls the selection mechanism for
aJList component. The interface definition, shown here, defines constants for different selection
modes and describes how to manage a list of ListSelectionlListener objects. It also provides
the means to describe several selection intervals.

473

474 CHAPTER 13 LIST MODEL CONTROLS

public interface ListSelectionModel {
// Constants
public final static int MULTIPLE INTERVAL SELECTION;
public final static int SINGLE INTERVAL SELECTION;
public final static int SINGLE SELECTION;
// Properties
public int getAnchorSelectionIndex();
public void setAnchorSelectionIndex(int index);
public int getleadSelectionIndex();
public void setleadSelectionIndex(int index);
public int getMaxSelectionIndex();
public int getMinSelectionIndex();
public boolean isSelectionEmpty();
public int getSelectionMode();
public void setSelectionMode(int selectionMode);
public boolean getValueIsAdjusting();
public void setValueIsAdjusting(boolean valueIsAdjusting);
// Listeners
public void addListSelectionlListener(ListSelectionListener x);
public void removelistSelectionListener(ListSelectionlistener x);
// Other methods
public void addSelectionInterval(int indexo, int index1);
public void clearSelection();
public void insertIndexInterval(int index, int length, boolean before);
public boolean isSelectedIndex(int index);
public void removeIndexInterval(int indexo, int index1);
public void removeSelectionInterval(int index0, int index1);
public void setSelectionInterval(int indexo, int index1);

Three different selection modes are available. Table 13-6 contains the name of each mode
and its description.

Table 13-6. ListSelectionModel Modes

Mode Description
SINGLE SELECTION One item at a time can be selected.
SINGLE _INTERVAL_ SELECTION One contiguous range of items can be selected.

MULTIPLE_INTERVAL_SELECTION Any set of ranges can be selected.

Figure 13-8 shows you the results of each selection mode.

CHAPTER 13 LIST MODEL CONTROLS

election Modes =1al x|
ingle Interval Multi Interval
:‘ Chardonnay |~ |chardonnay =
Sauvignon Sauvignon
Riesling Riesling
—|Cabernet —|Cabernet L
Zinfandel Zinfandel
Merlot erlot
I—{Pinot Noir I—{Pinot Noir LS
Sauvignon Blanc j Sauvignon Blanc j Sauvignon Blanc =
¥ 2 0N [~ {9 [~} ™

Figure 13-8. Visual representation of selection modes

To change the selection mode of a JList, set its selectionMode property to one of the
ListSelectionModel constants shown in Table 13-6. For instance, the following would change
a list to single-selection mode:

Jlist list = new JList(...);
list.setSelectionMode(ListSelectionModel.SINGLE SELECTION);

The DefaultListSelectionModel class is the default implementation of the
ListSelectionModel interface. You can examine any of its nine properties, shown in
Table 13-7, to learn about the currently selected range.

Table 13-7. DefaultListSelectionModel Properties

Property Name Data Type Access

anchorSelectionIndex int Read-write
leadAnchorNotificationEnabled boolean Read-write
leadSelectionIndex int Read-write
listSelectionListeners ListSelectionListener[] Read-only
maxSelectionIndex int Read-only
minSelectionIndex int Read-only
selectionEmpty boolean Read-only
selectionMode int Read-write
valueIsAdjusting boolean Read-write

The selection model can show you what is currently being used in the multiple-selection
mode when the selectionEmpty property is false. Simply ask each index between the minimum
and maximum selection indices if it's selected with public boolean isSelectedIndex(int index).
Because multiple-selection mode supports noncontiguous areas, this is the only way to find
outwhat’s selected. However, the selectedIndices property of JList provides this information
without you needing to check it manually.

475

476

CHAPTER 13 LIST MODEL CONTROLS

Listening to JList Events with a ListSelectionListener

If you want to know when elements of a JList have been selected, you need to

attach a ListSelectionlListener to the JList or the ListSelectionModel. The
addListSelectionListener() and removelistenerListener() methods of the JList
only delegate to the underlying ListSelectionModel. When the set of selected elements
changes, attached listener objects are notified. The interface definition follows:

public interface ListSelectionListener extends EventlListener {
public void valueChanged(ListSelectionEvent e);

}

The ListSelectionEvent instance received by the listener describes the range of affected
elements for this selection event, as well as whether or not the selection is still changing, as
shown in Table 13-8. When a user is still altering selected elements, with a valueIsAdjusting
setting of true, you might want to delay performing costly operations such as drawing a high-
resolution graphics presentation.

Table 13-8. ListSelectionEvent Properties

Property Name Data Type Access

firstIndex int Read-only
lastIndex int Read-only
valueIsAdjusting boolean Read-only

In order to demonstrate selection with a JList, the program shown in Listing 13-8 adds a
JTextArea to a window to show the output of the selection listener. The listener prints out the
currently selected items by item position and value.

Listing 13-8. Rendering Complex List Cells Sample

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;

import java.io.*;

public class SelectingJListSample {
public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {

String labels[] = {"Chardonnay", "Sauvignon", "Riesling", "Cabernet",
"Zinfandel", "Merlot", "Pinot Noir", "Sauvignon Blanc", "Syrah",
"Gewlirztraminer"};

JFrame frame = new JFrame("Selecting JList");

frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

CHAPTER 13 LIST MODEL CONTROLS

JList jlist = new JList(labels);
JScrollPane scrollPanel = new JScrollPane(jlist);
frame.add(scrollPanel, BorderLayout.WEST);

final JTextArea textArea = new JTextArea();
textArea.setEditable(false);

JScrollPane scrollPane2 = new JScrollPane(textArea);
frame.add(scrollPane2, BorderlLayout.CENTER);

ListSelectionlListener listSelectionlListener =
new ListSelectionlListener() {
public void valueChanged(ListSelectionEvent listSelectionEvent) {

StringWriter sw = new StringWriter();

PrintWriter pw = new PrintWriter(sw);

pw.print("First index: " + listSelectionEvent.getFirstIndex());

pw.print(", Last index: " + listSelectionEvent.getlLastIndex());

boolean adjust = listSelectionEvent.getValueIsAdjusting();

pw.println(", Adjusting? " + adjust);

if (ladjust) {
Jlist list = (JList)listSelectionEvent.getSource();
int selections[] = list.getSelectedIndices();
Object selectionValues[] = list.getSelectedValues();
for (int i=0, n=selections.length; i<n; i++) {

if (i==0) {
pw.print(" Selections: ");
}
pw.print(selections[i] + "/" + selectionValues[i] + " ");
}
pw.println();
}
textArea.append(sw.toString());
}
};

jlist.addListSelectionListener(listSelectionListener);

frame.setSize(350, 200);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

Note If you know that a JList is in single-selection mode, you can get the currently selected item with
either the selectedIndex or selectedValue property.

477

478 CHAPTER 13 LIST MODEL CONTROLS

Figure 13-9 shows the appearance of the running program.

—lojx
a || SEIECTIONS. TISAUVITROR BIFTROT FOTF =

Charl_:lonnay [|Firstindex: 1, Lastindex: 4, Adjusting? true]

S_aw!gnon Firstindex: 1, Lastindex: 4, Adjusting? false

Riesling Selections: 1/Sauvignon HZinfandel BIPinat Maoir
abernet Firstindes: 4, Lastindex: 4, Adjusting? true

Zinfandel =|Firstindex 4, Lastindex 4, Adjusting? false =

Merlot Selections: 1/Sauvignon BFinot Maoir

Pinot Noir Firstindex: 3, Lastindex 4, Adjusting? true L

Firstindex: 3, Lastindex 4, Adjusting? false

Sauvignon Blanc
I—] Selections: 1/Sauvignon 3rCabernet BIFinot Moir ||

Syrah

1
1

Figure 13-9. Listening for JList selections

The example in Listing 13-8 prints out only the currently selected items when it is not
doing a rapid update (when isAdjusting reports false). Otherwise, the program merely
reports the starting and ending range of selection changes, as well as the adjusting status. The
example examines the selectedIndices and selectedValues properties of JList to get an ordered
list of selected items. The selectedIndices and selectedValues arrays are ordered in the same
way, so a particular element of the data model will show up in the same position in both lists.

There’s no special selection event for double-clicking an item in the list. If you're interested in
double-click events, you need to fall back to the AWT MouseEvent/Mouselistener pair. Adding the
following code to the program in Listing 13-8 will add appropriate text to the JTextArea for
double-click events. The key method here is the public int locationToIndex(Point location)
method of JList, which attempts to map screen coordinates to list elements.

import java.awt.event.*;

MouselListener mouselListener = new MouseAdapter() {
public void mouseClicked(MouseEvent mouseEvent) {
JList thelist = (JList)mouseEvent.getSource();
if (mouseEvent.getClickCount() == 2) {
int index = thelist.locationToIndex(mouseEvent.getPoint());
if (index >= 0) {
Object o = thelist.getModel().getElementAt(index);
textArea.append("Double-clicked on: " + o.toString());
textArea.append(System.getProperty("line.separator"));
}
}
}
b

jlist.addMouselistener(mouselistener);

Note The JList class also provides the public Point indexToLocation(int index) method, which
produces the reverse behavior, returning a Point as the origin of the provided index.

CHAPTER 13 LIST MODEL CONTROLS

Manually Selecting JList Events

In addition to detecting when a user selects items in a list, you can also programmatically select
or deselect items. If any ListSelectionListener objects are attached to the JList, they will also
be notified when the set of selected items is programmatically altered. The following methods
are available:

 Forasingle item, public void setSelectedValue(Object element, boolean shouldScroll)
selects the first item that matches the element. If the element wasn’t previously selected,
everything that was selected will be deselected first.

» For arange of items, public void setSelectedInterval(int indexo, int index1)
selects an inclusive range.

» For adding a range of selected items to the already selected set, use public void
addSelectedInterval(int indexo, int index1).

* You can clear all the selected items with the public void clearSelection() method.

* You can clear a range of selected items with the public void removeSelectedInterval
(int index0, int index1) method.

Displaying Multiple Columns

Typically, whenever you work with a JList, you present its choices within a single column.
While this is the usual manner of usage, the Swing JList control offers support for displaying
its choices within multiple columns. Through the help of the setLayoutOrientation() method,
you can set each JList orientation to lay out cells in columns horizontally or vertically.
JList.VERTICAL is the default setting where everything appears in one column.

To lay out cells horizontally, before going to next row, use the value JList.HORIZONTAL WRAP.
For example, a list with nine elements would be displayed as shown here:

0 1 2
3 4 5
6 7 8

Tolay out cells vertically, before going to next column, use the value JList.VERTICAL_WRAP.
For example, a list with nine elements would be displayed as shown here:

0 3 6
1 4 7
2 5 8

Set the visibleRowCount property of JList to control the number of rows. Otherwise, the
list width determines the row count for HORIZONTAL WRAP and the list height for VERTICAL WRAP.

479

480 CHAPTER 13 LIST MODEL CONTROLS

Figure 13-10 shows a sample JList with horizontal wrap, presented as a 3x3 grid. Notice that it
still supports multiple-selection mode.

& ult-Columns— SS[=TEY

Figure 13-10. A JList with horizontal wrap

Customizing a JList Look and Feel

Each installable Swing look and feel provides a different JList appearance and set of default
UIResource value settings for the component. Figure 13-11 shows the appearance of the JList
component for the preinstalled set of look and feel types: Motif, Windows, and Ocean.

4. Ocean LnF =13 =l
Chardonnay =
Sauvignon
Riesling
Cabernet
Zinfandel

h‘lerlut |
Pinnt Minir Bt

Finnt Mair

Motif Windows Ocean

Figure 13-11. JList under different look and feel types

The available set of UIResource-related properties for a JList is shown in Table 13-9. For
the JList component, there are 17 different properties.

Table 13-9. JList UIResource Elements

Property String Object Type
List.actionMap ActionMap
List.background Color
List.border Border
List.cellHeight Integer
List.cellRenderer ListCellRenderer
List.focusCellHighlightBorder Border
List.focusInputMap InputMap
List.focusInputMap.RightTolLeft InputMap
List.font Font

List.foreground Color

CHAPTER 13 LIST MODEL CONTROLS

Table 13-9. JList UIResource Elements (Continued)

Property String Object Type
List.lockToPositionOnScroll Boolean
List.rendererUselistColors Boolean
List.rendererUseUIBorder Boolean
List.selectionBackground Color
List.selectionForeground Color
List.timeFactor Long
ListUI String

As with most of the UIResource properties, the names of most of the properties are self-
explanatory. One property, List.timeFactor, requires a bit of extra descriptive text. By default,
the JList comes with behavior for keyboard selection. As you type, the JList will find the
entry that matches what you've typed so far. This is done with the help of the public int
getNextMatch(String prefix, int startIndex, Position.Bias bias) method. The “so far” bit
is controlled by the List.timeFactor setting. As long as the delay between keystrokes doesn’t
exceed the number of milliseconds specified by List.timeFactor (default of 1000), the new key
pressed is added to the prior keys. Once the factor is exceeded, the search string is reset.

Creating a Dual List Box

The example presented in this section creates a new Swing component called a DualListBox. The
primary purpose of a dual list box is to create two lists of choices: one to pick from and one that
makes up your result set. This works great when the initial choice list is sizable. Trying to multi-
select from a JList that contains many selections across multiple screens can be annoying,
especially if you happen to deselect what you've already selected because you didn’t have the
Shift or Ctrl key held down. With a dual list box, the user selects items in the first list and moves
them into the second. The user can easily scroll through the two lists without fear of accidentally
deselecting anything. Figure 13-12 shows how the DuallistBox might look in use.

£ pual List Box Tester 1 =18 =]
Available Choices Your Choices
Eight - Eighteen
Eleven Nineteen
Fifteen One
b
Four Thirteen
Fourteen
Nine
Seven
Seventeen
Sixteen
Thirty |
Three |
Twehe =

Figure 13-12, The DualListBox in action

481

482 CHAPTER 13 LIST MODEL CONTROLS

To use this custom component, create it by calling the constructor, DuallListBox
sdual = new DuallistBox(), and then fill it with data by using either setSourceElements() or
addSourceElements(); each takes either a ListModel or an array argument. The add version
supplements the existing choices, whereas the set version clears out the choices first. When it’s
time to ask the component what the user selected, you can ask for an Iterator of the chosen
elements with destinationIterator(). Some properties you may want to change include
the following:

¢ The source choices’ title (Available Choices in the example)

¢ The destination choices’ title (Your Choices in the example)

¢ The source or destination list cell renderer

¢ The source or destination visible row count

¢ The source or destination foreground color or background color

The complete source code for this new DuallListBox component follows. Listing 13-9
contains the first class SortedListModel, which provides a sorted ListModel. Internally, this
takes advantage of a TreeSet.

Listing 13-9. Sorted List Model

import javax.swing.*;
import java.util.*;

public class SortedlListModel extends AbstractListModel {
SortedSet<Object> model;

public SortedListModel() {
model = new TreeSet<Object>();

}

public int getSize() {
return model.size();

}

public Object getElementAt(int index) {
return model.toArray()[index];

}

public void add(Object element) {
if (model.add(element)) {
fireContentsChanged(this, 0, getSize());
}
}

CHAPTER 13 LIST MODEL CONTROLS

public void addAll(Object elements[]) {
Collection<Object> ¢ = Arrays.aslList(elements);
model.addAll(c);
fireContentsChanged(this, 0, getSize());

}

public void clear() {
model.clear();
fireContentsChanged(this, 0, getSize());

}

public boolean contains(Object element) {
return model.contains(element);

}

public Object firstElement() {
return model.first();

}

public Iterator iterator() {
return model.iterator();

}

public Object lastElement() {
return model.last();

}

public boolean removeElement(Object element) {
boolean removed = model.remove(element);
if (removed) {
fireContentsChanged(this, 0, getSize());
}

return removed,;

Listing 13-10 shows the DuallListBox source. The included main() method demonstrates
the component.

Listing 13-10. Dual List Box Sample

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import java.util.Iterator;

public class DuallListBox extends JPanel {

483

484 CHAPTER 13 LIST MODEL CONTROLS

private static final Insets EMPTY INSETS = new Insets(0,0,0,0);
private static final String ADD BUTTON LABEL = "Add >>";
private static final String REMOVE BUTTON LABEL = "<< Remove";
private static final String DEFAULT SOURCE CHOICE LABEL =
"Available Choices";
private static final String DEFAULT DEST CHOICE LABEL =
"Your Choices";
private JlLabel sourcelabel;
private JList sourcelist;
private SortedlListModel sourcelistModel;
private JList destlist;
private SortedlListModel destlListModel;
private JlLabel destlabel;
private JButton addButton;
private JButton removeButton;

public DuallistBox() {
initScreen();

}

public String getSourceChoicesTitle() {
return sourcelabel.getText();

}

public void setSourceChoicesTitle(String newValue) {
sourcelabel.setText(newValue);

}

public String getDestinationChoicesTitle() {
return destlabel.getText();

}

public void setDestinationChoicesTitle(String newValue) {
destlabel.setText(newvalue);

}

public void clearSourcelistModel() {
sourcelistModel.clear();

}

public void clearDestinationlListModel() {
destlistModel.clear();

}

public void addSourceElements(ListModel newValue) {
filllistModel(sourcelistModel, newValue);

}

public void setSourceElements(ListModel newValue) {
clearSourcelistModel();
addSourceElements(newvalue);

}

public void addDestinationElements(ListModel newValue) {
filllistModel(destListModel, newValue);

}

CHAPTER 13 LIST MODEL CONTROLS

private void filllistModel(SortedListModel model, ListModel newValues) {
int size = newValues.getSize();
for (int i=0; i<size; i++) {
model.add(newValues.getElementAt(i));
}

}
public void addSourceElements(Object newValue[]) {

filllistModel(sourcelistModel, newValue);

}

public void setSourceElements(Object newValue[]) {
clearSourcelistModel();
addSourceElements(newvalue);

}

public void addDestinationElements(Object newValue[]) {
filllistModel(destListModel, newValue);

}

private void filllistModel(SortedListModel model, Object newValues[]) {
model.addAll(newValues);

}

public Iterator sourcelterator() {
return sourcelistModel.iterator();

}

public Iterator destinationIterator() {
return destlistModel.iterator();

}

public void setSourceCellRenderer(ListCellRenderer newValue) {
sourcelist.setCellRenderer(newValue);

}

public ListCellRenderer getSourceCellRenderer() {
return sourcelist.getCellRenderer();

}

public void setDestinationCellRenderer(ListCellRenderer newValue) {
destlList.setCellRenderer(newValue);

}

public ListCellRenderer getDestinationCellRenderer() {
return destlList.getCellRenderer();

}

public void setVisibleRowCount(int newValue) {
sourcelist.setVisibleRowCount(newValue);
destlist.setVisibleRowCount(newValue);

}

public int getVisibleRowCount() {
return sourcelist.getVisibleRowCount();

}

485

486 CHAPTER 13 LIST MODEL CONTROLS

public void setSelectionBackground(Color newValue) {
sourcelist.setSelectionBackground(newvalue);
destlist.setSelectionBackground(newValue);

}

public Color getSelectionBackground() {
return sourcelist.getSelectionBackground();

}

public void setSelectionForeground(Color newValue) {
sourcelist.setSelectionForeground(newValue);
destlist.setSelectionForeground(newValue);

}

public Color getSelectionForeground() {
return sourcelist.getSelectionForeground();

}

private void clearSourceSelected() {
Object selected[] = sourcelist.getSelectedValues();
for (int i=selected.length-1; i >= 0; --i) {

sourcelistModel.removeElement(selected[i]);

}

sourcelist.getSelectionModel().clearSelection();
}
private void clearDestinationSelected() {
Object selected[] = destlList.getSelectedValues();
for (int i=selected.length-1; i >= 0; --i) {
destlListModel.removeElement(selected[i]);

}
destlist.getSelectionModel().clearSelection();

}
private void initScreen() {
setBorder(BorderFactory.createEtchedBorder());
setlayout(new GridBaglayout());
sourcelabel = new JLabel(DEFAULT SOURCE CHOICE LABEL);
sourcelistModel = new SortedlListModel();
sourcelist = new JList(sourcelListModel);
add(sourcelabel,
new GridBagConstraints(o, 0, 1, 1, 0, 0, GridBagConstraints.CENTER,
GridBagConstraints.NONE, EMPTY INSETS, 0, 0));
add(new JScrollPane(sourcelist),
new GridBagConstraints(o, 1, 1, 5, .5, 1, GridBagConstraints.CENTER,
GridBagConstraints.BOTH, EMPTY INSETS, 0, 0));

addButton = new JButton(ADD BUTTON LABEL);
add(addButton,
new GridBagConstraints(1, 2, 1, 2, 0, .25, GridBagConstraints.CENTER,
GridBagConstraints.NONE, EMPTY INSETS, 0, 0));
addButton.addActionListener(new AddListener());
removeButton = new JButton(REMOVE BUTTON LABEL);

CHAPTER 13 LIST MODEL CONTROLS

add(removeButton,
new GridBagConstraints(1, 4, 1, 2, 0, .25, GridBagConstraints.CENTER,
GridBagConstraints.NONE, new Insets(0,5,0,5), 0, 0));
removeButton.addActionListener(new Removelistener());

destlabel = new JLabel(DEFAULT DEST CHOICE LABEL);
destlListModel = new SortedlListModel();
destlist = new JList(destlListModel);
add(destlLabel,
new GridBagConstraints(2, 0, 1, 1, 0, 0, GridBagConstraints.CENTER,
GridBagConstraints.NONE, EMPTY INSETS, 0, 0));
add(new JScrollPane(destlist),
new GridBagConstraints(2, 1, 1, 5, .5, 1.0, GridBagConstraints.CENTER,
GridBagConstraints.BOTH, EMPTY INSETS, 0, 0));

}

private class AddListener implements ActionlListener {
public void actionPerformed(ActionEvent e) {
Object selected[] = sourcelist.getSelectedValues();
addDestinationElements(selected);
clearSourceSelected();
}
}

private class Removelistener implements Actionlistener {
public void actionPerformed(ActionEvent e) {
Object selected[] = destlList.getSelectedValues();
addSourceElements(selected);
clearDestinationSelected();
}
}

public static void main(String args[]) {
Runnable runner = new Runnable() {
public void run() {

JFrame frame = new JFrame("Dual List Box Tester");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
DuallistBox dual = new DuallistBox();
dual.addSourceElements(

new String[] {"One", "Two", "Three"});
dual.addSourceElements(

new String[] {"Four", "Five", "Six"});
dual.addSourceElements(

new String[] {"Seven", "Eight", "Nine"});
dual.addSourceElements(

new String[] {"Ten", "Eleven", "Twelve"});
dual.addSourceElements(

new String[] {"Thirteen", "Fourteen", "Fifteen"});

487

488

CHAPTER 13 LIST MODEL CONTROLS

dual.addSourceElements(
new String[] {"Sixteen", "Seventeen", "Eighteen"});
dual.addSourceElements(
new String[] {"Nineteen", "Twenty", "Thirty"});
frame.add(dual, BorderlLayout.CENTER);
frame.setSize(400, 300);
frame.setVisible(true);
}
};
EventQueue.invokelLater(runner);
}
}

Adding Element-Level Tooltips to List Items

As described in Chapter 4, all Swing components support displaying tooltip text. By calling the
setToolTipText() method of a component, you can display any single text string over that
component. In the case of a JList component (or for that matter, any component that contains
multiple items such as a JTree or JTable), this single tooltip text string may not be sufficient.
You may wish to display a different tip over each item in a component.

Displaying item-level tips takes a little more work. To display different tooltip text over
each item, you must create a subclass of JList. From within this subclass, you must manually
register the component with the ToolTipManager. This is normally done for you when you call
setToolTipText(). But, because you won’t be calling this method, you must manually notify
the manager, as follows:

ToolTipManager.sharedInstance().registerComponent(this);

After you notify the ToolTipManager, the manager will then notify the component when-
ever the mouse moves over the component. This allows you to override the public String
getToolTipText (MouseEvent mouseEvent) method to provide the appropriate tip for the item
under the mouse pointer. Using some kind of Hashtable, HashMap, or Properties list allows you
to map the item the mouse is over to item-specific tooltip text.

public String getToolTipText(MouseEvent event) {
Point p = event.getPoint();

int location = locationToIndex(p);

String key = (String)model.getElementAt(location);
String tip = tipProps.getProperty(key);

return tip;

Figure 13-13 shows how the PropertieslList example class demonstrates various tooltips
based on whichever element the mouse pointer is resting over. The complete source for the
example follows in Listing 13-11.

é Custom Tip Demo i

=10l x|

java.awt.graphicsenms
java.awt.pri iol.

sun.awt Win32 GraphicsEnvironment

java.class.
java.class.version
java.endorsed.dirs

CHAPTER 13

é Custom Tip Demo :

LIST MODEL CONTROLS

=10l x|

java.ersion
java.sm.info

javavm.npme
ia\ra.wn.sglnﬂwmmn—" i s
. Java HotSpotiThiy Client Wi
|ava. v,

java.vm.specification.version
javasm.vendor
javasm.version
line.separator

java.ext.dirs os.arch

java.home 0s.name |
java.iotmpdir 0s.version

java.library.path path.separator

java.runtime.name sun.arch.data.model

java.runtime.version | sun.boot.class.path |

Figure 13-13. A JList with different element-level tooltip text

Listing 13-11. Custom Tooltips for List Elements

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.*;

public class PropertieslList extends JList {

SortedlListModel model;
Properties tipProps;

public PropertieslList(Properties props) {

model = new SortedlListModel();

setModel (model);

ToolTipManager.sharedInstance().registerComponent(this);

tipProps = props;
addProperties(props);
}

private void addProperties(Properties props) {

// Load

Enumeration names = props.propertyNames();
while (names.hasMoreElements()) {
model.add(names.nextElement());

}
}

489

490 CHAPTER 13 LIST MODEL CONTROLS

public String getToolTipText(MouseEvent event) {
Point p = event.getPoint();
int location = locationToIndex(p);
String key = (String)model.getElementAt(location);
String tip = tipProps.getProperty(key);
return tip;
}
public static void main (String args[]) {
Runnable runner = new Runnable() {
public void run() {
JFrame frame = new JFrame("Custom Tip Demo");
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
Properties props = System.getProperties();
PropertiesList list = new Propertieslist(props);
JScrollPane scrollPane = new JScrollPane(list);
frame.add(scrollPane);
frame.setSize(300, 300);
frame.setVisible(true);
}
};
EventQueue.invokelater(runner);
}
}

JComhoBox Class

The JComboBox component of the Swing component set is a multiple-part component that
allows a user to choose from a predefined set of choices with the help of a pull-down list. In its
basic configuration, a JComboBox acts like a JLabel to display the current user selection. Embedded
within the JLabel is a pop-up menu containing choices within a JList control. When the
desired choice isn’t available, the JComboBox can use a JTextField to enter a new choice. The
JList partis automatically embedded within a JScrol1Pane when desired; you don’t need to
manually create the JList or place it in the JScrollPane. In addition, the text field for editing is
disabled by default, permitting a user to select from the set of predefined choices only. Figure 13-14
illustrates two JComboBox components: one that is not editable showing its list of choices, and
another that is editable and not showing its choices.

xample JComboBox - |EI|
Chardonnay

x

J

(Chardonnay
Sauvignon
Riesling
Cabernet
Zinfandel

L]

L]

|Chardonnay | - |

Figure 13-14. Sample JComboBox components

CHAPTER 13 LIST MODEL CONTROLS

Four essential elements define the JComboBox component and its implementation:
* A data model for holding the JComboBox data, as defined by the ListModel interface

* A cell renderer for drawing the elements of the JComboBox, as described by the
ListCellRenderer interface

* An editor for entering choices not part of the predefined data model, as defined by the
ComboBoxEditor interface

* Akeystroke manager for handling keyboard input to select elements of the JComboBox, as
described by the KeySelectionManager interface

Many of the JComboBox capabilities are shared with the JList component. This isn’t accidental;
the two components are fairly similar. Let’s now look at the JComboBox in more detail.

Creating JComboBox Components

Like the JList component, the JComboBox component has four constructors, allowing you to
create one based on your initial data structure. Unlike the JList component, the default model
used by the array and Vector constructor permits adding and removing data elements.

public JComboBox()
JComboBox comboBox = new JComboBox();

public JComboBox(Object listData[])

String labels[] = { "Chardonnay", "Sauvignon", "Riesling", "Cabernet", "Zinfandel",
"Merlot", "Pinot Noir", "Sauvignon Blanc", "Syrah", "Gewlirztraminer"};

JComboBox comboBox = new JComboBox(labels);

public JComboBox(Vector listData)
Vector vector = aBufferedImage.getSources();
JComboBox comboBox = new JComboBox(vector);

public JComboBox(ComboBoxModel model)
ResultSet results = aJDBCStatement.executeQuery("SELECT columnName FROM tableName");
DefaultComboBoxModel model = new DefaultComboBoxModel();
while (result.next())
model.addElement (results.getString(1));
JComboBox comboBox = new JComboBox(model);

JComboBox Properties

After you create a JComboBox component, you can modify each of its many properties. Table 13-10
shows the 22 properties of JComboBox.

491

492

CHAPTER 13

LIST MODEL CONTROLS

Table 13-10. JComboBox Properties

Property Name Data Type Access
accessibleContext AccessibleContext Read-only

action Action Read-write bound
actionCommand String Read-write
actionlListeners ActionListener[] Read-only
editable boolean Read-write bound
editor ComboBoxEditor Read-write bound
enabled boolean Write-only bound
itemCount int Read-only
itemListeners ItemListener[] Read-only
keySelectionManager JComboBox.KeySelectionManager Read-write
lightWeightPopupEnabled boolean Read-write
maximumRowCount int Read-write bound
model ComboBoxModel Read-write bound
popupMenulListeners PopupMenulListener[] Read-only
popupVisible boolean Read-write
prototypeDisplayValue Object Read-write bound
renderer ListCellRenderer Read-write bound
selectedIndex int Read-write
selectedItem Object Read-write
selectedObjects Object[] Read-only

UI ComboBoxUI Read-write
UIClassID String Read-only

The significant properties of the JComboBox are concerned with the display of the pop-up
list. You can control the maximum number of visible entries in the pop-up list by setting the
maximumRowCount property. The lightWeightPopupEnabled property setting helps determine the
type of window to use when displaying the pop-up menu of choices. If the component fits
completely within the top-level window of the program, the component will be lightweight.

If it doesn’t fit, it will be heavyweight. If you're mixing AWT and Swing components in
a program, you can force the pop-up menu of choices to be heavyweight by setting the

lightWeightPopupEnabled property to true. This will force the pop-up to appear above other
components. The remaining property related to the pop-up list is the popupVisible property,

which allows you to programmatically display the pop-up list.

CHAPTER 13 LIST MODEL CONTROLS

Note Besides setting the popupVisible property, you can use the public void hidePopup() and
public void showPopup() methods to toggle the pop-up list’s visibility status.

Rendering JComboBox Elements

The rendering of elements within a JComboBox is done with a ListCellRenderer. This is the same
renderer that is used for a JList component. Once you've created a renderer for either one of
these two components, you can use that renderer for the other component. To reuse the
ComplexCellRenderer from earlier in the chapter (Listing 13-6), you could add the following
lines to the ComplexRenderingSample example (Listing 13-7) to have the two components share
the same renderer.

JComboBox comboBox = new JComboBox(elements);
comboBox. setRenderer (renderer);
frame.add(comboBox, BorderLayout.NORTH);

The result of adding these lines is shown in Figure 13-15.

£ Complex Renderer 10l =|
4+ Help
+Help
Me
*

1

[»

& Trapped

-

Figure 13-15. A JComboBox with a custom renderer

Not all renderers will work as expected with both the JComboBox and JList components.
For instance, the FocusedTitlelListCellRenderer demonstrated earlier in Figure 13-6 wouldn’t
show the “Focused” title border in a JComboBox because the choices never had the input focus.
In addition, different components may have different default colors (a different unselected
background color, in this case). It may be necessary to ask what color the component normally
would be rendered in, and then act accordingly.

Selecting JComboBox Elements

The JComboBox component supports at least three different events related to selection.
You can listen for keyboard input to support key selection with the help of the JComboBox.
KeySelectionManager class. You can also listen with an ActionListener or an ItemListener
to find out when the selected item of the JComboBox changes.

If you want to programmatically select an element, use public void
setSelectedItem(Object element) or public void setSelectedIndex(int index).

493

494

CHAPTER 13 LIST MODEL CONTROLS

Tip To programmatically deselect the current choice of a JComboBox, call setSelectedIndex() with an
argument of —1.

Listening to Keyboard Events with a KeySelectionManager

The JComboBox has a public inner interface that’s fairly important. KeySelectionManager, and its
default implementation, manages selection from the keyboard of items within the JComboBox.
The default manager locates the next element that corresponds to the pressed key. It has
memory, so if you have entries that start with similar prefixes, users can continue typing until
there is enough of a match to be unique. If you don’t like this behavior, you can either turn it
off or create a new key selection manager.

Note The KeySelectionManager works only in combo boxes that are not editable.

If you want to turn off the key-selection capabilities, you can’t do so by simply setting the
keySelectionManager property to null. Instead, you must create an implementation of the
interface with an appropriate method. The single method of the interface is public int
selectionForKey(char aKey, ComboBoxModel aModel).In the event the pressed key doesn’t
match any elements, the routine needs to return —1. Otherwise, it should return the position of
the matched element. So, to ignore keyboard input, the routine should always return -1, as
shown here:

JComboBox.KeySelectionManager manager =
new JComboBox.KeySelectionManager() {
public int selectionForKey(char aKey, ComboBoxModel aModel) {
return -1;
}
};

aJcombo.setKeySelectionManager (manager);

Listening to JComboBox Events with an ActionListener

The primary means of listening for selection events is through an ActionListener, possibly set
with setAction(Action). It will tell you when an element has been selected within a JComboBox.
Unfortunately, the listener doesn’t know which element is selected.

Note Setting the ActionListener through setAction(Action) also configures the tooltip text and the
enabled state of the JComboBox based on the Action.

CHAPTER 13 LIST MODEL CONTROLS

Because the ActionListener can’t identify the selected element, it must ask the JComboBox
that served as the source of the event. To determine the selected element from the JComboBox,
use either getSelectedItem() or getSelectedIndex(). If an index of -1 is returned, then the
currently selected item isn’t part of the model. This seemingly impossible situation happens
when the JComboBox is editable and the user has entered a value that isn’t part of the original
model.

Note The text string comboBoxChanged is the action command for the ActionEvent sent to the
ActionListener when an item within a JComboBox changes.

Listening to JComboBox Events with an ItemListener

If